2 * Kernel-based Virtual Machine driver for Linux
4 * derived from drivers/kvm/kvm_main.c
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright (C) 2008 Qumranet, Inc.
8 * Copyright IBM Corporation, 2008
9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
12 * Avi Kivity <avi@qumranet.com>
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Amit Shah <amit.shah@qumranet.com>
15 * Ben-Ami Yassour <benami@il.ibm.com>
17 * This work is licensed under the terms of the GNU GPL, version 2. See
18 * the COPYING file in the top-level directory.
22 #include <linux/kvm_host.h>
27 #include "kvm_cache_regs.h"
30 #include <linux/clocksource.h>
31 #include <linux/interrupt.h>
32 #include <linux/kvm.h>
34 #include <linux/vmalloc.h>
35 #include <linux/module.h>
36 #include <linux/mman.h>
37 #include <linux/highmem.h>
38 #include <linux/iommu.h>
39 #include <linux/intel-iommu.h>
40 #include <linux/cpufreq.h>
41 #include <linux/user-return-notifier.h>
42 #include <linux/srcu.h>
43 #include <linux/slab.h>
44 #include <linux/perf_event.h>
45 #include <linux/uaccess.h>
46 #include <linux/hash.h>
47 #include <linux/pci.h>
48 #include <trace/events/kvm.h>
50 #define CREATE_TRACE_POINTS
53 #include <asm/debugreg.h>
60 #include <asm/pvclock.h>
61 #include <asm/div64.h>
63 #define MAX_IO_MSRS 256
64 #define KVM_MAX_MCE_BANKS 32
65 #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
67 #define emul_to_vcpu(ctxt) \
68 container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
71 * - enable syscall per default because its emulated by KVM
72 * - enable LME and LMA per default on 64 bit KVM
76 u64 __read_mostly efer_reserved_bits
= ~((u64
)(EFER_SCE
| EFER_LME
| EFER_LMA
));
78 static u64 __read_mostly efer_reserved_bits
= ~((u64
)EFER_SCE
);
81 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
82 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
84 static void update_cr8_intercept(struct kvm_vcpu
*vcpu
);
85 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2
*cpuid
,
86 struct kvm_cpuid_entry2 __user
*entries
);
87 static void process_nmi(struct kvm_vcpu
*vcpu
);
89 struct kvm_x86_ops
*kvm_x86_ops
;
90 EXPORT_SYMBOL_GPL(kvm_x86_ops
);
93 module_param_named(ignore_msrs
, ignore_msrs
, bool, S_IRUGO
| S_IWUSR
);
95 bool kvm_has_tsc_control
;
96 EXPORT_SYMBOL_GPL(kvm_has_tsc_control
);
97 u32 kvm_max_guest_tsc_khz
;
98 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz
);
100 #define KVM_NR_SHARED_MSRS 16
102 struct kvm_shared_msrs_global
{
104 u32 msrs
[KVM_NR_SHARED_MSRS
];
107 struct kvm_shared_msrs
{
108 struct user_return_notifier urn
;
110 struct kvm_shared_msr_values
{
113 } values
[KVM_NR_SHARED_MSRS
];
116 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global
;
117 static DEFINE_PER_CPU(struct kvm_shared_msrs
, shared_msrs
);
119 struct kvm_stats_debugfs_item debugfs_entries
[] = {
120 { "pf_fixed", VCPU_STAT(pf_fixed
) },
121 { "pf_guest", VCPU_STAT(pf_guest
) },
122 { "tlb_flush", VCPU_STAT(tlb_flush
) },
123 { "invlpg", VCPU_STAT(invlpg
) },
124 { "exits", VCPU_STAT(exits
) },
125 { "io_exits", VCPU_STAT(io_exits
) },
126 { "mmio_exits", VCPU_STAT(mmio_exits
) },
127 { "signal_exits", VCPU_STAT(signal_exits
) },
128 { "irq_window", VCPU_STAT(irq_window_exits
) },
129 { "nmi_window", VCPU_STAT(nmi_window_exits
) },
130 { "halt_exits", VCPU_STAT(halt_exits
) },
131 { "halt_wakeup", VCPU_STAT(halt_wakeup
) },
132 { "hypercalls", VCPU_STAT(hypercalls
) },
133 { "request_irq", VCPU_STAT(request_irq_exits
) },
134 { "irq_exits", VCPU_STAT(irq_exits
) },
135 { "host_state_reload", VCPU_STAT(host_state_reload
) },
136 { "efer_reload", VCPU_STAT(efer_reload
) },
137 { "fpu_reload", VCPU_STAT(fpu_reload
) },
138 { "insn_emulation", VCPU_STAT(insn_emulation
) },
139 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail
) },
140 { "irq_injections", VCPU_STAT(irq_injections
) },
141 { "nmi_injections", VCPU_STAT(nmi_injections
) },
142 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped
) },
143 { "mmu_pte_write", VM_STAT(mmu_pte_write
) },
144 { "mmu_pte_updated", VM_STAT(mmu_pte_updated
) },
145 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped
) },
146 { "mmu_flooded", VM_STAT(mmu_flooded
) },
147 { "mmu_recycled", VM_STAT(mmu_recycled
) },
148 { "mmu_cache_miss", VM_STAT(mmu_cache_miss
) },
149 { "mmu_unsync", VM_STAT(mmu_unsync
) },
150 { "remote_tlb_flush", VM_STAT(remote_tlb_flush
) },
151 { "largepages", VM_STAT(lpages
) },
155 u64 __read_mostly host_xcr0
;
157 int emulator_fix_hypercall(struct x86_emulate_ctxt
*ctxt
);
159 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu
*vcpu
)
162 for (i
= 0; i
< roundup_pow_of_two(ASYNC_PF_PER_VCPU
); i
++)
163 vcpu
->arch
.apf
.gfns
[i
] = ~0;
166 static void kvm_on_user_return(struct user_return_notifier
*urn
)
169 struct kvm_shared_msrs
*locals
170 = container_of(urn
, struct kvm_shared_msrs
, urn
);
171 struct kvm_shared_msr_values
*values
;
173 for (slot
= 0; slot
< shared_msrs_global
.nr
; ++slot
) {
174 values
= &locals
->values
[slot
];
175 if (values
->host
!= values
->curr
) {
176 wrmsrl(shared_msrs_global
.msrs
[slot
], values
->host
);
177 values
->curr
= values
->host
;
180 locals
->registered
= false;
181 user_return_notifier_unregister(urn
);
184 static void shared_msr_update(unsigned slot
, u32 msr
)
186 struct kvm_shared_msrs
*smsr
;
189 smsr
= &__get_cpu_var(shared_msrs
);
190 /* only read, and nobody should modify it at this time,
191 * so don't need lock */
192 if (slot
>= shared_msrs_global
.nr
) {
193 printk(KERN_ERR
"kvm: invalid MSR slot!");
196 rdmsrl_safe(msr
, &value
);
197 smsr
->values
[slot
].host
= value
;
198 smsr
->values
[slot
].curr
= value
;
201 void kvm_define_shared_msr(unsigned slot
, u32 msr
)
203 if (slot
>= shared_msrs_global
.nr
)
204 shared_msrs_global
.nr
= slot
+ 1;
205 shared_msrs_global
.msrs
[slot
] = msr
;
206 /* we need ensured the shared_msr_global have been updated */
209 EXPORT_SYMBOL_GPL(kvm_define_shared_msr
);
211 static void kvm_shared_msr_cpu_online(void)
215 for (i
= 0; i
< shared_msrs_global
.nr
; ++i
)
216 shared_msr_update(i
, shared_msrs_global
.msrs
[i
]);
219 void kvm_set_shared_msr(unsigned slot
, u64 value
, u64 mask
)
221 struct kvm_shared_msrs
*smsr
= &__get_cpu_var(shared_msrs
);
223 if (((value
^ smsr
->values
[slot
].curr
) & mask
) == 0)
225 smsr
->values
[slot
].curr
= value
;
226 wrmsrl(shared_msrs_global
.msrs
[slot
], value
);
227 if (!smsr
->registered
) {
228 smsr
->urn
.on_user_return
= kvm_on_user_return
;
229 user_return_notifier_register(&smsr
->urn
);
230 smsr
->registered
= true;
233 EXPORT_SYMBOL_GPL(kvm_set_shared_msr
);
235 static void drop_user_return_notifiers(void *ignore
)
237 struct kvm_shared_msrs
*smsr
= &__get_cpu_var(shared_msrs
);
239 if (smsr
->registered
)
240 kvm_on_user_return(&smsr
->urn
);
243 u64
kvm_get_apic_base(struct kvm_vcpu
*vcpu
)
245 if (irqchip_in_kernel(vcpu
->kvm
))
246 return vcpu
->arch
.apic_base
;
248 return vcpu
->arch
.apic_base
;
250 EXPORT_SYMBOL_GPL(kvm_get_apic_base
);
252 void kvm_set_apic_base(struct kvm_vcpu
*vcpu
, u64 data
)
254 /* TODO: reserve bits check */
255 if (irqchip_in_kernel(vcpu
->kvm
))
256 kvm_lapic_set_base(vcpu
, data
);
258 vcpu
->arch
.apic_base
= data
;
260 EXPORT_SYMBOL_GPL(kvm_set_apic_base
);
262 #define EXCPT_BENIGN 0
263 #define EXCPT_CONTRIBUTORY 1
266 static int exception_class(int vector
)
276 return EXCPT_CONTRIBUTORY
;
283 static void kvm_multiple_exception(struct kvm_vcpu
*vcpu
,
284 unsigned nr
, bool has_error
, u32 error_code
,
290 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
292 if (!vcpu
->arch
.exception
.pending
) {
294 vcpu
->arch
.exception
.pending
= true;
295 vcpu
->arch
.exception
.has_error_code
= has_error
;
296 vcpu
->arch
.exception
.nr
= nr
;
297 vcpu
->arch
.exception
.error_code
= error_code
;
298 vcpu
->arch
.exception
.reinject
= reinject
;
302 /* to check exception */
303 prev_nr
= vcpu
->arch
.exception
.nr
;
304 if (prev_nr
== DF_VECTOR
) {
305 /* triple fault -> shutdown */
306 kvm_make_request(KVM_REQ_TRIPLE_FAULT
, vcpu
);
309 class1
= exception_class(prev_nr
);
310 class2
= exception_class(nr
);
311 if ((class1
== EXCPT_CONTRIBUTORY
&& class2
== EXCPT_CONTRIBUTORY
)
312 || (class1
== EXCPT_PF
&& class2
!= EXCPT_BENIGN
)) {
313 /* generate double fault per SDM Table 5-5 */
314 vcpu
->arch
.exception
.pending
= true;
315 vcpu
->arch
.exception
.has_error_code
= true;
316 vcpu
->arch
.exception
.nr
= DF_VECTOR
;
317 vcpu
->arch
.exception
.error_code
= 0;
319 /* replace previous exception with a new one in a hope
320 that instruction re-execution will regenerate lost
325 void kvm_queue_exception(struct kvm_vcpu
*vcpu
, unsigned nr
)
327 kvm_multiple_exception(vcpu
, nr
, false, 0, false);
329 EXPORT_SYMBOL_GPL(kvm_queue_exception
);
331 void kvm_requeue_exception(struct kvm_vcpu
*vcpu
, unsigned nr
)
333 kvm_multiple_exception(vcpu
, nr
, false, 0, true);
335 EXPORT_SYMBOL_GPL(kvm_requeue_exception
);
337 void kvm_complete_insn_gp(struct kvm_vcpu
*vcpu
, int err
)
340 kvm_inject_gp(vcpu
, 0);
342 kvm_x86_ops
->skip_emulated_instruction(vcpu
);
344 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp
);
346 void kvm_inject_page_fault(struct kvm_vcpu
*vcpu
, struct x86_exception
*fault
)
348 ++vcpu
->stat
.pf_guest
;
349 vcpu
->arch
.cr2
= fault
->address
;
350 kvm_queue_exception_e(vcpu
, PF_VECTOR
, fault
->error_code
);
352 EXPORT_SYMBOL_GPL(kvm_inject_page_fault
);
354 void kvm_propagate_fault(struct kvm_vcpu
*vcpu
, struct x86_exception
*fault
)
356 if (mmu_is_nested(vcpu
) && !fault
->nested_page_fault
)
357 vcpu
->arch
.nested_mmu
.inject_page_fault(vcpu
, fault
);
359 vcpu
->arch
.mmu
.inject_page_fault(vcpu
, fault
);
362 void kvm_inject_nmi(struct kvm_vcpu
*vcpu
)
364 atomic_inc(&vcpu
->arch
.nmi_queued
);
365 kvm_make_request(KVM_REQ_NMI
, vcpu
);
367 EXPORT_SYMBOL_GPL(kvm_inject_nmi
);
369 void kvm_queue_exception_e(struct kvm_vcpu
*vcpu
, unsigned nr
, u32 error_code
)
371 kvm_multiple_exception(vcpu
, nr
, true, error_code
, false);
373 EXPORT_SYMBOL_GPL(kvm_queue_exception_e
);
375 void kvm_requeue_exception_e(struct kvm_vcpu
*vcpu
, unsigned nr
, u32 error_code
)
377 kvm_multiple_exception(vcpu
, nr
, true, error_code
, true);
379 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e
);
382 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
383 * a #GP and return false.
385 bool kvm_require_cpl(struct kvm_vcpu
*vcpu
, int required_cpl
)
387 if (kvm_x86_ops
->get_cpl(vcpu
) <= required_cpl
)
389 kvm_queue_exception_e(vcpu
, GP_VECTOR
, 0);
392 EXPORT_SYMBOL_GPL(kvm_require_cpl
);
395 * This function will be used to read from the physical memory of the currently
396 * running guest. The difference to kvm_read_guest_page is that this function
397 * can read from guest physical or from the guest's guest physical memory.
399 int kvm_read_guest_page_mmu(struct kvm_vcpu
*vcpu
, struct kvm_mmu
*mmu
,
400 gfn_t ngfn
, void *data
, int offset
, int len
,
406 ngpa
= gfn_to_gpa(ngfn
);
407 real_gfn
= mmu
->translate_gpa(vcpu
, ngpa
, access
);
408 if (real_gfn
== UNMAPPED_GVA
)
411 real_gfn
= gpa_to_gfn(real_gfn
);
413 return kvm_read_guest_page(vcpu
->kvm
, real_gfn
, data
, offset
, len
);
415 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu
);
417 int kvm_read_nested_guest_page(struct kvm_vcpu
*vcpu
, gfn_t gfn
,
418 void *data
, int offset
, int len
, u32 access
)
420 return kvm_read_guest_page_mmu(vcpu
, vcpu
->arch
.walk_mmu
, gfn
,
421 data
, offset
, len
, access
);
425 * Load the pae pdptrs. Return true is they are all valid.
427 int load_pdptrs(struct kvm_vcpu
*vcpu
, struct kvm_mmu
*mmu
, unsigned long cr3
)
429 gfn_t pdpt_gfn
= cr3
>> PAGE_SHIFT
;
430 unsigned offset
= ((cr3
& (PAGE_SIZE
-1)) >> 5) << 2;
433 u64 pdpte
[ARRAY_SIZE(mmu
->pdptrs
)];
435 ret
= kvm_read_guest_page_mmu(vcpu
, mmu
, pdpt_gfn
, pdpte
,
436 offset
* sizeof(u64
), sizeof(pdpte
),
437 PFERR_USER_MASK
|PFERR_WRITE_MASK
);
442 for (i
= 0; i
< ARRAY_SIZE(pdpte
); ++i
) {
443 if (is_present_gpte(pdpte
[i
]) &&
444 (pdpte
[i
] & vcpu
->arch
.mmu
.rsvd_bits_mask
[0][2])) {
451 memcpy(mmu
->pdptrs
, pdpte
, sizeof(mmu
->pdptrs
));
452 __set_bit(VCPU_EXREG_PDPTR
,
453 (unsigned long *)&vcpu
->arch
.regs_avail
);
454 __set_bit(VCPU_EXREG_PDPTR
,
455 (unsigned long *)&vcpu
->arch
.regs_dirty
);
460 EXPORT_SYMBOL_GPL(load_pdptrs
);
462 static bool pdptrs_changed(struct kvm_vcpu
*vcpu
)
464 u64 pdpte
[ARRAY_SIZE(vcpu
->arch
.walk_mmu
->pdptrs
)];
470 if (is_long_mode(vcpu
) || !is_pae(vcpu
))
473 if (!test_bit(VCPU_EXREG_PDPTR
,
474 (unsigned long *)&vcpu
->arch
.regs_avail
))
477 gfn
= (kvm_read_cr3(vcpu
) & ~31u) >> PAGE_SHIFT
;
478 offset
= (kvm_read_cr3(vcpu
) & ~31u) & (PAGE_SIZE
- 1);
479 r
= kvm_read_nested_guest_page(vcpu
, gfn
, pdpte
, offset
, sizeof(pdpte
),
480 PFERR_USER_MASK
| PFERR_WRITE_MASK
);
483 changed
= memcmp(pdpte
, vcpu
->arch
.walk_mmu
->pdptrs
, sizeof(pdpte
)) != 0;
489 int kvm_set_cr0(struct kvm_vcpu
*vcpu
, unsigned long cr0
)
491 unsigned long old_cr0
= kvm_read_cr0(vcpu
);
492 unsigned long update_bits
= X86_CR0_PG
| X86_CR0_WP
|
493 X86_CR0_CD
| X86_CR0_NW
;
498 if (cr0
& 0xffffffff00000000UL
)
502 cr0
&= ~CR0_RESERVED_BITS
;
504 if ((cr0
& X86_CR0_NW
) && !(cr0
& X86_CR0_CD
))
507 if ((cr0
& X86_CR0_PG
) && !(cr0
& X86_CR0_PE
))
510 if (!is_paging(vcpu
) && (cr0
& X86_CR0_PG
)) {
512 if ((vcpu
->arch
.efer
& EFER_LME
)) {
517 kvm_x86_ops
->get_cs_db_l_bits(vcpu
, &cs_db
, &cs_l
);
522 if (is_pae(vcpu
) && !load_pdptrs(vcpu
, vcpu
->arch
.walk_mmu
,
527 kvm_x86_ops
->set_cr0(vcpu
, cr0
);
529 if ((cr0
^ old_cr0
) & X86_CR0_PG
) {
530 kvm_clear_async_pf_completion_queue(vcpu
);
531 kvm_async_pf_hash_reset(vcpu
);
534 if ((cr0
^ old_cr0
) & update_bits
)
535 kvm_mmu_reset_context(vcpu
);
538 EXPORT_SYMBOL_GPL(kvm_set_cr0
);
540 void kvm_lmsw(struct kvm_vcpu
*vcpu
, unsigned long msw
)
542 (void)kvm_set_cr0(vcpu
, kvm_read_cr0_bits(vcpu
, ~0x0eul
) | (msw
& 0x0f));
544 EXPORT_SYMBOL_GPL(kvm_lmsw
);
546 int __kvm_set_xcr(struct kvm_vcpu
*vcpu
, u32 index
, u64 xcr
)
550 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
551 if (index
!= XCR_XFEATURE_ENABLED_MASK
)
554 if (kvm_x86_ops
->get_cpl(vcpu
) != 0)
556 if (!(xcr0
& XSTATE_FP
))
558 if ((xcr0
& XSTATE_YMM
) && !(xcr0
& XSTATE_SSE
))
560 if (xcr0
& ~host_xcr0
)
562 vcpu
->arch
.xcr0
= xcr0
;
563 vcpu
->guest_xcr0_loaded
= 0;
567 int kvm_set_xcr(struct kvm_vcpu
*vcpu
, u32 index
, u64 xcr
)
569 if (__kvm_set_xcr(vcpu
, index
, xcr
)) {
570 kvm_inject_gp(vcpu
, 0);
575 EXPORT_SYMBOL_GPL(kvm_set_xcr
);
577 static bool guest_cpuid_has_xsave(struct kvm_vcpu
*vcpu
)
579 struct kvm_cpuid_entry2
*best
;
581 best
= kvm_find_cpuid_entry(vcpu
, 1, 0);
582 return best
&& (best
->ecx
& bit(X86_FEATURE_XSAVE
));
585 static bool guest_cpuid_has_smep(struct kvm_vcpu
*vcpu
)
587 struct kvm_cpuid_entry2
*best
;
589 best
= kvm_find_cpuid_entry(vcpu
, 7, 0);
590 return best
&& (best
->ebx
& bit(X86_FEATURE_SMEP
));
593 static bool guest_cpuid_has_fsgsbase(struct kvm_vcpu
*vcpu
)
595 struct kvm_cpuid_entry2
*best
;
597 best
= kvm_find_cpuid_entry(vcpu
, 7, 0);
598 return best
&& (best
->ebx
& bit(X86_FEATURE_FSGSBASE
));
601 static void update_cpuid(struct kvm_vcpu
*vcpu
)
603 struct kvm_cpuid_entry2
*best
;
604 struct kvm_lapic
*apic
= vcpu
->arch
.apic
;
607 best
= kvm_find_cpuid_entry(vcpu
, 1, 0);
611 /* Update OSXSAVE bit */
612 if (cpu_has_xsave
&& best
->function
== 0x1) {
613 best
->ecx
&= ~(bit(X86_FEATURE_OSXSAVE
));
614 if (kvm_read_cr4_bits(vcpu
, X86_CR4_OSXSAVE
))
615 best
->ecx
|= bit(X86_FEATURE_OSXSAVE
);
618 if (boot_cpu_data
.x86_vendor
== X86_VENDOR_INTEL
&&
619 best
->function
== 0x1) {
620 best
->ecx
|= bit(X86_FEATURE_TSC_DEADLINE_TIMER
);
621 timer_mode_mask
= 3 << 17;
623 timer_mode_mask
= 1 << 17;
626 apic
->lapic_timer
.timer_mode_mask
= timer_mode_mask
;
629 int kvm_set_cr4(struct kvm_vcpu
*vcpu
, unsigned long cr4
)
631 unsigned long old_cr4
= kvm_read_cr4(vcpu
);
632 unsigned long pdptr_bits
= X86_CR4_PGE
| X86_CR4_PSE
|
633 X86_CR4_PAE
| X86_CR4_SMEP
;
634 if (cr4
& CR4_RESERVED_BITS
)
637 if (!guest_cpuid_has_xsave(vcpu
) && (cr4
& X86_CR4_OSXSAVE
))
640 if (!guest_cpuid_has_smep(vcpu
) && (cr4
& X86_CR4_SMEP
))
643 if (!guest_cpuid_has_fsgsbase(vcpu
) && (cr4
& X86_CR4_RDWRGSFS
))
646 if (is_long_mode(vcpu
)) {
647 if (!(cr4
& X86_CR4_PAE
))
649 } else if (is_paging(vcpu
) && (cr4
& X86_CR4_PAE
)
650 && ((cr4
^ old_cr4
) & pdptr_bits
)
651 && !load_pdptrs(vcpu
, vcpu
->arch
.walk_mmu
,
655 if (kvm_x86_ops
->set_cr4(vcpu
, cr4
))
658 if ((cr4
^ old_cr4
) & pdptr_bits
)
659 kvm_mmu_reset_context(vcpu
);
661 if ((cr4
^ old_cr4
) & X86_CR4_OSXSAVE
)
666 EXPORT_SYMBOL_GPL(kvm_set_cr4
);
668 int kvm_set_cr3(struct kvm_vcpu
*vcpu
, unsigned long cr3
)
670 if (cr3
== kvm_read_cr3(vcpu
) && !pdptrs_changed(vcpu
)) {
671 kvm_mmu_sync_roots(vcpu
);
672 kvm_mmu_flush_tlb(vcpu
);
676 if (is_long_mode(vcpu
)) {
677 if (cr3
& CR3_L_MODE_RESERVED_BITS
)
681 if (cr3
& CR3_PAE_RESERVED_BITS
)
683 if (is_paging(vcpu
) &&
684 !load_pdptrs(vcpu
, vcpu
->arch
.walk_mmu
, cr3
))
688 * We don't check reserved bits in nonpae mode, because
689 * this isn't enforced, and VMware depends on this.
694 * Does the new cr3 value map to physical memory? (Note, we
695 * catch an invalid cr3 even in real-mode, because it would
696 * cause trouble later on when we turn on paging anyway.)
698 * A real CPU would silently accept an invalid cr3 and would
699 * attempt to use it - with largely undefined (and often hard
700 * to debug) behavior on the guest side.
702 if (unlikely(!gfn_to_memslot(vcpu
->kvm
, cr3
>> PAGE_SHIFT
)))
704 vcpu
->arch
.cr3
= cr3
;
705 __set_bit(VCPU_EXREG_CR3
, (ulong
*)&vcpu
->arch
.regs_avail
);
706 vcpu
->arch
.mmu
.new_cr3(vcpu
);
709 EXPORT_SYMBOL_GPL(kvm_set_cr3
);
711 int kvm_set_cr8(struct kvm_vcpu
*vcpu
, unsigned long cr8
)
713 if (cr8
& CR8_RESERVED_BITS
)
715 if (irqchip_in_kernel(vcpu
->kvm
))
716 kvm_lapic_set_tpr(vcpu
, cr8
);
718 vcpu
->arch
.cr8
= cr8
;
721 EXPORT_SYMBOL_GPL(kvm_set_cr8
);
723 unsigned long kvm_get_cr8(struct kvm_vcpu
*vcpu
)
725 if (irqchip_in_kernel(vcpu
->kvm
))
726 return kvm_lapic_get_cr8(vcpu
);
728 return vcpu
->arch
.cr8
;
730 EXPORT_SYMBOL_GPL(kvm_get_cr8
);
732 static int __kvm_set_dr(struct kvm_vcpu
*vcpu
, int dr
, unsigned long val
)
736 vcpu
->arch
.db
[dr
] = val
;
737 if (!(vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
))
738 vcpu
->arch
.eff_db
[dr
] = val
;
741 if (kvm_read_cr4_bits(vcpu
, X86_CR4_DE
))
745 if (val
& 0xffffffff00000000ULL
)
747 vcpu
->arch
.dr6
= (val
& DR6_VOLATILE
) | DR6_FIXED_1
;
750 if (kvm_read_cr4_bits(vcpu
, X86_CR4_DE
))
754 if (val
& 0xffffffff00000000ULL
)
756 vcpu
->arch
.dr7
= (val
& DR7_VOLATILE
) | DR7_FIXED_1
;
757 if (!(vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
)) {
758 kvm_x86_ops
->set_dr7(vcpu
, vcpu
->arch
.dr7
);
759 vcpu
->arch
.switch_db_regs
= (val
& DR7_BP_EN_MASK
);
767 int kvm_set_dr(struct kvm_vcpu
*vcpu
, int dr
, unsigned long val
)
771 res
= __kvm_set_dr(vcpu
, dr
, val
);
773 kvm_queue_exception(vcpu
, UD_VECTOR
);
775 kvm_inject_gp(vcpu
, 0);
779 EXPORT_SYMBOL_GPL(kvm_set_dr
);
781 static int _kvm_get_dr(struct kvm_vcpu
*vcpu
, int dr
, unsigned long *val
)
785 *val
= vcpu
->arch
.db
[dr
];
788 if (kvm_read_cr4_bits(vcpu
, X86_CR4_DE
))
792 *val
= vcpu
->arch
.dr6
;
795 if (kvm_read_cr4_bits(vcpu
, X86_CR4_DE
))
799 *val
= vcpu
->arch
.dr7
;
806 int kvm_get_dr(struct kvm_vcpu
*vcpu
, int dr
, unsigned long *val
)
808 if (_kvm_get_dr(vcpu
, dr
, val
)) {
809 kvm_queue_exception(vcpu
, UD_VECTOR
);
814 EXPORT_SYMBOL_GPL(kvm_get_dr
);
817 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
818 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
820 * This list is modified at module load time to reflect the
821 * capabilities of the host cpu. This capabilities test skips MSRs that are
822 * kvm-specific. Those are put in the beginning of the list.
825 #define KVM_SAVE_MSRS_BEGIN 9
826 static u32 msrs_to_save
[] = {
827 MSR_KVM_SYSTEM_TIME
, MSR_KVM_WALL_CLOCK
,
828 MSR_KVM_SYSTEM_TIME_NEW
, MSR_KVM_WALL_CLOCK_NEW
,
829 HV_X64_MSR_GUEST_OS_ID
, HV_X64_MSR_HYPERCALL
,
830 HV_X64_MSR_APIC_ASSIST_PAGE
, MSR_KVM_ASYNC_PF_EN
, MSR_KVM_STEAL_TIME
,
831 MSR_IA32_SYSENTER_CS
, MSR_IA32_SYSENTER_ESP
, MSR_IA32_SYSENTER_EIP
,
834 MSR_CSTAR
, MSR_KERNEL_GS_BASE
, MSR_SYSCALL_MASK
, MSR_LSTAR
,
836 MSR_IA32_TSC
, MSR_IA32_CR_PAT
, MSR_VM_HSAVE_PA
839 static unsigned num_msrs_to_save
;
841 static u32 emulated_msrs
[] = {
842 MSR_IA32_TSCDEADLINE
,
843 MSR_IA32_MISC_ENABLE
,
848 static int set_efer(struct kvm_vcpu
*vcpu
, u64 efer
)
850 u64 old_efer
= vcpu
->arch
.efer
;
852 if (efer
& efer_reserved_bits
)
856 && (vcpu
->arch
.efer
& EFER_LME
) != (efer
& EFER_LME
))
859 if (efer
& EFER_FFXSR
) {
860 struct kvm_cpuid_entry2
*feat
;
862 feat
= kvm_find_cpuid_entry(vcpu
, 0x80000001, 0);
863 if (!feat
|| !(feat
->edx
& bit(X86_FEATURE_FXSR_OPT
)))
867 if (efer
& EFER_SVME
) {
868 struct kvm_cpuid_entry2
*feat
;
870 feat
= kvm_find_cpuid_entry(vcpu
, 0x80000001, 0);
871 if (!feat
|| !(feat
->ecx
& bit(X86_FEATURE_SVM
)))
876 efer
|= vcpu
->arch
.efer
& EFER_LMA
;
878 kvm_x86_ops
->set_efer(vcpu
, efer
);
880 vcpu
->arch
.mmu
.base_role
.nxe
= (efer
& EFER_NX
) && !tdp_enabled
;
882 /* Update reserved bits */
883 if ((efer
^ old_efer
) & EFER_NX
)
884 kvm_mmu_reset_context(vcpu
);
889 void kvm_enable_efer_bits(u64 mask
)
891 efer_reserved_bits
&= ~mask
;
893 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits
);
897 * Writes msr value into into the appropriate "register".
898 * Returns 0 on success, non-0 otherwise.
899 * Assumes vcpu_load() was already called.
901 int kvm_set_msr(struct kvm_vcpu
*vcpu
, u32 msr_index
, u64 data
)
903 return kvm_x86_ops
->set_msr(vcpu
, msr_index
, data
);
907 * Adapt set_msr() to msr_io()'s calling convention
909 static int do_set_msr(struct kvm_vcpu
*vcpu
, unsigned index
, u64
*data
)
911 return kvm_set_msr(vcpu
, index
, *data
);
914 static void kvm_write_wall_clock(struct kvm
*kvm
, gpa_t wall_clock
)
918 struct pvclock_wall_clock wc
;
919 struct timespec boot
;
924 r
= kvm_read_guest(kvm
, wall_clock
, &version
, sizeof(version
));
929 ++version
; /* first time write, random junk */
933 kvm_write_guest(kvm
, wall_clock
, &version
, sizeof(version
));
936 * The guest calculates current wall clock time by adding
937 * system time (updated by kvm_guest_time_update below) to the
938 * wall clock specified here. guest system time equals host
939 * system time for us, thus we must fill in host boot time here.
943 wc
.sec
= boot
.tv_sec
;
944 wc
.nsec
= boot
.tv_nsec
;
945 wc
.version
= version
;
947 kvm_write_guest(kvm
, wall_clock
, &wc
, sizeof(wc
));
950 kvm_write_guest(kvm
, wall_clock
, &version
, sizeof(version
));
953 static uint32_t div_frac(uint32_t dividend
, uint32_t divisor
)
955 uint32_t quotient
, remainder
;
957 /* Don't try to replace with do_div(), this one calculates
958 * "(dividend << 32) / divisor" */
960 : "=a" (quotient
), "=d" (remainder
)
961 : "0" (0), "1" (dividend
), "r" (divisor
) );
965 static void kvm_get_time_scale(uint32_t scaled_khz
, uint32_t base_khz
,
966 s8
*pshift
, u32
*pmultiplier
)
973 tps64
= base_khz
* 1000LL;
974 scaled64
= scaled_khz
* 1000LL;
975 while (tps64
> scaled64
*2 || tps64
& 0xffffffff00000000ULL
) {
980 tps32
= (uint32_t)tps64
;
981 while (tps32
<= scaled64
|| scaled64
& 0xffffffff00000000ULL
) {
982 if (scaled64
& 0xffffffff00000000ULL
|| tps32
& 0x80000000)
990 *pmultiplier
= div_frac(scaled64
, tps32
);
992 pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n",
993 __func__
, base_khz
, scaled_khz
, shift
, *pmultiplier
);
996 static inline u64
get_kernel_ns(void)
1000 WARN_ON(preemptible());
1002 monotonic_to_bootbased(&ts
);
1003 return timespec_to_ns(&ts
);
1006 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz
);
1007 unsigned long max_tsc_khz
;
1009 static inline int kvm_tsc_changes_freq(void)
1011 int cpu
= get_cpu();
1012 int ret
= !boot_cpu_has(X86_FEATURE_CONSTANT_TSC
) &&
1013 cpufreq_quick_get(cpu
) != 0;
1018 u64
vcpu_tsc_khz(struct kvm_vcpu
*vcpu
)
1020 if (vcpu
->arch
.virtual_tsc_khz
)
1021 return vcpu
->arch
.virtual_tsc_khz
;
1023 return __this_cpu_read(cpu_tsc_khz
);
1026 static inline u64
nsec_to_cycles(struct kvm_vcpu
*vcpu
, u64 nsec
)
1030 WARN_ON(preemptible());
1031 if (kvm_tsc_changes_freq())
1032 printk_once(KERN_WARNING
1033 "kvm: unreliable cycle conversion on adjustable rate TSC\n");
1034 ret
= nsec
* vcpu_tsc_khz(vcpu
);
1035 do_div(ret
, USEC_PER_SEC
);
1039 static void kvm_init_tsc_catchup(struct kvm_vcpu
*vcpu
, u32 this_tsc_khz
)
1041 /* Compute a scale to convert nanoseconds in TSC cycles */
1042 kvm_get_time_scale(this_tsc_khz
, NSEC_PER_SEC
/ 1000,
1043 &vcpu
->arch
.tsc_catchup_shift
,
1044 &vcpu
->arch
.tsc_catchup_mult
);
1047 static u64
compute_guest_tsc(struct kvm_vcpu
*vcpu
, s64 kernel_ns
)
1049 u64 tsc
= pvclock_scale_delta(kernel_ns
-vcpu
->arch
.last_tsc_nsec
,
1050 vcpu
->arch
.tsc_catchup_mult
,
1051 vcpu
->arch
.tsc_catchup_shift
);
1052 tsc
+= vcpu
->arch
.last_tsc_write
;
1056 void kvm_write_tsc(struct kvm_vcpu
*vcpu
, u64 data
)
1058 struct kvm
*kvm
= vcpu
->kvm
;
1059 u64 offset
, ns
, elapsed
;
1060 unsigned long flags
;
1063 raw_spin_lock_irqsave(&kvm
->arch
.tsc_write_lock
, flags
);
1064 offset
= kvm_x86_ops
->compute_tsc_offset(vcpu
, data
);
1065 ns
= get_kernel_ns();
1066 elapsed
= ns
- kvm
->arch
.last_tsc_nsec
;
1067 sdiff
= data
- kvm
->arch
.last_tsc_write
;
1072 * Special case: close write to TSC within 5 seconds of
1073 * another CPU is interpreted as an attempt to synchronize
1074 * The 5 seconds is to accommodate host load / swapping as
1075 * well as any reset of TSC during the boot process.
1077 * In that case, for a reliable TSC, we can match TSC offsets,
1078 * or make a best guest using elapsed value.
1080 if (sdiff
< nsec_to_cycles(vcpu
, 5ULL * NSEC_PER_SEC
) &&
1081 elapsed
< 5ULL * NSEC_PER_SEC
) {
1082 if (!check_tsc_unstable()) {
1083 offset
= kvm
->arch
.last_tsc_offset
;
1084 pr_debug("kvm: matched tsc offset for %llu\n", data
);
1086 u64 delta
= nsec_to_cycles(vcpu
, elapsed
);
1088 pr_debug("kvm: adjusted tsc offset by %llu\n", delta
);
1090 ns
= kvm
->arch
.last_tsc_nsec
;
1092 kvm
->arch
.last_tsc_nsec
= ns
;
1093 kvm
->arch
.last_tsc_write
= data
;
1094 kvm
->arch
.last_tsc_offset
= offset
;
1095 kvm_x86_ops
->write_tsc_offset(vcpu
, offset
);
1096 raw_spin_unlock_irqrestore(&kvm
->arch
.tsc_write_lock
, flags
);
1098 /* Reset of TSC must disable overshoot protection below */
1099 vcpu
->arch
.hv_clock
.tsc_timestamp
= 0;
1100 vcpu
->arch
.last_tsc_write
= data
;
1101 vcpu
->arch
.last_tsc_nsec
= ns
;
1103 EXPORT_SYMBOL_GPL(kvm_write_tsc
);
1105 static int kvm_guest_time_update(struct kvm_vcpu
*v
)
1107 unsigned long flags
;
1108 struct kvm_vcpu_arch
*vcpu
= &v
->arch
;
1110 unsigned long this_tsc_khz
;
1111 s64 kernel_ns
, max_kernel_ns
;
1114 /* Keep irq disabled to prevent changes to the clock */
1115 local_irq_save(flags
);
1116 tsc_timestamp
= kvm_x86_ops
->read_l1_tsc(v
);
1117 kernel_ns
= get_kernel_ns();
1118 this_tsc_khz
= vcpu_tsc_khz(v
);
1119 if (unlikely(this_tsc_khz
== 0)) {
1120 local_irq_restore(flags
);
1121 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, v
);
1126 * We may have to catch up the TSC to match elapsed wall clock
1127 * time for two reasons, even if kvmclock is used.
1128 * 1) CPU could have been running below the maximum TSC rate
1129 * 2) Broken TSC compensation resets the base at each VCPU
1130 * entry to avoid unknown leaps of TSC even when running
1131 * again on the same CPU. This may cause apparent elapsed
1132 * time to disappear, and the guest to stand still or run
1135 if (vcpu
->tsc_catchup
) {
1136 u64 tsc
= compute_guest_tsc(v
, kernel_ns
);
1137 if (tsc
> tsc_timestamp
) {
1138 kvm_x86_ops
->adjust_tsc_offset(v
, tsc
- tsc_timestamp
);
1139 tsc_timestamp
= tsc
;
1143 local_irq_restore(flags
);
1145 if (!vcpu
->time_page
)
1149 * Time as measured by the TSC may go backwards when resetting the base
1150 * tsc_timestamp. The reason for this is that the TSC resolution is
1151 * higher than the resolution of the other clock scales. Thus, many
1152 * possible measurments of the TSC correspond to one measurement of any
1153 * other clock, and so a spread of values is possible. This is not a
1154 * problem for the computation of the nanosecond clock; with TSC rates
1155 * around 1GHZ, there can only be a few cycles which correspond to one
1156 * nanosecond value, and any path through this code will inevitably
1157 * take longer than that. However, with the kernel_ns value itself,
1158 * the precision may be much lower, down to HZ granularity. If the
1159 * first sampling of TSC against kernel_ns ends in the low part of the
1160 * range, and the second in the high end of the range, we can get:
1162 * (TSC - offset_low) * S + kns_old > (TSC - offset_high) * S + kns_new
1164 * As the sampling errors potentially range in the thousands of cycles,
1165 * it is possible such a time value has already been observed by the
1166 * guest. To protect against this, we must compute the system time as
1167 * observed by the guest and ensure the new system time is greater.
1170 if (vcpu
->hv_clock
.tsc_timestamp
&& vcpu
->last_guest_tsc
) {
1171 max_kernel_ns
= vcpu
->last_guest_tsc
-
1172 vcpu
->hv_clock
.tsc_timestamp
;
1173 max_kernel_ns
= pvclock_scale_delta(max_kernel_ns
,
1174 vcpu
->hv_clock
.tsc_to_system_mul
,
1175 vcpu
->hv_clock
.tsc_shift
);
1176 max_kernel_ns
+= vcpu
->last_kernel_ns
;
1179 if (unlikely(vcpu
->hw_tsc_khz
!= this_tsc_khz
)) {
1180 kvm_get_time_scale(NSEC_PER_SEC
/ 1000, this_tsc_khz
,
1181 &vcpu
->hv_clock
.tsc_shift
,
1182 &vcpu
->hv_clock
.tsc_to_system_mul
);
1183 vcpu
->hw_tsc_khz
= this_tsc_khz
;
1186 if (max_kernel_ns
> kernel_ns
)
1187 kernel_ns
= max_kernel_ns
;
1189 /* With all the info we got, fill in the values */
1190 vcpu
->hv_clock
.tsc_timestamp
= tsc_timestamp
;
1191 vcpu
->hv_clock
.system_time
= kernel_ns
+ v
->kvm
->arch
.kvmclock_offset
;
1192 vcpu
->last_kernel_ns
= kernel_ns
;
1193 vcpu
->last_guest_tsc
= tsc_timestamp
;
1194 vcpu
->hv_clock
.flags
= 0;
1197 * The interface expects us to write an even number signaling that the
1198 * update is finished. Since the guest won't see the intermediate
1199 * state, we just increase by 2 at the end.
1201 vcpu
->hv_clock
.version
+= 2;
1203 shared_kaddr
= kmap_atomic(vcpu
->time_page
, KM_USER0
);
1205 memcpy(shared_kaddr
+ vcpu
->time_offset
, &vcpu
->hv_clock
,
1206 sizeof(vcpu
->hv_clock
));
1208 kunmap_atomic(shared_kaddr
, KM_USER0
);
1210 mark_page_dirty(v
->kvm
, vcpu
->time
>> PAGE_SHIFT
);
1214 static bool msr_mtrr_valid(unsigned msr
)
1217 case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR
- 1:
1218 case MSR_MTRRfix64K_00000
:
1219 case MSR_MTRRfix16K_80000
:
1220 case MSR_MTRRfix16K_A0000
:
1221 case MSR_MTRRfix4K_C0000
:
1222 case MSR_MTRRfix4K_C8000
:
1223 case MSR_MTRRfix4K_D0000
:
1224 case MSR_MTRRfix4K_D8000
:
1225 case MSR_MTRRfix4K_E0000
:
1226 case MSR_MTRRfix4K_E8000
:
1227 case MSR_MTRRfix4K_F0000
:
1228 case MSR_MTRRfix4K_F8000
:
1229 case MSR_MTRRdefType
:
1230 case MSR_IA32_CR_PAT
:
1238 static bool valid_pat_type(unsigned t
)
1240 return t
< 8 && (1 << t
) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
1243 static bool valid_mtrr_type(unsigned t
)
1245 return t
< 8 && (1 << t
) & 0x73; /* 0, 1, 4, 5, 6 */
1248 static bool mtrr_valid(struct kvm_vcpu
*vcpu
, u32 msr
, u64 data
)
1252 if (!msr_mtrr_valid(msr
))
1255 if (msr
== MSR_IA32_CR_PAT
) {
1256 for (i
= 0; i
< 8; i
++)
1257 if (!valid_pat_type((data
>> (i
* 8)) & 0xff))
1260 } else if (msr
== MSR_MTRRdefType
) {
1263 return valid_mtrr_type(data
& 0xff);
1264 } else if (msr
>= MSR_MTRRfix64K_00000
&& msr
<= MSR_MTRRfix4K_F8000
) {
1265 for (i
= 0; i
< 8 ; i
++)
1266 if (!valid_mtrr_type((data
>> (i
* 8)) & 0xff))
1271 /* variable MTRRs */
1272 return valid_mtrr_type(data
& 0xff);
1275 static int set_msr_mtrr(struct kvm_vcpu
*vcpu
, u32 msr
, u64 data
)
1277 u64
*p
= (u64
*)&vcpu
->arch
.mtrr_state
.fixed_ranges
;
1279 if (!mtrr_valid(vcpu
, msr
, data
))
1282 if (msr
== MSR_MTRRdefType
) {
1283 vcpu
->arch
.mtrr_state
.def_type
= data
;
1284 vcpu
->arch
.mtrr_state
.enabled
= (data
& 0xc00) >> 10;
1285 } else if (msr
== MSR_MTRRfix64K_00000
)
1287 else if (msr
== MSR_MTRRfix16K_80000
|| msr
== MSR_MTRRfix16K_A0000
)
1288 p
[1 + msr
- MSR_MTRRfix16K_80000
] = data
;
1289 else if (msr
>= MSR_MTRRfix4K_C0000
&& msr
<= MSR_MTRRfix4K_F8000
)
1290 p
[3 + msr
- MSR_MTRRfix4K_C0000
] = data
;
1291 else if (msr
== MSR_IA32_CR_PAT
)
1292 vcpu
->arch
.pat
= data
;
1293 else { /* Variable MTRRs */
1294 int idx
, is_mtrr_mask
;
1297 idx
= (msr
- 0x200) / 2;
1298 is_mtrr_mask
= msr
- 0x200 - 2 * idx
;
1301 (u64
*)&vcpu
->arch
.mtrr_state
.var_ranges
[idx
].base_lo
;
1304 (u64
*)&vcpu
->arch
.mtrr_state
.var_ranges
[idx
].mask_lo
;
1308 kvm_mmu_reset_context(vcpu
);
1312 static int set_msr_mce(struct kvm_vcpu
*vcpu
, u32 msr
, u64 data
)
1314 u64 mcg_cap
= vcpu
->arch
.mcg_cap
;
1315 unsigned bank_num
= mcg_cap
& 0xff;
1318 case MSR_IA32_MCG_STATUS
:
1319 vcpu
->arch
.mcg_status
= data
;
1321 case MSR_IA32_MCG_CTL
:
1322 if (!(mcg_cap
& MCG_CTL_P
))
1324 if (data
!= 0 && data
!= ~(u64
)0)
1326 vcpu
->arch
.mcg_ctl
= data
;
1329 if (msr
>= MSR_IA32_MC0_CTL
&&
1330 msr
< MSR_IA32_MC0_CTL
+ 4 * bank_num
) {
1331 u32 offset
= msr
- MSR_IA32_MC0_CTL
;
1332 /* only 0 or all 1s can be written to IA32_MCi_CTL
1333 * some Linux kernels though clear bit 10 in bank 4 to
1334 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1335 * this to avoid an uncatched #GP in the guest
1337 if ((offset
& 0x3) == 0 &&
1338 data
!= 0 && (data
| (1 << 10)) != ~(u64
)0)
1340 vcpu
->arch
.mce_banks
[offset
] = data
;
1348 static int xen_hvm_config(struct kvm_vcpu
*vcpu
, u64 data
)
1350 struct kvm
*kvm
= vcpu
->kvm
;
1351 int lm
= is_long_mode(vcpu
);
1352 u8
*blob_addr
= lm
? (u8
*)(long)kvm
->arch
.xen_hvm_config
.blob_addr_64
1353 : (u8
*)(long)kvm
->arch
.xen_hvm_config
.blob_addr_32
;
1354 u8 blob_size
= lm
? kvm
->arch
.xen_hvm_config
.blob_size_64
1355 : kvm
->arch
.xen_hvm_config
.blob_size_32
;
1356 u32 page_num
= data
& ~PAGE_MASK
;
1357 u64 page_addr
= data
& PAGE_MASK
;
1362 if (page_num
>= blob_size
)
1365 page
= kzalloc(PAGE_SIZE
, GFP_KERNEL
);
1369 if (copy_from_user(page
, blob_addr
+ (page_num
* PAGE_SIZE
), PAGE_SIZE
))
1371 if (kvm_write_guest(kvm
, page_addr
, page
, PAGE_SIZE
))
1380 static bool kvm_hv_hypercall_enabled(struct kvm
*kvm
)
1382 return kvm
->arch
.hv_hypercall
& HV_X64_MSR_HYPERCALL_ENABLE
;
1385 static bool kvm_hv_msr_partition_wide(u32 msr
)
1389 case HV_X64_MSR_GUEST_OS_ID
:
1390 case HV_X64_MSR_HYPERCALL
:
1398 static int set_msr_hyperv_pw(struct kvm_vcpu
*vcpu
, u32 msr
, u64 data
)
1400 struct kvm
*kvm
= vcpu
->kvm
;
1403 case HV_X64_MSR_GUEST_OS_ID
:
1404 kvm
->arch
.hv_guest_os_id
= data
;
1405 /* setting guest os id to zero disables hypercall page */
1406 if (!kvm
->arch
.hv_guest_os_id
)
1407 kvm
->arch
.hv_hypercall
&= ~HV_X64_MSR_HYPERCALL_ENABLE
;
1409 case HV_X64_MSR_HYPERCALL
: {
1414 /* if guest os id is not set hypercall should remain disabled */
1415 if (!kvm
->arch
.hv_guest_os_id
)
1417 if (!(data
& HV_X64_MSR_HYPERCALL_ENABLE
)) {
1418 kvm
->arch
.hv_hypercall
= data
;
1421 gfn
= data
>> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT
;
1422 addr
= gfn_to_hva(kvm
, gfn
);
1423 if (kvm_is_error_hva(addr
))
1425 kvm_x86_ops
->patch_hypercall(vcpu
, instructions
);
1426 ((unsigned char *)instructions
)[3] = 0xc3; /* ret */
1427 if (__copy_to_user((void __user
*)addr
, instructions
, 4))
1429 kvm
->arch
.hv_hypercall
= data
;
1433 pr_unimpl(vcpu
, "HYPER-V unimplemented wrmsr: 0x%x "
1434 "data 0x%llx\n", msr
, data
);
1440 static int set_msr_hyperv(struct kvm_vcpu
*vcpu
, u32 msr
, u64 data
)
1443 case HV_X64_MSR_APIC_ASSIST_PAGE
: {
1446 if (!(data
& HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE
)) {
1447 vcpu
->arch
.hv_vapic
= data
;
1450 addr
= gfn_to_hva(vcpu
->kvm
, data
>>
1451 HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT
);
1452 if (kvm_is_error_hva(addr
))
1454 if (__clear_user((void __user
*)addr
, PAGE_SIZE
))
1456 vcpu
->arch
.hv_vapic
= data
;
1459 case HV_X64_MSR_EOI
:
1460 return kvm_hv_vapic_msr_write(vcpu
, APIC_EOI
, data
);
1461 case HV_X64_MSR_ICR
:
1462 return kvm_hv_vapic_msr_write(vcpu
, APIC_ICR
, data
);
1463 case HV_X64_MSR_TPR
:
1464 return kvm_hv_vapic_msr_write(vcpu
, APIC_TASKPRI
, data
);
1466 pr_unimpl(vcpu
, "HYPER-V unimplemented wrmsr: 0x%x "
1467 "data 0x%llx\n", msr
, data
);
1474 static int kvm_pv_enable_async_pf(struct kvm_vcpu
*vcpu
, u64 data
)
1476 gpa_t gpa
= data
& ~0x3f;
1478 /* Bits 2:5 are resrved, Should be zero */
1482 vcpu
->arch
.apf
.msr_val
= data
;
1484 if (!(data
& KVM_ASYNC_PF_ENABLED
)) {
1485 kvm_clear_async_pf_completion_queue(vcpu
);
1486 kvm_async_pf_hash_reset(vcpu
);
1490 if (kvm_gfn_to_hva_cache_init(vcpu
->kvm
, &vcpu
->arch
.apf
.data
, gpa
))
1493 vcpu
->arch
.apf
.send_user_only
= !(data
& KVM_ASYNC_PF_SEND_ALWAYS
);
1494 kvm_async_pf_wakeup_all(vcpu
);
1498 static void kvmclock_reset(struct kvm_vcpu
*vcpu
)
1500 if (vcpu
->arch
.time_page
) {
1501 kvm_release_page_dirty(vcpu
->arch
.time_page
);
1502 vcpu
->arch
.time_page
= NULL
;
1506 static void accumulate_steal_time(struct kvm_vcpu
*vcpu
)
1510 if (!(vcpu
->arch
.st
.msr_val
& KVM_MSR_ENABLED
))
1513 delta
= current
->sched_info
.run_delay
- vcpu
->arch
.st
.last_steal
;
1514 vcpu
->arch
.st
.last_steal
= current
->sched_info
.run_delay
;
1515 vcpu
->arch
.st
.accum_steal
= delta
;
1518 static void record_steal_time(struct kvm_vcpu
*vcpu
)
1520 if (!(vcpu
->arch
.st
.msr_val
& KVM_MSR_ENABLED
))
1523 if (unlikely(kvm_read_guest_cached(vcpu
->kvm
, &vcpu
->arch
.st
.stime
,
1524 &vcpu
->arch
.st
.steal
, sizeof(struct kvm_steal_time
))))
1527 vcpu
->arch
.st
.steal
.steal
+= vcpu
->arch
.st
.accum_steal
;
1528 vcpu
->arch
.st
.steal
.version
+= 2;
1529 vcpu
->arch
.st
.accum_steal
= 0;
1531 kvm_write_guest_cached(vcpu
->kvm
, &vcpu
->arch
.st
.stime
,
1532 &vcpu
->arch
.st
.steal
, sizeof(struct kvm_steal_time
));
1535 int kvm_set_msr_common(struct kvm_vcpu
*vcpu
, u32 msr
, u64 data
)
1539 return set_efer(vcpu
, data
);
1541 data
&= ~(u64
)0x40; /* ignore flush filter disable */
1542 data
&= ~(u64
)0x100; /* ignore ignne emulation enable */
1544 pr_unimpl(vcpu
, "unimplemented HWCR wrmsr: 0x%llx\n",
1549 case MSR_FAM10H_MMIO_CONF_BASE
:
1551 pr_unimpl(vcpu
, "unimplemented MMIO_CONF_BASE wrmsr: "
1556 case MSR_AMD64_NB_CFG
:
1558 case MSR_IA32_DEBUGCTLMSR
:
1560 /* We support the non-activated case already */
1562 } else if (data
& ~(DEBUGCTLMSR_LBR
| DEBUGCTLMSR_BTF
)) {
1563 /* Values other than LBR and BTF are vendor-specific,
1564 thus reserved and should throw a #GP */
1567 pr_unimpl(vcpu
, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
1570 case MSR_IA32_UCODE_REV
:
1571 case MSR_IA32_UCODE_WRITE
:
1572 case MSR_VM_HSAVE_PA
:
1573 case MSR_AMD64_PATCH_LOADER
:
1575 case 0x200 ... 0x2ff:
1576 return set_msr_mtrr(vcpu
, msr
, data
);
1577 case MSR_IA32_APICBASE
:
1578 kvm_set_apic_base(vcpu
, data
);
1580 case APIC_BASE_MSR
... APIC_BASE_MSR
+ 0x3ff:
1581 return kvm_x2apic_msr_write(vcpu
, msr
, data
);
1582 case MSR_IA32_TSCDEADLINE
:
1583 kvm_set_lapic_tscdeadline_msr(vcpu
, data
);
1585 case MSR_IA32_MISC_ENABLE
:
1586 vcpu
->arch
.ia32_misc_enable_msr
= data
;
1588 case MSR_KVM_WALL_CLOCK_NEW
:
1589 case MSR_KVM_WALL_CLOCK
:
1590 vcpu
->kvm
->arch
.wall_clock
= data
;
1591 kvm_write_wall_clock(vcpu
->kvm
, data
);
1593 case MSR_KVM_SYSTEM_TIME_NEW
:
1594 case MSR_KVM_SYSTEM_TIME
: {
1595 kvmclock_reset(vcpu
);
1597 vcpu
->arch
.time
= data
;
1598 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, vcpu
);
1600 /* we verify if the enable bit is set... */
1604 /* ...but clean it before doing the actual write */
1605 vcpu
->arch
.time_offset
= data
& ~(PAGE_MASK
| 1);
1607 vcpu
->arch
.time_page
=
1608 gfn_to_page(vcpu
->kvm
, data
>> PAGE_SHIFT
);
1610 if (is_error_page(vcpu
->arch
.time_page
)) {
1611 kvm_release_page_clean(vcpu
->arch
.time_page
);
1612 vcpu
->arch
.time_page
= NULL
;
1616 case MSR_KVM_ASYNC_PF_EN
:
1617 if (kvm_pv_enable_async_pf(vcpu
, data
))
1620 case MSR_KVM_STEAL_TIME
:
1622 if (unlikely(!sched_info_on()))
1625 if (data
& KVM_STEAL_RESERVED_MASK
)
1628 if (kvm_gfn_to_hva_cache_init(vcpu
->kvm
, &vcpu
->arch
.st
.stime
,
1629 data
& KVM_STEAL_VALID_BITS
))
1632 vcpu
->arch
.st
.msr_val
= data
;
1634 if (!(data
& KVM_MSR_ENABLED
))
1637 vcpu
->arch
.st
.last_steal
= current
->sched_info
.run_delay
;
1640 accumulate_steal_time(vcpu
);
1643 kvm_make_request(KVM_REQ_STEAL_UPDATE
, vcpu
);
1647 case MSR_IA32_MCG_CTL
:
1648 case MSR_IA32_MCG_STATUS
:
1649 case MSR_IA32_MC0_CTL
... MSR_IA32_MC0_CTL
+ 4 * KVM_MAX_MCE_BANKS
- 1:
1650 return set_msr_mce(vcpu
, msr
, data
);
1652 /* Performance counters are not protected by a CPUID bit,
1653 * so we should check all of them in the generic path for the sake of
1654 * cross vendor migration.
1655 * Writing a zero into the event select MSRs disables them,
1656 * which we perfectly emulate ;-). Any other value should be at least
1657 * reported, some guests depend on them.
1659 case MSR_P6_EVNTSEL0
:
1660 case MSR_P6_EVNTSEL1
:
1661 case MSR_K7_EVNTSEL0
:
1662 case MSR_K7_EVNTSEL1
:
1663 case MSR_K7_EVNTSEL2
:
1664 case MSR_K7_EVNTSEL3
:
1666 pr_unimpl(vcpu
, "unimplemented perfctr wrmsr: "
1667 "0x%x data 0x%llx\n", msr
, data
);
1669 /* at least RHEL 4 unconditionally writes to the perfctr registers,
1670 * so we ignore writes to make it happy.
1672 case MSR_P6_PERFCTR0
:
1673 case MSR_P6_PERFCTR1
:
1674 case MSR_K7_PERFCTR0
:
1675 case MSR_K7_PERFCTR1
:
1676 case MSR_K7_PERFCTR2
:
1677 case MSR_K7_PERFCTR3
:
1678 pr_unimpl(vcpu
, "unimplemented perfctr wrmsr: "
1679 "0x%x data 0x%llx\n", msr
, data
);
1681 case MSR_K7_CLK_CTL
:
1683 * Ignore all writes to this no longer documented MSR.
1684 * Writes are only relevant for old K7 processors,
1685 * all pre-dating SVM, but a recommended workaround from
1686 * AMD for these chips. It is possible to speicify the
1687 * affected processor models on the command line, hence
1688 * the need to ignore the workaround.
1691 case HV_X64_MSR_GUEST_OS_ID
... HV_X64_MSR_SINT15
:
1692 if (kvm_hv_msr_partition_wide(msr
)) {
1694 mutex_lock(&vcpu
->kvm
->lock
);
1695 r
= set_msr_hyperv_pw(vcpu
, msr
, data
);
1696 mutex_unlock(&vcpu
->kvm
->lock
);
1699 return set_msr_hyperv(vcpu
, msr
, data
);
1701 case MSR_IA32_BBL_CR_CTL3
:
1702 /* Drop writes to this legacy MSR -- see rdmsr
1703 * counterpart for further detail.
1705 pr_unimpl(vcpu
, "ignored wrmsr: 0x%x data %llx\n", msr
, data
);
1708 if (msr
&& (msr
== vcpu
->kvm
->arch
.xen_hvm_config
.msr
))
1709 return xen_hvm_config(vcpu
, data
);
1711 pr_unimpl(vcpu
, "unhandled wrmsr: 0x%x data %llx\n",
1715 pr_unimpl(vcpu
, "ignored wrmsr: 0x%x data %llx\n",
1722 EXPORT_SYMBOL_GPL(kvm_set_msr_common
);
1726 * Reads an msr value (of 'msr_index') into 'pdata'.
1727 * Returns 0 on success, non-0 otherwise.
1728 * Assumes vcpu_load() was already called.
1730 int kvm_get_msr(struct kvm_vcpu
*vcpu
, u32 msr_index
, u64
*pdata
)
1732 return kvm_x86_ops
->get_msr(vcpu
, msr_index
, pdata
);
1735 static int get_msr_mtrr(struct kvm_vcpu
*vcpu
, u32 msr
, u64
*pdata
)
1737 u64
*p
= (u64
*)&vcpu
->arch
.mtrr_state
.fixed_ranges
;
1739 if (!msr_mtrr_valid(msr
))
1742 if (msr
== MSR_MTRRdefType
)
1743 *pdata
= vcpu
->arch
.mtrr_state
.def_type
+
1744 (vcpu
->arch
.mtrr_state
.enabled
<< 10);
1745 else if (msr
== MSR_MTRRfix64K_00000
)
1747 else if (msr
== MSR_MTRRfix16K_80000
|| msr
== MSR_MTRRfix16K_A0000
)
1748 *pdata
= p
[1 + msr
- MSR_MTRRfix16K_80000
];
1749 else if (msr
>= MSR_MTRRfix4K_C0000
&& msr
<= MSR_MTRRfix4K_F8000
)
1750 *pdata
= p
[3 + msr
- MSR_MTRRfix4K_C0000
];
1751 else if (msr
== MSR_IA32_CR_PAT
)
1752 *pdata
= vcpu
->arch
.pat
;
1753 else { /* Variable MTRRs */
1754 int idx
, is_mtrr_mask
;
1757 idx
= (msr
- 0x200) / 2;
1758 is_mtrr_mask
= msr
- 0x200 - 2 * idx
;
1761 (u64
*)&vcpu
->arch
.mtrr_state
.var_ranges
[idx
].base_lo
;
1764 (u64
*)&vcpu
->arch
.mtrr_state
.var_ranges
[idx
].mask_lo
;
1771 static int get_msr_mce(struct kvm_vcpu
*vcpu
, u32 msr
, u64
*pdata
)
1774 u64 mcg_cap
= vcpu
->arch
.mcg_cap
;
1775 unsigned bank_num
= mcg_cap
& 0xff;
1778 case MSR_IA32_P5_MC_ADDR
:
1779 case MSR_IA32_P5_MC_TYPE
:
1782 case MSR_IA32_MCG_CAP
:
1783 data
= vcpu
->arch
.mcg_cap
;
1785 case MSR_IA32_MCG_CTL
:
1786 if (!(mcg_cap
& MCG_CTL_P
))
1788 data
= vcpu
->arch
.mcg_ctl
;
1790 case MSR_IA32_MCG_STATUS
:
1791 data
= vcpu
->arch
.mcg_status
;
1794 if (msr
>= MSR_IA32_MC0_CTL
&&
1795 msr
< MSR_IA32_MC0_CTL
+ 4 * bank_num
) {
1796 u32 offset
= msr
- MSR_IA32_MC0_CTL
;
1797 data
= vcpu
->arch
.mce_banks
[offset
];
1806 static int get_msr_hyperv_pw(struct kvm_vcpu
*vcpu
, u32 msr
, u64
*pdata
)
1809 struct kvm
*kvm
= vcpu
->kvm
;
1812 case HV_X64_MSR_GUEST_OS_ID
:
1813 data
= kvm
->arch
.hv_guest_os_id
;
1815 case HV_X64_MSR_HYPERCALL
:
1816 data
= kvm
->arch
.hv_hypercall
;
1819 pr_unimpl(vcpu
, "Hyper-V unhandled rdmsr: 0x%x\n", msr
);
1827 static int get_msr_hyperv(struct kvm_vcpu
*vcpu
, u32 msr
, u64
*pdata
)
1832 case HV_X64_MSR_VP_INDEX
: {
1835 kvm_for_each_vcpu(r
, v
, vcpu
->kvm
)
1840 case HV_X64_MSR_EOI
:
1841 return kvm_hv_vapic_msr_read(vcpu
, APIC_EOI
, pdata
);
1842 case HV_X64_MSR_ICR
:
1843 return kvm_hv_vapic_msr_read(vcpu
, APIC_ICR
, pdata
);
1844 case HV_X64_MSR_TPR
:
1845 return kvm_hv_vapic_msr_read(vcpu
, APIC_TASKPRI
, pdata
);
1846 case HV_X64_MSR_APIC_ASSIST_PAGE
:
1847 data
= vcpu
->arch
.hv_vapic
;
1850 pr_unimpl(vcpu
, "Hyper-V unhandled rdmsr: 0x%x\n", msr
);
1857 int kvm_get_msr_common(struct kvm_vcpu
*vcpu
, u32 msr
, u64
*pdata
)
1862 case MSR_IA32_PLATFORM_ID
:
1863 case MSR_IA32_EBL_CR_POWERON
:
1864 case MSR_IA32_DEBUGCTLMSR
:
1865 case MSR_IA32_LASTBRANCHFROMIP
:
1866 case MSR_IA32_LASTBRANCHTOIP
:
1867 case MSR_IA32_LASTINTFROMIP
:
1868 case MSR_IA32_LASTINTTOIP
:
1871 case MSR_VM_HSAVE_PA
:
1872 case MSR_P6_PERFCTR0
:
1873 case MSR_P6_PERFCTR1
:
1874 case MSR_P6_EVNTSEL0
:
1875 case MSR_P6_EVNTSEL1
:
1876 case MSR_K7_EVNTSEL0
:
1877 case MSR_K7_PERFCTR0
:
1878 case MSR_K8_INT_PENDING_MSG
:
1879 case MSR_AMD64_NB_CFG
:
1880 case MSR_FAM10H_MMIO_CONF_BASE
:
1883 case MSR_IA32_UCODE_REV
:
1884 data
= 0x100000000ULL
;
1887 data
= 0x500 | KVM_NR_VAR_MTRR
;
1889 case 0x200 ... 0x2ff:
1890 return get_msr_mtrr(vcpu
, msr
, pdata
);
1891 case 0xcd: /* fsb frequency */
1895 * MSR_EBC_FREQUENCY_ID
1896 * Conservative value valid for even the basic CPU models.
1897 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
1898 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
1899 * and 266MHz for model 3, or 4. Set Core Clock
1900 * Frequency to System Bus Frequency Ratio to 1 (bits
1901 * 31:24) even though these are only valid for CPU
1902 * models > 2, however guests may end up dividing or
1903 * multiplying by zero otherwise.
1905 case MSR_EBC_FREQUENCY_ID
:
1908 case MSR_IA32_APICBASE
:
1909 data
= kvm_get_apic_base(vcpu
);
1911 case APIC_BASE_MSR
... APIC_BASE_MSR
+ 0x3ff:
1912 return kvm_x2apic_msr_read(vcpu
, msr
, pdata
);
1914 case MSR_IA32_TSCDEADLINE
:
1915 data
= kvm_get_lapic_tscdeadline_msr(vcpu
);
1917 case MSR_IA32_MISC_ENABLE
:
1918 data
= vcpu
->arch
.ia32_misc_enable_msr
;
1920 case MSR_IA32_PERF_STATUS
:
1921 /* TSC increment by tick */
1923 /* CPU multiplier */
1924 data
|= (((uint64_t)4ULL) << 40);
1927 data
= vcpu
->arch
.efer
;
1929 case MSR_KVM_WALL_CLOCK
:
1930 case MSR_KVM_WALL_CLOCK_NEW
:
1931 data
= vcpu
->kvm
->arch
.wall_clock
;
1933 case MSR_KVM_SYSTEM_TIME
:
1934 case MSR_KVM_SYSTEM_TIME_NEW
:
1935 data
= vcpu
->arch
.time
;
1937 case MSR_KVM_ASYNC_PF_EN
:
1938 data
= vcpu
->arch
.apf
.msr_val
;
1940 case MSR_KVM_STEAL_TIME
:
1941 data
= vcpu
->arch
.st
.msr_val
;
1943 case MSR_IA32_P5_MC_ADDR
:
1944 case MSR_IA32_P5_MC_TYPE
:
1945 case MSR_IA32_MCG_CAP
:
1946 case MSR_IA32_MCG_CTL
:
1947 case MSR_IA32_MCG_STATUS
:
1948 case MSR_IA32_MC0_CTL
... MSR_IA32_MC0_CTL
+ 4 * KVM_MAX_MCE_BANKS
- 1:
1949 return get_msr_mce(vcpu
, msr
, pdata
);
1950 case MSR_K7_CLK_CTL
:
1952 * Provide expected ramp-up count for K7. All other
1953 * are set to zero, indicating minimum divisors for
1956 * This prevents guest kernels on AMD host with CPU
1957 * type 6, model 8 and higher from exploding due to
1958 * the rdmsr failing.
1962 case HV_X64_MSR_GUEST_OS_ID
... HV_X64_MSR_SINT15
:
1963 if (kvm_hv_msr_partition_wide(msr
)) {
1965 mutex_lock(&vcpu
->kvm
->lock
);
1966 r
= get_msr_hyperv_pw(vcpu
, msr
, pdata
);
1967 mutex_unlock(&vcpu
->kvm
->lock
);
1970 return get_msr_hyperv(vcpu
, msr
, pdata
);
1972 case MSR_IA32_BBL_CR_CTL3
:
1973 /* This legacy MSR exists but isn't fully documented in current
1974 * silicon. It is however accessed by winxp in very narrow
1975 * scenarios where it sets bit #19, itself documented as
1976 * a "reserved" bit. Best effort attempt to source coherent
1977 * read data here should the balance of the register be
1978 * interpreted by the guest:
1980 * L2 cache control register 3: 64GB range, 256KB size,
1981 * enabled, latency 0x1, configured
1987 pr_unimpl(vcpu
, "unhandled rdmsr: 0x%x\n", msr
);
1990 pr_unimpl(vcpu
, "ignored rdmsr: 0x%x\n", msr
);
1998 EXPORT_SYMBOL_GPL(kvm_get_msr_common
);
2001 * Read or write a bunch of msrs. All parameters are kernel addresses.
2003 * @return number of msrs set successfully.
2005 static int __msr_io(struct kvm_vcpu
*vcpu
, struct kvm_msrs
*msrs
,
2006 struct kvm_msr_entry
*entries
,
2007 int (*do_msr
)(struct kvm_vcpu
*vcpu
,
2008 unsigned index
, u64
*data
))
2012 idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
2013 for (i
= 0; i
< msrs
->nmsrs
; ++i
)
2014 if (do_msr(vcpu
, entries
[i
].index
, &entries
[i
].data
))
2016 srcu_read_unlock(&vcpu
->kvm
->srcu
, idx
);
2022 * Read or write a bunch of msrs. Parameters are user addresses.
2024 * @return number of msrs set successfully.
2026 static int msr_io(struct kvm_vcpu
*vcpu
, struct kvm_msrs __user
*user_msrs
,
2027 int (*do_msr
)(struct kvm_vcpu
*vcpu
,
2028 unsigned index
, u64
*data
),
2031 struct kvm_msrs msrs
;
2032 struct kvm_msr_entry
*entries
;
2037 if (copy_from_user(&msrs
, user_msrs
, sizeof msrs
))
2041 if (msrs
.nmsrs
>= MAX_IO_MSRS
)
2045 size
= sizeof(struct kvm_msr_entry
) * msrs
.nmsrs
;
2046 entries
= kmalloc(size
, GFP_KERNEL
);
2051 if (copy_from_user(entries
, user_msrs
->entries
, size
))
2054 r
= n
= __msr_io(vcpu
, &msrs
, entries
, do_msr
);
2059 if (writeback
&& copy_to_user(user_msrs
->entries
, entries
, size
))
2070 int kvm_dev_ioctl_check_extension(long ext
)
2075 case KVM_CAP_IRQCHIP
:
2077 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL
:
2078 case KVM_CAP_SET_TSS_ADDR
:
2079 case KVM_CAP_EXT_CPUID
:
2080 case KVM_CAP_CLOCKSOURCE
:
2082 case KVM_CAP_NOP_IO_DELAY
:
2083 case KVM_CAP_MP_STATE
:
2084 case KVM_CAP_SYNC_MMU
:
2085 case KVM_CAP_USER_NMI
:
2086 case KVM_CAP_REINJECT_CONTROL
:
2087 case KVM_CAP_IRQ_INJECT_STATUS
:
2088 case KVM_CAP_ASSIGN_DEV_IRQ
:
2090 case KVM_CAP_IOEVENTFD
:
2092 case KVM_CAP_PIT_STATE2
:
2093 case KVM_CAP_SET_IDENTITY_MAP_ADDR
:
2094 case KVM_CAP_XEN_HVM
:
2095 case KVM_CAP_ADJUST_CLOCK
:
2096 case KVM_CAP_VCPU_EVENTS
:
2097 case KVM_CAP_HYPERV
:
2098 case KVM_CAP_HYPERV_VAPIC
:
2099 case KVM_CAP_HYPERV_SPIN
:
2100 case KVM_CAP_PCI_SEGMENT
:
2101 case KVM_CAP_DEBUGREGS
:
2102 case KVM_CAP_X86_ROBUST_SINGLESTEP
:
2104 case KVM_CAP_ASYNC_PF
:
2105 case KVM_CAP_GET_TSC_KHZ
:
2108 case KVM_CAP_COALESCED_MMIO
:
2109 r
= KVM_COALESCED_MMIO_PAGE_OFFSET
;
2112 r
= !kvm_x86_ops
->cpu_has_accelerated_tpr();
2114 case KVM_CAP_NR_VCPUS
:
2115 r
= KVM_SOFT_MAX_VCPUS
;
2117 case KVM_CAP_MAX_VCPUS
:
2120 case KVM_CAP_NR_MEMSLOTS
:
2121 r
= KVM_MEMORY_SLOTS
;
2123 case KVM_CAP_PV_MMU
: /* obsolete */
2127 r
= iommu_present(&pci_bus_type
);
2130 r
= KVM_MAX_MCE_BANKS
;
2135 case KVM_CAP_TSC_CONTROL
:
2136 r
= kvm_has_tsc_control
;
2146 long kvm_arch_dev_ioctl(struct file
*filp
,
2147 unsigned int ioctl
, unsigned long arg
)
2149 void __user
*argp
= (void __user
*)arg
;
2153 case KVM_GET_MSR_INDEX_LIST
: {
2154 struct kvm_msr_list __user
*user_msr_list
= argp
;
2155 struct kvm_msr_list msr_list
;
2159 if (copy_from_user(&msr_list
, user_msr_list
, sizeof msr_list
))
2162 msr_list
.nmsrs
= num_msrs_to_save
+ ARRAY_SIZE(emulated_msrs
);
2163 if (copy_to_user(user_msr_list
, &msr_list
, sizeof msr_list
))
2166 if (n
< msr_list
.nmsrs
)
2169 if (copy_to_user(user_msr_list
->indices
, &msrs_to_save
,
2170 num_msrs_to_save
* sizeof(u32
)))
2172 if (copy_to_user(user_msr_list
->indices
+ num_msrs_to_save
,
2174 ARRAY_SIZE(emulated_msrs
) * sizeof(u32
)))
2179 case KVM_GET_SUPPORTED_CPUID
: {
2180 struct kvm_cpuid2 __user
*cpuid_arg
= argp
;
2181 struct kvm_cpuid2 cpuid
;
2184 if (copy_from_user(&cpuid
, cpuid_arg
, sizeof cpuid
))
2186 r
= kvm_dev_ioctl_get_supported_cpuid(&cpuid
,
2187 cpuid_arg
->entries
);
2192 if (copy_to_user(cpuid_arg
, &cpuid
, sizeof cpuid
))
2197 case KVM_X86_GET_MCE_CAP_SUPPORTED
: {
2200 mce_cap
= KVM_MCE_CAP_SUPPORTED
;
2202 if (copy_to_user(argp
, &mce_cap
, sizeof mce_cap
))
2214 static void wbinvd_ipi(void *garbage
)
2219 static bool need_emulate_wbinvd(struct kvm_vcpu
*vcpu
)
2221 return vcpu
->kvm
->arch
.iommu_domain
&&
2222 !(vcpu
->kvm
->arch
.iommu_flags
& KVM_IOMMU_CACHE_COHERENCY
);
2225 void kvm_arch_vcpu_load(struct kvm_vcpu
*vcpu
, int cpu
)
2227 /* Address WBINVD may be executed by guest */
2228 if (need_emulate_wbinvd(vcpu
)) {
2229 if (kvm_x86_ops
->has_wbinvd_exit())
2230 cpumask_set_cpu(cpu
, vcpu
->arch
.wbinvd_dirty_mask
);
2231 else if (vcpu
->cpu
!= -1 && vcpu
->cpu
!= cpu
)
2232 smp_call_function_single(vcpu
->cpu
,
2233 wbinvd_ipi
, NULL
, 1);
2236 kvm_x86_ops
->vcpu_load(vcpu
, cpu
);
2237 if (unlikely(vcpu
->cpu
!= cpu
) || check_tsc_unstable()) {
2238 /* Make sure TSC doesn't go backwards */
2242 tsc
= kvm_x86_ops
->read_l1_tsc(vcpu
);
2243 tsc_delta
= !vcpu
->arch
.last_guest_tsc
? 0 :
2244 tsc
- vcpu
->arch
.last_guest_tsc
;
2247 mark_tsc_unstable("KVM discovered backwards TSC");
2248 if (check_tsc_unstable()) {
2249 kvm_x86_ops
->adjust_tsc_offset(vcpu
, -tsc_delta
);
2250 vcpu
->arch
.tsc_catchup
= 1;
2252 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, vcpu
);
2253 if (vcpu
->cpu
!= cpu
)
2254 kvm_migrate_timers(vcpu
);
2258 accumulate_steal_time(vcpu
);
2259 kvm_make_request(KVM_REQ_STEAL_UPDATE
, vcpu
);
2262 void kvm_arch_vcpu_put(struct kvm_vcpu
*vcpu
)
2264 kvm_x86_ops
->vcpu_put(vcpu
);
2265 kvm_put_guest_fpu(vcpu
);
2266 vcpu
->arch
.last_guest_tsc
= kvm_x86_ops
->read_l1_tsc(vcpu
);
2269 static int is_efer_nx(void)
2271 unsigned long long efer
= 0;
2273 rdmsrl_safe(MSR_EFER
, &efer
);
2274 return efer
& EFER_NX
;
2277 static void cpuid_fix_nx_cap(struct kvm_vcpu
*vcpu
)
2280 struct kvm_cpuid_entry2
*e
, *entry
;
2283 for (i
= 0; i
< vcpu
->arch
.cpuid_nent
; ++i
) {
2284 e
= &vcpu
->arch
.cpuid_entries
[i
];
2285 if (e
->function
== 0x80000001) {
2290 if (entry
&& (entry
->edx
& (1 << 20)) && !is_efer_nx()) {
2291 entry
->edx
&= ~(1 << 20);
2292 printk(KERN_INFO
"kvm: guest NX capability removed\n");
2296 /* when an old userspace process fills a new kernel module */
2297 static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu
*vcpu
,
2298 struct kvm_cpuid
*cpuid
,
2299 struct kvm_cpuid_entry __user
*entries
)
2302 struct kvm_cpuid_entry
*cpuid_entries
;
2305 if (cpuid
->nent
> KVM_MAX_CPUID_ENTRIES
)
2308 cpuid_entries
= vmalloc(sizeof(struct kvm_cpuid_entry
) * cpuid
->nent
);
2312 if (copy_from_user(cpuid_entries
, entries
,
2313 cpuid
->nent
* sizeof(struct kvm_cpuid_entry
)))
2315 for (i
= 0; i
< cpuid
->nent
; i
++) {
2316 vcpu
->arch
.cpuid_entries
[i
].function
= cpuid_entries
[i
].function
;
2317 vcpu
->arch
.cpuid_entries
[i
].eax
= cpuid_entries
[i
].eax
;
2318 vcpu
->arch
.cpuid_entries
[i
].ebx
= cpuid_entries
[i
].ebx
;
2319 vcpu
->arch
.cpuid_entries
[i
].ecx
= cpuid_entries
[i
].ecx
;
2320 vcpu
->arch
.cpuid_entries
[i
].edx
= cpuid_entries
[i
].edx
;
2321 vcpu
->arch
.cpuid_entries
[i
].index
= 0;
2322 vcpu
->arch
.cpuid_entries
[i
].flags
= 0;
2323 vcpu
->arch
.cpuid_entries
[i
].padding
[0] = 0;
2324 vcpu
->arch
.cpuid_entries
[i
].padding
[1] = 0;
2325 vcpu
->arch
.cpuid_entries
[i
].padding
[2] = 0;
2327 vcpu
->arch
.cpuid_nent
= cpuid
->nent
;
2328 cpuid_fix_nx_cap(vcpu
);
2330 kvm_apic_set_version(vcpu
);
2331 kvm_x86_ops
->cpuid_update(vcpu
);
2335 vfree(cpuid_entries
);
2340 static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu
*vcpu
,
2341 struct kvm_cpuid2
*cpuid
,
2342 struct kvm_cpuid_entry2 __user
*entries
)
2347 if (cpuid
->nent
> KVM_MAX_CPUID_ENTRIES
)
2350 if (copy_from_user(&vcpu
->arch
.cpuid_entries
, entries
,
2351 cpuid
->nent
* sizeof(struct kvm_cpuid_entry2
)))
2353 vcpu
->arch
.cpuid_nent
= cpuid
->nent
;
2354 kvm_apic_set_version(vcpu
);
2355 kvm_x86_ops
->cpuid_update(vcpu
);
2363 static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu
*vcpu
,
2364 struct kvm_cpuid2
*cpuid
,
2365 struct kvm_cpuid_entry2 __user
*entries
)
2370 if (cpuid
->nent
< vcpu
->arch
.cpuid_nent
)
2373 if (copy_to_user(entries
, &vcpu
->arch
.cpuid_entries
,
2374 vcpu
->arch
.cpuid_nent
* sizeof(struct kvm_cpuid_entry2
)))
2379 cpuid
->nent
= vcpu
->arch
.cpuid_nent
;
2383 static void cpuid_mask(u32
*word
, int wordnum
)
2385 *word
&= boot_cpu_data
.x86_capability
[wordnum
];
2388 static void do_cpuid_1_ent(struct kvm_cpuid_entry2
*entry
, u32 function
,
2391 entry
->function
= function
;
2392 entry
->index
= index
;
2393 cpuid_count(entry
->function
, entry
->index
,
2394 &entry
->eax
, &entry
->ebx
, &entry
->ecx
, &entry
->edx
);
2398 static bool supported_xcr0_bit(unsigned bit
)
2400 u64 mask
= ((u64
)1 << bit
);
2402 return mask
& (XSTATE_FP
| XSTATE_SSE
| XSTATE_YMM
) & host_xcr0
;
2405 #define F(x) bit(X86_FEATURE_##x)
2407 static void do_cpuid_ent(struct kvm_cpuid_entry2
*entry
, u32 function
,
2408 u32 index
, int *nent
, int maxnent
)
2410 unsigned f_nx
= is_efer_nx() ? F(NX
) : 0;
2411 #ifdef CONFIG_X86_64
2412 unsigned f_gbpages
= (kvm_x86_ops
->get_lpage_level() == PT_PDPE_LEVEL
)
2414 unsigned f_lm
= F(LM
);
2416 unsigned f_gbpages
= 0;
2419 unsigned f_rdtscp
= kvm_x86_ops
->rdtscp_supported() ? F(RDTSCP
) : 0;
2422 const u32 kvm_supported_word0_x86_features
=
2423 F(FPU
) | F(VME
) | F(DE
) | F(PSE
) |
2424 F(TSC
) | F(MSR
) | F(PAE
) | F(MCE
) |
2425 F(CX8
) | F(APIC
) | 0 /* Reserved */ | F(SEP
) |
2426 F(MTRR
) | F(PGE
) | F(MCA
) | F(CMOV
) |
2427 F(PAT
) | F(PSE36
) | 0 /* PSN */ | F(CLFLSH
) |
2428 0 /* Reserved, DS, ACPI */ | F(MMX
) |
2429 F(FXSR
) | F(XMM
) | F(XMM2
) | F(SELFSNOOP
) |
2430 0 /* HTT, TM, Reserved, PBE */;
2431 /* cpuid 0x80000001.edx */
2432 const u32 kvm_supported_word1_x86_features
=
2433 F(FPU
) | F(VME
) | F(DE
) | F(PSE
) |
2434 F(TSC
) | F(MSR
) | F(PAE
) | F(MCE
) |
2435 F(CX8
) | F(APIC
) | 0 /* Reserved */ | F(SYSCALL
) |
2436 F(MTRR
) | F(PGE
) | F(MCA
) | F(CMOV
) |
2437 F(PAT
) | F(PSE36
) | 0 /* Reserved */ |
2438 f_nx
| 0 /* Reserved */ | F(MMXEXT
) | F(MMX
) |
2439 F(FXSR
) | F(FXSR_OPT
) | f_gbpages
| f_rdtscp
|
2440 0 /* Reserved */ | f_lm
| F(3DNOWEXT
) | F(3DNOW
);
2442 const u32 kvm_supported_word4_x86_features
=
2443 F(XMM3
) | F(PCLMULQDQ
) | 0 /* DTES64, MONITOR */ |
2444 0 /* DS-CPL, VMX, SMX, EST */ |
2445 0 /* TM2 */ | F(SSSE3
) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
2446 0 /* Reserved */ | F(CX16
) | 0 /* xTPR Update, PDCM */ |
2447 0 /* Reserved, DCA */ | F(XMM4_1
) |
2448 F(XMM4_2
) | F(X2APIC
) | F(MOVBE
) | F(POPCNT
) |
2449 0 /* Reserved*/ | F(AES
) | F(XSAVE
) | 0 /* OSXSAVE */ | F(AVX
) |
2450 F(F16C
) | F(RDRAND
);
2451 /* cpuid 0x80000001.ecx */
2452 const u32 kvm_supported_word6_x86_features
=
2453 F(LAHF_LM
) | F(CMP_LEGACY
) | 0 /*SVM*/ | 0 /* ExtApicSpace */ |
2454 F(CR8_LEGACY
) | F(ABM
) | F(SSE4A
) | F(MISALIGNSSE
) |
2455 F(3DNOWPREFETCH
) | 0 /* OSVW */ | 0 /* IBS */ | F(XOP
) |
2456 0 /* SKINIT, WDT, LWP */ | F(FMA4
) | F(TBM
);
2458 /* cpuid 0xC0000001.edx */
2459 const u32 kvm_supported_word5_x86_features
=
2460 F(XSTORE
) | F(XSTORE_EN
) | F(XCRYPT
) | F(XCRYPT_EN
) |
2461 F(ACE2
) | F(ACE2_EN
) | F(PHE
) | F(PHE_EN
) |
2465 const u32 kvm_supported_word9_x86_features
=
2466 F(SMEP
) | F(FSGSBASE
) | F(ERMS
);
2468 /* all calls to cpuid_count() should be made on the same cpu */
2470 do_cpuid_1_ent(entry
, function
, index
);
2475 entry
->eax
= min(entry
->eax
, (u32
)0xd);
2478 entry
->edx
&= kvm_supported_word0_x86_features
;
2479 cpuid_mask(&entry
->edx
, 0);
2480 entry
->ecx
&= kvm_supported_word4_x86_features
;
2481 cpuid_mask(&entry
->ecx
, 4);
2482 /* we support x2apic emulation even if host does not support
2483 * it since we emulate x2apic in software */
2484 entry
->ecx
|= F(X2APIC
);
2486 /* function 2 entries are STATEFUL. That is, repeated cpuid commands
2487 * may return different values. This forces us to get_cpu() before
2488 * issuing the first command, and also to emulate this annoying behavior
2489 * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
2491 int t
, times
= entry
->eax
& 0xff;
2493 entry
->flags
|= KVM_CPUID_FLAG_STATEFUL_FUNC
;
2494 entry
->flags
|= KVM_CPUID_FLAG_STATE_READ_NEXT
;
2495 for (t
= 1; t
< times
&& *nent
< maxnent
; ++t
) {
2496 do_cpuid_1_ent(&entry
[t
], function
, 0);
2497 entry
[t
].flags
|= KVM_CPUID_FLAG_STATEFUL_FUNC
;
2502 /* function 4 has additional index. */
2506 entry
->flags
|= KVM_CPUID_FLAG_SIGNIFCANT_INDEX
;
2507 /* read more entries until cache_type is zero */
2508 for (i
= 1; *nent
< maxnent
; ++i
) {
2509 cache_type
= entry
[i
- 1].eax
& 0x1f;
2512 do_cpuid_1_ent(&entry
[i
], function
, i
);
2514 KVM_CPUID_FLAG_SIGNIFCANT_INDEX
;
2520 entry
->flags
|= KVM_CPUID_FLAG_SIGNIFCANT_INDEX
;
2521 /* Mask ebx against host capbability word 9 */
2523 entry
->ebx
&= kvm_supported_word9_x86_features
;
2524 cpuid_mask(&entry
->ebx
, 9);
2534 /* function 0xb has additional index. */
2538 entry
->flags
|= KVM_CPUID_FLAG_SIGNIFCANT_INDEX
;
2539 /* read more entries until level_type is zero */
2540 for (i
= 1; *nent
< maxnent
; ++i
) {
2541 level_type
= entry
[i
- 1].ecx
& 0xff00;
2544 do_cpuid_1_ent(&entry
[i
], function
, i
);
2546 KVM_CPUID_FLAG_SIGNIFCANT_INDEX
;
2554 entry
->flags
|= KVM_CPUID_FLAG_SIGNIFCANT_INDEX
;
2555 for (idx
= 1, i
= 1; *nent
< maxnent
&& idx
< 64; ++idx
) {
2556 do_cpuid_1_ent(&entry
[i
], function
, idx
);
2557 if (entry
[i
].eax
== 0 || !supported_xcr0_bit(idx
))
2560 KVM_CPUID_FLAG_SIGNIFCANT_INDEX
;
2566 case KVM_CPUID_SIGNATURE
: {
2567 char signature
[12] = "KVMKVMKVM\0\0";
2568 u32
*sigptr
= (u32
*)signature
;
2570 entry
->ebx
= sigptr
[0];
2571 entry
->ecx
= sigptr
[1];
2572 entry
->edx
= sigptr
[2];
2575 case KVM_CPUID_FEATURES
:
2576 entry
->eax
= (1 << KVM_FEATURE_CLOCKSOURCE
) |
2577 (1 << KVM_FEATURE_NOP_IO_DELAY
) |
2578 (1 << KVM_FEATURE_CLOCKSOURCE2
) |
2579 (1 << KVM_FEATURE_ASYNC_PF
) |
2580 (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT
);
2582 if (sched_info_on())
2583 entry
->eax
|= (1 << KVM_FEATURE_STEAL_TIME
);
2590 entry
->eax
= min(entry
->eax
, 0x8000001a);
2593 entry
->edx
&= kvm_supported_word1_x86_features
;
2594 cpuid_mask(&entry
->edx
, 1);
2595 entry
->ecx
&= kvm_supported_word6_x86_features
;
2596 cpuid_mask(&entry
->ecx
, 6);
2599 unsigned g_phys_as
= (entry
->eax
>> 16) & 0xff;
2600 unsigned virt_as
= max((entry
->eax
>> 8) & 0xff, 48U);
2601 unsigned phys_as
= entry
->eax
& 0xff;
2604 g_phys_as
= phys_as
;
2605 entry
->eax
= g_phys_as
| (virt_as
<< 8);
2606 entry
->ebx
= entry
->edx
= 0;
2610 entry
->ecx
= entry
->edx
= 0;
2616 /*Add support for Centaur's CPUID instruction*/
2618 /*Just support up to 0xC0000004 now*/
2619 entry
->eax
= min(entry
->eax
, 0xC0000004);
2622 entry
->edx
&= kvm_supported_word5_x86_features
;
2623 cpuid_mask(&entry
->edx
, 5);
2625 case 3: /* Processor serial number */
2626 case 5: /* MONITOR/MWAIT */
2627 case 6: /* Thermal management */
2628 case 0xA: /* Architectural Performance Monitoring */
2629 case 0x80000007: /* Advanced power management */
2634 entry
->eax
= entry
->ebx
= entry
->ecx
= entry
->edx
= 0;
2638 kvm_x86_ops
->set_supported_cpuid(function
, entry
);
2645 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2
*cpuid
,
2646 struct kvm_cpuid_entry2 __user
*entries
)
2648 struct kvm_cpuid_entry2
*cpuid_entries
;
2649 int limit
, nent
= 0, r
= -E2BIG
;
2652 if (cpuid
->nent
< 1)
2654 if (cpuid
->nent
> KVM_MAX_CPUID_ENTRIES
)
2655 cpuid
->nent
= KVM_MAX_CPUID_ENTRIES
;
2657 cpuid_entries
= vmalloc(sizeof(struct kvm_cpuid_entry2
) * cpuid
->nent
);
2661 do_cpuid_ent(&cpuid_entries
[0], 0, 0, &nent
, cpuid
->nent
);
2662 limit
= cpuid_entries
[0].eax
;
2663 for (func
= 1; func
<= limit
&& nent
< cpuid
->nent
; ++func
)
2664 do_cpuid_ent(&cpuid_entries
[nent
], func
, 0,
2665 &nent
, cpuid
->nent
);
2667 if (nent
>= cpuid
->nent
)
2670 do_cpuid_ent(&cpuid_entries
[nent
], 0x80000000, 0, &nent
, cpuid
->nent
);
2671 limit
= cpuid_entries
[nent
- 1].eax
;
2672 for (func
= 0x80000001; func
<= limit
&& nent
< cpuid
->nent
; ++func
)
2673 do_cpuid_ent(&cpuid_entries
[nent
], func
, 0,
2674 &nent
, cpuid
->nent
);
2679 if (nent
>= cpuid
->nent
)
2682 /* Add support for Centaur's CPUID instruction. */
2683 if (boot_cpu_data
.x86_vendor
== X86_VENDOR_CENTAUR
) {
2684 do_cpuid_ent(&cpuid_entries
[nent
], 0xC0000000, 0,
2685 &nent
, cpuid
->nent
);
2688 if (nent
>= cpuid
->nent
)
2691 limit
= cpuid_entries
[nent
- 1].eax
;
2692 for (func
= 0xC0000001;
2693 func
<= limit
&& nent
< cpuid
->nent
; ++func
)
2694 do_cpuid_ent(&cpuid_entries
[nent
], func
, 0,
2695 &nent
, cpuid
->nent
);
2698 if (nent
>= cpuid
->nent
)
2702 do_cpuid_ent(&cpuid_entries
[nent
], KVM_CPUID_SIGNATURE
, 0, &nent
,
2706 if (nent
>= cpuid
->nent
)
2709 do_cpuid_ent(&cpuid_entries
[nent
], KVM_CPUID_FEATURES
, 0, &nent
,
2713 if (nent
>= cpuid
->nent
)
2717 if (copy_to_user(entries
, cpuid_entries
,
2718 nent
* sizeof(struct kvm_cpuid_entry2
)))
2724 vfree(cpuid_entries
);
2729 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu
*vcpu
,
2730 struct kvm_lapic_state
*s
)
2732 memcpy(s
->regs
, vcpu
->arch
.apic
->regs
, sizeof *s
);
2737 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu
*vcpu
,
2738 struct kvm_lapic_state
*s
)
2740 memcpy(vcpu
->arch
.apic
->regs
, s
->regs
, sizeof *s
);
2741 kvm_apic_post_state_restore(vcpu
);
2742 update_cr8_intercept(vcpu
);
2747 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu
*vcpu
,
2748 struct kvm_interrupt
*irq
)
2750 if (irq
->irq
< 0 || irq
->irq
>= 256)
2752 if (irqchip_in_kernel(vcpu
->kvm
))
2755 kvm_queue_interrupt(vcpu
, irq
->irq
, false);
2756 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
2761 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu
*vcpu
)
2763 kvm_inject_nmi(vcpu
);
2768 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu
*vcpu
,
2769 struct kvm_tpr_access_ctl
*tac
)
2773 vcpu
->arch
.tpr_access_reporting
= !!tac
->enabled
;
2777 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu
*vcpu
,
2781 unsigned bank_num
= mcg_cap
& 0xff, bank
;
2784 if (!bank_num
|| bank_num
>= KVM_MAX_MCE_BANKS
)
2786 if (mcg_cap
& ~(KVM_MCE_CAP_SUPPORTED
| 0xff | 0xff0000))
2789 vcpu
->arch
.mcg_cap
= mcg_cap
;
2790 /* Init IA32_MCG_CTL to all 1s */
2791 if (mcg_cap
& MCG_CTL_P
)
2792 vcpu
->arch
.mcg_ctl
= ~(u64
)0;
2793 /* Init IA32_MCi_CTL to all 1s */
2794 for (bank
= 0; bank
< bank_num
; bank
++)
2795 vcpu
->arch
.mce_banks
[bank
*4] = ~(u64
)0;
2800 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu
*vcpu
,
2801 struct kvm_x86_mce
*mce
)
2803 u64 mcg_cap
= vcpu
->arch
.mcg_cap
;
2804 unsigned bank_num
= mcg_cap
& 0xff;
2805 u64
*banks
= vcpu
->arch
.mce_banks
;
2807 if (mce
->bank
>= bank_num
|| !(mce
->status
& MCI_STATUS_VAL
))
2810 * if IA32_MCG_CTL is not all 1s, the uncorrected error
2811 * reporting is disabled
2813 if ((mce
->status
& MCI_STATUS_UC
) && (mcg_cap
& MCG_CTL_P
) &&
2814 vcpu
->arch
.mcg_ctl
!= ~(u64
)0)
2816 banks
+= 4 * mce
->bank
;
2818 * if IA32_MCi_CTL is not all 1s, the uncorrected error
2819 * reporting is disabled for the bank
2821 if ((mce
->status
& MCI_STATUS_UC
) && banks
[0] != ~(u64
)0)
2823 if (mce
->status
& MCI_STATUS_UC
) {
2824 if ((vcpu
->arch
.mcg_status
& MCG_STATUS_MCIP
) ||
2825 !kvm_read_cr4_bits(vcpu
, X86_CR4_MCE
)) {
2826 kvm_make_request(KVM_REQ_TRIPLE_FAULT
, vcpu
);
2829 if (banks
[1] & MCI_STATUS_VAL
)
2830 mce
->status
|= MCI_STATUS_OVER
;
2831 banks
[2] = mce
->addr
;
2832 banks
[3] = mce
->misc
;
2833 vcpu
->arch
.mcg_status
= mce
->mcg_status
;
2834 banks
[1] = mce
->status
;
2835 kvm_queue_exception(vcpu
, MC_VECTOR
);
2836 } else if (!(banks
[1] & MCI_STATUS_VAL
)
2837 || !(banks
[1] & MCI_STATUS_UC
)) {
2838 if (banks
[1] & MCI_STATUS_VAL
)
2839 mce
->status
|= MCI_STATUS_OVER
;
2840 banks
[2] = mce
->addr
;
2841 banks
[3] = mce
->misc
;
2842 banks
[1] = mce
->status
;
2844 banks
[1] |= MCI_STATUS_OVER
;
2848 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu
*vcpu
,
2849 struct kvm_vcpu_events
*events
)
2852 events
->exception
.injected
=
2853 vcpu
->arch
.exception
.pending
&&
2854 !kvm_exception_is_soft(vcpu
->arch
.exception
.nr
);
2855 events
->exception
.nr
= vcpu
->arch
.exception
.nr
;
2856 events
->exception
.has_error_code
= vcpu
->arch
.exception
.has_error_code
;
2857 events
->exception
.pad
= 0;
2858 events
->exception
.error_code
= vcpu
->arch
.exception
.error_code
;
2860 events
->interrupt
.injected
=
2861 vcpu
->arch
.interrupt
.pending
&& !vcpu
->arch
.interrupt
.soft
;
2862 events
->interrupt
.nr
= vcpu
->arch
.interrupt
.nr
;
2863 events
->interrupt
.soft
= 0;
2864 events
->interrupt
.shadow
=
2865 kvm_x86_ops
->get_interrupt_shadow(vcpu
,
2866 KVM_X86_SHADOW_INT_MOV_SS
| KVM_X86_SHADOW_INT_STI
);
2868 events
->nmi
.injected
= vcpu
->arch
.nmi_injected
;
2869 events
->nmi
.pending
= vcpu
->arch
.nmi_pending
!= 0;
2870 events
->nmi
.masked
= kvm_x86_ops
->get_nmi_mask(vcpu
);
2871 events
->nmi
.pad
= 0;
2873 events
->sipi_vector
= vcpu
->arch
.sipi_vector
;
2875 events
->flags
= (KVM_VCPUEVENT_VALID_NMI_PENDING
2876 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2877 | KVM_VCPUEVENT_VALID_SHADOW
);
2878 memset(&events
->reserved
, 0, sizeof(events
->reserved
));
2881 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu
*vcpu
,
2882 struct kvm_vcpu_events
*events
)
2884 if (events
->flags
& ~(KVM_VCPUEVENT_VALID_NMI_PENDING
2885 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2886 | KVM_VCPUEVENT_VALID_SHADOW
))
2890 vcpu
->arch
.exception
.pending
= events
->exception
.injected
;
2891 vcpu
->arch
.exception
.nr
= events
->exception
.nr
;
2892 vcpu
->arch
.exception
.has_error_code
= events
->exception
.has_error_code
;
2893 vcpu
->arch
.exception
.error_code
= events
->exception
.error_code
;
2895 vcpu
->arch
.interrupt
.pending
= events
->interrupt
.injected
;
2896 vcpu
->arch
.interrupt
.nr
= events
->interrupt
.nr
;
2897 vcpu
->arch
.interrupt
.soft
= events
->interrupt
.soft
;
2898 if (events
->flags
& KVM_VCPUEVENT_VALID_SHADOW
)
2899 kvm_x86_ops
->set_interrupt_shadow(vcpu
,
2900 events
->interrupt
.shadow
);
2902 vcpu
->arch
.nmi_injected
= events
->nmi
.injected
;
2903 if (events
->flags
& KVM_VCPUEVENT_VALID_NMI_PENDING
)
2904 vcpu
->arch
.nmi_pending
= events
->nmi
.pending
;
2905 kvm_x86_ops
->set_nmi_mask(vcpu
, events
->nmi
.masked
);
2907 if (events
->flags
& KVM_VCPUEVENT_VALID_SIPI_VECTOR
)
2908 vcpu
->arch
.sipi_vector
= events
->sipi_vector
;
2910 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
2915 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu
*vcpu
,
2916 struct kvm_debugregs
*dbgregs
)
2918 memcpy(dbgregs
->db
, vcpu
->arch
.db
, sizeof(vcpu
->arch
.db
));
2919 dbgregs
->dr6
= vcpu
->arch
.dr6
;
2920 dbgregs
->dr7
= vcpu
->arch
.dr7
;
2922 memset(&dbgregs
->reserved
, 0, sizeof(dbgregs
->reserved
));
2925 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu
*vcpu
,
2926 struct kvm_debugregs
*dbgregs
)
2931 memcpy(vcpu
->arch
.db
, dbgregs
->db
, sizeof(vcpu
->arch
.db
));
2932 vcpu
->arch
.dr6
= dbgregs
->dr6
;
2933 vcpu
->arch
.dr7
= dbgregs
->dr7
;
2938 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu
*vcpu
,
2939 struct kvm_xsave
*guest_xsave
)
2942 memcpy(guest_xsave
->region
,
2943 &vcpu
->arch
.guest_fpu
.state
->xsave
,
2946 memcpy(guest_xsave
->region
,
2947 &vcpu
->arch
.guest_fpu
.state
->fxsave
,
2948 sizeof(struct i387_fxsave_struct
));
2949 *(u64
*)&guest_xsave
->region
[XSAVE_HDR_OFFSET
/ sizeof(u32
)] =
2954 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu
*vcpu
,
2955 struct kvm_xsave
*guest_xsave
)
2958 *(u64
*)&guest_xsave
->region
[XSAVE_HDR_OFFSET
/ sizeof(u32
)];
2961 memcpy(&vcpu
->arch
.guest_fpu
.state
->xsave
,
2962 guest_xsave
->region
, xstate_size
);
2964 if (xstate_bv
& ~XSTATE_FPSSE
)
2966 memcpy(&vcpu
->arch
.guest_fpu
.state
->fxsave
,
2967 guest_xsave
->region
, sizeof(struct i387_fxsave_struct
));
2972 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu
*vcpu
,
2973 struct kvm_xcrs
*guest_xcrs
)
2975 if (!cpu_has_xsave
) {
2976 guest_xcrs
->nr_xcrs
= 0;
2980 guest_xcrs
->nr_xcrs
= 1;
2981 guest_xcrs
->flags
= 0;
2982 guest_xcrs
->xcrs
[0].xcr
= XCR_XFEATURE_ENABLED_MASK
;
2983 guest_xcrs
->xcrs
[0].value
= vcpu
->arch
.xcr0
;
2986 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu
*vcpu
,
2987 struct kvm_xcrs
*guest_xcrs
)
2994 if (guest_xcrs
->nr_xcrs
> KVM_MAX_XCRS
|| guest_xcrs
->flags
)
2997 for (i
= 0; i
< guest_xcrs
->nr_xcrs
; i
++)
2998 /* Only support XCR0 currently */
2999 if (guest_xcrs
->xcrs
[0].xcr
== XCR_XFEATURE_ENABLED_MASK
) {
3000 r
= __kvm_set_xcr(vcpu
, XCR_XFEATURE_ENABLED_MASK
,
3001 guest_xcrs
->xcrs
[0].value
);
3009 long kvm_arch_vcpu_ioctl(struct file
*filp
,
3010 unsigned int ioctl
, unsigned long arg
)
3012 struct kvm_vcpu
*vcpu
= filp
->private_data
;
3013 void __user
*argp
= (void __user
*)arg
;
3016 struct kvm_lapic_state
*lapic
;
3017 struct kvm_xsave
*xsave
;
3018 struct kvm_xcrs
*xcrs
;
3024 case KVM_GET_LAPIC
: {
3026 if (!vcpu
->arch
.apic
)
3028 u
.lapic
= kzalloc(sizeof(struct kvm_lapic_state
), GFP_KERNEL
);
3033 r
= kvm_vcpu_ioctl_get_lapic(vcpu
, u
.lapic
);
3037 if (copy_to_user(argp
, u
.lapic
, sizeof(struct kvm_lapic_state
)))
3042 case KVM_SET_LAPIC
: {
3044 if (!vcpu
->arch
.apic
)
3046 u
.lapic
= kmalloc(sizeof(struct kvm_lapic_state
), GFP_KERNEL
);
3051 if (copy_from_user(u
.lapic
, argp
, sizeof(struct kvm_lapic_state
)))
3053 r
= kvm_vcpu_ioctl_set_lapic(vcpu
, u
.lapic
);
3059 case KVM_INTERRUPT
: {
3060 struct kvm_interrupt irq
;
3063 if (copy_from_user(&irq
, argp
, sizeof irq
))
3065 r
= kvm_vcpu_ioctl_interrupt(vcpu
, &irq
);
3072 r
= kvm_vcpu_ioctl_nmi(vcpu
);
3078 case KVM_SET_CPUID
: {
3079 struct kvm_cpuid __user
*cpuid_arg
= argp
;
3080 struct kvm_cpuid cpuid
;
3083 if (copy_from_user(&cpuid
, cpuid_arg
, sizeof cpuid
))
3085 r
= kvm_vcpu_ioctl_set_cpuid(vcpu
, &cpuid
, cpuid_arg
->entries
);
3090 case KVM_SET_CPUID2
: {
3091 struct kvm_cpuid2 __user
*cpuid_arg
= argp
;
3092 struct kvm_cpuid2 cpuid
;
3095 if (copy_from_user(&cpuid
, cpuid_arg
, sizeof cpuid
))
3097 r
= kvm_vcpu_ioctl_set_cpuid2(vcpu
, &cpuid
,
3098 cpuid_arg
->entries
);
3103 case KVM_GET_CPUID2
: {
3104 struct kvm_cpuid2 __user
*cpuid_arg
= argp
;
3105 struct kvm_cpuid2 cpuid
;
3108 if (copy_from_user(&cpuid
, cpuid_arg
, sizeof cpuid
))
3110 r
= kvm_vcpu_ioctl_get_cpuid2(vcpu
, &cpuid
,
3111 cpuid_arg
->entries
);
3115 if (copy_to_user(cpuid_arg
, &cpuid
, sizeof cpuid
))
3121 r
= msr_io(vcpu
, argp
, kvm_get_msr
, 1);
3124 r
= msr_io(vcpu
, argp
, do_set_msr
, 0);
3126 case KVM_TPR_ACCESS_REPORTING
: {
3127 struct kvm_tpr_access_ctl tac
;
3130 if (copy_from_user(&tac
, argp
, sizeof tac
))
3132 r
= vcpu_ioctl_tpr_access_reporting(vcpu
, &tac
);
3136 if (copy_to_user(argp
, &tac
, sizeof tac
))
3141 case KVM_SET_VAPIC_ADDR
: {
3142 struct kvm_vapic_addr va
;
3145 if (!irqchip_in_kernel(vcpu
->kvm
))
3148 if (copy_from_user(&va
, argp
, sizeof va
))
3151 kvm_lapic_set_vapic_addr(vcpu
, va
.vapic_addr
);
3154 case KVM_X86_SETUP_MCE
: {
3158 if (copy_from_user(&mcg_cap
, argp
, sizeof mcg_cap
))
3160 r
= kvm_vcpu_ioctl_x86_setup_mce(vcpu
, mcg_cap
);
3163 case KVM_X86_SET_MCE
: {
3164 struct kvm_x86_mce mce
;
3167 if (copy_from_user(&mce
, argp
, sizeof mce
))
3169 r
= kvm_vcpu_ioctl_x86_set_mce(vcpu
, &mce
);
3172 case KVM_GET_VCPU_EVENTS
: {
3173 struct kvm_vcpu_events events
;
3175 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu
, &events
);
3178 if (copy_to_user(argp
, &events
, sizeof(struct kvm_vcpu_events
)))
3183 case KVM_SET_VCPU_EVENTS
: {
3184 struct kvm_vcpu_events events
;
3187 if (copy_from_user(&events
, argp
, sizeof(struct kvm_vcpu_events
)))
3190 r
= kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu
, &events
);
3193 case KVM_GET_DEBUGREGS
: {
3194 struct kvm_debugregs dbgregs
;
3196 kvm_vcpu_ioctl_x86_get_debugregs(vcpu
, &dbgregs
);
3199 if (copy_to_user(argp
, &dbgregs
,
3200 sizeof(struct kvm_debugregs
)))
3205 case KVM_SET_DEBUGREGS
: {
3206 struct kvm_debugregs dbgregs
;
3209 if (copy_from_user(&dbgregs
, argp
,
3210 sizeof(struct kvm_debugregs
)))
3213 r
= kvm_vcpu_ioctl_x86_set_debugregs(vcpu
, &dbgregs
);
3216 case KVM_GET_XSAVE
: {
3217 u
.xsave
= kzalloc(sizeof(struct kvm_xsave
), GFP_KERNEL
);
3222 kvm_vcpu_ioctl_x86_get_xsave(vcpu
, u
.xsave
);
3225 if (copy_to_user(argp
, u
.xsave
, sizeof(struct kvm_xsave
)))
3230 case KVM_SET_XSAVE
: {
3231 u
.xsave
= kzalloc(sizeof(struct kvm_xsave
), GFP_KERNEL
);
3237 if (copy_from_user(u
.xsave
, argp
, sizeof(struct kvm_xsave
)))
3240 r
= kvm_vcpu_ioctl_x86_set_xsave(vcpu
, u
.xsave
);
3243 case KVM_GET_XCRS
: {
3244 u
.xcrs
= kzalloc(sizeof(struct kvm_xcrs
), GFP_KERNEL
);
3249 kvm_vcpu_ioctl_x86_get_xcrs(vcpu
, u
.xcrs
);
3252 if (copy_to_user(argp
, u
.xcrs
,
3253 sizeof(struct kvm_xcrs
)))
3258 case KVM_SET_XCRS
: {
3259 u
.xcrs
= kzalloc(sizeof(struct kvm_xcrs
), GFP_KERNEL
);
3265 if (copy_from_user(u
.xcrs
, argp
,
3266 sizeof(struct kvm_xcrs
)))
3269 r
= kvm_vcpu_ioctl_x86_set_xcrs(vcpu
, u
.xcrs
);
3272 case KVM_SET_TSC_KHZ
: {
3276 if (!kvm_has_tsc_control
)
3279 user_tsc_khz
= (u32
)arg
;
3281 if (user_tsc_khz
>= kvm_max_guest_tsc_khz
)
3284 kvm_x86_ops
->set_tsc_khz(vcpu
, user_tsc_khz
);
3289 case KVM_GET_TSC_KHZ
: {
3291 if (check_tsc_unstable())
3294 r
= vcpu_tsc_khz(vcpu
);
3306 static int kvm_vm_ioctl_set_tss_addr(struct kvm
*kvm
, unsigned long addr
)
3310 if (addr
> (unsigned int)(-3 * PAGE_SIZE
))
3312 ret
= kvm_x86_ops
->set_tss_addr(kvm
, addr
);
3316 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm
*kvm
,
3319 kvm
->arch
.ept_identity_map_addr
= ident_addr
;
3323 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm
*kvm
,
3324 u32 kvm_nr_mmu_pages
)
3326 if (kvm_nr_mmu_pages
< KVM_MIN_ALLOC_MMU_PAGES
)
3329 mutex_lock(&kvm
->slots_lock
);
3330 spin_lock(&kvm
->mmu_lock
);
3332 kvm_mmu_change_mmu_pages(kvm
, kvm_nr_mmu_pages
);
3333 kvm
->arch
.n_requested_mmu_pages
= kvm_nr_mmu_pages
;
3335 spin_unlock(&kvm
->mmu_lock
);
3336 mutex_unlock(&kvm
->slots_lock
);
3340 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm
*kvm
)
3342 return kvm
->arch
.n_max_mmu_pages
;
3345 static int kvm_vm_ioctl_get_irqchip(struct kvm
*kvm
, struct kvm_irqchip
*chip
)
3350 switch (chip
->chip_id
) {
3351 case KVM_IRQCHIP_PIC_MASTER
:
3352 memcpy(&chip
->chip
.pic
,
3353 &pic_irqchip(kvm
)->pics
[0],
3354 sizeof(struct kvm_pic_state
));
3356 case KVM_IRQCHIP_PIC_SLAVE
:
3357 memcpy(&chip
->chip
.pic
,
3358 &pic_irqchip(kvm
)->pics
[1],
3359 sizeof(struct kvm_pic_state
));
3361 case KVM_IRQCHIP_IOAPIC
:
3362 r
= kvm_get_ioapic(kvm
, &chip
->chip
.ioapic
);
3371 static int kvm_vm_ioctl_set_irqchip(struct kvm
*kvm
, struct kvm_irqchip
*chip
)
3376 switch (chip
->chip_id
) {
3377 case KVM_IRQCHIP_PIC_MASTER
:
3378 spin_lock(&pic_irqchip(kvm
)->lock
);
3379 memcpy(&pic_irqchip(kvm
)->pics
[0],
3381 sizeof(struct kvm_pic_state
));
3382 spin_unlock(&pic_irqchip(kvm
)->lock
);
3384 case KVM_IRQCHIP_PIC_SLAVE
:
3385 spin_lock(&pic_irqchip(kvm
)->lock
);
3386 memcpy(&pic_irqchip(kvm
)->pics
[1],
3388 sizeof(struct kvm_pic_state
));
3389 spin_unlock(&pic_irqchip(kvm
)->lock
);
3391 case KVM_IRQCHIP_IOAPIC
:
3392 r
= kvm_set_ioapic(kvm
, &chip
->chip
.ioapic
);
3398 kvm_pic_update_irq(pic_irqchip(kvm
));
3402 static int kvm_vm_ioctl_get_pit(struct kvm
*kvm
, struct kvm_pit_state
*ps
)
3406 mutex_lock(&kvm
->arch
.vpit
->pit_state
.lock
);
3407 memcpy(ps
, &kvm
->arch
.vpit
->pit_state
, sizeof(struct kvm_pit_state
));
3408 mutex_unlock(&kvm
->arch
.vpit
->pit_state
.lock
);
3412 static int kvm_vm_ioctl_set_pit(struct kvm
*kvm
, struct kvm_pit_state
*ps
)
3416 mutex_lock(&kvm
->arch
.vpit
->pit_state
.lock
);
3417 memcpy(&kvm
->arch
.vpit
->pit_state
, ps
, sizeof(struct kvm_pit_state
));
3418 kvm_pit_load_count(kvm
, 0, ps
->channels
[0].count
, 0);
3419 mutex_unlock(&kvm
->arch
.vpit
->pit_state
.lock
);
3423 static int kvm_vm_ioctl_get_pit2(struct kvm
*kvm
, struct kvm_pit_state2
*ps
)
3427 mutex_lock(&kvm
->arch
.vpit
->pit_state
.lock
);
3428 memcpy(ps
->channels
, &kvm
->arch
.vpit
->pit_state
.channels
,
3429 sizeof(ps
->channels
));
3430 ps
->flags
= kvm
->arch
.vpit
->pit_state
.flags
;
3431 mutex_unlock(&kvm
->arch
.vpit
->pit_state
.lock
);
3432 memset(&ps
->reserved
, 0, sizeof(ps
->reserved
));
3436 static int kvm_vm_ioctl_set_pit2(struct kvm
*kvm
, struct kvm_pit_state2
*ps
)
3438 int r
= 0, start
= 0;
3439 u32 prev_legacy
, cur_legacy
;
3440 mutex_lock(&kvm
->arch
.vpit
->pit_state
.lock
);
3441 prev_legacy
= kvm
->arch
.vpit
->pit_state
.flags
& KVM_PIT_FLAGS_HPET_LEGACY
;
3442 cur_legacy
= ps
->flags
& KVM_PIT_FLAGS_HPET_LEGACY
;
3443 if (!prev_legacy
&& cur_legacy
)
3445 memcpy(&kvm
->arch
.vpit
->pit_state
.channels
, &ps
->channels
,
3446 sizeof(kvm
->arch
.vpit
->pit_state
.channels
));
3447 kvm
->arch
.vpit
->pit_state
.flags
= ps
->flags
;
3448 kvm_pit_load_count(kvm
, 0, kvm
->arch
.vpit
->pit_state
.channels
[0].count
, start
);
3449 mutex_unlock(&kvm
->arch
.vpit
->pit_state
.lock
);
3453 static int kvm_vm_ioctl_reinject(struct kvm
*kvm
,
3454 struct kvm_reinject_control
*control
)
3456 if (!kvm
->arch
.vpit
)
3458 mutex_lock(&kvm
->arch
.vpit
->pit_state
.lock
);
3459 kvm
->arch
.vpit
->pit_state
.pit_timer
.reinject
= control
->pit_reinject
;
3460 mutex_unlock(&kvm
->arch
.vpit
->pit_state
.lock
);
3465 * Get (and clear) the dirty memory log for a memory slot.
3467 int kvm_vm_ioctl_get_dirty_log(struct kvm
*kvm
,
3468 struct kvm_dirty_log
*log
)
3471 struct kvm_memory_slot
*memslot
;
3473 unsigned long is_dirty
= 0;
3475 mutex_lock(&kvm
->slots_lock
);
3478 if (log
->slot
>= KVM_MEMORY_SLOTS
)
3481 memslot
= &kvm
->memslots
->memslots
[log
->slot
];
3483 if (!memslot
->dirty_bitmap
)
3486 n
= kvm_dirty_bitmap_bytes(memslot
);
3488 for (i
= 0; !is_dirty
&& i
< n
/sizeof(long); i
++)
3489 is_dirty
= memslot
->dirty_bitmap
[i
];
3491 /* If nothing is dirty, don't bother messing with page tables. */
3493 struct kvm_memslots
*slots
, *old_slots
;
3494 unsigned long *dirty_bitmap
;
3496 dirty_bitmap
= memslot
->dirty_bitmap_head
;
3497 if (memslot
->dirty_bitmap
== dirty_bitmap
)
3498 dirty_bitmap
+= n
/ sizeof(long);
3499 memset(dirty_bitmap
, 0, n
);
3502 slots
= kzalloc(sizeof(struct kvm_memslots
), GFP_KERNEL
);
3505 memcpy(slots
, kvm
->memslots
, sizeof(struct kvm_memslots
));
3506 slots
->memslots
[log
->slot
].dirty_bitmap
= dirty_bitmap
;
3507 slots
->generation
++;
3509 old_slots
= kvm
->memslots
;
3510 rcu_assign_pointer(kvm
->memslots
, slots
);
3511 synchronize_srcu_expedited(&kvm
->srcu
);
3512 dirty_bitmap
= old_slots
->memslots
[log
->slot
].dirty_bitmap
;
3515 spin_lock(&kvm
->mmu_lock
);
3516 kvm_mmu_slot_remove_write_access(kvm
, log
->slot
);
3517 spin_unlock(&kvm
->mmu_lock
);
3520 if (copy_to_user(log
->dirty_bitmap
, dirty_bitmap
, n
))
3524 if (clear_user(log
->dirty_bitmap
, n
))
3530 mutex_unlock(&kvm
->slots_lock
);
3534 long kvm_arch_vm_ioctl(struct file
*filp
,
3535 unsigned int ioctl
, unsigned long arg
)
3537 struct kvm
*kvm
= filp
->private_data
;
3538 void __user
*argp
= (void __user
*)arg
;
3541 * This union makes it completely explicit to gcc-3.x
3542 * that these two variables' stack usage should be
3543 * combined, not added together.
3546 struct kvm_pit_state ps
;
3547 struct kvm_pit_state2 ps2
;
3548 struct kvm_pit_config pit_config
;
3552 case KVM_SET_TSS_ADDR
:
3553 r
= kvm_vm_ioctl_set_tss_addr(kvm
, arg
);
3557 case KVM_SET_IDENTITY_MAP_ADDR
: {
3561 if (copy_from_user(&ident_addr
, argp
, sizeof ident_addr
))
3563 r
= kvm_vm_ioctl_set_identity_map_addr(kvm
, ident_addr
);
3568 case KVM_SET_NR_MMU_PAGES
:
3569 r
= kvm_vm_ioctl_set_nr_mmu_pages(kvm
, arg
);
3573 case KVM_GET_NR_MMU_PAGES
:
3574 r
= kvm_vm_ioctl_get_nr_mmu_pages(kvm
);
3576 case KVM_CREATE_IRQCHIP
: {
3577 struct kvm_pic
*vpic
;
3579 mutex_lock(&kvm
->lock
);
3582 goto create_irqchip_unlock
;
3584 vpic
= kvm_create_pic(kvm
);
3586 r
= kvm_ioapic_init(kvm
);
3588 mutex_lock(&kvm
->slots_lock
);
3589 kvm_io_bus_unregister_dev(kvm
, KVM_PIO_BUS
,
3591 kvm_io_bus_unregister_dev(kvm
, KVM_PIO_BUS
,
3593 kvm_io_bus_unregister_dev(kvm
, KVM_PIO_BUS
,
3595 mutex_unlock(&kvm
->slots_lock
);
3597 goto create_irqchip_unlock
;
3600 goto create_irqchip_unlock
;
3602 kvm
->arch
.vpic
= vpic
;
3604 r
= kvm_setup_default_irq_routing(kvm
);
3606 mutex_lock(&kvm
->slots_lock
);
3607 mutex_lock(&kvm
->irq_lock
);
3608 kvm_ioapic_destroy(kvm
);
3609 kvm_destroy_pic(kvm
);
3610 mutex_unlock(&kvm
->irq_lock
);
3611 mutex_unlock(&kvm
->slots_lock
);
3613 create_irqchip_unlock
:
3614 mutex_unlock(&kvm
->lock
);
3617 case KVM_CREATE_PIT
:
3618 u
.pit_config
.flags
= KVM_PIT_SPEAKER_DUMMY
;
3620 case KVM_CREATE_PIT2
:
3622 if (copy_from_user(&u
.pit_config
, argp
,
3623 sizeof(struct kvm_pit_config
)))
3626 mutex_lock(&kvm
->slots_lock
);
3629 goto create_pit_unlock
;
3631 kvm
->arch
.vpit
= kvm_create_pit(kvm
, u
.pit_config
.flags
);
3635 mutex_unlock(&kvm
->slots_lock
);
3637 case KVM_IRQ_LINE_STATUS
:
3638 case KVM_IRQ_LINE
: {
3639 struct kvm_irq_level irq_event
;
3642 if (copy_from_user(&irq_event
, argp
, sizeof irq_event
))
3645 if (irqchip_in_kernel(kvm
)) {
3647 status
= kvm_set_irq(kvm
, KVM_USERSPACE_IRQ_SOURCE_ID
,
3648 irq_event
.irq
, irq_event
.level
);
3649 if (ioctl
== KVM_IRQ_LINE_STATUS
) {
3651 irq_event
.status
= status
;
3652 if (copy_to_user(argp
, &irq_event
,
3660 case KVM_GET_IRQCHIP
: {
3661 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3662 struct kvm_irqchip
*chip
= kmalloc(sizeof(*chip
), GFP_KERNEL
);
3668 if (copy_from_user(chip
, argp
, sizeof *chip
))
3669 goto get_irqchip_out
;
3671 if (!irqchip_in_kernel(kvm
))
3672 goto get_irqchip_out
;
3673 r
= kvm_vm_ioctl_get_irqchip(kvm
, chip
);
3675 goto get_irqchip_out
;
3677 if (copy_to_user(argp
, chip
, sizeof *chip
))
3678 goto get_irqchip_out
;
3686 case KVM_SET_IRQCHIP
: {
3687 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3688 struct kvm_irqchip
*chip
= kmalloc(sizeof(*chip
), GFP_KERNEL
);
3694 if (copy_from_user(chip
, argp
, sizeof *chip
))
3695 goto set_irqchip_out
;
3697 if (!irqchip_in_kernel(kvm
))
3698 goto set_irqchip_out
;
3699 r
= kvm_vm_ioctl_set_irqchip(kvm
, chip
);
3701 goto set_irqchip_out
;
3711 if (copy_from_user(&u
.ps
, argp
, sizeof(struct kvm_pit_state
)))
3714 if (!kvm
->arch
.vpit
)
3716 r
= kvm_vm_ioctl_get_pit(kvm
, &u
.ps
);
3720 if (copy_to_user(argp
, &u
.ps
, sizeof(struct kvm_pit_state
)))
3727 if (copy_from_user(&u
.ps
, argp
, sizeof u
.ps
))
3730 if (!kvm
->arch
.vpit
)
3732 r
= kvm_vm_ioctl_set_pit(kvm
, &u
.ps
);
3738 case KVM_GET_PIT2
: {
3740 if (!kvm
->arch
.vpit
)
3742 r
= kvm_vm_ioctl_get_pit2(kvm
, &u
.ps2
);
3746 if (copy_to_user(argp
, &u
.ps2
, sizeof(u
.ps2
)))
3751 case KVM_SET_PIT2
: {
3753 if (copy_from_user(&u
.ps2
, argp
, sizeof(u
.ps2
)))
3756 if (!kvm
->arch
.vpit
)
3758 r
= kvm_vm_ioctl_set_pit2(kvm
, &u
.ps2
);
3764 case KVM_REINJECT_CONTROL
: {
3765 struct kvm_reinject_control control
;
3767 if (copy_from_user(&control
, argp
, sizeof(control
)))
3769 r
= kvm_vm_ioctl_reinject(kvm
, &control
);
3775 case KVM_XEN_HVM_CONFIG
: {
3777 if (copy_from_user(&kvm
->arch
.xen_hvm_config
, argp
,
3778 sizeof(struct kvm_xen_hvm_config
)))
3781 if (kvm
->arch
.xen_hvm_config
.flags
)
3786 case KVM_SET_CLOCK
: {
3787 struct kvm_clock_data user_ns
;
3792 if (copy_from_user(&user_ns
, argp
, sizeof(user_ns
)))
3800 local_irq_disable();
3801 now_ns
= get_kernel_ns();
3802 delta
= user_ns
.clock
- now_ns
;
3804 kvm
->arch
.kvmclock_offset
= delta
;
3807 case KVM_GET_CLOCK
: {
3808 struct kvm_clock_data user_ns
;
3811 local_irq_disable();
3812 now_ns
= get_kernel_ns();
3813 user_ns
.clock
= kvm
->arch
.kvmclock_offset
+ now_ns
;
3816 memset(&user_ns
.pad
, 0, sizeof(user_ns
.pad
));
3819 if (copy_to_user(argp
, &user_ns
, sizeof(user_ns
)))
3832 static void kvm_init_msr_list(void)
3837 /* skip the first msrs in the list. KVM-specific */
3838 for (i
= j
= KVM_SAVE_MSRS_BEGIN
; i
< ARRAY_SIZE(msrs_to_save
); i
++) {
3839 if (rdmsr_safe(msrs_to_save
[i
], &dummy
[0], &dummy
[1]) < 0)
3842 msrs_to_save
[j
] = msrs_to_save
[i
];
3845 num_msrs_to_save
= j
;
3848 static int vcpu_mmio_write(struct kvm_vcpu
*vcpu
, gpa_t addr
, int len
,
3856 if (!(vcpu
->arch
.apic
&&
3857 !kvm_iodevice_write(&vcpu
->arch
.apic
->dev
, addr
, n
, v
))
3858 && kvm_io_bus_write(vcpu
->kvm
, KVM_MMIO_BUS
, addr
, n
, v
))
3869 static int vcpu_mmio_read(struct kvm_vcpu
*vcpu
, gpa_t addr
, int len
, void *v
)
3876 if (!(vcpu
->arch
.apic
&&
3877 !kvm_iodevice_read(&vcpu
->arch
.apic
->dev
, addr
, n
, v
))
3878 && kvm_io_bus_read(vcpu
->kvm
, KVM_MMIO_BUS
, addr
, n
, v
))
3880 trace_kvm_mmio(KVM_TRACE_MMIO_READ
, n
, addr
, *(u64
*)v
);
3890 static void kvm_set_segment(struct kvm_vcpu
*vcpu
,
3891 struct kvm_segment
*var
, int seg
)
3893 kvm_x86_ops
->set_segment(vcpu
, var
, seg
);
3896 void kvm_get_segment(struct kvm_vcpu
*vcpu
,
3897 struct kvm_segment
*var
, int seg
)
3899 kvm_x86_ops
->get_segment(vcpu
, var
, seg
);
3902 static gpa_t
translate_gpa(struct kvm_vcpu
*vcpu
, gpa_t gpa
, u32 access
)
3907 static gpa_t
translate_nested_gpa(struct kvm_vcpu
*vcpu
, gpa_t gpa
, u32 access
)
3910 struct x86_exception exception
;
3912 BUG_ON(!mmu_is_nested(vcpu
));
3914 /* NPT walks are always user-walks */
3915 access
|= PFERR_USER_MASK
;
3916 t_gpa
= vcpu
->arch
.mmu
.gva_to_gpa(vcpu
, gpa
, access
, &exception
);
3921 gpa_t
kvm_mmu_gva_to_gpa_read(struct kvm_vcpu
*vcpu
, gva_t gva
,
3922 struct x86_exception
*exception
)
3924 u32 access
= (kvm_x86_ops
->get_cpl(vcpu
) == 3) ? PFERR_USER_MASK
: 0;
3925 return vcpu
->arch
.walk_mmu
->gva_to_gpa(vcpu
, gva
, access
, exception
);
3928 gpa_t
kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu
*vcpu
, gva_t gva
,
3929 struct x86_exception
*exception
)
3931 u32 access
= (kvm_x86_ops
->get_cpl(vcpu
) == 3) ? PFERR_USER_MASK
: 0;
3932 access
|= PFERR_FETCH_MASK
;
3933 return vcpu
->arch
.walk_mmu
->gva_to_gpa(vcpu
, gva
, access
, exception
);
3936 gpa_t
kvm_mmu_gva_to_gpa_write(struct kvm_vcpu
*vcpu
, gva_t gva
,
3937 struct x86_exception
*exception
)
3939 u32 access
= (kvm_x86_ops
->get_cpl(vcpu
) == 3) ? PFERR_USER_MASK
: 0;
3940 access
|= PFERR_WRITE_MASK
;
3941 return vcpu
->arch
.walk_mmu
->gva_to_gpa(vcpu
, gva
, access
, exception
);
3944 /* uses this to access any guest's mapped memory without checking CPL */
3945 gpa_t
kvm_mmu_gva_to_gpa_system(struct kvm_vcpu
*vcpu
, gva_t gva
,
3946 struct x86_exception
*exception
)
3948 return vcpu
->arch
.walk_mmu
->gva_to_gpa(vcpu
, gva
, 0, exception
);
3951 static int kvm_read_guest_virt_helper(gva_t addr
, void *val
, unsigned int bytes
,
3952 struct kvm_vcpu
*vcpu
, u32 access
,
3953 struct x86_exception
*exception
)
3956 int r
= X86EMUL_CONTINUE
;
3959 gpa_t gpa
= vcpu
->arch
.walk_mmu
->gva_to_gpa(vcpu
, addr
, access
,
3961 unsigned offset
= addr
& (PAGE_SIZE
-1);
3962 unsigned toread
= min(bytes
, (unsigned)PAGE_SIZE
- offset
);
3965 if (gpa
== UNMAPPED_GVA
)
3966 return X86EMUL_PROPAGATE_FAULT
;
3967 ret
= kvm_read_guest(vcpu
->kvm
, gpa
, data
, toread
);
3969 r
= X86EMUL_IO_NEEDED
;
3981 /* used for instruction fetching */
3982 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt
*ctxt
,
3983 gva_t addr
, void *val
, unsigned int bytes
,
3984 struct x86_exception
*exception
)
3986 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
3987 u32 access
= (kvm_x86_ops
->get_cpl(vcpu
) == 3) ? PFERR_USER_MASK
: 0;
3989 return kvm_read_guest_virt_helper(addr
, val
, bytes
, vcpu
,
3990 access
| PFERR_FETCH_MASK
,
3994 int kvm_read_guest_virt(struct x86_emulate_ctxt
*ctxt
,
3995 gva_t addr
, void *val
, unsigned int bytes
,
3996 struct x86_exception
*exception
)
3998 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
3999 u32 access
= (kvm_x86_ops
->get_cpl(vcpu
) == 3) ? PFERR_USER_MASK
: 0;
4001 return kvm_read_guest_virt_helper(addr
, val
, bytes
, vcpu
, access
,
4004 EXPORT_SYMBOL_GPL(kvm_read_guest_virt
);
4006 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt
*ctxt
,
4007 gva_t addr
, void *val
, unsigned int bytes
,
4008 struct x86_exception
*exception
)
4010 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4011 return kvm_read_guest_virt_helper(addr
, val
, bytes
, vcpu
, 0, exception
);
4014 int kvm_write_guest_virt_system(struct x86_emulate_ctxt
*ctxt
,
4015 gva_t addr
, void *val
,
4017 struct x86_exception
*exception
)
4019 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4021 int r
= X86EMUL_CONTINUE
;
4024 gpa_t gpa
= vcpu
->arch
.walk_mmu
->gva_to_gpa(vcpu
, addr
,
4027 unsigned offset
= addr
& (PAGE_SIZE
-1);
4028 unsigned towrite
= min(bytes
, (unsigned)PAGE_SIZE
- offset
);
4031 if (gpa
== UNMAPPED_GVA
)
4032 return X86EMUL_PROPAGATE_FAULT
;
4033 ret
= kvm_write_guest(vcpu
->kvm
, gpa
, data
, towrite
);
4035 r
= X86EMUL_IO_NEEDED
;
4046 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system
);
4048 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu
*vcpu
, unsigned long gva
,
4049 gpa_t
*gpa
, struct x86_exception
*exception
,
4052 u32 access
= (kvm_x86_ops
->get_cpl(vcpu
) == 3) ? PFERR_USER_MASK
: 0;
4054 if (vcpu_match_mmio_gva(vcpu
, gva
) &&
4055 check_write_user_access(vcpu
, write
, access
,
4056 vcpu
->arch
.access
)) {
4057 *gpa
= vcpu
->arch
.mmio_gfn
<< PAGE_SHIFT
|
4058 (gva
& (PAGE_SIZE
- 1));
4059 trace_vcpu_match_mmio(gva
, *gpa
, write
, false);
4064 access
|= PFERR_WRITE_MASK
;
4066 *gpa
= vcpu
->arch
.walk_mmu
->gva_to_gpa(vcpu
, gva
, access
, exception
);
4068 if (*gpa
== UNMAPPED_GVA
)
4071 /* For APIC access vmexit */
4072 if ((*gpa
& PAGE_MASK
) == APIC_DEFAULT_PHYS_BASE
)
4075 if (vcpu_match_mmio_gpa(vcpu
, *gpa
)) {
4076 trace_vcpu_match_mmio(gva
, *gpa
, write
, true);
4083 int emulator_write_phys(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
4084 const void *val
, int bytes
)
4088 ret
= kvm_write_guest(vcpu
->kvm
, gpa
, val
, bytes
);
4091 kvm_mmu_pte_write(vcpu
, gpa
, val
, bytes
, 1);
4095 struct read_write_emulator_ops
{
4096 int (*read_write_prepare
)(struct kvm_vcpu
*vcpu
, void *val
,
4098 int (*read_write_emulate
)(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
4099 void *val
, int bytes
);
4100 int (*read_write_mmio
)(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
4101 int bytes
, void *val
);
4102 int (*read_write_exit_mmio
)(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
4103 void *val
, int bytes
);
4107 static int read_prepare(struct kvm_vcpu
*vcpu
, void *val
, int bytes
)
4109 if (vcpu
->mmio_read_completed
) {
4110 memcpy(val
, vcpu
->mmio_data
, bytes
);
4111 trace_kvm_mmio(KVM_TRACE_MMIO_READ
, bytes
,
4112 vcpu
->mmio_phys_addr
, *(u64
*)val
);
4113 vcpu
->mmio_read_completed
= 0;
4120 static int read_emulate(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
4121 void *val
, int bytes
)
4123 return !kvm_read_guest(vcpu
->kvm
, gpa
, val
, bytes
);
4126 static int write_emulate(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
4127 void *val
, int bytes
)
4129 return emulator_write_phys(vcpu
, gpa
, val
, bytes
);
4132 static int write_mmio(struct kvm_vcpu
*vcpu
, gpa_t gpa
, int bytes
, void *val
)
4134 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE
, bytes
, gpa
, *(u64
*)val
);
4135 return vcpu_mmio_write(vcpu
, gpa
, bytes
, val
);
4138 static int read_exit_mmio(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
4139 void *val
, int bytes
)
4141 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED
, bytes
, gpa
, 0);
4142 return X86EMUL_IO_NEEDED
;
4145 static int write_exit_mmio(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
4146 void *val
, int bytes
)
4148 memcpy(vcpu
->mmio_data
, val
, bytes
);
4149 memcpy(vcpu
->run
->mmio
.data
, vcpu
->mmio_data
, 8);
4150 return X86EMUL_CONTINUE
;
4153 static struct read_write_emulator_ops read_emultor
= {
4154 .read_write_prepare
= read_prepare
,
4155 .read_write_emulate
= read_emulate
,
4156 .read_write_mmio
= vcpu_mmio_read
,
4157 .read_write_exit_mmio
= read_exit_mmio
,
4160 static struct read_write_emulator_ops write_emultor
= {
4161 .read_write_emulate
= write_emulate
,
4162 .read_write_mmio
= write_mmio
,
4163 .read_write_exit_mmio
= write_exit_mmio
,
4167 static int emulator_read_write_onepage(unsigned long addr
, void *val
,
4169 struct x86_exception
*exception
,
4170 struct kvm_vcpu
*vcpu
,
4171 struct read_write_emulator_ops
*ops
)
4175 bool write
= ops
->write
;
4177 if (ops
->read_write_prepare
&&
4178 ops
->read_write_prepare(vcpu
, val
, bytes
))
4179 return X86EMUL_CONTINUE
;
4181 ret
= vcpu_mmio_gva_to_gpa(vcpu
, addr
, &gpa
, exception
, write
);
4184 return X86EMUL_PROPAGATE_FAULT
;
4186 /* For APIC access vmexit */
4190 if (ops
->read_write_emulate(vcpu
, gpa
, val
, bytes
))
4191 return X86EMUL_CONTINUE
;
4195 * Is this MMIO handled locally?
4197 handled
= ops
->read_write_mmio(vcpu
, gpa
, bytes
, val
);
4198 if (handled
== bytes
)
4199 return X86EMUL_CONTINUE
;
4205 vcpu
->mmio_needed
= 1;
4206 vcpu
->run
->exit_reason
= KVM_EXIT_MMIO
;
4207 vcpu
->run
->mmio
.phys_addr
= vcpu
->mmio_phys_addr
= gpa
;
4208 vcpu
->mmio_size
= bytes
;
4209 vcpu
->run
->mmio
.len
= min(vcpu
->mmio_size
, 8);
4210 vcpu
->run
->mmio
.is_write
= vcpu
->mmio_is_write
= write
;
4211 vcpu
->mmio_index
= 0;
4213 return ops
->read_write_exit_mmio(vcpu
, gpa
, val
, bytes
);
4216 int emulator_read_write(struct x86_emulate_ctxt
*ctxt
, unsigned long addr
,
4217 void *val
, unsigned int bytes
,
4218 struct x86_exception
*exception
,
4219 struct read_write_emulator_ops
*ops
)
4221 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4223 /* Crossing a page boundary? */
4224 if (((addr
+ bytes
- 1) ^ addr
) & PAGE_MASK
) {
4227 now
= -addr
& ~PAGE_MASK
;
4228 rc
= emulator_read_write_onepage(addr
, val
, now
, exception
,
4231 if (rc
!= X86EMUL_CONTINUE
)
4238 return emulator_read_write_onepage(addr
, val
, bytes
, exception
,
4242 static int emulator_read_emulated(struct x86_emulate_ctxt
*ctxt
,
4246 struct x86_exception
*exception
)
4248 return emulator_read_write(ctxt
, addr
, val
, bytes
,
4249 exception
, &read_emultor
);
4252 int emulator_write_emulated(struct x86_emulate_ctxt
*ctxt
,
4256 struct x86_exception
*exception
)
4258 return emulator_read_write(ctxt
, addr
, (void *)val
, bytes
,
4259 exception
, &write_emultor
);
4262 #define CMPXCHG_TYPE(t, ptr, old, new) \
4263 (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
4265 #ifdef CONFIG_X86_64
4266 # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
4268 # define CMPXCHG64(ptr, old, new) \
4269 (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
4272 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt
*ctxt
,
4277 struct x86_exception
*exception
)
4279 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4285 /* guests cmpxchg8b have to be emulated atomically */
4286 if (bytes
> 8 || (bytes
& (bytes
- 1)))
4289 gpa
= kvm_mmu_gva_to_gpa_write(vcpu
, addr
, NULL
);
4291 if (gpa
== UNMAPPED_GVA
||
4292 (gpa
& PAGE_MASK
) == APIC_DEFAULT_PHYS_BASE
)
4295 if (((gpa
+ bytes
- 1) & PAGE_MASK
) != (gpa
& PAGE_MASK
))
4298 page
= gfn_to_page(vcpu
->kvm
, gpa
>> PAGE_SHIFT
);
4299 if (is_error_page(page
)) {
4300 kvm_release_page_clean(page
);
4304 kaddr
= kmap_atomic(page
, KM_USER0
);
4305 kaddr
+= offset_in_page(gpa
);
4308 exchanged
= CMPXCHG_TYPE(u8
, kaddr
, old
, new);
4311 exchanged
= CMPXCHG_TYPE(u16
, kaddr
, old
, new);
4314 exchanged
= CMPXCHG_TYPE(u32
, kaddr
, old
, new);
4317 exchanged
= CMPXCHG64(kaddr
, old
, new);
4322 kunmap_atomic(kaddr
, KM_USER0
);
4323 kvm_release_page_dirty(page
);
4326 return X86EMUL_CMPXCHG_FAILED
;
4328 kvm_mmu_pte_write(vcpu
, gpa
, new, bytes
, 1);
4330 return X86EMUL_CONTINUE
;
4333 printk_once(KERN_WARNING
"kvm: emulating exchange as write\n");
4335 return emulator_write_emulated(ctxt
, addr
, new, bytes
, exception
);
4338 static int kernel_pio(struct kvm_vcpu
*vcpu
, void *pd
)
4340 /* TODO: String I/O for in kernel device */
4343 if (vcpu
->arch
.pio
.in
)
4344 r
= kvm_io_bus_read(vcpu
->kvm
, KVM_PIO_BUS
, vcpu
->arch
.pio
.port
,
4345 vcpu
->arch
.pio
.size
, pd
);
4347 r
= kvm_io_bus_write(vcpu
->kvm
, KVM_PIO_BUS
,
4348 vcpu
->arch
.pio
.port
, vcpu
->arch
.pio
.size
,
4354 static int emulator_pio_in_emulated(struct x86_emulate_ctxt
*ctxt
,
4355 int size
, unsigned short port
, void *val
,
4358 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4360 if (vcpu
->arch
.pio
.count
)
4363 trace_kvm_pio(0, port
, size
, count
);
4365 vcpu
->arch
.pio
.port
= port
;
4366 vcpu
->arch
.pio
.in
= 1;
4367 vcpu
->arch
.pio
.count
= count
;
4368 vcpu
->arch
.pio
.size
= size
;
4370 if (!kernel_pio(vcpu
, vcpu
->arch
.pio_data
)) {
4372 memcpy(val
, vcpu
->arch
.pio_data
, size
* count
);
4373 vcpu
->arch
.pio
.count
= 0;
4377 vcpu
->run
->exit_reason
= KVM_EXIT_IO
;
4378 vcpu
->run
->io
.direction
= KVM_EXIT_IO_IN
;
4379 vcpu
->run
->io
.size
= size
;
4380 vcpu
->run
->io
.data_offset
= KVM_PIO_PAGE_OFFSET
* PAGE_SIZE
;
4381 vcpu
->run
->io
.count
= count
;
4382 vcpu
->run
->io
.port
= port
;
4387 static int emulator_pio_out_emulated(struct x86_emulate_ctxt
*ctxt
,
4388 int size
, unsigned short port
,
4389 const void *val
, unsigned int count
)
4391 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4393 trace_kvm_pio(1, port
, size
, count
);
4395 vcpu
->arch
.pio
.port
= port
;
4396 vcpu
->arch
.pio
.in
= 0;
4397 vcpu
->arch
.pio
.count
= count
;
4398 vcpu
->arch
.pio
.size
= size
;
4400 memcpy(vcpu
->arch
.pio_data
, val
, size
* count
);
4402 if (!kernel_pio(vcpu
, vcpu
->arch
.pio_data
)) {
4403 vcpu
->arch
.pio
.count
= 0;
4407 vcpu
->run
->exit_reason
= KVM_EXIT_IO
;
4408 vcpu
->run
->io
.direction
= KVM_EXIT_IO_OUT
;
4409 vcpu
->run
->io
.size
= size
;
4410 vcpu
->run
->io
.data_offset
= KVM_PIO_PAGE_OFFSET
* PAGE_SIZE
;
4411 vcpu
->run
->io
.count
= count
;
4412 vcpu
->run
->io
.port
= port
;
4417 static unsigned long get_segment_base(struct kvm_vcpu
*vcpu
, int seg
)
4419 return kvm_x86_ops
->get_segment_base(vcpu
, seg
);
4422 static void emulator_invlpg(struct x86_emulate_ctxt
*ctxt
, ulong address
)
4424 kvm_mmu_invlpg(emul_to_vcpu(ctxt
), address
);
4427 int kvm_emulate_wbinvd(struct kvm_vcpu
*vcpu
)
4429 if (!need_emulate_wbinvd(vcpu
))
4430 return X86EMUL_CONTINUE
;
4432 if (kvm_x86_ops
->has_wbinvd_exit()) {
4433 int cpu
= get_cpu();
4435 cpumask_set_cpu(cpu
, vcpu
->arch
.wbinvd_dirty_mask
);
4436 smp_call_function_many(vcpu
->arch
.wbinvd_dirty_mask
,
4437 wbinvd_ipi
, NULL
, 1);
4439 cpumask_clear(vcpu
->arch
.wbinvd_dirty_mask
);
4442 return X86EMUL_CONTINUE
;
4444 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd
);
4446 static void emulator_wbinvd(struct x86_emulate_ctxt
*ctxt
)
4448 kvm_emulate_wbinvd(emul_to_vcpu(ctxt
));
4451 int emulator_get_dr(struct x86_emulate_ctxt
*ctxt
, int dr
, unsigned long *dest
)
4453 return _kvm_get_dr(emul_to_vcpu(ctxt
), dr
, dest
);
4456 int emulator_set_dr(struct x86_emulate_ctxt
*ctxt
, int dr
, unsigned long value
)
4459 return __kvm_set_dr(emul_to_vcpu(ctxt
), dr
, value
);
4462 static u64
mk_cr_64(u64 curr_cr
, u32 new_val
)
4464 return (curr_cr
& ~((1ULL << 32) - 1)) | new_val
;
4467 static unsigned long emulator_get_cr(struct x86_emulate_ctxt
*ctxt
, int cr
)
4469 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4470 unsigned long value
;
4474 value
= kvm_read_cr0(vcpu
);
4477 value
= vcpu
->arch
.cr2
;
4480 value
= kvm_read_cr3(vcpu
);
4483 value
= kvm_read_cr4(vcpu
);
4486 value
= kvm_get_cr8(vcpu
);
4489 vcpu_printf(vcpu
, "%s: unexpected cr %u\n", __func__
, cr
);
4496 static int emulator_set_cr(struct x86_emulate_ctxt
*ctxt
, int cr
, ulong val
)
4498 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4503 res
= kvm_set_cr0(vcpu
, mk_cr_64(kvm_read_cr0(vcpu
), val
));
4506 vcpu
->arch
.cr2
= val
;
4509 res
= kvm_set_cr3(vcpu
, val
);
4512 res
= kvm_set_cr4(vcpu
, mk_cr_64(kvm_read_cr4(vcpu
), val
));
4515 res
= kvm_set_cr8(vcpu
, val
);
4518 vcpu_printf(vcpu
, "%s: unexpected cr %u\n", __func__
, cr
);
4525 static int emulator_get_cpl(struct x86_emulate_ctxt
*ctxt
)
4527 return kvm_x86_ops
->get_cpl(emul_to_vcpu(ctxt
));
4530 static void emulator_get_gdt(struct x86_emulate_ctxt
*ctxt
, struct desc_ptr
*dt
)
4532 kvm_x86_ops
->get_gdt(emul_to_vcpu(ctxt
), dt
);
4535 static void emulator_get_idt(struct x86_emulate_ctxt
*ctxt
, struct desc_ptr
*dt
)
4537 kvm_x86_ops
->get_idt(emul_to_vcpu(ctxt
), dt
);
4540 static void emulator_set_gdt(struct x86_emulate_ctxt
*ctxt
, struct desc_ptr
*dt
)
4542 kvm_x86_ops
->set_gdt(emul_to_vcpu(ctxt
), dt
);
4545 static void emulator_set_idt(struct x86_emulate_ctxt
*ctxt
, struct desc_ptr
*dt
)
4547 kvm_x86_ops
->set_idt(emul_to_vcpu(ctxt
), dt
);
4550 static unsigned long emulator_get_cached_segment_base(
4551 struct x86_emulate_ctxt
*ctxt
, int seg
)
4553 return get_segment_base(emul_to_vcpu(ctxt
), seg
);
4556 static bool emulator_get_segment(struct x86_emulate_ctxt
*ctxt
, u16
*selector
,
4557 struct desc_struct
*desc
, u32
*base3
,
4560 struct kvm_segment var
;
4562 kvm_get_segment(emul_to_vcpu(ctxt
), &var
, seg
);
4563 *selector
= var
.selector
;
4570 set_desc_limit(desc
, var
.limit
);
4571 set_desc_base(desc
, (unsigned long)var
.base
);
4572 #ifdef CONFIG_X86_64
4574 *base3
= var
.base
>> 32;
4576 desc
->type
= var
.type
;
4578 desc
->dpl
= var
.dpl
;
4579 desc
->p
= var
.present
;
4580 desc
->avl
= var
.avl
;
4588 static void emulator_set_segment(struct x86_emulate_ctxt
*ctxt
, u16 selector
,
4589 struct desc_struct
*desc
, u32 base3
,
4592 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4593 struct kvm_segment var
;
4595 var
.selector
= selector
;
4596 var
.base
= get_desc_base(desc
);
4597 #ifdef CONFIG_X86_64
4598 var
.base
|= ((u64
)base3
) << 32;
4600 var
.limit
= get_desc_limit(desc
);
4602 var
.limit
= (var
.limit
<< 12) | 0xfff;
4603 var
.type
= desc
->type
;
4604 var
.present
= desc
->p
;
4605 var
.dpl
= desc
->dpl
;
4610 var
.avl
= desc
->avl
;
4611 var
.present
= desc
->p
;
4612 var
.unusable
= !var
.present
;
4615 kvm_set_segment(vcpu
, &var
, seg
);
4619 static int emulator_get_msr(struct x86_emulate_ctxt
*ctxt
,
4620 u32 msr_index
, u64
*pdata
)
4622 return kvm_get_msr(emul_to_vcpu(ctxt
), msr_index
, pdata
);
4625 static int emulator_set_msr(struct x86_emulate_ctxt
*ctxt
,
4626 u32 msr_index
, u64 data
)
4628 return kvm_set_msr(emul_to_vcpu(ctxt
), msr_index
, data
);
4631 static void emulator_halt(struct x86_emulate_ctxt
*ctxt
)
4633 emul_to_vcpu(ctxt
)->arch
.halt_request
= 1;
4636 static void emulator_get_fpu(struct x86_emulate_ctxt
*ctxt
)
4639 kvm_load_guest_fpu(emul_to_vcpu(ctxt
));
4641 * CR0.TS may reference the host fpu state, not the guest fpu state,
4642 * so it may be clear at this point.
4647 static void emulator_put_fpu(struct x86_emulate_ctxt
*ctxt
)
4652 static int emulator_intercept(struct x86_emulate_ctxt
*ctxt
,
4653 struct x86_instruction_info
*info
,
4654 enum x86_intercept_stage stage
)
4656 return kvm_x86_ops
->check_intercept(emul_to_vcpu(ctxt
), info
, stage
);
4659 static struct x86_emulate_ops emulate_ops
= {
4660 .read_std
= kvm_read_guest_virt_system
,
4661 .write_std
= kvm_write_guest_virt_system
,
4662 .fetch
= kvm_fetch_guest_virt
,
4663 .read_emulated
= emulator_read_emulated
,
4664 .write_emulated
= emulator_write_emulated
,
4665 .cmpxchg_emulated
= emulator_cmpxchg_emulated
,
4666 .invlpg
= emulator_invlpg
,
4667 .pio_in_emulated
= emulator_pio_in_emulated
,
4668 .pio_out_emulated
= emulator_pio_out_emulated
,
4669 .get_segment
= emulator_get_segment
,
4670 .set_segment
= emulator_set_segment
,
4671 .get_cached_segment_base
= emulator_get_cached_segment_base
,
4672 .get_gdt
= emulator_get_gdt
,
4673 .get_idt
= emulator_get_idt
,
4674 .set_gdt
= emulator_set_gdt
,
4675 .set_idt
= emulator_set_idt
,
4676 .get_cr
= emulator_get_cr
,
4677 .set_cr
= emulator_set_cr
,
4678 .cpl
= emulator_get_cpl
,
4679 .get_dr
= emulator_get_dr
,
4680 .set_dr
= emulator_set_dr
,
4681 .set_msr
= emulator_set_msr
,
4682 .get_msr
= emulator_get_msr
,
4683 .halt
= emulator_halt
,
4684 .wbinvd
= emulator_wbinvd
,
4685 .fix_hypercall
= emulator_fix_hypercall
,
4686 .get_fpu
= emulator_get_fpu
,
4687 .put_fpu
= emulator_put_fpu
,
4688 .intercept
= emulator_intercept
,
4691 static void cache_all_regs(struct kvm_vcpu
*vcpu
)
4693 kvm_register_read(vcpu
, VCPU_REGS_RAX
);
4694 kvm_register_read(vcpu
, VCPU_REGS_RSP
);
4695 kvm_register_read(vcpu
, VCPU_REGS_RIP
);
4696 vcpu
->arch
.regs_dirty
= ~0;
4699 static void toggle_interruptibility(struct kvm_vcpu
*vcpu
, u32 mask
)
4701 u32 int_shadow
= kvm_x86_ops
->get_interrupt_shadow(vcpu
, mask
);
4703 * an sti; sti; sequence only disable interrupts for the first
4704 * instruction. So, if the last instruction, be it emulated or
4705 * not, left the system with the INT_STI flag enabled, it
4706 * means that the last instruction is an sti. We should not
4707 * leave the flag on in this case. The same goes for mov ss
4709 if (!(int_shadow
& mask
))
4710 kvm_x86_ops
->set_interrupt_shadow(vcpu
, mask
);
4713 static void inject_emulated_exception(struct kvm_vcpu
*vcpu
)
4715 struct x86_emulate_ctxt
*ctxt
= &vcpu
->arch
.emulate_ctxt
;
4716 if (ctxt
->exception
.vector
== PF_VECTOR
)
4717 kvm_propagate_fault(vcpu
, &ctxt
->exception
);
4718 else if (ctxt
->exception
.error_code_valid
)
4719 kvm_queue_exception_e(vcpu
, ctxt
->exception
.vector
,
4720 ctxt
->exception
.error_code
);
4722 kvm_queue_exception(vcpu
, ctxt
->exception
.vector
);
4725 static void init_decode_cache(struct x86_emulate_ctxt
*ctxt
,
4726 const unsigned long *regs
)
4728 memset(&ctxt
->twobyte
, 0,
4729 (void *)&ctxt
->regs
- (void *)&ctxt
->twobyte
);
4730 memcpy(ctxt
->regs
, regs
, sizeof(ctxt
->regs
));
4732 ctxt
->fetch
.start
= 0;
4733 ctxt
->fetch
.end
= 0;
4734 ctxt
->io_read
.pos
= 0;
4735 ctxt
->io_read
.end
= 0;
4736 ctxt
->mem_read
.pos
= 0;
4737 ctxt
->mem_read
.end
= 0;
4740 static void init_emulate_ctxt(struct kvm_vcpu
*vcpu
)
4742 struct x86_emulate_ctxt
*ctxt
= &vcpu
->arch
.emulate_ctxt
;
4746 * TODO: fix emulate.c to use guest_read/write_register
4747 * instead of direct ->regs accesses, can save hundred cycles
4748 * on Intel for instructions that don't read/change RSP, for
4751 cache_all_regs(vcpu
);
4753 kvm_x86_ops
->get_cs_db_l_bits(vcpu
, &cs_db
, &cs_l
);
4755 ctxt
->eflags
= kvm_get_rflags(vcpu
);
4756 ctxt
->eip
= kvm_rip_read(vcpu
);
4757 ctxt
->mode
= (!is_protmode(vcpu
)) ? X86EMUL_MODE_REAL
:
4758 (ctxt
->eflags
& X86_EFLAGS_VM
) ? X86EMUL_MODE_VM86
:
4759 cs_l
? X86EMUL_MODE_PROT64
:
4760 cs_db
? X86EMUL_MODE_PROT32
:
4761 X86EMUL_MODE_PROT16
;
4762 ctxt
->guest_mode
= is_guest_mode(vcpu
);
4764 init_decode_cache(ctxt
, vcpu
->arch
.regs
);
4765 vcpu
->arch
.emulate_regs_need_sync_from_vcpu
= false;
4768 int kvm_inject_realmode_interrupt(struct kvm_vcpu
*vcpu
, int irq
, int inc_eip
)
4770 struct x86_emulate_ctxt
*ctxt
= &vcpu
->arch
.emulate_ctxt
;
4773 init_emulate_ctxt(vcpu
);
4777 ctxt
->_eip
= ctxt
->eip
+ inc_eip
;
4778 ret
= emulate_int_real(ctxt
, irq
);
4780 if (ret
!= X86EMUL_CONTINUE
)
4781 return EMULATE_FAIL
;
4783 ctxt
->eip
= ctxt
->_eip
;
4784 memcpy(vcpu
->arch
.regs
, ctxt
->regs
, sizeof ctxt
->regs
);
4785 kvm_rip_write(vcpu
, ctxt
->eip
);
4786 kvm_set_rflags(vcpu
, ctxt
->eflags
);
4788 if (irq
== NMI_VECTOR
)
4789 vcpu
->arch
.nmi_pending
= 0;
4791 vcpu
->arch
.interrupt
.pending
= false;
4793 return EMULATE_DONE
;
4795 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt
);
4797 static int handle_emulation_failure(struct kvm_vcpu
*vcpu
)
4799 int r
= EMULATE_DONE
;
4801 ++vcpu
->stat
.insn_emulation_fail
;
4802 trace_kvm_emulate_insn_failed(vcpu
);
4803 if (!is_guest_mode(vcpu
)) {
4804 vcpu
->run
->exit_reason
= KVM_EXIT_INTERNAL_ERROR
;
4805 vcpu
->run
->internal
.suberror
= KVM_INTERNAL_ERROR_EMULATION
;
4806 vcpu
->run
->internal
.ndata
= 0;
4809 kvm_queue_exception(vcpu
, UD_VECTOR
);
4814 static bool reexecute_instruction(struct kvm_vcpu
*vcpu
, gva_t gva
)
4822 * if emulation was due to access to shadowed page table
4823 * and it failed try to unshadow page and re-entetr the
4824 * guest to let CPU execute the instruction.
4826 if (kvm_mmu_unprotect_page_virt(vcpu
, gva
))
4829 gpa
= kvm_mmu_gva_to_gpa_system(vcpu
, gva
, NULL
);
4831 if (gpa
== UNMAPPED_GVA
)
4832 return true; /* let cpu generate fault */
4834 if (!kvm_is_error_hva(gfn_to_hva(vcpu
->kvm
, gpa
>> PAGE_SHIFT
)))
4840 int x86_emulate_instruction(struct kvm_vcpu
*vcpu
,
4847 struct x86_emulate_ctxt
*ctxt
= &vcpu
->arch
.emulate_ctxt
;
4848 bool writeback
= true;
4850 kvm_clear_exception_queue(vcpu
);
4852 if (!(emulation_type
& EMULTYPE_NO_DECODE
)) {
4853 init_emulate_ctxt(vcpu
);
4854 ctxt
->interruptibility
= 0;
4855 ctxt
->have_exception
= false;
4856 ctxt
->perm_ok
= false;
4858 ctxt
->only_vendor_specific_insn
4859 = emulation_type
& EMULTYPE_TRAP_UD
;
4861 r
= x86_decode_insn(ctxt
, insn
, insn_len
);
4863 trace_kvm_emulate_insn_start(vcpu
);
4864 ++vcpu
->stat
.insn_emulation
;
4865 if (r
!= EMULATION_OK
) {
4866 if (emulation_type
& EMULTYPE_TRAP_UD
)
4867 return EMULATE_FAIL
;
4868 if (reexecute_instruction(vcpu
, cr2
))
4869 return EMULATE_DONE
;
4870 if (emulation_type
& EMULTYPE_SKIP
)
4871 return EMULATE_FAIL
;
4872 return handle_emulation_failure(vcpu
);
4876 if (emulation_type
& EMULTYPE_SKIP
) {
4877 kvm_rip_write(vcpu
, ctxt
->_eip
);
4878 return EMULATE_DONE
;
4881 /* this is needed for vmware backdoor interface to work since it
4882 changes registers values during IO operation */
4883 if (vcpu
->arch
.emulate_regs_need_sync_from_vcpu
) {
4884 vcpu
->arch
.emulate_regs_need_sync_from_vcpu
= false;
4885 memcpy(ctxt
->regs
, vcpu
->arch
.regs
, sizeof ctxt
->regs
);
4889 r
= x86_emulate_insn(ctxt
);
4891 if (r
== EMULATION_INTERCEPTED
)
4892 return EMULATE_DONE
;
4894 if (r
== EMULATION_FAILED
) {
4895 if (reexecute_instruction(vcpu
, cr2
))
4896 return EMULATE_DONE
;
4898 return handle_emulation_failure(vcpu
);
4901 if (ctxt
->have_exception
) {
4902 inject_emulated_exception(vcpu
);
4904 } else if (vcpu
->arch
.pio
.count
) {
4905 if (!vcpu
->arch
.pio
.in
)
4906 vcpu
->arch
.pio
.count
= 0;
4909 r
= EMULATE_DO_MMIO
;
4910 } else if (vcpu
->mmio_needed
) {
4911 if (!vcpu
->mmio_is_write
)
4913 r
= EMULATE_DO_MMIO
;
4914 } else if (r
== EMULATION_RESTART
)
4920 toggle_interruptibility(vcpu
, ctxt
->interruptibility
);
4921 kvm_set_rflags(vcpu
, ctxt
->eflags
);
4922 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
4923 memcpy(vcpu
->arch
.regs
, ctxt
->regs
, sizeof ctxt
->regs
);
4924 vcpu
->arch
.emulate_regs_need_sync_to_vcpu
= false;
4925 kvm_rip_write(vcpu
, ctxt
->eip
);
4927 vcpu
->arch
.emulate_regs_need_sync_to_vcpu
= true;
4931 EXPORT_SYMBOL_GPL(x86_emulate_instruction
);
4933 int kvm_fast_pio_out(struct kvm_vcpu
*vcpu
, int size
, unsigned short port
)
4935 unsigned long val
= kvm_register_read(vcpu
, VCPU_REGS_RAX
);
4936 int ret
= emulator_pio_out_emulated(&vcpu
->arch
.emulate_ctxt
,
4937 size
, port
, &val
, 1);
4938 /* do not return to emulator after return from userspace */
4939 vcpu
->arch
.pio
.count
= 0;
4942 EXPORT_SYMBOL_GPL(kvm_fast_pio_out
);
4944 static void tsc_bad(void *info
)
4946 __this_cpu_write(cpu_tsc_khz
, 0);
4949 static void tsc_khz_changed(void *data
)
4951 struct cpufreq_freqs
*freq
= data
;
4952 unsigned long khz
= 0;
4956 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC
))
4957 khz
= cpufreq_quick_get(raw_smp_processor_id());
4960 __this_cpu_write(cpu_tsc_khz
, khz
);
4963 static int kvmclock_cpufreq_notifier(struct notifier_block
*nb
, unsigned long val
,
4966 struct cpufreq_freqs
*freq
= data
;
4968 struct kvm_vcpu
*vcpu
;
4969 int i
, send_ipi
= 0;
4972 * We allow guests to temporarily run on slowing clocks,
4973 * provided we notify them after, or to run on accelerating
4974 * clocks, provided we notify them before. Thus time never
4977 * However, we have a problem. We can't atomically update
4978 * the frequency of a given CPU from this function; it is
4979 * merely a notifier, which can be called from any CPU.
4980 * Changing the TSC frequency at arbitrary points in time
4981 * requires a recomputation of local variables related to
4982 * the TSC for each VCPU. We must flag these local variables
4983 * to be updated and be sure the update takes place with the
4984 * new frequency before any guests proceed.
4986 * Unfortunately, the combination of hotplug CPU and frequency
4987 * change creates an intractable locking scenario; the order
4988 * of when these callouts happen is undefined with respect to
4989 * CPU hotplug, and they can race with each other. As such,
4990 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
4991 * undefined; you can actually have a CPU frequency change take
4992 * place in between the computation of X and the setting of the
4993 * variable. To protect against this problem, all updates of
4994 * the per_cpu tsc_khz variable are done in an interrupt
4995 * protected IPI, and all callers wishing to update the value
4996 * must wait for a synchronous IPI to complete (which is trivial
4997 * if the caller is on the CPU already). This establishes the
4998 * necessary total order on variable updates.
5000 * Note that because a guest time update may take place
5001 * anytime after the setting of the VCPU's request bit, the
5002 * correct TSC value must be set before the request. However,
5003 * to ensure the update actually makes it to any guest which
5004 * starts running in hardware virtualization between the set
5005 * and the acquisition of the spinlock, we must also ping the
5006 * CPU after setting the request bit.
5010 if (val
== CPUFREQ_PRECHANGE
&& freq
->old
> freq
->new)
5012 if (val
== CPUFREQ_POSTCHANGE
&& freq
->old
< freq
->new)
5015 smp_call_function_single(freq
->cpu
, tsc_khz_changed
, freq
, 1);
5017 raw_spin_lock(&kvm_lock
);
5018 list_for_each_entry(kvm
, &vm_list
, vm_list
) {
5019 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
5020 if (vcpu
->cpu
!= freq
->cpu
)
5022 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, vcpu
);
5023 if (vcpu
->cpu
!= smp_processor_id())
5027 raw_spin_unlock(&kvm_lock
);
5029 if (freq
->old
< freq
->new && send_ipi
) {
5031 * We upscale the frequency. Must make the guest
5032 * doesn't see old kvmclock values while running with
5033 * the new frequency, otherwise we risk the guest sees
5034 * time go backwards.
5036 * In case we update the frequency for another cpu
5037 * (which might be in guest context) send an interrupt
5038 * to kick the cpu out of guest context. Next time
5039 * guest context is entered kvmclock will be updated,
5040 * so the guest will not see stale values.
5042 smp_call_function_single(freq
->cpu
, tsc_khz_changed
, freq
, 1);
5047 static struct notifier_block kvmclock_cpufreq_notifier_block
= {
5048 .notifier_call
= kvmclock_cpufreq_notifier
5051 static int kvmclock_cpu_notifier(struct notifier_block
*nfb
,
5052 unsigned long action
, void *hcpu
)
5054 unsigned int cpu
= (unsigned long)hcpu
;
5058 case CPU_DOWN_FAILED
:
5059 smp_call_function_single(cpu
, tsc_khz_changed
, NULL
, 1);
5061 case CPU_DOWN_PREPARE
:
5062 smp_call_function_single(cpu
, tsc_bad
, NULL
, 1);
5068 static struct notifier_block kvmclock_cpu_notifier_block
= {
5069 .notifier_call
= kvmclock_cpu_notifier
,
5070 .priority
= -INT_MAX
5073 static void kvm_timer_init(void)
5077 max_tsc_khz
= tsc_khz
;
5078 register_hotcpu_notifier(&kvmclock_cpu_notifier_block
);
5079 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC
)) {
5080 #ifdef CONFIG_CPU_FREQ
5081 struct cpufreq_policy policy
;
5082 memset(&policy
, 0, sizeof(policy
));
5084 cpufreq_get_policy(&policy
, cpu
);
5085 if (policy
.cpuinfo
.max_freq
)
5086 max_tsc_khz
= policy
.cpuinfo
.max_freq
;
5089 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block
,
5090 CPUFREQ_TRANSITION_NOTIFIER
);
5092 pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz
);
5093 for_each_online_cpu(cpu
)
5094 smp_call_function_single(cpu
, tsc_khz_changed
, NULL
, 1);
5097 static DEFINE_PER_CPU(struct kvm_vcpu
*, current_vcpu
);
5099 static int kvm_is_in_guest(void)
5101 return percpu_read(current_vcpu
) != NULL
;
5104 static int kvm_is_user_mode(void)
5108 if (percpu_read(current_vcpu
))
5109 user_mode
= kvm_x86_ops
->get_cpl(percpu_read(current_vcpu
));
5111 return user_mode
!= 0;
5114 static unsigned long kvm_get_guest_ip(void)
5116 unsigned long ip
= 0;
5118 if (percpu_read(current_vcpu
))
5119 ip
= kvm_rip_read(percpu_read(current_vcpu
));
5124 static struct perf_guest_info_callbacks kvm_guest_cbs
= {
5125 .is_in_guest
= kvm_is_in_guest
,
5126 .is_user_mode
= kvm_is_user_mode
,
5127 .get_guest_ip
= kvm_get_guest_ip
,
5130 void kvm_before_handle_nmi(struct kvm_vcpu
*vcpu
)
5132 percpu_write(current_vcpu
, vcpu
);
5134 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi
);
5136 void kvm_after_handle_nmi(struct kvm_vcpu
*vcpu
)
5138 percpu_write(current_vcpu
, NULL
);
5140 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi
);
5142 static void kvm_set_mmio_spte_mask(void)
5145 int maxphyaddr
= boot_cpu_data
.x86_phys_bits
;
5148 * Set the reserved bits and the present bit of an paging-structure
5149 * entry to generate page fault with PFER.RSV = 1.
5151 mask
= ((1ull << (62 - maxphyaddr
+ 1)) - 1) << maxphyaddr
;
5154 #ifdef CONFIG_X86_64
5156 * If reserved bit is not supported, clear the present bit to disable
5159 if (maxphyaddr
== 52)
5163 kvm_mmu_set_mmio_spte_mask(mask
);
5166 int kvm_arch_init(void *opaque
)
5169 struct kvm_x86_ops
*ops
= (struct kvm_x86_ops
*)opaque
;
5172 printk(KERN_ERR
"kvm: already loaded the other module\n");
5177 if (!ops
->cpu_has_kvm_support()) {
5178 printk(KERN_ERR
"kvm: no hardware support\n");
5182 if (ops
->disabled_by_bios()) {
5183 printk(KERN_ERR
"kvm: disabled by bios\n");
5188 r
= kvm_mmu_module_init();
5192 kvm_set_mmio_spte_mask();
5193 kvm_init_msr_list();
5196 kvm_mmu_set_mask_ptes(PT_USER_MASK
, PT_ACCESSED_MASK
,
5197 PT_DIRTY_MASK
, PT64_NX_MASK
, 0);
5201 perf_register_guest_info_callbacks(&kvm_guest_cbs
);
5204 host_xcr0
= xgetbv(XCR_XFEATURE_ENABLED_MASK
);
5212 void kvm_arch_exit(void)
5214 perf_unregister_guest_info_callbacks(&kvm_guest_cbs
);
5216 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC
))
5217 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block
,
5218 CPUFREQ_TRANSITION_NOTIFIER
);
5219 unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block
);
5221 kvm_mmu_module_exit();
5224 int kvm_emulate_halt(struct kvm_vcpu
*vcpu
)
5226 ++vcpu
->stat
.halt_exits
;
5227 if (irqchip_in_kernel(vcpu
->kvm
)) {
5228 vcpu
->arch
.mp_state
= KVM_MP_STATE_HALTED
;
5231 vcpu
->run
->exit_reason
= KVM_EXIT_HLT
;
5235 EXPORT_SYMBOL_GPL(kvm_emulate_halt
);
5237 static inline gpa_t
hc_gpa(struct kvm_vcpu
*vcpu
, unsigned long a0
,
5240 if (is_long_mode(vcpu
))
5243 return a0
| ((gpa_t
)a1
<< 32);
5246 int kvm_hv_hypercall(struct kvm_vcpu
*vcpu
)
5248 u64 param
, ingpa
, outgpa
, ret
;
5249 uint16_t code
, rep_idx
, rep_cnt
, res
= HV_STATUS_SUCCESS
, rep_done
= 0;
5250 bool fast
, longmode
;
5254 * hypercall generates UD from non zero cpl and real mode
5257 if (kvm_x86_ops
->get_cpl(vcpu
) != 0 || !is_protmode(vcpu
)) {
5258 kvm_queue_exception(vcpu
, UD_VECTOR
);
5262 kvm_x86_ops
->get_cs_db_l_bits(vcpu
, &cs_db
, &cs_l
);
5263 longmode
= is_long_mode(vcpu
) && cs_l
== 1;
5266 param
= ((u64
)kvm_register_read(vcpu
, VCPU_REGS_RDX
) << 32) |
5267 (kvm_register_read(vcpu
, VCPU_REGS_RAX
) & 0xffffffff);
5268 ingpa
= ((u64
)kvm_register_read(vcpu
, VCPU_REGS_RBX
) << 32) |
5269 (kvm_register_read(vcpu
, VCPU_REGS_RCX
) & 0xffffffff);
5270 outgpa
= ((u64
)kvm_register_read(vcpu
, VCPU_REGS_RDI
) << 32) |
5271 (kvm_register_read(vcpu
, VCPU_REGS_RSI
) & 0xffffffff);
5273 #ifdef CONFIG_X86_64
5275 param
= kvm_register_read(vcpu
, VCPU_REGS_RCX
);
5276 ingpa
= kvm_register_read(vcpu
, VCPU_REGS_RDX
);
5277 outgpa
= kvm_register_read(vcpu
, VCPU_REGS_R8
);
5281 code
= param
& 0xffff;
5282 fast
= (param
>> 16) & 0x1;
5283 rep_cnt
= (param
>> 32) & 0xfff;
5284 rep_idx
= (param
>> 48) & 0xfff;
5286 trace_kvm_hv_hypercall(code
, fast
, rep_cnt
, rep_idx
, ingpa
, outgpa
);
5289 case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT
:
5290 kvm_vcpu_on_spin(vcpu
);
5293 res
= HV_STATUS_INVALID_HYPERCALL_CODE
;
5297 ret
= res
| (((u64
)rep_done
& 0xfff) << 32);
5299 kvm_register_write(vcpu
, VCPU_REGS_RAX
, ret
);
5301 kvm_register_write(vcpu
, VCPU_REGS_RDX
, ret
>> 32);
5302 kvm_register_write(vcpu
, VCPU_REGS_RAX
, ret
& 0xffffffff);
5308 int kvm_emulate_hypercall(struct kvm_vcpu
*vcpu
)
5310 unsigned long nr
, a0
, a1
, a2
, a3
, ret
;
5313 if (kvm_hv_hypercall_enabled(vcpu
->kvm
))
5314 return kvm_hv_hypercall(vcpu
);
5316 nr
= kvm_register_read(vcpu
, VCPU_REGS_RAX
);
5317 a0
= kvm_register_read(vcpu
, VCPU_REGS_RBX
);
5318 a1
= kvm_register_read(vcpu
, VCPU_REGS_RCX
);
5319 a2
= kvm_register_read(vcpu
, VCPU_REGS_RDX
);
5320 a3
= kvm_register_read(vcpu
, VCPU_REGS_RSI
);
5322 trace_kvm_hypercall(nr
, a0
, a1
, a2
, a3
);
5324 if (!is_long_mode(vcpu
)) {
5332 if (kvm_x86_ops
->get_cpl(vcpu
) != 0) {
5338 case KVM_HC_VAPIC_POLL_IRQ
:
5342 r
= kvm_pv_mmu_op(vcpu
, a0
, hc_gpa(vcpu
, a1
, a2
), &ret
);
5349 kvm_register_write(vcpu
, VCPU_REGS_RAX
, ret
);
5350 ++vcpu
->stat
.hypercalls
;
5353 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall
);
5355 int emulator_fix_hypercall(struct x86_emulate_ctxt
*ctxt
)
5357 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
5358 char instruction
[3];
5359 unsigned long rip
= kvm_rip_read(vcpu
);
5362 * Blow out the MMU to ensure that no other VCPU has an active mapping
5363 * to ensure that the updated hypercall appears atomically across all
5366 kvm_mmu_zap_all(vcpu
->kvm
);
5368 kvm_x86_ops
->patch_hypercall(vcpu
, instruction
);
5370 return emulator_write_emulated(ctxt
, rip
, instruction
, 3, NULL
);
5373 static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu
*vcpu
, int i
)
5375 struct kvm_cpuid_entry2
*e
= &vcpu
->arch
.cpuid_entries
[i
];
5376 int j
, nent
= vcpu
->arch
.cpuid_nent
;
5378 e
->flags
&= ~KVM_CPUID_FLAG_STATE_READ_NEXT
;
5379 /* when no next entry is found, the current entry[i] is reselected */
5380 for (j
= i
+ 1; ; j
= (j
+ 1) % nent
) {
5381 struct kvm_cpuid_entry2
*ej
= &vcpu
->arch
.cpuid_entries
[j
];
5382 if (ej
->function
== e
->function
) {
5383 ej
->flags
|= KVM_CPUID_FLAG_STATE_READ_NEXT
;
5387 return 0; /* silence gcc, even though control never reaches here */
5390 /* find an entry with matching function, matching index (if needed), and that
5391 * should be read next (if it's stateful) */
5392 static int is_matching_cpuid_entry(struct kvm_cpuid_entry2
*e
,
5393 u32 function
, u32 index
)
5395 if (e
->function
!= function
)
5397 if ((e
->flags
& KVM_CPUID_FLAG_SIGNIFCANT_INDEX
) && e
->index
!= index
)
5399 if ((e
->flags
& KVM_CPUID_FLAG_STATEFUL_FUNC
) &&
5400 !(e
->flags
& KVM_CPUID_FLAG_STATE_READ_NEXT
))
5405 struct kvm_cpuid_entry2
*kvm_find_cpuid_entry(struct kvm_vcpu
*vcpu
,
5406 u32 function
, u32 index
)
5409 struct kvm_cpuid_entry2
*best
= NULL
;
5411 for (i
= 0; i
< vcpu
->arch
.cpuid_nent
; ++i
) {
5412 struct kvm_cpuid_entry2
*e
;
5414 e
= &vcpu
->arch
.cpuid_entries
[i
];
5415 if (is_matching_cpuid_entry(e
, function
, index
)) {
5416 if (e
->flags
& KVM_CPUID_FLAG_STATEFUL_FUNC
)
5417 move_to_next_stateful_cpuid_entry(vcpu
, i
);
5424 EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry
);
5426 int cpuid_maxphyaddr(struct kvm_vcpu
*vcpu
)
5428 struct kvm_cpuid_entry2
*best
;
5430 best
= kvm_find_cpuid_entry(vcpu
, 0x80000000, 0);
5431 if (!best
|| best
->eax
< 0x80000008)
5433 best
= kvm_find_cpuid_entry(vcpu
, 0x80000008, 0);
5435 return best
->eax
& 0xff;
5441 * If no match is found, check whether we exceed the vCPU's limit
5442 * and return the content of the highest valid _standard_ leaf instead.
5443 * This is to satisfy the CPUID specification.
5445 static struct kvm_cpuid_entry2
* check_cpuid_limit(struct kvm_vcpu
*vcpu
,
5446 u32 function
, u32 index
)
5448 struct kvm_cpuid_entry2
*maxlevel
;
5450 maxlevel
= kvm_find_cpuid_entry(vcpu
, function
& 0x80000000, 0);
5451 if (!maxlevel
|| maxlevel
->eax
>= function
)
5453 if (function
& 0x80000000) {
5454 maxlevel
= kvm_find_cpuid_entry(vcpu
, 0, 0);
5458 return kvm_find_cpuid_entry(vcpu
, maxlevel
->eax
, index
);
5461 void kvm_emulate_cpuid(struct kvm_vcpu
*vcpu
)
5463 u32 function
, index
;
5464 struct kvm_cpuid_entry2
*best
;
5466 function
= kvm_register_read(vcpu
, VCPU_REGS_RAX
);
5467 index
= kvm_register_read(vcpu
, VCPU_REGS_RCX
);
5468 kvm_register_write(vcpu
, VCPU_REGS_RAX
, 0);
5469 kvm_register_write(vcpu
, VCPU_REGS_RBX
, 0);
5470 kvm_register_write(vcpu
, VCPU_REGS_RCX
, 0);
5471 kvm_register_write(vcpu
, VCPU_REGS_RDX
, 0);
5472 best
= kvm_find_cpuid_entry(vcpu
, function
, index
);
5475 best
= check_cpuid_limit(vcpu
, function
, index
);
5478 kvm_register_write(vcpu
, VCPU_REGS_RAX
, best
->eax
);
5479 kvm_register_write(vcpu
, VCPU_REGS_RBX
, best
->ebx
);
5480 kvm_register_write(vcpu
, VCPU_REGS_RCX
, best
->ecx
);
5481 kvm_register_write(vcpu
, VCPU_REGS_RDX
, best
->edx
);
5483 kvm_x86_ops
->skip_emulated_instruction(vcpu
);
5484 trace_kvm_cpuid(function
,
5485 kvm_register_read(vcpu
, VCPU_REGS_RAX
),
5486 kvm_register_read(vcpu
, VCPU_REGS_RBX
),
5487 kvm_register_read(vcpu
, VCPU_REGS_RCX
),
5488 kvm_register_read(vcpu
, VCPU_REGS_RDX
));
5490 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid
);
5493 * Check if userspace requested an interrupt window, and that the
5494 * interrupt window is open.
5496 * No need to exit to userspace if we already have an interrupt queued.
5498 static int dm_request_for_irq_injection(struct kvm_vcpu
*vcpu
)
5500 return (!irqchip_in_kernel(vcpu
->kvm
) && !kvm_cpu_has_interrupt(vcpu
) &&
5501 vcpu
->run
->request_interrupt_window
&&
5502 kvm_arch_interrupt_allowed(vcpu
));
5505 static void post_kvm_run_save(struct kvm_vcpu
*vcpu
)
5507 struct kvm_run
*kvm_run
= vcpu
->run
;
5509 kvm_run
->if_flag
= (kvm_get_rflags(vcpu
) & X86_EFLAGS_IF
) != 0;
5510 kvm_run
->cr8
= kvm_get_cr8(vcpu
);
5511 kvm_run
->apic_base
= kvm_get_apic_base(vcpu
);
5512 if (irqchip_in_kernel(vcpu
->kvm
))
5513 kvm_run
->ready_for_interrupt_injection
= 1;
5515 kvm_run
->ready_for_interrupt_injection
=
5516 kvm_arch_interrupt_allowed(vcpu
) &&
5517 !kvm_cpu_has_interrupt(vcpu
) &&
5518 !kvm_event_needs_reinjection(vcpu
);
5521 static void vapic_enter(struct kvm_vcpu
*vcpu
)
5523 struct kvm_lapic
*apic
= vcpu
->arch
.apic
;
5526 if (!apic
|| !apic
->vapic_addr
)
5529 page
= gfn_to_page(vcpu
->kvm
, apic
->vapic_addr
>> PAGE_SHIFT
);
5531 vcpu
->arch
.apic
->vapic_page
= page
;
5534 static void vapic_exit(struct kvm_vcpu
*vcpu
)
5536 struct kvm_lapic
*apic
= vcpu
->arch
.apic
;
5539 if (!apic
|| !apic
->vapic_addr
)
5542 idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
5543 kvm_release_page_dirty(apic
->vapic_page
);
5544 mark_page_dirty(vcpu
->kvm
, apic
->vapic_addr
>> PAGE_SHIFT
);
5545 srcu_read_unlock(&vcpu
->kvm
->srcu
, idx
);
5548 static void update_cr8_intercept(struct kvm_vcpu
*vcpu
)
5552 if (!kvm_x86_ops
->update_cr8_intercept
)
5555 if (!vcpu
->arch
.apic
)
5558 if (!vcpu
->arch
.apic
->vapic_addr
)
5559 max_irr
= kvm_lapic_find_highest_irr(vcpu
);
5566 tpr
= kvm_lapic_get_cr8(vcpu
);
5568 kvm_x86_ops
->update_cr8_intercept(vcpu
, tpr
, max_irr
);
5571 static void inject_pending_event(struct kvm_vcpu
*vcpu
)
5573 /* try to reinject previous events if any */
5574 if (vcpu
->arch
.exception
.pending
) {
5575 trace_kvm_inj_exception(vcpu
->arch
.exception
.nr
,
5576 vcpu
->arch
.exception
.has_error_code
,
5577 vcpu
->arch
.exception
.error_code
);
5578 kvm_x86_ops
->queue_exception(vcpu
, vcpu
->arch
.exception
.nr
,
5579 vcpu
->arch
.exception
.has_error_code
,
5580 vcpu
->arch
.exception
.error_code
,
5581 vcpu
->arch
.exception
.reinject
);
5585 if (vcpu
->arch
.nmi_injected
) {
5586 kvm_x86_ops
->set_nmi(vcpu
);
5590 if (vcpu
->arch
.interrupt
.pending
) {
5591 kvm_x86_ops
->set_irq(vcpu
);
5595 /* try to inject new event if pending */
5596 if (vcpu
->arch
.nmi_pending
) {
5597 if (kvm_x86_ops
->nmi_allowed(vcpu
)) {
5598 --vcpu
->arch
.nmi_pending
;
5599 vcpu
->arch
.nmi_injected
= true;
5600 kvm_x86_ops
->set_nmi(vcpu
);
5602 } else if (kvm_cpu_has_interrupt(vcpu
)) {
5603 if (kvm_x86_ops
->interrupt_allowed(vcpu
)) {
5604 kvm_queue_interrupt(vcpu
, kvm_cpu_get_interrupt(vcpu
),
5606 kvm_x86_ops
->set_irq(vcpu
);
5611 static void kvm_load_guest_xcr0(struct kvm_vcpu
*vcpu
)
5613 if (kvm_read_cr4_bits(vcpu
, X86_CR4_OSXSAVE
) &&
5614 !vcpu
->guest_xcr0_loaded
) {
5615 /* kvm_set_xcr() also depends on this */
5616 xsetbv(XCR_XFEATURE_ENABLED_MASK
, vcpu
->arch
.xcr0
);
5617 vcpu
->guest_xcr0_loaded
= 1;
5621 static void kvm_put_guest_xcr0(struct kvm_vcpu
*vcpu
)
5623 if (vcpu
->guest_xcr0_loaded
) {
5624 if (vcpu
->arch
.xcr0
!= host_xcr0
)
5625 xsetbv(XCR_XFEATURE_ENABLED_MASK
, host_xcr0
);
5626 vcpu
->guest_xcr0_loaded
= 0;
5630 static void process_nmi(struct kvm_vcpu
*vcpu
)
5635 * x86 is limited to one NMI running, and one NMI pending after it.
5636 * If an NMI is already in progress, limit further NMIs to just one.
5637 * Otherwise, allow two (and we'll inject the first one immediately).
5639 if (kvm_x86_ops
->get_nmi_mask(vcpu
) || vcpu
->arch
.nmi_injected
)
5642 vcpu
->arch
.nmi_pending
+= atomic_xchg(&vcpu
->arch
.nmi_queued
, 0);
5643 vcpu
->arch
.nmi_pending
= min(vcpu
->arch
.nmi_pending
, limit
);
5644 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
5647 static int vcpu_enter_guest(struct kvm_vcpu
*vcpu
)
5650 bool req_int_win
= !irqchip_in_kernel(vcpu
->kvm
) &&
5651 vcpu
->run
->request_interrupt_window
;
5653 if (vcpu
->requests
) {
5654 if (kvm_check_request(KVM_REQ_MMU_RELOAD
, vcpu
))
5655 kvm_mmu_unload(vcpu
);
5656 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER
, vcpu
))
5657 __kvm_migrate_timers(vcpu
);
5658 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE
, vcpu
)) {
5659 r
= kvm_guest_time_update(vcpu
);
5663 if (kvm_check_request(KVM_REQ_MMU_SYNC
, vcpu
))
5664 kvm_mmu_sync_roots(vcpu
);
5665 if (kvm_check_request(KVM_REQ_TLB_FLUSH
, vcpu
))
5666 kvm_x86_ops
->tlb_flush(vcpu
);
5667 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS
, vcpu
)) {
5668 vcpu
->run
->exit_reason
= KVM_EXIT_TPR_ACCESS
;
5672 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT
, vcpu
)) {
5673 vcpu
->run
->exit_reason
= KVM_EXIT_SHUTDOWN
;
5677 if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU
, vcpu
)) {
5678 vcpu
->fpu_active
= 0;
5679 kvm_x86_ops
->fpu_deactivate(vcpu
);
5681 if (kvm_check_request(KVM_REQ_APF_HALT
, vcpu
)) {
5682 /* Page is swapped out. Do synthetic halt */
5683 vcpu
->arch
.apf
.halted
= true;
5687 if (kvm_check_request(KVM_REQ_STEAL_UPDATE
, vcpu
))
5688 record_steal_time(vcpu
);
5689 if (kvm_check_request(KVM_REQ_NMI
, vcpu
))
5694 r
= kvm_mmu_reload(vcpu
);
5698 if (kvm_check_request(KVM_REQ_EVENT
, vcpu
) || req_int_win
) {
5699 inject_pending_event(vcpu
);
5701 /* enable NMI/IRQ window open exits if needed */
5702 if (vcpu
->arch
.nmi_pending
)
5703 kvm_x86_ops
->enable_nmi_window(vcpu
);
5704 else if (kvm_cpu_has_interrupt(vcpu
) || req_int_win
)
5705 kvm_x86_ops
->enable_irq_window(vcpu
);
5707 if (kvm_lapic_enabled(vcpu
)) {
5708 update_cr8_intercept(vcpu
);
5709 kvm_lapic_sync_to_vapic(vcpu
);
5715 kvm_x86_ops
->prepare_guest_switch(vcpu
);
5716 if (vcpu
->fpu_active
)
5717 kvm_load_guest_fpu(vcpu
);
5718 kvm_load_guest_xcr0(vcpu
);
5720 vcpu
->mode
= IN_GUEST_MODE
;
5722 /* We should set ->mode before check ->requests,
5723 * see the comment in make_all_cpus_request.
5727 local_irq_disable();
5729 if (vcpu
->mode
== EXITING_GUEST_MODE
|| vcpu
->requests
5730 || need_resched() || signal_pending(current
)) {
5731 vcpu
->mode
= OUTSIDE_GUEST_MODE
;
5735 kvm_x86_ops
->cancel_injection(vcpu
);
5740 srcu_read_unlock(&vcpu
->kvm
->srcu
, vcpu
->srcu_idx
);
5744 if (unlikely(vcpu
->arch
.switch_db_regs
)) {
5746 set_debugreg(vcpu
->arch
.eff_db
[0], 0);
5747 set_debugreg(vcpu
->arch
.eff_db
[1], 1);
5748 set_debugreg(vcpu
->arch
.eff_db
[2], 2);
5749 set_debugreg(vcpu
->arch
.eff_db
[3], 3);
5752 trace_kvm_entry(vcpu
->vcpu_id
);
5753 kvm_x86_ops
->run(vcpu
);
5756 * If the guest has used debug registers, at least dr7
5757 * will be disabled while returning to the host.
5758 * If we don't have active breakpoints in the host, we don't
5759 * care about the messed up debug address registers. But if
5760 * we have some of them active, restore the old state.
5762 if (hw_breakpoint_active())
5763 hw_breakpoint_restore();
5765 vcpu
->arch
.last_guest_tsc
= kvm_x86_ops
->read_l1_tsc(vcpu
);
5767 vcpu
->mode
= OUTSIDE_GUEST_MODE
;
5774 * We must have an instruction between local_irq_enable() and
5775 * kvm_guest_exit(), so the timer interrupt isn't delayed by
5776 * the interrupt shadow. The stat.exits increment will do nicely.
5777 * But we need to prevent reordering, hence this barrier():
5785 vcpu
->srcu_idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
5788 * Profile KVM exit RIPs:
5790 if (unlikely(prof_on
== KVM_PROFILING
)) {
5791 unsigned long rip
= kvm_rip_read(vcpu
);
5792 profile_hit(KVM_PROFILING
, (void *)rip
);
5796 kvm_lapic_sync_from_vapic(vcpu
);
5798 r
= kvm_x86_ops
->handle_exit(vcpu
);
5804 static int __vcpu_run(struct kvm_vcpu
*vcpu
)
5807 struct kvm
*kvm
= vcpu
->kvm
;
5809 if (unlikely(vcpu
->arch
.mp_state
== KVM_MP_STATE_SIPI_RECEIVED
)) {
5810 pr_debug("vcpu %d received sipi with vector # %x\n",
5811 vcpu
->vcpu_id
, vcpu
->arch
.sipi_vector
);
5812 kvm_lapic_reset(vcpu
);
5813 r
= kvm_arch_vcpu_reset(vcpu
);
5816 vcpu
->arch
.mp_state
= KVM_MP_STATE_RUNNABLE
;
5819 vcpu
->srcu_idx
= srcu_read_lock(&kvm
->srcu
);
5824 if (vcpu
->arch
.mp_state
== KVM_MP_STATE_RUNNABLE
&&
5825 !vcpu
->arch
.apf
.halted
)
5826 r
= vcpu_enter_guest(vcpu
);
5828 srcu_read_unlock(&kvm
->srcu
, vcpu
->srcu_idx
);
5829 kvm_vcpu_block(vcpu
);
5830 vcpu
->srcu_idx
= srcu_read_lock(&kvm
->srcu
);
5831 if (kvm_check_request(KVM_REQ_UNHALT
, vcpu
))
5833 switch(vcpu
->arch
.mp_state
) {
5834 case KVM_MP_STATE_HALTED
:
5835 vcpu
->arch
.mp_state
=
5836 KVM_MP_STATE_RUNNABLE
;
5837 case KVM_MP_STATE_RUNNABLE
:
5838 vcpu
->arch
.apf
.halted
= false;
5840 case KVM_MP_STATE_SIPI_RECEIVED
:
5851 clear_bit(KVM_REQ_PENDING_TIMER
, &vcpu
->requests
);
5852 if (kvm_cpu_has_pending_timer(vcpu
))
5853 kvm_inject_pending_timer_irqs(vcpu
);
5855 if (dm_request_for_irq_injection(vcpu
)) {
5857 vcpu
->run
->exit_reason
= KVM_EXIT_INTR
;
5858 ++vcpu
->stat
.request_irq_exits
;
5861 kvm_check_async_pf_completion(vcpu
);
5863 if (signal_pending(current
)) {
5865 vcpu
->run
->exit_reason
= KVM_EXIT_INTR
;
5866 ++vcpu
->stat
.signal_exits
;
5868 if (need_resched()) {
5869 srcu_read_unlock(&kvm
->srcu
, vcpu
->srcu_idx
);
5871 vcpu
->srcu_idx
= srcu_read_lock(&kvm
->srcu
);
5875 srcu_read_unlock(&kvm
->srcu
, vcpu
->srcu_idx
);
5882 static int complete_mmio(struct kvm_vcpu
*vcpu
)
5884 struct kvm_run
*run
= vcpu
->run
;
5887 if (!(vcpu
->arch
.pio
.count
|| vcpu
->mmio_needed
))
5890 if (vcpu
->mmio_needed
) {
5891 vcpu
->mmio_needed
= 0;
5892 if (!vcpu
->mmio_is_write
)
5893 memcpy(vcpu
->mmio_data
+ vcpu
->mmio_index
,
5895 vcpu
->mmio_index
+= 8;
5896 if (vcpu
->mmio_index
< vcpu
->mmio_size
) {
5897 run
->exit_reason
= KVM_EXIT_MMIO
;
5898 run
->mmio
.phys_addr
= vcpu
->mmio_phys_addr
+ vcpu
->mmio_index
;
5899 memcpy(run
->mmio
.data
, vcpu
->mmio_data
+ vcpu
->mmio_index
, 8);
5900 run
->mmio
.len
= min(vcpu
->mmio_size
- vcpu
->mmio_index
, 8);
5901 run
->mmio
.is_write
= vcpu
->mmio_is_write
;
5902 vcpu
->mmio_needed
= 1;
5905 if (vcpu
->mmio_is_write
)
5907 vcpu
->mmio_read_completed
= 1;
5909 vcpu
->srcu_idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
5910 r
= emulate_instruction(vcpu
, EMULTYPE_NO_DECODE
);
5911 srcu_read_unlock(&vcpu
->kvm
->srcu
, vcpu
->srcu_idx
);
5912 if (r
!= EMULATE_DONE
)
5917 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
5922 if (!tsk_used_math(current
) && init_fpu(current
))
5925 if (vcpu
->sigset_active
)
5926 sigprocmask(SIG_SETMASK
, &vcpu
->sigset
, &sigsaved
);
5928 if (unlikely(vcpu
->arch
.mp_state
== KVM_MP_STATE_UNINITIALIZED
)) {
5929 kvm_vcpu_block(vcpu
);
5930 clear_bit(KVM_REQ_UNHALT
, &vcpu
->requests
);
5935 /* re-sync apic's tpr */
5936 if (!irqchip_in_kernel(vcpu
->kvm
)) {
5937 if (kvm_set_cr8(vcpu
, kvm_run
->cr8
) != 0) {
5943 r
= complete_mmio(vcpu
);
5947 if (kvm_run
->exit_reason
== KVM_EXIT_HYPERCALL
)
5948 kvm_register_write(vcpu
, VCPU_REGS_RAX
,
5949 kvm_run
->hypercall
.ret
);
5951 r
= __vcpu_run(vcpu
);
5954 post_kvm_run_save(vcpu
);
5955 if (vcpu
->sigset_active
)
5956 sigprocmask(SIG_SETMASK
, &sigsaved
, NULL
);
5961 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu
*vcpu
, struct kvm_regs
*regs
)
5963 if (vcpu
->arch
.emulate_regs_need_sync_to_vcpu
) {
5965 * We are here if userspace calls get_regs() in the middle of
5966 * instruction emulation. Registers state needs to be copied
5967 * back from emulation context to vcpu. Usrapace shouldn't do
5968 * that usually, but some bad designed PV devices (vmware
5969 * backdoor interface) need this to work
5971 struct x86_emulate_ctxt
*ctxt
= &vcpu
->arch
.emulate_ctxt
;
5972 memcpy(vcpu
->arch
.regs
, ctxt
->regs
, sizeof ctxt
->regs
);
5973 vcpu
->arch
.emulate_regs_need_sync_to_vcpu
= false;
5975 regs
->rax
= kvm_register_read(vcpu
, VCPU_REGS_RAX
);
5976 regs
->rbx
= kvm_register_read(vcpu
, VCPU_REGS_RBX
);
5977 regs
->rcx
= kvm_register_read(vcpu
, VCPU_REGS_RCX
);
5978 regs
->rdx
= kvm_register_read(vcpu
, VCPU_REGS_RDX
);
5979 regs
->rsi
= kvm_register_read(vcpu
, VCPU_REGS_RSI
);
5980 regs
->rdi
= kvm_register_read(vcpu
, VCPU_REGS_RDI
);
5981 regs
->rsp
= kvm_register_read(vcpu
, VCPU_REGS_RSP
);
5982 regs
->rbp
= kvm_register_read(vcpu
, VCPU_REGS_RBP
);
5983 #ifdef CONFIG_X86_64
5984 regs
->r8
= kvm_register_read(vcpu
, VCPU_REGS_R8
);
5985 regs
->r9
= kvm_register_read(vcpu
, VCPU_REGS_R9
);
5986 regs
->r10
= kvm_register_read(vcpu
, VCPU_REGS_R10
);
5987 regs
->r11
= kvm_register_read(vcpu
, VCPU_REGS_R11
);
5988 regs
->r12
= kvm_register_read(vcpu
, VCPU_REGS_R12
);
5989 regs
->r13
= kvm_register_read(vcpu
, VCPU_REGS_R13
);
5990 regs
->r14
= kvm_register_read(vcpu
, VCPU_REGS_R14
);
5991 regs
->r15
= kvm_register_read(vcpu
, VCPU_REGS_R15
);
5994 regs
->rip
= kvm_rip_read(vcpu
);
5995 regs
->rflags
= kvm_get_rflags(vcpu
);
6000 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu
*vcpu
, struct kvm_regs
*regs
)
6002 vcpu
->arch
.emulate_regs_need_sync_from_vcpu
= true;
6003 vcpu
->arch
.emulate_regs_need_sync_to_vcpu
= false;
6005 kvm_register_write(vcpu
, VCPU_REGS_RAX
, regs
->rax
);
6006 kvm_register_write(vcpu
, VCPU_REGS_RBX
, regs
->rbx
);
6007 kvm_register_write(vcpu
, VCPU_REGS_RCX
, regs
->rcx
);
6008 kvm_register_write(vcpu
, VCPU_REGS_RDX
, regs
->rdx
);
6009 kvm_register_write(vcpu
, VCPU_REGS_RSI
, regs
->rsi
);
6010 kvm_register_write(vcpu
, VCPU_REGS_RDI
, regs
->rdi
);
6011 kvm_register_write(vcpu
, VCPU_REGS_RSP
, regs
->rsp
);
6012 kvm_register_write(vcpu
, VCPU_REGS_RBP
, regs
->rbp
);
6013 #ifdef CONFIG_X86_64
6014 kvm_register_write(vcpu
, VCPU_REGS_R8
, regs
->r8
);
6015 kvm_register_write(vcpu
, VCPU_REGS_R9
, regs
->r9
);
6016 kvm_register_write(vcpu
, VCPU_REGS_R10
, regs
->r10
);
6017 kvm_register_write(vcpu
, VCPU_REGS_R11
, regs
->r11
);
6018 kvm_register_write(vcpu
, VCPU_REGS_R12
, regs
->r12
);
6019 kvm_register_write(vcpu
, VCPU_REGS_R13
, regs
->r13
);
6020 kvm_register_write(vcpu
, VCPU_REGS_R14
, regs
->r14
);
6021 kvm_register_write(vcpu
, VCPU_REGS_R15
, regs
->r15
);
6024 kvm_rip_write(vcpu
, regs
->rip
);
6025 kvm_set_rflags(vcpu
, regs
->rflags
);
6027 vcpu
->arch
.exception
.pending
= false;
6029 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
6034 void kvm_get_cs_db_l_bits(struct kvm_vcpu
*vcpu
, int *db
, int *l
)
6036 struct kvm_segment cs
;
6038 kvm_get_segment(vcpu
, &cs
, VCPU_SREG_CS
);
6042 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits
);
6044 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu
*vcpu
,
6045 struct kvm_sregs
*sregs
)
6049 kvm_get_segment(vcpu
, &sregs
->cs
, VCPU_SREG_CS
);
6050 kvm_get_segment(vcpu
, &sregs
->ds
, VCPU_SREG_DS
);
6051 kvm_get_segment(vcpu
, &sregs
->es
, VCPU_SREG_ES
);
6052 kvm_get_segment(vcpu
, &sregs
->fs
, VCPU_SREG_FS
);
6053 kvm_get_segment(vcpu
, &sregs
->gs
, VCPU_SREG_GS
);
6054 kvm_get_segment(vcpu
, &sregs
->ss
, VCPU_SREG_SS
);
6056 kvm_get_segment(vcpu
, &sregs
->tr
, VCPU_SREG_TR
);
6057 kvm_get_segment(vcpu
, &sregs
->ldt
, VCPU_SREG_LDTR
);
6059 kvm_x86_ops
->get_idt(vcpu
, &dt
);
6060 sregs
->idt
.limit
= dt
.size
;
6061 sregs
->idt
.base
= dt
.address
;
6062 kvm_x86_ops
->get_gdt(vcpu
, &dt
);
6063 sregs
->gdt
.limit
= dt
.size
;
6064 sregs
->gdt
.base
= dt
.address
;
6066 sregs
->cr0
= kvm_read_cr0(vcpu
);
6067 sregs
->cr2
= vcpu
->arch
.cr2
;
6068 sregs
->cr3
= kvm_read_cr3(vcpu
);
6069 sregs
->cr4
= kvm_read_cr4(vcpu
);
6070 sregs
->cr8
= kvm_get_cr8(vcpu
);
6071 sregs
->efer
= vcpu
->arch
.efer
;
6072 sregs
->apic_base
= kvm_get_apic_base(vcpu
);
6074 memset(sregs
->interrupt_bitmap
, 0, sizeof sregs
->interrupt_bitmap
);
6076 if (vcpu
->arch
.interrupt
.pending
&& !vcpu
->arch
.interrupt
.soft
)
6077 set_bit(vcpu
->arch
.interrupt
.nr
,
6078 (unsigned long *)sregs
->interrupt_bitmap
);
6083 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu
*vcpu
,
6084 struct kvm_mp_state
*mp_state
)
6086 mp_state
->mp_state
= vcpu
->arch
.mp_state
;
6090 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu
*vcpu
,
6091 struct kvm_mp_state
*mp_state
)
6093 vcpu
->arch
.mp_state
= mp_state
->mp_state
;
6094 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
6098 int kvm_task_switch(struct kvm_vcpu
*vcpu
, u16 tss_selector
, int reason
,
6099 bool has_error_code
, u32 error_code
)
6101 struct x86_emulate_ctxt
*ctxt
= &vcpu
->arch
.emulate_ctxt
;
6104 init_emulate_ctxt(vcpu
);
6106 ret
= emulator_task_switch(ctxt
, tss_selector
, reason
,
6107 has_error_code
, error_code
);
6110 return EMULATE_FAIL
;
6112 memcpy(vcpu
->arch
.regs
, ctxt
->regs
, sizeof ctxt
->regs
);
6113 kvm_rip_write(vcpu
, ctxt
->eip
);
6114 kvm_set_rflags(vcpu
, ctxt
->eflags
);
6115 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
6116 return EMULATE_DONE
;
6118 EXPORT_SYMBOL_GPL(kvm_task_switch
);
6120 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu
*vcpu
,
6121 struct kvm_sregs
*sregs
)
6123 int mmu_reset_needed
= 0;
6124 int pending_vec
, max_bits
, idx
;
6127 dt
.size
= sregs
->idt
.limit
;
6128 dt
.address
= sregs
->idt
.base
;
6129 kvm_x86_ops
->set_idt(vcpu
, &dt
);
6130 dt
.size
= sregs
->gdt
.limit
;
6131 dt
.address
= sregs
->gdt
.base
;
6132 kvm_x86_ops
->set_gdt(vcpu
, &dt
);
6134 vcpu
->arch
.cr2
= sregs
->cr2
;
6135 mmu_reset_needed
|= kvm_read_cr3(vcpu
) != sregs
->cr3
;
6136 vcpu
->arch
.cr3
= sregs
->cr3
;
6137 __set_bit(VCPU_EXREG_CR3
, (ulong
*)&vcpu
->arch
.regs_avail
);
6139 kvm_set_cr8(vcpu
, sregs
->cr8
);
6141 mmu_reset_needed
|= vcpu
->arch
.efer
!= sregs
->efer
;
6142 kvm_x86_ops
->set_efer(vcpu
, sregs
->efer
);
6143 kvm_set_apic_base(vcpu
, sregs
->apic_base
);
6145 mmu_reset_needed
|= kvm_read_cr0(vcpu
) != sregs
->cr0
;
6146 kvm_x86_ops
->set_cr0(vcpu
, sregs
->cr0
);
6147 vcpu
->arch
.cr0
= sregs
->cr0
;
6149 mmu_reset_needed
|= kvm_read_cr4(vcpu
) != sregs
->cr4
;
6150 kvm_x86_ops
->set_cr4(vcpu
, sregs
->cr4
);
6151 if (sregs
->cr4
& X86_CR4_OSXSAVE
)
6154 idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
6155 if (!is_long_mode(vcpu
) && is_pae(vcpu
)) {
6156 load_pdptrs(vcpu
, vcpu
->arch
.walk_mmu
, kvm_read_cr3(vcpu
));
6157 mmu_reset_needed
= 1;
6159 srcu_read_unlock(&vcpu
->kvm
->srcu
, idx
);
6161 if (mmu_reset_needed
)
6162 kvm_mmu_reset_context(vcpu
);
6164 max_bits
= (sizeof sregs
->interrupt_bitmap
) << 3;
6165 pending_vec
= find_first_bit(
6166 (const unsigned long *)sregs
->interrupt_bitmap
, max_bits
);
6167 if (pending_vec
< max_bits
) {
6168 kvm_queue_interrupt(vcpu
, pending_vec
, false);
6169 pr_debug("Set back pending irq %d\n", pending_vec
);
6172 kvm_set_segment(vcpu
, &sregs
->cs
, VCPU_SREG_CS
);
6173 kvm_set_segment(vcpu
, &sregs
->ds
, VCPU_SREG_DS
);
6174 kvm_set_segment(vcpu
, &sregs
->es
, VCPU_SREG_ES
);
6175 kvm_set_segment(vcpu
, &sregs
->fs
, VCPU_SREG_FS
);
6176 kvm_set_segment(vcpu
, &sregs
->gs
, VCPU_SREG_GS
);
6177 kvm_set_segment(vcpu
, &sregs
->ss
, VCPU_SREG_SS
);
6179 kvm_set_segment(vcpu
, &sregs
->tr
, VCPU_SREG_TR
);
6180 kvm_set_segment(vcpu
, &sregs
->ldt
, VCPU_SREG_LDTR
);
6182 update_cr8_intercept(vcpu
);
6184 /* Older userspace won't unhalt the vcpu on reset. */
6185 if (kvm_vcpu_is_bsp(vcpu
) && kvm_rip_read(vcpu
) == 0xfff0 &&
6186 sregs
->cs
.selector
== 0xf000 && sregs
->cs
.base
== 0xffff0000 &&
6188 vcpu
->arch
.mp_state
= KVM_MP_STATE_RUNNABLE
;
6190 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
6195 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu
*vcpu
,
6196 struct kvm_guest_debug
*dbg
)
6198 unsigned long rflags
;
6201 if (dbg
->control
& (KVM_GUESTDBG_INJECT_DB
| KVM_GUESTDBG_INJECT_BP
)) {
6203 if (vcpu
->arch
.exception
.pending
)
6205 if (dbg
->control
& KVM_GUESTDBG_INJECT_DB
)
6206 kvm_queue_exception(vcpu
, DB_VECTOR
);
6208 kvm_queue_exception(vcpu
, BP_VECTOR
);
6212 * Read rflags as long as potentially injected trace flags are still
6215 rflags
= kvm_get_rflags(vcpu
);
6217 vcpu
->guest_debug
= dbg
->control
;
6218 if (!(vcpu
->guest_debug
& KVM_GUESTDBG_ENABLE
))
6219 vcpu
->guest_debug
= 0;
6221 if (vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
) {
6222 for (i
= 0; i
< KVM_NR_DB_REGS
; ++i
)
6223 vcpu
->arch
.eff_db
[i
] = dbg
->arch
.debugreg
[i
];
6224 vcpu
->arch
.switch_db_regs
=
6225 (dbg
->arch
.debugreg
[7] & DR7_BP_EN_MASK
);
6227 for (i
= 0; i
< KVM_NR_DB_REGS
; i
++)
6228 vcpu
->arch
.eff_db
[i
] = vcpu
->arch
.db
[i
];
6229 vcpu
->arch
.switch_db_regs
= (vcpu
->arch
.dr7
& DR7_BP_EN_MASK
);
6232 if (vcpu
->guest_debug
& KVM_GUESTDBG_SINGLESTEP
)
6233 vcpu
->arch
.singlestep_rip
= kvm_rip_read(vcpu
) +
6234 get_segment_base(vcpu
, VCPU_SREG_CS
);
6237 * Trigger an rflags update that will inject or remove the trace
6240 kvm_set_rflags(vcpu
, rflags
);
6242 kvm_x86_ops
->set_guest_debug(vcpu
, dbg
);
6252 * Translate a guest virtual address to a guest physical address.
6254 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu
*vcpu
,
6255 struct kvm_translation
*tr
)
6257 unsigned long vaddr
= tr
->linear_address
;
6261 idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
6262 gpa
= kvm_mmu_gva_to_gpa_system(vcpu
, vaddr
, NULL
);
6263 srcu_read_unlock(&vcpu
->kvm
->srcu
, idx
);
6264 tr
->physical_address
= gpa
;
6265 tr
->valid
= gpa
!= UNMAPPED_GVA
;
6272 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu
*vcpu
, struct kvm_fpu
*fpu
)
6274 struct i387_fxsave_struct
*fxsave
=
6275 &vcpu
->arch
.guest_fpu
.state
->fxsave
;
6277 memcpy(fpu
->fpr
, fxsave
->st_space
, 128);
6278 fpu
->fcw
= fxsave
->cwd
;
6279 fpu
->fsw
= fxsave
->swd
;
6280 fpu
->ftwx
= fxsave
->twd
;
6281 fpu
->last_opcode
= fxsave
->fop
;
6282 fpu
->last_ip
= fxsave
->rip
;
6283 fpu
->last_dp
= fxsave
->rdp
;
6284 memcpy(fpu
->xmm
, fxsave
->xmm_space
, sizeof fxsave
->xmm_space
);
6289 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu
*vcpu
, struct kvm_fpu
*fpu
)
6291 struct i387_fxsave_struct
*fxsave
=
6292 &vcpu
->arch
.guest_fpu
.state
->fxsave
;
6294 memcpy(fxsave
->st_space
, fpu
->fpr
, 128);
6295 fxsave
->cwd
= fpu
->fcw
;
6296 fxsave
->swd
= fpu
->fsw
;
6297 fxsave
->twd
= fpu
->ftwx
;
6298 fxsave
->fop
= fpu
->last_opcode
;
6299 fxsave
->rip
= fpu
->last_ip
;
6300 fxsave
->rdp
= fpu
->last_dp
;
6301 memcpy(fxsave
->xmm_space
, fpu
->xmm
, sizeof fxsave
->xmm_space
);
6306 int fx_init(struct kvm_vcpu
*vcpu
)
6310 err
= fpu_alloc(&vcpu
->arch
.guest_fpu
);
6314 fpu_finit(&vcpu
->arch
.guest_fpu
);
6317 * Ensure guest xcr0 is valid for loading
6319 vcpu
->arch
.xcr0
= XSTATE_FP
;
6321 vcpu
->arch
.cr0
|= X86_CR0_ET
;
6325 EXPORT_SYMBOL_GPL(fx_init
);
6327 static void fx_free(struct kvm_vcpu
*vcpu
)
6329 fpu_free(&vcpu
->arch
.guest_fpu
);
6332 void kvm_load_guest_fpu(struct kvm_vcpu
*vcpu
)
6334 if (vcpu
->guest_fpu_loaded
)
6338 * Restore all possible states in the guest,
6339 * and assume host would use all available bits.
6340 * Guest xcr0 would be loaded later.
6342 kvm_put_guest_xcr0(vcpu
);
6343 vcpu
->guest_fpu_loaded
= 1;
6344 unlazy_fpu(current
);
6345 fpu_restore_checking(&vcpu
->arch
.guest_fpu
);
6349 void kvm_put_guest_fpu(struct kvm_vcpu
*vcpu
)
6351 kvm_put_guest_xcr0(vcpu
);
6353 if (!vcpu
->guest_fpu_loaded
)
6356 vcpu
->guest_fpu_loaded
= 0;
6357 fpu_save_init(&vcpu
->arch
.guest_fpu
);
6358 ++vcpu
->stat
.fpu_reload
;
6359 kvm_make_request(KVM_REQ_DEACTIVATE_FPU
, vcpu
);
6363 void kvm_arch_vcpu_free(struct kvm_vcpu
*vcpu
)
6365 kvmclock_reset(vcpu
);
6367 free_cpumask_var(vcpu
->arch
.wbinvd_dirty_mask
);
6369 kvm_x86_ops
->vcpu_free(vcpu
);
6372 struct kvm_vcpu
*kvm_arch_vcpu_create(struct kvm
*kvm
,
6375 if (check_tsc_unstable() && atomic_read(&kvm
->online_vcpus
) != 0)
6376 printk_once(KERN_WARNING
6377 "kvm: SMP vm created on host with unstable TSC; "
6378 "guest TSC will not be reliable\n");
6379 return kvm_x86_ops
->vcpu_create(kvm
, id
);
6382 int kvm_arch_vcpu_setup(struct kvm_vcpu
*vcpu
)
6386 vcpu
->arch
.mtrr_state
.have_fixed
= 1;
6388 r
= kvm_arch_vcpu_reset(vcpu
);
6390 r
= kvm_mmu_setup(vcpu
);
6396 void kvm_arch_vcpu_destroy(struct kvm_vcpu
*vcpu
)
6398 vcpu
->arch
.apf
.msr_val
= 0;
6401 kvm_mmu_unload(vcpu
);
6405 kvm_x86_ops
->vcpu_free(vcpu
);
6408 int kvm_arch_vcpu_reset(struct kvm_vcpu
*vcpu
)
6410 atomic_set(&vcpu
->arch
.nmi_queued
, 0);
6411 vcpu
->arch
.nmi_pending
= 0;
6412 vcpu
->arch
.nmi_injected
= false;
6414 vcpu
->arch
.switch_db_regs
= 0;
6415 memset(vcpu
->arch
.db
, 0, sizeof(vcpu
->arch
.db
));
6416 vcpu
->arch
.dr6
= DR6_FIXED_1
;
6417 vcpu
->arch
.dr7
= DR7_FIXED_1
;
6419 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
6420 vcpu
->arch
.apf
.msr_val
= 0;
6421 vcpu
->arch
.st
.msr_val
= 0;
6423 kvmclock_reset(vcpu
);
6425 kvm_clear_async_pf_completion_queue(vcpu
);
6426 kvm_async_pf_hash_reset(vcpu
);
6427 vcpu
->arch
.apf
.halted
= false;
6429 return kvm_x86_ops
->vcpu_reset(vcpu
);
6432 int kvm_arch_hardware_enable(void *garbage
)
6435 struct kvm_vcpu
*vcpu
;
6438 kvm_shared_msr_cpu_online();
6439 list_for_each_entry(kvm
, &vm_list
, vm_list
)
6440 kvm_for_each_vcpu(i
, vcpu
, kvm
)
6441 if (vcpu
->cpu
== smp_processor_id())
6442 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, vcpu
);
6443 return kvm_x86_ops
->hardware_enable(garbage
);
6446 void kvm_arch_hardware_disable(void *garbage
)
6448 kvm_x86_ops
->hardware_disable(garbage
);
6449 drop_user_return_notifiers(garbage
);
6452 int kvm_arch_hardware_setup(void)
6454 return kvm_x86_ops
->hardware_setup();
6457 void kvm_arch_hardware_unsetup(void)
6459 kvm_x86_ops
->hardware_unsetup();
6462 void kvm_arch_check_processor_compat(void *rtn
)
6464 kvm_x86_ops
->check_processor_compatibility(rtn
);
6467 int kvm_arch_vcpu_init(struct kvm_vcpu
*vcpu
)
6473 BUG_ON(vcpu
->kvm
== NULL
);
6476 vcpu
->arch
.emulate_ctxt
.ops
= &emulate_ops
;
6477 vcpu
->arch
.walk_mmu
= &vcpu
->arch
.mmu
;
6478 vcpu
->arch
.mmu
.root_hpa
= INVALID_PAGE
;
6479 vcpu
->arch
.mmu
.translate_gpa
= translate_gpa
;
6480 vcpu
->arch
.nested_mmu
.translate_gpa
= translate_nested_gpa
;
6481 if (!irqchip_in_kernel(kvm
) || kvm_vcpu_is_bsp(vcpu
))
6482 vcpu
->arch
.mp_state
= KVM_MP_STATE_RUNNABLE
;
6484 vcpu
->arch
.mp_state
= KVM_MP_STATE_UNINITIALIZED
;
6486 page
= alloc_page(GFP_KERNEL
| __GFP_ZERO
);
6491 vcpu
->arch
.pio_data
= page_address(page
);
6493 kvm_init_tsc_catchup(vcpu
, max_tsc_khz
);
6495 r
= kvm_mmu_create(vcpu
);
6497 goto fail_free_pio_data
;
6499 if (irqchip_in_kernel(kvm
)) {
6500 r
= kvm_create_lapic(vcpu
);
6502 goto fail_mmu_destroy
;
6505 vcpu
->arch
.mce_banks
= kzalloc(KVM_MAX_MCE_BANKS
* sizeof(u64
) * 4,
6507 if (!vcpu
->arch
.mce_banks
) {
6509 goto fail_free_lapic
;
6511 vcpu
->arch
.mcg_cap
= KVM_MAX_MCE_BANKS
;
6513 if (!zalloc_cpumask_var(&vcpu
->arch
.wbinvd_dirty_mask
, GFP_KERNEL
))
6514 goto fail_free_mce_banks
;
6516 kvm_async_pf_hash_reset(vcpu
);
6519 fail_free_mce_banks
:
6520 kfree(vcpu
->arch
.mce_banks
);
6522 kvm_free_lapic(vcpu
);
6524 kvm_mmu_destroy(vcpu
);
6526 free_page((unsigned long)vcpu
->arch
.pio_data
);
6531 void kvm_arch_vcpu_uninit(struct kvm_vcpu
*vcpu
)
6535 kfree(vcpu
->arch
.mce_banks
);
6536 kvm_free_lapic(vcpu
);
6537 idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
6538 kvm_mmu_destroy(vcpu
);
6539 srcu_read_unlock(&vcpu
->kvm
->srcu
, idx
);
6540 free_page((unsigned long)vcpu
->arch
.pio_data
);
6543 int kvm_arch_init_vm(struct kvm
*kvm
)
6545 INIT_LIST_HEAD(&kvm
->arch
.active_mmu_pages
);
6546 INIT_LIST_HEAD(&kvm
->arch
.assigned_dev_head
);
6548 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
6549 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID
, &kvm
->arch
.irq_sources_bitmap
);
6551 raw_spin_lock_init(&kvm
->arch
.tsc_write_lock
);
6556 static void kvm_unload_vcpu_mmu(struct kvm_vcpu
*vcpu
)
6559 kvm_mmu_unload(vcpu
);
6563 static void kvm_free_vcpus(struct kvm
*kvm
)
6566 struct kvm_vcpu
*vcpu
;
6569 * Unpin any mmu pages first.
6571 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
6572 kvm_clear_async_pf_completion_queue(vcpu
);
6573 kvm_unload_vcpu_mmu(vcpu
);
6575 kvm_for_each_vcpu(i
, vcpu
, kvm
)
6576 kvm_arch_vcpu_free(vcpu
);
6578 mutex_lock(&kvm
->lock
);
6579 for (i
= 0; i
< atomic_read(&kvm
->online_vcpus
); i
++)
6580 kvm
->vcpus
[i
] = NULL
;
6582 atomic_set(&kvm
->online_vcpus
, 0);
6583 mutex_unlock(&kvm
->lock
);
6586 void kvm_arch_sync_events(struct kvm
*kvm
)
6588 kvm_free_all_assigned_devices(kvm
);
6592 void kvm_arch_destroy_vm(struct kvm
*kvm
)
6594 kvm_iommu_unmap_guest(kvm
);
6595 kfree(kvm
->arch
.vpic
);
6596 kfree(kvm
->arch
.vioapic
);
6597 kvm_free_vcpus(kvm
);
6598 if (kvm
->arch
.apic_access_page
)
6599 put_page(kvm
->arch
.apic_access_page
);
6600 if (kvm
->arch
.ept_identity_pagetable
)
6601 put_page(kvm
->arch
.ept_identity_pagetable
);
6604 int kvm_arch_prepare_memory_region(struct kvm
*kvm
,
6605 struct kvm_memory_slot
*memslot
,
6606 struct kvm_memory_slot old
,
6607 struct kvm_userspace_memory_region
*mem
,
6610 int npages
= memslot
->npages
;
6611 int map_flags
= MAP_PRIVATE
| MAP_ANONYMOUS
;
6613 /* Prevent internal slot pages from being moved by fork()/COW. */
6614 if (memslot
->id
>= KVM_MEMORY_SLOTS
)
6615 map_flags
= MAP_SHARED
| MAP_ANONYMOUS
;
6617 /*To keep backward compatibility with older userspace,
6618 *x86 needs to hanlde !user_alloc case.
6621 if (npages
&& !old
.rmap
) {
6622 unsigned long userspace_addr
;
6624 down_write(¤t
->mm
->mmap_sem
);
6625 userspace_addr
= do_mmap(NULL
, 0,
6627 PROT_READ
| PROT_WRITE
,
6630 up_write(¤t
->mm
->mmap_sem
);
6632 if (IS_ERR((void *)userspace_addr
))
6633 return PTR_ERR((void *)userspace_addr
);
6635 memslot
->userspace_addr
= userspace_addr
;
6643 void kvm_arch_commit_memory_region(struct kvm
*kvm
,
6644 struct kvm_userspace_memory_region
*mem
,
6645 struct kvm_memory_slot old
,
6649 int nr_mmu_pages
= 0, npages
= mem
->memory_size
>> PAGE_SHIFT
;
6651 if (!user_alloc
&& !old
.user_alloc
&& old
.rmap
&& !npages
) {
6654 down_write(¤t
->mm
->mmap_sem
);
6655 ret
= do_munmap(current
->mm
, old
.userspace_addr
,
6656 old
.npages
* PAGE_SIZE
);
6657 up_write(¤t
->mm
->mmap_sem
);
6660 "kvm_vm_ioctl_set_memory_region: "
6661 "failed to munmap memory\n");
6664 if (!kvm
->arch
.n_requested_mmu_pages
)
6665 nr_mmu_pages
= kvm_mmu_calculate_mmu_pages(kvm
);
6667 spin_lock(&kvm
->mmu_lock
);
6669 kvm_mmu_change_mmu_pages(kvm
, nr_mmu_pages
);
6670 kvm_mmu_slot_remove_write_access(kvm
, mem
->slot
);
6671 spin_unlock(&kvm
->mmu_lock
);
6674 void kvm_arch_flush_shadow(struct kvm
*kvm
)
6676 kvm_mmu_zap_all(kvm
);
6677 kvm_reload_remote_mmus(kvm
);
6680 int kvm_arch_vcpu_runnable(struct kvm_vcpu
*vcpu
)
6682 return (vcpu
->arch
.mp_state
== KVM_MP_STATE_RUNNABLE
&&
6683 !vcpu
->arch
.apf
.halted
)
6684 || !list_empty_careful(&vcpu
->async_pf
.done
)
6685 || vcpu
->arch
.mp_state
== KVM_MP_STATE_SIPI_RECEIVED
6686 || atomic_read(&vcpu
->arch
.nmi_queued
) ||
6687 (kvm_arch_interrupt_allowed(vcpu
) &&
6688 kvm_cpu_has_interrupt(vcpu
));
6691 void kvm_vcpu_kick(struct kvm_vcpu
*vcpu
)
6694 int cpu
= vcpu
->cpu
;
6696 if (waitqueue_active(&vcpu
->wq
)) {
6697 wake_up_interruptible(&vcpu
->wq
);
6698 ++vcpu
->stat
.halt_wakeup
;
6702 if (cpu
!= me
&& (unsigned)cpu
< nr_cpu_ids
&& cpu_online(cpu
))
6703 if (kvm_vcpu_exiting_guest_mode(vcpu
) == IN_GUEST_MODE
)
6704 smp_send_reschedule(cpu
);
6708 int kvm_arch_interrupt_allowed(struct kvm_vcpu
*vcpu
)
6710 return kvm_x86_ops
->interrupt_allowed(vcpu
);
6713 bool kvm_is_linear_rip(struct kvm_vcpu
*vcpu
, unsigned long linear_rip
)
6715 unsigned long current_rip
= kvm_rip_read(vcpu
) +
6716 get_segment_base(vcpu
, VCPU_SREG_CS
);
6718 return current_rip
== linear_rip
;
6720 EXPORT_SYMBOL_GPL(kvm_is_linear_rip
);
6722 unsigned long kvm_get_rflags(struct kvm_vcpu
*vcpu
)
6724 unsigned long rflags
;
6726 rflags
= kvm_x86_ops
->get_rflags(vcpu
);
6727 if (vcpu
->guest_debug
& KVM_GUESTDBG_SINGLESTEP
)
6728 rflags
&= ~X86_EFLAGS_TF
;
6731 EXPORT_SYMBOL_GPL(kvm_get_rflags
);
6733 void kvm_set_rflags(struct kvm_vcpu
*vcpu
, unsigned long rflags
)
6735 if (vcpu
->guest_debug
& KVM_GUESTDBG_SINGLESTEP
&&
6736 kvm_is_linear_rip(vcpu
, vcpu
->arch
.singlestep_rip
))
6737 rflags
|= X86_EFLAGS_TF
;
6738 kvm_x86_ops
->set_rflags(vcpu
, rflags
);
6739 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
6741 EXPORT_SYMBOL_GPL(kvm_set_rflags
);
6743 void kvm_arch_async_page_ready(struct kvm_vcpu
*vcpu
, struct kvm_async_pf
*work
)
6747 if ((vcpu
->arch
.mmu
.direct_map
!= work
->arch
.direct_map
) ||
6748 is_error_page(work
->page
))
6751 r
= kvm_mmu_reload(vcpu
);
6755 if (!vcpu
->arch
.mmu
.direct_map
&&
6756 work
->arch
.cr3
!= vcpu
->arch
.mmu
.get_cr3(vcpu
))
6759 vcpu
->arch
.mmu
.page_fault(vcpu
, work
->gva
, 0, true);
6762 static inline u32
kvm_async_pf_hash_fn(gfn_t gfn
)
6764 return hash_32(gfn
& 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU
));
6767 static inline u32
kvm_async_pf_next_probe(u32 key
)
6769 return (key
+ 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU
) - 1);
6772 static void kvm_add_async_pf_gfn(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
6774 u32 key
= kvm_async_pf_hash_fn(gfn
);
6776 while (vcpu
->arch
.apf
.gfns
[key
] != ~0)
6777 key
= kvm_async_pf_next_probe(key
);
6779 vcpu
->arch
.apf
.gfns
[key
] = gfn
;
6782 static u32
kvm_async_pf_gfn_slot(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
6785 u32 key
= kvm_async_pf_hash_fn(gfn
);
6787 for (i
= 0; i
< roundup_pow_of_two(ASYNC_PF_PER_VCPU
) &&
6788 (vcpu
->arch
.apf
.gfns
[key
] != gfn
&&
6789 vcpu
->arch
.apf
.gfns
[key
] != ~0); i
++)
6790 key
= kvm_async_pf_next_probe(key
);
6795 bool kvm_find_async_pf_gfn(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
6797 return vcpu
->arch
.apf
.gfns
[kvm_async_pf_gfn_slot(vcpu
, gfn
)] == gfn
;
6800 static void kvm_del_async_pf_gfn(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
6804 i
= j
= kvm_async_pf_gfn_slot(vcpu
, gfn
);
6806 vcpu
->arch
.apf
.gfns
[i
] = ~0;
6808 j
= kvm_async_pf_next_probe(j
);
6809 if (vcpu
->arch
.apf
.gfns
[j
] == ~0)
6811 k
= kvm_async_pf_hash_fn(vcpu
->arch
.apf
.gfns
[j
]);
6813 * k lies cyclically in ]i,j]
6815 * |....j i.k.| or |.k..j i...|
6817 } while ((i
<= j
) ? (i
< k
&& k
<= j
) : (i
< k
|| k
<= j
));
6818 vcpu
->arch
.apf
.gfns
[i
] = vcpu
->arch
.apf
.gfns
[j
];
6823 static int apf_put_user(struct kvm_vcpu
*vcpu
, u32 val
)
6826 return kvm_write_guest_cached(vcpu
->kvm
, &vcpu
->arch
.apf
.data
, &val
,
6830 void kvm_arch_async_page_not_present(struct kvm_vcpu
*vcpu
,
6831 struct kvm_async_pf
*work
)
6833 struct x86_exception fault
;
6835 trace_kvm_async_pf_not_present(work
->arch
.token
, work
->gva
);
6836 kvm_add_async_pf_gfn(vcpu
, work
->arch
.gfn
);
6838 if (!(vcpu
->arch
.apf
.msr_val
& KVM_ASYNC_PF_ENABLED
) ||
6839 (vcpu
->arch
.apf
.send_user_only
&&
6840 kvm_x86_ops
->get_cpl(vcpu
) == 0))
6841 kvm_make_request(KVM_REQ_APF_HALT
, vcpu
);
6842 else if (!apf_put_user(vcpu
, KVM_PV_REASON_PAGE_NOT_PRESENT
)) {
6843 fault
.vector
= PF_VECTOR
;
6844 fault
.error_code_valid
= true;
6845 fault
.error_code
= 0;
6846 fault
.nested_page_fault
= false;
6847 fault
.address
= work
->arch
.token
;
6848 kvm_inject_page_fault(vcpu
, &fault
);
6852 void kvm_arch_async_page_present(struct kvm_vcpu
*vcpu
,
6853 struct kvm_async_pf
*work
)
6855 struct x86_exception fault
;
6857 trace_kvm_async_pf_ready(work
->arch
.token
, work
->gva
);
6858 if (is_error_page(work
->page
))
6859 work
->arch
.token
= ~0; /* broadcast wakeup */
6861 kvm_del_async_pf_gfn(vcpu
, work
->arch
.gfn
);
6863 if ((vcpu
->arch
.apf
.msr_val
& KVM_ASYNC_PF_ENABLED
) &&
6864 !apf_put_user(vcpu
, KVM_PV_REASON_PAGE_READY
)) {
6865 fault
.vector
= PF_VECTOR
;
6866 fault
.error_code_valid
= true;
6867 fault
.error_code
= 0;
6868 fault
.nested_page_fault
= false;
6869 fault
.address
= work
->arch
.token
;
6870 kvm_inject_page_fault(vcpu
, &fault
);
6872 vcpu
->arch
.apf
.halted
= false;
6875 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu
*vcpu
)
6877 if (!(vcpu
->arch
.apf
.msr_val
& KVM_ASYNC_PF_ENABLED
))
6880 return !kvm_event_needs_reinjection(vcpu
) &&
6881 kvm_x86_ops
->interrupt_allowed(vcpu
);
6884 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit
);
6885 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq
);
6886 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault
);
6887 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr
);
6888 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr
);
6889 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun
);
6890 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit
);
6891 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject
);
6892 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit
);
6893 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga
);
6894 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit
);
6895 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts
);