MIPS: Yosemite, Emma: Fix off-by-two in arcs_cmdline buffer size check
[linux-2.6/linux-mips.git] / drivers / gpu / drm / nouveau / nv40_pm.c
blobbbc0b9c7e1f7f53ba099c57a8c408024feb32fca
1 /*
2 * Copyright 2011 Red Hat Inc.
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
22 * Authors: Ben Skeggs
25 #include "drmP.h"
26 #include "nouveau_drv.h"
27 #include "nouveau_bios.h"
28 #include "nouveau_pm.h"
29 #include "nouveau_hw.h"
31 #define min2(a,b) ((a) < (b) ? (a) : (b))
33 static u32
34 read_pll_1(struct drm_device *dev, u32 reg)
36 u32 ctrl = nv_rd32(dev, reg + 0x00);
37 int P = (ctrl & 0x00070000) >> 16;
38 int N = (ctrl & 0x0000ff00) >> 8;
39 int M = (ctrl & 0x000000ff) >> 0;
40 u32 ref = 27000, clk = 0;
42 if (ctrl & 0x80000000)
43 clk = ref * N / M;
45 return clk >> P;
48 static u32
49 read_pll_2(struct drm_device *dev, u32 reg)
51 u32 ctrl = nv_rd32(dev, reg + 0x00);
52 u32 coef = nv_rd32(dev, reg + 0x04);
53 int N2 = (coef & 0xff000000) >> 24;
54 int M2 = (coef & 0x00ff0000) >> 16;
55 int N1 = (coef & 0x0000ff00) >> 8;
56 int M1 = (coef & 0x000000ff) >> 0;
57 int P = (ctrl & 0x00070000) >> 16;
58 u32 ref = 27000, clk = 0;
60 if (ctrl & 0x80000000)
61 clk = ref * N1 / M1;
63 if (!(ctrl & 0x00000100)) {
64 if (ctrl & 0x40000000)
65 clk = clk * N2 / M2;
68 return clk >> P;
71 static u32
72 read_clk(struct drm_device *dev, u32 src)
74 switch (src) {
75 case 3:
76 return read_pll_2(dev, 0x004000);
77 case 2:
78 return read_pll_1(dev, 0x004008);
79 default:
80 break;
83 return 0;
86 int
87 nv40_pm_clocks_get(struct drm_device *dev, struct nouveau_pm_level *perflvl)
89 u32 ctrl = nv_rd32(dev, 0x00c040);
91 perflvl->core = read_clk(dev, (ctrl & 0x00000003) >> 0);
92 perflvl->shader = read_clk(dev, (ctrl & 0x00000030) >> 4);
93 perflvl->memory = read_pll_2(dev, 0x4020);
94 return 0;
97 struct nv40_pm_state {
98 u32 ctrl;
99 u32 npll_ctrl;
100 u32 npll_coef;
101 u32 spll;
102 u32 mpll_ctrl;
103 u32 mpll_coef;
106 static int
107 nv40_calc_pll(struct drm_device *dev, u32 reg, struct pll_lims *pll,
108 u32 clk, int *N1, int *M1, int *N2, int *M2, int *log2P)
110 struct nouveau_pll_vals coef;
111 int ret;
113 ret = get_pll_limits(dev, reg, pll);
114 if (ret)
115 return ret;
117 if (clk < pll->vco1.maxfreq)
118 pll->vco2.maxfreq = 0;
120 ret = nouveau_calc_pll_mnp(dev, pll, clk, &coef);
121 if (ret == 0)
122 return -ERANGE;
124 *N1 = coef.N1;
125 *M1 = coef.M1;
126 if (N2 && M2) {
127 if (pll->vco2.maxfreq) {
128 *N2 = coef.N2;
129 *M2 = coef.M2;
130 } else {
131 *N2 = 1;
132 *M2 = 1;
135 *log2P = coef.log2P;
136 return 0;
139 void *
140 nv40_pm_clocks_pre(struct drm_device *dev, struct nouveau_pm_level *perflvl)
142 struct nv40_pm_state *info;
143 struct pll_lims pll;
144 int N1, N2, M1, M2, log2P;
145 int ret;
147 info = kmalloc(sizeof(*info), GFP_KERNEL);
148 if (!info)
149 return ERR_PTR(-ENOMEM);
151 /* core/geometric clock */
152 ret = nv40_calc_pll(dev, 0x004000, &pll, perflvl->core,
153 &N1, &M1, &N2, &M2, &log2P);
154 if (ret < 0)
155 goto out;
157 if (N2 == M2) {
158 info->npll_ctrl = 0x80000100 | (log2P << 16);
159 info->npll_coef = (N1 << 8) | M1;
160 } else {
161 info->npll_ctrl = 0xc0000000 | (log2P << 16);
162 info->npll_coef = (N2 << 24) | (M2 << 16) | (N1 << 8) | M1;
165 /* use the second PLL for shader/rop clock, if it differs from core */
166 if (perflvl->shader && perflvl->shader != perflvl->core) {
167 ret = nv40_calc_pll(dev, 0x004008, &pll, perflvl->shader,
168 &N1, &M1, NULL, NULL, &log2P);
169 if (ret < 0)
170 goto out;
172 info->spll = 0xc0000000 | (log2P << 16) | (N1 << 8) | M1;
173 info->ctrl = 0x00000223;
174 } else {
175 info->spll = 0x00000000;
176 info->ctrl = 0x00000333;
179 /* memory clock */
180 ret = nv40_calc_pll(dev, 0x004020, &pll, perflvl->memory,
181 &N1, &M1, &N2, &M2, &log2P);
182 if (ret < 0)
183 goto out;
185 info->mpll_ctrl = 0x80000000 | (log2P << 16);
186 info->mpll_ctrl |= min2(pll.log2p_bias + log2P, pll.max_log2p) << 20;
187 if (N2 == M2) {
188 info->mpll_ctrl |= 0x00000100;
189 info->mpll_coef = (N1 << 8) | M1;
190 } else {
191 info->mpll_ctrl |= 0x40000000;
192 info->mpll_coef = (N2 << 24) | (M2 << 16) | (N1 << 8) | M1;
195 out:
196 if (ret < 0) {
197 kfree(info);
198 info = ERR_PTR(ret);
200 return info;
203 static bool
204 nv40_pm_gr_idle(void *data)
206 struct drm_device *dev = data;
208 if ((nv_rd32(dev, 0x400760) & 0x000000f0) >> 4 !=
209 (nv_rd32(dev, 0x400760) & 0x0000000f))
210 return false;
212 if (nv_rd32(dev, 0x400700))
213 return false;
215 return true;
218 void
219 nv40_pm_clocks_set(struct drm_device *dev, void *pre_state)
221 struct drm_nouveau_private *dev_priv = dev->dev_private;
222 struct nv40_pm_state *info = pre_state;
223 unsigned long flags;
224 struct bit_entry M;
225 u32 crtc_mask = 0;
226 u8 sr1[2];
227 int i;
229 /* determine which CRTCs are active, fetch VGA_SR1 for each */
230 for (i = 0; i < 2; i++) {
231 u32 vbl = nv_rd32(dev, 0x600808 + (i * 0x2000));
232 u32 cnt = 0;
233 do {
234 if (vbl != nv_rd32(dev, 0x600808 + (i * 0x2000))) {
235 nv_wr08(dev, 0x0c03c4 + (i * 0x2000), 0x01);
236 sr1[i] = nv_rd08(dev, 0x0c03c5 + (i * 0x2000));
237 if (!(sr1[i] & 0x20))
238 crtc_mask |= (1 << i);
239 break;
241 udelay(1);
242 } while (cnt++ < 32);
245 /* halt and idle engines */
246 spin_lock_irqsave(&dev_priv->context_switch_lock, flags);
247 nv_mask(dev, 0x002500, 0x00000001, 0x00000000);
248 if (!nv_wait(dev, 0x002500, 0x00000010, 0x00000000))
249 goto resume;
250 nv_mask(dev, 0x003220, 0x00000001, 0x00000000);
251 if (!nv_wait(dev, 0x003220, 0x00000010, 0x00000000))
252 goto resume;
253 nv_mask(dev, 0x003200, 0x00000001, 0x00000000);
254 nv04_fifo_cache_pull(dev, false);
256 if (!nv_wait_cb(dev, nv40_pm_gr_idle, dev))
257 goto resume;
259 /* set engine clocks */
260 nv_mask(dev, 0x00c040, 0x00000333, 0x00000000);
261 nv_wr32(dev, 0x004004, info->npll_coef);
262 nv_mask(dev, 0x004000, 0xc0070100, info->npll_ctrl);
263 nv_mask(dev, 0x004008, 0xc007ffff, info->spll);
264 mdelay(5);
265 nv_mask(dev, 0x00c040, 0x00000333, info->ctrl);
267 /* wait for vblank start on active crtcs, disable memory access */
268 for (i = 0; i < 2; i++) {
269 if (!(crtc_mask & (1 << i)))
270 continue;
271 nv_wait(dev, 0x600808 + (i * 0x2000), 0x00010000, 0x00000000);
272 nv_wait(dev, 0x600808 + (i * 0x2000), 0x00010000, 0x00010000);
273 nv_wr08(dev, 0x0c03c4 + (i * 0x2000), 0x01);
274 nv_wr08(dev, 0x0c03c5 + (i * 0x2000), sr1[i] | 0x20);
277 /* prepare ram for reclocking */
278 nv_wr32(dev, 0x1002d4, 0x00000001); /* precharge */
279 nv_wr32(dev, 0x1002d0, 0x00000001); /* refresh */
280 nv_wr32(dev, 0x1002d0, 0x00000001); /* refresh */
281 nv_mask(dev, 0x100210, 0x80000000, 0x00000000); /* no auto refresh */
282 nv_wr32(dev, 0x1002dc, 0x00000001); /* enable self-refresh */
284 /* change the PLL of each memory partition */
285 nv_mask(dev, 0x00c040, 0x0000c000, 0x00000000);
286 switch (dev_priv->chipset) {
287 case 0x40:
288 case 0x45:
289 case 0x41:
290 case 0x42:
291 case 0x47:
292 nv_mask(dev, 0x004044, 0xc0771100, info->mpll_ctrl);
293 nv_mask(dev, 0x00402c, 0xc0771100, info->mpll_ctrl);
294 nv_wr32(dev, 0x004048, info->mpll_coef);
295 nv_wr32(dev, 0x004030, info->mpll_coef);
296 case 0x43:
297 case 0x49:
298 case 0x4b:
299 nv_mask(dev, 0x004038, 0xc0771100, info->mpll_ctrl);
300 nv_wr32(dev, 0x00403c, info->mpll_coef);
301 default:
302 nv_mask(dev, 0x004020, 0xc0771100, info->mpll_ctrl);
303 nv_wr32(dev, 0x004024, info->mpll_coef);
304 break;
306 udelay(100);
307 nv_mask(dev, 0x00c040, 0x0000c000, 0x0000c000);
309 /* re-enable normal operation of memory controller */
310 nv_wr32(dev, 0x1002dc, 0x00000000);
311 nv_mask(dev, 0x100210, 0x80000000, 0x80000000);
312 udelay(100);
314 /* execute memory reset script from vbios */
315 if (!bit_table(dev, 'M', &M))
316 nouveau_bios_init_exec(dev, ROM16(M.data[0]));
318 /* make sure we're in vblank (hopefully the same one as before), and
319 * then re-enable crtc memory access
321 for (i = 0; i < 2; i++) {
322 if (!(crtc_mask & (1 << i)))
323 continue;
324 nv_wait(dev, 0x600808 + (i * 0x2000), 0x00010000, 0x00010000);
325 nv_wr08(dev, 0x0c03c4 + (i * 0x2000), 0x01);
326 nv_wr08(dev, 0x0c03c5 + (i * 0x2000), sr1[i]);
329 /* resume engines */
330 resume:
331 nv_wr32(dev, 0x003250, 0x00000001);
332 nv_mask(dev, 0x003220, 0x00000001, 0x00000001);
333 nv_wr32(dev, 0x003200, 0x00000001);
334 nv_wr32(dev, 0x002500, 0x00000001);
335 spin_unlock_irqrestore(&dev_priv->context_switch_lock, flags);
337 kfree(info);