MIPS: Yosemite, Emma: Fix off-by-two in arcs_cmdline buffer size check
[linux-2.6/linux-mips.git] / drivers / md / raid10.c
blobc025a8276dc18b5844e7a6870b42236ac45bd86c
1 /*
2 * raid10.c : Multiple Devices driver for Linux
4 * Copyright (C) 2000-2004 Neil Brown
6 * RAID-10 support for md.
8 * Base on code in raid1.c. See raid1.c for further copyright information.
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 #include <linux/slab.h>
22 #include <linux/delay.h>
23 #include <linux/blkdev.h>
24 #include <linux/seq_file.h>
25 #include <linux/ratelimit.h>
26 #include "md.h"
27 #include "raid10.h"
28 #include "raid0.h"
29 #include "bitmap.h"
32 * RAID10 provides a combination of RAID0 and RAID1 functionality.
33 * The layout of data is defined by
34 * chunk_size
35 * raid_disks
36 * near_copies (stored in low byte of layout)
37 * far_copies (stored in second byte of layout)
38 * far_offset (stored in bit 16 of layout )
40 * The data to be stored is divided into chunks using chunksize.
41 * Each device is divided into far_copies sections.
42 * In each section, chunks are laid out in a style similar to raid0, but
43 * near_copies copies of each chunk is stored (each on a different drive).
44 * The starting device for each section is offset near_copies from the starting
45 * device of the previous section.
46 * Thus they are (near_copies*far_copies) of each chunk, and each is on a different
47 * drive.
48 * near_copies and far_copies must be at least one, and their product is at most
49 * raid_disks.
51 * If far_offset is true, then the far_copies are handled a bit differently.
52 * The copies are still in different stripes, but instead of be very far apart
53 * on disk, there are adjacent stripes.
57 * Number of guaranteed r10bios in case of extreme VM load:
59 #define NR_RAID10_BIOS 256
61 /* When there are this many requests queue to be written by
62 * the raid10 thread, we become 'congested' to provide back-pressure
63 * for writeback.
65 static int max_queued_requests = 1024;
67 static void allow_barrier(struct r10conf *conf);
68 static void lower_barrier(struct r10conf *conf);
70 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
72 struct r10conf *conf = data;
73 int size = offsetof(struct r10bio, devs[conf->copies]);
75 /* allocate a r10bio with room for raid_disks entries in the bios array */
76 return kzalloc(size, gfp_flags);
79 static void r10bio_pool_free(void *r10_bio, void *data)
81 kfree(r10_bio);
84 /* Maximum size of each resync request */
85 #define RESYNC_BLOCK_SIZE (64*1024)
86 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
87 /* amount of memory to reserve for resync requests */
88 #define RESYNC_WINDOW (1024*1024)
89 /* maximum number of concurrent requests, memory permitting */
90 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
93 * When performing a resync, we need to read and compare, so
94 * we need as many pages are there are copies.
95 * When performing a recovery, we need 2 bios, one for read,
96 * one for write (we recover only one drive per r10buf)
99 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
101 struct r10conf *conf = data;
102 struct page *page;
103 struct r10bio *r10_bio;
104 struct bio *bio;
105 int i, j;
106 int nalloc;
108 r10_bio = r10bio_pool_alloc(gfp_flags, conf);
109 if (!r10_bio)
110 return NULL;
112 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery))
113 nalloc = conf->copies; /* resync */
114 else
115 nalloc = 2; /* recovery */
118 * Allocate bios.
120 for (j = nalloc ; j-- ; ) {
121 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
122 if (!bio)
123 goto out_free_bio;
124 r10_bio->devs[j].bio = bio;
127 * Allocate RESYNC_PAGES data pages and attach them
128 * where needed.
130 for (j = 0 ; j < nalloc; j++) {
131 bio = r10_bio->devs[j].bio;
132 for (i = 0; i < RESYNC_PAGES; i++) {
133 if (j == 1 && !test_bit(MD_RECOVERY_SYNC,
134 &conf->mddev->recovery)) {
135 /* we can share bv_page's during recovery */
136 struct bio *rbio = r10_bio->devs[0].bio;
137 page = rbio->bi_io_vec[i].bv_page;
138 get_page(page);
139 } else
140 page = alloc_page(gfp_flags);
141 if (unlikely(!page))
142 goto out_free_pages;
144 bio->bi_io_vec[i].bv_page = page;
148 return r10_bio;
150 out_free_pages:
151 for ( ; i > 0 ; i--)
152 safe_put_page(bio->bi_io_vec[i-1].bv_page);
153 while (j--)
154 for (i = 0; i < RESYNC_PAGES ; i++)
155 safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
156 j = -1;
157 out_free_bio:
158 while ( ++j < nalloc )
159 bio_put(r10_bio->devs[j].bio);
160 r10bio_pool_free(r10_bio, conf);
161 return NULL;
164 static void r10buf_pool_free(void *__r10_bio, void *data)
166 int i;
167 struct r10conf *conf = data;
168 struct r10bio *r10bio = __r10_bio;
169 int j;
171 for (j=0; j < conf->copies; j++) {
172 struct bio *bio = r10bio->devs[j].bio;
173 if (bio) {
174 for (i = 0; i < RESYNC_PAGES; i++) {
175 safe_put_page(bio->bi_io_vec[i].bv_page);
176 bio->bi_io_vec[i].bv_page = NULL;
178 bio_put(bio);
181 r10bio_pool_free(r10bio, conf);
184 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
186 int i;
188 for (i = 0; i < conf->copies; i++) {
189 struct bio **bio = & r10_bio->devs[i].bio;
190 if (!BIO_SPECIAL(*bio))
191 bio_put(*bio);
192 *bio = NULL;
196 static void free_r10bio(struct r10bio *r10_bio)
198 struct r10conf *conf = r10_bio->mddev->private;
200 put_all_bios(conf, r10_bio);
201 mempool_free(r10_bio, conf->r10bio_pool);
204 static void put_buf(struct r10bio *r10_bio)
206 struct r10conf *conf = r10_bio->mddev->private;
208 mempool_free(r10_bio, conf->r10buf_pool);
210 lower_barrier(conf);
213 static void reschedule_retry(struct r10bio *r10_bio)
215 unsigned long flags;
216 struct mddev *mddev = r10_bio->mddev;
217 struct r10conf *conf = mddev->private;
219 spin_lock_irqsave(&conf->device_lock, flags);
220 list_add(&r10_bio->retry_list, &conf->retry_list);
221 conf->nr_queued ++;
222 spin_unlock_irqrestore(&conf->device_lock, flags);
224 /* wake up frozen array... */
225 wake_up(&conf->wait_barrier);
227 md_wakeup_thread(mddev->thread);
231 * raid_end_bio_io() is called when we have finished servicing a mirrored
232 * operation and are ready to return a success/failure code to the buffer
233 * cache layer.
235 static void raid_end_bio_io(struct r10bio *r10_bio)
237 struct bio *bio = r10_bio->master_bio;
238 int done;
239 struct r10conf *conf = r10_bio->mddev->private;
241 if (bio->bi_phys_segments) {
242 unsigned long flags;
243 spin_lock_irqsave(&conf->device_lock, flags);
244 bio->bi_phys_segments--;
245 done = (bio->bi_phys_segments == 0);
246 spin_unlock_irqrestore(&conf->device_lock, flags);
247 } else
248 done = 1;
249 if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
250 clear_bit(BIO_UPTODATE, &bio->bi_flags);
251 if (done) {
252 bio_endio(bio, 0);
254 * Wake up any possible resync thread that waits for the device
255 * to go idle.
257 allow_barrier(conf);
259 free_r10bio(r10_bio);
263 * Update disk head position estimator based on IRQ completion info.
265 static inline void update_head_pos(int slot, struct r10bio *r10_bio)
267 struct r10conf *conf = r10_bio->mddev->private;
269 conf->mirrors[r10_bio->devs[slot].devnum].head_position =
270 r10_bio->devs[slot].addr + (r10_bio->sectors);
274 * Find the disk number which triggered given bio
276 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
277 struct bio *bio, int *slotp)
279 int slot;
281 for (slot = 0; slot < conf->copies; slot++)
282 if (r10_bio->devs[slot].bio == bio)
283 break;
285 BUG_ON(slot == conf->copies);
286 update_head_pos(slot, r10_bio);
288 if (slotp)
289 *slotp = slot;
290 return r10_bio->devs[slot].devnum;
293 static void raid10_end_read_request(struct bio *bio, int error)
295 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
296 struct r10bio *r10_bio = bio->bi_private;
297 int slot, dev;
298 struct r10conf *conf = r10_bio->mddev->private;
301 slot = r10_bio->read_slot;
302 dev = r10_bio->devs[slot].devnum;
304 * this branch is our 'one mirror IO has finished' event handler:
306 update_head_pos(slot, r10_bio);
308 if (uptodate) {
310 * Set R10BIO_Uptodate in our master bio, so that
311 * we will return a good error code to the higher
312 * levels even if IO on some other mirrored buffer fails.
314 * The 'master' represents the composite IO operation to
315 * user-side. So if something waits for IO, then it will
316 * wait for the 'master' bio.
318 set_bit(R10BIO_Uptodate, &r10_bio->state);
319 raid_end_bio_io(r10_bio);
320 rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
321 } else {
323 * oops, read error - keep the refcount on the rdev
325 char b[BDEVNAME_SIZE];
326 printk_ratelimited(KERN_ERR
327 "md/raid10:%s: %s: rescheduling sector %llu\n",
328 mdname(conf->mddev),
329 bdevname(conf->mirrors[dev].rdev->bdev, b),
330 (unsigned long long)r10_bio->sector);
331 set_bit(R10BIO_ReadError, &r10_bio->state);
332 reschedule_retry(r10_bio);
336 static void close_write(struct r10bio *r10_bio)
338 /* clear the bitmap if all writes complete successfully */
339 bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
340 r10_bio->sectors,
341 !test_bit(R10BIO_Degraded, &r10_bio->state),
343 md_write_end(r10_bio->mddev);
346 static void one_write_done(struct r10bio *r10_bio)
348 if (atomic_dec_and_test(&r10_bio->remaining)) {
349 if (test_bit(R10BIO_WriteError, &r10_bio->state))
350 reschedule_retry(r10_bio);
351 else {
352 close_write(r10_bio);
353 if (test_bit(R10BIO_MadeGood, &r10_bio->state))
354 reschedule_retry(r10_bio);
355 else
356 raid_end_bio_io(r10_bio);
361 static void raid10_end_write_request(struct bio *bio, int error)
363 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
364 struct r10bio *r10_bio = bio->bi_private;
365 int dev;
366 int dec_rdev = 1;
367 struct r10conf *conf = r10_bio->mddev->private;
368 int slot;
370 dev = find_bio_disk(conf, r10_bio, bio, &slot);
373 * this branch is our 'one mirror IO has finished' event handler:
375 if (!uptodate) {
376 set_bit(WriteErrorSeen, &conf->mirrors[dev].rdev->flags);
377 set_bit(R10BIO_WriteError, &r10_bio->state);
378 dec_rdev = 0;
379 } else {
381 * Set R10BIO_Uptodate in our master bio, so that
382 * we will return a good error code for to the higher
383 * levels even if IO on some other mirrored buffer fails.
385 * The 'master' represents the composite IO operation to
386 * user-side. So if something waits for IO, then it will
387 * wait for the 'master' bio.
389 sector_t first_bad;
390 int bad_sectors;
392 set_bit(R10BIO_Uptodate, &r10_bio->state);
394 /* Maybe we can clear some bad blocks. */
395 if (is_badblock(conf->mirrors[dev].rdev,
396 r10_bio->devs[slot].addr,
397 r10_bio->sectors,
398 &first_bad, &bad_sectors)) {
399 bio_put(bio);
400 r10_bio->devs[slot].bio = IO_MADE_GOOD;
401 dec_rdev = 0;
402 set_bit(R10BIO_MadeGood, &r10_bio->state);
408 * Let's see if all mirrored write operations have finished
409 * already.
411 one_write_done(r10_bio);
412 if (dec_rdev)
413 rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
418 * RAID10 layout manager
419 * As well as the chunksize and raid_disks count, there are two
420 * parameters: near_copies and far_copies.
421 * near_copies * far_copies must be <= raid_disks.
422 * Normally one of these will be 1.
423 * If both are 1, we get raid0.
424 * If near_copies == raid_disks, we get raid1.
426 * Chunks are laid out in raid0 style with near_copies copies of the
427 * first chunk, followed by near_copies copies of the next chunk and
428 * so on.
429 * If far_copies > 1, then after 1/far_copies of the array has been assigned
430 * as described above, we start again with a device offset of near_copies.
431 * So we effectively have another copy of the whole array further down all
432 * the drives, but with blocks on different drives.
433 * With this layout, and block is never stored twice on the one device.
435 * raid10_find_phys finds the sector offset of a given virtual sector
436 * on each device that it is on.
438 * raid10_find_virt does the reverse mapping, from a device and a
439 * sector offset to a virtual address
442 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
444 int n,f;
445 sector_t sector;
446 sector_t chunk;
447 sector_t stripe;
448 int dev;
450 int slot = 0;
452 /* now calculate first sector/dev */
453 chunk = r10bio->sector >> conf->chunk_shift;
454 sector = r10bio->sector & conf->chunk_mask;
456 chunk *= conf->near_copies;
457 stripe = chunk;
458 dev = sector_div(stripe, conf->raid_disks);
459 if (conf->far_offset)
460 stripe *= conf->far_copies;
462 sector += stripe << conf->chunk_shift;
464 /* and calculate all the others */
465 for (n=0; n < conf->near_copies; n++) {
466 int d = dev;
467 sector_t s = sector;
468 r10bio->devs[slot].addr = sector;
469 r10bio->devs[slot].devnum = d;
470 slot++;
472 for (f = 1; f < conf->far_copies; f++) {
473 d += conf->near_copies;
474 if (d >= conf->raid_disks)
475 d -= conf->raid_disks;
476 s += conf->stride;
477 r10bio->devs[slot].devnum = d;
478 r10bio->devs[slot].addr = s;
479 slot++;
481 dev++;
482 if (dev >= conf->raid_disks) {
483 dev = 0;
484 sector += (conf->chunk_mask + 1);
487 BUG_ON(slot != conf->copies);
490 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
492 sector_t offset, chunk, vchunk;
494 offset = sector & conf->chunk_mask;
495 if (conf->far_offset) {
496 int fc;
497 chunk = sector >> conf->chunk_shift;
498 fc = sector_div(chunk, conf->far_copies);
499 dev -= fc * conf->near_copies;
500 if (dev < 0)
501 dev += conf->raid_disks;
502 } else {
503 while (sector >= conf->stride) {
504 sector -= conf->stride;
505 if (dev < conf->near_copies)
506 dev += conf->raid_disks - conf->near_copies;
507 else
508 dev -= conf->near_copies;
510 chunk = sector >> conf->chunk_shift;
512 vchunk = chunk * conf->raid_disks + dev;
513 sector_div(vchunk, conf->near_copies);
514 return (vchunk << conf->chunk_shift) + offset;
518 * raid10_mergeable_bvec -- tell bio layer if a two requests can be merged
519 * @q: request queue
520 * @bvm: properties of new bio
521 * @biovec: the request that could be merged to it.
523 * Return amount of bytes we can accept at this offset
524 * If near_copies == raid_disk, there are no striping issues,
525 * but in that case, the function isn't called at all.
527 static int raid10_mergeable_bvec(struct request_queue *q,
528 struct bvec_merge_data *bvm,
529 struct bio_vec *biovec)
531 struct mddev *mddev = q->queuedata;
532 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
533 int max;
534 unsigned int chunk_sectors = mddev->chunk_sectors;
535 unsigned int bio_sectors = bvm->bi_size >> 9;
537 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
538 if (max < 0) max = 0; /* bio_add cannot handle a negative return */
539 if (max <= biovec->bv_len && bio_sectors == 0)
540 return biovec->bv_len;
541 else
542 return max;
546 * This routine returns the disk from which the requested read should
547 * be done. There is a per-array 'next expected sequential IO' sector
548 * number - if this matches on the next IO then we use the last disk.
549 * There is also a per-disk 'last know head position' sector that is
550 * maintained from IRQ contexts, both the normal and the resync IO
551 * completion handlers update this position correctly. If there is no
552 * perfect sequential match then we pick the disk whose head is closest.
554 * If there are 2 mirrors in the same 2 devices, performance degrades
555 * because position is mirror, not device based.
557 * The rdev for the device selected will have nr_pending incremented.
561 * FIXME: possibly should rethink readbalancing and do it differently
562 * depending on near_copies / far_copies geometry.
564 static int read_balance(struct r10conf *conf, struct r10bio *r10_bio, int *max_sectors)
566 const sector_t this_sector = r10_bio->sector;
567 int disk, slot;
568 int sectors = r10_bio->sectors;
569 int best_good_sectors;
570 sector_t new_distance, best_dist;
571 struct md_rdev *rdev;
572 int do_balance;
573 int best_slot;
575 raid10_find_phys(conf, r10_bio);
576 rcu_read_lock();
577 retry:
578 sectors = r10_bio->sectors;
579 best_slot = -1;
580 best_dist = MaxSector;
581 best_good_sectors = 0;
582 do_balance = 1;
584 * Check if we can balance. We can balance on the whole
585 * device if no resync is going on (recovery is ok), or below
586 * the resync window. We take the first readable disk when
587 * above the resync window.
589 if (conf->mddev->recovery_cp < MaxSector
590 && (this_sector + sectors >= conf->next_resync))
591 do_balance = 0;
593 for (slot = 0; slot < conf->copies ; slot++) {
594 sector_t first_bad;
595 int bad_sectors;
596 sector_t dev_sector;
598 if (r10_bio->devs[slot].bio == IO_BLOCKED)
599 continue;
600 disk = r10_bio->devs[slot].devnum;
601 rdev = rcu_dereference(conf->mirrors[disk].rdev);
602 if (rdev == NULL)
603 continue;
604 if (!test_bit(In_sync, &rdev->flags))
605 continue;
607 dev_sector = r10_bio->devs[slot].addr;
608 if (is_badblock(rdev, dev_sector, sectors,
609 &first_bad, &bad_sectors)) {
610 if (best_dist < MaxSector)
611 /* Already have a better slot */
612 continue;
613 if (first_bad <= dev_sector) {
614 /* Cannot read here. If this is the
615 * 'primary' device, then we must not read
616 * beyond 'bad_sectors' from another device.
618 bad_sectors -= (dev_sector - first_bad);
619 if (!do_balance && sectors > bad_sectors)
620 sectors = bad_sectors;
621 if (best_good_sectors > sectors)
622 best_good_sectors = sectors;
623 } else {
624 sector_t good_sectors =
625 first_bad - dev_sector;
626 if (good_sectors > best_good_sectors) {
627 best_good_sectors = good_sectors;
628 best_slot = slot;
630 if (!do_balance)
631 /* Must read from here */
632 break;
634 continue;
635 } else
636 best_good_sectors = sectors;
638 if (!do_balance)
639 break;
641 /* This optimisation is debatable, and completely destroys
642 * sequential read speed for 'far copies' arrays. So only
643 * keep it for 'near' arrays, and review those later.
645 if (conf->near_copies > 1 && !atomic_read(&rdev->nr_pending))
646 break;
648 /* for far > 1 always use the lowest address */
649 if (conf->far_copies > 1)
650 new_distance = r10_bio->devs[slot].addr;
651 else
652 new_distance = abs(r10_bio->devs[slot].addr -
653 conf->mirrors[disk].head_position);
654 if (new_distance < best_dist) {
655 best_dist = new_distance;
656 best_slot = slot;
659 if (slot == conf->copies)
660 slot = best_slot;
662 if (slot >= 0) {
663 disk = r10_bio->devs[slot].devnum;
664 rdev = rcu_dereference(conf->mirrors[disk].rdev);
665 if (!rdev)
666 goto retry;
667 atomic_inc(&rdev->nr_pending);
668 if (test_bit(Faulty, &rdev->flags)) {
669 /* Cannot risk returning a device that failed
670 * before we inc'ed nr_pending
672 rdev_dec_pending(rdev, conf->mddev);
673 goto retry;
675 r10_bio->read_slot = slot;
676 } else
677 disk = -1;
678 rcu_read_unlock();
679 *max_sectors = best_good_sectors;
681 return disk;
684 static int raid10_congested(void *data, int bits)
686 struct mddev *mddev = data;
687 struct r10conf *conf = mddev->private;
688 int i, ret = 0;
690 if ((bits & (1 << BDI_async_congested)) &&
691 conf->pending_count >= max_queued_requests)
692 return 1;
694 if (mddev_congested(mddev, bits))
695 return 1;
696 rcu_read_lock();
697 for (i = 0; i < conf->raid_disks && ret == 0; i++) {
698 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
699 if (rdev && !test_bit(Faulty, &rdev->flags)) {
700 struct request_queue *q = bdev_get_queue(rdev->bdev);
702 ret |= bdi_congested(&q->backing_dev_info, bits);
705 rcu_read_unlock();
706 return ret;
709 static void flush_pending_writes(struct r10conf *conf)
711 /* Any writes that have been queued but are awaiting
712 * bitmap updates get flushed here.
714 spin_lock_irq(&conf->device_lock);
716 if (conf->pending_bio_list.head) {
717 struct bio *bio;
718 bio = bio_list_get(&conf->pending_bio_list);
719 conf->pending_count = 0;
720 spin_unlock_irq(&conf->device_lock);
721 /* flush any pending bitmap writes to disk
722 * before proceeding w/ I/O */
723 bitmap_unplug(conf->mddev->bitmap);
724 wake_up(&conf->wait_barrier);
726 while (bio) { /* submit pending writes */
727 struct bio *next = bio->bi_next;
728 bio->bi_next = NULL;
729 generic_make_request(bio);
730 bio = next;
732 } else
733 spin_unlock_irq(&conf->device_lock);
736 /* Barriers....
737 * Sometimes we need to suspend IO while we do something else,
738 * either some resync/recovery, or reconfigure the array.
739 * To do this we raise a 'barrier'.
740 * The 'barrier' is a counter that can be raised multiple times
741 * to count how many activities are happening which preclude
742 * normal IO.
743 * We can only raise the barrier if there is no pending IO.
744 * i.e. if nr_pending == 0.
745 * We choose only to raise the barrier if no-one is waiting for the
746 * barrier to go down. This means that as soon as an IO request
747 * is ready, no other operations which require a barrier will start
748 * until the IO request has had a chance.
750 * So: regular IO calls 'wait_barrier'. When that returns there
751 * is no backgroup IO happening, It must arrange to call
752 * allow_barrier when it has finished its IO.
753 * backgroup IO calls must call raise_barrier. Once that returns
754 * there is no normal IO happeing. It must arrange to call
755 * lower_barrier when the particular background IO completes.
758 static void raise_barrier(struct r10conf *conf, int force)
760 BUG_ON(force && !conf->barrier);
761 spin_lock_irq(&conf->resync_lock);
763 /* Wait until no block IO is waiting (unless 'force') */
764 wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
765 conf->resync_lock, );
767 /* block any new IO from starting */
768 conf->barrier++;
770 /* Now wait for all pending IO to complete */
771 wait_event_lock_irq(conf->wait_barrier,
772 !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
773 conf->resync_lock, );
775 spin_unlock_irq(&conf->resync_lock);
778 static void lower_barrier(struct r10conf *conf)
780 unsigned long flags;
781 spin_lock_irqsave(&conf->resync_lock, flags);
782 conf->barrier--;
783 spin_unlock_irqrestore(&conf->resync_lock, flags);
784 wake_up(&conf->wait_barrier);
787 static void wait_barrier(struct r10conf *conf)
789 spin_lock_irq(&conf->resync_lock);
790 if (conf->barrier) {
791 conf->nr_waiting++;
792 wait_event_lock_irq(conf->wait_barrier, !conf->barrier,
793 conf->resync_lock,
795 conf->nr_waiting--;
797 conf->nr_pending++;
798 spin_unlock_irq(&conf->resync_lock);
801 static void allow_barrier(struct r10conf *conf)
803 unsigned long flags;
804 spin_lock_irqsave(&conf->resync_lock, flags);
805 conf->nr_pending--;
806 spin_unlock_irqrestore(&conf->resync_lock, flags);
807 wake_up(&conf->wait_barrier);
810 static void freeze_array(struct r10conf *conf)
812 /* stop syncio and normal IO and wait for everything to
813 * go quiet.
814 * We increment barrier and nr_waiting, and then
815 * wait until nr_pending match nr_queued+1
816 * This is called in the context of one normal IO request
817 * that has failed. Thus any sync request that might be pending
818 * will be blocked by nr_pending, and we need to wait for
819 * pending IO requests to complete or be queued for re-try.
820 * Thus the number queued (nr_queued) plus this request (1)
821 * must match the number of pending IOs (nr_pending) before
822 * we continue.
824 spin_lock_irq(&conf->resync_lock);
825 conf->barrier++;
826 conf->nr_waiting++;
827 wait_event_lock_irq(conf->wait_barrier,
828 conf->nr_pending == conf->nr_queued+1,
829 conf->resync_lock,
830 flush_pending_writes(conf));
832 spin_unlock_irq(&conf->resync_lock);
835 static void unfreeze_array(struct r10conf *conf)
837 /* reverse the effect of the freeze */
838 spin_lock_irq(&conf->resync_lock);
839 conf->barrier--;
840 conf->nr_waiting--;
841 wake_up(&conf->wait_barrier);
842 spin_unlock_irq(&conf->resync_lock);
845 static int make_request(struct mddev *mddev, struct bio * bio)
847 struct r10conf *conf = mddev->private;
848 struct mirror_info *mirror;
849 struct r10bio *r10_bio;
850 struct bio *read_bio;
851 int i;
852 int chunk_sects = conf->chunk_mask + 1;
853 const int rw = bio_data_dir(bio);
854 const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
855 const unsigned long do_fua = (bio->bi_rw & REQ_FUA);
856 unsigned long flags;
857 struct md_rdev *blocked_rdev;
858 int plugged;
859 int sectors_handled;
860 int max_sectors;
862 if (unlikely(bio->bi_rw & REQ_FLUSH)) {
863 md_flush_request(mddev, bio);
864 return 0;
867 /* If this request crosses a chunk boundary, we need to
868 * split it. This will only happen for 1 PAGE (or less) requests.
870 if (unlikely( (bio->bi_sector & conf->chunk_mask) + (bio->bi_size >> 9)
871 > chunk_sects &&
872 conf->near_copies < conf->raid_disks)) {
873 struct bio_pair *bp;
874 /* Sanity check -- queue functions should prevent this happening */
875 if (bio->bi_vcnt != 1 ||
876 bio->bi_idx != 0)
877 goto bad_map;
878 /* This is a one page bio that upper layers
879 * refuse to split for us, so we need to split it.
881 bp = bio_split(bio,
882 chunk_sects - (bio->bi_sector & (chunk_sects - 1)) );
884 /* Each of these 'make_request' calls will call 'wait_barrier'.
885 * If the first succeeds but the second blocks due to the resync
886 * thread raising the barrier, we will deadlock because the
887 * IO to the underlying device will be queued in generic_make_request
888 * and will never complete, so will never reduce nr_pending.
889 * So increment nr_waiting here so no new raise_barriers will
890 * succeed, and so the second wait_barrier cannot block.
892 spin_lock_irq(&conf->resync_lock);
893 conf->nr_waiting++;
894 spin_unlock_irq(&conf->resync_lock);
896 if (make_request(mddev, &bp->bio1))
897 generic_make_request(&bp->bio1);
898 if (make_request(mddev, &bp->bio2))
899 generic_make_request(&bp->bio2);
901 spin_lock_irq(&conf->resync_lock);
902 conf->nr_waiting--;
903 wake_up(&conf->wait_barrier);
904 spin_unlock_irq(&conf->resync_lock);
906 bio_pair_release(bp);
907 return 0;
908 bad_map:
909 printk("md/raid10:%s: make_request bug: can't convert block across chunks"
910 " or bigger than %dk %llu %d\n", mdname(mddev), chunk_sects/2,
911 (unsigned long long)bio->bi_sector, bio->bi_size >> 10);
913 bio_io_error(bio);
914 return 0;
917 md_write_start(mddev, bio);
920 * Register the new request and wait if the reconstruction
921 * thread has put up a bar for new requests.
922 * Continue immediately if no resync is active currently.
924 wait_barrier(conf);
926 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
928 r10_bio->master_bio = bio;
929 r10_bio->sectors = bio->bi_size >> 9;
931 r10_bio->mddev = mddev;
932 r10_bio->sector = bio->bi_sector;
933 r10_bio->state = 0;
935 /* We might need to issue multiple reads to different
936 * devices if there are bad blocks around, so we keep
937 * track of the number of reads in bio->bi_phys_segments.
938 * If this is 0, there is only one r10_bio and no locking
939 * will be needed when the request completes. If it is
940 * non-zero, then it is the number of not-completed requests.
942 bio->bi_phys_segments = 0;
943 clear_bit(BIO_SEG_VALID, &bio->bi_flags);
945 if (rw == READ) {
947 * read balancing logic:
949 int disk;
950 int slot;
952 read_again:
953 disk = read_balance(conf, r10_bio, &max_sectors);
954 slot = r10_bio->read_slot;
955 if (disk < 0) {
956 raid_end_bio_io(r10_bio);
957 return 0;
959 mirror = conf->mirrors + disk;
961 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
962 md_trim_bio(read_bio, r10_bio->sector - bio->bi_sector,
963 max_sectors);
965 r10_bio->devs[slot].bio = read_bio;
967 read_bio->bi_sector = r10_bio->devs[slot].addr +
968 mirror->rdev->data_offset;
969 read_bio->bi_bdev = mirror->rdev->bdev;
970 read_bio->bi_end_io = raid10_end_read_request;
971 read_bio->bi_rw = READ | do_sync;
972 read_bio->bi_private = r10_bio;
974 if (max_sectors < r10_bio->sectors) {
975 /* Could not read all from this device, so we will
976 * need another r10_bio.
978 sectors_handled = (r10_bio->sectors + max_sectors
979 - bio->bi_sector);
980 r10_bio->sectors = max_sectors;
981 spin_lock_irq(&conf->device_lock);
982 if (bio->bi_phys_segments == 0)
983 bio->bi_phys_segments = 2;
984 else
985 bio->bi_phys_segments++;
986 spin_unlock(&conf->device_lock);
987 /* Cannot call generic_make_request directly
988 * as that will be queued in __generic_make_request
989 * and subsequent mempool_alloc might block
990 * waiting for it. so hand bio over to raid10d.
992 reschedule_retry(r10_bio);
994 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
996 r10_bio->master_bio = bio;
997 r10_bio->sectors = ((bio->bi_size >> 9)
998 - sectors_handled);
999 r10_bio->state = 0;
1000 r10_bio->mddev = mddev;
1001 r10_bio->sector = bio->bi_sector + sectors_handled;
1002 goto read_again;
1003 } else
1004 generic_make_request(read_bio);
1005 return 0;
1009 * WRITE:
1011 if (conf->pending_count >= max_queued_requests) {
1012 md_wakeup_thread(mddev->thread);
1013 wait_event(conf->wait_barrier,
1014 conf->pending_count < max_queued_requests);
1016 /* first select target devices under rcu_lock and
1017 * inc refcount on their rdev. Record them by setting
1018 * bios[x] to bio
1019 * If there are known/acknowledged bad blocks on any device
1020 * on which we have seen a write error, we want to avoid
1021 * writing to those blocks. This potentially requires several
1022 * writes to write around the bad blocks. Each set of writes
1023 * gets its own r10_bio with a set of bios attached. The number
1024 * of r10_bios is recored in bio->bi_phys_segments just as with
1025 * the read case.
1027 plugged = mddev_check_plugged(mddev);
1029 raid10_find_phys(conf, r10_bio);
1030 retry_write:
1031 blocked_rdev = NULL;
1032 rcu_read_lock();
1033 max_sectors = r10_bio->sectors;
1035 for (i = 0; i < conf->copies; i++) {
1036 int d = r10_bio->devs[i].devnum;
1037 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
1038 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1039 atomic_inc(&rdev->nr_pending);
1040 blocked_rdev = rdev;
1041 break;
1043 r10_bio->devs[i].bio = NULL;
1044 if (!rdev || test_bit(Faulty, &rdev->flags)) {
1045 set_bit(R10BIO_Degraded, &r10_bio->state);
1046 continue;
1048 if (test_bit(WriteErrorSeen, &rdev->flags)) {
1049 sector_t first_bad;
1050 sector_t dev_sector = r10_bio->devs[i].addr;
1051 int bad_sectors;
1052 int is_bad;
1054 is_bad = is_badblock(rdev, dev_sector,
1055 max_sectors,
1056 &first_bad, &bad_sectors);
1057 if (is_bad < 0) {
1058 /* Mustn't write here until the bad block
1059 * is acknowledged
1061 atomic_inc(&rdev->nr_pending);
1062 set_bit(BlockedBadBlocks, &rdev->flags);
1063 blocked_rdev = rdev;
1064 break;
1066 if (is_bad && first_bad <= dev_sector) {
1067 /* Cannot write here at all */
1068 bad_sectors -= (dev_sector - first_bad);
1069 if (bad_sectors < max_sectors)
1070 /* Mustn't write more than bad_sectors
1071 * to other devices yet
1073 max_sectors = bad_sectors;
1074 /* We don't set R10BIO_Degraded as that
1075 * only applies if the disk is missing,
1076 * so it might be re-added, and we want to
1077 * know to recover this chunk.
1078 * In this case the device is here, and the
1079 * fact that this chunk is not in-sync is
1080 * recorded in the bad block log.
1082 continue;
1084 if (is_bad) {
1085 int good_sectors = first_bad - dev_sector;
1086 if (good_sectors < max_sectors)
1087 max_sectors = good_sectors;
1090 r10_bio->devs[i].bio = bio;
1091 atomic_inc(&rdev->nr_pending);
1093 rcu_read_unlock();
1095 if (unlikely(blocked_rdev)) {
1096 /* Have to wait for this device to get unblocked, then retry */
1097 int j;
1098 int d;
1100 for (j = 0; j < i; j++)
1101 if (r10_bio->devs[j].bio) {
1102 d = r10_bio->devs[j].devnum;
1103 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1105 allow_barrier(conf);
1106 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1107 wait_barrier(conf);
1108 goto retry_write;
1111 if (max_sectors < r10_bio->sectors) {
1112 /* We are splitting this into multiple parts, so
1113 * we need to prepare for allocating another r10_bio.
1115 r10_bio->sectors = max_sectors;
1116 spin_lock_irq(&conf->device_lock);
1117 if (bio->bi_phys_segments == 0)
1118 bio->bi_phys_segments = 2;
1119 else
1120 bio->bi_phys_segments++;
1121 spin_unlock_irq(&conf->device_lock);
1123 sectors_handled = r10_bio->sector + max_sectors - bio->bi_sector;
1125 atomic_set(&r10_bio->remaining, 1);
1126 bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1128 for (i = 0; i < conf->copies; i++) {
1129 struct bio *mbio;
1130 int d = r10_bio->devs[i].devnum;
1131 if (!r10_bio->devs[i].bio)
1132 continue;
1134 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1135 md_trim_bio(mbio, r10_bio->sector - bio->bi_sector,
1136 max_sectors);
1137 r10_bio->devs[i].bio = mbio;
1139 mbio->bi_sector = (r10_bio->devs[i].addr+
1140 conf->mirrors[d].rdev->data_offset);
1141 mbio->bi_bdev = conf->mirrors[d].rdev->bdev;
1142 mbio->bi_end_io = raid10_end_write_request;
1143 mbio->bi_rw = WRITE | do_sync | do_fua;
1144 mbio->bi_private = r10_bio;
1146 atomic_inc(&r10_bio->remaining);
1147 spin_lock_irqsave(&conf->device_lock, flags);
1148 bio_list_add(&conf->pending_bio_list, mbio);
1149 conf->pending_count++;
1150 spin_unlock_irqrestore(&conf->device_lock, flags);
1153 /* Don't remove the bias on 'remaining' (one_write_done) until
1154 * after checking if we need to go around again.
1157 if (sectors_handled < (bio->bi_size >> 9)) {
1158 one_write_done(r10_bio);
1159 /* We need another r10_bio. It has already been counted
1160 * in bio->bi_phys_segments.
1162 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1164 r10_bio->master_bio = bio;
1165 r10_bio->sectors = (bio->bi_size >> 9) - sectors_handled;
1167 r10_bio->mddev = mddev;
1168 r10_bio->sector = bio->bi_sector + sectors_handled;
1169 r10_bio->state = 0;
1170 goto retry_write;
1172 one_write_done(r10_bio);
1174 /* In case raid10d snuck in to freeze_array */
1175 wake_up(&conf->wait_barrier);
1177 if (do_sync || !mddev->bitmap || !plugged)
1178 md_wakeup_thread(mddev->thread);
1179 return 0;
1182 static void status(struct seq_file *seq, struct mddev *mddev)
1184 struct r10conf *conf = mddev->private;
1185 int i;
1187 if (conf->near_copies < conf->raid_disks)
1188 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1189 if (conf->near_copies > 1)
1190 seq_printf(seq, " %d near-copies", conf->near_copies);
1191 if (conf->far_copies > 1) {
1192 if (conf->far_offset)
1193 seq_printf(seq, " %d offset-copies", conf->far_copies);
1194 else
1195 seq_printf(seq, " %d far-copies", conf->far_copies);
1197 seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1198 conf->raid_disks - mddev->degraded);
1199 for (i = 0; i < conf->raid_disks; i++)
1200 seq_printf(seq, "%s",
1201 conf->mirrors[i].rdev &&
1202 test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_");
1203 seq_printf(seq, "]");
1206 /* check if there are enough drives for
1207 * every block to appear on atleast one.
1208 * Don't consider the device numbered 'ignore'
1209 * as we might be about to remove it.
1211 static int enough(struct r10conf *conf, int ignore)
1213 int first = 0;
1215 do {
1216 int n = conf->copies;
1217 int cnt = 0;
1218 while (n--) {
1219 if (conf->mirrors[first].rdev &&
1220 first != ignore)
1221 cnt++;
1222 first = (first+1) % conf->raid_disks;
1224 if (cnt == 0)
1225 return 0;
1226 } while (first != 0);
1227 return 1;
1230 static void error(struct mddev *mddev, struct md_rdev *rdev)
1232 char b[BDEVNAME_SIZE];
1233 struct r10conf *conf = mddev->private;
1236 * If it is not operational, then we have already marked it as dead
1237 * else if it is the last working disks, ignore the error, let the
1238 * next level up know.
1239 * else mark the drive as failed
1241 if (test_bit(In_sync, &rdev->flags)
1242 && !enough(conf, rdev->raid_disk))
1244 * Don't fail the drive, just return an IO error.
1246 return;
1247 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1248 unsigned long flags;
1249 spin_lock_irqsave(&conf->device_lock, flags);
1250 mddev->degraded++;
1251 spin_unlock_irqrestore(&conf->device_lock, flags);
1253 * if recovery is running, make sure it aborts.
1255 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1257 set_bit(Blocked, &rdev->flags);
1258 set_bit(Faulty, &rdev->flags);
1259 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1260 printk(KERN_ALERT
1261 "md/raid10:%s: Disk failure on %s, disabling device.\n"
1262 "md/raid10:%s: Operation continuing on %d devices.\n",
1263 mdname(mddev), bdevname(rdev->bdev, b),
1264 mdname(mddev), conf->raid_disks - mddev->degraded);
1267 static void print_conf(struct r10conf *conf)
1269 int i;
1270 struct mirror_info *tmp;
1272 printk(KERN_DEBUG "RAID10 conf printout:\n");
1273 if (!conf) {
1274 printk(KERN_DEBUG "(!conf)\n");
1275 return;
1277 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1278 conf->raid_disks);
1280 for (i = 0; i < conf->raid_disks; i++) {
1281 char b[BDEVNAME_SIZE];
1282 tmp = conf->mirrors + i;
1283 if (tmp->rdev)
1284 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1285 i, !test_bit(In_sync, &tmp->rdev->flags),
1286 !test_bit(Faulty, &tmp->rdev->flags),
1287 bdevname(tmp->rdev->bdev,b));
1291 static void close_sync(struct r10conf *conf)
1293 wait_barrier(conf);
1294 allow_barrier(conf);
1296 mempool_destroy(conf->r10buf_pool);
1297 conf->r10buf_pool = NULL;
1300 static int raid10_spare_active(struct mddev *mddev)
1302 int i;
1303 struct r10conf *conf = mddev->private;
1304 struct mirror_info *tmp;
1305 int count = 0;
1306 unsigned long flags;
1309 * Find all non-in_sync disks within the RAID10 configuration
1310 * and mark them in_sync
1312 for (i = 0; i < conf->raid_disks; i++) {
1313 tmp = conf->mirrors + i;
1314 if (tmp->rdev
1315 && !test_bit(Faulty, &tmp->rdev->flags)
1316 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1317 count++;
1318 sysfs_notify_dirent(tmp->rdev->sysfs_state);
1321 spin_lock_irqsave(&conf->device_lock, flags);
1322 mddev->degraded -= count;
1323 spin_unlock_irqrestore(&conf->device_lock, flags);
1325 print_conf(conf);
1326 return count;
1330 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1332 struct r10conf *conf = mddev->private;
1333 int err = -EEXIST;
1334 int mirror;
1335 int first = 0;
1336 int last = conf->raid_disks - 1;
1338 if (mddev->recovery_cp < MaxSector)
1339 /* only hot-add to in-sync arrays, as recovery is
1340 * very different from resync
1342 return -EBUSY;
1343 if (!enough(conf, -1))
1344 return -EINVAL;
1346 if (rdev->raid_disk >= 0)
1347 first = last = rdev->raid_disk;
1349 if (rdev->saved_raid_disk >= first &&
1350 conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1351 mirror = rdev->saved_raid_disk;
1352 else
1353 mirror = first;
1354 for ( ; mirror <= last ; mirror++) {
1355 struct mirror_info *p = &conf->mirrors[mirror];
1356 if (p->recovery_disabled == mddev->recovery_disabled)
1357 continue;
1358 if (p->rdev)
1359 continue;
1361 disk_stack_limits(mddev->gendisk, rdev->bdev,
1362 rdev->data_offset << 9);
1363 /* as we don't honour merge_bvec_fn, we must
1364 * never risk violating it, so limit
1365 * ->max_segments to one lying with a single
1366 * page, as a one page request is never in
1367 * violation.
1369 if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
1370 blk_queue_max_segments(mddev->queue, 1);
1371 blk_queue_segment_boundary(mddev->queue,
1372 PAGE_CACHE_SIZE - 1);
1375 p->head_position = 0;
1376 p->recovery_disabled = mddev->recovery_disabled - 1;
1377 rdev->raid_disk = mirror;
1378 err = 0;
1379 if (rdev->saved_raid_disk != mirror)
1380 conf->fullsync = 1;
1381 rcu_assign_pointer(p->rdev, rdev);
1382 break;
1385 md_integrity_add_rdev(rdev, mddev);
1386 print_conf(conf);
1387 return err;
1390 static int raid10_remove_disk(struct mddev *mddev, int number)
1392 struct r10conf *conf = mddev->private;
1393 int err = 0;
1394 struct md_rdev *rdev;
1395 struct mirror_info *p = conf->mirrors+ number;
1397 print_conf(conf);
1398 rdev = p->rdev;
1399 if (rdev) {
1400 if (test_bit(In_sync, &rdev->flags) ||
1401 atomic_read(&rdev->nr_pending)) {
1402 err = -EBUSY;
1403 goto abort;
1405 /* Only remove faulty devices in recovery
1406 * is not possible.
1408 if (!test_bit(Faulty, &rdev->flags) &&
1409 mddev->recovery_disabled != p->recovery_disabled &&
1410 enough(conf, -1)) {
1411 err = -EBUSY;
1412 goto abort;
1414 p->rdev = NULL;
1415 synchronize_rcu();
1416 if (atomic_read(&rdev->nr_pending)) {
1417 /* lost the race, try later */
1418 err = -EBUSY;
1419 p->rdev = rdev;
1420 goto abort;
1422 err = md_integrity_register(mddev);
1424 abort:
1426 print_conf(conf);
1427 return err;
1431 static void end_sync_read(struct bio *bio, int error)
1433 struct r10bio *r10_bio = bio->bi_private;
1434 struct r10conf *conf = r10_bio->mddev->private;
1435 int d;
1437 d = find_bio_disk(conf, r10_bio, bio, NULL);
1439 if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1440 set_bit(R10BIO_Uptodate, &r10_bio->state);
1441 else
1442 /* The write handler will notice the lack of
1443 * R10BIO_Uptodate and record any errors etc
1445 atomic_add(r10_bio->sectors,
1446 &conf->mirrors[d].rdev->corrected_errors);
1448 /* for reconstruct, we always reschedule after a read.
1449 * for resync, only after all reads
1451 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1452 if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1453 atomic_dec_and_test(&r10_bio->remaining)) {
1454 /* we have read all the blocks,
1455 * do the comparison in process context in raid10d
1457 reschedule_retry(r10_bio);
1461 static void end_sync_request(struct r10bio *r10_bio)
1463 struct mddev *mddev = r10_bio->mddev;
1465 while (atomic_dec_and_test(&r10_bio->remaining)) {
1466 if (r10_bio->master_bio == NULL) {
1467 /* the primary of several recovery bios */
1468 sector_t s = r10_bio->sectors;
1469 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1470 test_bit(R10BIO_WriteError, &r10_bio->state))
1471 reschedule_retry(r10_bio);
1472 else
1473 put_buf(r10_bio);
1474 md_done_sync(mddev, s, 1);
1475 break;
1476 } else {
1477 struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
1478 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1479 test_bit(R10BIO_WriteError, &r10_bio->state))
1480 reschedule_retry(r10_bio);
1481 else
1482 put_buf(r10_bio);
1483 r10_bio = r10_bio2;
1488 static void end_sync_write(struct bio *bio, int error)
1490 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1491 struct r10bio *r10_bio = bio->bi_private;
1492 struct mddev *mddev = r10_bio->mddev;
1493 struct r10conf *conf = mddev->private;
1494 int d;
1495 sector_t first_bad;
1496 int bad_sectors;
1497 int slot;
1499 d = find_bio_disk(conf, r10_bio, bio, &slot);
1501 if (!uptodate) {
1502 set_bit(WriteErrorSeen, &conf->mirrors[d].rdev->flags);
1503 set_bit(R10BIO_WriteError, &r10_bio->state);
1504 } else if (is_badblock(conf->mirrors[d].rdev,
1505 r10_bio->devs[slot].addr,
1506 r10_bio->sectors,
1507 &first_bad, &bad_sectors))
1508 set_bit(R10BIO_MadeGood, &r10_bio->state);
1510 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1512 end_sync_request(r10_bio);
1516 * Note: sync and recover and handled very differently for raid10
1517 * This code is for resync.
1518 * For resync, we read through virtual addresses and read all blocks.
1519 * If there is any error, we schedule a write. The lowest numbered
1520 * drive is authoritative.
1521 * However requests come for physical address, so we need to map.
1522 * For every physical address there are raid_disks/copies virtual addresses,
1523 * which is always are least one, but is not necessarly an integer.
1524 * This means that a physical address can span multiple chunks, so we may
1525 * have to submit multiple io requests for a single sync request.
1528 * We check if all blocks are in-sync and only write to blocks that
1529 * aren't in sync
1531 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
1533 struct r10conf *conf = mddev->private;
1534 int i, first;
1535 struct bio *tbio, *fbio;
1537 atomic_set(&r10_bio->remaining, 1);
1539 /* find the first device with a block */
1540 for (i=0; i<conf->copies; i++)
1541 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags))
1542 break;
1544 if (i == conf->copies)
1545 goto done;
1547 first = i;
1548 fbio = r10_bio->devs[i].bio;
1550 /* now find blocks with errors */
1551 for (i=0 ; i < conf->copies ; i++) {
1552 int j, d;
1553 int vcnt = r10_bio->sectors >> (PAGE_SHIFT-9);
1555 tbio = r10_bio->devs[i].bio;
1557 if (tbio->bi_end_io != end_sync_read)
1558 continue;
1559 if (i == first)
1560 continue;
1561 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) {
1562 /* We know that the bi_io_vec layout is the same for
1563 * both 'first' and 'i', so we just compare them.
1564 * All vec entries are PAGE_SIZE;
1566 for (j = 0; j < vcnt; j++)
1567 if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
1568 page_address(tbio->bi_io_vec[j].bv_page),
1569 PAGE_SIZE))
1570 break;
1571 if (j == vcnt)
1572 continue;
1573 mddev->resync_mismatches += r10_bio->sectors;
1574 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
1575 /* Don't fix anything. */
1576 continue;
1578 /* Ok, we need to write this bio, either to correct an
1579 * inconsistency or to correct an unreadable block.
1580 * First we need to fixup bv_offset, bv_len and
1581 * bi_vecs, as the read request might have corrupted these
1583 tbio->bi_vcnt = vcnt;
1584 tbio->bi_size = r10_bio->sectors << 9;
1585 tbio->bi_idx = 0;
1586 tbio->bi_phys_segments = 0;
1587 tbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1588 tbio->bi_flags |= 1 << BIO_UPTODATE;
1589 tbio->bi_next = NULL;
1590 tbio->bi_rw = WRITE;
1591 tbio->bi_private = r10_bio;
1592 tbio->bi_sector = r10_bio->devs[i].addr;
1594 for (j=0; j < vcnt ; j++) {
1595 tbio->bi_io_vec[j].bv_offset = 0;
1596 tbio->bi_io_vec[j].bv_len = PAGE_SIZE;
1598 memcpy(page_address(tbio->bi_io_vec[j].bv_page),
1599 page_address(fbio->bi_io_vec[j].bv_page),
1600 PAGE_SIZE);
1602 tbio->bi_end_io = end_sync_write;
1604 d = r10_bio->devs[i].devnum;
1605 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1606 atomic_inc(&r10_bio->remaining);
1607 md_sync_acct(conf->mirrors[d].rdev->bdev, tbio->bi_size >> 9);
1609 tbio->bi_sector += conf->mirrors[d].rdev->data_offset;
1610 tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
1611 generic_make_request(tbio);
1614 done:
1615 if (atomic_dec_and_test(&r10_bio->remaining)) {
1616 md_done_sync(mddev, r10_bio->sectors, 1);
1617 put_buf(r10_bio);
1622 * Now for the recovery code.
1623 * Recovery happens across physical sectors.
1624 * We recover all non-is_sync drives by finding the virtual address of
1625 * each, and then choose a working drive that also has that virt address.
1626 * There is a separate r10_bio for each non-in_sync drive.
1627 * Only the first two slots are in use. The first for reading,
1628 * The second for writing.
1631 static void fix_recovery_read_error(struct r10bio *r10_bio)
1633 /* We got a read error during recovery.
1634 * We repeat the read in smaller page-sized sections.
1635 * If a read succeeds, write it to the new device or record
1636 * a bad block if we cannot.
1637 * If a read fails, record a bad block on both old and
1638 * new devices.
1640 struct mddev *mddev = r10_bio->mddev;
1641 struct r10conf *conf = mddev->private;
1642 struct bio *bio = r10_bio->devs[0].bio;
1643 sector_t sect = 0;
1644 int sectors = r10_bio->sectors;
1645 int idx = 0;
1646 int dr = r10_bio->devs[0].devnum;
1647 int dw = r10_bio->devs[1].devnum;
1649 while (sectors) {
1650 int s = sectors;
1651 struct md_rdev *rdev;
1652 sector_t addr;
1653 int ok;
1655 if (s > (PAGE_SIZE>>9))
1656 s = PAGE_SIZE >> 9;
1658 rdev = conf->mirrors[dr].rdev;
1659 addr = r10_bio->devs[0].addr + sect,
1660 ok = sync_page_io(rdev,
1661 addr,
1662 s << 9,
1663 bio->bi_io_vec[idx].bv_page,
1664 READ, false);
1665 if (ok) {
1666 rdev = conf->mirrors[dw].rdev;
1667 addr = r10_bio->devs[1].addr + sect;
1668 ok = sync_page_io(rdev,
1669 addr,
1670 s << 9,
1671 bio->bi_io_vec[idx].bv_page,
1672 WRITE, false);
1673 if (!ok)
1674 set_bit(WriteErrorSeen, &rdev->flags);
1676 if (!ok) {
1677 /* We don't worry if we cannot set a bad block -
1678 * it really is bad so there is no loss in not
1679 * recording it yet
1681 rdev_set_badblocks(rdev, addr, s, 0);
1683 if (rdev != conf->mirrors[dw].rdev) {
1684 /* need bad block on destination too */
1685 struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
1686 addr = r10_bio->devs[1].addr + sect;
1687 ok = rdev_set_badblocks(rdev2, addr, s, 0);
1688 if (!ok) {
1689 /* just abort the recovery */
1690 printk(KERN_NOTICE
1691 "md/raid10:%s: recovery aborted"
1692 " due to read error\n",
1693 mdname(mddev));
1695 conf->mirrors[dw].recovery_disabled
1696 = mddev->recovery_disabled;
1697 set_bit(MD_RECOVERY_INTR,
1698 &mddev->recovery);
1699 break;
1704 sectors -= s;
1705 sect += s;
1706 idx++;
1710 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
1712 struct r10conf *conf = mddev->private;
1713 int d;
1714 struct bio *wbio;
1716 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
1717 fix_recovery_read_error(r10_bio);
1718 end_sync_request(r10_bio);
1719 return;
1723 * share the pages with the first bio
1724 * and submit the write request
1726 wbio = r10_bio->devs[1].bio;
1727 d = r10_bio->devs[1].devnum;
1729 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1730 md_sync_acct(conf->mirrors[d].rdev->bdev, wbio->bi_size >> 9);
1731 generic_make_request(wbio);
1736 * Used by fix_read_error() to decay the per rdev read_errors.
1737 * We halve the read error count for every hour that has elapsed
1738 * since the last recorded read error.
1741 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
1743 struct timespec cur_time_mon;
1744 unsigned long hours_since_last;
1745 unsigned int read_errors = atomic_read(&rdev->read_errors);
1747 ktime_get_ts(&cur_time_mon);
1749 if (rdev->last_read_error.tv_sec == 0 &&
1750 rdev->last_read_error.tv_nsec == 0) {
1751 /* first time we've seen a read error */
1752 rdev->last_read_error = cur_time_mon;
1753 return;
1756 hours_since_last = (cur_time_mon.tv_sec -
1757 rdev->last_read_error.tv_sec) / 3600;
1759 rdev->last_read_error = cur_time_mon;
1762 * if hours_since_last is > the number of bits in read_errors
1763 * just set read errors to 0. We do this to avoid
1764 * overflowing the shift of read_errors by hours_since_last.
1766 if (hours_since_last >= 8 * sizeof(read_errors))
1767 atomic_set(&rdev->read_errors, 0);
1768 else
1769 atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
1772 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
1773 int sectors, struct page *page, int rw)
1775 sector_t first_bad;
1776 int bad_sectors;
1778 if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
1779 && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
1780 return -1;
1781 if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
1782 /* success */
1783 return 1;
1784 if (rw == WRITE)
1785 set_bit(WriteErrorSeen, &rdev->flags);
1786 /* need to record an error - either for the block or the device */
1787 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1788 md_error(rdev->mddev, rdev);
1789 return 0;
1793 * This is a kernel thread which:
1795 * 1. Retries failed read operations on working mirrors.
1796 * 2. Updates the raid superblock when problems encounter.
1797 * 3. Performs writes following reads for array synchronising.
1800 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
1802 int sect = 0; /* Offset from r10_bio->sector */
1803 int sectors = r10_bio->sectors;
1804 struct md_rdev*rdev;
1805 int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
1806 int d = r10_bio->devs[r10_bio->read_slot].devnum;
1808 /* still own a reference to this rdev, so it cannot
1809 * have been cleared recently.
1811 rdev = conf->mirrors[d].rdev;
1813 if (test_bit(Faulty, &rdev->flags))
1814 /* drive has already been failed, just ignore any
1815 more fix_read_error() attempts */
1816 return;
1818 check_decay_read_errors(mddev, rdev);
1819 atomic_inc(&rdev->read_errors);
1820 if (atomic_read(&rdev->read_errors) > max_read_errors) {
1821 char b[BDEVNAME_SIZE];
1822 bdevname(rdev->bdev, b);
1824 printk(KERN_NOTICE
1825 "md/raid10:%s: %s: Raid device exceeded "
1826 "read_error threshold [cur %d:max %d]\n",
1827 mdname(mddev), b,
1828 atomic_read(&rdev->read_errors), max_read_errors);
1829 printk(KERN_NOTICE
1830 "md/raid10:%s: %s: Failing raid device\n",
1831 mdname(mddev), b);
1832 md_error(mddev, conf->mirrors[d].rdev);
1833 return;
1836 while(sectors) {
1837 int s = sectors;
1838 int sl = r10_bio->read_slot;
1839 int success = 0;
1840 int start;
1842 if (s > (PAGE_SIZE>>9))
1843 s = PAGE_SIZE >> 9;
1845 rcu_read_lock();
1846 do {
1847 sector_t first_bad;
1848 int bad_sectors;
1850 d = r10_bio->devs[sl].devnum;
1851 rdev = rcu_dereference(conf->mirrors[d].rdev);
1852 if (rdev &&
1853 test_bit(In_sync, &rdev->flags) &&
1854 is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
1855 &first_bad, &bad_sectors) == 0) {
1856 atomic_inc(&rdev->nr_pending);
1857 rcu_read_unlock();
1858 success = sync_page_io(rdev,
1859 r10_bio->devs[sl].addr +
1860 sect,
1861 s<<9,
1862 conf->tmppage, READ, false);
1863 rdev_dec_pending(rdev, mddev);
1864 rcu_read_lock();
1865 if (success)
1866 break;
1868 sl++;
1869 if (sl == conf->copies)
1870 sl = 0;
1871 } while (!success && sl != r10_bio->read_slot);
1872 rcu_read_unlock();
1874 if (!success) {
1875 /* Cannot read from anywhere, just mark the block
1876 * as bad on the first device to discourage future
1877 * reads.
1879 int dn = r10_bio->devs[r10_bio->read_slot].devnum;
1880 rdev = conf->mirrors[dn].rdev;
1882 if (!rdev_set_badblocks(
1883 rdev,
1884 r10_bio->devs[r10_bio->read_slot].addr
1885 + sect,
1886 s, 0))
1887 md_error(mddev, rdev);
1888 break;
1891 start = sl;
1892 /* write it back and re-read */
1893 rcu_read_lock();
1894 while (sl != r10_bio->read_slot) {
1895 char b[BDEVNAME_SIZE];
1897 if (sl==0)
1898 sl = conf->copies;
1899 sl--;
1900 d = r10_bio->devs[sl].devnum;
1901 rdev = rcu_dereference(conf->mirrors[d].rdev);
1902 if (!rdev ||
1903 !test_bit(In_sync, &rdev->flags))
1904 continue;
1906 atomic_inc(&rdev->nr_pending);
1907 rcu_read_unlock();
1908 if (r10_sync_page_io(rdev,
1909 r10_bio->devs[sl].addr +
1910 sect,
1911 s<<9, conf->tmppage, WRITE)
1912 == 0) {
1913 /* Well, this device is dead */
1914 printk(KERN_NOTICE
1915 "md/raid10:%s: read correction "
1916 "write failed"
1917 " (%d sectors at %llu on %s)\n",
1918 mdname(mddev), s,
1919 (unsigned long long)(
1920 sect + rdev->data_offset),
1921 bdevname(rdev->bdev, b));
1922 printk(KERN_NOTICE "md/raid10:%s: %s: failing "
1923 "drive\n",
1924 mdname(mddev),
1925 bdevname(rdev->bdev, b));
1927 rdev_dec_pending(rdev, mddev);
1928 rcu_read_lock();
1930 sl = start;
1931 while (sl != r10_bio->read_slot) {
1932 char b[BDEVNAME_SIZE];
1934 if (sl==0)
1935 sl = conf->copies;
1936 sl--;
1937 d = r10_bio->devs[sl].devnum;
1938 rdev = rcu_dereference(conf->mirrors[d].rdev);
1939 if (!rdev ||
1940 !test_bit(In_sync, &rdev->flags))
1941 continue;
1943 atomic_inc(&rdev->nr_pending);
1944 rcu_read_unlock();
1945 switch (r10_sync_page_io(rdev,
1946 r10_bio->devs[sl].addr +
1947 sect,
1948 s<<9, conf->tmppage,
1949 READ)) {
1950 case 0:
1951 /* Well, this device is dead */
1952 printk(KERN_NOTICE
1953 "md/raid10:%s: unable to read back "
1954 "corrected sectors"
1955 " (%d sectors at %llu on %s)\n",
1956 mdname(mddev), s,
1957 (unsigned long long)(
1958 sect + rdev->data_offset),
1959 bdevname(rdev->bdev, b));
1960 printk(KERN_NOTICE "md/raid10:%s: %s: failing "
1961 "drive\n",
1962 mdname(mddev),
1963 bdevname(rdev->bdev, b));
1964 break;
1965 case 1:
1966 printk(KERN_INFO
1967 "md/raid10:%s: read error corrected"
1968 " (%d sectors at %llu on %s)\n",
1969 mdname(mddev), s,
1970 (unsigned long long)(
1971 sect + rdev->data_offset),
1972 bdevname(rdev->bdev, b));
1973 atomic_add(s, &rdev->corrected_errors);
1976 rdev_dec_pending(rdev, mddev);
1977 rcu_read_lock();
1979 rcu_read_unlock();
1981 sectors -= s;
1982 sect += s;
1986 static void bi_complete(struct bio *bio, int error)
1988 complete((struct completion *)bio->bi_private);
1991 static int submit_bio_wait(int rw, struct bio *bio)
1993 struct completion event;
1994 rw |= REQ_SYNC;
1996 init_completion(&event);
1997 bio->bi_private = &event;
1998 bio->bi_end_io = bi_complete;
1999 submit_bio(rw, bio);
2000 wait_for_completion(&event);
2002 return test_bit(BIO_UPTODATE, &bio->bi_flags);
2005 static int narrow_write_error(struct r10bio *r10_bio, int i)
2007 struct bio *bio = r10_bio->master_bio;
2008 struct mddev *mddev = r10_bio->mddev;
2009 struct r10conf *conf = mddev->private;
2010 struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2011 /* bio has the data to be written to slot 'i' where
2012 * we just recently had a write error.
2013 * We repeatedly clone the bio and trim down to one block,
2014 * then try the write. Where the write fails we record
2015 * a bad block.
2016 * It is conceivable that the bio doesn't exactly align with
2017 * blocks. We must handle this.
2019 * We currently own a reference to the rdev.
2022 int block_sectors;
2023 sector_t sector;
2024 int sectors;
2025 int sect_to_write = r10_bio->sectors;
2026 int ok = 1;
2028 if (rdev->badblocks.shift < 0)
2029 return 0;
2031 block_sectors = 1 << rdev->badblocks.shift;
2032 sector = r10_bio->sector;
2033 sectors = ((r10_bio->sector + block_sectors)
2034 & ~(sector_t)(block_sectors - 1))
2035 - sector;
2037 while (sect_to_write) {
2038 struct bio *wbio;
2039 if (sectors > sect_to_write)
2040 sectors = sect_to_write;
2041 /* Write at 'sector' for 'sectors' */
2042 wbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
2043 md_trim_bio(wbio, sector - bio->bi_sector, sectors);
2044 wbio->bi_sector = (r10_bio->devs[i].addr+
2045 rdev->data_offset+
2046 (sector - r10_bio->sector));
2047 wbio->bi_bdev = rdev->bdev;
2048 if (submit_bio_wait(WRITE, wbio) == 0)
2049 /* Failure! */
2050 ok = rdev_set_badblocks(rdev, sector,
2051 sectors, 0)
2052 && ok;
2054 bio_put(wbio);
2055 sect_to_write -= sectors;
2056 sector += sectors;
2057 sectors = block_sectors;
2059 return ok;
2062 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2064 int slot = r10_bio->read_slot;
2065 int mirror = r10_bio->devs[slot].devnum;
2066 struct bio *bio;
2067 struct r10conf *conf = mddev->private;
2068 struct md_rdev *rdev;
2069 char b[BDEVNAME_SIZE];
2070 unsigned long do_sync;
2071 int max_sectors;
2073 /* we got a read error. Maybe the drive is bad. Maybe just
2074 * the block and we can fix it.
2075 * We freeze all other IO, and try reading the block from
2076 * other devices. When we find one, we re-write
2077 * and check it that fixes the read error.
2078 * This is all done synchronously while the array is
2079 * frozen.
2081 if (mddev->ro == 0) {
2082 freeze_array(conf);
2083 fix_read_error(conf, mddev, r10_bio);
2084 unfreeze_array(conf);
2086 rdev_dec_pending(conf->mirrors[mirror].rdev, mddev);
2088 bio = r10_bio->devs[slot].bio;
2089 bdevname(bio->bi_bdev, b);
2090 r10_bio->devs[slot].bio =
2091 mddev->ro ? IO_BLOCKED : NULL;
2092 read_more:
2093 mirror = read_balance(conf, r10_bio, &max_sectors);
2094 if (mirror == -1) {
2095 printk(KERN_ALERT "md/raid10:%s: %s: unrecoverable I/O"
2096 " read error for block %llu\n",
2097 mdname(mddev), b,
2098 (unsigned long long)r10_bio->sector);
2099 raid_end_bio_io(r10_bio);
2100 bio_put(bio);
2101 return;
2104 do_sync = (r10_bio->master_bio->bi_rw & REQ_SYNC);
2105 if (bio)
2106 bio_put(bio);
2107 slot = r10_bio->read_slot;
2108 rdev = conf->mirrors[mirror].rdev;
2109 printk_ratelimited(
2110 KERN_ERR
2111 "md/raid10:%s: %s: redirecting"
2112 "sector %llu to another mirror\n",
2113 mdname(mddev),
2114 bdevname(rdev->bdev, b),
2115 (unsigned long long)r10_bio->sector);
2116 bio = bio_clone_mddev(r10_bio->master_bio,
2117 GFP_NOIO, mddev);
2118 md_trim_bio(bio,
2119 r10_bio->sector - bio->bi_sector,
2120 max_sectors);
2121 r10_bio->devs[slot].bio = bio;
2122 bio->bi_sector = r10_bio->devs[slot].addr
2123 + rdev->data_offset;
2124 bio->bi_bdev = rdev->bdev;
2125 bio->bi_rw = READ | do_sync;
2126 bio->bi_private = r10_bio;
2127 bio->bi_end_io = raid10_end_read_request;
2128 if (max_sectors < r10_bio->sectors) {
2129 /* Drat - have to split this up more */
2130 struct bio *mbio = r10_bio->master_bio;
2131 int sectors_handled =
2132 r10_bio->sector + max_sectors
2133 - mbio->bi_sector;
2134 r10_bio->sectors = max_sectors;
2135 spin_lock_irq(&conf->device_lock);
2136 if (mbio->bi_phys_segments == 0)
2137 mbio->bi_phys_segments = 2;
2138 else
2139 mbio->bi_phys_segments++;
2140 spin_unlock_irq(&conf->device_lock);
2141 generic_make_request(bio);
2142 bio = NULL;
2144 r10_bio = mempool_alloc(conf->r10bio_pool,
2145 GFP_NOIO);
2146 r10_bio->master_bio = mbio;
2147 r10_bio->sectors = (mbio->bi_size >> 9)
2148 - sectors_handled;
2149 r10_bio->state = 0;
2150 set_bit(R10BIO_ReadError,
2151 &r10_bio->state);
2152 r10_bio->mddev = mddev;
2153 r10_bio->sector = mbio->bi_sector
2154 + sectors_handled;
2156 goto read_more;
2157 } else
2158 generic_make_request(bio);
2161 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2163 /* Some sort of write request has finished and it
2164 * succeeded in writing where we thought there was a
2165 * bad block. So forget the bad block.
2166 * Or possibly if failed and we need to record
2167 * a bad block.
2169 int m;
2170 struct md_rdev *rdev;
2172 if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2173 test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2174 for (m = 0; m < conf->copies; m++) {
2175 int dev = r10_bio->devs[m].devnum;
2176 rdev = conf->mirrors[dev].rdev;
2177 if (r10_bio->devs[m].bio == NULL)
2178 continue;
2179 if (test_bit(BIO_UPTODATE,
2180 &r10_bio->devs[m].bio->bi_flags)) {
2181 rdev_clear_badblocks(
2182 rdev,
2183 r10_bio->devs[m].addr,
2184 r10_bio->sectors);
2185 } else {
2186 if (!rdev_set_badblocks(
2187 rdev,
2188 r10_bio->devs[m].addr,
2189 r10_bio->sectors, 0))
2190 md_error(conf->mddev, rdev);
2193 put_buf(r10_bio);
2194 } else {
2195 for (m = 0; m < conf->copies; m++) {
2196 int dev = r10_bio->devs[m].devnum;
2197 struct bio *bio = r10_bio->devs[m].bio;
2198 rdev = conf->mirrors[dev].rdev;
2199 if (bio == IO_MADE_GOOD) {
2200 rdev_clear_badblocks(
2201 rdev,
2202 r10_bio->devs[m].addr,
2203 r10_bio->sectors);
2204 rdev_dec_pending(rdev, conf->mddev);
2205 } else if (bio != NULL &&
2206 !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
2207 if (!narrow_write_error(r10_bio, m)) {
2208 md_error(conf->mddev, rdev);
2209 set_bit(R10BIO_Degraded,
2210 &r10_bio->state);
2212 rdev_dec_pending(rdev, conf->mddev);
2215 if (test_bit(R10BIO_WriteError,
2216 &r10_bio->state))
2217 close_write(r10_bio);
2218 raid_end_bio_io(r10_bio);
2222 static void raid10d(struct mddev *mddev)
2224 struct r10bio *r10_bio;
2225 unsigned long flags;
2226 struct r10conf *conf = mddev->private;
2227 struct list_head *head = &conf->retry_list;
2228 struct blk_plug plug;
2230 md_check_recovery(mddev);
2232 blk_start_plug(&plug);
2233 for (;;) {
2235 flush_pending_writes(conf);
2237 spin_lock_irqsave(&conf->device_lock, flags);
2238 if (list_empty(head)) {
2239 spin_unlock_irqrestore(&conf->device_lock, flags);
2240 break;
2242 r10_bio = list_entry(head->prev, struct r10bio, retry_list);
2243 list_del(head->prev);
2244 conf->nr_queued--;
2245 spin_unlock_irqrestore(&conf->device_lock, flags);
2247 mddev = r10_bio->mddev;
2248 conf = mddev->private;
2249 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2250 test_bit(R10BIO_WriteError, &r10_bio->state))
2251 handle_write_completed(conf, r10_bio);
2252 else if (test_bit(R10BIO_IsSync, &r10_bio->state))
2253 sync_request_write(mddev, r10_bio);
2254 else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
2255 recovery_request_write(mddev, r10_bio);
2256 else if (test_bit(R10BIO_ReadError, &r10_bio->state))
2257 handle_read_error(mddev, r10_bio);
2258 else {
2259 /* just a partial read to be scheduled from a
2260 * separate context
2262 int slot = r10_bio->read_slot;
2263 generic_make_request(r10_bio->devs[slot].bio);
2266 cond_resched();
2267 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2268 md_check_recovery(mddev);
2270 blk_finish_plug(&plug);
2274 static int init_resync(struct r10conf *conf)
2276 int buffs;
2278 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2279 BUG_ON(conf->r10buf_pool);
2280 conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
2281 if (!conf->r10buf_pool)
2282 return -ENOMEM;
2283 conf->next_resync = 0;
2284 return 0;
2288 * perform a "sync" on one "block"
2290 * We need to make sure that no normal I/O request - particularly write
2291 * requests - conflict with active sync requests.
2293 * This is achieved by tracking pending requests and a 'barrier' concept
2294 * that can be installed to exclude normal IO requests.
2296 * Resync and recovery are handled very differently.
2297 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2299 * For resync, we iterate over virtual addresses, read all copies,
2300 * and update if there are differences. If only one copy is live,
2301 * skip it.
2302 * For recovery, we iterate over physical addresses, read a good
2303 * value for each non-in_sync drive, and over-write.
2305 * So, for recovery we may have several outstanding complex requests for a
2306 * given address, one for each out-of-sync device. We model this by allocating
2307 * a number of r10_bio structures, one for each out-of-sync device.
2308 * As we setup these structures, we collect all bio's together into a list
2309 * which we then process collectively to add pages, and then process again
2310 * to pass to generic_make_request.
2312 * The r10_bio structures are linked using a borrowed master_bio pointer.
2313 * This link is counted in ->remaining. When the r10_bio that points to NULL
2314 * has its remaining count decremented to 0, the whole complex operation
2315 * is complete.
2319 static sector_t sync_request(struct mddev *mddev, sector_t sector_nr,
2320 int *skipped, int go_faster)
2322 struct r10conf *conf = mddev->private;
2323 struct r10bio *r10_bio;
2324 struct bio *biolist = NULL, *bio;
2325 sector_t max_sector, nr_sectors;
2326 int i;
2327 int max_sync;
2328 sector_t sync_blocks;
2329 sector_t sectors_skipped = 0;
2330 int chunks_skipped = 0;
2332 if (!conf->r10buf_pool)
2333 if (init_resync(conf))
2334 return 0;
2336 skipped:
2337 max_sector = mddev->dev_sectors;
2338 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2339 max_sector = mddev->resync_max_sectors;
2340 if (sector_nr >= max_sector) {
2341 /* If we aborted, we need to abort the
2342 * sync on the 'current' bitmap chucks (there can
2343 * be several when recovering multiple devices).
2344 * as we may have started syncing it but not finished.
2345 * We can find the current address in
2346 * mddev->curr_resync, but for recovery,
2347 * we need to convert that to several
2348 * virtual addresses.
2350 if (mddev->curr_resync < max_sector) { /* aborted */
2351 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2352 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2353 &sync_blocks, 1);
2354 else for (i=0; i<conf->raid_disks; i++) {
2355 sector_t sect =
2356 raid10_find_virt(conf, mddev->curr_resync, i);
2357 bitmap_end_sync(mddev->bitmap, sect,
2358 &sync_blocks, 1);
2360 } else /* completed sync */
2361 conf->fullsync = 0;
2363 bitmap_close_sync(mddev->bitmap);
2364 close_sync(conf);
2365 *skipped = 1;
2366 return sectors_skipped;
2368 if (chunks_skipped >= conf->raid_disks) {
2369 /* if there has been nothing to do on any drive,
2370 * then there is nothing to do at all..
2372 *skipped = 1;
2373 return (max_sector - sector_nr) + sectors_skipped;
2376 if (max_sector > mddev->resync_max)
2377 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2379 /* make sure whole request will fit in a chunk - if chunks
2380 * are meaningful
2382 if (conf->near_copies < conf->raid_disks &&
2383 max_sector > (sector_nr | conf->chunk_mask))
2384 max_sector = (sector_nr | conf->chunk_mask) + 1;
2386 * If there is non-resync activity waiting for us then
2387 * put in a delay to throttle resync.
2389 if (!go_faster && conf->nr_waiting)
2390 msleep_interruptible(1000);
2392 /* Again, very different code for resync and recovery.
2393 * Both must result in an r10bio with a list of bios that
2394 * have bi_end_io, bi_sector, bi_bdev set,
2395 * and bi_private set to the r10bio.
2396 * For recovery, we may actually create several r10bios
2397 * with 2 bios in each, that correspond to the bios in the main one.
2398 * In this case, the subordinate r10bios link back through a
2399 * borrowed master_bio pointer, and the counter in the master
2400 * includes a ref from each subordinate.
2402 /* First, we decide what to do and set ->bi_end_io
2403 * To end_sync_read if we want to read, and
2404 * end_sync_write if we will want to write.
2407 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
2408 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2409 /* recovery... the complicated one */
2410 int j;
2411 r10_bio = NULL;
2413 for (i=0 ; i<conf->raid_disks; i++) {
2414 int still_degraded;
2415 struct r10bio *rb2;
2416 sector_t sect;
2417 int must_sync;
2418 int any_working;
2420 if (conf->mirrors[i].rdev == NULL ||
2421 test_bit(In_sync, &conf->mirrors[i].rdev->flags))
2422 continue;
2424 still_degraded = 0;
2425 /* want to reconstruct this device */
2426 rb2 = r10_bio;
2427 sect = raid10_find_virt(conf, sector_nr, i);
2428 /* Unless we are doing a full sync, we only need
2429 * to recover the block if it is set in the bitmap
2431 must_sync = bitmap_start_sync(mddev->bitmap, sect,
2432 &sync_blocks, 1);
2433 if (sync_blocks < max_sync)
2434 max_sync = sync_blocks;
2435 if (!must_sync &&
2436 !conf->fullsync) {
2437 /* yep, skip the sync_blocks here, but don't assume
2438 * that there will never be anything to do here
2440 chunks_skipped = -1;
2441 continue;
2444 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
2445 raise_barrier(conf, rb2 != NULL);
2446 atomic_set(&r10_bio->remaining, 0);
2448 r10_bio->master_bio = (struct bio*)rb2;
2449 if (rb2)
2450 atomic_inc(&rb2->remaining);
2451 r10_bio->mddev = mddev;
2452 set_bit(R10BIO_IsRecover, &r10_bio->state);
2453 r10_bio->sector = sect;
2455 raid10_find_phys(conf, r10_bio);
2457 /* Need to check if the array will still be
2458 * degraded
2460 for (j=0; j<conf->raid_disks; j++)
2461 if (conf->mirrors[j].rdev == NULL ||
2462 test_bit(Faulty, &conf->mirrors[j].rdev->flags)) {
2463 still_degraded = 1;
2464 break;
2467 must_sync = bitmap_start_sync(mddev->bitmap, sect,
2468 &sync_blocks, still_degraded);
2470 any_working = 0;
2471 for (j=0; j<conf->copies;j++) {
2472 int k;
2473 int d = r10_bio->devs[j].devnum;
2474 sector_t from_addr, to_addr;
2475 struct md_rdev *rdev;
2476 sector_t sector, first_bad;
2477 int bad_sectors;
2478 if (!conf->mirrors[d].rdev ||
2479 !test_bit(In_sync, &conf->mirrors[d].rdev->flags))
2480 continue;
2481 /* This is where we read from */
2482 any_working = 1;
2483 rdev = conf->mirrors[d].rdev;
2484 sector = r10_bio->devs[j].addr;
2486 if (is_badblock(rdev, sector, max_sync,
2487 &first_bad, &bad_sectors)) {
2488 if (first_bad > sector)
2489 max_sync = first_bad - sector;
2490 else {
2491 bad_sectors -= (sector
2492 - first_bad);
2493 if (max_sync > bad_sectors)
2494 max_sync = bad_sectors;
2495 continue;
2498 bio = r10_bio->devs[0].bio;
2499 bio->bi_next = biolist;
2500 biolist = bio;
2501 bio->bi_private = r10_bio;
2502 bio->bi_end_io = end_sync_read;
2503 bio->bi_rw = READ;
2504 from_addr = r10_bio->devs[j].addr;
2505 bio->bi_sector = from_addr +
2506 conf->mirrors[d].rdev->data_offset;
2507 bio->bi_bdev = conf->mirrors[d].rdev->bdev;
2508 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2509 atomic_inc(&r10_bio->remaining);
2510 /* and we write to 'i' */
2512 for (k=0; k<conf->copies; k++)
2513 if (r10_bio->devs[k].devnum == i)
2514 break;
2515 BUG_ON(k == conf->copies);
2516 bio = r10_bio->devs[1].bio;
2517 bio->bi_next = biolist;
2518 biolist = bio;
2519 bio->bi_private = r10_bio;
2520 bio->bi_end_io = end_sync_write;
2521 bio->bi_rw = WRITE;
2522 to_addr = r10_bio->devs[k].addr;
2523 bio->bi_sector = to_addr +
2524 conf->mirrors[i].rdev->data_offset;
2525 bio->bi_bdev = conf->mirrors[i].rdev->bdev;
2527 r10_bio->devs[0].devnum = d;
2528 r10_bio->devs[0].addr = from_addr;
2529 r10_bio->devs[1].devnum = i;
2530 r10_bio->devs[1].addr = to_addr;
2532 break;
2534 if (j == conf->copies) {
2535 /* Cannot recover, so abort the recovery or
2536 * record a bad block */
2537 put_buf(r10_bio);
2538 if (rb2)
2539 atomic_dec(&rb2->remaining);
2540 r10_bio = rb2;
2541 if (any_working) {
2542 /* problem is that there are bad blocks
2543 * on other device(s)
2545 int k;
2546 for (k = 0; k < conf->copies; k++)
2547 if (r10_bio->devs[k].devnum == i)
2548 break;
2549 if (!rdev_set_badblocks(
2550 conf->mirrors[i].rdev,
2551 r10_bio->devs[k].addr,
2552 max_sync, 0))
2553 any_working = 0;
2555 if (!any_working) {
2556 if (!test_and_set_bit(MD_RECOVERY_INTR,
2557 &mddev->recovery))
2558 printk(KERN_INFO "md/raid10:%s: insufficient "
2559 "working devices for recovery.\n",
2560 mdname(mddev));
2561 conf->mirrors[i].recovery_disabled
2562 = mddev->recovery_disabled;
2564 break;
2567 if (biolist == NULL) {
2568 while (r10_bio) {
2569 struct r10bio *rb2 = r10_bio;
2570 r10_bio = (struct r10bio*) rb2->master_bio;
2571 rb2->master_bio = NULL;
2572 put_buf(rb2);
2574 goto giveup;
2576 } else {
2577 /* resync. Schedule a read for every block at this virt offset */
2578 int count = 0;
2580 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
2582 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
2583 &sync_blocks, mddev->degraded) &&
2584 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
2585 &mddev->recovery)) {
2586 /* We can skip this block */
2587 *skipped = 1;
2588 return sync_blocks + sectors_skipped;
2590 if (sync_blocks < max_sync)
2591 max_sync = sync_blocks;
2592 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
2594 r10_bio->mddev = mddev;
2595 atomic_set(&r10_bio->remaining, 0);
2596 raise_barrier(conf, 0);
2597 conf->next_resync = sector_nr;
2599 r10_bio->master_bio = NULL;
2600 r10_bio->sector = sector_nr;
2601 set_bit(R10BIO_IsSync, &r10_bio->state);
2602 raid10_find_phys(conf, r10_bio);
2603 r10_bio->sectors = (sector_nr | conf->chunk_mask) - sector_nr +1;
2605 for (i=0; i<conf->copies; i++) {
2606 int d = r10_bio->devs[i].devnum;
2607 sector_t first_bad, sector;
2608 int bad_sectors;
2610 bio = r10_bio->devs[i].bio;
2611 bio->bi_end_io = NULL;
2612 clear_bit(BIO_UPTODATE, &bio->bi_flags);
2613 if (conf->mirrors[d].rdev == NULL ||
2614 test_bit(Faulty, &conf->mirrors[d].rdev->flags))
2615 continue;
2616 sector = r10_bio->devs[i].addr;
2617 if (is_badblock(conf->mirrors[d].rdev,
2618 sector, max_sync,
2619 &first_bad, &bad_sectors)) {
2620 if (first_bad > sector)
2621 max_sync = first_bad - sector;
2622 else {
2623 bad_sectors -= (sector - first_bad);
2624 if (max_sync > bad_sectors)
2625 max_sync = max_sync;
2626 continue;
2629 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2630 atomic_inc(&r10_bio->remaining);
2631 bio->bi_next = biolist;
2632 biolist = bio;
2633 bio->bi_private = r10_bio;
2634 bio->bi_end_io = end_sync_read;
2635 bio->bi_rw = READ;
2636 bio->bi_sector = sector +
2637 conf->mirrors[d].rdev->data_offset;
2638 bio->bi_bdev = conf->mirrors[d].rdev->bdev;
2639 count++;
2642 if (count < 2) {
2643 for (i=0; i<conf->copies; i++) {
2644 int d = r10_bio->devs[i].devnum;
2645 if (r10_bio->devs[i].bio->bi_end_io)
2646 rdev_dec_pending(conf->mirrors[d].rdev,
2647 mddev);
2649 put_buf(r10_bio);
2650 biolist = NULL;
2651 goto giveup;
2655 for (bio = biolist; bio ; bio=bio->bi_next) {
2657 bio->bi_flags &= ~(BIO_POOL_MASK - 1);
2658 if (bio->bi_end_io)
2659 bio->bi_flags |= 1 << BIO_UPTODATE;
2660 bio->bi_vcnt = 0;
2661 bio->bi_idx = 0;
2662 bio->bi_phys_segments = 0;
2663 bio->bi_size = 0;
2666 nr_sectors = 0;
2667 if (sector_nr + max_sync < max_sector)
2668 max_sector = sector_nr + max_sync;
2669 do {
2670 struct page *page;
2671 int len = PAGE_SIZE;
2672 if (sector_nr + (len>>9) > max_sector)
2673 len = (max_sector - sector_nr) << 9;
2674 if (len == 0)
2675 break;
2676 for (bio= biolist ; bio ; bio=bio->bi_next) {
2677 struct bio *bio2;
2678 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
2679 if (bio_add_page(bio, page, len, 0))
2680 continue;
2682 /* stop here */
2683 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
2684 for (bio2 = biolist;
2685 bio2 && bio2 != bio;
2686 bio2 = bio2->bi_next) {
2687 /* remove last page from this bio */
2688 bio2->bi_vcnt--;
2689 bio2->bi_size -= len;
2690 bio2->bi_flags &= ~(1<< BIO_SEG_VALID);
2692 goto bio_full;
2694 nr_sectors += len>>9;
2695 sector_nr += len>>9;
2696 } while (biolist->bi_vcnt < RESYNC_PAGES);
2697 bio_full:
2698 r10_bio->sectors = nr_sectors;
2700 while (biolist) {
2701 bio = biolist;
2702 biolist = biolist->bi_next;
2704 bio->bi_next = NULL;
2705 r10_bio = bio->bi_private;
2706 r10_bio->sectors = nr_sectors;
2708 if (bio->bi_end_io == end_sync_read) {
2709 md_sync_acct(bio->bi_bdev, nr_sectors);
2710 generic_make_request(bio);
2714 if (sectors_skipped)
2715 /* pretend they weren't skipped, it makes
2716 * no important difference in this case
2718 md_done_sync(mddev, sectors_skipped, 1);
2720 return sectors_skipped + nr_sectors;
2721 giveup:
2722 /* There is nowhere to write, so all non-sync
2723 * drives must be failed or in resync, all drives
2724 * have a bad block, so try the next chunk...
2726 if (sector_nr + max_sync < max_sector)
2727 max_sector = sector_nr + max_sync;
2729 sectors_skipped += (max_sector - sector_nr);
2730 chunks_skipped ++;
2731 sector_nr = max_sector;
2732 goto skipped;
2735 static sector_t
2736 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2738 sector_t size;
2739 struct r10conf *conf = mddev->private;
2741 if (!raid_disks)
2742 raid_disks = conf->raid_disks;
2743 if (!sectors)
2744 sectors = conf->dev_sectors;
2746 size = sectors >> conf->chunk_shift;
2747 sector_div(size, conf->far_copies);
2748 size = size * raid_disks;
2749 sector_div(size, conf->near_copies);
2751 return size << conf->chunk_shift;
2755 static struct r10conf *setup_conf(struct mddev *mddev)
2757 struct r10conf *conf = NULL;
2758 int nc, fc, fo;
2759 sector_t stride, size;
2760 int err = -EINVAL;
2762 if (mddev->new_chunk_sectors < (PAGE_SIZE >> 9) ||
2763 !is_power_of_2(mddev->new_chunk_sectors)) {
2764 printk(KERN_ERR "md/raid10:%s: chunk size must be "
2765 "at least PAGE_SIZE(%ld) and be a power of 2.\n",
2766 mdname(mddev), PAGE_SIZE);
2767 goto out;
2770 nc = mddev->new_layout & 255;
2771 fc = (mddev->new_layout >> 8) & 255;
2772 fo = mddev->new_layout & (1<<16);
2774 if ((nc*fc) <2 || (nc*fc) > mddev->raid_disks ||
2775 (mddev->new_layout >> 17)) {
2776 printk(KERN_ERR "md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
2777 mdname(mddev), mddev->new_layout);
2778 goto out;
2781 err = -ENOMEM;
2782 conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
2783 if (!conf)
2784 goto out;
2786 conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks,
2787 GFP_KERNEL);
2788 if (!conf->mirrors)
2789 goto out;
2791 conf->tmppage = alloc_page(GFP_KERNEL);
2792 if (!conf->tmppage)
2793 goto out;
2796 conf->raid_disks = mddev->raid_disks;
2797 conf->near_copies = nc;
2798 conf->far_copies = fc;
2799 conf->copies = nc*fc;
2800 conf->far_offset = fo;
2801 conf->chunk_mask = mddev->new_chunk_sectors - 1;
2802 conf->chunk_shift = ffz(~mddev->new_chunk_sectors);
2804 conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
2805 r10bio_pool_free, conf);
2806 if (!conf->r10bio_pool)
2807 goto out;
2809 size = mddev->dev_sectors >> conf->chunk_shift;
2810 sector_div(size, fc);
2811 size = size * conf->raid_disks;
2812 sector_div(size, nc);
2813 /* 'size' is now the number of chunks in the array */
2814 /* calculate "used chunks per device" in 'stride' */
2815 stride = size * conf->copies;
2817 /* We need to round up when dividing by raid_disks to
2818 * get the stride size.
2820 stride += conf->raid_disks - 1;
2821 sector_div(stride, conf->raid_disks);
2823 conf->dev_sectors = stride << conf->chunk_shift;
2825 if (fo)
2826 stride = 1;
2827 else
2828 sector_div(stride, fc);
2829 conf->stride = stride << conf->chunk_shift;
2832 spin_lock_init(&conf->device_lock);
2833 INIT_LIST_HEAD(&conf->retry_list);
2835 spin_lock_init(&conf->resync_lock);
2836 init_waitqueue_head(&conf->wait_barrier);
2838 conf->thread = md_register_thread(raid10d, mddev, NULL);
2839 if (!conf->thread)
2840 goto out;
2842 conf->mddev = mddev;
2843 return conf;
2845 out:
2846 printk(KERN_ERR "md/raid10:%s: couldn't allocate memory.\n",
2847 mdname(mddev));
2848 if (conf) {
2849 if (conf->r10bio_pool)
2850 mempool_destroy(conf->r10bio_pool);
2851 kfree(conf->mirrors);
2852 safe_put_page(conf->tmppage);
2853 kfree(conf);
2855 return ERR_PTR(err);
2858 static int run(struct mddev *mddev)
2860 struct r10conf *conf;
2861 int i, disk_idx, chunk_size;
2862 struct mirror_info *disk;
2863 struct md_rdev *rdev;
2864 sector_t size;
2867 * copy the already verified devices into our private RAID10
2868 * bookkeeping area. [whatever we allocate in run(),
2869 * should be freed in stop()]
2872 if (mddev->private == NULL) {
2873 conf = setup_conf(mddev);
2874 if (IS_ERR(conf))
2875 return PTR_ERR(conf);
2876 mddev->private = conf;
2878 conf = mddev->private;
2879 if (!conf)
2880 goto out;
2882 mddev->thread = conf->thread;
2883 conf->thread = NULL;
2885 chunk_size = mddev->chunk_sectors << 9;
2886 blk_queue_io_min(mddev->queue, chunk_size);
2887 if (conf->raid_disks % conf->near_copies)
2888 blk_queue_io_opt(mddev->queue, chunk_size * conf->raid_disks);
2889 else
2890 blk_queue_io_opt(mddev->queue, chunk_size *
2891 (conf->raid_disks / conf->near_copies));
2893 list_for_each_entry(rdev, &mddev->disks, same_set) {
2895 disk_idx = rdev->raid_disk;
2896 if (disk_idx >= conf->raid_disks
2897 || disk_idx < 0)
2898 continue;
2899 disk = conf->mirrors + disk_idx;
2901 disk->rdev = rdev;
2902 disk_stack_limits(mddev->gendisk, rdev->bdev,
2903 rdev->data_offset << 9);
2904 /* as we don't honour merge_bvec_fn, we must never risk
2905 * violating it, so limit max_segments to 1 lying
2906 * within a single page.
2908 if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
2909 blk_queue_max_segments(mddev->queue, 1);
2910 blk_queue_segment_boundary(mddev->queue,
2911 PAGE_CACHE_SIZE - 1);
2914 disk->head_position = 0;
2916 /* need to check that every block has at least one working mirror */
2917 if (!enough(conf, -1)) {
2918 printk(KERN_ERR "md/raid10:%s: not enough operational mirrors.\n",
2919 mdname(mddev));
2920 goto out_free_conf;
2923 mddev->degraded = 0;
2924 for (i = 0; i < conf->raid_disks; i++) {
2926 disk = conf->mirrors + i;
2928 if (!disk->rdev ||
2929 !test_bit(In_sync, &disk->rdev->flags)) {
2930 disk->head_position = 0;
2931 mddev->degraded++;
2932 if (disk->rdev)
2933 conf->fullsync = 1;
2935 disk->recovery_disabled = mddev->recovery_disabled - 1;
2938 if (mddev->recovery_cp != MaxSector)
2939 printk(KERN_NOTICE "md/raid10:%s: not clean"
2940 " -- starting background reconstruction\n",
2941 mdname(mddev));
2942 printk(KERN_INFO
2943 "md/raid10:%s: active with %d out of %d devices\n",
2944 mdname(mddev), conf->raid_disks - mddev->degraded,
2945 conf->raid_disks);
2947 * Ok, everything is just fine now
2949 mddev->dev_sectors = conf->dev_sectors;
2950 size = raid10_size(mddev, 0, 0);
2951 md_set_array_sectors(mddev, size);
2952 mddev->resync_max_sectors = size;
2954 mddev->queue->backing_dev_info.congested_fn = raid10_congested;
2955 mddev->queue->backing_dev_info.congested_data = mddev;
2957 /* Calculate max read-ahead size.
2958 * We need to readahead at least twice a whole stripe....
2959 * maybe...
2962 int stripe = conf->raid_disks *
2963 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
2964 stripe /= conf->near_copies;
2965 if (mddev->queue->backing_dev_info.ra_pages < 2* stripe)
2966 mddev->queue->backing_dev_info.ra_pages = 2* stripe;
2969 if (conf->near_copies < conf->raid_disks)
2970 blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec);
2972 if (md_integrity_register(mddev))
2973 goto out_free_conf;
2975 return 0;
2977 out_free_conf:
2978 md_unregister_thread(&mddev->thread);
2979 if (conf->r10bio_pool)
2980 mempool_destroy(conf->r10bio_pool);
2981 safe_put_page(conf->tmppage);
2982 kfree(conf->mirrors);
2983 kfree(conf);
2984 mddev->private = NULL;
2985 out:
2986 return -EIO;
2989 static int stop(struct mddev *mddev)
2991 struct r10conf *conf = mddev->private;
2993 raise_barrier(conf, 0);
2994 lower_barrier(conf);
2996 md_unregister_thread(&mddev->thread);
2997 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
2998 if (conf->r10bio_pool)
2999 mempool_destroy(conf->r10bio_pool);
3000 kfree(conf->mirrors);
3001 kfree(conf);
3002 mddev->private = NULL;
3003 return 0;
3006 static void raid10_quiesce(struct mddev *mddev, int state)
3008 struct r10conf *conf = mddev->private;
3010 switch(state) {
3011 case 1:
3012 raise_barrier(conf, 0);
3013 break;
3014 case 0:
3015 lower_barrier(conf);
3016 break;
3020 static void *raid10_takeover_raid0(struct mddev *mddev)
3022 struct md_rdev *rdev;
3023 struct r10conf *conf;
3025 if (mddev->degraded > 0) {
3026 printk(KERN_ERR "md/raid10:%s: Error: degraded raid0!\n",
3027 mdname(mddev));
3028 return ERR_PTR(-EINVAL);
3031 /* Set new parameters */
3032 mddev->new_level = 10;
3033 /* new layout: far_copies = 1, near_copies = 2 */
3034 mddev->new_layout = (1<<8) + 2;
3035 mddev->new_chunk_sectors = mddev->chunk_sectors;
3036 mddev->delta_disks = mddev->raid_disks;
3037 mddev->raid_disks *= 2;
3038 /* make sure it will be not marked as dirty */
3039 mddev->recovery_cp = MaxSector;
3041 conf = setup_conf(mddev);
3042 if (!IS_ERR(conf)) {
3043 list_for_each_entry(rdev, &mddev->disks, same_set)
3044 if (rdev->raid_disk >= 0)
3045 rdev->new_raid_disk = rdev->raid_disk * 2;
3046 conf->barrier = 1;
3049 return conf;
3052 static void *raid10_takeover(struct mddev *mddev)
3054 struct r0conf *raid0_conf;
3056 /* raid10 can take over:
3057 * raid0 - providing it has only two drives
3059 if (mddev->level == 0) {
3060 /* for raid0 takeover only one zone is supported */
3061 raid0_conf = mddev->private;
3062 if (raid0_conf->nr_strip_zones > 1) {
3063 printk(KERN_ERR "md/raid10:%s: cannot takeover raid 0"
3064 " with more than one zone.\n",
3065 mdname(mddev));
3066 return ERR_PTR(-EINVAL);
3068 return raid10_takeover_raid0(mddev);
3070 return ERR_PTR(-EINVAL);
3073 static struct md_personality raid10_personality =
3075 .name = "raid10",
3076 .level = 10,
3077 .owner = THIS_MODULE,
3078 .make_request = make_request,
3079 .run = run,
3080 .stop = stop,
3081 .status = status,
3082 .error_handler = error,
3083 .hot_add_disk = raid10_add_disk,
3084 .hot_remove_disk= raid10_remove_disk,
3085 .spare_active = raid10_spare_active,
3086 .sync_request = sync_request,
3087 .quiesce = raid10_quiesce,
3088 .size = raid10_size,
3089 .takeover = raid10_takeover,
3092 static int __init raid_init(void)
3094 return register_md_personality(&raid10_personality);
3097 static void raid_exit(void)
3099 unregister_md_personality(&raid10_personality);
3102 module_init(raid_init);
3103 module_exit(raid_exit);
3104 MODULE_LICENSE("GPL");
3105 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
3106 MODULE_ALIAS("md-personality-9"); /* RAID10 */
3107 MODULE_ALIAS("md-raid10");
3108 MODULE_ALIAS("md-level-10");
3110 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);