2 * raid10.c : Multiple Devices driver for Linux
4 * Copyright (C) 2000-2004 Neil Brown
6 * RAID-10 support for md.
8 * Base on code in raid1.c. See raid1.c for further copyright information.
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 #include <linux/slab.h>
22 #include <linux/delay.h>
23 #include <linux/blkdev.h>
24 #include <linux/seq_file.h>
25 #include <linux/ratelimit.h>
32 * RAID10 provides a combination of RAID0 and RAID1 functionality.
33 * The layout of data is defined by
36 * near_copies (stored in low byte of layout)
37 * far_copies (stored in second byte of layout)
38 * far_offset (stored in bit 16 of layout )
40 * The data to be stored is divided into chunks using chunksize.
41 * Each device is divided into far_copies sections.
42 * In each section, chunks are laid out in a style similar to raid0, but
43 * near_copies copies of each chunk is stored (each on a different drive).
44 * The starting device for each section is offset near_copies from the starting
45 * device of the previous section.
46 * Thus they are (near_copies*far_copies) of each chunk, and each is on a different
48 * near_copies and far_copies must be at least one, and their product is at most
51 * If far_offset is true, then the far_copies are handled a bit differently.
52 * The copies are still in different stripes, but instead of be very far apart
53 * on disk, there are adjacent stripes.
57 * Number of guaranteed r10bios in case of extreme VM load:
59 #define NR_RAID10_BIOS 256
61 /* When there are this many requests queue to be written by
62 * the raid10 thread, we become 'congested' to provide back-pressure
65 static int max_queued_requests
= 1024;
67 static void allow_barrier(struct r10conf
*conf
);
68 static void lower_barrier(struct r10conf
*conf
);
70 static void * r10bio_pool_alloc(gfp_t gfp_flags
, void *data
)
72 struct r10conf
*conf
= data
;
73 int size
= offsetof(struct r10bio
, devs
[conf
->copies
]);
75 /* allocate a r10bio with room for raid_disks entries in the bios array */
76 return kzalloc(size
, gfp_flags
);
79 static void r10bio_pool_free(void *r10_bio
, void *data
)
84 /* Maximum size of each resync request */
85 #define RESYNC_BLOCK_SIZE (64*1024)
86 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
87 /* amount of memory to reserve for resync requests */
88 #define RESYNC_WINDOW (1024*1024)
89 /* maximum number of concurrent requests, memory permitting */
90 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
93 * When performing a resync, we need to read and compare, so
94 * we need as many pages are there are copies.
95 * When performing a recovery, we need 2 bios, one for read,
96 * one for write (we recover only one drive per r10buf)
99 static void * r10buf_pool_alloc(gfp_t gfp_flags
, void *data
)
101 struct r10conf
*conf
= data
;
103 struct r10bio
*r10_bio
;
108 r10_bio
= r10bio_pool_alloc(gfp_flags
, conf
);
112 if (test_bit(MD_RECOVERY_SYNC
, &conf
->mddev
->recovery
))
113 nalloc
= conf
->copies
; /* resync */
115 nalloc
= 2; /* recovery */
120 for (j
= nalloc
; j
-- ; ) {
121 bio
= bio_kmalloc(gfp_flags
, RESYNC_PAGES
);
124 r10_bio
->devs
[j
].bio
= bio
;
127 * Allocate RESYNC_PAGES data pages and attach them
130 for (j
= 0 ; j
< nalloc
; j
++) {
131 bio
= r10_bio
->devs
[j
].bio
;
132 for (i
= 0; i
< RESYNC_PAGES
; i
++) {
133 if (j
== 1 && !test_bit(MD_RECOVERY_SYNC
,
134 &conf
->mddev
->recovery
)) {
135 /* we can share bv_page's during recovery */
136 struct bio
*rbio
= r10_bio
->devs
[0].bio
;
137 page
= rbio
->bi_io_vec
[i
].bv_page
;
140 page
= alloc_page(gfp_flags
);
144 bio
->bi_io_vec
[i
].bv_page
= page
;
152 safe_put_page(bio
->bi_io_vec
[i
-1].bv_page
);
154 for (i
= 0; i
< RESYNC_PAGES
; i
++)
155 safe_put_page(r10_bio
->devs
[j
].bio
->bi_io_vec
[i
].bv_page
);
158 while ( ++j
< nalloc
)
159 bio_put(r10_bio
->devs
[j
].bio
);
160 r10bio_pool_free(r10_bio
, conf
);
164 static void r10buf_pool_free(void *__r10_bio
, void *data
)
167 struct r10conf
*conf
= data
;
168 struct r10bio
*r10bio
= __r10_bio
;
171 for (j
=0; j
< conf
->copies
; j
++) {
172 struct bio
*bio
= r10bio
->devs
[j
].bio
;
174 for (i
= 0; i
< RESYNC_PAGES
; i
++) {
175 safe_put_page(bio
->bi_io_vec
[i
].bv_page
);
176 bio
->bi_io_vec
[i
].bv_page
= NULL
;
181 r10bio_pool_free(r10bio
, conf
);
184 static void put_all_bios(struct r10conf
*conf
, struct r10bio
*r10_bio
)
188 for (i
= 0; i
< conf
->copies
; i
++) {
189 struct bio
**bio
= & r10_bio
->devs
[i
].bio
;
190 if (!BIO_SPECIAL(*bio
))
196 static void free_r10bio(struct r10bio
*r10_bio
)
198 struct r10conf
*conf
= r10_bio
->mddev
->private;
200 put_all_bios(conf
, r10_bio
);
201 mempool_free(r10_bio
, conf
->r10bio_pool
);
204 static void put_buf(struct r10bio
*r10_bio
)
206 struct r10conf
*conf
= r10_bio
->mddev
->private;
208 mempool_free(r10_bio
, conf
->r10buf_pool
);
213 static void reschedule_retry(struct r10bio
*r10_bio
)
216 struct mddev
*mddev
= r10_bio
->mddev
;
217 struct r10conf
*conf
= mddev
->private;
219 spin_lock_irqsave(&conf
->device_lock
, flags
);
220 list_add(&r10_bio
->retry_list
, &conf
->retry_list
);
222 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
224 /* wake up frozen array... */
225 wake_up(&conf
->wait_barrier
);
227 md_wakeup_thread(mddev
->thread
);
231 * raid_end_bio_io() is called when we have finished servicing a mirrored
232 * operation and are ready to return a success/failure code to the buffer
235 static void raid_end_bio_io(struct r10bio
*r10_bio
)
237 struct bio
*bio
= r10_bio
->master_bio
;
239 struct r10conf
*conf
= r10_bio
->mddev
->private;
241 if (bio
->bi_phys_segments
) {
243 spin_lock_irqsave(&conf
->device_lock
, flags
);
244 bio
->bi_phys_segments
--;
245 done
= (bio
->bi_phys_segments
== 0);
246 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
249 if (!test_bit(R10BIO_Uptodate
, &r10_bio
->state
))
250 clear_bit(BIO_UPTODATE
, &bio
->bi_flags
);
254 * Wake up any possible resync thread that waits for the device
259 free_r10bio(r10_bio
);
263 * Update disk head position estimator based on IRQ completion info.
265 static inline void update_head_pos(int slot
, struct r10bio
*r10_bio
)
267 struct r10conf
*conf
= r10_bio
->mddev
->private;
269 conf
->mirrors
[r10_bio
->devs
[slot
].devnum
].head_position
=
270 r10_bio
->devs
[slot
].addr
+ (r10_bio
->sectors
);
274 * Find the disk number which triggered given bio
276 static int find_bio_disk(struct r10conf
*conf
, struct r10bio
*r10_bio
,
277 struct bio
*bio
, int *slotp
)
281 for (slot
= 0; slot
< conf
->copies
; slot
++)
282 if (r10_bio
->devs
[slot
].bio
== bio
)
285 BUG_ON(slot
== conf
->copies
);
286 update_head_pos(slot
, r10_bio
);
290 return r10_bio
->devs
[slot
].devnum
;
293 static void raid10_end_read_request(struct bio
*bio
, int error
)
295 int uptodate
= test_bit(BIO_UPTODATE
, &bio
->bi_flags
);
296 struct r10bio
*r10_bio
= bio
->bi_private
;
298 struct r10conf
*conf
= r10_bio
->mddev
->private;
301 slot
= r10_bio
->read_slot
;
302 dev
= r10_bio
->devs
[slot
].devnum
;
304 * this branch is our 'one mirror IO has finished' event handler:
306 update_head_pos(slot
, r10_bio
);
310 * Set R10BIO_Uptodate in our master bio, so that
311 * we will return a good error code to the higher
312 * levels even if IO on some other mirrored buffer fails.
314 * The 'master' represents the composite IO operation to
315 * user-side. So if something waits for IO, then it will
316 * wait for the 'master' bio.
318 set_bit(R10BIO_Uptodate
, &r10_bio
->state
);
319 raid_end_bio_io(r10_bio
);
320 rdev_dec_pending(conf
->mirrors
[dev
].rdev
, conf
->mddev
);
323 * oops, read error - keep the refcount on the rdev
325 char b
[BDEVNAME_SIZE
];
326 printk_ratelimited(KERN_ERR
327 "md/raid10:%s: %s: rescheduling sector %llu\n",
329 bdevname(conf
->mirrors
[dev
].rdev
->bdev
, b
),
330 (unsigned long long)r10_bio
->sector
);
331 set_bit(R10BIO_ReadError
, &r10_bio
->state
);
332 reschedule_retry(r10_bio
);
336 static void close_write(struct r10bio
*r10_bio
)
338 /* clear the bitmap if all writes complete successfully */
339 bitmap_endwrite(r10_bio
->mddev
->bitmap
, r10_bio
->sector
,
341 !test_bit(R10BIO_Degraded
, &r10_bio
->state
),
343 md_write_end(r10_bio
->mddev
);
346 static void one_write_done(struct r10bio
*r10_bio
)
348 if (atomic_dec_and_test(&r10_bio
->remaining
)) {
349 if (test_bit(R10BIO_WriteError
, &r10_bio
->state
))
350 reschedule_retry(r10_bio
);
352 close_write(r10_bio
);
353 if (test_bit(R10BIO_MadeGood
, &r10_bio
->state
))
354 reschedule_retry(r10_bio
);
356 raid_end_bio_io(r10_bio
);
361 static void raid10_end_write_request(struct bio
*bio
, int error
)
363 int uptodate
= test_bit(BIO_UPTODATE
, &bio
->bi_flags
);
364 struct r10bio
*r10_bio
= bio
->bi_private
;
367 struct r10conf
*conf
= r10_bio
->mddev
->private;
370 dev
= find_bio_disk(conf
, r10_bio
, bio
, &slot
);
373 * this branch is our 'one mirror IO has finished' event handler:
376 set_bit(WriteErrorSeen
, &conf
->mirrors
[dev
].rdev
->flags
);
377 set_bit(R10BIO_WriteError
, &r10_bio
->state
);
381 * Set R10BIO_Uptodate in our master bio, so that
382 * we will return a good error code for to the higher
383 * levels even if IO on some other mirrored buffer fails.
385 * The 'master' represents the composite IO operation to
386 * user-side. So if something waits for IO, then it will
387 * wait for the 'master' bio.
392 set_bit(R10BIO_Uptodate
, &r10_bio
->state
);
394 /* Maybe we can clear some bad blocks. */
395 if (is_badblock(conf
->mirrors
[dev
].rdev
,
396 r10_bio
->devs
[slot
].addr
,
398 &first_bad
, &bad_sectors
)) {
400 r10_bio
->devs
[slot
].bio
= IO_MADE_GOOD
;
402 set_bit(R10BIO_MadeGood
, &r10_bio
->state
);
408 * Let's see if all mirrored write operations have finished
411 one_write_done(r10_bio
);
413 rdev_dec_pending(conf
->mirrors
[dev
].rdev
, conf
->mddev
);
418 * RAID10 layout manager
419 * As well as the chunksize and raid_disks count, there are two
420 * parameters: near_copies and far_copies.
421 * near_copies * far_copies must be <= raid_disks.
422 * Normally one of these will be 1.
423 * If both are 1, we get raid0.
424 * If near_copies == raid_disks, we get raid1.
426 * Chunks are laid out in raid0 style with near_copies copies of the
427 * first chunk, followed by near_copies copies of the next chunk and
429 * If far_copies > 1, then after 1/far_copies of the array has been assigned
430 * as described above, we start again with a device offset of near_copies.
431 * So we effectively have another copy of the whole array further down all
432 * the drives, but with blocks on different drives.
433 * With this layout, and block is never stored twice on the one device.
435 * raid10_find_phys finds the sector offset of a given virtual sector
436 * on each device that it is on.
438 * raid10_find_virt does the reverse mapping, from a device and a
439 * sector offset to a virtual address
442 static void raid10_find_phys(struct r10conf
*conf
, struct r10bio
*r10bio
)
452 /* now calculate first sector/dev */
453 chunk
= r10bio
->sector
>> conf
->chunk_shift
;
454 sector
= r10bio
->sector
& conf
->chunk_mask
;
456 chunk
*= conf
->near_copies
;
458 dev
= sector_div(stripe
, conf
->raid_disks
);
459 if (conf
->far_offset
)
460 stripe
*= conf
->far_copies
;
462 sector
+= stripe
<< conf
->chunk_shift
;
464 /* and calculate all the others */
465 for (n
=0; n
< conf
->near_copies
; n
++) {
468 r10bio
->devs
[slot
].addr
= sector
;
469 r10bio
->devs
[slot
].devnum
= d
;
472 for (f
= 1; f
< conf
->far_copies
; f
++) {
473 d
+= conf
->near_copies
;
474 if (d
>= conf
->raid_disks
)
475 d
-= conf
->raid_disks
;
477 r10bio
->devs
[slot
].devnum
= d
;
478 r10bio
->devs
[slot
].addr
= s
;
482 if (dev
>= conf
->raid_disks
) {
484 sector
+= (conf
->chunk_mask
+ 1);
487 BUG_ON(slot
!= conf
->copies
);
490 static sector_t
raid10_find_virt(struct r10conf
*conf
, sector_t sector
, int dev
)
492 sector_t offset
, chunk
, vchunk
;
494 offset
= sector
& conf
->chunk_mask
;
495 if (conf
->far_offset
) {
497 chunk
= sector
>> conf
->chunk_shift
;
498 fc
= sector_div(chunk
, conf
->far_copies
);
499 dev
-= fc
* conf
->near_copies
;
501 dev
+= conf
->raid_disks
;
503 while (sector
>= conf
->stride
) {
504 sector
-= conf
->stride
;
505 if (dev
< conf
->near_copies
)
506 dev
+= conf
->raid_disks
- conf
->near_copies
;
508 dev
-= conf
->near_copies
;
510 chunk
= sector
>> conf
->chunk_shift
;
512 vchunk
= chunk
* conf
->raid_disks
+ dev
;
513 sector_div(vchunk
, conf
->near_copies
);
514 return (vchunk
<< conf
->chunk_shift
) + offset
;
518 * raid10_mergeable_bvec -- tell bio layer if a two requests can be merged
520 * @bvm: properties of new bio
521 * @biovec: the request that could be merged to it.
523 * Return amount of bytes we can accept at this offset
524 * If near_copies == raid_disk, there are no striping issues,
525 * but in that case, the function isn't called at all.
527 static int raid10_mergeable_bvec(struct request_queue
*q
,
528 struct bvec_merge_data
*bvm
,
529 struct bio_vec
*biovec
)
531 struct mddev
*mddev
= q
->queuedata
;
532 sector_t sector
= bvm
->bi_sector
+ get_start_sect(bvm
->bi_bdev
);
534 unsigned int chunk_sectors
= mddev
->chunk_sectors
;
535 unsigned int bio_sectors
= bvm
->bi_size
>> 9;
537 max
= (chunk_sectors
- ((sector
& (chunk_sectors
- 1)) + bio_sectors
)) << 9;
538 if (max
< 0) max
= 0; /* bio_add cannot handle a negative return */
539 if (max
<= biovec
->bv_len
&& bio_sectors
== 0)
540 return biovec
->bv_len
;
546 * This routine returns the disk from which the requested read should
547 * be done. There is a per-array 'next expected sequential IO' sector
548 * number - if this matches on the next IO then we use the last disk.
549 * There is also a per-disk 'last know head position' sector that is
550 * maintained from IRQ contexts, both the normal and the resync IO
551 * completion handlers update this position correctly. If there is no
552 * perfect sequential match then we pick the disk whose head is closest.
554 * If there are 2 mirrors in the same 2 devices, performance degrades
555 * because position is mirror, not device based.
557 * The rdev for the device selected will have nr_pending incremented.
561 * FIXME: possibly should rethink readbalancing and do it differently
562 * depending on near_copies / far_copies geometry.
564 static int read_balance(struct r10conf
*conf
, struct r10bio
*r10_bio
, int *max_sectors
)
566 const sector_t this_sector
= r10_bio
->sector
;
568 int sectors
= r10_bio
->sectors
;
569 int best_good_sectors
;
570 sector_t new_distance
, best_dist
;
571 struct md_rdev
*rdev
;
575 raid10_find_phys(conf
, r10_bio
);
578 sectors
= r10_bio
->sectors
;
580 best_dist
= MaxSector
;
581 best_good_sectors
= 0;
584 * Check if we can balance. We can balance on the whole
585 * device if no resync is going on (recovery is ok), or below
586 * the resync window. We take the first readable disk when
587 * above the resync window.
589 if (conf
->mddev
->recovery_cp
< MaxSector
590 && (this_sector
+ sectors
>= conf
->next_resync
))
593 for (slot
= 0; slot
< conf
->copies
; slot
++) {
598 if (r10_bio
->devs
[slot
].bio
== IO_BLOCKED
)
600 disk
= r10_bio
->devs
[slot
].devnum
;
601 rdev
= rcu_dereference(conf
->mirrors
[disk
].rdev
);
604 if (!test_bit(In_sync
, &rdev
->flags
))
607 dev_sector
= r10_bio
->devs
[slot
].addr
;
608 if (is_badblock(rdev
, dev_sector
, sectors
,
609 &first_bad
, &bad_sectors
)) {
610 if (best_dist
< MaxSector
)
611 /* Already have a better slot */
613 if (first_bad
<= dev_sector
) {
614 /* Cannot read here. If this is the
615 * 'primary' device, then we must not read
616 * beyond 'bad_sectors' from another device.
618 bad_sectors
-= (dev_sector
- first_bad
);
619 if (!do_balance
&& sectors
> bad_sectors
)
620 sectors
= bad_sectors
;
621 if (best_good_sectors
> sectors
)
622 best_good_sectors
= sectors
;
624 sector_t good_sectors
=
625 first_bad
- dev_sector
;
626 if (good_sectors
> best_good_sectors
) {
627 best_good_sectors
= good_sectors
;
631 /* Must read from here */
636 best_good_sectors
= sectors
;
641 /* This optimisation is debatable, and completely destroys
642 * sequential read speed for 'far copies' arrays. So only
643 * keep it for 'near' arrays, and review those later.
645 if (conf
->near_copies
> 1 && !atomic_read(&rdev
->nr_pending
))
648 /* for far > 1 always use the lowest address */
649 if (conf
->far_copies
> 1)
650 new_distance
= r10_bio
->devs
[slot
].addr
;
652 new_distance
= abs(r10_bio
->devs
[slot
].addr
-
653 conf
->mirrors
[disk
].head_position
);
654 if (new_distance
< best_dist
) {
655 best_dist
= new_distance
;
659 if (slot
== conf
->copies
)
663 disk
= r10_bio
->devs
[slot
].devnum
;
664 rdev
= rcu_dereference(conf
->mirrors
[disk
].rdev
);
667 atomic_inc(&rdev
->nr_pending
);
668 if (test_bit(Faulty
, &rdev
->flags
)) {
669 /* Cannot risk returning a device that failed
670 * before we inc'ed nr_pending
672 rdev_dec_pending(rdev
, conf
->mddev
);
675 r10_bio
->read_slot
= slot
;
679 *max_sectors
= best_good_sectors
;
684 static int raid10_congested(void *data
, int bits
)
686 struct mddev
*mddev
= data
;
687 struct r10conf
*conf
= mddev
->private;
690 if ((bits
& (1 << BDI_async_congested
)) &&
691 conf
->pending_count
>= max_queued_requests
)
694 if (mddev_congested(mddev
, bits
))
697 for (i
= 0; i
< conf
->raid_disks
&& ret
== 0; i
++) {
698 struct md_rdev
*rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
699 if (rdev
&& !test_bit(Faulty
, &rdev
->flags
)) {
700 struct request_queue
*q
= bdev_get_queue(rdev
->bdev
);
702 ret
|= bdi_congested(&q
->backing_dev_info
, bits
);
709 static void flush_pending_writes(struct r10conf
*conf
)
711 /* Any writes that have been queued but are awaiting
712 * bitmap updates get flushed here.
714 spin_lock_irq(&conf
->device_lock
);
716 if (conf
->pending_bio_list
.head
) {
718 bio
= bio_list_get(&conf
->pending_bio_list
);
719 conf
->pending_count
= 0;
720 spin_unlock_irq(&conf
->device_lock
);
721 /* flush any pending bitmap writes to disk
722 * before proceeding w/ I/O */
723 bitmap_unplug(conf
->mddev
->bitmap
);
724 wake_up(&conf
->wait_barrier
);
726 while (bio
) { /* submit pending writes */
727 struct bio
*next
= bio
->bi_next
;
729 generic_make_request(bio
);
733 spin_unlock_irq(&conf
->device_lock
);
737 * Sometimes we need to suspend IO while we do something else,
738 * either some resync/recovery, or reconfigure the array.
739 * To do this we raise a 'barrier'.
740 * The 'barrier' is a counter that can be raised multiple times
741 * to count how many activities are happening which preclude
743 * We can only raise the barrier if there is no pending IO.
744 * i.e. if nr_pending == 0.
745 * We choose only to raise the barrier if no-one is waiting for the
746 * barrier to go down. This means that as soon as an IO request
747 * is ready, no other operations which require a barrier will start
748 * until the IO request has had a chance.
750 * So: regular IO calls 'wait_barrier'. When that returns there
751 * is no backgroup IO happening, It must arrange to call
752 * allow_barrier when it has finished its IO.
753 * backgroup IO calls must call raise_barrier. Once that returns
754 * there is no normal IO happeing. It must arrange to call
755 * lower_barrier when the particular background IO completes.
758 static void raise_barrier(struct r10conf
*conf
, int force
)
760 BUG_ON(force
&& !conf
->barrier
);
761 spin_lock_irq(&conf
->resync_lock
);
763 /* Wait until no block IO is waiting (unless 'force') */
764 wait_event_lock_irq(conf
->wait_barrier
, force
|| !conf
->nr_waiting
,
765 conf
->resync_lock
, );
767 /* block any new IO from starting */
770 /* Now wait for all pending IO to complete */
771 wait_event_lock_irq(conf
->wait_barrier
,
772 !conf
->nr_pending
&& conf
->barrier
< RESYNC_DEPTH
,
773 conf
->resync_lock
, );
775 spin_unlock_irq(&conf
->resync_lock
);
778 static void lower_barrier(struct r10conf
*conf
)
781 spin_lock_irqsave(&conf
->resync_lock
, flags
);
783 spin_unlock_irqrestore(&conf
->resync_lock
, flags
);
784 wake_up(&conf
->wait_barrier
);
787 static void wait_barrier(struct r10conf
*conf
)
789 spin_lock_irq(&conf
->resync_lock
);
792 wait_event_lock_irq(conf
->wait_barrier
, !conf
->barrier
,
798 spin_unlock_irq(&conf
->resync_lock
);
801 static void allow_barrier(struct r10conf
*conf
)
804 spin_lock_irqsave(&conf
->resync_lock
, flags
);
806 spin_unlock_irqrestore(&conf
->resync_lock
, flags
);
807 wake_up(&conf
->wait_barrier
);
810 static void freeze_array(struct r10conf
*conf
)
812 /* stop syncio and normal IO and wait for everything to
814 * We increment barrier and nr_waiting, and then
815 * wait until nr_pending match nr_queued+1
816 * This is called in the context of one normal IO request
817 * that has failed. Thus any sync request that might be pending
818 * will be blocked by nr_pending, and we need to wait for
819 * pending IO requests to complete or be queued for re-try.
820 * Thus the number queued (nr_queued) plus this request (1)
821 * must match the number of pending IOs (nr_pending) before
824 spin_lock_irq(&conf
->resync_lock
);
827 wait_event_lock_irq(conf
->wait_barrier
,
828 conf
->nr_pending
== conf
->nr_queued
+1,
830 flush_pending_writes(conf
));
832 spin_unlock_irq(&conf
->resync_lock
);
835 static void unfreeze_array(struct r10conf
*conf
)
837 /* reverse the effect of the freeze */
838 spin_lock_irq(&conf
->resync_lock
);
841 wake_up(&conf
->wait_barrier
);
842 spin_unlock_irq(&conf
->resync_lock
);
845 static int make_request(struct mddev
*mddev
, struct bio
* bio
)
847 struct r10conf
*conf
= mddev
->private;
848 struct mirror_info
*mirror
;
849 struct r10bio
*r10_bio
;
850 struct bio
*read_bio
;
852 int chunk_sects
= conf
->chunk_mask
+ 1;
853 const int rw
= bio_data_dir(bio
);
854 const unsigned long do_sync
= (bio
->bi_rw
& REQ_SYNC
);
855 const unsigned long do_fua
= (bio
->bi_rw
& REQ_FUA
);
857 struct md_rdev
*blocked_rdev
;
862 if (unlikely(bio
->bi_rw
& REQ_FLUSH
)) {
863 md_flush_request(mddev
, bio
);
867 /* If this request crosses a chunk boundary, we need to
868 * split it. This will only happen for 1 PAGE (or less) requests.
870 if (unlikely( (bio
->bi_sector
& conf
->chunk_mask
) + (bio
->bi_size
>> 9)
872 conf
->near_copies
< conf
->raid_disks
)) {
874 /* Sanity check -- queue functions should prevent this happening */
875 if (bio
->bi_vcnt
!= 1 ||
878 /* This is a one page bio that upper layers
879 * refuse to split for us, so we need to split it.
882 chunk_sects
- (bio
->bi_sector
& (chunk_sects
- 1)) );
884 /* Each of these 'make_request' calls will call 'wait_barrier'.
885 * If the first succeeds but the second blocks due to the resync
886 * thread raising the barrier, we will deadlock because the
887 * IO to the underlying device will be queued in generic_make_request
888 * and will never complete, so will never reduce nr_pending.
889 * So increment nr_waiting here so no new raise_barriers will
890 * succeed, and so the second wait_barrier cannot block.
892 spin_lock_irq(&conf
->resync_lock
);
894 spin_unlock_irq(&conf
->resync_lock
);
896 if (make_request(mddev
, &bp
->bio1
))
897 generic_make_request(&bp
->bio1
);
898 if (make_request(mddev
, &bp
->bio2
))
899 generic_make_request(&bp
->bio2
);
901 spin_lock_irq(&conf
->resync_lock
);
903 wake_up(&conf
->wait_barrier
);
904 spin_unlock_irq(&conf
->resync_lock
);
906 bio_pair_release(bp
);
909 printk("md/raid10:%s: make_request bug: can't convert block across chunks"
910 " or bigger than %dk %llu %d\n", mdname(mddev
), chunk_sects
/2,
911 (unsigned long long)bio
->bi_sector
, bio
->bi_size
>> 10);
917 md_write_start(mddev
, bio
);
920 * Register the new request and wait if the reconstruction
921 * thread has put up a bar for new requests.
922 * Continue immediately if no resync is active currently.
926 r10_bio
= mempool_alloc(conf
->r10bio_pool
, GFP_NOIO
);
928 r10_bio
->master_bio
= bio
;
929 r10_bio
->sectors
= bio
->bi_size
>> 9;
931 r10_bio
->mddev
= mddev
;
932 r10_bio
->sector
= bio
->bi_sector
;
935 /* We might need to issue multiple reads to different
936 * devices if there are bad blocks around, so we keep
937 * track of the number of reads in bio->bi_phys_segments.
938 * If this is 0, there is only one r10_bio and no locking
939 * will be needed when the request completes. If it is
940 * non-zero, then it is the number of not-completed requests.
942 bio
->bi_phys_segments
= 0;
943 clear_bit(BIO_SEG_VALID
, &bio
->bi_flags
);
947 * read balancing logic:
953 disk
= read_balance(conf
, r10_bio
, &max_sectors
);
954 slot
= r10_bio
->read_slot
;
956 raid_end_bio_io(r10_bio
);
959 mirror
= conf
->mirrors
+ disk
;
961 read_bio
= bio_clone_mddev(bio
, GFP_NOIO
, mddev
);
962 md_trim_bio(read_bio
, r10_bio
->sector
- bio
->bi_sector
,
965 r10_bio
->devs
[slot
].bio
= read_bio
;
967 read_bio
->bi_sector
= r10_bio
->devs
[slot
].addr
+
968 mirror
->rdev
->data_offset
;
969 read_bio
->bi_bdev
= mirror
->rdev
->bdev
;
970 read_bio
->bi_end_io
= raid10_end_read_request
;
971 read_bio
->bi_rw
= READ
| do_sync
;
972 read_bio
->bi_private
= r10_bio
;
974 if (max_sectors
< r10_bio
->sectors
) {
975 /* Could not read all from this device, so we will
976 * need another r10_bio.
978 sectors_handled
= (r10_bio
->sectors
+ max_sectors
980 r10_bio
->sectors
= max_sectors
;
981 spin_lock_irq(&conf
->device_lock
);
982 if (bio
->bi_phys_segments
== 0)
983 bio
->bi_phys_segments
= 2;
985 bio
->bi_phys_segments
++;
986 spin_unlock(&conf
->device_lock
);
987 /* Cannot call generic_make_request directly
988 * as that will be queued in __generic_make_request
989 * and subsequent mempool_alloc might block
990 * waiting for it. so hand bio over to raid10d.
992 reschedule_retry(r10_bio
);
994 r10_bio
= mempool_alloc(conf
->r10bio_pool
, GFP_NOIO
);
996 r10_bio
->master_bio
= bio
;
997 r10_bio
->sectors
= ((bio
->bi_size
>> 9)
1000 r10_bio
->mddev
= mddev
;
1001 r10_bio
->sector
= bio
->bi_sector
+ sectors_handled
;
1004 generic_make_request(read_bio
);
1011 if (conf
->pending_count
>= max_queued_requests
) {
1012 md_wakeup_thread(mddev
->thread
);
1013 wait_event(conf
->wait_barrier
,
1014 conf
->pending_count
< max_queued_requests
);
1016 /* first select target devices under rcu_lock and
1017 * inc refcount on their rdev. Record them by setting
1019 * If there are known/acknowledged bad blocks on any device
1020 * on which we have seen a write error, we want to avoid
1021 * writing to those blocks. This potentially requires several
1022 * writes to write around the bad blocks. Each set of writes
1023 * gets its own r10_bio with a set of bios attached. The number
1024 * of r10_bios is recored in bio->bi_phys_segments just as with
1027 plugged
= mddev_check_plugged(mddev
);
1029 raid10_find_phys(conf
, r10_bio
);
1031 blocked_rdev
= NULL
;
1033 max_sectors
= r10_bio
->sectors
;
1035 for (i
= 0; i
< conf
->copies
; i
++) {
1036 int d
= r10_bio
->devs
[i
].devnum
;
1037 struct md_rdev
*rdev
= rcu_dereference(conf
->mirrors
[d
].rdev
);
1038 if (rdev
&& unlikely(test_bit(Blocked
, &rdev
->flags
))) {
1039 atomic_inc(&rdev
->nr_pending
);
1040 blocked_rdev
= rdev
;
1043 r10_bio
->devs
[i
].bio
= NULL
;
1044 if (!rdev
|| test_bit(Faulty
, &rdev
->flags
)) {
1045 set_bit(R10BIO_Degraded
, &r10_bio
->state
);
1048 if (test_bit(WriteErrorSeen
, &rdev
->flags
)) {
1050 sector_t dev_sector
= r10_bio
->devs
[i
].addr
;
1054 is_bad
= is_badblock(rdev
, dev_sector
,
1056 &first_bad
, &bad_sectors
);
1058 /* Mustn't write here until the bad block
1061 atomic_inc(&rdev
->nr_pending
);
1062 set_bit(BlockedBadBlocks
, &rdev
->flags
);
1063 blocked_rdev
= rdev
;
1066 if (is_bad
&& first_bad
<= dev_sector
) {
1067 /* Cannot write here at all */
1068 bad_sectors
-= (dev_sector
- first_bad
);
1069 if (bad_sectors
< max_sectors
)
1070 /* Mustn't write more than bad_sectors
1071 * to other devices yet
1073 max_sectors
= bad_sectors
;
1074 /* We don't set R10BIO_Degraded as that
1075 * only applies if the disk is missing,
1076 * so it might be re-added, and we want to
1077 * know to recover this chunk.
1078 * In this case the device is here, and the
1079 * fact that this chunk is not in-sync is
1080 * recorded in the bad block log.
1085 int good_sectors
= first_bad
- dev_sector
;
1086 if (good_sectors
< max_sectors
)
1087 max_sectors
= good_sectors
;
1090 r10_bio
->devs
[i
].bio
= bio
;
1091 atomic_inc(&rdev
->nr_pending
);
1095 if (unlikely(blocked_rdev
)) {
1096 /* Have to wait for this device to get unblocked, then retry */
1100 for (j
= 0; j
< i
; j
++)
1101 if (r10_bio
->devs
[j
].bio
) {
1102 d
= r10_bio
->devs
[j
].devnum
;
1103 rdev_dec_pending(conf
->mirrors
[d
].rdev
, mddev
);
1105 allow_barrier(conf
);
1106 md_wait_for_blocked_rdev(blocked_rdev
, mddev
);
1111 if (max_sectors
< r10_bio
->sectors
) {
1112 /* We are splitting this into multiple parts, so
1113 * we need to prepare for allocating another r10_bio.
1115 r10_bio
->sectors
= max_sectors
;
1116 spin_lock_irq(&conf
->device_lock
);
1117 if (bio
->bi_phys_segments
== 0)
1118 bio
->bi_phys_segments
= 2;
1120 bio
->bi_phys_segments
++;
1121 spin_unlock_irq(&conf
->device_lock
);
1123 sectors_handled
= r10_bio
->sector
+ max_sectors
- bio
->bi_sector
;
1125 atomic_set(&r10_bio
->remaining
, 1);
1126 bitmap_startwrite(mddev
->bitmap
, r10_bio
->sector
, r10_bio
->sectors
, 0);
1128 for (i
= 0; i
< conf
->copies
; i
++) {
1130 int d
= r10_bio
->devs
[i
].devnum
;
1131 if (!r10_bio
->devs
[i
].bio
)
1134 mbio
= bio_clone_mddev(bio
, GFP_NOIO
, mddev
);
1135 md_trim_bio(mbio
, r10_bio
->sector
- bio
->bi_sector
,
1137 r10_bio
->devs
[i
].bio
= mbio
;
1139 mbio
->bi_sector
= (r10_bio
->devs
[i
].addr
+
1140 conf
->mirrors
[d
].rdev
->data_offset
);
1141 mbio
->bi_bdev
= conf
->mirrors
[d
].rdev
->bdev
;
1142 mbio
->bi_end_io
= raid10_end_write_request
;
1143 mbio
->bi_rw
= WRITE
| do_sync
| do_fua
;
1144 mbio
->bi_private
= r10_bio
;
1146 atomic_inc(&r10_bio
->remaining
);
1147 spin_lock_irqsave(&conf
->device_lock
, flags
);
1148 bio_list_add(&conf
->pending_bio_list
, mbio
);
1149 conf
->pending_count
++;
1150 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1153 /* Don't remove the bias on 'remaining' (one_write_done) until
1154 * after checking if we need to go around again.
1157 if (sectors_handled
< (bio
->bi_size
>> 9)) {
1158 one_write_done(r10_bio
);
1159 /* We need another r10_bio. It has already been counted
1160 * in bio->bi_phys_segments.
1162 r10_bio
= mempool_alloc(conf
->r10bio_pool
, GFP_NOIO
);
1164 r10_bio
->master_bio
= bio
;
1165 r10_bio
->sectors
= (bio
->bi_size
>> 9) - sectors_handled
;
1167 r10_bio
->mddev
= mddev
;
1168 r10_bio
->sector
= bio
->bi_sector
+ sectors_handled
;
1172 one_write_done(r10_bio
);
1174 /* In case raid10d snuck in to freeze_array */
1175 wake_up(&conf
->wait_barrier
);
1177 if (do_sync
|| !mddev
->bitmap
|| !plugged
)
1178 md_wakeup_thread(mddev
->thread
);
1182 static void status(struct seq_file
*seq
, struct mddev
*mddev
)
1184 struct r10conf
*conf
= mddev
->private;
1187 if (conf
->near_copies
< conf
->raid_disks
)
1188 seq_printf(seq
, " %dK chunks", mddev
->chunk_sectors
/ 2);
1189 if (conf
->near_copies
> 1)
1190 seq_printf(seq
, " %d near-copies", conf
->near_copies
);
1191 if (conf
->far_copies
> 1) {
1192 if (conf
->far_offset
)
1193 seq_printf(seq
, " %d offset-copies", conf
->far_copies
);
1195 seq_printf(seq
, " %d far-copies", conf
->far_copies
);
1197 seq_printf(seq
, " [%d/%d] [", conf
->raid_disks
,
1198 conf
->raid_disks
- mddev
->degraded
);
1199 for (i
= 0; i
< conf
->raid_disks
; i
++)
1200 seq_printf(seq
, "%s",
1201 conf
->mirrors
[i
].rdev
&&
1202 test_bit(In_sync
, &conf
->mirrors
[i
].rdev
->flags
) ? "U" : "_");
1203 seq_printf(seq
, "]");
1206 /* check if there are enough drives for
1207 * every block to appear on atleast one.
1208 * Don't consider the device numbered 'ignore'
1209 * as we might be about to remove it.
1211 static int enough(struct r10conf
*conf
, int ignore
)
1216 int n
= conf
->copies
;
1219 if (conf
->mirrors
[first
].rdev
&&
1222 first
= (first
+1) % conf
->raid_disks
;
1226 } while (first
!= 0);
1230 static void error(struct mddev
*mddev
, struct md_rdev
*rdev
)
1232 char b
[BDEVNAME_SIZE
];
1233 struct r10conf
*conf
= mddev
->private;
1236 * If it is not operational, then we have already marked it as dead
1237 * else if it is the last working disks, ignore the error, let the
1238 * next level up know.
1239 * else mark the drive as failed
1241 if (test_bit(In_sync
, &rdev
->flags
)
1242 && !enough(conf
, rdev
->raid_disk
))
1244 * Don't fail the drive, just return an IO error.
1247 if (test_and_clear_bit(In_sync
, &rdev
->flags
)) {
1248 unsigned long flags
;
1249 spin_lock_irqsave(&conf
->device_lock
, flags
);
1251 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1253 * if recovery is running, make sure it aborts.
1255 set_bit(MD_RECOVERY_INTR
, &mddev
->recovery
);
1257 set_bit(Blocked
, &rdev
->flags
);
1258 set_bit(Faulty
, &rdev
->flags
);
1259 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
1261 "md/raid10:%s: Disk failure on %s, disabling device.\n"
1262 "md/raid10:%s: Operation continuing on %d devices.\n",
1263 mdname(mddev
), bdevname(rdev
->bdev
, b
),
1264 mdname(mddev
), conf
->raid_disks
- mddev
->degraded
);
1267 static void print_conf(struct r10conf
*conf
)
1270 struct mirror_info
*tmp
;
1272 printk(KERN_DEBUG
"RAID10 conf printout:\n");
1274 printk(KERN_DEBUG
"(!conf)\n");
1277 printk(KERN_DEBUG
" --- wd:%d rd:%d\n", conf
->raid_disks
- conf
->mddev
->degraded
,
1280 for (i
= 0; i
< conf
->raid_disks
; i
++) {
1281 char b
[BDEVNAME_SIZE
];
1282 tmp
= conf
->mirrors
+ i
;
1284 printk(KERN_DEBUG
" disk %d, wo:%d, o:%d, dev:%s\n",
1285 i
, !test_bit(In_sync
, &tmp
->rdev
->flags
),
1286 !test_bit(Faulty
, &tmp
->rdev
->flags
),
1287 bdevname(tmp
->rdev
->bdev
,b
));
1291 static void close_sync(struct r10conf
*conf
)
1294 allow_barrier(conf
);
1296 mempool_destroy(conf
->r10buf_pool
);
1297 conf
->r10buf_pool
= NULL
;
1300 static int raid10_spare_active(struct mddev
*mddev
)
1303 struct r10conf
*conf
= mddev
->private;
1304 struct mirror_info
*tmp
;
1306 unsigned long flags
;
1309 * Find all non-in_sync disks within the RAID10 configuration
1310 * and mark them in_sync
1312 for (i
= 0; i
< conf
->raid_disks
; i
++) {
1313 tmp
= conf
->mirrors
+ i
;
1315 && !test_bit(Faulty
, &tmp
->rdev
->flags
)
1316 && !test_and_set_bit(In_sync
, &tmp
->rdev
->flags
)) {
1318 sysfs_notify_dirent(tmp
->rdev
->sysfs_state
);
1321 spin_lock_irqsave(&conf
->device_lock
, flags
);
1322 mddev
->degraded
-= count
;
1323 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1330 static int raid10_add_disk(struct mddev
*mddev
, struct md_rdev
*rdev
)
1332 struct r10conf
*conf
= mddev
->private;
1336 int last
= conf
->raid_disks
- 1;
1338 if (mddev
->recovery_cp
< MaxSector
)
1339 /* only hot-add to in-sync arrays, as recovery is
1340 * very different from resync
1343 if (!enough(conf
, -1))
1346 if (rdev
->raid_disk
>= 0)
1347 first
= last
= rdev
->raid_disk
;
1349 if (rdev
->saved_raid_disk
>= first
&&
1350 conf
->mirrors
[rdev
->saved_raid_disk
].rdev
== NULL
)
1351 mirror
= rdev
->saved_raid_disk
;
1354 for ( ; mirror
<= last
; mirror
++) {
1355 struct mirror_info
*p
= &conf
->mirrors
[mirror
];
1356 if (p
->recovery_disabled
== mddev
->recovery_disabled
)
1361 disk_stack_limits(mddev
->gendisk
, rdev
->bdev
,
1362 rdev
->data_offset
<< 9);
1363 /* as we don't honour merge_bvec_fn, we must
1364 * never risk violating it, so limit
1365 * ->max_segments to one lying with a single
1366 * page, as a one page request is never in
1369 if (rdev
->bdev
->bd_disk
->queue
->merge_bvec_fn
) {
1370 blk_queue_max_segments(mddev
->queue
, 1);
1371 blk_queue_segment_boundary(mddev
->queue
,
1372 PAGE_CACHE_SIZE
- 1);
1375 p
->head_position
= 0;
1376 p
->recovery_disabled
= mddev
->recovery_disabled
- 1;
1377 rdev
->raid_disk
= mirror
;
1379 if (rdev
->saved_raid_disk
!= mirror
)
1381 rcu_assign_pointer(p
->rdev
, rdev
);
1385 md_integrity_add_rdev(rdev
, mddev
);
1390 static int raid10_remove_disk(struct mddev
*mddev
, int number
)
1392 struct r10conf
*conf
= mddev
->private;
1394 struct md_rdev
*rdev
;
1395 struct mirror_info
*p
= conf
->mirrors
+ number
;
1400 if (test_bit(In_sync
, &rdev
->flags
) ||
1401 atomic_read(&rdev
->nr_pending
)) {
1405 /* Only remove faulty devices in recovery
1408 if (!test_bit(Faulty
, &rdev
->flags
) &&
1409 mddev
->recovery_disabled
!= p
->recovery_disabled
&&
1416 if (atomic_read(&rdev
->nr_pending
)) {
1417 /* lost the race, try later */
1422 err
= md_integrity_register(mddev
);
1431 static void end_sync_read(struct bio
*bio
, int error
)
1433 struct r10bio
*r10_bio
= bio
->bi_private
;
1434 struct r10conf
*conf
= r10_bio
->mddev
->private;
1437 d
= find_bio_disk(conf
, r10_bio
, bio
, NULL
);
1439 if (test_bit(BIO_UPTODATE
, &bio
->bi_flags
))
1440 set_bit(R10BIO_Uptodate
, &r10_bio
->state
);
1442 /* The write handler will notice the lack of
1443 * R10BIO_Uptodate and record any errors etc
1445 atomic_add(r10_bio
->sectors
,
1446 &conf
->mirrors
[d
].rdev
->corrected_errors
);
1448 /* for reconstruct, we always reschedule after a read.
1449 * for resync, only after all reads
1451 rdev_dec_pending(conf
->mirrors
[d
].rdev
, conf
->mddev
);
1452 if (test_bit(R10BIO_IsRecover
, &r10_bio
->state
) ||
1453 atomic_dec_and_test(&r10_bio
->remaining
)) {
1454 /* we have read all the blocks,
1455 * do the comparison in process context in raid10d
1457 reschedule_retry(r10_bio
);
1461 static void end_sync_request(struct r10bio
*r10_bio
)
1463 struct mddev
*mddev
= r10_bio
->mddev
;
1465 while (atomic_dec_and_test(&r10_bio
->remaining
)) {
1466 if (r10_bio
->master_bio
== NULL
) {
1467 /* the primary of several recovery bios */
1468 sector_t s
= r10_bio
->sectors
;
1469 if (test_bit(R10BIO_MadeGood
, &r10_bio
->state
) ||
1470 test_bit(R10BIO_WriteError
, &r10_bio
->state
))
1471 reschedule_retry(r10_bio
);
1474 md_done_sync(mddev
, s
, 1);
1477 struct r10bio
*r10_bio2
= (struct r10bio
*)r10_bio
->master_bio
;
1478 if (test_bit(R10BIO_MadeGood
, &r10_bio
->state
) ||
1479 test_bit(R10BIO_WriteError
, &r10_bio
->state
))
1480 reschedule_retry(r10_bio
);
1488 static void end_sync_write(struct bio
*bio
, int error
)
1490 int uptodate
= test_bit(BIO_UPTODATE
, &bio
->bi_flags
);
1491 struct r10bio
*r10_bio
= bio
->bi_private
;
1492 struct mddev
*mddev
= r10_bio
->mddev
;
1493 struct r10conf
*conf
= mddev
->private;
1499 d
= find_bio_disk(conf
, r10_bio
, bio
, &slot
);
1502 set_bit(WriteErrorSeen
, &conf
->mirrors
[d
].rdev
->flags
);
1503 set_bit(R10BIO_WriteError
, &r10_bio
->state
);
1504 } else if (is_badblock(conf
->mirrors
[d
].rdev
,
1505 r10_bio
->devs
[slot
].addr
,
1507 &first_bad
, &bad_sectors
))
1508 set_bit(R10BIO_MadeGood
, &r10_bio
->state
);
1510 rdev_dec_pending(conf
->mirrors
[d
].rdev
, mddev
);
1512 end_sync_request(r10_bio
);
1516 * Note: sync and recover and handled very differently for raid10
1517 * This code is for resync.
1518 * For resync, we read through virtual addresses and read all blocks.
1519 * If there is any error, we schedule a write. The lowest numbered
1520 * drive is authoritative.
1521 * However requests come for physical address, so we need to map.
1522 * For every physical address there are raid_disks/copies virtual addresses,
1523 * which is always are least one, but is not necessarly an integer.
1524 * This means that a physical address can span multiple chunks, so we may
1525 * have to submit multiple io requests for a single sync request.
1528 * We check if all blocks are in-sync and only write to blocks that
1531 static void sync_request_write(struct mddev
*mddev
, struct r10bio
*r10_bio
)
1533 struct r10conf
*conf
= mddev
->private;
1535 struct bio
*tbio
, *fbio
;
1537 atomic_set(&r10_bio
->remaining
, 1);
1539 /* find the first device with a block */
1540 for (i
=0; i
<conf
->copies
; i
++)
1541 if (test_bit(BIO_UPTODATE
, &r10_bio
->devs
[i
].bio
->bi_flags
))
1544 if (i
== conf
->copies
)
1548 fbio
= r10_bio
->devs
[i
].bio
;
1550 /* now find blocks with errors */
1551 for (i
=0 ; i
< conf
->copies
; i
++) {
1553 int vcnt
= r10_bio
->sectors
>> (PAGE_SHIFT
-9);
1555 tbio
= r10_bio
->devs
[i
].bio
;
1557 if (tbio
->bi_end_io
!= end_sync_read
)
1561 if (test_bit(BIO_UPTODATE
, &r10_bio
->devs
[i
].bio
->bi_flags
)) {
1562 /* We know that the bi_io_vec layout is the same for
1563 * both 'first' and 'i', so we just compare them.
1564 * All vec entries are PAGE_SIZE;
1566 for (j
= 0; j
< vcnt
; j
++)
1567 if (memcmp(page_address(fbio
->bi_io_vec
[j
].bv_page
),
1568 page_address(tbio
->bi_io_vec
[j
].bv_page
),
1573 mddev
->resync_mismatches
+= r10_bio
->sectors
;
1574 if (test_bit(MD_RECOVERY_CHECK
, &mddev
->recovery
))
1575 /* Don't fix anything. */
1578 /* Ok, we need to write this bio, either to correct an
1579 * inconsistency or to correct an unreadable block.
1580 * First we need to fixup bv_offset, bv_len and
1581 * bi_vecs, as the read request might have corrupted these
1583 tbio
->bi_vcnt
= vcnt
;
1584 tbio
->bi_size
= r10_bio
->sectors
<< 9;
1586 tbio
->bi_phys_segments
= 0;
1587 tbio
->bi_flags
&= ~(BIO_POOL_MASK
- 1);
1588 tbio
->bi_flags
|= 1 << BIO_UPTODATE
;
1589 tbio
->bi_next
= NULL
;
1590 tbio
->bi_rw
= WRITE
;
1591 tbio
->bi_private
= r10_bio
;
1592 tbio
->bi_sector
= r10_bio
->devs
[i
].addr
;
1594 for (j
=0; j
< vcnt
; j
++) {
1595 tbio
->bi_io_vec
[j
].bv_offset
= 0;
1596 tbio
->bi_io_vec
[j
].bv_len
= PAGE_SIZE
;
1598 memcpy(page_address(tbio
->bi_io_vec
[j
].bv_page
),
1599 page_address(fbio
->bi_io_vec
[j
].bv_page
),
1602 tbio
->bi_end_io
= end_sync_write
;
1604 d
= r10_bio
->devs
[i
].devnum
;
1605 atomic_inc(&conf
->mirrors
[d
].rdev
->nr_pending
);
1606 atomic_inc(&r10_bio
->remaining
);
1607 md_sync_acct(conf
->mirrors
[d
].rdev
->bdev
, tbio
->bi_size
>> 9);
1609 tbio
->bi_sector
+= conf
->mirrors
[d
].rdev
->data_offset
;
1610 tbio
->bi_bdev
= conf
->mirrors
[d
].rdev
->bdev
;
1611 generic_make_request(tbio
);
1615 if (atomic_dec_and_test(&r10_bio
->remaining
)) {
1616 md_done_sync(mddev
, r10_bio
->sectors
, 1);
1622 * Now for the recovery code.
1623 * Recovery happens across physical sectors.
1624 * We recover all non-is_sync drives by finding the virtual address of
1625 * each, and then choose a working drive that also has that virt address.
1626 * There is a separate r10_bio for each non-in_sync drive.
1627 * Only the first two slots are in use. The first for reading,
1628 * The second for writing.
1631 static void fix_recovery_read_error(struct r10bio
*r10_bio
)
1633 /* We got a read error during recovery.
1634 * We repeat the read in smaller page-sized sections.
1635 * If a read succeeds, write it to the new device or record
1636 * a bad block if we cannot.
1637 * If a read fails, record a bad block on both old and
1640 struct mddev
*mddev
= r10_bio
->mddev
;
1641 struct r10conf
*conf
= mddev
->private;
1642 struct bio
*bio
= r10_bio
->devs
[0].bio
;
1644 int sectors
= r10_bio
->sectors
;
1646 int dr
= r10_bio
->devs
[0].devnum
;
1647 int dw
= r10_bio
->devs
[1].devnum
;
1651 struct md_rdev
*rdev
;
1655 if (s
> (PAGE_SIZE
>>9))
1658 rdev
= conf
->mirrors
[dr
].rdev
;
1659 addr
= r10_bio
->devs
[0].addr
+ sect
,
1660 ok
= sync_page_io(rdev
,
1663 bio
->bi_io_vec
[idx
].bv_page
,
1666 rdev
= conf
->mirrors
[dw
].rdev
;
1667 addr
= r10_bio
->devs
[1].addr
+ sect
;
1668 ok
= sync_page_io(rdev
,
1671 bio
->bi_io_vec
[idx
].bv_page
,
1674 set_bit(WriteErrorSeen
, &rdev
->flags
);
1677 /* We don't worry if we cannot set a bad block -
1678 * it really is bad so there is no loss in not
1681 rdev_set_badblocks(rdev
, addr
, s
, 0);
1683 if (rdev
!= conf
->mirrors
[dw
].rdev
) {
1684 /* need bad block on destination too */
1685 struct md_rdev
*rdev2
= conf
->mirrors
[dw
].rdev
;
1686 addr
= r10_bio
->devs
[1].addr
+ sect
;
1687 ok
= rdev_set_badblocks(rdev2
, addr
, s
, 0);
1689 /* just abort the recovery */
1691 "md/raid10:%s: recovery aborted"
1692 " due to read error\n",
1695 conf
->mirrors
[dw
].recovery_disabled
1696 = mddev
->recovery_disabled
;
1697 set_bit(MD_RECOVERY_INTR
,
1710 static void recovery_request_write(struct mddev
*mddev
, struct r10bio
*r10_bio
)
1712 struct r10conf
*conf
= mddev
->private;
1716 if (!test_bit(R10BIO_Uptodate
, &r10_bio
->state
)) {
1717 fix_recovery_read_error(r10_bio
);
1718 end_sync_request(r10_bio
);
1723 * share the pages with the first bio
1724 * and submit the write request
1726 wbio
= r10_bio
->devs
[1].bio
;
1727 d
= r10_bio
->devs
[1].devnum
;
1729 atomic_inc(&conf
->mirrors
[d
].rdev
->nr_pending
);
1730 md_sync_acct(conf
->mirrors
[d
].rdev
->bdev
, wbio
->bi_size
>> 9);
1731 generic_make_request(wbio
);
1736 * Used by fix_read_error() to decay the per rdev read_errors.
1737 * We halve the read error count for every hour that has elapsed
1738 * since the last recorded read error.
1741 static void check_decay_read_errors(struct mddev
*mddev
, struct md_rdev
*rdev
)
1743 struct timespec cur_time_mon
;
1744 unsigned long hours_since_last
;
1745 unsigned int read_errors
= atomic_read(&rdev
->read_errors
);
1747 ktime_get_ts(&cur_time_mon
);
1749 if (rdev
->last_read_error
.tv_sec
== 0 &&
1750 rdev
->last_read_error
.tv_nsec
== 0) {
1751 /* first time we've seen a read error */
1752 rdev
->last_read_error
= cur_time_mon
;
1756 hours_since_last
= (cur_time_mon
.tv_sec
-
1757 rdev
->last_read_error
.tv_sec
) / 3600;
1759 rdev
->last_read_error
= cur_time_mon
;
1762 * if hours_since_last is > the number of bits in read_errors
1763 * just set read errors to 0. We do this to avoid
1764 * overflowing the shift of read_errors by hours_since_last.
1766 if (hours_since_last
>= 8 * sizeof(read_errors
))
1767 atomic_set(&rdev
->read_errors
, 0);
1769 atomic_set(&rdev
->read_errors
, read_errors
>> hours_since_last
);
1772 static int r10_sync_page_io(struct md_rdev
*rdev
, sector_t sector
,
1773 int sectors
, struct page
*page
, int rw
)
1778 if (is_badblock(rdev
, sector
, sectors
, &first_bad
, &bad_sectors
)
1779 && (rw
== READ
|| test_bit(WriteErrorSeen
, &rdev
->flags
)))
1781 if (sync_page_io(rdev
, sector
, sectors
<< 9, page
, rw
, false))
1785 set_bit(WriteErrorSeen
, &rdev
->flags
);
1786 /* need to record an error - either for the block or the device */
1787 if (!rdev_set_badblocks(rdev
, sector
, sectors
, 0))
1788 md_error(rdev
->mddev
, rdev
);
1793 * This is a kernel thread which:
1795 * 1. Retries failed read operations on working mirrors.
1796 * 2. Updates the raid superblock when problems encounter.
1797 * 3. Performs writes following reads for array synchronising.
1800 static void fix_read_error(struct r10conf
*conf
, struct mddev
*mddev
, struct r10bio
*r10_bio
)
1802 int sect
= 0; /* Offset from r10_bio->sector */
1803 int sectors
= r10_bio
->sectors
;
1804 struct md_rdev
*rdev
;
1805 int max_read_errors
= atomic_read(&mddev
->max_corr_read_errors
);
1806 int d
= r10_bio
->devs
[r10_bio
->read_slot
].devnum
;
1808 /* still own a reference to this rdev, so it cannot
1809 * have been cleared recently.
1811 rdev
= conf
->mirrors
[d
].rdev
;
1813 if (test_bit(Faulty
, &rdev
->flags
))
1814 /* drive has already been failed, just ignore any
1815 more fix_read_error() attempts */
1818 check_decay_read_errors(mddev
, rdev
);
1819 atomic_inc(&rdev
->read_errors
);
1820 if (atomic_read(&rdev
->read_errors
) > max_read_errors
) {
1821 char b
[BDEVNAME_SIZE
];
1822 bdevname(rdev
->bdev
, b
);
1825 "md/raid10:%s: %s: Raid device exceeded "
1826 "read_error threshold [cur %d:max %d]\n",
1828 atomic_read(&rdev
->read_errors
), max_read_errors
);
1830 "md/raid10:%s: %s: Failing raid device\n",
1832 md_error(mddev
, conf
->mirrors
[d
].rdev
);
1838 int sl
= r10_bio
->read_slot
;
1842 if (s
> (PAGE_SIZE
>>9))
1850 d
= r10_bio
->devs
[sl
].devnum
;
1851 rdev
= rcu_dereference(conf
->mirrors
[d
].rdev
);
1853 test_bit(In_sync
, &rdev
->flags
) &&
1854 is_badblock(rdev
, r10_bio
->devs
[sl
].addr
+ sect
, s
,
1855 &first_bad
, &bad_sectors
) == 0) {
1856 atomic_inc(&rdev
->nr_pending
);
1858 success
= sync_page_io(rdev
,
1859 r10_bio
->devs
[sl
].addr
+
1862 conf
->tmppage
, READ
, false);
1863 rdev_dec_pending(rdev
, mddev
);
1869 if (sl
== conf
->copies
)
1871 } while (!success
&& sl
!= r10_bio
->read_slot
);
1875 /* Cannot read from anywhere, just mark the block
1876 * as bad on the first device to discourage future
1879 int dn
= r10_bio
->devs
[r10_bio
->read_slot
].devnum
;
1880 rdev
= conf
->mirrors
[dn
].rdev
;
1882 if (!rdev_set_badblocks(
1884 r10_bio
->devs
[r10_bio
->read_slot
].addr
1887 md_error(mddev
, rdev
);
1892 /* write it back and re-read */
1894 while (sl
!= r10_bio
->read_slot
) {
1895 char b
[BDEVNAME_SIZE
];
1900 d
= r10_bio
->devs
[sl
].devnum
;
1901 rdev
= rcu_dereference(conf
->mirrors
[d
].rdev
);
1903 !test_bit(In_sync
, &rdev
->flags
))
1906 atomic_inc(&rdev
->nr_pending
);
1908 if (r10_sync_page_io(rdev
,
1909 r10_bio
->devs
[sl
].addr
+
1911 s
<<9, conf
->tmppage
, WRITE
)
1913 /* Well, this device is dead */
1915 "md/raid10:%s: read correction "
1917 " (%d sectors at %llu on %s)\n",
1919 (unsigned long long)(
1920 sect
+ rdev
->data_offset
),
1921 bdevname(rdev
->bdev
, b
));
1922 printk(KERN_NOTICE
"md/raid10:%s: %s: failing "
1925 bdevname(rdev
->bdev
, b
));
1927 rdev_dec_pending(rdev
, mddev
);
1931 while (sl
!= r10_bio
->read_slot
) {
1932 char b
[BDEVNAME_SIZE
];
1937 d
= r10_bio
->devs
[sl
].devnum
;
1938 rdev
= rcu_dereference(conf
->mirrors
[d
].rdev
);
1940 !test_bit(In_sync
, &rdev
->flags
))
1943 atomic_inc(&rdev
->nr_pending
);
1945 switch (r10_sync_page_io(rdev
,
1946 r10_bio
->devs
[sl
].addr
+
1948 s
<<9, conf
->tmppage
,
1951 /* Well, this device is dead */
1953 "md/raid10:%s: unable to read back "
1955 " (%d sectors at %llu on %s)\n",
1957 (unsigned long long)(
1958 sect
+ rdev
->data_offset
),
1959 bdevname(rdev
->bdev
, b
));
1960 printk(KERN_NOTICE
"md/raid10:%s: %s: failing "
1963 bdevname(rdev
->bdev
, b
));
1967 "md/raid10:%s: read error corrected"
1968 " (%d sectors at %llu on %s)\n",
1970 (unsigned long long)(
1971 sect
+ rdev
->data_offset
),
1972 bdevname(rdev
->bdev
, b
));
1973 atomic_add(s
, &rdev
->corrected_errors
);
1976 rdev_dec_pending(rdev
, mddev
);
1986 static void bi_complete(struct bio
*bio
, int error
)
1988 complete((struct completion
*)bio
->bi_private
);
1991 static int submit_bio_wait(int rw
, struct bio
*bio
)
1993 struct completion event
;
1996 init_completion(&event
);
1997 bio
->bi_private
= &event
;
1998 bio
->bi_end_io
= bi_complete
;
1999 submit_bio(rw
, bio
);
2000 wait_for_completion(&event
);
2002 return test_bit(BIO_UPTODATE
, &bio
->bi_flags
);
2005 static int narrow_write_error(struct r10bio
*r10_bio
, int i
)
2007 struct bio
*bio
= r10_bio
->master_bio
;
2008 struct mddev
*mddev
= r10_bio
->mddev
;
2009 struct r10conf
*conf
= mddev
->private;
2010 struct md_rdev
*rdev
= conf
->mirrors
[r10_bio
->devs
[i
].devnum
].rdev
;
2011 /* bio has the data to be written to slot 'i' where
2012 * we just recently had a write error.
2013 * We repeatedly clone the bio and trim down to one block,
2014 * then try the write. Where the write fails we record
2016 * It is conceivable that the bio doesn't exactly align with
2017 * blocks. We must handle this.
2019 * We currently own a reference to the rdev.
2025 int sect_to_write
= r10_bio
->sectors
;
2028 if (rdev
->badblocks
.shift
< 0)
2031 block_sectors
= 1 << rdev
->badblocks
.shift
;
2032 sector
= r10_bio
->sector
;
2033 sectors
= ((r10_bio
->sector
+ block_sectors
)
2034 & ~(sector_t
)(block_sectors
- 1))
2037 while (sect_to_write
) {
2039 if (sectors
> sect_to_write
)
2040 sectors
= sect_to_write
;
2041 /* Write at 'sector' for 'sectors' */
2042 wbio
= bio_clone_mddev(bio
, GFP_NOIO
, mddev
);
2043 md_trim_bio(wbio
, sector
- bio
->bi_sector
, sectors
);
2044 wbio
->bi_sector
= (r10_bio
->devs
[i
].addr
+
2046 (sector
- r10_bio
->sector
));
2047 wbio
->bi_bdev
= rdev
->bdev
;
2048 if (submit_bio_wait(WRITE
, wbio
) == 0)
2050 ok
= rdev_set_badblocks(rdev
, sector
,
2055 sect_to_write
-= sectors
;
2057 sectors
= block_sectors
;
2062 static void handle_read_error(struct mddev
*mddev
, struct r10bio
*r10_bio
)
2064 int slot
= r10_bio
->read_slot
;
2065 int mirror
= r10_bio
->devs
[slot
].devnum
;
2067 struct r10conf
*conf
= mddev
->private;
2068 struct md_rdev
*rdev
;
2069 char b
[BDEVNAME_SIZE
];
2070 unsigned long do_sync
;
2073 /* we got a read error. Maybe the drive is bad. Maybe just
2074 * the block and we can fix it.
2075 * We freeze all other IO, and try reading the block from
2076 * other devices. When we find one, we re-write
2077 * and check it that fixes the read error.
2078 * This is all done synchronously while the array is
2081 if (mddev
->ro
== 0) {
2083 fix_read_error(conf
, mddev
, r10_bio
);
2084 unfreeze_array(conf
);
2086 rdev_dec_pending(conf
->mirrors
[mirror
].rdev
, mddev
);
2088 bio
= r10_bio
->devs
[slot
].bio
;
2089 bdevname(bio
->bi_bdev
, b
);
2090 r10_bio
->devs
[slot
].bio
=
2091 mddev
->ro
? IO_BLOCKED
: NULL
;
2093 mirror
= read_balance(conf
, r10_bio
, &max_sectors
);
2095 printk(KERN_ALERT
"md/raid10:%s: %s: unrecoverable I/O"
2096 " read error for block %llu\n",
2098 (unsigned long long)r10_bio
->sector
);
2099 raid_end_bio_io(r10_bio
);
2104 do_sync
= (r10_bio
->master_bio
->bi_rw
& REQ_SYNC
);
2107 slot
= r10_bio
->read_slot
;
2108 rdev
= conf
->mirrors
[mirror
].rdev
;
2111 "md/raid10:%s: %s: redirecting"
2112 "sector %llu to another mirror\n",
2114 bdevname(rdev
->bdev
, b
),
2115 (unsigned long long)r10_bio
->sector
);
2116 bio
= bio_clone_mddev(r10_bio
->master_bio
,
2119 r10_bio
->sector
- bio
->bi_sector
,
2121 r10_bio
->devs
[slot
].bio
= bio
;
2122 bio
->bi_sector
= r10_bio
->devs
[slot
].addr
2123 + rdev
->data_offset
;
2124 bio
->bi_bdev
= rdev
->bdev
;
2125 bio
->bi_rw
= READ
| do_sync
;
2126 bio
->bi_private
= r10_bio
;
2127 bio
->bi_end_io
= raid10_end_read_request
;
2128 if (max_sectors
< r10_bio
->sectors
) {
2129 /* Drat - have to split this up more */
2130 struct bio
*mbio
= r10_bio
->master_bio
;
2131 int sectors_handled
=
2132 r10_bio
->sector
+ max_sectors
2134 r10_bio
->sectors
= max_sectors
;
2135 spin_lock_irq(&conf
->device_lock
);
2136 if (mbio
->bi_phys_segments
== 0)
2137 mbio
->bi_phys_segments
= 2;
2139 mbio
->bi_phys_segments
++;
2140 spin_unlock_irq(&conf
->device_lock
);
2141 generic_make_request(bio
);
2144 r10_bio
= mempool_alloc(conf
->r10bio_pool
,
2146 r10_bio
->master_bio
= mbio
;
2147 r10_bio
->sectors
= (mbio
->bi_size
>> 9)
2150 set_bit(R10BIO_ReadError
,
2152 r10_bio
->mddev
= mddev
;
2153 r10_bio
->sector
= mbio
->bi_sector
2158 generic_make_request(bio
);
2161 static void handle_write_completed(struct r10conf
*conf
, struct r10bio
*r10_bio
)
2163 /* Some sort of write request has finished and it
2164 * succeeded in writing where we thought there was a
2165 * bad block. So forget the bad block.
2166 * Or possibly if failed and we need to record
2170 struct md_rdev
*rdev
;
2172 if (test_bit(R10BIO_IsSync
, &r10_bio
->state
) ||
2173 test_bit(R10BIO_IsRecover
, &r10_bio
->state
)) {
2174 for (m
= 0; m
< conf
->copies
; m
++) {
2175 int dev
= r10_bio
->devs
[m
].devnum
;
2176 rdev
= conf
->mirrors
[dev
].rdev
;
2177 if (r10_bio
->devs
[m
].bio
== NULL
)
2179 if (test_bit(BIO_UPTODATE
,
2180 &r10_bio
->devs
[m
].bio
->bi_flags
)) {
2181 rdev_clear_badblocks(
2183 r10_bio
->devs
[m
].addr
,
2186 if (!rdev_set_badblocks(
2188 r10_bio
->devs
[m
].addr
,
2189 r10_bio
->sectors
, 0))
2190 md_error(conf
->mddev
, rdev
);
2195 for (m
= 0; m
< conf
->copies
; m
++) {
2196 int dev
= r10_bio
->devs
[m
].devnum
;
2197 struct bio
*bio
= r10_bio
->devs
[m
].bio
;
2198 rdev
= conf
->mirrors
[dev
].rdev
;
2199 if (bio
== IO_MADE_GOOD
) {
2200 rdev_clear_badblocks(
2202 r10_bio
->devs
[m
].addr
,
2204 rdev_dec_pending(rdev
, conf
->mddev
);
2205 } else if (bio
!= NULL
&&
2206 !test_bit(BIO_UPTODATE
, &bio
->bi_flags
)) {
2207 if (!narrow_write_error(r10_bio
, m
)) {
2208 md_error(conf
->mddev
, rdev
);
2209 set_bit(R10BIO_Degraded
,
2212 rdev_dec_pending(rdev
, conf
->mddev
);
2215 if (test_bit(R10BIO_WriteError
,
2217 close_write(r10_bio
);
2218 raid_end_bio_io(r10_bio
);
2222 static void raid10d(struct mddev
*mddev
)
2224 struct r10bio
*r10_bio
;
2225 unsigned long flags
;
2226 struct r10conf
*conf
= mddev
->private;
2227 struct list_head
*head
= &conf
->retry_list
;
2228 struct blk_plug plug
;
2230 md_check_recovery(mddev
);
2232 blk_start_plug(&plug
);
2235 flush_pending_writes(conf
);
2237 spin_lock_irqsave(&conf
->device_lock
, flags
);
2238 if (list_empty(head
)) {
2239 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
2242 r10_bio
= list_entry(head
->prev
, struct r10bio
, retry_list
);
2243 list_del(head
->prev
);
2245 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
2247 mddev
= r10_bio
->mddev
;
2248 conf
= mddev
->private;
2249 if (test_bit(R10BIO_MadeGood
, &r10_bio
->state
) ||
2250 test_bit(R10BIO_WriteError
, &r10_bio
->state
))
2251 handle_write_completed(conf
, r10_bio
);
2252 else if (test_bit(R10BIO_IsSync
, &r10_bio
->state
))
2253 sync_request_write(mddev
, r10_bio
);
2254 else if (test_bit(R10BIO_IsRecover
, &r10_bio
->state
))
2255 recovery_request_write(mddev
, r10_bio
);
2256 else if (test_bit(R10BIO_ReadError
, &r10_bio
->state
))
2257 handle_read_error(mddev
, r10_bio
);
2259 /* just a partial read to be scheduled from a
2262 int slot
= r10_bio
->read_slot
;
2263 generic_make_request(r10_bio
->devs
[slot
].bio
);
2267 if (mddev
->flags
& ~(1<<MD_CHANGE_PENDING
))
2268 md_check_recovery(mddev
);
2270 blk_finish_plug(&plug
);
2274 static int init_resync(struct r10conf
*conf
)
2278 buffs
= RESYNC_WINDOW
/ RESYNC_BLOCK_SIZE
;
2279 BUG_ON(conf
->r10buf_pool
);
2280 conf
->r10buf_pool
= mempool_create(buffs
, r10buf_pool_alloc
, r10buf_pool_free
, conf
);
2281 if (!conf
->r10buf_pool
)
2283 conf
->next_resync
= 0;
2288 * perform a "sync" on one "block"
2290 * We need to make sure that no normal I/O request - particularly write
2291 * requests - conflict with active sync requests.
2293 * This is achieved by tracking pending requests and a 'barrier' concept
2294 * that can be installed to exclude normal IO requests.
2296 * Resync and recovery are handled very differently.
2297 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2299 * For resync, we iterate over virtual addresses, read all copies,
2300 * and update if there are differences. If only one copy is live,
2302 * For recovery, we iterate over physical addresses, read a good
2303 * value for each non-in_sync drive, and over-write.
2305 * So, for recovery we may have several outstanding complex requests for a
2306 * given address, one for each out-of-sync device. We model this by allocating
2307 * a number of r10_bio structures, one for each out-of-sync device.
2308 * As we setup these structures, we collect all bio's together into a list
2309 * which we then process collectively to add pages, and then process again
2310 * to pass to generic_make_request.
2312 * The r10_bio structures are linked using a borrowed master_bio pointer.
2313 * This link is counted in ->remaining. When the r10_bio that points to NULL
2314 * has its remaining count decremented to 0, the whole complex operation
2319 static sector_t
sync_request(struct mddev
*mddev
, sector_t sector_nr
,
2320 int *skipped
, int go_faster
)
2322 struct r10conf
*conf
= mddev
->private;
2323 struct r10bio
*r10_bio
;
2324 struct bio
*biolist
= NULL
, *bio
;
2325 sector_t max_sector
, nr_sectors
;
2328 sector_t sync_blocks
;
2329 sector_t sectors_skipped
= 0;
2330 int chunks_skipped
= 0;
2332 if (!conf
->r10buf_pool
)
2333 if (init_resync(conf
))
2337 max_sector
= mddev
->dev_sectors
;
2338 if (test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
))
2339 max_sector
= mddev
->resync_max_sectors
;
2340 if (sector_nr
>= max_sector
) {
2341 /* If we aborted, we need to abort the
2342 * sync on the 'current' bitmap chucks (there can
2343 * be several when recovering multiple devices).
2344 * as we may have started syncing it but not finished.
2345 * We can find the current address in
2346 * mddev->curr_resync, but for recovery,
2347 * we need to convert that to several
2348 * virtual addresses.
2350 if (mddev
->curr_resync
< max_sector
) { /* aborted */
2351 if (test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
))
2352 bitmap_end_sync(mddev
->bitmap
, mddev
->curr_resync
,
2354 else for (i
=0; i
<conf
->raid_disks
; i
++) {
2356 raid10_find_virt(conf
, mddev
->curr_resync
, i
);
2357 bitmap_end_sync(mddev
->bitmap
, sect
,
2360 } else /* completed sync */
2363 bitmap_close_sync(mddev
->bitmap
);
2366 return sectors_skipped
;
2368 if (chunks_skipped
>= conf
->raid_disks
) {
2369 /* if there has been nothing to do on any drive,
2370 * then there is nothing to do at all..
2373 return (max_sector
- sector_nr
) + sectors_skipped
;
2376 if (max_sector
> mddev
->resync_max
)
2377 max_sector
= mddev
->resync_max
; /* Don't do IO beyond here */
2379 /* make sure whole request will fit in a chunk - if chunks
2382 if (conf
->near_copies
< conf
->raid_disks
&&
2383 max_sector
> (sector_nr
| conf
->chunk_mask
))
2384 max_sector
= (sector_nr
| conf
->chunk_mask
) + 1;
2386 * If there is non-resync activity waiting for us then
2387 * put in a delay to throttle resync.
2389 if (!go_faster
&& conf
->nr_waiting
)
2390 msleep_interruptible(1000);
2392 /* Again, very different code for resync and recovery.
2393 * Both must result in an r10bio with a list of bios that
2394 * have bi_end_io, bi_sector, bi_bdev set,
2395 * and bi_private set to the r10bio.
2396 * For recovery, we may actually create several r10bios
2397 * with 2 bios in each, that correspond to the bios in the main one.
2398 * In this case, the subordinate r10bios link back through a
2399 * borrowed master_bio pointer, and the counter in the master
2400 * includes a ref from each subordinate.
2402 /* First, we decide what to do and set ->bi_end_io
2403 * To end_sync_read if we want to read, and
2404 * end_sync_write if we will want to write.
2407 max_sync
= RESYNC_PAGES
<< (PAGE_SHIFT
-9);
2408 if (!test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
)) {
2409 /* recovery... the complicated one */
2413 for (i
=0 ; i
<conf
->raid_disks
; i
++) {
2420 if (conf
->mirrors
[i
].rdev
== NULL
||
2421 test_bit(In_sync
, &conf
->mirrors
[i
].rdev
->flags
))
2425 /* want to reconstruct this device */
2427 sect
= raid10_find_virt(conf
, sector_nr
, i
);
2428 /* Unless we are doing a full sync, we only need
2429 * to recover the block if it is set in the bitmap
2431 must_sync
= bitmap_start_sync(mddev
->bitmap
, sect
,
2433 if (sync_blocks
< max_sync
)
2434 max_sync
= sync_blocks
;
2437 /* yep, skip the sync_blocks here, but don't assume
2438 * that there will never be anything to do here
2440 chunks_skipped
= -1;
2444 r10_bio
= mempool_alloc(conf
->r10buf_pool
, GFP_NOIO
);
2445 raise_barrier(conf
, rb2
!= NULL
);
2446 atomic_set(&r10_bio
->remaining
, 0);
2448 r10_bio
->master_bio
= (struct bio
*)rb2
;
2450 atomic_inc(&rb2
->remaining
);
2451 r10_bio
->mddev
= mddev
;
2452 set_bit(R10BIO_IsRecover
, &r10_bio
->state
);
2453 r10_bio
->sector
= sect
;
2455 raid10_find_phys(conf
, r10_bio
);
2457 /* Need to check if the array will still be
2460 for (j
=0; j
<conf
->raid_disks
; j
++)
2461 if (conf
->mirrors
[j
].rdev
== NULL
||
2462 test_bit(Faulty
, &conf
->mirrors
[j
].rdev
->flags
)) {
2467 must_sync
= bitmap_start_sync(mddev
->bitmap
, sect
,
2468 &sync_blocks
, still_degraded
);
2471 for (j
=0; j
<conf
->copies
;j
++) {
2473 int d
= r10_bio
->devs
[j
].devnum
;
2474 sector_t from_addr
, to_addr
;
2475 struct md_rdev
*rdev
;
2476 sector_t sector
, first_bad
;
2478 if (!conf
->mirrors
[d
].rdev
||
2479 !test_bit(In_sync
, &conf
->mirrors
[d
].rdev
->flags
))
2481 /* This is where we read from */
2483 rdev
= conf
->mirrors
[d
].rdev
;
2484 sector
= r10_bio
->devs
[j
].addr
;
2486 if (is_badblock(rdev
, sector
, max_sync
,
2487 &first_bad
, &bad_sectors
)) {
2488 if (first_bad
> sector
)
2489 max_sync
= first_bad
- sector
;
2491 bad_sectors
-= (sector
2493 if (max_sync
> bad_sectors
)
2494 max_sync
= bad_sectors
;
2498 bio
= r10_bio
->devs
[0].bio
;
2499 bio
->bi_next
= biolist
;
2501 bio
->bi_private
= r10_bio
;
2502 bio
->bi_end_io
= end_sync_read
;
2504 from_addr
= r10_bio
->devs
[j
].addr
;
2505 bio
->bi_sector
= from_addr
+
2506 conf
->mirrors
[d
].rdev
->data_offset
;
2507 bio
->bi_bdev
= conf
->mirrors
[d
].rdev
->bdev
;
2508 atomic_inc(&conf
->mirrors
[d
].rdev
->nr_pending
);
2509 atomic_inc(&r10_bio
->remaining
);
2510 /* and we write to 'i' */
2512 for (k
=0; k
<conf
->copies
; k
++)
2513 if (r10_bio
->devs
[k
].devnum
== i
)
2515 BUG_ON(k
== conf
->copies
);
2516 bio
= r10_bio
->devs
[1].bio
;
2517 bio
->bi_next
= biolist
;
2519 bio
->bi_private
= r10_bio
;
2520 bio
->bi_end_io
= end_sync_write
;
2522 to_addr
= r10_bio
->devs
[k
].addr
;
2523 bio
->bi_sector
= to_addr
+
2524 conf
->mirrors
[i
].rdev
->data_offset
;
2525 bio
->bi_bdev
= conf
->mirrors
[i
].rdev
->bdev
;
2527 r10_bio
->devs
[0].devnum
= d
;
2528 r10_bio
->devs
[0].addr
= from_addr
;
2529 r10_bio
->devs
[1].devnum
= i
;
2530 r10_bio
->devs
[1].addr
= to_addr
;
2534 if (j
== conf
->copies
) {
2535 /* Cannot recover, so abort the recovery or
2536 * record a bad block */
2539 atomic_dec(&rb2
->remaining
);
2542 /* problem is that there are bad blocks
2543 * on other device(s)
2546 for (k
= 0; k
< conf
->copies
; k
++)
2547 if (r10_bio
->devs
[k
].devnum
== i
)
2549 if (!rdev_set_badblocks(
2550 conf
->mirrors
[i
].rdev
,
2551 r10_bio
->devs
[k
].addr
,
2556 if (!test_and_set_bit(MD_RECOVERY_INTR
,
2558 printk(KERN_INFO
"md/raid10:%s: insufficient "
2559 "working devices for recovery.\n",
2561 conf
->mirrors
[i
].recovery_disabled
2562 = mddev
->recovery_disabled
;
2567 if (biolist
== NULL
) {
2569 struct r10bio
*rb2
= r10_bio
;
2570 r10_bio
= (struct r10bio
*) rb2
->master_bio
;
2571 rb2
->master_bio
= NULL
;
2577 /* resync. Schedule a read for every block at this virt offset */
2580 bitmap_cond_end_sync(mddev
->bitmap
, sector_nr
);
2582 if (!bitmap_start_sync(mddev
->bitmap
, sector_nr
,
2583 &sync_blocks
, mddev
->degraded
) &&
2584 !conf
->fullsync
&& !test_bit(MD_RECOVERY_REQUESTED
,
2585 &mddev
->recovery
)) {
2586 /* We can skip this block */
2588 return sync_blocks
+ sectors_skipped
;
2590 if (sync_blocks
< max_sync
)
2591 max_sync
= sync_blocks
;
2592 r10_bio
= mempool_alloc(conf
->r10buf_pool
, GFP_NOIO
);
2594 r10_bio
->mddev
= mddev
;
2595 atomic_set(&r10_bio
->remaining
, 0);
2596 raise_barrier(conf
, 0);
2597 conf
->next_resync
= sector_nr
;
2599 r10_bio
->master_bio
= NULL
;
2600 r10_bio
->sector
= sector_nr
;
2601 set_bit(R10BIO_IsSync
, &r10_bio
->state
);
2602 raid10_find_phys(conf
, r10_bio
);
2603 r10_bio
->sectors
= (sector_nr
| conf
->chunk_mask
) - sector_nr
+1;
2605 for (i
=0; i
<conf
->copies
; i
++) {
2606 int d
= r10_bio
->devs
[i
].devnum
;
2607 sector_t first_bad
, sector
;
2610 bio
= r10_bio
->devs
[i
].bio
;
2611 bio
->bi_end_io
= NULL
;
2612 clear_bit(BIO_UPTODATE
, &bio
->bi_flags
);
2613 if (conf
->mirrors
[d
].rdev
== NULL
||
2614 test_bit(Faulty
, &conf
->mirrors
[d
].rdev
->flags
))
2616 sector
= r10_bio
->devs
[i
].addr
;
2617 if (is_badblock(conf
->mirrors
[d
].rdev
,
2619 &first_bad
, &bad_sectors
)) {
2620 if (first_bad
> sector
)
2621 max_sync
= first_bad
- sector
;
2623 bad_sectors
-= (sector
- first_bad
);
2624 if (max_sync
> bad_sectors
)
2625 max_sync
= max_sync
;
2629 atomic_inc(&conf
->mirrors
[d
].rdev
->nr_pending
);
2630 atomic_inc(&r10_bio
->remaining
);
2631 bio
->bi_next
= biolist
;
2633 bio
->bi_private
= r10_bio
;
2634 bio
->bi_end_io
= end_sync_read
;
2636 bio
->bi_sector
= sector
+
2637 conf
->mirrors
[d
].rdev
->data_offset
;
2638 bio
->bi_bdev
= conf
->mirrors
[d
].rdev
->bdev
;
2643 for (i
=0; i
<conf
->copies
; i
++) {
2644 int d
= r10_bio
->devs
[i
].devnum
;
2645 if (r10_bio
->devs
[i
].bio
->bi_end_io
)
2646 rdev_dec_pending(conf
->mirrors
[d
].rdev
,
2655 for (bio
= biolist
; bio
; bio
=bio
->bi_next
) {
2657 bio
->bi_flags
&= ~(BIO_POOL_MASK
- 1);
2659 bio
->bi_flags
|= 1 << BIO_UPTODATE
;
2662 bio
->bi_phys_segments
= 0;
2667 if (sector_nr
+ max_sync
< max_sector
)
2668 max_sector
= sector_nr
+ max_sync
;
2671 int len
= PAGE_SIZE
;
2672 if (sector_nr
+ (len
>>9) > max_sector
)
2673 len
= (max_sector
- sector_nr
) << 9;
2676 for (bio
= biolist
; bio
; bio
=bio
->bi_next
) {
2678 page
= bio
->bi_io_vec
[bio
->bi_vcnt
].bv_page
;
2679 if (bio_add_page(bio
, page
, len
, 0))
2683 bio
->bi_io_vec
[bio
->bi_vcnt
].bv_page
= page
;
2684 for (bio2
= biolist
;
2685 bio2
&& bio2
!= bio
;
2686 bio2
= bio2
->bi_next
) {
2687 /* remove last page from this bio */
2689 bio2
->bi_size
-= len
;
2690 bio2
->bi_flags
&= ~(1<< BIO_SEG_VALID
);
2694 nr_sectors
+= len
>>9;
2695 sector_nr
+= len
>>9;
2696 } while (biolist
->bi_vcnt
< RESYNC_PAGES
);
2698 r10_bio
->sectors
= nr_sectors
;
2702 biolist
= biolist
->bi_next
;
2704 bio
->bi_next
= NULL
;
2705 r10_bio
= bio
->bi_private
;
2706 r10_bio
->sectors
= nr_sectors
;
2708 if (bio
->bi_end_io
== end_sync_read
) {
2709 md_sync_acct(bio
->bi_bdev
, nr_sectors
);
2710 generic_make_request(bio
);
2714 if (sectors_skipped
)
2715 /* pretend they weren't skipped, it makes
2716 * no important difference in this case
2718 md_done_sync(mddev
, sectors_skipped
, 1);
2720 return sectors_skipped
+ nr_sectors
;
2722 /* There is nowhere to write, so all non-sync
2723 * drives must be failed or in resync, all drives
2724 * have a bad block, so try the next chunk...
2726 if (sector_nr
+ max_sync
< max_sector
)
2727 max_sector
= sector_nr
+ max_sync
;
2729 sectors_skipped
+= (max_sector
- sector_nr
);
2731 sector_nr
= max_sector
;
2736 raid10_size(struct mddev
*mddev
, sector_t sectors
, int raid_disks
)
2739 struct r10conf
*conf
= mddev
->private;
2742 raid_disks
= conf
->raid_disks
;
2744 sectors
= conf
->dev_sectors
;
2746 size
= sectors
>> conf
->chunk_shift
;
2747 sector_div(size
, conf
->far_copies
);
2748 size
= size
* raid_disks
;
2749 sector_div(size
, conf
->near_copies
);
2751 return size
<< conf
->chunk_shift
;
2755 static struct r10conf
*setup_conf(struct mddev
*mddev
)
2757 struct r10conf
*conf
= NULL
;
2759 sector_t stride
, size
;
2762 if (mddev
->new_chunk_sectors
< (PAGE_SIZE
>> 9) ||
2763 !is_power_of_2(mddev
->new_chunk_sectors
)) {
2764 printk(KERN_ERR
"md/raid10:%s: chunk size must be "
2765 "at least PAGE_SIZE(%ld) and be a power of 2.\n",
2766 mdname(mddev
), PAGE_SIZE
);
2770 nc
= mddev
->new_layout
& 255;
2771 fc
= (mddev
->new_layout
>> 8) & 255;
2772 fo
= mddev
->new_layout
& (1<<16);
2774 if ((nc
*fc
) <2 || (nc
*fc
) > mddev
->raid_disks
||
2775 (mddev
->new_layout
>> 17)) {
2776 printk(KERN_ERR
"md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
2777 mdname(mddev
), mddev
->new_layout
);
2782 conf
= kzalloc(sizeof(struct r10conf
), GFP_KERNEL
);
2786 conf
->mirrors
= kzalloc(sizeof(struct mirror_info
)*mddev
->raid_disks
,
2791 conf
->tmppage
= alloc_page(GFP_KERNEL
);
2796 conf
->raid_disks
= mddev
->raid_disks
;
2797 conf
->near_copies
= nc
;
2798 conf
->far_copies
= fc
;
2799 conf
->copies
= nc
*fc
;
2800 conf
->far_offset
= fo
;
2801 conf
->chunk_mask
= mddev
->new_chunk_sectors
- 1;
2802 conf
->chunk_shift
= ffz(~mddev
->new_chunk_sectors
);
2804 conf
->r10bio_pool
= mempool_create(NR_RAID10_BIOS
, r10bio_pool_alloc
,
2805 r10bio_pool_free
, conf
);
2806 if (!conf
->r10bio_pool
)
2809 size
= mddev
->dev_sectors
>> conf
->chunk_shift
;
2810 sector_div(size
, fc
);
2811 size
= size
* conf
->raid_disks
;
2812 sector_div(size
, nc
);
2813 /* 'size' is now the number of chunks in the array */
2814 /* calculate "used chunks per device" in 'stride' */
2815 stride
= size
* conf
->copies
;
2817 /* We need to round up when dividing by raid_disks to
2818 * get the stride size.
2820 stride
+= conf
->raid_disks
- 1;
2821 sector_div(stride
, conf
->raid_disks
);
2823 conf
->dev_sectors
= stride
<< conf
->chunk_shift
;
2828 sector_div(stride
, fc
);
2829 conf
->stride
= stride
<< conf
->chunk_shift
;
2832 spin_lock_init(&conf
->device_lock
);
2833 INIT_LIST_HEAD(&conf
->retry_list
);
2835 spin_lock_init(&conf
->resync_lock
);
2836 init_waitqueue_head(&conf
->wait_barrier
);
2838 conf
->thread
= md_register_thread(raid10d
, mddev
, NULL
);
2842 conf
->mddev
= mddev
;
2846 printk(KERN_ERR
"md/raid10:%s: couldn't allocate memory.\n",
2849 if (conf
->r10bio_pool
)
2850 mempool_destroy(conf
->r10bio_pool
);
2851 kfree(conf
->mirrors
);
2852 safe_put_page(conf
->tmppage
);
2855 return ERR_PTR(err
);
2858 static int run(struct mddev
*mddev
)
2860 struct r10conf
*conf
;
2861 int i
, disk_idx
, chunk_size
;
2862 struct mirror_info
*disk
;
2863 struct md_rdev
*rdev
;
2867 * copy the already verified devices into our private RAID10
2868 * bookkeeping area. [whatever we allocate in run(),
2869 * should be freed in stop()]
2872 if (mddev
->private == NULL
) {
2873 conf
= setup_conf(mddev
);
2875 return PTR_ERR(conf
);
2876 mddev
->private = conf
;
2878 conf
= mddev
->private;
2882 mddev
->thread
= conf
->thread
;
2883 conf
->thread
= NULL
;
2885 chunk_size
= mddev
->chunk_sectors
<< 9;
2886 blk_queue_io_min(mddev
->queue
, chunk_size
);
2887 if (conf
->raid_disks
% conf
->near_copies
)
2888 blk_queue_io_opt(mddev
->queue
, chunk_size
* conf
->raid_disks
);
2890 blk_queue_io_opt(mddev
->queue
, chunk_size
*
2891 (conf
->raid_disks
/ conf
->near_copies
));
2893 list_for_each_entry(rdev
, &mddev
->disks
, same_set
) {
2895 disk_idx
= rdev
->raid_disk
;
2896 if (disk_idx
>= conf
->raid_disks
2899 disk
= conf
->mirrors
+ disk_idx
;
2902 disk_stack_limits(mddev
->gendisk
, rdev
->bdev
,
2903 rdev
->data_offset
<< 9);
2904 /* as we don't honour merge_bvec_fn, we must never risk
2905 * violating it, so limit max_segments to 1 lying
2906 * within a single page.
2908 if (rdev
->bdev
->bd_disk
->queue
->merge_bvec_fn
) {
2909 blk_queue_max_segments(mddev
->queue
, 1);
2910 blk_queue_segment_boundary(mddev
->queue
,
2911 PAGE_CACHE_SIZE
- 1);
2914 disk
->head_position
= 0;
2916 /* need to check that every block has at least one working mirror */
2917 if (!enough(conf
, -1)) {
2918 printk(KERN_ERR
"md/raid10:%s: not enough operational mirrors.\n",
2923 mddev
->degraded
= 0;
2924 for (i
= 0; i
< conf
->raid_disks
; i
++) {
2926 disk
= conf
->mirrors
+ i
;
2929 !test_bit(In_sync
, &disk
->rdev
->flags
)) {
2930 disk
->head_position
= 0;
2935 disk
->recovery_disabled
= mddev
->recovery_disabled
- 1;
2938 if (mddev
->recovery_cp
!= MaxSector
)
2939 printk(KERN_NOTICE
"md/raid10:%s: not clean"
2940 " -- starting background reconstruction\n",
2943 "md/raid10:%s: active with %d out of %d devices\n",
2944 mdname(mddev
), conf
->raid_disks
- mddev
->degraded
,
2947 * Ok, everything is just fine now
2949 mddev
->dev_sectors
= conf
->dev_sectors
;
2950 size
= raid10_size(mddev
, 0, 0);
2951 md_set_array_sectors(mddev
, size
);
2952 mddev
->resync_max_sectors
= size
;
2954 mddev
->queue
->backing_dev_info
.congested_fn
= raid10_congested
;
2955 mddev
->queue
->backing_dev_info
.congested_data
= mddev
;
2957 /* Calculate max read-ahead size.
2958 * We need to readahead at least twice a whole stripe....
2962 int stripe
= conf
->raid_disks
*
2963 ((mddev
->chunk_sectors
<< 9) / PAGE_SIZE
);
2964 stripe
/= conf
->near_copies
;
2965 if (mddev
->queue
->backing_dev_info
.ra_pages
< 2* stripe
)
2966 mddev
->queue
->backing_dev_info
.ra_pages
= 2* stripe
;
2969 if (conf
->near_copies
< conf
->raid_disks
)
2970 blk_queue_merge_bvec(mddev
->queue
, raid10_mergeable_bvec
);
2972 if (md_integrity_register(mddev
))
2978 md_unregister_thread(&mddev
->thread
);
2979 if (conf
->r10bio_pool
)
2980 mempool_destroy(conf
->r10bio_pool
);
2981 safe_put_page(conf
->tmppage
);
2982 kfree(conf
->mirrors
);
2984 mddev
->private = NULL
;
2989 static int stop(struct mddev
*mddev
)
2991 struct r10conf
*conf
= mddev
->private;
2993 raise_barrier(conf
, 0);
2994 lower_barrier(conf
);
2996 md_unregister_thread(&mddev
->thread
);
2997 blk_sync_queue(mddev
->queue
); /* the unplug fn references 'conf'*/
2998 if (conf
->r10bio_pool
)
2999 mempool_destroy(conf
->r10bio_pool
);
3000 kfree(conf
->mirrors
);
3002 mddev
->private = NULL
;
3006 static void raid10_quiesce(struct mddev
*mddev
, int state
)
3008 struct r10conf
*conf
= mddev
->private;
3012 raise_barrier(conf
, 0);
3015 lower_barrier(conf
);
3020 static void *raid10_takeover_raid0(struct mddev
*mddev
)
3022 struct md_rdev
*rdev
;
3023 struct r10conf
*conf
;
3025 if (mddev
->degraded
> 0) {
3026 printk(KERN_ERR
"md/raid10:%s: Error: degraded raid0!\n",
3028 return ERR_PTR(-EINVAL
);
3031 /* Set new parameters */
3032 mddev
->new_level
= 10;
3033 /* new layout: far_copies = 1, near_copies = 2 */
3034 mddev
->new_layout
= (1<<8) + 2;
3035 mddev
->new_chunk_sectors
= mddev
->chunk_sectors
;
3036 mddev
->delta_disks
= mddev
->raid_disks
;
3037 mddev
->raid_disks
*= 2;
3038 /* make sure it will be not marked as dirty */
3039 mddev
->recovery_cp
= MaxSector
;
3041 conf
= setup_conf(mddev
);
3042 if (!IS_ERR(conf
)) {
3043 list_for_each_entry(rdev
, &mddev
->disks
, same_set
)
3044 if (rdev
->raid_disk
>= 0)
3045 rdev
->new_raid_disk
= rdev
->raid_disk
* 2;
3052 static void *raid10_takeover(struct mddev
*mddev
)
3054 struct r0conf
*raid0_conf
;
3056 /* raid10 can take over:
3057 * raid0 - providing it has only two drives
3059 if (mddev
->level
== 0) {
3060 /* for raid0 takeover only one zone is supported */
3061 raid0_conf
= mddev
->private;
3062 if (raid0_conf
->nr_strip_zones
> 1) {
3063 printk(KERN_ERR
"md/raid10:%s: cannot takeover raid 0"
3064 " with more than one zone.\n",
3066 return ERR_PTR(-EINVAL
);
3068 return raid10_takeover_raid0(mddev
);
3070 return ERR_PTR(-EINVAL
);
3073 static struct md_personality raid10_personality
=
3077 .owner
= THIS_MODULE
,
3078 .make_request
= make_request
,
3082 .error_handler
= error
,
3083 .hot_add_disk
= raid10_add_disk
,
3084 .hot_remove_disk
= raid10_remove_disk
,
3085 .spare_active
= raid10_spare_active
,
3086 .sync_request
= sync_request
,
3087 .quiesce
= raid10_quiesce
,
3088 .size
= raid10_size
,
3089 .takeover
= raid10_takeover
,
3092 static int __init
raid_init(void)
3094 return register_md_personality(&raid10_personality
);
3097 static void raid_exit(void)
3099 unregister_md_personality(&raid10_personality
);
3102 module_init(raid_init
);
3103 module_exit(raid_exit
);
3104 MODULE_LICENSE("GPL");
3105 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
3106 MODULE_ALIAS("md-personality-9"); /* RAID10 */
3107 MODULE_ALIAS("md-raid10");
3108 MODULE_ALIAS("md-level-10");
3110 module_param(max_queued_requests
, int, S_IRUGO
|S_IWUSR
);