MIPS: Yosemite, Emma: Fix off-by-two in arcs_cmdline buffer size check
[linux-2.6/linux-mips.git] / drivers / staging / et131x / et131x.c
blobf5f44a02456fd5aa20ae06b9b524dee1b1c01757
1 /*
2 * Agere Systems Inc.
3 * 10/100/1000 Base-T Ethernet Driver for the ET1301 and ET131x series MACs
5 * Copyright © 2005 Agere Systems Inc.
6 * All rights reserved.
7 * http://www.agere.com
9 * Copyright (c) 2011 Mark Einon <mark.einon@gmail.com>
11 *------------------------------------------------------------------------------
13 * SOFTWARE LICENSE
15 * This software is provided subject to the following terms and conditions,
16 * which you should read carefully before using the software. Using this
17 * software indicates your acceptance of these terms and conditions. If you do
18 * not agree with these terms and conditions, do not use the software.
20 * Copyright © 2005 Agere Systems Inc.
21 * All rights reserved.
23 * Redistribution and use in source or binary forms, with or without
24 * modifications, are permitted provided that the following conditions are met:
26 * . Redistributions of source code must retain the above copyright notice, this
27 * list of conditions and the following Disclaimer as comments in the code as
28 * well as in the documentation and/or other materials provided with the
29 * distribution.
31 * . Redistributions in binary form must reproduce the above copyright notice,
32 * this list of conditions and the following Disclaimer in the documentation
33 * and/or other materials provided with the distribution.
35 * . Neither the name of Agere Systems Inc. nor the names of the contributors
36 * may be used to endorse or promote products derived from this software
37 * without specific prior written permission.
39 * Disclaimer
41 * THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
42 * INCLUDING, BUT NOT LIMITED TO, INFRINGEMENT AND THE IMPLIED WARRANTIES OF
43 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. ANY
44 * USE, MODIFICATION OR DISTRIBUTION OF THIS SOFTWARE IS SOLELY AT THE USERS OWN
45 * RISK. IN NO EVENT SHALL AGERE SYSTEMS INC. OR CONTRIBUTORS BE LIABLE FOR ANY
46 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
47 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
48 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
49 * ON ANY THEORY OF LIABILITY, INCLUDING, BUT NOT LIMITED TO, CONTRACT, STRICT
50 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
51 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
52 * DAMAGE.
56 #include <linux/pci.h>
57 #include <linux/init.h>
58 #include <linux/module.h>
59 #include <linux/types.h>
60 #include <linux/kernel.h>
62 #include <linux/sched.h>
63 #include <linux/ptrace.h>
64 #include <linux/slab.h>
65 #include <linux/ctype.h>
66 #include <linux/string.h>
67 #include <linux/timer.h>
68 #include <linux/interrupt.h>
69 #include <linux/in.h>
70 #include <linux/delay.h>
71 #include <linux/bitops.h>
72 #include <linux/io.h>
73 #include <asm/system.h>
75 #include <linux/netdevice.h>
76 #include <linux/etherdevice.h>
77 #include <linux/skbuff.h>
78 #include <linux/if_arp.h>
79 #include <linux/ioport.h>
80 #include <linux/crc32.h>
81 #include <linux/random.h>
82 #include <linux/phy.h>
84 #include "et131x.h"
86 MODULE_AUTHOR("Victor Soriano <vjsoriano@agere.com>");
87 MODULE_AUTHOR("Mark Einon <mark.einon@gmail.com>");
88 MODULE_LICENSE("Dual BSD/GPL");
89 MODULE_DESCRIPTION("10/100/1000 Base-T Ethernet Driver "
90 "for the ET1310 by Agere Systems");
92 /* EEPROM defines */
93 #define MAX_NUM_REGISTER_POLLS 1000
94 #define MAX_NUM_WRITE_RETRIES 2
96 /* MAC defines */
97 #define COUNTER_WRAP_16_BIT 0x10000
98 #define COUNTER_WRAP_12_BIT 0x1000
100 /* PCI defines */
101 #define INTERNAL_MEM_SIZE 0x400 /* 1024 of internal memory */
102 #define INTERNAL_MEM_RX_OFFSET 0x1FF /* 50% Tx, 50% Rx */
104 /* ISR defines */
106 * For interrupts, normal running is:
107 * rxdma_xfr_done, phy_interrupt, mac_stat_interrupt,
108 * watchdog_interrupt & txdma_xfer_done
110 * In both cases, when flow control is enabled for either Tx or bi-direction,
111 * we additional enable rx_fbr0_low and rx_fbr1_low, so we know when the
112 * buffer rings are running low.
114 #define INT_MASK_DISABLE 0xffffffff
116 /* NOTE: Masking out MAC_STAT Interrupt for now...
117 * #define INT_MASK_ENABLE 0xfff6bf17
118 * #define INT_MASK_ENABLE_NO_FLOW 0xfff6bfd7
120 #define INT_MASK_ENABLE 0xfffebf17
121 #define INT_MASK_ENABLE_NO_FLOW 0xfffebfd7
123 /* General defines */
124 /* Packet and header sizes */
125 #define NIC_MIN_PACKET_SIZE 60
127 /* Multicast list size */
128 #define NIC_MAX_MCAST_LIST 128
130 /* Supported Filters */
131 #define ET131X_PACKET_TYPE_DIRECTED 0x0001
132 #define ET131X_PACKET_TYPE_MULTICAST 0x0002
133 #define ET131X_PACKET_TYPE_BROADCAST 0x0004
134 #define ET131X_PACKET_TYPE_PROMISCUOUS 0x0008
135 #define ET131X_PACKET_TYPE_ALL_MULTICAST 0x0010
137 /* Tx Timeout */
138 #define ET131X_TX_TIMEOUT (1 * HZ)
139 #define NIC_SEND_HANG_THRESHOLD 0
141 /* MP_TCB flags */
142 #define fMP_DEST_MULTI 0x00000001
143 #define fMP_DEST_BROAD 0x00000002
145 /* MP_ADAPTER flags */
146 #define fMP_ADAPTER_RECV_LOOKASIDE 0x00000004
147 #define fMP_ADAPTER_INTERRUPT_IN_USE 0x00000008
149 /* MP_SHARED flags */
150 #define fMP_ADAPTER_LOWER_POWER 0x00200000
152 #define fMP_ADAPTER_NON_RECOVER_ERROR 0x00800000
153 #define fMP_ADAPTER_HARDWARE_ERROR 0x04000000
155 #define fMP_ADAPTER_FAIL_SEND_MASK 0x3ff00000
157 /* Some offsets in PCI config space that are actually used. */
158 #define ET1310_PCI_MAX_PYLD 0x4C
159 #define ET1310_PCI_MAC_ADDRESS 0xA4
160 #define ET1310_PCI_EEPROM_STATUS 0xB2
161 #define ET1310_PCI_ACK_NACK 0xC0
162 #define ET1310_PCI_REPLAY 0xC2
163 #define ET1310_PCI_L0L1LATENCY 0xCF
165 /* PCI Product IDs */
166 #define ET131X_PCI_DEVICE_ID_GIG 0xED00 /* ET1310 1000 Base-T 8 */
167 #define ET131X_PCI_DEVICE_ID_FAST 0xED01 /* ET1310 100 Base-T */
169 /* Define order of magnitude converter */
170 #define NANO_IN_A_MICRO 1000
172 #define PARM_RX_NUM_BUFS_DEF 4
173 #define PARM_RX_TIME_INT_DEF 10
174 #define PARM_RX_MEM_END_DEF 0x2bc
175 #define PARM_TX_TIME_INT_DEF 40
176 #define PARM_TX_NUM_BUFS_DEF 4
177 #define PARM_DMA_CACHE_DEF 0
179 /* RX defines */
180 #define USE_FBR0 1
182 #define FBR_CHUNKS 32
184 #define MAX_DESC_PER_RING_RX 1024
186 /* number of RFDs - default and min */
187 #ifdef USE_FBR0
188 #define RFD_LOW_WATER_MARK 40
189 #define NIC_DEFAULT_NUM_RFD 1024
190 #define NUM_FBRS 2
191 #else
192 #define RFD_LOW_WATER_MARK 20
193 #define NIC_DEFAULT_NUM_RFD 256
194 #define NUM_FBRS 1
195 #endif
197 #define NIC_MIN_NUM_RFD 64
199 #define NUM_PACKETS_HANDLED 256
201 #define ALCATEL_MULTICAST_PKT 0x01000000
202 #define ALCATEL_BROADCAST_PKT 0x02000000
204 /* typedefs for Free Buffer Descriptors */
205 struct fbr_desc {
206 u32 addr_lo;
207 u32 addr_hi;
208 u32 word2; /* Bits 10-31 reserved, 0-9 descriptor */
211 /* Packet Status Ring Descriptors
213 * Word 0:
215 * top 16 bits are from the Alcatel Status Word as enumerated in
216 * PE-MCXMAC Data Sheet IPD DS54 0210-1 (also IPD-DS80 0205-2)
218 * 0: hp hash pass
219 * 1: ipa IP checksum assist
220 * 2: ipp IP checksum pass
221 * 3: tcpa TCP checksum assist
222 * 4: tcpp TCP checksum pass
223 * 5: wol WOL Event
224 * 6: rxmac_error RXMAC Error Indicator
225 * 7: drop Drop packet
226 * 8: ft Frame Truncated
227 * 9: jp Jumbo Packet
228 * 10: vp VLAN Packet
229 * 11-15: unused
230 * 16: asw_prev_pkt_dropped e.g. IFG too small on previous
231 * 17: asw_RX_DV_event short receive event detected
232 * 18: asw_false_carrier_event bad carrier since last good packet
233 * 19: asw_code_err one or more nibbles signalled as errors
234 * 20: asw_CRC_err CRC error
235 * 21: asw_len_chk_err frame length field incorrect
236 * 22: asw_too_long frame length > 1518 bytes
237 * 23: asw_OK valid CRC + no code error
238 * 24: asw_multicast has a multicast address
239 * 25: asw_broadcast has a broadcast address
240 * 26: asw_dribble_nibble spurious bits after EOP
241 * 27: asw_control_frame is a control frame
242 * 28: asw_pause_frame is a pause frame
243 * 29: asw_unsupported_op unsupported OP code
244 * 30: asw_VLAN_tag VLAN tag detected
245 * 31: asw_long_evt Rx long event
247 * Word 1:
248 * 0-15: length length in bytes
249 * 16-25: bi Buffer Index
250 * 26-27: ri Ring Index
251 * 28-31: reserved
254 struct pkt_stat_desc {
255 u32 word0;
256 u32 word1;
259 /* Typedefs for the RX DMA status word */
262 * rx status word 0 holds part of the status bits of the Rx DMA engine
263 * that get copied out to memory by the ET-1310. Word 0 is a 32 bit word
264 * which contains the Free Buffer ring 0 and 1 available offset.
266 * bit 0-9 FBR1 offset
267 * bit 10 Wrap flag for FBR1
268 * bit 16-25 FBR0 offset
269 * bit 26 Wrap flag for FBR0
273 * RXSTAT_WORD1_t structure holds part of the status bits of the Rx DMA engine
274 * that get copied out to memory by the ET-1310. Word 3 is a 32 bit word
275 * which contains the Packet Status Ring available offset.
277 * bit 0-15 reserved
278 * bit 16-27 PSRoffset
279 * bit 28 PSRwrap
280 * bit 29-31 unused
284 * struct rx_status_block is a structure representing the status of the Rx
285 * DMA engine it sits in free memory, and is pointed to by 0x101c / 0x1020
287 struct rx_status_block {
288 u32 word0;
289 u32 word1;
293 * Structure for look-up table holding free buffer ring pointers, addresses
294 * and state.
296 struct fbr_lookup {
297 void *virt[MAX_DESC_PER_RING_RX];
298 void *buffer1[MAX_DESC_PER_RING_RX];
299 void *buffer2[MAX_DESC_PER_RING_RX];
300 u32 bus_high[MAX_DESC_PER_RING_RX];
301 u32 bus_low[MAX_DESC_PER_RING_RX];
302 void *ring_virtaddr;
303 dma_addr_t ring_physaddr;
304 void *mem_virtaddrs[MAX_DESC_PER_RING_RX / FBR_CHUNKS];
305 dma_addr_t mem_physaddrs[MAX_DESC_PER_RING_RX / FBR_CHUNKS];
306 uint64_t real_physaddr;
307 uint64_t offset;
308 u32 local_full;
309 u32 num_entries;
310 u32 buffsize;
314 * struct rx_ring is the sructure representing the adaptor's local
315 * reference(s) to the rings
317 ******************************************************************************
318 * IMPORTANT NOTE :- fbr_lookup *fbr[NUM_FBRS] uses index 0 to refer to FBR1
319 * and index 1 to refer to FRB0
320 ******************************************************************************
322 struct rx_ring {
323 struct fbr_lookup *fbr[NUM_FBRS];
324 void *ps_ring_virtaddr;
325 dma_addr_t ps_ring_physaddr;
326 u32 local_psr_full;
327 u32 psr_num_entries;
329 struct rx_status_block *rx_status_block;
330 dma_addr_t rx_status_bus;
332 /* RECV */
333 struct list_head recv_list;
334 u32 num_ready_recv;
336 u32 num_rfd;
338 bool unfinished_receives;
340 /* lookaside lists */
341 struct kmem_cache *recv_lookaside;
344 /* TX defines */
346 * word 2 of the control bits in the Tx Descriptor ring for the ET-1310
348 * 0-15: length of packet
349 * 16-27: VLAN tag
350 * 28: VLAN CFI
351 * 29-31: VLAN priority
353 * word 3 of the control bits in the Tx Descriptor ring for the ET-1310
355 * 0: last packet in the sequence
356 * 1: first packet in the sequence
357 * 2: interrupt the processor when this pkt sent
358 * 3: Control word - no packet data
359 * 4: Issue half-duplex backpressure : XON/XOFF
360 * 5: send pause frame
361 * 6: Tx frame has error
362 * 7: append CRC
363 * 8: MAC override
364 * 9: pad packet
365 * 10: Packet is a Huge packet
366 * 11: append VLAN tag
367 * 12: IP checksum assist
368 * 13: TCP checksum assist
369 * 14: UDP checksum assist
372 /* struct tx_desc represents each descriptor on the ring */
373 struct tx_desc {
374 u32 addr_hi;
375 u32 addr_lo;
376 u32 len_vlan; /* control words how to xmit the */
377 u32 flags; /* data (detailed above) */
381 * The status of the Tx DMA engine it sits in free memory, and is pointed to
382 * by 0x101c / 0x1020. This is a DMA10 type
385 /* TCB (Transmit Control Block: Host Side) */
386 struct tcb {
387 struct tcb *next; /* Next entry in ring */
388 u32 flags; /* Our flags for the packet */
389 u32 count; /* Used to spot stuck/lost packets */
390 u32 stale; /* Used to spot stuck/lost packets */
391 struct sk_buff *skb; /* Network skb we are tied to */
392 u32 index; /* Ring indexes */
393 u32 index_start;
396 /* Structure representing our local reference(s) to the ring */
397 struct tx_ring {
398 /* TCB (Transmit Control Block) memory and lists */
399 struct tcb *tcb_ring;
401 /* List of TCBs that are ready to be used */
402 struct tcb *tcb_qhead;
403 struct tcb *tcb_qtail;
405 /* list of TCBs that are currently being sent. NOTE that access to all
406 * three of these (including used) are controlled via the
407 * TCBSendQLock. This lock should be secured prior to incementing /
408 * decrementing used, or any queue manipulation on send_head /
409 * tail
411 struct tcb *send_head;
412 struct tcb *send_tail;
413 int used;
415 /* The actual descriptor ring */
416 struct tx_desc *tx_desc_ring;
417 dma_addr_t tx_desc_ring_pa;
419 /* send_idx indicates where we last wrote to in the descriptor ring. */
420 u32 send_idx;
422 /* The location of the write-back status block */
423 u32 *tx_status;
424 dma_addr_t tx_status_pa;
426 /* Packets since the last IRQ: used for interrupt coalescing */
427 int since_irq;
430 /* ADAPTER defines */
432 * Do not change these values: if changed, then change also in respective
433 * TXdma and Rxdma engines
435 #define NUM_DESC_PER_RING_TX 512 /* TX Do not change these values */
436 #define NUM_TCB 64
439 * These values are all superseded by registry entries to facilitate tuning.
440 * Once the desired performance has been achieved, the optimal registry values
441 * should be re-populated to these #defines:
443 #define TX_ERROR_PERIOD 1000
445 #define LO_MARK_PERCENT_FOR_PSR 15
446 #define LO_MARK_PERCENT_FOR_RX 15
448 /* RFD (Receive Frame Descriptor) */
449 struct rfd {
450 struct list_head list_node;
451 struct sk_buff *skb;
452 u32 len; /* total size of receive frame */
453 u16 bufferindex;
454 u8 ringindex;
457 /* Flow Control */
458 #define FLOW_BOTH 0
459 #define FLOW_TXONLY 1
460 #define FLOW_RXONLY 2
461 #define FLOW_NONE 3
463 /* Struct to define some device statistics */
464 struct ce_stats {
465 /* MIB II variables
467 * NOTE: atomic_t types are only guaranteed to store 24-bits; if we
468 * MUST have 32, then we'll need another way to perform atomic
469 * operations
471 u32 unicast_pkts_rcvd;
472 atomic_t unicast_pkts_xmtd;
473 u32 multicast_pkts_rcvd;
474 atomic_t multicast_pkts_xmtd;
475 u32 broadcast_pkts_rcvd;
476 atomic_t broadcast_pkts_xmtd;
477 u32 rcvd_pkts_dropped;
479 /* Tx Statistics. */
480 u32 tx_underflows;
482 u32 tx_collisions;
483 u32 tx_excessive_collisions;
484 u32 tx_first_collisions;
485 u32 tx_late_collisions;
486 u32 tx_max_pkt_errs;
487 u32 tx_deferred;
489 /* Rx Statistics. */
490 u32 rx_overflows;
492 u32 rx_length_errs;
493 u32 rx_align_errs;
494 u32 rx_crc_errs;
495 u32 rx_code_violations;
496 u32 rx_other_errs;
498 u32 synchronous_iterations;
499 u32 interrupt_status;
502 /* The private adapter structure */
503 struct et131x_adapter {
504 struct net_device *netdev;
505 struct pci_dev *pdev;
506 struct mii_bus *mii_bus;
507 struct phy_device *phydev;
508 struct work_struct task;
510 /* Flags that indicate current state of the adapter */
511 u32 flags;
513 /* local link state, to determine if a state change has occurred */
514 int link;
516 /* Configuration */
517 u8 rom_addr[ETH_ALEN];
518 u8 addr[ETH_ALEN];
519 bool has_eeprom;
520 u8 eeprom_data[2];
522 /* Spinlocks */
523 spinlock_t lock;
525 spinlock_t tcb_send_qlock;
526 spinlock_t tcb_ready_qlock;
527 spinlock_t send_hw_lock;
529 spinlock_t rcv_lock;
530 spinlock_t rcv_pend_lock;
531 spinlock_t fbr_lock;
533 spinlock_t phy_lock;
535 /* Packet Filter and look ahead size */
536 u32 packet_filter;
538 /* multicast list */
539 u32 multicast_addr_count;
540 u8 multicast_list[NIC_MAX_MCAST_LIST][ETH_ALEN];
542 /* Pointer to the device's PCI register space */
543 struct address_map __iomem *regs;
545 /* Registry parameters */
546 u8 wanted_flow; /* Flow we want for 802.3x flow control */
547 u32 registry_jumbo_packet; /* Max supported ethernet packet size */
549 /* Derived from the registry: */
550 u8 flowcontrol; /* flow control validated by the far-end */
552 /* Minimize init-time */
553 struct timer_list error_timer;
555 /* variable putting the phy into coma mode when boot up with no cable
556 * plugged in after 5 seconds
558 u8 boot_coma;
560 /* Next two used to save power information at power down. This
561 * information will be used during power up to set up parts of Power
562 * Management in JAGCore
564 u16 pdown_speed;
565 u8 pdown_duplex;
567 /* Tx Memory Variables */
568 struct tx_ring tx_ring;
570 /* Rx Memory Variables */
571 struct rx_ring rx_ring;
573 /* Stats */
574 struct ce_stats stats;
576 struct net_device_stats net_stats;
579 /* EEPROM functions */
581 static int eeprom_wait_ready(struct pci_dev *pdev, u32 *status)
583 u32 reg;
584 int i;
587 * 1. Check LBCIF Status Register for bits 6 & 3:2 all equal to 0 and
588 * bits 7,1:0 both equal to 1, at least once after reset.
589 * Subsequent operations need only to check that bits 1:0 are equal
590 * to 1 prior to starting a single byte read/write
593 for (i = 0; i < MAX_NUM_REGISTER_POLLS; i++) {
594 /* Read registers grouped in DWORD1 */
595 if (pci_read_config_dword(pdev, LBCIF_DWORD1_GROUP, &reg))
596 return -EIO;
598 /* I2C idle and Phy Queue Avail both true */
599 if ((reg & 0x3000) == 0x3000) {
600 if (status)
601 *status = reg;
602 return reg & 0xFF;
605 return -ETIMEDOUT;
610 * eeprom_write - Write a byte to the ET1310's EEPROM
611 * @adapter: pointer to our private adapter structure
612 * @addr: the address to write
613 * @data: the value to write
615 * Returns 1 for a successful write.
617 static int eeprom_write(struct et131x_adapter *adapter, u32 addr, u8 data)
619 struct pci_dev *pdev = adapter->pdev;
620 int index = 0;
621 int retries;
622 int err = 0;
623 int i2c_wack = 0;
624 int writeok = 0;
625 u32 status;
626 u32 val = 0;
629 * For an EEPROM, an I2C single byte write is defined as a START
630 * condition followed by the device address, EEPROM address, one byte
631 * of data and a STOP condition. The STOP condition will trigger the
632 * EEPROM's internally timed write cycle to the nonvolatile memory.
633 * All inputs are disabled during this write cycle and the EEPROM will
634 * not respond to any access until the internal write is complete.
637 err = eeprom_wait_ready(pdev, NULL);
638 if (err)
639 return err;
642 * 2. Write to the LBCIF Control Register: bit 7=1, bit 6=1, bit 3=0,
643 * and bits 1:0 both =0. Bit 5 should be set according to the
644 * type of EEPROM being accessed (1=two byte addressing, 0=one
645 * byte addressing).
647 if (pci_write_config_byte(pdev, LBCIF_CONTROL_REGISTER,
648 LBCIF_CONTROL_LBCIF_ENABLE | LBCIF_CONTROL_I2C_WRITE))
649 return -EIO;
651 i2c_wack = 1;
653 /* Prepare EEPROM address for Step 3 */
655 for (retries = 0; retries < MAX_NUM_WRITE_RETRIES; retries++) {
656 /* Write the address to the LBCIF Address Register */
657 if (pci_write_config_dword(pdev, LBCIF_ADDRESS_REGISTER, addr))
658 break;
660 * Write the data to the LBCIF Data Register (the I2C write
661 * will begin).
663 if (pci_write_config_byte(pdev, LBCIF_DATA_REGISTER, data))
664 break;
666 * Monitor bit 1:0 of the LBCIF Status Register. When bits
667 * 1:0 are both equal to 1, the I2C write has completed and the
668 * internal write cycle of the EEPROM is about to start.
669 * (bits 1:0 = 01 is a legal state while waiting from both
670 * equal to 1, but bits 1:0 = 10 is invalid and implies that
671 * something is broken).
673 err = eeprom_wait_ready(pdev, &status);
674 if (err < 0)
675 return 0;
678 * Check bit 3 of the LBCIF Status Register. If equal to 1,
679 * an error has occurred.Don't break here if we are revision
680 * 1, this is so we do a blind write for load bug.
682 if ((status & LBCIF_STATUS_GENERAL_ERROR)
683 && adapter->pdev->revision == 0)
684 break;
687 * Check bit 2 of the LBCIF Status Register. If equal to 1 an
688 * ACK error has occurred on the address phase of the write.
689 * This could be due to an actual hardware failure or the
690 * EEPROM may still be in its internal write cycle from a
691 * previous write. This write operation was ignored and must be
692 *repeated later.
694 if (status & LBCIF_STATUS_ACK_ERROR) {
696 * This could be due to an actual hardware failure
697 * or the EEPROM may still be in its internal write
698 * cycle from a previous write. This write operation
699 * was ignored and must be repeated later.
701 udelay(10);
702 continue;
705 writeok = 1;
706 break;
710 * Set bit 6 of the LBCIF Control Register = 0.
712 udelay(10);
714 while (i2c_wack) {
715 if (pci_write_config_byte(pdev, LBCIF_CONTROL_REGISTER,
716 LBCIF_CONTROL_LBCIF_ENABLE))
717 writeok = 0;
719 /* Do read until internal ACK_ERROR goes away meaning write
720 * completed
722 do {
723 pci_write_config_dword(pdev,
724 LBCIF_ADDRESS_REGISTER,
725 addr);
726 do {
727 pci_read_config_dword(pdev,
728 LBCIF_DATA_REGISTER, &val);
729 } while ((val & 0x00010000) == 0);
730 } while (val & 0x00040000);
732 if ((val & 0xFF00) != 0xC000 || index == 10000)
733 break;
734 index++;
736 return writeok ? 0 : -EIO;
740 * eeprom_read - Read a byte from the ET1310's EEPROM
741 * @adapter: pointer to our private adapter structure
742 * @addr: the address from which to read
743 * @pdata: a pointer to a byte in which to store the value of the read
744 * @eeprom_id: the ID of the EEPROM
745 * @addrmode: how the EEPROM is to be accessed
747 * Returns 1 for a successful read
749 static int eeprom_read(struct et131x_adapter *adapter, u32 addr, u8 *pdata)
751 struct pci_dev *pdev = adapter->pdev;
752 int err;
753 u32 status;
756 * A single byte read is similar to the single byte write, with the
757 * exception of the data flow:
760 err = eeprom_wait_ready(pdev, NULL);
761 if (err)
762 return err;
764 * Write to the LBCIF Control Register: bit 7=1, bit 6=0, bit 3=0,
765 * and bits 1:0 both =0. Bit 5 should be set according to the type
766 * of EEPROM being accessed (1=two byte addressing, 0=one byte
767 * addressing).
769 if (pci_write_config_byte(pdev, LBCIF_CONTROL_REGISTER,
770 LBCIF_CONTROL_LBCIF_ENABLE))
771 return -EIO;
773 * Write the address to the LBCIF Address Register (I2C read will
774 * begin).
776 if (pci_write_config_dword(pdev, LBCIF_ADDRESS_REGISTER, addr))
777 return -EIO;
779 * Monitor bit 0 of the LBCIF Status Register. When = 1, I2C read
780 * is complete. (if bit 1 =1 and bit 0 stays = 0, a hardware failure
781 * has occurred).
783 err = eeprom_wait_ready(pdev, &status);
784 if (err < 0)
785 return err;
787 * Regardless of error status, read data byte from LBCIF Data
788 * Register.
790 *pdata = err;
792 * Check bit 2 of the LBCIF Status Register. If = 1,
793 * then an error has occurred.
795 return (status & LBCIF_STATUS_ACK_ERROR) ? -EIO : 0;
798 int et131x_init_eeprom(struct et131x_adapter *adapter)
800 struct pci_dev *pdev = adapter->pdev;
801 u8 eestatus;
803 /* We first need to check the EEPROM Status code located at offset
804 * 0xB2 of config space
806 pci_read_config_byte(pdev, ET1310_PCI_EEPROM_STATUS,
807 &eestatus);
809 /* THIS IS A WORKAROUND:
810 * I need to call this function twice to get my card in a
811 * LG M1 Express Dual running. I tried also a msleep before this
812 * function, because I thougth there could be some time condidions
813 * but it didn't work. Call the whole function twice also work.
815 if (pci_read_config_byte(pdev, ET1310_PCI_EEPROM_STATUS, &eestatus)) {
816 dev_err(&pdev->dev,
817 "Could not read PCI config space for EEPROM Status\n");
818 return -EIO;
821 /* Determine if the error(s) we care about are present. If they are
822 * present we need to fail.
824 if (eestatus & 0x4C) {
825 int write_failed = 0;
826 if (pdev->revision == 0x01) {
827 int i;
828 static const u8 eedata[4] = { 0xFE, 0x13, 0x10, 0xFF };
830 /* Re-write the first 4 bytes if we have an eeprom
831 * present and the revision id is 1, this fixes the
832 * corruption seen with 1310 B Silicon
834 for (i = 0; i < 3; i++)
835 if (eeprom_write(adapter, i, eedata[i]) < 0)
836 write_failed = 1;
838 if (pdev->revision != 0x01 || write_failed) {
839 dev_err(&pdev->dev,
840 "Fatal EEPROM Status Error - 0x%04x\n", eestatus);
842 /* This error could mean that there was an error
843 * reading the eeprom or that the eeprom doesn't exist.
844 * We will treat each case the same and not try to
845 * gather additional information that normally would
846 * come from the eeprom, like MAC Address
848 adapter->has_eeprom = 0;
849 return -EIO;
852 adapter->has_eeprom = 1;
854 /* Read the EEPROM for information regarding LED behavior. Refer to
855 * ET1310_phy.c, et131x_xcvr_init(), for its use.
857 eeprom_read(adapter, 0x70, &adapter->eeprom_data[0]);
858 eeprom_read(adapter, 0x71, &adapter->eeprom_data[1]);
860 if (adapter->eeprom_data[0] != 0xcd)
861 /* Disable all optional features */
862 adapter->eeprom_data[1] = 0x00;
864 return 0;
868 * et131x_rx_dma_enable - re-start of Rx_DMA on the ET1310.
869 * @adapter: pointer to our adapter structure
871 void et131x_rx_dma_enable(struct et131x_adapter *adapter)
873 /* Setup the receive dma configuration register for normal operation */
874 u32 csr = 0x2000; /* FBR1 enable */
876 if (adapter->rx_ring.fbr[0]->buffsize == 4096)
877 csr |= 0x0800;
878 else if (adapter->rx_ring.fbr[0]->buffsize == 8192)
879 csr |= 0x1000;
880 else if (adapter->rx_ring.fbr[0]->buffsize == 16384)
881 csr |= 0x1800;
882 #ifdef USE_FBR0
883 csr |= 0x0400; /* FBR0 enable */
884 if (adapter->rx_ring.fbr[1]->buffsize == 256)
885 csr |= 0x0100;
886 else if (adapter->rx_ring.fbr[1]->buffsize == 512)
887 csr |= 0x0200;
888 else if (adapter->rx_ring.fbr[1]->buffsize == 1024)
889 csr |= 0x0300;
890 #endif
891 writel(csr, &adapter->regs->rxdma.csr);
893 csr = readl(&adapter->regs->rxdma.csr);
894 if ((csr & 0x00020000) != 0) {
895 udelay(5);
896 csr = readl(&adapter->regs->rxdma.csr);
897 if ((csr & 0x00020000) != 0) {
898 dev_err(&adapter->pdev->dev,
899 "RX Dma failed to exit halt state. CSR 0x%08x\n",
900 csr);
906 * et131x_rx_dma_disable - Stop of Rx_DMA on the ET1310
907 * @adapter: pointer to our adapter structure
909 void et131x_rx_dma_disable(struct et131x_adapter *adapter)
911 u32 csr;
912 /* Setup the receive dma configuration register */
913 writel(0x00002001, &adapter->regs->rxdma.csr);
914 csr = readl(&adapter->regs->rxdma.csr);
915 if ((csr & 0x00020000) == 0) { /* Check halt status (bit 17) */
916 udelay(5);
917 csr = readl(&adapter->regs->rxdma.csr);
918 if ((csr & 0x00020000) == 0)
919 dev_err(&adapter->pdev->dev,
920 "RX Dma failed to enter halt state. CSR 0x%08x\n",
921 csr);
926 * et131x_tx_dma_enable - re-start of Tx_DMA on the ET1310.
927 * @adapter: pointer to our adapter structure
929 * Mainly used after a return to the D0 (full-power) state from a lower state.
931 void et131x_tx_dma_enable(struct et131x_adapter *adapter)
933 /* Setup the transmit dma configuration register for normal
934 * operation
936 writel(ET_TXDMA_SNGL_EPKT|(PARM_DMA_CACHE_DEF << ET_TXDMA_CACHE_SHIFT),
937 &adapter->regs->txdma.csr);
940 static inline void add_10bit(u32 *v, int n)
942 *v = INDEX10(*v + n) | (*v & ET_DMA10_WRAP);
945 static inline void add_12bit(u32 *v, int n)
947 *v = INDEX12(*v + n) | (*v & ET_DMA12_WRAP);
951 * nic_rx_pkts - Checks the hardware for available packets
952 * @adapter: pointer to our adapter
954 * Returns rfd, a pointer to our MPRFD.
956 * Checks the hardware for available packets, using completion ring
957 * If packets are available, it gets an RFD from the recv_list, attaches
958 * the packet to it, puts the RFD in the RecvPendList, and also returns
959 * the pointer to the RFD.
961 /* MAC functions */
964 * et1310_config_mac_regs1 - Initialize the first part of MAC regs
965 * @adapter: pointer to our adapter structure
967 void et1310_config_mac_regs1(struct et131x_adapter *adapter)
969 struct mac_regs __iomem *macregs = &adapter->regs->mac;
970 u32 station1;
971 u32 station2;
972 u32 ipg;
974 /* First we need to reset everything. Write to MAC configuration
975 * register 1 to perform reset.
977 writel(0xC00F0000, &macregs->cfg1);
979 /* Next lets configure the MAC Inter-packet gap register */
980 ipg = 0x38005860; /* IPG1 0x38 IPG2 0x58 B2B 0x60 */
981 ipg |= 0x50 << 8; /* ifg enforce 0x50 */
982 writel(ipg, &macregs->ipg);
984 /* Next lets configure the MAC Half Duplex register */
985 /* BEB trunc 0xA, Ex Defer, Rexmit 0xF Coll 0x37 */
986 writel(0x00A1F037, &macregs->hfdp);
988 /* Next lets configure the MAC Interface Control register */
989 writel(0, &macregs->if_ctrl);
991 /* Let's move on to setting up the mii management configuration */
992 writel(0x07, &macregs->mii_mgmt_cfg); /* Clock reset 0x7 */
994 /* Next lets configure the MAC Station Address register. These
995 * values are read from the EEPROM during initialization and stored
996 * in the adapter structure. We write what is stored in the adapter
997 * structure to the MAC Station Address registers high and low. This
998 * station address is used for generating and checking pause control
999 * packets.
1001 station2 = (adapter->addr[1] << ET_MAC_STATION_ADDR2_OC2_SHIFT) |
1002 (adapter->addr[0] << ET_MAC_STATION_ADDR2_OC1_SHIFT);
1003 station1 = (adapter->addr[5] << ET_MAC_STATION_ADDR1_OC6_SHIFT) |
1004 (adapter->addr[4] << ET_MAC_STATION_ADDR1_OC5_SHIFT) |
1005 (adapter->addr[3] << ET_MAC_STATION_ADDR1_OC4_SHIFT) |
1006 adapter->addr[2];
1007 writel(station1, &macregs->station_addr_1);
1008 writel(station2, &macregs->station_addr_2);
1010 /* Max ethernet packet in bytes that will passed by the mac without
1011 * being truncated. Allow the MAC to pass 4 more than our max packet
1012 * size. This is 4 for the Ethernet CRC.
1014 * Packets larger than (registry_jumbo_packet) that do not contain a
1015 * VLAN ID will be dropped by the Rx function.
1017 writel(adapter->registry_jumbo_packet + 4, &macregs->max_fm_len);
1019 /* clear out MAC config reset */
1020 writel(0, &macregs->cfg1);
1024 * et1310_config_mac_regs2 - Initialize the second part of MAC regs
1025 * @adapter: pointer to our adapter structure
1027 void et1310_config_mac_regs2(struct et131x_adapter *adapter)
1029 int32_t delay = 0;
1030 struct mac_regs __iomem *mac = &adapter->regs->mac;
1031 struct phy_device *phydev = adapter->phydev;
1032 u32 cfg1;
1033 u32 cfg2;
1034 u32 ifctrl;
1035 u32 ctl;
1037 ctl = readl(&adapter->regs->txmac.ctl);
1038 cfg1 = readl(&mac->cfg1);
1039 cfg2 = readl(&mac->cfg2);
1040 ifctrl = readl(&mac->if_ctrl);
1042 /* Set up the if mode bits */
1043 cfg2 &= ~0x300;
1044 if (phydev && phydev->speed == SPEED_1000) {
1045 cfg2 |= 0x200;
1046 /* Phy mode bit */
1047 ifctrl &= ~(1 << 24);
1048 } else {
1049 cfg2 |= 0x100;
1050 ifctrl |= (1 << 24);
1053 /* We need to enable Rx/Tx */
1054 cfg1 |= CFG1_RX_ENABLE | CFG1_TX_ENABLE | CFG1_TX_FLOW;
1055 /* Initialize loop back to off */
1056 cfg1 &= ~(CFG1_LOOPBACK | CFG1_RX_FLOW);
1057 if (adapter->flowcontrol == FLOW_RXONLY ||
1058 adapter->flowcontrol == FLOW_BOTH)
1059 cfg1 |= CFG1_RX_FLOW;
1060 writel(cfg1, &mac->cfg1);
1062 /* Now we need to initialize the MAC Configuration 2 register */
1063 /* preamble 7, check length, huge frame off, pad crc, crc enable
1064 full duplex off */
1065 cfg2 |= 0x7016;
1066 cfg2 &= ~0x0021;
1068 /* Turn on duplex if needed */
1069 if (phydev && phydev->duplex == DUPLEX_FULL)
1070 cfg2 |= 0x01;
1072 ifctrl &= ~(1 << 26);
1073 if (phydev && phydev->duplex == DUPLEX_HALF)
1074 ifctrl |= (1<<26); /* Enable ghd */
1076 writel(ifctrl, &mac->if_ctrl);
1077 writel(cfg2, &mac->cfg2);
1079 do {
1080 udelay(10);
1081 delay++;
1082 cfg1 = readl(&mac->cfg1);
1083 } while ((cfg1 & CFG1_WAIT) != CFG1_WAIT && delay < 100);
1085 if (delay == 100) {
1086 dev_warn(&adapter->pdev->dev,
1087 "Syncd bits did not respond correctly cfg1 word 0x%08x\n",
1088 cfg1);
1091 /* Enable txmac */
1092 ctl |= 0x09; /* TX mac enable, FC disable */
1093 writel(ctl, &adapter->regs->txmac.ctl);
1095 /* Ready to start the RXDMA/TXDMA engine */
1096 if (adapter->flags & fMP_ADAPTER_LOWER_POWER) {
1097 et131x_rx_dma_enable(adapter);
1098 et131x_tx_dma_enable(adapter);
1103 * et1310_in_phy_coma - check if the device is in phy coma
1104 * @adapter: pointer to our adapter structure
1106 * Returns 0 if the device is not in phy coma, 1 if it is in phy coma
1108 int et1310_in_phy_coma(struct et131x_adapter *adapter)
1110 u32 pmcsr;
1112 pmcsr = readl(&adapter->regs->global.pm_csr);
1114 return ET_PM_PHY_SW_COMA & pmcsr ? 1 : 0;
1117 void et1310_setup_device_for_multicast(struct et131x_adapter *adapter)
1119 struct rxmac_regs __iomem *rxmac = &adapter->regs->rxmac;
1120 uint32_t nIndex;
1121 uint32_t result;
1122 uint32_t hash1 = 0;
1123 uint32_t hash2 = 0;
1124 uint32_t hash3 = 0;
1125 uint32_t hash4 = 0;
1126 u32 pm_csr;
1128 /* If ET131X_PACKET_TYPE_MULTICAST is specified, then we provision
1129 * the multi-cast LIST. If it is NOT specified, (and "ALL" is not
1130 * specified) then we should pass NO multi-cast addresses to the
1131 * driver.
1133 if (adapter->packet_filter & ET131X_PACKET_TYPE_MULTICAST) {
1134 /* Loop through our multicast array and set up the device */
1135 for (nIndex = 0; nIndex < adapter->multicast_addr_count;
1136 nIndex++) {
1137 result = ether_crc(6, adapter->multicast_list[nIndex]);
1139 result = (result & 0x3F800000) >> 23;
1141 if (result < 32) {
1142 hash1 |= (1 << result);
1143 } else if ((31 < result) && (result < 64)) {
1144 result -= 32;
1145 hash2 |= (1 << result);
1146 } else if ((63 < result) && (result < 96)) {
1147 result -= 64;
1148 hash3 |= (1 << result);
1149 } else {
1150 result -= 96;
1151 hash4 |= (1 << result);
1156 /* Write out the new hash to the device */
1157 pm_csr = readl(&adapter->regs->global.pm_csr);
1158 if (!et1310_in_phy_coma(adapter)) {
1159 writel(hash1, &rxmac->multi_hash1);
1160 writel(hash2, &rxmac->multi_hash2);
1161 writel(hash3, &rxmac->multi_hash3);
1162 writel(hash4, &rxmac->multi_hash4);
1166 void et1310_setup_device_for_unicast(struct et131x_adapter *adapter)
1168 struct rxmac_regs __iomem *rxmac = &adapter->regs->rxmac;
1169 u32 uni_pf1;
1170 u32 uni_pf2;
1171 u32 uni_pf3;
1172 u32 pm_csr;
1174 /* Set up unicast packet filter reg 3 to be the first two octets of
1175 * the MAC address for both address
1177 * Set up unicast packet filter reg 2 to be the octets 2 - 5 of the
1178 * MAC address for second address
1180 * Set up unicast packet filter reg 3 to be the octets 2 - 5 of the
1181 * MAC address for first address
1183 uni_pf3 = (adapter->addr[0] << ET_UNI_PF_ADDR2_1_SHIFT) |
1184 (adapter->addr[1] << ET_UNI_PF_ADDR2_2_SHIFT) |
1185 (adapter->addr[0] << ET_UNI_PF_ADDR1_1_SHIFT) |
1186 adapter->addr[1];
1188 uni_pf2 = (adapter->addr[2] << ET_UNI_PF_ADDR2_3_SHIFT) |
1189 (adapter->addr[3] << ET_UNI_PF_ADDR2_4_SHIFT) |
1190 (adapter->addr[4] << ET_UNI_PF_ADDR2_5_SHIFT) |
1191 adapter->addr[5];
1193 uni_pf1 = (adapter->addr[2] << ET_UNI_PF_ADDR1_3_SHIFT) |
1194 (adapter->addr[3] << ET_UNI_PF_ADDR1_4_SHIFT) |
1195 (adapter->addr[4] << ET_UNI_PF_ADDR1_5_SHIFT) |
1196 adapter->addr[5];
1198 pm_csr = readl(&adapter->regs->global.pm_csr);
1199 if (!et1310_in_phy_coma(adapter)) {
1200 writel(uni_pf1, &rxmac->uni_pf_addr1);
1201 writel(uni_pf2, &rxmac->uni_pf_addr2);
1202 writel(uni_pf3, &rxmac->uni_pf_addr3);
1206 void et1310_config_rxmac_regs(struct et131x_adapter *adapter)
1208 struct rxmac_regs __iomem *rxmac = &adapter->regs->rxmac;
1209 struct phy_device *phydev = adapter->phydev;
1210 u32 sa_lo;
1211 u32 sa_hi = 0;
1212 u32 pf_ctrl = 0;
1214 /* Disable the MAC while it is being configured (also disable WOL) */
1215 writel(0x8, &rxmac->ctrl);
1217 /* Initialize WOL to disabled. */
1218 writel(0, &rxmac->crc0);
1219 writel(0, &rxmac->crc12);
1220 writel(0, &rxmac->crc34);
1222 /* We need to set the WOL mask0 - mask4 next. We initialize it to
1223 * its default Values of 0x00000000 because there are not WOL masks
1224 * as of this time.
1226 writel(0, &rxmac->mask0_word0);
1227 writel(0, &rxmac->mask0_word1);
1228 writel(0, &rxmac->mask0_word2);
1229 writel(0, &rxmac->mask0_word3);
1231 writel(0, &rxmac->mask1_word0);
1232 writel(0, &rxmac->mask1_word1);
1233 writel(0, &rxmac->mask1_word2);
1234 writel(0, &rxmac->mask1_word3);
1236 writel(0, &rxmac->mask2_word0);
1237 writel(0, &rxmac->mask2_word1);
1238 writel(0, &rxmac->mask2_word2);
1239 writel(0, &rxmac->mask2_word3);
1241 writel(0, &rxmac->mask3_word0);
1242 writel(0, &rxmac->mask3_word1);
1243 writel(0, &rxmac->mask3_word2);
1244 writel(0, &rxmac->mask3_word3);
1246 writel(0, &rxmac->mask4_word0);
1247 writel(0, &rxmac->mask4_word1);
1248 writel(0, &rxmac->mask4_word2);
1249 writel(0, &rxmac->mask4_word3);
1251 /* Lets setup the WOL Source Address */
1252 sa_lo = (adapter->addr[2] << ET_WOL_LO_SA3_SHIFT) |
1253 (adapter->addr[3] << ET_WOL_LO_SA4_SHIFT) |
1254 (adapter->addr[4] << ET_WOL_LO_SA5_SHIFT) |
1255 adapter->addr[5];
1256 writel(sa_lo, &rxmac->sa_lo);
1258 sa_hi = (u32) (adapter->addr[0] << ET_WOL_HI_SA1_SHIFT) |
1259 adapter->addr[1];
1260 writel(sa_hi, &rxmac->sa_hi);
1262 /* Disable all Packet Filtering */
1263 writel(0, &rxmac->pf_ctrl);
1265 /* Let's initialize the Unicast Packet filtering address */
1266 if (adapter->packet_filter & ET131X_PACKET_TYPE_DIRECTED) {
1267 et1310_setup_device_for_unicast(adapter);
1268 pf_ctrl |= 4; /* Unicast filter */
1269 } else {
1270 writel(0, &rxmac->uni_pf_addr1);
1271 writel(0, &rxmac->uni_pf_addr2);
1272 writel(0, &rxmac->uni_pf_addr3);
1275 /* Let's initialize the Multicast hash */
1276 if (!(adapter->packet_filter & ET131X_PACKET_TYPE_ALL_MULTICAST)) {
1277 pf_ctrl |= 2; /* Multicast filter */
1278 et1310_setup_device_for_multicast(adapter);
1281 /* Runt packet filtering. Didn't work in version A silicon. */
1282 pf_ctrl |= (NIC_MIN_PACKET_SIZE + 4) << 16;
1283 pf_ctrl |= 8; /* Fragment filter */
1285 if (adapter->registry_jumbo_packet > 8192)
1286 /* In order to transmit jumbo packets greater than 8k, the
1287 * FIFO between RxMAC and RxDMA needs to be reduced in size
1288 * to (16k - Jumbo packet size). In order to implement this,
1289 * we must use "cut through" mode in the RxMAC, which chops
1290 * packets down into segments which are (max_size * 16). In
1291 * this case we selected 256 bytes, since this is the size of
1292 * the PCI-Express TLP's that the 1310 uses.
1294 * seg_en on, fc_en off, size 0x10
1296 writel(0x41, &rxmac->mcif_ctrl_max_seg);
1297 else
1298 writel(0, &rxmac->mcif_ctrl_max_seg);
1300 /* Initialize the MCIF water marks */
1301 writel(0, &rxmac->mcif_water_mark);
1303 /* Initialize the MIF control */
1304 writel(0, &rxmac->mif_ctrl);
1306 /* Initialize the Space Available Register */
1307 writel(0, &rxmac->space_avail);
1309 /* Initialize the the mif_ctrl register
1310 * bit 3: Receive code error. One or more nibbles were signaled as
1311 * errors during the reception of the packet. Clear this
1312 * bit in Gigabit, set it in 100Mbit. This was derived
1313 * experimentally at UNH.
1314 * bit 4: Receive CRC error. The packet's CRC did not match the
1315 * internally generated CRC.
1316 * bit 5: Receive length check error. Indicates that frame length
1317 * field value in the packet does not match the actual data
1318 * byte length and is not a type field.
1319 * bit 16: Receive frame truncated.
1320 * bit 17: Drop packet enable
1322 if (phydev && phydev->speed == SPEED_100)
1323 writel(0x30038, &rxmac->mif_ctrl);
1324 else
1325 writel(0x30030, &rxmac->mif_ctrl);
1327 /* Finally we initialize RxMac to be enabled & WOL disabled. Packet
1328 * filter is always enabled since it is where the runt packets are
1329 * supposed to be dropped. For version A silicon, runt packet
1330 * dropping doesn't work, so it is disabled in the pf_ctrl register,
1331 * but we still leave the packet filter on.
1333 writel(pf_ctrl, &rxmac->pf_ctrl);
1334 writel(0x9, &rxmac->ctrl);
1337 void et1310_config_txmac_regs(struct et131x_adapter *adapter)
1339 struct txmac_regs __iomem *txmac = &adapter->regs->txmac;
1341 /* We need to update the Control Frame Parameters
1342 * cfpt - control frame pause timer set to 64 (0x40)
1343 * cfep - control frame extended pause timer set to 0x0
1345 if (adapter->flowcontrol == FLOW_NONE)
1346 writel(0, &txmac->cf_param);
1347 else
1348 writel(0x40, &txmac->cf_param);
1351 void et1310_config_macstat_regs(struct et131x_adapter *adapter)
1353 struct macstat_regs __iomem *macstat =
1354 &adapter->regs->macstat;
1356 /* Next we need to initialize all the macstat registers to zero on
1357 * the device.
1359 writel(0, &macstat->txrx_0_64_byte_frames);
1360 writel(0, &macstat->txrx_65_127_byte_frames);
1361 writel(0, &macstat->txrx_128_255_byte_frames);
1362 writel(0, &macstat->txrx_256_511_byte_frames);
1363 writel(0, &macstat->txrx_512_1023_byte_frames);
1364 writel(0, &macstat->txrx_1024_1518_byte_frames);
1365 writel(0, &macstat->txrx_1519_1522_gvln_frames);
1367 writel(0, &macstat->rx_bytes);
1368 writel(0, &macstat->rx_packets);
1369 writel(0, &macstat->rx_fcs_errs);
1370 writel(0, &macstat->rx_multicast_packets);
1371 writel(0, &macstat->rx_broadcast_packets);
1372 writel(0, &macstat->rx_control_frames);
1373 writel(0, &macstat->rx_pause_frames);
1374 writel(0, &macstat->rx_unknown_opcodes);
1375 writel(0, &macstat->rx_align_errs);
1376 writel(0, &macstat->rx_frame_len_errs);
1377 writel(0, &macstat->rx_code_errs);
1378 writel(0, &macstat->rx_carrier_sense_errs);
1379 writel(0, &macstat->rx_undersize_packets);
1380 writel(0, &macstat->rx_oversize_packets);
1381 writel(0, &macstat->rx_fragment_packets);
1382 writel(0, &macstat->rx_jabbers);
1383 writel(0, &macstat->rx_drops);
1385 writel(0, &macstat->tx_bytes);
1386 writel(0, &macstat->tx_packets);
1387 writel(0, &macstat->tx_multicast_packets);
1388 writel(0, &macstat->tx_broadcast_packets);
1389 writel(0, &macstat->tx_pause_frames);
1390 writel(0, &macstat->tx_deferred);
1391 writel(0, &macstat->tx_excessive_deferred);
1392 writel(0, &macstat->tx_single_collisions);
1393 writel(0, &macstat->tx_multiple_collisions);
1394 writel(0, &macstat->tx_late_collisions);
1395 writel(0, &macstat->tx_excessive_collisions);
1396 writel(0, &macstat->tx_total_collisions);
1397 writel(0, &macstat->tx_pause_honored_frames);
1398 writel(0, &macstat->tx_drops);
1399 writel(0, &macstat->tx_jabbers);
1400 writel(0, &macstat->tx_fcs_errs);
1401 writel(0, &macstat->tx_control_frames);
1402 writel(0, &macstat->tx_oversize_frames);
1403 writel(0, &macstat->tx_undersize_frames);
1404 writel(0, &macstat->tx_fragments);
1405 writel(0, &macstat->carry_reg1);
1406 writel(0, &macstat->carry_reg2);
1408 /* Unmask any counters that we want to track the overflow of.
1409 * Initially this will be all counters. It may become clear later
1410 * that we do not need to track all counters.
1412 writel(0xFFFFBE32, &macstat->carry_reg1_mask);
1413 writel(0xFFFE7E8B, &macstat->carry_reg2_mask);
1417 * et131x_phy_mii_read - Read from the PHY through the MII Interface on the MAC
1418 * @adapter: pointer to our private adapter structure
1419 * @addr: the address of the transceiver
1420 * @reg: the register to read
1421 * @value: pointer to a 16-bit value in which the value will be stored
1423 * Returns 0 on success, errno on failure (as defined in errno.h)
1425 int et131x_phy_mii_read(struct et131x_adapter *adapter, u8 addr,
1426 u8 reg, u16 *value)
1428 struct mac_regs __iomem *mac = &adapter->regs->mac;
1429 int status = 0;
1430 u32 delay = 0;
1431 u32 mii_addr;
1432 u32 mii_cmd;
1433 u32 mii_indicator;
1435 /* Save a local copy of the registers we are dealing with so we can
1436 * set them back
1438 mii_addr = readl(&mac->mii_mgmt_addr);
1439 mii_cmd = readl(&mac->mii_mgmt_cmd);
1441 /* Stop the current operation */
1442 writel(0, &mac->mii_mgmt_cmd);
1444 /* Set up the register we need to read from on the correct PHY */
1445 writel(MII_ADDR(addr, reg), &mac->mii_mgmt_addr);
1447 writel(0x1, &mac->mii_mgmt_cmd);
1449 do {
1450 udelay(50);
1451 delay++;
1452 mii_indicator = readl(&mac->mii_mgmt_indicator);
1453 } while ((mii_indicator & MGMT_WAIT) && delay < 50);
1455 /* If we hit the max delay, we could not read the register */
1456 if (delay == 50) {
1457 dev_warn(&adapter->pdev->dev,
1458 "reg 0x%08x could not be read\n", reg);
1459 dev_warn(&adapter->pdev->dev, "status is 0x%08x\n",
1460 mii_indicator);
1462 status = -EIO;
1465 /* If we hit here we were able to read the register and we need to
1466 * return the value to the caller */
1467 *value = readl(&mac->mii_mgmt_stat) & 0xFFFF;
1469 /* Stop the read operation */
1470 writel(0, &mac->mii_mgmt_cmd);
1472 /* set the registers we touched back to the state at which we entered
1473 * this function
1475 writel(mii_addr, &mac->mii_mgmt_addr);
1476 writel(mii_cmd, &mac->mii_mgmt_cmd);
1478 return status;
1481 int et131x_mii_read(struct et131x_adapter *adapter, u8 reg, u16 *value)
1483 struct phy_device *phydev = adapter->phydev;
1485 if (!phydev)
1486 return -EIO;
1488 return et131x_phy_mii_read(adapter, phydev->addr, reg, value);
1492 * et131x_mii_write - Write to a PHY register through the MII interface of the MAC
1493 * @adapter: pointer to our private adapter structure
1494 * @reg: the register to read
1495 * @value: 16-bit value to write
1497 * FIXME: one caller in netdev still
1499 * Return 0 on success, errno on failure (as defined in errno.h)
1501 int et131x_mii_write(struct et131x_adapter *adapter, u8 reg, u16 value)
1503 struct mac_regs __iomem *mac = &adapter->regs->mac;
1504 struct phy_device *phydev = adapter->phydev;
1505 int status = 0;
1506 u8 addr;
1507 u32 delay = 0;
1508 u32 mii_addr;
1509 u32 mii_cmd;
1510 u32 mii_indicator;
1512 if (!phydev)
1513 return -EIO;
1515 addr = phydev->addr;
1517 /* Save a local copy of the registers we are dealing with so we can
1518 * set them back
1520 mii_addr = readl(&mac->mii_mgmt_addr);
1521 mii_cmd = readl(&mac->mii_mgmt_cmd);
1523 /* Stop the current operation */
1524 writel(0, &mac->mii_mgmt_cmd);
1526 /* Set up the register we need to write to on the correct PHY */
1527 writel(MII_ADDR(addr, reg), &mac->mii_mgmt_addr);
1529 /* Add the value to write to the registers to the mac */
1530 writel(value, &mac->mii_mgmt_ctrl);
1532 do {
1533 udelay(50);
1534 delay++;
1535 mii_indicator = readl(&mac->mii_mgmt_indicator);
1536 } while ((mii_indicator & MGMT_BUSY) && delay < 100);
1538 /* If we hit the max delay, we could not write the register */
1539 if (delay == 100) {
1540 u16 tmp;
1542 dev_warn(&adapter->pdev->dev,
1543 "reg 0x%08x could not be written", reg);
1544 dev_warn(&adapter->pdev->dev, "status is 0x%08x\n",
1545 mii_indicator);
1546 dev_warn(&adapter->pdev->dev, "command is 0x%08x\n",
1547 readl(&mac->mii_mgmt_cmd));
1549 et131x_mii_read(adapter, reg, &tmp);
1551 status = -EIO;
1553 /* Stop the write operation */
1554 writel(0, &mac->mii_mgmt_cmd);
1557 * set the registers we touched back to the state at which we entered
1558 * this function
1560 writel(mii_addr, &mac->mii_mgmt_addr);
1561 writel(mii_cmd, &mac->mii_mgmt_cmd);
1563 return status;
1566 /* Still used from _mac for BIT_READ */
1567 void et1310_phy_access_mii_bit(struct et131x_adapter *adapter, u16 action,
1568 u16 regnum, u16 bitnum, u8 *value)
1570 u16 reg;
1571 u16 mask = 0x0001 << bitnum;
1573 /* Read the requested register */
1574 et131x_mii_read(adapter, regnum, &reg);
1576 switch (action) {
1577 case TRUEPHY_BIT_READ:
1578 *value = (reg & mask) >> bitnum;
1579 break;
1581 case TRUEPHY_BIT_SET:
1582 et131x_mii_write(adapter, regnum, reg | mask);
1583 break;
1585 case TRUEPHY_BIT_CLEAR:
1586 et131x_mii_write(adapter, regnum, reg & ~mask);
1587 break;
1589 default:
1590 break;
1594 void et1310_config_flow_control(struct et131x_adapter *adapter)
1596 struct phy_device *phydev = adapter->phydev;
1598 if (phydev->duplex == DUPLEX_HALF) {
1599 adapter->flowcontrol = FLOW_NONE;
1600 } else {
1601 char remote_pause, remote_async_pause;
1603 et1310_phy_access_mii_bit(adapter,
1604 TRUEPHY_BIT_READ, 5, 10, &remote_pause);
1605 et1310_phy_access_mii_bit(adapter,
1606 TRUEPHY_BIT_READ, 5, 11,
1607 &remote_async_pause);
1609 if ((remote_pause == TRUEPHY_BIT_SET) &&
1610 (remote_async_pause == TRUEPHY_BIT_SET)) {
1611 adapter->flowcontrol = adapter->wanted_flow;
1612 } else if ((remote_pause == TRUEPHY_BIT_SET) &&
1613 (remote_async_pause == TRUEPHY_BIT_CLEAR)) {
1614 if (adapter->wanted_flow == FLOW_BOTH)
1615 adapter->flowcontrol = FLOW_BOTH;
1616 else
1617 adapter->flowcontrol = FLOW_NONE;
1618 } else if ((remote_pause == TRUEPHY_BIT_CLEAR) &&
1619 (remote_async_pause == TRUEPHY_BIT_CLEAR)) {
1620 adapter->flowcontrol = FLOW_NONE;
1621 } else {/* if (remote_pause == TRUEPHY_CLEAR_BIT &&
1622 remote_async_pause == TRUEPHY_SET_BIT) */
1623 if (adapter->wanted_flow == FLOW_BOTH)
1624 adapter->flowcontrol = FLOW_RXONLY;
1625 else
1626 adapter->flowcontrol = FLOW_NONE;
1632 * et1310_update_macstat_host_counters - Update the local copy of the statistics
1633 * @adapter: pointer to the adapter structure
1635 void et1310_update_macstat_host_counters(struct et131x_adapter *adapter)
1637 struct ce_stats *stats = &adapter->stats;
1638 struct macstat_regs __iomem *macstat =
1639 &adapter->regs->macstat;
1641 stats->tx_collisions += readl(&macstat->tx_total_collisions);
1642 stats->tx_first_collisions += readl(&macstat->tx_single_collisions);
1643 stats->tx_deferred += readl(&macstat->tx_deferred);
1644 stats->tx_excessive_collisions +=
1645 readl(&macstat->tx_multiple_collisions);
1646 stats->tx_late_collisions += readl(&macstat->tx_late_collisions);
1647 stats->tx_underflows += readl(&macstat->tx_undersize_frames);
1648 stats->tx_max_pkt_errs += readl(&macstat->tx_oversize_frames);
1650 stats->rx_align_errs += readl(&macstat->rx_align_errs);
1651 stats->rx_crc_errs += readl(&macstat->rx_code_errs);
1652 stats->rcvd_pkts_dropped += readl(&macstat->rx_drops);
1653 stats->rx_overflows += readl(&macstat->rx_oversize_packets);
1654 stats->rx_code_violations += readl(&macstat->rx_fcs_errs);
1655 stats->rx_length_errs += readl(&macstat->rx_frame_len_errs);
1656 stats->rx_other_errs += readl(&macstat->rx_fragment_packets);
1660 * et1310_handle_macstat_interrupt
1661 * @adapter: pointer to the adapter structure
1663 * One of the MACSTAT counters has wrapped. Update the local copy of
1664 * the statistics held in the adapter structure, checking the "wrap"
1665 * bit for each counter.
1667 void et1310_handle_macstat_interrupt(struct et131x_adapter *adapter)
1669 u32 carry_reg1;
1670 u32 carry_reg2;
1672 /* Read the interrupt bits from the register(s). These are Clear On
1673 * Write.
1675 carry_reg1 = readl(&adapter->regs->macstat.carry_reg1);
1676 carry_reg2 = readl(&adapter->regs->macstat.carry_reg2);
1678 writel(carry_reg1, &adapter->regs->macstat.carry_reg1);
1679 writel(carry_reg2, &adapter->regs->macstat.carry_reg2);
1681 /* We need to do update the host copy of all the MAC_STAT counters.
1682 * For each counter, check it's overflow bit. If the overflow bit is
1683 * set, then increment the host version of the count by one complete
1684 * revolution of the counter. This routine is called when the counter
1685 * block indicates that one of the counters has wrapped.
1687 if (carry_reg1 & (1 << 14))
1688 adapter->stats.rx_code_violations += COUNTER_WRAP_16_BIT;
1689 if (carry_reg1 & (1 << 8))
1690 adapter->stats.rx_align_errs += COUNTER_WRAP_12_BIT;
1691 if (carry_reg1 & (1 << 7))
1692 adapter->stats.rx_length_errs += COUNTER_WRAP_16_BIT;
1693 if (carry_reg1 & (1 << 2))
1694 adapter->stats.rx_other_errs += COUNTER_WRAP_16_BIT;
1695 if (carry_reg1 & (1 << 6))
1696 adapter->stats.rx_crc_errs += COUNTER_WRAP_16_BIT;
1697 if (carry_reg1 & (1 << 3))
1698 adapter->stats.rx_overflows += COUNTER_WRAP_16_BIT;
1699 if (carry_reg1 & (1 << 0))
1700 adapter->stats.rcvd_pkts_dropped += COUNTER_WRAP_16_BIT;
1701 if (carry_reg2 & (1 << 16))
1702 adapter->stats.tx_max_pkt_errs += COUNTER_WRAP_12_BIT;
1703 if (carry_reg2 & (1 << 15))
1704 adapter->stats.tx_underflows += COUNTER_WRAP_12_BIT;
1705 if (carry_reg2 & (1 << 6))
1706 adapter->stats.tx_first_collisions += COUNTER_WRAP_12_BIT;
1707 if (carry_reg2 & (1 << 8))
1708 adapter->stats.tx_deferred += COUNTER_WRAP_12_BIT;
1709 if (carry_reg2 & (1 << 5))
1710 adapter->stats.tx_excessive_collisions += COUNTER_WRAP_12_BIT;
1711 if (carry_reg2 & (1 << 4))
1712 adapter->stats.tx_late_collisions += COUNTER_WRAP_12_BIT;
1713 if (carry_reg2 & (1 << 2))
1714 adapter->stats.tx_collisions += COUNTER_WRAP_12_BIT;
1717 /* PHY functions */
1719 int et131x_mdio_read(struct mii_bus *bus, int phy_addr, int reg)
1721 struct net_device *netdev = bus->priv;
1722 struct et131x_adapter *adapter = netdev_priv(netdev);
1723 u16 value;
1724 int ret;
1726 ret = et131x_phy_mii_read(adapter, phy_addr, reg, &value);
1728 if (ret < 0)
1729 return ret;
1730 else
1731 return value;
1734 int et131x_mdio_write(struct mii_bus *bus, int phy_addr, int reg, u16 value)
1736 struct net_device *netdev = bus->priv;
1737 struct et131x_adapter *adapter = netdev_priv(netdev);
1739 return et131x_mii_write(adapter, reg, value);
1742 int et131x_mdio_reset(struct mii_bus *bus)
1744 struct net_device *netdev = bus->priv;
1745 struct et131x_adapter *adapter = netdev_priv(netdev);
1747 et131x_mii_write(adapter, MII_BMCR, BMCR_RESET);
1749 return 0;
1753 * et1310_phy_power_down - PHY power control
1754 * @adapter: device to control
1755 * @down: true for off/false for back on
1757 * one hundred, ten, one thousand megs
1758 * How would you like to have your LAN accessed
1759 * Can't you see that this code processed
1760 * Phy power, phy power..
1762 void et1310_phy_power_down(struct et131x_adapter *adapter, bool down)
1764 u16 data;
1766 et131x_mii_read(adapter, MII_BMCR, &data);
1767 data &= ~BMCR_PDOWN;
1768 if (down)
1769 data |= BMCR_PDOWN;
1770 et131x_mii_write(adapter, MII_BMCR, data);
1774 * et131x_xcvr_init - Init the phy if we are setting it into force mode
1775 * @adapter: pointer to our private adapter structure
1778 void et131x_xcvr_init(struct et131x_adapter *adapter)
1780 u16 imr;
1781 u16 isr;
1782 u16 lcr2;
1784 et131x_mii_read(adapter, PHY_INTERRUPT_STATUS, &isr);
1785 et131x_mii_read(adapter, PHY_INTERRUPT_MASK, &imr);
1787 /* Set the link status interrupt only. Bad behavior when link status
1788 * and auto neg are set, we run into a nested interrupt problem
1790 imr |= (ET_PHY_INT_MASK_AUTONEGSTAT &
1791 ET_PHY_INT_MASK_LINKSTAT &
1792 ET_PHY_INT_MASK_ENABLE);
1794 et131x_mii_write(adapter, PHY_INTERRUPT_MASK, imr);
1796 /* Set the LED behavior such that LED 1 indicates speed (off =
1797 * 10Mbits, blink = 100Mbits, on = 1000Mbits) and LED 2 indicates
1798 * link and activity (on for link, blink off for activity).
1800 * NOTE: Some customizations have been added here for specific
1801 * vendors; The LED behavior is now determined by vendor data in the
1802 * EEPROM. However, the above description is the default.
1804 if ((adapter->eeprom_data[1] & 0x4) == 0) {
1805 et131x_mii_read(adapter, PHY_LED_2, &lcr2);
1807 lcr2 &= (ET_LED2_LED_100TX & ET_LED2_LED_1000T);
1808 lcr2 |= (LED_VAL_LINKON_ACTIVE << LED_LINK_SHIFT);
1810 if ((adapter->eeprom_data[1] & 0x8) == 0)
1811 lcr2 |= (LED_VAL_1000BT_100BTX << LED_TXRX_SHIFT);
1812 else
1813 lcr2 |= (LED_VAL_LINKON << LED_TXRX_SHIFT);
1815 et131x_mii_write(adapter, PHY_LED_2, lcr2);
1820 * et131x_configure_global_regs - configure JAGCore global regs
1821 * @adapter: pointer to our adapter structure
1823 * Used to configure the global registers on the JAGCore
1825 void et131x_configure_global_regs(struct et131x_adapter *adapter)
1827 struct global_regs __iomem *regs = &adapter->regs->global;
1829 writel(0, &regs->rxq_start_addr);
1830 writel(INTERNAL_MEM_SIZE - 1, &regs->txq_end_addr);
1832 if (adapter->registry_jumbo_packet < 2048) {
1833 /* Tx / RxDMA and Tx/Rx MAC interfaces have a 1k word
1834 * block of RAM that the driver can split between Tx
1835 * and Rx as it desires. Our default is to split it
1836 * 50/50:
1838 writel(PARM_RX_MEM_END_DEF, &regs->rxq_end_addr);
1839 writel(PARM_RX_MEM_END_DEF + 1, &regs->txq_start_addr);
1840 } else if (adapter->registry_jumbo_packet < 8192) {
1841 /* For jumbo packets > 2k but < 8k, split 50-50. */
1842 writel(INTERNAL_MEM_RX_OFFSET, &regs->rxq_end_addr);
1843 writel(INTERNAL_MEM_RX_OFFSET + 1, &regs->txq_start_addr);
1844 } else {
1845 /* 9216 is the only packet size greater than 8k that
1846 * is available. The Tx buffer has to be big enough
1847 * for one whole packet on the Tx side. We'll make
1848 * the Tx 9408, and give the rest to Rx
1850 writel(0x01b3, &regs->rxq_end_addr);
1851 writel(0x01b4, &regs->txq_start_addr);
1854 /* Initialize the loopback register. Disable all loopbacks. */
1855 writel(0, &regs->loopback);
1857 /* MSI Register */
1858 writel(0, &regs->msi_config);
1860 /* By default, disable the watchdog timer. It will be enabled when
1861 * a packet is queued.
1863 writel(0, &regs->watchdog_timer);
1866 /* PM functions */
1869 * et131x_config_rx_dma_regs - Start of Rx_DMA init sequence
1870 * @adapter: pointer to our adapter structure
1872 void et131x_config_rx_dma_regs(struct et131x_adapter *adapter)
1874 struct rxdma_regs __iomem *rx_dma = &adapter->regs->rxdma;
1875 struct rx_ring *rx_local = &adapter->rx_ring;
1876 struct fbr_desc *fbr_entry;
1877 u32 entry;
1878 u32 psr_num_des;
1879 unsigned long flags;
1881 /* Halt RXDMA to perform the reconfigure. */
1882 et131x_rx_dma_disable(adapter);
1884 /* Load the completion writeback physical address
1886 * NOTE : dma_alloc_coherent(), used above to alloc DMA regions,
1887 * ALWAYS returns SAC (32-bit) addresses. If DAC (64-bit) addresses
1888 * are ever returned, make sure the high part is retrieved here
1889 * before storing the adjusted address.
1891 writel((u32) ((u64)rx_local->rx_status_bus >> 32),
1892 &rx_dma->dma_wb_base_hi);
1893 writel((u32) rx_local->rx_status_bus, &rx_dma->dma_wb_base_lo);
1895 memset(rx_local->rx_status_block, 0, sizeof(struct rx_status_block));
1897 /* Set the address and parameters of the packet status ring into the
1898 * 1310's registers
1900 writel((u32) ((u64)rx_local->ps_ring_physaddr >> 32),
1901 &rx_dma->psr_base_hi);
1902 writel((u32) rx_local->ps_ring_physaddr, &rx_dma->psr_base_lo);
1903 writel(rx_local->psr_num_entries - 1, &rx_dma->psr_num_des);
1904 writel(0, &rx_dma->psr_full_offset);
1906 psr_num_des = readl(&rx_dma->psr_num_des) & 0xFFF;
1907 writel((psr_num_des * LO_MARK_PERCENT_FOR_PSR) / 100,
1908 &rx_dma->psr_min_des);
1910 spin_lock_irqsave(&adapter->rcv_lock, flags);
1912 /* These local variables track the PSR in the adapter structure */
1913 rx_local->local_psr_full = 0;
1915 /* Now's the best time to initialize FBR1 contents */
1916 fbr_entry = (struct fbr_desc *) rx_local->fbr[0]->ring_virtaddr;
1917 for (entry = 0; entry < rx_local->fbr[0]->num_entries; entry++) {
1918 fbr_entry->addr_hi = rx_local->fbr[0]->bus_high[entry];
1919 fbr_entry->addr_lo = rx_local->fbr[0]->bus_low[entry];
1920 fbr_entry->word2 = entry;
1921 fbr_entry++;
1924 /* Set the address and parameters of Free buffer ring 1 (and 0 if
1925 * required) into the 1310's registers
1927 writel((u32) (rx_local->fbr[0]->real_physaddr >> 32),
1928 &rx_dma->fbr1_base_hi);
1929 writel((u32) rx_local->fbr[0]->real_physaddr, &rx_dma->fbr1_base_lo);
1930 writel(rx_local->fbr[0]->num_entries - 1, &rx_dma->fbr1_num_des);
1931 writel(ET_DMA10_WRAP, &rx_dma->fbr1_full_offset);
1933 /* This variable tracks the free buffer ring 1 full position, so it
1934 * has to match the above.
1936 rx_local->fbr[0]->local_full = ET_DMA10_WRAP;
1937 writel(
1938 ((rx_local->fbr[0]->num_entries * LO_MARK_PERCENT_FOR_RX) / 100) - 1,
1939 &rx_dma->fbr1_min_des);
1941 #ifdef USE_FBR0
1942 /* Now's the best time to initialize FBR0 contents */
1943 fbr_entry = (struct fbr_desc *) rx_local->fbr[1]->ring_virtaddr;
1944 for (entry = 0; entry < rx_local->fbr[1]->num_entries; entry++) {
1945 fbr_entry->addr_hi = rx_local->fbr[1]->bus_high[entry];
1946 fbr_entry->addr_lo = rx_local->fbr[1]->bus_low[entry];
1947 fbr_entry->word2 = entry;
1948 fbr_entry++;
1951 writel((u32) (rx_local->fbr[1]->real_physaddr >> 32),
1952 &rx_dma->fbr0_base_hi);
1953 writel((u32) rx_local->fbr[1]->real_physaddr, &rx_dma->fbr0_base_lo);
1954 writel(rx_local->fbr[1]->num_entries - 1, &rx_dma->fbr0_num_des);
1955 writel(ET_DMA10_WRAP, &rx_dma->fbr0_full_offset);
1957 /* This variable tracks the free buffer ring 0 full position, so it
1958 * has to match the above.
1960 rx_local->fbr[1]->local_full = ET_DMA10_WRAP;
1961 writel(
1962 ((rx_local->fbr[1]->num_entries * LO_MARK_PERCENT_FOR_RX) / 100) - 1,
1963 &rx_dma->fbr0_min_des);
1964 #endif
1966 /* Program the number of packets we will receive before generating an
1967 * interrupt.
1968 * For version B silicon, this value gets updated once autoneg is
1969 *complete.
1971 writel(PARM_RX_NUM_BUFS_DEF, &rx_dma->num_pkt_done);
1973 /* The "time_done" is not working correctly to coalesce interrupts
1974 * after a given time period, but rather is giving us an interrupt
1975 * regardless of whether we have received packets.
1976 * This value gets updated once autoneg is complete.
1978 writel(PARM_RX_TIME_INT_DEF, &rx_dma->max_pkt_time);
1980 spin_unlock_irqrestore(&adapter->rcv_lock, flags);
1984 * et131x_config_tx_dma_regs - Set up the tx dma section of the JAGCore.
1985 * @adapter: pointer to our private adapter structure
1987 * Configure the transmit engine with the ring buffers we have created
1988 * and prepare it for use.
1990 void et131x_config_tx_dma_regs(struct et131x_adapter *adapter)
1992 struct txdma_regs __iomem *txdma = &adapter->regs->txdma;
1994 /* Load the hardware with the start of the transmit descriptor ring. */
1995 writel((u32) ((u64)adapter->tx_ring.tx_desc_ring_pa >> 32),
1996 &txdma->pr_base_hi);
1997 writel((u32) adapter->tx_ring.tx_desc_ring_pa,
1998 &txdma->pr_base_lo);
2000 /* Initialise the transmit DMA engine */
2001 writel(NUM_DESC_PER_RING_TX - 1, &txdma->pr_num_des);
2003 /* Load the completion writeback physical address */
2004 writel((u32)((u64)adapter->tx_ring.tx_status_pa >> 32),
2005 &txdma->dma_wb_base_hi);
2006 writel((u32)adapter->tx_ring.tx_status_pa, &txdma->dma_wb_base_lo);
2008 *adapter->tx_ring.tx_status = 0;
2010 writel(0, &txdma->service_request);
2011 adapter->tx_ring.send_idx = 0;
2015 * et131x_adapter_setup - Set the adapter up as per cassini+ documentation
2016 * @adapter: pointer to our private adapter structure
2018 * Returns 0 on success, errno on failure (as defined in errno.h)
2020 void et131x_adapter_setup(struct et131x_adapter *adapter)
2022 /* Configure the JAGCore */
2023 et131x_configure_global_regs(adapter);
2025 et1310_config_mac_regs1(adapter);
2027 /* Configure the MMC registers */
2028 /* All we need to do is initialize the Memory Control Register */
2029 writel(ET_MMC_ENABLE, &adapter->regs->mmc.mmc_ctrl);
2031 et1310_config_rxmac_regs(adapter);
2032 et1310_config_txmac_regs(adapter);
2034 et131x_config_rx_dma_regs(adapter);
2035 et131x_config_tx_dma_regs(adapter);
2037 et1310_config_macstat_regs(adapter);
2039 et1310_phy_power_down(adapter, 0);
2040 et131x_xcvr_init(adapter);
2044 * et131x_soft_reset - Issue a soft reset to the hardware, complete for ET1310
2045 * @adapter: pointer to our private adapter structure
2047 void et131x_soft_reset(struct et131x_adapter *adapter)
2049 /* Disable MAC Core */
2050 writel(0xc00f0000, &adapter->regs->mac.cfg1);
2052 /* Set everything to a reset value */
2053 writel(0x7F, &adapter->regs->global.sw_reset);
2054 writel(0x000f0000, &adapter->regs->mac.cfg1);
2055 writel(0x00000000, &adapter->regs->mac.cfg1);
2059 * et131x_enable_interrupts - enable interrupt
2060 * @adapter: et131x device
2062 * Enable the appropriate interrupts on the ET131x according to our
2063 * configuration
2065 void et131x_enable_interrupts(struct et131x_adapter *adapter)
2067 u32 mask;
2069 /* Enable all global interrupts */
2070 if (adapter->flowcontrol == FLOW_TXONLY ||
2071 adapter->flowcontrol == FLOW_BOTH)
2072 mask = INT_MASK_ENABLE;
2073 else
2074 mask = INT_MASK_ENABLE_NO_FLOW;
2076 writel(mask, &adapter->regs->global.int_mask);
2080 * et131x_disable_interrupts - interrupt disable
2081 * @adapter: et131x device
2083 * Block all interrupts from the et131x device at the device itself
2085 void et131x_disable_interrupts(struct et131x_adapter *adapter)
2087 /* Disable all global interrupts */
2088 writel(INT_MASK_DISABLE, &adapter->regs->global.int_mask);
2092 * et131x_tx_dma_disable - Stop of Tx_DMA on the ET1310
2093 * @adapter: pointer to our adapter structure
2095 void et131x_tx_dma_disable(struct et131x_adapter *adapter)
2097 /* Setup the tramsmit dma configuration register */
2098 writel(ET_TXDMA_CSR_HALT|ET_TXDMA_SNGL_EPKT,
2099 &adapter->regs->txdma.csr);
2103 * et131x_enable_txrx - Enable tx/rx queues
2104 * @netdev: device to be enabled
2106 void et131x_enable_txrx(struct net_device *netdev)
2108 struct et131x_adapter *adapter = netdev_priv(netdev);
2110 /* Enable the Tx and Rx DMA engines (if not already enabled) */
2111 et131x_rx_dma_enable(adapter);
2112 et131x_tx_dma_enable(adapter);
2114 /* Enable device interrupts */
2115 if (adapter->flags & fMP_ADAPTER_INTERRUPT_IN_USE)
2116 et131x_enable_interrupts(adapter);
2118 /* We're ready to move some data, so start the queue */
2119 netif_start_queue(netdev);
2123 * et131x_disable_txrx - Disable tx/rx queues
2124 * @netdev: device to be disabled
2126 void et131x_disable_txrx(struct net_device *netdev)
2128 struct et131x_adapter *adapter = netdev_priv(netdev);
2130 /* First thing is to stop the queue */
2131 netif_stop_queue(netdev);
2133 /* Stop the Tx and Rx DMA engines */
2134 et131x_rx_dma_disable(adapter);
2135 et131x_tx_dma_disable(adapter);
2137 /* Disable device interrupts */
2138 et131x_disable_interrupts(adapter);
2142 * et131x_init_send - Initialize send data structures
2143 * @adapter: pointer to our private adapter structure
2145 void et131x_init_send(struct et131x_adapter *adapter)
2147 struct tcb *tcb;
2148 u32 ct;
2149 struct tx_ring *tx_ring;
2151 /* Setup some convenience pointers */
2152 tx_ring = &adapter->tx_ring;
2153 tcb = adapter->tx_ring.tcb_ring;
2155 tx_ring->tcb_qhead = tcb;
2157 memset(tcb, 0, sizeof(struct tcb) * NUM_TCB);
2159 /* Go through and set up each TCB */
2160 for (ct = 0; ct++ < NUM_TCB; tcb++)
2161 /* Set the link pointer in HW TCB to the next TCB in the
2162 * chain
2164 tcb->next = tcb + 1;
2166 /* Set the tail pointer */
2167 tcb--;
2168 tx_ring->tcb_qtail = tcb;
2169 tcb->next = NULL;
2170 /* Curr send queue should now be empty */
2171 tx_ring->send_head = NULL;
2172 tx_ring->send_tail = NULL;
2176 * et1310_enable_phy_coma - called when network cable is unplugged
2177 * @adapter: pointer to our adapter structure
2179 * driver receive an phy status change interrupt while in D0 and check that
2180 * phy_status is down.
2182 * -- gate off JAGCore;
2183 * -- set gigE PHY in Coma mode
2184 * -- wake on phy_interrupt; Perform software reset JAGCore,
2185 * re-initialize jagcore and gigE PHY
2187 * Add D0-ASPM-PhyLinkDown Support:
2188 * -- while in D0, when there is a phy_interrupt indicating phy link
2189 * down status, call the MPSetPhyComa routine to enter this active
2190 * state power saving mode
2191 * -- while in D0-ASPM-PhyLinkDown mode, when there is a phy_interrupt
2192 * indicating linkup status, call the MPDisablePhyComa routine to
2193 * restore JAGCore and gigE PHY
2195 void et1310_enable_phy_coma(struct et131x_adapter *adapter)
2197 unsigned long flags;
2198 u32 pmcsr;
2200 pmcsr = readl(&adapter->regs->global.pm_csr);
2202 /* Save the GbE PHY speed and duplex modes. Need to restore this
2203 * when cable is plugged back in
2206 * TODO - when PM is re-enabled, check if we need to
2207 * perform a similar task as this -
2208 * adapter->pdown_speed = adapter->ai_force_speed;
2209 * adapter->pdown_duplex = adapter->ai_force_duplex;
2212 /* Stop sending packets. */
2213 spin_lock_irqsave(&adapter->send_hw_lock, flags);
2214 adapter->flags |= fMP_ADAPTER_LOWER_POWER;
2215 spin_unlock_irqrestore(&adapter->send_hw_lock, flags);
2217 /* Wait for outstanding Receive packets */
2219 et131x_disable_txrx(adapter->netdev);
2221 /* Gate off JAGCore 3 clock domains */
2222 pmcsr &= ~ET_PMCSR_INIT;
2223 writel(pmcsr, &adapter->regs->global.pm_csr);
2225 /* Program gigE PHY in to Coma mode */
2226 pmcsr |= ET_PM_PHY_SW_COMA;
2227 writel(pmcsr, &adapter->regs->global.pm_csr);
2231 * et1310_disable_phy_coma - Disable the Phy Coma Mode
2232 * @adapter: pointer to our adapter structure
2234 void et1310_disable_phy_coma(struct et131x_adapter *adapter)
2236 u32 pmcsr;
2238 pmcsr = readl(&adapter->regs->global.pm_csr);
2240 /* Disable phy_sw_coma register and re-enable JAGCore clocks */
2241 pmcsr |= ET_PMCSR_INIT;
2242 pmcsr &= ~ET_PM_PHY_SW_COMA;
2243 writel(pmcsr, &adapter->regs->global.pm_csr);
2245 /* Restore the GbE PHY speed and duplex modes;
2246 * Reset JAGCore; re-configure and initialize JAGCore and gigE PHY
2248 /* TODO - when PM is re-enabled, check if we need to
2249 * perform a similar task as this -
2250 * adapter->ai_force_speed = adapter->pdown_speed;
2251 * adapter->ai_force_duplex = adapter->pdown_duplex;
2254 /* Re-initialize the send structures */
2255 et131x_init_send(adapter);
2257 /* Bring the device back to the state it was during init prior to
2258 * autonegotiation being complete. This way, when we get the auto-neg
2259 * complete interrupt, we can complete init by calling ConfigMacREGS2.
2261 et131x_soft_reset(adapter);
2263 /* setup et1310 as per the documentation ?? */
2264 et131x_adapter_setup(adapter);
2266 /* Allow Tx to restart */
2267 adapter->flags &= ~fMP_ADAPTER_LOWER_POWER;
2269 et131x_enable_txrx(adapter->netdev);
2272 /* RX functions */
2274 static inline u32 bump_free_buff_ring(u32 *free_buff_ring, u32 limit)
2276 u32 tmp_free_buff_ring = *free_buff_ring;
2277 tmp_free_buff_ring++;
2278 /* This works for all cases where limit < 1024. The 1023 case
2279 works because 1023++ is 1024 which means the if condition is not
2280 taken but the carry of the bit into the wrap bit toggles the wrap
2281 value correctly */
2282 if ((tmp_free_buff_ring & ET_DMA10_MASK) > limit) {
2283 tmp_free_buff_ring &= ~ET_DMA10_MASK;
2284 tmp_free_buff_ring ^= ET_DMA10_WRAP;
2286 /* For the 1023 case */
2287 tmp_free_buff_ring &= (ET_DMA10_MASK|ET_DMA10_WRAP);
2288 *free_buff_ring = tmp_free_buff_ring;
2289 return tmp_free_buff_ring;
2293 * et131x_align_allocated_memory - Align allocated memory on a given boundary
2294 * @adapter: pointer to our adapter structure
2295 * @phys_addr: pointer to Physical address
2296 * @offset: pointer to the offset variable
2297 * @mask: correct mask
2299 void et131x_align_allocated_memory(struct et131x_adapter *adapter,
2300 uint64_t *phys_addr,
2301 uint64_t *offset, uint64_t mask)
2303 uint64_t new_addr;
2305 *offset = 0;
2307 new_addr = *phys_addr & ~mask;
2309 if (new_addr != *phys_addr) {
2310 /* Move to next aligned block */
2311 new_addr += mask + 1;
2312 /* Return offset for adjusting virt addr */
2313 *offset = new_addr - *phys_addr;
2314 /* Return new physical address */
2315 *phys_addr = new_addr;
2320 * et131x_rx_dma_memory_alloc
2321 * @adapter: pointer to our private adapter structure
2323 * Returns 0 on success and errno on failure (as defined in errno.h)
2325 * Allocates Free buffer ring 1 for sure, free buffer ring 0 if required,
2326 * and the Packet Status Ring.
2328 int et131x_rx_dma_memory_alloc(struct et131x_adapter *adapter)
2330 u32 i, j;
2331 u32 bufsize;
2332 u32 pktstat_ringsize, fbr_chunksize;
2333 struct rx_ring *rx_ring;
2335 /* Setup some convenience pointers */
2336 rx_ring = &adapter->rx_ring;
2338 /* Alloc memory for the lookup table */
2339 #ifdef USE_FBR0
2340 rx_ring->fbr[1] = kmalloc(sizeof(struct fbr_lookup), GFP_KERNEL);
2341 #endif
2342 rx_ring->fbr[0] = kmalloc(sizeof(struct fbr_lookup), GFP_KERNEL);
2344 /* The first thing we will do is configure the sizes of the buffer
2345 * rings. These will change based on jumbo packet support. Larger
2346 * jumbo packets increases the size of each entry in FBR0, and the
2347 * number of entries in FBR0, while at the same time decreasing the
2348 * number of entries in FBR1.
2350 * FBR1 holds "large" frames, FBR0 holds "small" frames. If FBR1
2351 * entries are huge in order to accommodate a "jumbo" frame, then it
2352 * will have less entries. Conversely, FBR1 will now be relied upon
2353 * to carry more "normal" frames, thus it's entry size also increases
2354 * and the number of entries goes up too (since it now carries
2355 * "small" + "regular" packets.
2357 * In this scheme, we try to maintain 512 entries between the two
2358 * rings. Also, FBR1 remains a constant size - when it's size doubles
2359 * the number of entries halves. FBR0 increases in size, however.
2362 if (adapter->registry_jumbo_packet < 2048) {
2363 #ifdef USE_FBR0
2364 rx_ring->fbr[1]->buffsize = 256;
2365 rx_ring->fbr[1]->num_entries = 512;
2366 #endif
2367 rx_ring->fbr[0]->buffsize = 2048;
2368 rx_ring->fbr[0]->num_entries = 512;
2369 } else if (adapter->registry_jumbo_packet < 4096) {
2370 #ifdef USE_FBR0
2371 rx_ring->fbr[1]->buffsize = 512;
2372 rx_ring->fbr[1]->num_entries = 1024;
2373 #endif
2374 rx_ring->fbr[0]->buffsize = 4096;
2375 rx_ring->fbr[0]->num_entries = 512;
2376 } else {
2377 #ifdef USE_FBR0
2378 rx_ring->fbr[1]->buffsize = 1024;
2379 rx_ring->fbr[1]->num_entries = 768;
2380 #endif
2381 rx_ring->fbr[0]->buffsize = 16384;
2382 rx_ring->fbr[0]->num_entries = 128;
2385 #ifdef USE_FBR0
2386 adapter->rx_ring.psr_num_entries =
2387 adapter->rx_ring.fbr[1]->num_entries +
2388 adapter->rx_ring.fbr[0]->num_entries;
2389 #else
2390 adapter->rx_ring.psr_num_entries = adapter->rx_ring.fbr[0]->num_entries;
2391 #endif
2393 /* Allocate an area of memory for Free Buffer Ring 1 */
2394 bufsize = (sizeof(struct fbr_desc) * rx_ring->fbr[0]->num_entries) +
2395 0xfff;
2396 rx_ring->fbr[0]->ring_virtaddr = dma_alloc_coherent(&adapter->pdev->dev,
2397 bufsize,
2398 &rx_ring->fbr[0]->ring_physaddr,
2399 GFP_KERNEL);
2400 if (!rx_ring->fbr[0]->ring_virtaddr) {
2401 dev_err(&adapter->pdev->dev,
2402 "Cannot alloc memory for Free Buffer Ring 1\n");
2403 return -ENOMEM;
2406 /* Save physical address
2408 * NOTE: dma_alloc_coherent(), used above to alloc DMA regions,
2409 * ALWAYS returns SAC (32-bit) addresses. If DAC (64-bit) addresses
2410 * are ever returned, make sure the high part is retrieved here
2411 * before storing the adjusted address.
2413 rx_ring->fbr[0]->real_physaddr = rx_ring->fbr[0]->ring_physaddr;
2415 /* Align Free Buffer Ring 1 on a 4K boundary */
2416 et131x_align_allocated_memory(adapter,
2417 &rx_ring->fbr[0]->real_physaddr,
2418 &rx_ring->fbr[0]->offset, 0x0FFF);
2420 rx_ring->fbr[0]->ring_virtaddr =
2421 (void *)((u8 *) rx_ring->fbr[0]->ring_virtaddr +
2422 rx_ring->fbr[0]->offset);
2424 #ifdef USE_FBR0
2425 /* Allocate an area of memory for Free Buffer Ring 0 */
2426 bufsize = (sizeof(struct fbr_desc) * rx_ring->fbr[1]->num_entries) +
2427 0xfff;
2428 rx_ring->fbr[1]->ring_virtaddr = dma_alloc_coherent(&adapter->pdev->dev,
2429 bufsize,
2430 &rx_ring->fbr[1]->ring_physaddr,
2431 GFP_KERNEL);
2432 if (!rx_ring->fbr[1]->ring_virtaddr) {
2433 dev_err(&adapter->pdev->dev,
2434 "Cannot alloc memory for Free Buffer Ring 0\n");
2435 return -ENOMEM;
2438 /* Save physical address
2440 * NOTE: dma_alloc_coherent(), used above to alloc DMA regions,
2441 * ALWAYS returns SAC (32-bit) addresses. If DAC (64-bit) addresses
2442 * are ever returned, make sure the high part is retrieved here before
2443 * storing the adjusted address.
2445 rx_ring->fbr[1]->real_physaddr = rx_ring->fbr[1]->ring_physaddr;
2447 /* Align Free Buffer Ring 0 on a 4K boundary */
2448 et131x_align_allocated_memory(adapter,
2449 &rx_ring->fbr[1]->real_physaddr,
2450 &rx_ring->fbr[1]->offset, 0x0FFF);
2452 rx_ring->fbr[1]->ring_virtaddr =
2453 (void *)((u8 *) rx_ring->fbr[1]->ring_virtaddr +
2454 rx_ring->fbr[1]->offset);
2455 #endif
2456 for (i = 0; i < (rx_ring->fbr[0]->num_entries / FBR_CHUNKS); i++) {
2457 u64 fbr1_offset;
2458 u64 fbr1_tmp_physaddr;
2459 u32 fbr1_align;
2461 /* This code allocates an area of memory big enough for N
2462 * free buffers + (buffer_size - 1) so that the buffers can
2463 * be aligned on 4k boundaries. If each buffer were aligned
2464 * to a buffer_size boundary, the effect would be to double
2465 * the size of FBR0. By allocating N buffers at once, we
2466 * reduce this overhead.
2468 if (rx_ring->fbr[0]->buffsize > 4096)
2469 fbr1_align = 4096;
2470 else
2471 fbr1_align = rx_ring->fbr[0]->buffsize;
2473 fbr_chunksize =
2474 (FBR_CHUNKS * rx_ring->fbr[0]->buffsize) + fbr1_align - 1;
2475 rx_ring->fbr[0]->mem_virtaddrs[i] =
2476 dma_alloc_coherent(&adapter->pdev->dev, fbr_chunksize,
2477 &rx_ring->fbr[0]->mem_physaddrs[i],
2478 GFP_KERNEL);
2480 if (!rx_ring->fbr[0]->mem_virtaddrs[i]) {
2481 dev_err(&adapter->pdev->dev,
2482 "Could not alloc memory\n");
2483 return -ENOMEM;
2486 /* See NOTE in "Save Physical Address" comment above */
2487 fbr1_tmp_physaddr = rx_ring->fbr[0]->mem_physaddrs[i];
2489 et131x_align_allocated_memory(adapter,
2490 &fbr1_tmp_physaddr,
2491 &fbr1_offset, (fbr1_align - 1));
2493 for (j = 0; j < FBR_CHUNKS; j++) {
2494 u32 index = (i * FBR_CHUNKS) + j;
2496 /* Save the Virtual address of this index for quick
2497 * access later
2499 rx_ring->fbr[0]->virt[index] =
2500 (u8 *) rx_ring->fbr[0]->mem_virtaddrs[i] +
2501 (j * rx_ring->fbr[0]->buffsize) + fbr1_offset;
2503 /* now store the physical address in the descriptor
2504 * so the device can access it
2506 rx_ring->fbr[0]->bus_high[index] =
2507 (u32) (fbr1_tmp_physaddr >> 32);
2508 rx_ring->fbr[0]->bus_low[index] =
2509 (u32) fbr1_tmp_physaddr;
2511 fbr1_tmp_physaddr += rx_ring->fbr[0]->buffsize;
2513 rx_ring->fbr[0]->buffer1[index] =
2514 rx_ring->fbr[0]->virt[index];
2515 rx_ring->fbr[0]->buffer2[index] =
2516 rx_ring->fbr[0]->virt[index] - 4;
2520 #ifdef USE_FBR0
2521 /* Same for FBR0 (if in use) */
2522 for (i = 0; i < (rx_ring->fbr[1]->num_entries / FBR_CHUNKS); i++) {
2523 u64 fbr0_offset;
2524 u64 fbr0_tmp_physaddr;
2526 fbr_chunksize =
2527 ((FBR_CHUNKS + 1) * rx_ring->fbr[1]->buffsize) - 1;
2528 rx_ring->fbr[1]->mem_virtaddrs[i] =
2529 dma_alloc_coherent(&adapter->pdev->dev, fbr_chunksize,
2530 &rx_ring->fbr[1]->mem_physaddrs[i],
2531 GFP_KERNEL);
2533 if (!rx_ring->fbr[1]->mem_virtaddrs[i]) {
2534 dev_err(&adapter->pdev->dev,
2535 "Could not alloc memory\n");
2536 return -ENOMEM;
2539 /* See NOTE in "Save Physical Address" comment above */
2540 fbr0_tmp_physaddr = rx_ring->fbr[1]->mem_physaddrs[i];
2542 et131x_align_allocated_memory(adapter,
2543 &fbr0_tmp_physaddr,
2544 &fbr0_offset,
2545 rx_ring->fbr[1]->buffsize - 1);
2547 for (j = 0; j < FBR_CHUNKS; j++) {
2548 u32 index = (i * FBR_CHUNKS) + j;
2550 rx_ring->fbr[1]->virt[index] =
2551 (u8 *) rx_ring->fbr[1]->mem_virtaddrs[i] +
2552 (j * rx_ring->fbr[1]->buffsize) + fbr0_offset;
2554 rx_ring->fbr[1]->bus_high[index] =
2555 (u32) (fbr0_tmp_physaddr >> 32);
2556 rx_ring->fbr[1]->bus_low[index] =
2557 (u32) fbr0_tmp_physaddr;
2559 fbr0_tmp_physaddr += rx_ring->fbr[1]->buffsize;
2561 rx_ring->fbr[1]->buffer1[index] =
2562 rx_ring->fbr[1]->virt[index];
2563 rx_ring->fbr[1]->buffer2[index] =
2564 rx_ring->fbr[1]->virt[index] - 4;
2567 #endif
2569 /* Allocate an area of memory for FIFO of Packet Status ring entries */
2570 pktstat_ringsize =
2571 sizeof(struct pkt_stat_desc) * adapter->rx_ring.psr_num_entries;
2573 rx_ring->ps_ring_virtaddr = dma_alloc_coherent(&adapter->pdev->dev,
2574 pktstat_ringsize,
2575 &rx_ring->ps_ring_physaddr,
2576 GFP_KERNEL);
2578 if (!rx_ring->ps_ring_virtaddr) {
2579 dev_err(&adapter->pdev->dev,
2580 "Cannot alloc memory for Packet Status Ring\n");
2581 return -ENOMEM;
2583 printk(KERN_INFO "Packet Status Ring %lx\n",
2584 (unsigned long) rx_ring->ps_ring_physaddr);
2587 * NOTE : dma_alloc_coherent(), used above to alloc DMA regions,
2588 * ALWAYS returns SAC (32-bit) addresses. If DAC (64-bit) addresses
2589 * are ever returned, make sure the high part is retrieved here before
2590 * storing the adjusted address.
2593 /* Allocate an area of memory for writeback of status information */
2594 rx_ring->rx_status_block = dma_alloc_coherent(&adapter->pdev->dev,
2595 sizeof(struct rx_status_block),
2596 &rx_ring->rx_status_bus,
2597 GFP_KERNEL);
2598 if (!rx_ring->rx_status_block) {
2599 dev_err(&adapter->pdev->dev,
2600 "Cannot alloc memory for Status Block\n");
2601 return -ENOMEM;
2603 rx_ring->num_rfd = NIC_DEFAULT_NUM_RFD;
2604 printk(KERN_INFO "PRS %lx\n", (unsigned long)rx_ring->rx_status_bus);
2606 /* Recv
2607 * kmem_cache_create initializes a lookaside list. After successful
2608 * creation, nonpaged fixed-size blocks can be allocated from and
2609 * freed to the lookaside list.
2610 * RFDs will be allocated from this pool.
2612 rx_ring->recv_lookaside = kmem_cache_create(adapter->netdev->name,
2613 sizeof(struct rfd),
2615 SLAB_CACHE_DMA |
2616 SLAB_HWCACHE_ALIGN,
2617 NULL);
2619 adapter->flags |= fMP_ADAPTER_RECV_LOOKASIDE;
2621 /* The RFDs are going to be put on lists later on, so initialize the
2622 * lists now.
2624 INIT_LIST_HEAD(&rx_ring->recv_list);
2625 return 0;
2629 * et131x_rx_dma_memory_free - Free all memory allocated within this module.
2630 * @adapter: pointer to our private adapter structure
2632 void et131x_rx_dma_memory_free(struct et131x_adapter *adapter)
2634 u32 index;
2635 u32 bufsize;
2636 u32 pktstat_ringsize;
2637 struct rfd *rfd;
2638 struct rx_ring *rx_ring;
2640 /* Setup some convenience pointers */
2641 rx_ring = &adapter->rx_ring;
2643 /* Free RFDs and associated packet descriptors */
2644 WARN_ON(rx_ring->num_ready_recv != rx_ring->num_rfd);
2646 while (!list_empty(&rx_ring->recv_list)) {
2647 rfd = (struct rfd *) list_entry(rx_ring->recv_list.next,
2648 struct rfd, list_node);
2650 list_del(&rfd->list_node);
2651 rfd->skb = NULL;
2652 kmem_cache_free(adapter->rx_ring.recv_lookaside, rfd);
2655 /* Free Free Buffer Ring 1 */
2656 if (rx_ring->fbr[0]->ring_virtaddr) {
2657 /* First the packet memory */
2658 for (index = 0; index <
2659 (rx_ring->fbr[0]->num_entries / FBR_CHUNKS); index++) {
2660 if (rx_ring->fbr[0]->mem_virtaddrs[index]) {
2661 u32 fbr1_align;
2663 if (rx_ring->fbr[0]->buffsize > 4096)
2664 fbr1_align = 4096;
2665 else
2666 fbr1_align = rx_ring->fbr[0]->buffsize;
2668 bufsize =
2669 (rx_ring->fbr[0]->buffsize * FBR_CHUNKS) +
2670 fbr1_align - 1;
2672 dma_free_coherent(&adapter->pdev->dev,
2673 bufsize,
2674 rx_ring->fbr[0]->mem_virtaddrs[index],
2675 rx_ring->fbr[0]->mem_physaddrs[index]);
2677 rx_ring->fbr[0]->mem_virtaddrs[index] = NULL;
2681 /* Now the FIFO itself */
2682 rx_ring->fbr[0]->ring_virtaddr = (void *)((u8 *)
2683 rx_ring->fbr[0]->ring_virtaddr - rx_ring->fbr[0]->offset);
2685 bufsize =
2686 (sizeof(struct fbr_desc) * rx_ring->fbr[0]->num_entries) +
2687 0xfff;
2689 dma_free_coherent(&adapter->pdev->dev, bufsize,
2690 rx_ring->fbr[0]->ring_virtaddr,
2691 rx_ring->fbr[0]->ring_physaddr);
2693 rx_ring->fbr[0]->ring_virtaddr = NULL;
2696 #ifdef USE_FBR0
2697 /* Now the same for Free Buffer Ring 0 */
2698 if (rx_ring->fbr[1]->ring_virtaddr) {
2699 /* First the packet memory */
2700 for (index = 0; index <
2701 (rx_ring->fbr[1]->num_entries / FBR_CHUNKS); index++) {
2702 if (rx_ring->fbr[1]->mem_virtaddrs[index]) {
2703 bufsize =
2704 (rx_ring->fbr[1]->buffsize *
2705 (FBR_CHUNKS + 1)) - 1;
2707 dma_free_coherent(&adapter->pdev->dev,
2708 bufsize,
2709 rx_ring->fbr[1]->mem_virtaddrs[index],
2710 rx_ring->fbr[1]->mem_physaddrs[index]);
2712 rx_ring->fbr[1]->mem_virtaddrs[index] = NULL;
2716 /* Now the FIFO itself */
2717 rx_ring->fbr[1]->ring_virtaddr = (void *)((u8 *)
2718 rx_ring->fbr[1]->ring_virtaddr - rx_ring->fbr[1]->offset);
2720 bufsize =
2721 (sizeof(struct fbr_desc) * rx_ring->fbr[1]->num_entries) +
2722 0xfff;
2724 dma_free_coherent(&adapter->pdev->dev,
2725 bufsize,
2726 rx_ring->fbr[1]->ring_virtaddr,
2727 rx_ring->fbr[1]->ring_physaddr);
2729 rx_ring->fbr[1]->ring_virtaddr = NULL;
2731 #endif
2733 /* Free Packet Status Ring */
2734 if (rx_ring->ps_ring_virtaddr) {
2735 pktstat_ringsize =
2736 sizeof(struct pkt_stat_desc) *
2737 adapter->rx_ring.psr_num_entries;
2739 dma_free_coherent(&adapter->pdev->dev, pktstat_ringsize,
2740 rx_ring->ps_ring_virtaddr,
2741 rx_ring->ps_ring_physaddr);
2743 rx_ring->ps_ring_virtaddr = NULL;
2746 /* Free area of memory for the writeback of status information */
2747 if (rx_ring->rx_status_block) {
2748 dma_free_coherent(&adapter->pdev->dev,
2749 sizeof(struct rx_status_block),
2750 rx_ring->rx_status_block, rx_ring->rx_status_bus);
2751 rx_ring->rx_status_block = NULL;
2754 /* Destroy the lookaside (RFD) pool */
2755 if (adapter->flags & fMP_ADAPTER_RECV_LOOKASIDE) {
2756 kmem_cache_destroy(rx_ring->recv_lookaside);
2757 adapter->flags &= ~fMP_ADAPTER_RECV_LOOKASIDE;
2760 /* Free the FBR Lookup Table */
2761 #ifdef USE_FBR0
2762 kfree(rx_ring->fbr[1]);
2763 #endif
2765 kfree(rx_ring->fbr[0]);
2767 /* Reset Counters */
2768 rx_ring->num_ready_recv = 0;
2772 * et131x_init_recv - Initialize receive data structures.
2773 * @adapter: pointer to our private adapter structure
2775 * Returns 0 on success and errno on failure (as defined in errno.h)
2777 int et131x_init_recv(struct et131x_adapter *adapter)
2779 int status = -ENOMEM;
2780 struct rfd *rfd = NULL;
2781 u32 rfdct;
2782 u32 numrfd = 0;
2783 struct rx_ring *rx_ring;
2785 /* Setup some convenience pointers */
2786 rx_ring = &adapter->rx_ring;
2788 /* Setup each RFD */
2789 for (rfdct = 0; rfdct < rx_ring->num_rfd; rfdct++) {
2790 rfd = kmem_cache_alloc(rx_ring->recv_lookaside,
2791 GFP_ATOMIC | GFP_DMA);
2793 if (!rfd) {
2794 dev_err(&adapter->pdev->dev,
2795 "Couldn't alloc RFD out of kmem_cache\n");
2796 status = -ENOMEM;
2797 continue;
2800 rfd->skb = NULL;
2802 /* Add this RFD to the recv_list */
2803 list_add_tail(&rfd->list_node, &rx_ring->recv_list);
2805 /* Increment both the available RFD's, and the total RFD's. */
2806 rx_ring->num_ready_recv++;
2807 numrfd++;
2810 if (numrfd > NIC_MIN_NUM_RFD)
2811 status = 0;
2813 rx_ring->num_rfd = numrfd;
2815 if (status != 0) {
2816 kmem_cache_free(rx_ring->recv_lookaside, rfd);
2817 dev_err(&adapter->pdev->dev,
2818 "Allocation problems in et131x_init_recv\n");
2820 return status;
2824 * et131x_set_rx_dma_timer - Set the heartbeat timer according to line rate.
2825 * @adapter: pointer to our adapter structure
2827 void et131x_set_rx_dma_timer(struct et131x_adapter *adapter)
2829 struct phy_device *phydev = adapter->phydev;
2831 if (!phydev)
2832 return;
2834 /* For version B silicon, we do not use the RxDMA timer for 10 and 100
2835 * Mbits/s line rates. We do not enable and RxDMA interrupt coalescing.
2837 if ((phydev->speed == SPEED_100) || (phydev->speed == SPEED_10)) {
2838 writel(0, &adapter->regs->rxdma.max_pkt_time);
2839 writel(1, &adapter->regs->rxdma.num_pkt_done);
2844 * NICReturnRFD - Recycle a RFD and put it back onto the receive list
2845 * @adapter: pointer to our adapter
2846 * @rfd: pointer to the RFD
2848 static void nic_return_rfd(struct et131x_adapter *adapter, struct rfd *rfd)
2850 struct rx_ring *rx_local = &adapter->rx_ring;
2851 struct rxdma_regs __iomem *rx_dma = &adapter->regs->rxdma;
2852 u16 buff_index = rfd->bufferindex;
2853 u8 ring_index = rfd->ringindex;
2854 unsigned long flags;
2856 /* We don't use any of the OOB data besides status. Otherwise, we
2857 * need to clean up OOB data
2859 if (
2860 #ifdef USE_FBR0
2861 (ring_index == 0 && buff_index < rx_local->fbr[1]->num_entries) ||
2862 #endif
2863 (ring_index == 1 && buff_index < rx_local->fbr[0]->num_entries)) {
2864 spin_lock_irqsave(&adapter->fbr_lock, flags);
2866 if (ring_index == 1) {
2867 struct fbr_desc *next = (struct fbr_desc *)
2868 (rx_local->fbr[0]->ring_virtaddr) +
2869 INDEX10(rx_local->fbr[0]->local_full);
2871 /* Handle the Free Buffer Ring advancement here. Write
2872 * the PA / Buffer Index for the returned buffer into
2873 * the oldest (next to be freed)FBR entry
2875 next->addr_hi = rx_local->fbr[0]->bus_high[buff_index];
2876 next->addr_lo = rx_local->fbr[0]->bus_low[buff_index];
2877 next->word2 = buff_index;
2879 writel(bump_free_buff_ring(
2880 &rx_local->fbr[0]->local_full,
2881 rx_local->fbr[0]->num_entries - 1),
2882 &rx_dma->fbr1_full_offset);
2884 #ifdef USE_FBR0
2885 else {
2886 struct fbr_desc *next = (struct fbr_desc *)
2887 rx_local->fbr[1]->ring_virtaddr +
2888 INDEX10(rx_local->fbr[1]->local_full);
2890 /* Handle the Free Buffer Ring advancement here. Write
2891 * the PA / Buffer Index for the returned buffer into
2892 * the oldest (next to be freed) FBR entry
2894 next->addr_hi = rx_local->fbr[1]->bus_high[buff_index];
2895 next->addr_lo = rx_local->fbr[1]->bus_low[buff_index];
2896 next->word2 = buff_index;
2898 writel(bump_free_buff_ring(
2899 &rx_local->fbr[1]->local_full,
2900 rx_local->fbr[1]->num_entries - 1),
2901 &rx_dma->fbr0_full_offset);
2903 #endif
2904 spin_unlock_irqrestore(&adapter->fbr_lock, flags);
2905 } else {
2906 dev_err(&adapter->pdev->dev,
2907 "%s illegal Buffer Index returned\n", __func__);
2910 /* The processing on this RFD is done, so put it back on the tail of
2911 * our list
2913 spin_lock_irqsave(&adapter->rcv_lock, flags);
2914 list_add_tail(&rfd->list_node, &rx_local->recv_list);
2915 rx_local->num_ready_recv++;
2916 spin_unlock_irqrestore(&adapter->rcv_lock, flags);
2918 WARN_ON(rx_local->num_ready_recv > rx_local->num_rfd);
2921 static struct rfd *nic_rx_pkts(struct et131x_adapter *adapter)
2923 struct rx_ring *rx_local = &adapter->rx_ring;
2924 struct rx_status_block *status;
2925 struct pkt_stat_desc *psr;
2926 struct rfd *rfd;
2927 u32 i;
2928 u8 *buf;
2929 unsigned long flags;
2930 struct list_head *element;
2931 u8 ring_index;
2932 u16 buff_index;
2933 u32 len;
2934 u32 word0;
2935 u32 word1;
2937 /* RX Status block is written by the DMA engine prior to every
2938 * interrupt. It contains the next to be used entry in the Packet
2939 * Status Ring, and also the two Free Buffer rings.
2941 status = rx_local->rx_status_block;
2942 word1 = status->word1 >> 16; /* Get the useful bits */
2944 /* Check the PSR and wrap bits do not match */
2945 if ((word1 & 0x1FFF) == (rx_local->local_psr_full & 0x1FFF))
2946 /* Looks like this ring is not updated yet */
2947 return NULL;
2949 /* The packet status ring indicates that data is available. */
2950 psr = (struct pkt_stat_desc *) (rx_local->ps_ring_virtaddr) +
2951 (rx_local->local_psr_full & 0xFFF);
2953 /* Grab any information that is required once the PSR is
2954 * advanced, since we can no longer rely on the memory being
2955 * accurate
2957 len = psr->word1 & 0xFFFF;
2958 ring_index = (psr->word1 >> 26) & 0x03;
2959 buff_index = (psr->word1 >> 16) & 0x3FF;
2960 word0 = psr->word0;
2962 /* Indicate that we have used this PSR entry. */
2963 /* FIXME wrap 12 */
2964 add_12bit(&rx_local->local_psr_full, 1);
2965 if (
2966 (rx_local->local_psr_full & 0xFFF) > rx_local->psr_num_entries - 1) {
2967 /* Clear psr full and toggle the wrap bit */
2968 rx_local->local_psr_full &= ~0xFFF;
2969 rx_local->local_psr_full ^= 0x1000;
2972 writel(rx_local->local_psr_full,
2973 &adapter->regs->rxdma.psr_full_offset);
2975 #ifndef USE_FBR0
2976 if (ring_index != 1)
2977 return NULL;
2978 #endif
2980 #ifdef USE_FBR0
2981 if (ring_index > 1 ||
2982 (ring_index == 0 &&
2983 buff_index > rx_local->fbr[1]->num_entries - 1) ||
2984 (ring_index == 1 &&
2985 buff_index > rx_local->fbr[0]->num_entries - 1))
2986 #else
2987 if (ring_index != 1 || buff_index > rx_local->fbr[0]->num_entries - 1)
2988 #endif
2990 /* Illegal buffer or ring index cannot be used by S/W*/
2991 dev_err(&adapter->pdev->dev,
2992 "NICRxPkts PSR Entry %d indicates "
2993 "length of %d and/or bad bi(%d)\n",
2994 rx_local->local_psr_full & 0xFFF,
2995 len, buff_index);
2996 return NULL;
2999 /* Get and fill the RFD. */
3000 spin_lock_irqsave(&adapter->rcv_lock, flags);
3002 rfd = NULL;
3003 element = rx_local->recv_list.next;
3004 rfd = (struct rfd *) list_entry(element, struct rfd, list_node);
3006 if (rfd == NULL) {
3007 spin_unlock_irqrestore(&adapter->rcv_lock, flags);
3008 return NULL;
3011 list_del(&rfd->list_node);
3012 rx_local->num_ready_recv--;
3014 spin_unlock_irqrestore(&adapter->rcv_lock, flags);
3016 rfd->bufferindex = buff_index;
3017 rfd->ringindex = ring_index;
3019 /* In V1 silicon, there is a bug which screws up filtering of
3020 * runt packets. Therefore runt packet filtering is disabled
3021 * in the MAC and the packets are dropped here. They are
3022 * also counted here.
3024 if (len < (NIC_MIN_PACKET_SIZE + 4)) {
3025 adapter->stats.rx_other_errs++;
3026 len = 0;
3029 if (len) {
3030 /* Determine if this is a multicast packet coming in */
3031 if ((word0 & ALCATEL_MULTICAST_PKT) &&
3032 !(word0 & ALCATEL_BROADCAST_PKT)) {
3033 /* Promiscuous mode and Multicast mode are
3034 * not mutually exclusive as was first
3035 * thought. I guess Promiscuous is just
3036 * considered a super-set of the other
3037 * filters. Generally filter is 0x2b when in
3038 * promiscuous mode.
3040 if ((adapter->packet_filter &
3041 ET131X_PACKET_TYPE_MULTICAST)
3042 && !(adapter->packet_filter &
3043 ET131X_PACKET_TYPE_PROMISCUOUS)
3044 && !(adapter->packet_filter &
3045 ET131X_PACKET_TYPE_ALL_MULTICAST)) {
3047 * Note - ring_index for fbr[] array is reversed
3048 * 1 for FBR0 etc
3050 buf = rx_local->fbr[(ring_index == 0 ? 1 : 0)]->
3051 virt[buff_index];
3053 /* Loop through our list to see if the
3054 * destination address of this packet
3055 * matches one in our list.
3057 for (i = 0; i < adapter->multicast_addr_count;
3058 i++) {
3059 if (buf[0] ==
3060 adapter->multicast_list[i][0]
3061 && buf[1] ==
3062 adapter->multicast_list[i][1]
3063 && buf[2] ==
3064 adapter->multicast_list[i][2]
3065 && buf[3] ==
3066 adapter->multicast_list[i][3]
3067 && buf[4] ==
3068 adapter->multicast_list[i][4]
3069 && buf[5] ==
3070 adapter->multicast_list[i][5]) {
3071 break;
3075 /* If our index is equal to the number
3076 * of Multicast address we have, then
3077 * this means we did not find this
3078 * packet's matching address in our
3079 * list. Set the len to zero,
3080 * so we free our RFD when we return
3081 * from this function.
3083 if (i == adapter->multicast_addr_count)
3084 len = 0;
3087 if (len > 0)
3088 adapter->stats.multicast_pkts_rcvd++;
3089 } else if (word0 & ALCATEL_BROADCAST_PKT)
3090 adapter->stats.broadcast_pkts_rcvd++;
3091 else
3092 /* Not sure what this counter measures in
3093 * promiscuous mode. Perhaps we should check
3094 * the MAC address to see if it is directed
3095 * to us in promiscuous mode.
3097 adapter->stats.unicast_pkts_rcvd++;
3100 if (len > 0) {
3101 struct sk_buff *skb = NULL;
3103 /*rfd->len = len - 4; */
3104 rfd->len = len;
3106 skb = dev_alloc_skb(rfd->len + 2);
3107 if (!skb) {
3108 dev_err(&adapter->pdev->dev,
3109 "Couldn't alloc an SKB for Rx\n");
3110 return NULL;
3113 adapter->net_stats.rx_bytes += rfd->len;
3116 * Note - ring_index for fbr[] array is reversed,
3117 * 1 for FBR0 etc
3119 memcpy(skb_put(skb, rfd->len),
3120 rx_local->fbr[(ring_index == 0 ? 1 : 0)]->virt[buff_index],
3121 rfd->len);
3123 skb->dev = adapter->netdev;
3124 skb->protocol = eth_type_trans(skb, adapter->netdev);
3125 skb->ip_summed = CHECKSUM_NONE;
3127 netif_rx(skb);
3128 } else {
3129 rfd->len = 0;
3132 nic_return_rfd(adapter, rfd);
3133 return rfd;
3137 * et131x_handle_recv_interrupt - Interrupt handler for receive processing
3138 * @adapter: pointer to our adapter
3140 * Assumption, Rcv spinlock has been acquired.
3142 void et131x_handle_recv_interrupt(struct et131x_adapter *adapter)
3144 struct rfd *rfd = NULL;
3145 u32 count = 0;
3146 bool done = true;
3148 /* Process up to available RFD's */
3149 while (count < NUM_PACKETS_HANDLED) {
3150 if (list_empty(&adapter->rx_ring.recv_list)) {
3151 WARN_ON(adapter->rx_ring.num_ready_recv != 0);
3152 done = false;
3153 break;
3156 rfd = nic_rx_pkts(adapter);
3158 if (rfd == NULL)
3159 break;
3161 /* Do not receive any packets until a filter has been set.
3162 * Do not receive any packets until we have link.
3163 * If length is zero, return the RFD in order to advance the
3164 * Free buffer ring.
3166 if (!adapter->packet_filter ||
3167 !netif_carrier_ok(adapter->netdev) ||
3168 rfd->len == 0)
3169 continue;
3171 /* Increment the number of packets we received */
3172 adapter->net_stats.rx_packets++;
3174 /* Set the status on the packet, either resources or success */
3175 if (adapter->rx_ring.num_ready_recv < RFD_LOW_WATER_MARK) {
3176 dev_warn(&adapter->pdev->dev,
3177 "RFD's are running out\n");
3179 count++;
3182 if (count == NUM_PACKETS_HANDLED || !done) {
3183 adapter->rx_ring.unfinished_receives = true;
3184 writel(PARM_TX_TIME_INT_DEF * NANO_IN_A_MICRO,
3185 &adapter->regs->global.watchdog_timer);
3186 } else
3187 /* Watchdog timer will disable itself if appropriate. */
3188 adapter->rx_ring.unfinished_receives = false;
3191 /* TX functions */
3194 * et131x_tx_dma_memory_alloc
3195 * @adapter: pointer to our private adapter structure
3197 * Returns 0 on success and errno on failure (as defined in errno.h).
3199 * Allocates memory that will be visible both to the device and to the CPU.
3200 * The OS will pass us packets, pointers to which we will insert in the Tx
3201 * Descriptor queue. The device will read this queue to find the packets in
3202 * memory. The device will update the "status" in memory each time it xmits a
3203 * packet.
3205 int et131x_tx_dma_memory_alloc(struct et131x_adapter *adapter)
3207 int desc_size = 0;
3208 struct tx_ring *tx_ring = &adapter->tx_ring;
3210 /* Allocate memory for the TCB's (Transmit Control Block) */
3211 adapter->tx_ring.tcb_ring =
3212 kcalloc(NUM_TCB, sizeof(struct tcb), GFP_ATOMIC | GFP_DMA);
3213 if (!adapter->tx_ring.tcb_ring) {
3214 dev_err(&adapter->pdev->dev, "Cannot alloc memory for TCBs\n");
3215 return -ENOMEM;
3218 /* Allocate enough memory for the Tx descriptor ring, and allocate
3219 * some extra so that the ring can be aligned on a 4k boundary.
3221 desc_size = (sizeof(struct tx_desc) * NUM_DESC_PER_RING_TX) + 4096 - 1;
3222 tx_ring->tx_desc_ring =
3223 (struct tx_desc *) dma_alloc_coherent(&adapter->pdev->dev,
3224 desc_size,
3225 &tx_ring->tx_desc_ring_pa,
3226 GFP_KERNEL);
3227 if (!adapter->tx_ring.tx_desc_ring) {
3228 dev_err(&adapter->pdev->dev,
3229 "Cannot alloc memory for Tx Ring\n");
3230 return -ENOMEM;
3233 /* Save physical address
3235 * NOTE: dma_alloc_coherent(), used above to alloc DMA regions,
3236 * ALWAYS returns SAC (32-bit) addresses. If DAC (64-bit) addresses
3237 * are ever returned, make sure the high part is retrieved here before
3238 * storing the adjusted address.
3240 /* Allocate memory for the Tx status block */
3241 tx_ring->tx_status = dma_alloc_coherent(&adapter->pdev->dev,
3242 sizeof(u32),
3243 &tx_ring->tx_status_pa,
3244 GFP_KERNEL);
3245 if (!adapter->tx_ring.tx_status_pa) {
3246 dev_err(&adapter->pdev->dev,
3247 "Cannot alloc memory for Tx status block\n");
3248 return -ENOMEM;
3250 return 0;
3254 * et131x_tx_dma_memory_free - Free all memory allocated within this module
3255 * @adapter: pointer to our private adapter structure
3257 * Returns 0 on success and errno on failure (as defined in errno.h).
3259 void et131x_tx_dma_memory_free(struct et131x_adapter *adapter)
3261 int desc_size = 0;
3263 if (adapter->tx_ring.tx_desc_ring) {
3264 /* Free memory relating to Tx rings here */
3265 desc_size = (sizeof(struct tx_desc) * NUM_DESC_PER_RING_TX)
3266 + 4096 - 1;
3267 dma_free_coherent(&adapter->pdev->dev,
3268 desc_size,
3269 adapter->tx_ring.tx_desc_ring,
3270 adapter->tx_ring.tx_desc_ring_pa);
3271 adapter->tx_ring.tx_desc_ring = NULL;
3274 /* Free memory for the Tx status block */
3275 if (adapter->tx_ring.tx_status) {
3276 dma_free_coherent(&adapter->pdev->dev,
3277 sizeof(u32),
3278 adapter->tx_ring.tx_status,
3279 adapter->tx_ring.tx_status_pa);
3281 adapter->tx_ring.tx_status = NULL;
3283 /* Free the memory for the tcb structures */
3284 kfree(adapter->tx_ring.tcb_ring);
3288 * nic_send_packet - NIC specific send handler for version B silicon.
3289 * @adapter: pointer to our adapter
3290 * @tcb: pointer to struct tcb
3292 * Returns 0 or errno.
3294 static int nic_send_packet(struct et131x_adapter *adapter, struct tcb *tcb)
3296 u32 i;
3297 struct tx_desc desc[24]; /* 24 x 16 byte */
3298 u32 frag = 0;
3299 u32 thiscopy, remainder;
3300 struct sk_buff *skb = tcb->skb;
3301 u32 nr_frags = skb_shinfo(skb)->nr_frags + 1;
3302 struct skb_frag_struct *frags = &skb_shinfo(skb)->frags[0];
3303 unsigned long flags;
3304 struct phy_device *phydev = adapter->phydev;
3306 /* Part of the optimizations of this send routine restrict us to
3307 * sending 24 fragments at a pass. In practice we should never see
3308 * more than 5 fragments.
3310 * NOTE: The older version of this function (below) can handle any
3311 * number of fragments. If needed, we can call this function,
3312 * although it is less efficient.
3314 if (nr_frags > 23)
3315 return -EIO;
3317 memset(desc, 0, sizeof(struct tx_desc) * (nr_frags + 1));
3319 for (i = 0; i < nr_frags; i++) {
3320 /* If there is something in this element, lets get a
3321 * descriptor from the ring and get the necessary data
3323 if (i == 0) {
3324 /* If the fragments are smaller than a standard MTU,
3325 * then map them to a single descriptor in the Tx
3326 * Desc ring. However, if they're larger, as is
3327 * possible with support for jumbo packets, then
3328 * split them each across 2 descriptors.
3330 * This will work until we determine why the hardware
3331 * doesn't seem to like large fragments.
3333 if ((skb->len - skb->data_len) <= 1514) {
3334 desc[frag].addr_hi = 0;
3335 /* Low 16bits are length, high is vlan and
3336 unused currently so zero */
3337 desc[frag].len_vlan =
3338 skb->len - skb->data_len;
3340 /* NOTE: Here, the dma_addr_t returned from
3341 * dma_map_single() is implicitly cast as a
3342 * u32. Although dma_addr_t can be
3343 * 64-bit, the address returned by
3344 * dma_map_single() is always 32-bit
3345 * addressable (as defined by the pci/dma
3346 * subsystem)
3348 desc[frag++].addr_lo =
3349 dma_map_single(&adapter->pdev->dev,
3350 skb->data,
3351 skb->len -
3352 skb->data_len,
3353 DMA_TO_DEVICE);
3354 } else {
3355 desc[frag].addr_hi = 0;
3356 desc[frag].len_vlan =
3357 (skb->len - skb->data_len) / 2;
3359 /* NOTE: Here, the dma_addr_t returned from
3360 * dma_map_single() is implicitly cast as a
3361 * u32. Although dma_addr_t can be
3362 * 64-bit, the address returned by
3363 * dma_map_single() is always 32-bit
3364 * addressable (as defined by the pci/dma
3365 * subsystem)
3367 desc[frag++].addr_lo =
3368 dma_map_single(&adapter->pdev->dev,
3369 skb->data,
3370 ((skb->len -
3371 skb->data_len) / 2),
3372 DMA_TO_DEVICE);
3373 desc[frag].addr_hi = 0;
3375 desc[frag].len_vlan =
3376 (skb->len - skb->data_len) / 2;
3378 /* NOTE: Here, the dma_addr_t returned from
3379 * dma_map_single() is implicitly cast as a
3380 * u32. Although dma_addr_t can be
3381 * 64-bit, the address returned by
3382 * dma_map_single() is always 32-bit
3383 * addressable (as defined by the pci/dma
3384 * subsystem)
3386 desc[frag++].addr_lo =
3387 dma_map_single(&adapter->pdev->dev,
3388 skb->data +
3389 ((skb->len -
3390 skb->data_len) / 2),
3391 ((skb->len -
3392 skb->data_len) / 2),
3393 DMA_TO_DEVICE);
3395 } else {
3396 desc[frag].addr_hi = 0;
3397 desc[frag].len_vlan =
3398 frags[i - 1].size;
3400 /* NOTE: Here, the dma_addr_t returned from
3401 * dma_map_page() is implicitly cast as a u32.
3402 * Although dma_addr_t can be 64-bit, the address
3403 * returned by dma_map_page() is always 32-bit
3404 * addressable (as defined by the pci/dma subsystem)
3406 desc[frag++].addr_lo = skb_frag_dma_map(
3407 &adapter->pdev->dev,
3408 &frags[i - 1],
3410 frags[i - 1].size,
3411 DMA_TO_DEVICE);
3415 if (phydev && phydev->speed == SPEED_1000) {
3416 if (++adapter->tx_ring.since_irq == PARM_TX_NUM_BUFS_DEF) {
3417 /* Last element & Interrupt flag */
3418 desc[frag - 1].flags = 0x5;
3419 adapter->tx_ring.since_irq = 0;
3420 } else { /* Last element */
3421 desc[frag - 1].flags = 0x1;
3423 } else
3424 desc[frag - 1].flags = 0x5;
3426 desc[0].flags |= 2; /* First element flag */
3428 tcb->index_start = adapter->tx_ring.send_idx;
3429 tcb->stale = 0;
3431 spin_lock_irqsave(&adapter->send_hw_lock, flags);
3433 thiscopy = NUM_DESC_PER_RING_TX -
3434 INDEX10(adapter->tx_ring.send_idx);
3436 if (thiscopy >= frag) {
3437 remainder = 0;
3438 thiscopy = frag;
3439 } else {
3440 remainder = frag - thiscopy;
3443 memcpy(adapter->tx_ring.tx_desc_ring +
3444 INDEX10(adapter->tx_ring.send_idx), desc,
3445 sizeof(struct tx_desc) * thiscopy);
3447 add_10bit(&adapter->tx_ring.send_idx, thiscopy);
3449 if (INDEX10(adapter->tx_ring.send_idx) == 0 ||
3450 INDEX10(adapter->tx_ring.send_idx) == NUM_DESC_PER_RING_TX) {
3451 adapter->tx_ring.send_idx &= ~ET_DMA10_MASK;
3452 adapter->tx_ring.send_idx ^= ET_DMA10_WRAP;
3455 if (remainder) {
3456 memcpy(adapter->tx_ring.tx_desc_ring,
3457 desc + thiscopy,
3458 sizeof(struct tx_desc) * remainder);
3460 add_10bit(&adapter->tx_ring.send_idx, remainder);
3463 if (INDEX10(adapter->tx_ring.send_idx) == 0) {
3464 if (adapter->tx_ring.send_idx)
3465 tcb->index = NUM_DESC_PER_RING_TX - 1;
3466 else
3467 tcb->index = ET_DMA10_WRAP|(NUM_DESC_PER_RING_TX - 1);
3468 } else
3469 tcb->index = adapter->tx_ring.send_idx - 1;
3471 spin_lock(&adapter->tcb_send_qlock);
3473 if (adapter->tx_ring.send_tail)
3474 adapter->tx_ring.send_tail->next = tcb;
3475 else
3476 adapter->tx_ring.send_head = tcb;
3478 adapter->tx_ring.send_tail = tcb;
3480 WARN_ON(tcb->next != NULL);
3482 adapter->tx_ring.used++;
3484 spin_unlock(&adapter->tcb_send_qlock);
3486 /* Write the new write pointer back to the device. */
3487 writel(adapter->tx_ring.send_idx,
3488 &adapter->regs->txdma.service_request);
3490 /* For Gig only, we use Tx Interrupt coalescing. Enable the software
3491 * timer to wake us up if this packet isn't followed by N more.
3493 if (phydev && phydev->speed == SPEED_1000) {
3494 writel(PARM_TX_TIME_INT_DEF * NANO_IN_A_MICRO,
3495 &adapter->regs->global.watchdog_timer);
3497 spin_unlock_irqrestore(&adapter->send_hw_lock, flags);
3499 return 0;
3503 * send_packet - Do the work to send a packet
3504 * @skb: the packet(s) to send
3505 * @adapter: a pointer to the device's private adapter structure
3507 * Return 0 in almost all cases; non-zero value in extreme hard failure only.
3509 * Assumption: Send spinlock has been acquired
3511 static int send_packet(struct sk_buff *skb, struct et131x_adapter *adapter)
3513 int status;
3514 struct tcb *tcb = NULL;
3515 u16 *shbufva;
3516 unsigned long flags;
3518 /* All packets must have at least a MAC address and a protocol type */
3519 if (skb->len < ETH_HLEN)
3520 return -EIO;
3522 /* Get a TCB for this packet */
3523 spin_lock_irqsave(&adapter->tcb_ready_qlock, flags);
3525 tcb = adapter->tx_ring.tcb_qhead;
3527 if (tcb == NULL) {
3528 spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags);
3529 return -ENOMEM;
3532 adapter->tx_ring.tcb_qhead = tcb->next;
3534 if (adapter->tx_ring.tcb_qhead == NULL)
3535 adapter->tx_ring.tcb_qtail = NULL;
3537 spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags);
3539 tcb->skb = skb;
3541 if (skb->data != NULL && skb->len - skb->data_len >= 6) {
3542 shbufva = (u16 *) skb->data;
3544 if ((shbufva[0] == 0xffff) &&
3545 (shbufva[1] == 0xffff) && (shbufva[2] == 0xffff)) {
3546 tcb->flags |= fMP_DEST_BROAD;
3547 } else if ((shbufva[0] & 0x3) == 0x0001) {
3548 tcb->flags |= fMP_DEST_MULTI;
3552 tcb->next = NULL;
3554 /* Call the NIC specific send handler. */
3555 status = nic_send_packet(adapter, tcb);
3557 if (status != 0) {
3558 spin_lock_irqsave(&adapter->tcb_ready_qlock, flags);
3560 if (adapter->tx_ring.tcb_qtail)
3561 adapter->tx_ring.tcb_qtail->next = tcb;
3562 else
3563 /* Apparently ready Q is empty. */
3564 adapter->tx_ring.tcb_qhead = tcb;
3566 adapter->tx_ring.tcb_qtail = tcb;
3567 spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags);
3568 return status;
3570 WARN_ON(adapter->tx_ring.used > NUM_TCB);
3571 return 0;
3575 * et131x_send_packets - This function is called by the OS to send packets
3576 * @skb: the packet(s) to send
3577 * @netdev:device on which to TX the above packet(s)
3579 * Return 0 in almost all cases; non-zero value in extreme hard failure only
3581 int et131x_send_packets(struct sk_buff *skb, struct net_device *netdev)
3583 int status = 0;
3584 struct et131x_adapter *adapter = netdev_priv(netdev);
3586 /* Send these packets
3588 * NOTE: The Linux Tx entry point is only given one packet at a time
3589 * to Tx, so the PacketCount and it's array used makes no sense here
3592 /* TCB is not available */
3593 if (adapter->tx_ring.used >= NUM_TCB) {
3594 /* NOTE: If there's an error on send, no need to queue the
3595 * packet under Linux; if we just send an error up to the
3596 * netif layer, it will resend the skb to us.
3598 status = -ENOMEM;
3599 } else {
3600 /* We need to see if the link is up; if it's not, make the
3601 * netif layer think we're good and drop the packet
3603 if ((adapter->flags & fMP_ADAPTER_FAIL_SEND_MASK) ||
3604 !netif_carrier_ok(netdev)) {
3605 dev_kfree_skb_any(skb);
3606 skb = NULL;
3608 adapter->net_stats.tx_dropped++;
3609 } else {
3610 status = send_packet(skb, adapter);
3611 if (status != 0 && status != -ENOMEM) {
3612 /* On any other error, make netif think we're
3613 * OK and drop the packet
3615 dev_kfree_skb_any(skb);
3616 skb = NULL;
3617 adapter->net_stats.tx_dropped++;
3621 return status;
3625 * free_send_packet - Recycle a struct tcb
3626 * @adapter: pointer to our adapter
3627 * @tcb: pointer to struct tcb
3629 * Complete the packet if necessary
3630 * Assumption - Send spinlock has been acquired
3632 static inline void free_send_packet(struct et131x_adapter *adapter,
3633 struct tcb *tcb)
3635 unsigned long flags;
3636 struct tx_desc *desc = NULL;
3637 struct net_device_stats *stats = &adapter->net_stats;
3639 if (tcb->flags & fMP_DEST_BROAD)
3640 atomic_inc(&adapter->stats.broadcast_pkts_xmtd);
3641 else if (tcb->flags & fMP_DEST_MULTI)
3642 atomic_inc(&adapter->stats.multicast_pkts_xmtd);
3643 else
3644 atomic_inc(&adapter->stats.unicast_pkts_xmtd);
3646 if (tcb->skb) {
3647 stats->tx_bytes += tcb->skb->len;
3649 /* Iterate through the TX descriptors on the ring
3650 * corresponding to this packet and umap the fragments
3651 * they point to
3653 do {
3654 desc = (struct tx_desc *)
3655 (adapter->tx_ring.tx_desc_ring +
3656 INDEX10(tcb->index_start));
3658 dma_unmap_single(&adapter->pdev->dev,
3659 desc->addr_lo,
3660 desc->len_vlan, DMA_TO_DEVICE);
3662 add_10bit(&tcb->index_start, 1);
3663 if (INDEX10(tcb->index_start) >=
3664 NUM_DESC_PER_RING_TX) {
3665 tcb->index_start &= ~ET_DMA10_MASK;
3666 tcb->index_start ^= ET_DMA10_WRAP;
3668 } while (desc != (adapter->tx_ring.tx_desc_ring +
3669 INDEX10(tcb->index)));
3671 dev_kfree_skb_any(tcb->skb);
3674 memset(tcb, 0, sizeof(struct tcb));
3676 /* Add the TCB to the Ready Q */
3677 spin_lock_irqsave(&adapter->tcb_ready_qlock, flags);
3679 adapter->net_stats.tx_packets++;
3681 if (adapter->tx_ring.tcb_qtail)
3682 adapter->tx_ring.tcb_qtail->next = tcb;
3683 else
3684 /* Apparently ready Q is empty. */
3685 adapter->tx_ring.tcb_qhead = tcb;
3687 adapter->tx_ring.tcb_qtail = tcb;
3689 spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags);
3690 WARN_ON(adapter->tx_ring.used < 0);
3694 * et131x_free_busy_send_packets - Free and complete the stopped active sends
3695 * @adapter: pointer to our adapter
3697 * Assumption - Send spinlock has been acquired
3699 void et131x_free_busy_send_packets(struct et131x_adapter *adapter)
3701 struct tcb *tcb;
3702 unsigned long flags;
3703 u32 freed = 0;
3705 /* Any packets being sent? Check the first TCB on the send list */
3706 spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
3708 tcb = adapter->tx_ring.send_head;
3710 while (tcb != NULL && freed < NUM_TCB) {
3711 struct tcb *next = tcb->next;
3713 adapter->tx_ring.send_head = next;
3715 if (next == NULL)
3716 adapter->tx_ring.send_tail = NULL;
3718 adapter->tx_ring.used--;
3720 spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
3722 freed++;
3723 free_send_packet(adapter, tcb);
3725 spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
3727 tcb = adapter->tx_ring.send_head;
3730 WARN_ON(freed == NUM_TCB);
3732 spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
3734 adapter->tx_ring.used = 0;
3738 * et131x_handle_send_interrupt - Interrupt handler for sending processing
3739 * @adapter: pointer to our adapter
3741 * Re-claim the send resources, complete sends and get more to send from
3742 * the send wait queue.
3744 * Assumption - Send spinlock has been acquired
3746 void et131x_handle_send_interrupt(struct et131x_adapter *adapter)
3748 unsigned long flags;
3749 u32 serviced;
3750 struct tcb *tcb;
3751 u32 index;
3753 serviced = readl(&adapter->regs->txdma.new_service_complete);
3754 index = INDEX10(serviced);
3756 /* Has the ring wrapped? Process any descriptors that do not have
3757 * the same "wrap" indicator as the current completion indicator
3759 spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
3761 tcb = adapter->tx_ring.send_head;
3763 while (tcb &&
3764 ((serviced ^ tcb->index) & ET_DMA10_WRAP) &&
3765 index < INDEX10(tcb->index)) {
3766 adapter->tx_ring.used--;
3767 adapter->tx_ring.send_head = tcb->next;
3768 if (tcb->next == NULL)
3769 adapter->tx_ring.send_tail = NULL;
3771 spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
3772 free_send_packet(adapter, tcb);
3773 spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
3775 /* Goto the next packet */
3776 tcb = adapter->tx_ring.send_head;
3778 while (tcb &&
3779 !((serviced ^ tcb->index) & ET_DMA10_WRAP)
3780 && index > (tcb->index & ET_DMA10_MASK)) {
3781 adapter->tx_ring.used--;
3782 adapter->tx_ring.send_head = tcb->next;
3783 if (tcb->next == NULL)
3784 adapter->tx_ring.send_tail = NULL;
3786 spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
3787 free_send_packet(adapter, tcb);
3788 spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
3790 /* Goto the next packet */
3791 tcb = adapter->tx_ring.send_head;
3794 /* Wake up the queue when we hit a low-water mark */
3795 if (adapter->tx_ring.used <= NUM_TCB / 3)
3796 netif_wake_queue(adapter->netdev);
3798 spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
3801 /* ETHTOOL functions */
3803 static int et131x_get_settings(struct net_device *netdev,
3804 struct ethtool_cmd *cmd)
3806 struct et131x_adapter *adapter = netdev_priv(netdev);
3808 return phy_ethtool_gset(adapter->phydev, cmd);
3811 static int et131x_set_settings(struct net_device *netdev,
3812 struct ethtool_cmd *cmd)
3814 struct et131x_adapter *adapter = netdev_priv(netdev);
3816 return phy_ethtool_sset(adapter->phydev, cmd);
3819 static int et131x_get_regs_len(struct net_device *netdev)
3821 #define ET131X_REGS_LEN 256
3822 return ET131X_REGS_LEN * sizeof(u32);
3825 static void et131x_get_regs(struct net_device *netdev,
3826 struct ethtool_regs *regs, void *regs_data)
3828 struct et131x_adapter *adapter = netdev_priv(netdev);
3829 struct address_map __iomem *aregs = adapter->regs;
3830 u32 *regs_buff = regs_data;
3831 u32 num = 0;
3833 memset(regs_data, 0, et131x_get_regs_len(netdev));
3835 regs->version = (1 << 24) | (adapter->pdev->revision << 16) |
3836 adapter->pdev->device;
3838 /* PHY regs */
3839 et131x_mii_read(adapter, MII_BMCR, (u16 *)&regs_buff[num++]);
3840 et131x_mii_read(adapter, MII_BMSR, (u16 *)&regs_buff[num++]);
3841 et131x_mii_read(adapter, MII_PHYSID1, (u16 *)&regs_buff[num++]);
3842 et131x_mii_read(adapter, MII_PHYSID2, (u16 *)&regs_buff[num++]);
3843 et131x_mii_read(adapter, MII_ADVERTISE, (u16 *)&regs_buff[num++]);
3844 et131x_mii_read(adapter, MII_LPA, (u16 *)&regs_buff[num++]);
3845 et131x_mii_read(adapter, MII_EXPANSION, (u16 *)&regs_buff[num++]);
3846 /* Autoneg next page transmit reg */
3847 et131x_mii_read(adapter, 0x07, (u16 *)&regs_buff[num++]);
3848 /* Link partner next page reg */
3849 et131x_mii_read(adapter, 0x08, (u16 *)&regs_buff[num++]);
3850 et131x_mii_read(adapter, MII_CTRL1000, (u16 *)&regs_buff[num++]);
3851 et131x_mii_read(adapter, MII_STAT1000, (u16 *)&regs_buff[num++]);
3852 et131x_mii_read(adapter, MII_ESTATUS, (u16 *)&regs_buff[num++]);
3853 et131x_mii_read(adapter, PHY_INDEX_REG, (u16 *)&regs_buff[num++]);
3854 et131x_mii_read(adapter, PHY_DATA_REG, (u16 *)&regs_buff[num++]);
3855 et131x_mii_read(adapter, PHY_MPHY_CONTROL_REG,
3856 (u16 *)&regs_buff[num++]);
3857 et131x_mii_read(adapter, PHY_LOOPBACK_CONTROL,
3858 (u16 *)&regs_buff[num++]);
3859 et131x_mii_read(adapter, PHY_LOOPBACK_CONTROL+1,
3860 (u16 *)&regs_buff[num++]);
3861 et131x_mii_read(adapter, PHY_REGISTER_MGMT_CONTROL,
3862 (u16 *)&regs_buff[num++]);
3863 et131x_mii_read(adapter, PHY_CONFIG, (u16 *)&regs_buff[num++]);
3864 et131x_mii_read(adapter, PHY_PHY_CONTROL, (u16 *)&regs_buff[num++]);
3865 et131x_mii_read(adapter, PHY_INTERRUPT_MASK, (u16 *)&regs_buff[num++]);
3866 et131x_mii_read(adapter, PHY_INTERRUPT_STATUS,
3867 (u16 *)&regs_buff[num++]);
3868 et131x_mii_read(adapter, PHY_PHY_STATUS, (u16 *)&regs_buff[num++]);
3869 et131x_mii_read(adapter, PHY_LED_1, (u16 *)&regs_buff[num++]);
3870 et131x_mii_read(adapter, PHY_LED_2, (u16 *)&regs_buff[num++]);
3872 /* Global regs */
3873 regs_buff[num++] = readl(&aregs->global.txq_start_addr);
3874 regs_buff[num++] = readl(&aregs->global.txq_end_addr);
3875 regs_buff[num++] = readl(&aregs->global.rxq_start_addr);
3876 regs_buff[num++] = readl(&aregs->global.rxq_end_addr);
3877 regs_buff[num++] = readl(&aregs->global.pm_csr);
3878 regs_buff[num++] = adapter->stats.interrupt_status;
3879 regs_buff[num++] = readl(&aregs->global.int_mask);
3880 regs_buff[num++] = readl(&aregs->global.int_alias_clr_en);
3881 regs_buff[num++] = readl(&aregs->global.int_status_alias);
3882 regs_buff[num++] = readl(&aregs->global.sw_reset);
3883 regs_buff[num++] = readl(&aregs->global.slv_timer);
3884 regs_buff[num++] = readl(&aregs->global.msi_config);
3885 regs_buff[num++] = readl(&aregs->global.loopback);
3886 regs_buff[num++] = readl(&aregs->global.watchdog_timer);
3888 /* TXDMA regs */
3889 regs_buff[num++] = readl(&aregs->txdma.csr);
3890 regs_buff[num++] = readl(&aregs->txdma.pr_base_hi);
3891 regs_buff[num++] = readl(&aregs->txdma.pr_base_lo);
3892 regs_buff[num++] = readl(&aregs->txdma.pr_num_des);
3893 regs_buff[num++] = readl(&aregs->txdma.txq_wr_addr);
3894 regs_buff[num++] = readl(&aregs->txdma.txq_wr_addr_ext);
3895 regs_buff[num++] = readl(&aregs->txdma.txq_rd_addr);
3896 regs_buff[num++] = readl(&aregs->txdma.dma_wb_base_hi);
3897 regs_buff[num++] = readl(&aregs->txdma.dma_wb_base_lo);
3898 regs_buff[num++] = readl(&aregs->txdma.service_request);
3899 regs_buff[num++] = readl(&aregs->txdma.service_complete);
3900 regs_buff[num++] = readl(&aregs->txdma.cache_rd_index);
3901 regs_buff[num++] = readl(&aregs->txdma.cache_wr_index);
3902 regs_buff[num++] = readl(&aregs->txdma.tx_dma_error);
3903 regs_buff[num++] = readl(&aregs->txdma.desc_abort_cnt);
3904 regs_buff[num++] = readl(&aregs->txdma.payload_abort_cnt);
3905 regs_buff[num++] = readl(&aregs->txdma.writeback_abort_cnt);
3906 regs_buff[num++] = readl(&aregs->txdma.desc_timeout_cnt);
3907 regs_buff[num++] = readl(&aregs->txdma.payload_timeout_cnt);
3908 regs_buff[num++] = readl(&aregs->txdma.writeback_timeout_cnt);
3909 regs_buff[num++] = readl(&aregs->txdma.desc_error_cnt);
3910 regs_buff[num++] = readl(&aregs->txdma.payload_error_cnt);
3911 regs_buff[num++] = readl(&aregs->txdma.writeback_error_cnt);
3912 regs_buff[num++] = readl(&aregs->txdma.dropped_tlp_cnt);
3913 regs_buff[num++] = readl(&aregs->txdma.new_service_complete);
3914 regs_buff[num++] = readl(&aregs->txdma.ethernet_packet_cnt);
3916 /* RXDMA regs */
3917 regs_buff[num++] = readl(&aregs->rxdma.csr);
3918 regs_buff[num++] = readl(&aregs->rxdma.dma_wb_base_hi);
3919 regs_buff[num++] = readl(&aregs->rxdma.dma_wb_base_lo);
3920 regs_buff[num++] = readl(&aregs->rxdma.num_pkt_done);
3921 regs_buff[num++] = readl(&aregs->rxdma.max_pkt_time);
3922 regs_buff[num++] = readl(&aregs->rxdma.rxq_rd_addr);
3923 regs_buff[num++] = readl(&aregs->rxdma.rxq_rd_addr_ext);
3924 regs_buff[num++] = readl(&aregs->rxdma.rxq_wr_addr);
3925 regs_buff[num++] = readl(&aregs->rxdma.psr_base_hi);
3926 regs_buff[num++] = readl(&aregs->rxdma.psr_base_lo);
3927 regs_buff[num++] = readl(&aregs->rxdma.psr_num_des);
3928 regs_buff[num++] = readl(&aregs->rxdma.psr_avail_offset);
3929 regs_buff[num++] = readl(&aregs->rxdma.psr_full_offset);
3930 regs_buff[num++] = readl(&aregs->rxdma.psr_access_index);
3931 regs_buff[num++] = readl(&aregs->rxdma.psr_min_des);
3932 regs_buff[num++] = readl(&aregs->rxdma.fbr0_base_lo);
3933 regs_buff[num++] = readl(&aregs->rxdma.fbr0_base_hi);
3934 regs_buff[num++] = readl(&aregs->rxdma.fbr0_num_des);
3935 regs_buff[num++] = readl(&aregs->rxdma.fbr0_avail_offset);
3936 regs_buff[num++] = readl(&aregs->rxdma.fbr0_full_offset);
3937 regs_buff[num++] = readl(&aregs->rxdma.fbr0_rd_index);
3938 regs_buff[num++] = readl(&aregs->rxdma.fbr0_min_des);
3939 regs_buff[num++] = readl(&aregs->rxdma.fbr1_base_lo);
3940 regs_buff[num++] = readl(&aregs->rxdma.fbr1_base_hi);
3941 regs_buff[num++] = readl(&aregs->rxdma.fbr1_num_des);
3942 regs_buff[num++] = readl(&aregs->rxdma.fbr1_avail_offset);
3943 regs_buff[num++] = readl(&aregs->rxdma.fbr1_full_offset);
3944 regs_buff[num++] = readl(&aregs->rxdma.fbr1_rd_index);
3945 regs_buff[num++] = readl(&aregs->rxdma.fbr1_min_des);
3948 #define ET131X_DRVINFO_LEN 32 /* value from ethtool.h */
3949 static void et131x_get_drvinfo(struct net_device *netdev,
3950 struct ethtool_drvinfo *info)
3952 struct et131x_adapter *adapter = netdev_priv(netdev);
3954 strncpy(info->driver, DRIVER_NAME, ET131X_DRVINFO_LEN);
3955 strncpy(info->version, DRIVER_VERSION, ET131X_DRVINFO_LEN);
3956 strncpy(info->bus_info, pci_name(adapter->pdev), ET131X_DRVINFO_LEN);
3959 static struct ethtool_ops et131x_ethtool_ops = {
3960 .get_settings = et131x_get_settings,
3961 .set_settings = et131x_set_settings,
3962 .get_drvinfo = et131x_get_drvinfo,
3963 .get_regs_len = et131x_get_regs_len,
3964 .get_regs = et131x_get_regs,
3965 .get_link = ethtool_op_get_link,
3968 void et131x_set_ethtool_ops(struct net_device *netdev)
3970 SET_ETHTOOL_OPS(netdev, &et131x_ethtool_ops);
3973 /* PCI functions */
3976 * et131x_hwaddr_init - set up the MAC Address on the ET1310
3977 * @adapter: pointer to our private adapter structure
3979 void et131x_hwaddr_init(struct et131x_adapter *adapter)
3981 /* If have our default mac from init and no mac address from
3982 * EEPROM then we need to generate the last octet and set it on the
3983 * device
3985 if (adapter->rom_addr[0] == 0x00 &&
3986 adapter->rom_addr[1] == 0x00 &&
3987 adapter->rom_addr[2] == 0x00 &&
3988 adapter->rom_addr[3] == 0x00 &&
3989 adapter->rom_addr[4] == 0x00 &&
3990 adapter->rom_addr[5] == 0x00) {
3992 * We need to randomly generate the last octet so we
3993 * decrease our chances of setting the mac address to
3994 * same as another one of our cards in the system
3996 get_random_bytes(&adapter->addr[5], 1);
3998 * We have the default value in the register we are
3999 * working with so we need to copy the current
4000 * address into the permanent address
4002 memcpy(adapter->rom_addr,
4003 adapter->addr, ETH_ALEN);
4004 } else {
4005 /* We do not have an override address, so set the
4006 * current address to the permanent address and add
4007 * it to the device
4009 memcpy(adapter->addr,
4010 adapter->rom_addr, ETH_ALEN);
4015 * et131x_pci_init - initial PCI setup
4016 * @adapter: pointer to our private adapter structure
4017 * @pdev: our PCI device
4019 * Perform the initial setup of PCI registers and if possible initialise
4020 * the MAC address. At this point the I/O registers have yet to be mapped
4022 static int et131x_pci_init(struct et131x_adapter *adapter,
4023 struct pci_dev *pdev)
4025 int i;
4026 u8 max_payload;
4027 u8 read_size_reg;
4029 if (et131x_init_eeprom(adapter) < 0)
4030 return -EIO;
4032 /* Let's set up the PORT LOGIC Register. First we need to know what
4033 * the max_payload_size is
4035 if (pci_read_config_byte(pdev, ET1310_PCI_MAX_PYLD, &max_payload)) {
4036 dev_err(&pdev->dev,
4037 "Could not read PCI config space for Max Payload Size\n");
4038 return -EIO;
4041 /* Program the Ack/Nak latency and replay timers */
4042 max_payload &= 0x07; /* Only the lower 3 bits are valid */
4044 if (max_payload < 2) {
4045 static const u16 acknak[2] = { 0x76, 0xD0 };
4046 static const u16 replay[2] = { 0x1E0, 0x2ED };
4048 if (pci_write_config_word(pdev, ET1310_PCI_ACK_NACK,
4049 acknak[max_payload])) {
4050 dev_err(&pdev->dev,
4051 "Could not write PCI config space for ACK/NAK\n");
4052 return -EIO;
4054 if (pci_write_config_word(pdev, ET1310_PCI_REPLAY,
4055 replay[max_payload])) {
4056 dev_err(&pdev->dev,
4057 "Could not write PCI config space for Replay Timer\n");
4058 return -EIO;
4062 /* l0s and l1 latency timers. We are using default values.
4063 * Representing 001 for L0s and 010 for L1
4065 if (pci_write_config_byte(pdev, ET1310_PCI_L0L1LATENCY, 0x11)) {
4066 dev_err(&pdev->dev,
4067 "Could not write PCI config space for Latency Timers\n");
4068 return -EIO;
4071 /* Change the max read size to 2k */
4072 if (pci_read_config_byte(pdev, 0x51, &read_size_reg)) {
4073 dev_err(&pdev->dev,
4074 "Could not read PCI config space for Max read size\n");
4075 return -EIO;
4078 read_size_reg &= 0x8f;
4079 read_size_reg |= 0x40;
4081 if (pci_write_config_byte(pdev, 0x51, read_size_reg)) {
4082 dev_err(&pdev->dev,
4083 "Could not write PCI config space for Max read size\n");
4084 return -EIO;
4087 /* Get MAC address from config space if an eeprom exists, otherwise
4088 * the MAC address there will not be valid
4090 if (!adapter->has_eeprom) {
4091 et131x_hwaddr_init(adapter);
4092 return 0;
4095 for (i = 0; i < ETH_ALEN; i++) {
4096 if (pci_read_config_byte(pdev, ET1310_PCI_MAC_ADDRESS + i,
4097 adapter->rom_addr + i)) {
4098 dev_err(&pdev->dev, "Could not read PCI config space for MAC address\n");
4099 return -EIO;
4102 memcpy(adapter->addr, adapter->rom_addr, ETH_ALEN);
4103 return 0;
4107 * et131x_error_timer_handler
4108 * @data: timer-specific variable; here a pointer to our adapter structure
4110 * The routine called when the error timer expires, to track the number of
4111 * recurring errors.
4113 void et131x_error_timer_handler(unsigned long data)
4115 struct et131x_adapter *adapter = (struct et131x_adapter *) data;
4116 struct phy_device *phydev = adapter->phydev;
4118 if (et1310_in_phy_coma(adapter)) {
4119 /* Bring the device immediately out of coma, to
4120 * prevent it from sleeping indefinitely, this
4121 * mechanism could be improved! */
4122 et1310_disable_phy_coma(adapter);
4123 adapter->boot_coma = 20;
4124 } else {
4125 et1310_update_macstat_host_counters(adapter);
4128 if (!phydev->link && adapter->boot_coma < 11)
4129 adapter->boot_coma++;
4131 if (adapter->boot_coma == 10) {
4132 if (!phydev->link) {
4133 if (!et1310_in_phy_coma(adapter)) {
4134 /* NOTE - This was originally a 'sync with
4135 * interrupt'. How to do that under Linux?
4137 et131x_enable_interrupts(adapter);
4138 et1310_enable_phy_coma(adapter);
4143 /* This is a periodic timer, so reschedule */
4144 mod_timer(&adapter->error_timer, jiffies +
4145 TX_ERROR_PERIOD * HZ / 1000);
4149 * et131x_adapter_memory_alloc
4150 * @adapter: pointer to our private adapter structure
4152 * Returns 0 on success, errno on failure (as defined in errno.h).
4154 * Allocate all the memory blocks for send, receive and others.
4156 int et131x_adapter_memory_alloc(struct et131x_adapter *adapter)
4158 int status;
4160 /* Allocate memory for the Tx Ring */
4161 status = et131x_tx_dma_memory_alloc(adapter);
4162 if (status != 0) {
4163 dev_err(&adapter->pdev->dev,
4164 "et131x_tx_dma_memory_alloc FAILED\n");
4165 return status;
4167 /* Receive buffer memory allocation */
4168 status = et131x_rx_dma_memory_alloc(adapter);
4169 if (status != 0) {
4170 dev_err(&adapter->pdev->dev,
4171 "et131x_rx_dma_memory_alloc FAILED\n");
4172 et131x_tx_dma_memory_free(adapter);
4173 return status;
4176 /* Init receive data structures */
4177 status = et131x_init_recv(adapter);
4178 if (status != 0) {
4179 dev_err(&adapter->pdev->dev,
4180 "et131x_init_recv FAILED\n");
4181 et131x_tx_dma_memory_free(adapter);
4182 et131x_rx_dma_memory_free(adapter);
4184 return status;
4188 * et131x_adapter_memory_free - Free all memory allocated for use by Tx & Rx
4189 * @adapter: pointer to our private adapter structure
4191 void et131x_adapter_memory_free(struct et131x_adapter *adapter)
4193 /* Free DMA memory */
4194 et131x_tx_dma_memory_free(adapter);
4195 et131x_rx_dma_memory_free(adapter);
4198 static void et131x_adjust_link(struct net_device *netdev)
4200 struct et131x_adapter *adapter = netdev_priv(netdev);
4201 struct phy_device *phydev = adapter->phydev;
4203 if (netif_carrier_ok(netdev)) {
4204 adapter->boot_coma = 20;
4206 if (phydev && phydev->speed == SPEED_10) {
4208 * NOTE - Is there a way to query this without
4209 * TruePHY?
4210 * && TRU_QueryCoreType(adapter->hTruePhy, 0)==
4211 * EMI_TRUEPHY_A13O) {
4213 u16 register18;
4215 et131x_mii_read(adapter, PHY_MPHY_CONTROL_REG,
4216 &register18);
4217 et131x_mii_write(adapter, PHY_MPHY_CONTROL_REG,
4218 register18 | 0x4);
4219 et131x_mii_write(adapter, PHY_INDEX_REG,
4220 register18 | 0x8402);
4221 et131x_mii_write(adapter, PHY_DATA_REG,
4222 register18 | 511);
4223 et131x_mii_write(adapter, PHY_MPHY_CONTROL_REG,
4224 register18);
4227 et1310_config_flow_control(adapter);
4229 if (phydev && phydev->speed == SPEED_1000 &&
4230 adapter->registry_jumbo_packet > 2048) {
4231 u16 reg;
4233 et131x_mii_read(adapter, PHY_CONFIG, &reg);
4234 reg &= ~ET_PHY_CONFIG_TX_FIFO_DEPTH;
4235 reg |= ET_PHY_CONFIG_FIFO_DEPTH_32;
4236 et131x_mii_write(adapter, PHY_CONFIG, reg);
4239 et131x_set_rx_dma_timer(adapter);
4240 et1310_config_mac_regs2(adapter);
4243 if (phydev && phydev->link != adapter->link) {
4245 * Check to see if we are in coma mode and if
4246 * so, disable it because we will not be able
4247 * to read PHY values until we are out.
4249 if (et1310_in_phy_coma(adapter))
4250 et1310_disable_phy_coma(adapter);
4252 if (phydev->link) {
4253 adapter->boot_coma = 20;
4254 } else {
4255 dev_warn(&adapter->pdev->dev,
4256 "Link down - cable problem ?\n");
4257 adapter->boot_coma = 0;
4259 if (phydev->speed == SPEED_10) {
4260 /* NOTE - Is there a way to query this without
4261 * TruePHY?
4262 * && TRU_QueryCoreType(adapter->hTruePhy, 0) ==
4263 * EMI_TRUEPHY_A13O)
4265 u16 register18;
4267 et131x_mii_read(adapter, PHY_MPHY_CONTROL_REG,
4268 &register18);
4269 et131x_mii_write(adapter, PHY_MPHY_CONTROL_REG,
4270 register18 | 0x4);
4271 et131x_mii_write(adapter, PHY_INDEX_REG,
4272 register18 | 0x8402);
4273 et131x_mii_write(adapter, PHY_DATA_REG,
4274 register18 | 511);
4275 et131x_mii_write(adapter, PHY_MPHY_CONTROL_REG,
4276 register18);
4279 /* Free the packets being actively sent & stopped */
4280 et131x_free_busy_send_packets(adapter);
4282 /* Re-initialize the send structures */
4283 et131x_init_send(adapter);
4286 * Bring the device back to the state it was during
4287 * init prior to autonegotiation being complete. This
4288 * way, when we get the auto-neg complete interrupt,
4289 * we can complete init by calling config_mac_regs2.
4291 et131x_soft_reset(adapter);
4293 /* Setup ET1310 as per the documentation */
4294 et131x_adapter_setup(adapter);
4296 /* perform reset of tx/rx */
4297 et131x_disable_txrx(netdev);
4298 et131x_enable_txrx(netdev);
4301 adapter->link = phydev->link;
4303 phy_print_status(phydev);
4307 static int et131x_mii_probe(struct net_device *netdev)
4309 struct et131x_adapter *adapter = netdev_priv(netdev);
4310 struct phy_device *phydev = NULL;
4312 phydev = phy_find_first(adapter->mii_bus);
4313 if (!phydev) {
4314 dev_err(&adapter->pdev->dev, "no PHY found\n");
4315 return -ENODEV;
4318 phydev = phy_connect(netdev, dev_name(&phydev->dev),
4319 &et131x_adjust_link, 0, PHY_INTERFACE_MODE_MII);
4321 if (IS_ERR(phydev)) {
4322 dev_err(&adapter->pdev->dev, "Could not attach to PHY\n");
4323 return PTR_ERR(phydev);
4326 phydev->supported &= (SUPPORTED_10baseT_Half
4327 | SUPPORTED_10baseT_Full
4328 | SUPPORTED_100baseT_Half
4329 | SUPPORTED_100baseT_Full
4330 | SUPPORTED_Autoneg
4331 | SUPPORTED_MII
4332 | SUPPORTED_TP);
4334 if (adapter->pdev->device != ET131X_PCI_DEVICE_ID_FAST)
4335 phydev->supported |= SUPPORTED_1000baseT_Full;
4337 phydev->advertising = phydev->supported;
4338 adapter->phydev = phydev;
4340 dev_info(&adapter->pdev->dev, "attached PHY driver [%s] "
4341 "(mii_bus:phy_addr=%s)\n",
4342 phydev->drv->name, dev_name(&phydev->dev));
4344 return 0;
4348 * et131x_adapter_init
4349 * @adapter: pointer to the private adapter struct
4350 * @pdev: pointer to the PCI device
4352 * Initialize the data structures for the et131x_adapter object and link
4353 * them together with the platform provided device structures.
4355 static struct et131x_adapter *et131x_adapter_init(struct net_device *netdev,
4356 struct pci_dev *pdev)
4358 static const u8 default_mac[] = { 0x00, 0x05, 0x3d, 0x00, 0x02, 0x00 };
4360 struct et131x_adapter *adapter;
4362 /* Allocate private adapter struct and copy in relevant information */
4363 adapter = netdev_priv(netdev);
4364 adapter->pdev = pci_dev_get(pdev);
4365 adapter->netdev = netdev;
4367 /* Do the same for the netdev struct */
4368 netdev->irq = pdev->irq;
4369 netdev->base_addr = pci_resource_start(pdev, 0);
4371 /* Initialize spinlocks here */
4372 spin_lock_init(&adapter->lock);
4373 spin_lock_init(&adapter->tcb_send_qlock);
4374 spin_lock_init(&adapter->tcb_ready_qlock);
4375 spin_lock_init(&adapter->send_hw_lock);
4376 spin_lock_init(&adapter->rcv_lock);
4377 spin_lock_init(&adapter->rcv_pend_lock);
4378 spin_lock_init(&adapter->fbr_lock);
4379 spin_lock_init(&adapter->phy_lock);
4381 adapter->registry_jumbo_packet = 1514; /* 1514-9216 */
4383 /* Set the MAC address to a default */
4384 memcpy(adapter->addr, default_mac, ETH_ALEN);
4386 return adapter;
4390 * et131x_pci_remove
4391 * @pdev: a pointer to the device's pci_dev structure
4393 * Registered in the pci_driver structure, this function is called when the
4394 * PCI subsystem detects that a PCI device which matches the information
4395 * contained in the pci_device_id table has been removed.
4397 static void __devexit et131x_pci_remove(struct pci_dev *pdev)
4399 struct net_device *netdev = pci_get_drvdata(pdev);
4400 struct et131x_adapter *adapter = netdev_priv(netdev);
4402 unregister_netdev(netdev);
4403 mdiobus_unregister(adapter->mii_bus);
4404 kfree(adapter->mii_bus->irq);
4405 mdiobus_free(adapter->mii_bus);
4407 et131x_adapter_memory_free(adapter);
4408 iounmap(adapter->regs);
4409 pci_dev_put(pdev);
4411 free_netdev(netdev);
4412 pci_release_regions(pdev);
4413 pci_disable_device(pdev);
4417 * et131x_up - Bring up a device for use.
4418 * @netdev: device to be opened
4420 void et131x_up(struct net_device *netdev)
4422 struct et131x_adapter *adapter = netdev_priv(netdev);
4424 et131x_enable_txrx(netdev);
4425 phy_start(adapter->phydev);
4429 * et131x_down - Bring down the device
4430 * @netdev: device to be broght down
4432 void et131x_down(struct net_device *netdev)
4434 struct et131x_adapter *adapter = netdev_priv(netdev);
4436 /* Save the timestamp for the TX watchdog, prevent a timeout */
4437 netdev->trans_start = jiffies;
4439 phy_stop(adapter->phydev);
4440 et131x_disable_txrx(netdev);
4443 #ifdef CONFIG_PM_SLEEP
4444 static int et131x_suspend(struct device *dev)
4446 struct pci_dev *pdev = to_pci_dev(dev);
4447 struct net_device *netdev = pci_get_drvdata(pdev);
4449 if (netif_running(netdev)) {
4450 netif_device_detach(netdev);
4451 et131x_down(netdev);
4452 pci_save_state(pdev);
4455 return 0;
4458 static int et131x_resume(struct device *dev)
4460 struct pci_dev *pdev = to_pci_dev(dev);
4461 struct net_device *netdev = pci_get_drvdata(pdev);
4463 if (netif_running(netdev)) {
4464 pci_restore_state(pdev);
4465 et131x_up(netdev);
4466 netif_device_attach(netdev);
4469 return 0;
4472 /* ISR functions */
4475 * et131x_isr - The Interrupt Service Routine for the driver.
4476 * @irq: the IRQ on which the interrupt was received.
4477 * @dev_id: device-specific info (here a pointer to a net_device struct)
4479 * Returns a value indicating if the interrupt was handled.
4481 irqreturn_t et131x_isr(int irq, void *dev_id)
4483 bool handled = true;
4484 struct net_device *netdev = (struct net_device *)dev_id;
4485 struct et131x_adapter *adapter = NULL;
4486 u32 status;
4488 if (!netif_device_present(netdev)) {
4489 handled = false;
4490 goto out;
4493 adapter = netdev_priv(netdev);
4495 /* If the adapter is in low power state, then it should not
4496 * recognize any interrupt
4499 /* Disable Device Interrupts */
4500 et131x_disable_interrupts(adapter);
4502 /* Get a copy of the value in the interrupt status register
4503 * so we can process the interrupting section
4505 status = readl(&adapter->regs->global.int_status);
4507 if (adapter->flowcontrol == FLOW_TXONLY ||
4508 adapter->flowcontrol == FLOW_BOTH) {
4509 status &= ~INT_MASK_ENABLE;
4510 } else {
4511 status &= ~INT_MASK_ENABLE_NO_FLOW;
4514 /* Make sure this is our interrupt */
4515 if (!status) {
4516 handled = false;
4517 et131x_enable_interrupts(adapter);
4518 goto out;
4521 /* This is our interrupt, so process accordingly */
4523 if (status & ET_INTR_WATCHDOG) {
4524 struct tcb *tcb = adapter->tx_ring.send_head;
4526 if (tcb)
4527 if (++tcb->stale > 1)
4528 status |= ET_INTR_TXDMA_ISR;
4530 if (adapter->rx_ring.unfinished_receives)
4531 status |= ET_INTR_RXDMA_XFR_DONE;
4532 else if (tcb == NULL)
4533 writel(0, &adapter->regs->global.watchdog_timer);
4535 status &= ~ET_INTR_WATCHDOG;
4538 if (status == 0) {
4539 /* This interrupt has in some way been "handled" by
4540 * the ISR. Either it was a spurious Rx interrupt, or
4541 * it was a Tx interrupt that has been filtered by
4542 * the ISR.
4544 et131x_enable_interrupts(adapter);
4545 goto out;
4548 /* We need to save the interrupt status value for use in our
4549 * DPC. We will clear the software copy of that in that
4550 * routine.
4552 adapter->stats.interrupt_status = status;
4554 /* Schedule the ISR handler as a bottom-half task in the
4555 * kernel's tq_immediate queue, and mark the queue for
4556 * execution
4558 schedule_work(&adapter->task);
4559 out:
4560 return IRQ_RETVAL(handled);
4564 * et131x_isr_handler - The ISR handler
4565 * @p_adapter, a pointer to the device's private adapter structure
4567 * scheduled to run in a deferred context by the ISR. This is where the ISR's
4568 * work actually gets done.
4570 void et131x_isr_handler(struct work_struct *work)
4572 struct et131x_adapter *adapter =
4573 container_of(work, struct et131x_adapter, task);
4574 u32 status = adapter->stats.interrupt_status;
4575 struct address_map __iomem *iomem = adapter->regs;
4578 * These first two are by far the most common. Once handled, we clear
4579 * their two bits in the status word. If the word is now zero, we
4580 * exit.
4582 /* Handle all the completed Transmit interrupts */
4583 if (status & ET_INTR_TXDMA_ISR)
4584 et131x_handle_send_interrupt(adapter);
4586 /* Handle all the completed Receives interrupts */
4587 if (status & ET_INTR_RXDMA_XFR_DONE)
4588 et131x_handle_recv_interrupt(adapter);
4590 status &= 0xffffffd7;
4592 if (status) {
4593 /* Handle the TXDMA Error interrupt */
4594 if (status & ET_INTR_TXDMA_ERR) {
4595 u32 txdma_err;
4597 /* Following read also clears the register (COR) */
4598 txdma_err = readl(&iomem->txdma.tx_dma_error);
4600 dev_warn(&adapter->pdev->dev,
4601 "TXDMA_ERR interrupt, error = %d\n",
4602 txdma_err);
4605 /* Handle Free Buffer Ring 0 and 1 Low interrupt */
4606 if (status &
4607 (ET_INTR_RXDMA_FB_R0_LOW | ET_INTR_RXDMA_FB_R1_LOW)) {
4609 * This indicates the number of unused buffers in
4610 * RXDMA free buffer ring 0 is <= the limit you
4611 * programmed. Free buffer resources need to be
4612 * returned. Free buffers are consumed as packets
4613 * are passed from the network to the host. The host
4614 * becomes aware of the packets from the contents of
4615 * the packet status ring. This ring is queried when
4616 * the packet done interrupt occurs. Packets are then
4617 * passed to the OS. When the OS is done with the
4618 * packets the resources can be returned to the
4619 * ET1310 for re-use. This interrupt is one method of
4620 * returning resources.
4623 /* If the user has flow control on, then we will
4624 * send a pause packet, otherwise just exit
4626 if (adapter->flowcontrol == FLOW_TXONLY ||
4627 adapter->flowcontrol == FLOW_BOTH) {
4628 u32 pm_csr;
4630 /* Tell the device to send a pause packet via
4631 * the back pressure register (bp req and
4632 * bp xon/xoff)
4634 pm_csr = readl(&iomem->global.pm_csr);
4635 if (!et1310_in_phy_coma(adapter))
4636 writel(3, &iomem->txmac.bp_ctrl);
4640 /* Handle Packet Status Ring Low Interrupt */
4641 if (status & ET_INTR_RXDMA_STAT_LOW) {
4644 * Same idea as with the two Free Buffer Rings.
4645 * Packets going from the network to the host each
4646 * consume a free buffer resource and a packet status
4647 * resource. These resoures are passed to the OS.
4648 * When the OS is done with the resources, they need
4649 * to be returned to the ET1310. This is one method
4650 * of returning the resources.
4654 /* Handle RXDMA Error Interrupt */
4655 if (status & ET_INTR_RXDMA_ERR) {
4657 * The rxdma_error interrupt is sent when a time-out
4658 * on a request issued by the JAGCore has occurred or
4659 * a completion is returned with an un-successful
4660 * status. In both cases the request is considered
4661 * complete. The JAGCore will automatically re-try the
4662 * request in question. Normally information on events
4663 * like these are sent to the host using the "Advanced
4664 * Error Reporting" capability. This interrupt is
4665 * another way of getting similar information. The
4666 * only thing required is to clear the interrupt by
4667 * reading the ISR in the global resources. The
4668 * JAGCore will do a re-try on the request. Normally
4669 * you should never see this interrupt. If you start
4670 * to see this interrupt occurring frequently then
4671 * something bad has occurred. A reset might be the
4672 * thing to do.
4674 /* TRAP();*/
4676 dev_warn(&adapter->pdev->dev,
4677 "RxDMA_ERR interrupt, error %x\n",
4678 readl(&iomem->txmac.tx_test));
4681 /* Handle the Wake on LAN Event */
4682 if (status & ET_INTR_WOL) {
4684 * This is a secondary interrupt for wake on LAN.
4685 * The driver should never see this, if it does,
4686 * something serious is wrong. We will TRAP the
4687 * message when we are in DBG mode, otherwise we
4688 * will ignore it.
4690 dev_err(&adapter->pdev->dev, "WAKE_ON_LAN interrupt\n");
4693 /* Let's move on to the TxMac */
4694 if (status & ET_INTR_TXMAC) {
4695 u32 err = readl(&iomem->txmac.err);
4698 * When any of the errors occur and TXMAC generates
4699 * an interrupt to report these errors, it usually
4700 * means that TXMAC has detected an error in the data
4701 * stream retrieved from the on-chip Tx Q. All of
4702 * these errors are catastrophic and TXMAC won't be
4703 * able to recover data when these errors occur. In
4704 * a nutshell, the whole Tx path will have to be reset
4705 * and re-configured afterwards.
4707 dev_warn(&adapter->pdev->dev,
4708 "TXMAC interrupt, error 0x%08x\n",
4709 err);
4711 /* If we are debugging, we want to see this error,
4712 * otherwise we just want the device to be reset and
4713 * continue
4717 /* Handle RXMAC Interrupt */
4718 if (status & ET_INTR_RXMAC) {
4720 * These interrupts are catastrophic to the device,
4721 * what we need to do is disable the interrupts and
4722 * set the flag to cause us to reset so we can solve
4723 * this issue.
4725 /* MP_SET_FLAG( adapter,
4726 fMP_ADAPTER_HARDWARE_ERROR); */
4728 dev_warn(&adapter->pdev->dev,
4729 "RXMAC interrupt, error 0x%08x. Requesting reset\n",
4730 readl(&iomem->rxmac.err_reg));
4732 dev_warn(&adapter->pdev->dev,
4733 "Enable 0x%08x, Diag 0x%08x\n",
4734 readl(&iomem->rxmac.ctrl),
4735 readl(&iomem->rxmac.rxq_diag));
4738 * If we are debugging, we want to see this error,
4739 * otherwise we just want the device to be reset and
4740 * continue
4744 /* Handle MAC_STAT Interrupt */
4745 if (status & ET_INTR_MAC_STAT) {
4747 * This means at least one of the un-masked counters
4748 * in the MAC_STAT block has rolled over. Use this
4749 * to maintain the top, software managed bits of the
4750 * counter(s).
4752 et1310_handle_macstat_interrupt(adapter);
4755 /* Handle SLV Timeout Interrupt */
4756 if (status & ET_INTR_SLV_TIMEOUT) {
4758 * This means a timeout has occurred on a read or
4759 * write request to one of the JAGCore registers. The
4760 * Global Resources block has terminated the request
4761 * and on a read request, returned a "fake" value.
4762 * The most likely reasons are: Bad Address or the
4763 * addressed module is in a power-down state and
4764 * can't respond.
4768 et131x_enable_interrupts(adapter);
4771 /* NETDEV functions */
4774 * et131x_stats - Return the current device statistics.
4775 * @netdev: device whose stats are being queried
4777 * Returns 0 on success, errno on failure (as defined in errno.h)
4779 static struct net_device_stats *et131x_stats(struct net_device *netdev)
4781 struct et131x_adapter *adapter = netdev_priv(netdev);
4782 struct net_device_stats *stats = &adapter->net_stats;
4783 struct ce_stats *devstat = &adapter->stats;
4785 stats->rx_errors = devstat->rx_length_errs +
4786 devstat->rx_align_errs +
4787 devstat->rx_crc_errs +
4788 devstat->rx_code_violations +
4789 devstat->rx_other_errs;
4790 stats->tx_errors = devstat->tx_max_pkt_errs;
4791 stats->multicast = devstat->multicast_pkts_rcvd;
4792 stats->collisions = devstat->tx_collisions;
4794 stats->rx_length_errors = devstat->rx_length_errs;
4795 stats->rx_over_errors = devstat->rx_overflows;
4796 stats->rx_crc_errors = devstat->rx_crc_errs;
4798 /* NOTE: These stats don't have corresponding values in CE_STATS,
4799 * so we're going to have to update these directly from within the
4800 * TX/RX code
4802 /* stats->rx_bytes = 20; devstat->; */
4803 /* stats->tx_bytes = 20; devstat->; */
4804 /* stats->rx_dropped = devstat->; */
4805 /* stats->tx_dropped = devstat->; */
4807 /* NOTE: Not used, can't find analogous statistics */
4808 /* stats->rx_frame_errors = devstat->; */
4809 /* stats->rx_fifo_errors = devstat->; */
4810 /* stats->rx_missed_errors = devstat->; */
4812 /* stats->tx_aborted_errors = devstat->; */
4813 /* stats->tx_carrier_errors = devstat->; */
4814 /* stats->tx_fifo_errors = devstat->; */
4815 /* stats->tx_heartbeat_errors = devstat->; */
4816 /* stats->tx_window_errors = devstat->; */
4817 return stats;
4821 * et131x_open - Open the device for use.
4822 * @netdev: device to be opened
4824 * Returns 0 on success, errno on failure (as defined in errno.h)
4826 int et131x_open(struct net_device *netdev)
4828 int result = 0;
4829 struct et131x_adapter *adapter = netdev_priv(netdev);
4831 /* Start the timer to track NIC errors */
4832 init_timer(&adapter->error_timer);
4833 adapter->error_timer.expires = jiffies + TX_ERROR_PERIOD * HZ / 1000;
4834 adapter->error_timer.function = et131x_error_timer_handler;
4835 adapter->error_timer.data = (unsigned long)adapter;
4836 add_timer(&adapter->error_timer);
4838 /* Register our IRQ */
4839 result = request_irq(netdev->irq, et131x_isr, IRQF_SHARED,
4840 netdev->name, netdev);
4841 if (result) {
4842 dev_err(&adapter->pdev->dev, "could not register IRQ %d\n",
4843 netdev->irq);
4844 return result;
4847 adapter->flags |= fMP_ADAPTER_INTERRUPT_IN_USE;
4849 et131x_up(netdev);
4851 return result;
4855 * et131x_close - Close the device
4856 * @netdev: device to be closed
4858 * Returns 0 on success, errno on failure (as defined in errno.h)
4860 int et131x_close(struct net_device *netdev)
4862 struct et131x_adapter *adapter = netdev_priv(netdev);
4864 et131x_down(netdev);
4866 adapter->flags &= ~fMP_ADAPTER_INTERRUPT_IN_USE;
4867 free_irq(netdev->irq, netdev);
4869 /* Stop the error timer */
4870 return del_timer_sync(&adapter->error_timer);
4874 * et131x_ioctl - The I/O Control handler for the driver
4875 * @netdev: device on which the control request is being made
4876 * @reqbuf: a pointer to the IOCTL request buffer
4877 * @cmd: the IOCTL command code
4879 * Returns 0 on success, errno on failure (as defined in errno.h)
4881 static int et131x_ioctl(struct net_device *netdev, struct ifreq *reqbuf,
4882 int cmd)
4884 struct et131x_adapter *adapter = netdev_priv(netdev);
4886 if (!adapter->phydev)
4887 return -EINVAL;
4889 return phy_mii_ioctl(adapter->phydev, reqbuf, cmd);
4893 * et131x_set_packet_filter - Configures the Rx Packet filtering on the device
4894 * @adapter: pointer to our private adapter structure
4896 * FIXME: lot of dups with MAC code
4898 * Returns 0 on success, errno on failure
4900 static int et131x_set_packet_filter(struct et131x_adapter *adapter)
4902 int status = 0;
4903 uint32_t filter = adapter->packet_filter;
4904 u32 ctrl;
4905 u32 pf_ctrl;
4907 ctrl = readl(&adapter->regs->rxmac.ctrl);
4908 pf_ctrl = readl(&adapter->regs->rxmac.pf_ctrl);
4910 /* Default to disabled packet filtering. Enable it in the individual
4911 * case statements that require the device to filter something
4913 ctrl |= 0x04;
4915 /* Set us to be in promiscuous mode so we receive everything, this
4916 * is also true when we get a packet filter of 0
4918 if ((filter & ET131X_PACKET_TYPE_PROMISCUOUS) || filter == 0)
4919 pf_ctrl &= ~7; /* Clear filter bits */
4920 else {
4922 * Set us up with Multicast packet filtering. Three cases are
4923 * possible - (1) we have a multi-cast list, (2) we receive ALL
4924 * multicast entries or (3) we receive none.
4926 if (filter & ET131X_PACKET_TYPE_ALL_MULTICAST)
4927 pf_ctrl &= ~2; /* Multicast filter bit */
4928 else {
4929 et1310_setup_device_for_multicast(adapter);
4930 pf_ctrl |= 2;
4931 ctrl &= ~0x04;
4934 /* Set us up with Unicast packet filtering */
4935 if (filter & ET131X_PACKET_TYPE_DIRECTED) {
4936 et1310_setup_device_for_unicast(adapter);
4937 pf_ctrl |= 4;
4938 ctrl &= ~0x04;
4941 /* Set us up with Broadcast packet filtering */
4942 if (filter & ET131X_PACKET_TYPE_BROADCAST) {
4943 pf_ctrl |= 1; /* Broadcast filter bit */
4944 ctrl &= ~0x04;
4945 } else
4946 pf_ctrl &= ~1;
4948 /* Setup the receive mac configuration registers - Packet
4949 * Filter control + the enable / disable for packet filter
4950 * in the control reg.
4952 writel(pf_ctrl, &adapter->regs->rxmac.pf_ctrl);
4953 writel(ctrl, &adapter->regs->rxmac.ctrl);
4955 return status;
4959 * et131x_multicast - The handler to configure multicasting on the interface
4960 * @netdev: a pointer to a net_device struct representing the device
4962 static void et131x_multicast(struct net_device *netdev)
4964 struct et131x_adapter *adapter = netdev_priv(netdev);
4965 uint32_t packet_filter = 0;
4966 unsigned long flags;
4967 struct netdev_hw_addr *ha;
4968 int i;
4970 spin_lock_irqsave(&adapter->lock, flags);
4972 /* Before we modify the platform-independent filter flags, store them
4973 * locally. This allows us to determine if anything's changed and if
4974 * we even need to bother the hardware
4976 packet_filter = adapter->packet_filter;
4978 /* Clear the 'multicast' flag locally; because we only have a single
4979 * flag to check multicast, and multiple multicast addresses can be
4980 * set, this is the easiest way to determine if more than one
4981 * multicast address is being set.
4983 packet_filter &= ~ET131X_PACKET_TYPE_MULTICAST;
4985 /* Check the net_device flags and set the device independent flags
4986 * accordingly
4989 if (netdev->flags & IFF_PROMISC)
4990 adapter->packet_filter |= ET131X_PACKET_TYPE_PROMISCUOUS;
4991 else
4992 adapter->packet_filter &= ~ET131X_PACKET_TYPE_PROMISCUOUS;
4994 if (netdev->flags & IFF_ALLMULTI)
4995 adapter->packet_filter |= ET131X_PACKET_TYPE_ALL_MULTICAST;
4997 if (netdev_mc_count(netdev) > NIC_MAX_MCAST_LIST)
4998 adapter->packet_filter |= ET131X_PACKET_TYPE_ALL_MULTICAST;
5000 if (netdev_mc_count(netdev) < 1) {
5001 adapter->packet_filter &= ~ET131X_PACKET_TYPE_ALL_MULTICAST;
5002 adapter->packet_filter &= ~ET131X_PACKET_TYPE_MULTICAST;
5003 } else
5004 adapter->packet_filter |= ET131X_PACKET_TYPE_MULTICAST;
5006 /* Set values in the private adapter struct */
5007 i = 0;
5008 netdev_for_each_mc_addr(ha, netdev) {
5009 if (i == NIC_MAX_MCAST_LIST)
5010 break;
5011 memcpy(adapter->multicast_list[i++], ha->addr, ETH_ALEN);
5013 adapter->multicast_addr_count = i;
5015 /* Are the new flags different from the previous ones? If not, then no
5016 * action is required
5018 * NOTE - This block will always update the multicast_list with the
5019 * hardware, even if the addresses aren't the same.
5021 if (packet_filter != adapter->packet_filter) {
5022 /* Call the device's filter function */
5023 et131x_set_packet_filter(adapter);
5025 spin_unlock_irqrestore(&adapter->lock, flags);
5029 * et131x_tx - The handler to tx a packet on the device
5030 * @skb: data to be Tx'd
5031 * @netdev: device on which data is to be Tx'd
5033 * Returns 0 on success, errno on failure (as defined in errno.h)
5035 static int et131x_tx(struct sk_buff *skb, struct net_device *netdev)
5037 int status = 0;
5038 struct et131x_adapter *adapter = netdev_priv(netdev);
5040 /* stop the queue if it's getting full */
5041 if (adapter->tx_ring.used >= NUM_TCB - 1 &&
5042 !netif_queue_stopped(netdev))
5043 netif_stop_queue(netdev);
5045 /* Save the timestamp for the TX timeout watchdog */
5046 netdev->trans_start = jiffies;
5048 /* Call the device-specific data Tx routine */
5049 status = et131x_send_packets(skb, netdev);
5051 /* Check status and manage the netif queue if necessary */
5052 if (status != 0) {
5053 if (status == -ENOMEM)
5054 status = NETDEV_TX_BUSY;
5055 else
5056 status = NETDEV_TX_OK;
5058 return status;
5062 * et131x_tx_timeout - Timeout handler
5063 * @netdev: a pointer to a net_device struct representing the device
5065 * The handler called when a Tx request times out. The timeout period is
5066 * specified by the 'tx_timeo" element in the net_device structure (see
5067 * et131x_alloc_device() to see how this value is set).
5069 static void et131x_tx_timeout(struct net_device *netdev)
5071 struct et131x_adapter *adapter = netdev_priv(netdev);
5072 struct tcb *tcb;
5073 unsigned long flags;
5075 /* If the device is closed, ignore the timeout */
5076 if (~(adapter->flags & fMP_ADAPTER_INTERRUPT_IN_USE))
5077 return;
5079 /* Any nonrecoverable hardware error?
5080 * Checks adapter->flags for any failure in phy reading
5082 if (adapter->flags & fMP_ADAPTER_NON_RECOVER_ERROR)
5083 return;
5085 /* Hardware failure? */
5086 if (adapter->flags & fMP_ADAPTER_HARDWARE_ERROR) {
5087 dev_err(&adapter->pdev->dev, "hardware error - reset\n");
5088 return;
5091 /* Is send stuck? */
5092 spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
5094 tcb = adapter->tx_ring.send_head;
5096 if (tcb != NULL) {
5097 tcb->count++;
5099 if (tcb->count > NIC_SEND_HANG_THRESHOLD) {
5100 spin_unlock_irqrestore(&adapter->tcb_send_qlock,
5101 flags);
5103 dev_warn(&adapter->pdev->dev,
5104 "Send stuck - reset. tcb->WrIndex %x, flags 0x%08x\n",
5105 tcb->index,
5106 tcb->flags);
5108 adapter->net_stats.tx_errors++;
5110 /* perform reset of tx/rx */
5111 et131x_disable_txrx(netdev);
5112 et131x_enable_txrx(netdev);
5113 return;
5117 spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
5121 * et131x_change_mtu - The handler called to change the MTU for the device
5122 * @netdev: device whose MTU is to be changed
5123 * @new_mtu: the desired MTU
5125 * Returns 0 on success, errno on failure (as defined in errno.h)
5127 static int et131x_change_mtu(struct net_device *netdev, int new_mtu)
5129 int result = 0;
5130 struct et131x_adapter *adapter = netdev_priv(netdev);
5132 /* Make sure the requested MTU is valid */
5133 if (new_mtu < 64 || new_mtu > 9216)
5134 return -EINVAL;
5136 et131x_disable_txrx(netdev);
5137 et131x_handle_send_interrupt(adapter);
5138 et131x_handle_recv_interrupt(adapter);
5140 /* Set the new MTU */
5141 netdev->mtu = new_mtu;
5143 /* Free Rx DMA memory */
5144 et131x_adapter_memory_free(adapter);
5146 /* Set the config parameter for Jumbo Packet support */
5147 adapter->registry_jumbo_packet = new_mtu + 14;
5148 et131x_soft_reset(adapter);
5150 /* Alloc and init Rx DMA memory */
5151 result = et131x_adapter_memory_alloc(adapter);
5152 if (result != 0) {
5153 dev_warn(&adapter->pdev->dev,
5154 "Change MTU failed; couldn't re-alloc DMA memory\n");
5155 return result;
5158 et131x_init_send(adapter);
5160 et131x_hwaddr_init(adapter);
5161 memcpy(netdev->dev_addr, adapter->addr, ETH_ALEN);
5163 /* Init the device with the new settings */
5164 et131x_adapter_setup(adapter);
5166 et131x_enable_txrx(netdev);
5168 return result;
5172 * et131x_set_mac_addr - handler to change the MAC address for the device
5173 * @netdev: device whose MAC is to be changed
5174 * @new_mac: the desired MAC address
5176 * Returns 0 on success, errno on failure (as defined in errno.h)
5178 * IMPLEMENTED BY : blux http://berndlux.de 22.01.2007 21:14
5180 static int et131x_set_mac_addr(struct net_device *netdev, void *new_mac)
5182 int result = 0;
5183 struct et131x_adapter *adapter = netdev_priv(netdev);
5184 struct sockaddr *address = new_mac;
5186 /* begin blux */
5188 if (adapter == NULL)
5189 return -ENODEV;
5191 /* Make sure the requested MAC is valid */
5192 if (!is_valid_ether_addr(address->sa_data))
5193 return -EINVAL;
5195 et131x_disable_txrx(netdev);
5196 et131x_handle_send_interrupt(adapter);
5197 et131x_handle_recv_interrupt(adapter);
5199 /* Set the new MAC */
5200 /* netdev->set_mac_address = &new_mac; */
5202 memcpy(netdev->dev_addr, address->sa_data, netdev->addr_len);
5204 printk(KERN_INFO "%s: Setting MAC address to %pM\n",
5205 netdev->name, netdev->dev_addr);
5207 /* Free Rx DMA memory */
5208 et131x_adapter_memory_free(adapter);
5210 et131x_soft_reset(adapter);
5212 /* Alloc and init Rx DMA memory */
5213 result = et131x_adapter_memory_alloc(adapter);
5214 if (result != 0) {
5215 dev_err(&adapter->pdev->dev,
5216 "Change MAC failed; couldn't re-alloc DMA memory\n");
5217 return result;
5220 et131x_init_send(adapter);
5222 et131x_hwaddr_init(adapter);
5224 /* Init the device with the new settings */
5225 et131x_adapter_setup(adapter);
5227 et131x_enable_txrx(netdev);
5229 return result;
5232 static const struct net_device_ops et131x_netdev_ops = {
5233 .ndo_open = et131x_open,
5234 .ndo_stop = et131x_close,
5235 .ndo_start_xmit = et131x_tx,
5236 .ndo_set_rx_mode = et131x_multicast,
5237 .ndo_tx_timeout = et131x_tx_timeout,
5238 .ndo_change_mtu = et131x_change_mtu,
5239 .ndo_set_mac_address = et131x_set_mac_addr,
5240 .ndo_validate_addr = eth_validate_addr,
5241 .ndo_get_stats = et131x_stats,
5242 .ndo_do_ioctl = et131x_ioctl,
5246 * et131x_device_alloc
5248 * Returns pointer to the allocated and initialized net_device struct for
5249 * this device.
5251 * Create instances of net_device and wl_private for the new adapter and
5252 * register the device's entry points in the net_device structure.
5254 struct net_device *et131x_device_alloc(void)
5256 struct net_device *netdev;
5258 /* Alloc net_device and adapter structs */
5259 netdev = alloc_etherdev(sizeof(struct et131x_adapter));
5261 if (!netdev) {
5262 printk(KERN_ERR "et131x: Alloc of net_device struct failed\n");
5263 return NULL;
5267 * Setup the function registration table (and other data) for a
5268 * net_device
5270 netdev->watchdog_timeo = ET131X_TX_TIMEOUT;
5271 netdev->netdev_ops = &et131x_netdev_ops;
5273 /* Poll? */
5274 /* netdev->poll = &et131x_poll; */
5275 /* netdev->poll_controller = &et131x_poll_controller; */
5276 return netdev;
5280 * et131x_pci_setup - Perform device initialization
5281 * @pdev: a pointer to the device's pci_dev structure
5282 * @ent: this device's entry in the pci_device_id table
5284 * Returns 0 on success, errno on failure (as defined in errno.h)
5286 * Registered in the pci_driver structure, this function is called when the
5287 * PCI subsystem finds a new PCI device which matches the information
5288 * contained in the pci_device_id table. This routine is the equivalent to
5289 * a device insertion routine.
5291 static int __devinit et131x_pci_setup(struct pci_dev *pdev,
5292 const struct pci_device_id *ent)
5294 int result;
5295 struct net_device *netdev;
5296 struct et131x_adapter *adapter;
5297 int ii;
5299 result = pci_enable_device(pdev);
5300 if (result) {
5301 dev_err(&pdev->dev, "pci_enable_device() failed\n");
5302 goto err_out;
5305 /* Perform some basic PCI checks */
5306 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
5307 dev_err(&pdev->dev, "Can't find PCI device's base address\n");
5308 goto err_disable;
5311 if (pci_request_regions(pdev, DRIVER_NAME)) {
5312 dev_err(&pdev->dev, "Can't get PCI resources\n");
5313 goto err_disable;
5316 pci_set_master(pdev);
5318 /* Check the DMA addressing support of this device */
5319 if (!dma_set_mask(&pdev->dev, DMA_BIT_MASK(64))) {
5320 result = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
5321 if (result) {
5322 dev_err(&pdev->dev,
5323 "Unable to obtain 64 bit DMA for consistent allocations\n");
5324 goto err_release_res;
5326 } else if (!dma_set_mask(&pdev->dev, DMA_BIT_MASK(32))) {
5327 result = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
5328 if (result) {
5329 dev_err(&pdev->dev,
5330 "Unable to obtain 32 bit DMA for consistent allocations\n");
5331 goto err_release_res;
5333 } else {
5334 dev_err(&pdev->dev, "No usable DMA addressing method\n");
5335 result = -EIO;
5336 goto err_release_res;
5339 /* Allocate netdev and private adapter structs */
5340 netdev = et131x_device_alloc();
5341 if (!netdev) {
5342 dev_err(&pdev->dev, "Couldn't alloc netdev struct\n");
5343 result = -ENOMEM;
5344 goto err_release_res;
5347 SET_NETDEV_DEV(netdev, &pdev->dev);
5348 et131x_set_ethtool_ops(netdev);
5350 adapter = et131x_adapter_init(netdev, pdev);
5352 /* Initialise the PCI setup for the device */
5353 et131x_pci_init(adapter, pdev);
5355 /* Map the bus-relative registers to system virtual memory */
5356 adapter->regs = pci_ioremap_bar(pdev, 0);
5357 if (!adapter->regs) {
5358 dev_err(&pdev->dev, "Cannot map device registers\n");
5359 result = -ENOMEM;
5360 goto err_free_dev;
5363 /* If Phy COMA mode was enabled when we went down, disable it here. */
5364 writel(ET_PMCSR_INIT, &adapter->regs->global.pm_csr);
5366 /* Issue a global reset to the et1310 */
5367 et131x_soft_reset(adapter);
5369 /* Disable all interrupts (paranoid) */
5370 et131x_disable_interrupts(adapter);
5372 /* Allocate DMA memory */
5373 result = et131x_adapter_memory_alloc(adapter);
5374 if (result) {
5375 dev_err(&pdev->dev, "Could not alloc adapater memory (DMA)\n");
5376 goto err_iounmap;
5379 /* Init send data structures */
5380 et131x_init_send(adapter);
5382 /* Set up the task structure for the ISR's deferred handler */
5383 INIT_WORK(&adapter->task, et131x_isr_handler);
5385 /* Copy address into the net_device struct */
5386 memcpy(netdev->dev_addr, adapter->addr, ETH_ALEN);
5388 /* Init variable for counting how long we do not have link status */
5389 adapter->boot_coma = 0;
5390 et1310_disable_phy_coma(adapter);
5392 /* Setup the mii_bus struct */
5393 adapter->mii_bus = mdiobus_alloc();
5394 if (!adapter->mii_bus) {
5395 dev_err(&pdev->dev, "Alloc of mii_bus struct failed\n");
5396 goto err_mem_free;
5399 adapter->mii_bus->name = "et131x_eth_mii";
5400 snprintf(adapter->mii_bus->id, MII_BUS_ID_SIZE, "%x",
5401 (adapter->pdev->bus->number << 8) | adapter->pdev->devfn);
5402 adapter->mii_bus->priv = netdev;
5403 adapter->mii_bus->read = et131x_mdio_read;
5404 adapter->mii_bus->write = et131x_mdio_write;
5405 adapter->mii_bus->reset = et131x_mdio_reset;
5406 adapter->mii_bus->irq = kmalloc(sizeof(int)*PHY_MAX_ADDR, GFP_KERNEL);
5407 if (!adapter->mii_bus->irq) {
5408 dev_err(&pdev->dev, "mii_bus irq allocation failed\n");
5409 goto err_mdio_free;
5412 for (ii = 0; ii < PHY_MAX_ADDR; ii++)
5413 adapter->mii_bus->irq[ii] = PHY_POLL;
5415 if (mdiobus_register(adapter->mii_bus)) {
5416 dev_err(&pdev->dev, "failed to register MII bus\n");
5417 mdiobus_free(adapter->mii_bus);
5418 goto err_mdio_free_irq;
5421 if (et131x_mii_probe(netdev)) {
5422 dev_err(&pdev->dev, "failed to probe MII bus\n");
5423 goto err_mdio_unregister;
5426 /* Setup et1310 as per the documentation */
5427 et131x_adapter_setup(adapter);
5429 /* We can enable interrupts now
5431 * NOTE - Because registration of interrupt handler is done in the
5432 * device's open(), defer enabling device interrupts to that
5433 * point
5436 /* Register the net_device struct with the Linux network layer */
5437 result = register_netdev(netdev);
5438 if (result != 0) {
5439 dev_err(&pdev->dev, "register_netdev() failed\n");
5440 goto err_mdio_unregister;
5443 /* Register the net_device struct with the PCI subsystem. Save a copy
5444 * of the PCI config space for this device now that the device has
5445 * been initialized, just in case it needs to be quickly restored.
5447 pci_set_drvdata(pdev, netdev);
5448 pci_save_state(adapter->pdev);
5450 return result;
5452 err_mdio_unregister:
5453 mdiobus_unregister(adapter->mii_bus);
5454 err_mdio_free_irq:
5455 kfree(adapter->mii_bus->irq);
5456 err_mdio_free:
5457 mdiobus_free(adapter->mii_bus);
5458 err_mem_free:
5459 et131x_adapter_memory_free(adapter);
5460 err_iounmap:
5461 iounmap(adapter->regs);
5462 err_free_dev:
5463 pci_dev_put(pdev);
5464 free_netdev(netdev);
5465 err_release_res:
5466 pci_release_regions(pdev);
5467 err_disable:
5468 pci_disable_device(pdev);
5469 err_out:
5470 return result;
5473 static SIMPLE_DEV_PM_OPS(et131x_pm_ops, et131x_suspend, et131x_resume);
5474 #define ET131X_PM_OPS (&et131x_pm_ops)
5475 #else
5476 #define ET131X_PM_OPS NULL
5477 #endif
5479 static DEFINE_PCI_DEVICE_TABLE(et131x_pci_table) = {
5480 { PCI_VDEVICE(ATT, ET131X_PCI_DEVICE_ID_GIG), 0UL},
5481 { PCI_VDEVICE(ATT, ET131X_PCI_DEVICE_ID_FAST), 0UL},
5482 {0,}
5484 MODULE_DEVICE_TABLE(pci, et131x_pci_table);
5486 static struct pci_driver et131x_driver = {
5487 .name = DRIVER_NAME,
5488 .id_table = et131x_pci_table,
5489 .probe = et131x_pci_setup,
5490 .remove = __devexit_p(et131x_pci_remove),
5491 .driver.pm = ET131X_PM_OPS,
5495 * et131x_init_module - The "main" entry point called on driver initialization
5497 * Returns 0 on success, errno on failure (as defined in errno.h)
5499 static int __init et131x_init_module(void)
5501 return pci_register_driver(&et131x_driver);
5505 * et131x_cleanup_module - The entry point called on driver cleanup
5507 static void __exit et131x_cleanup_module(void)
5509 pci_unregister_driver(&et131x_driver);
5512 module_init(et131x_init_module);
5513 module_exit(et131x_cleanup_module);