2 * xHCI host controller driver
4 * Copyright (C) 2008 Intel Corp.
7 * Some code borrowed from the Linux EHCI driver.
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software Foundation,
20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23 #include <linux/pci.h>
24 #include <linux/irq.h>
25 #include <linux/log2.h>
26 #include <linux/module.h>
27 #include <linux/moduleparam.h>
28 #include <linux/slab.h>
32 #define DRIVER_AUTHOR "Sarah Sharp"
33 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
35 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
36 static int link_quirk
;
37 module_param(link_quirk
, int, S_IRUGO
| S_IWUSR
);
38 MODULE_PARM_DESC(link_quirk
, "Don't clear the chain bit on a link TRB");
40 /* TODO: copied from ehci-hcd.c - can this be refactored? */
42 * handshake - spin reading hc until handshake completes or fails
43 * @ptr: address of hc register to be read
44 * @mask: bits to look at in result of read
45 * @done: value of those bits when handshake succeeds
46 * @usec: timeout in microseconds
48 * Returns negative errno, or zero on success
50 * Success happens when the "mask" bits have the specified value (hardware
51 * handshake done). There are two failure modes: "usec" have passed (major
52 * hardware flakeout), or the register reads as all-ones (hardware removed).
54 static int handshake(struct xhci_hcd
*xhci
, void __iomem
*ptr
,
55 u32 mask
, u32 done
, int usec
)
60 result
= xhci_readl(xhci
, ptr
);
61 if (result
== ~(u32
)0) /* card removed */
73 * Disable interrupts and begin the xHCI halting process.
75 void xhci_quiesce(struct xhci_hcd
*xhci
)
82 halted
= xhci_readl(xhci
, &xhci
->op_regs
->status
) & STS_HALT
;
86 cmd
= xhci_readl(xhci
, &xhci
->op_regs
->command
);
88 xhci_writel(xhci
, cmd
, &xhci
->op_regs
->command
);
92 * Force HC into halt state.
94 * Disable any IRQs and clear the run/stop bit.
95 * HC will complete any current and actively pipelined transactions, and
96 * should halt within 16 ms of the run/stop bit being cleared.
97 * Read HC Halted bit in the status register to see when the HC is finished.
99 int xhci_halt(struct xhci_hcd
*xhci
)
102 xhci_dbg(xhci
, "// Halt the HC\n");
105 ret
= handshake(xhci
, &xhci
->op_regs
->status
,
106 STS_HALT
, STS_HALT
, XHCI_MAX_HALT_USEC
);
108 xhci
->xhc_state
|= XHCI_STATE_HALTED
;
113 * Set the run bit and wait for the host to be running.
115 static int xhci_start(struct xhci_hcd
*xhci
)
120 temp
= xhci_readl(xhci
, &xhci
->op_regs
->command
);
122 xhci_dbg(xhci
, "// Turn on HC, cmd = 0x%x.\n",
124 xhci_writel(xhci
, temp
, &xhci
->op_regs
->command
);
127 * Wait for the HCHalted Status bit to be 0 to indicate the host is
130 ret
= handshake(xhci
, &xhci
->op_regs
->status
,
131 STS_HALT
, 0, XHCI_MAX_HALT_USEC
);
132 if (ret
== -ETIMEDOUT
)
133 xhci_err(xhci
, "Host took too long to start, "
134 "waited %u microseconds.\n",
137 xhci
->xhc_state
&= ~XHCI_STATE_HALTED
;
144 * This resets pipelines, timers, counters, state machines, etc.
145 * Transactions will be terminated immediately, and operational registers
146 * will be set to their defaults.
148 int xhci_reset(struct xhci_hcd
*xhci
)
154 state
= xhci_readl(xhci
, &xhci
->op_regs
->status
);
155 if ((state
& STS_HALT
) == 0) {
156 xhci_warn(xhci
, "Host controller not halted, aborting reset.\n");
160 xhci_dbg(xhci
, "// Reset the HC\n");
161 command
= xhci_readl(xhci
, &xhci
->op_regs
->command
);
162 command
|= CMD_RESET
;
163 xhci_writel(xhci
, command
, &xhci
->op_regs
->command
);
165 ret
= handshake(xhci
, &xhci
->op_regs
->command
,
166 CMD_RESET
, 0, 250 * 1000);
170 xhci_dbg(xhci
, "Wait for controller to be ready for doorbell rings\n");
172 * xHCI cannot write to any doorbells or operational registers other
173 * than status until the "Controller Not Ready" flag is cleared.
175 return handshake(xhci
, &xhci
->op_regs
->status
, STS_CNR
, 0, 250 * 1000);
179 static int xhci_free_msi(struct xhci_hcd
*xhci
)
183 if (!xhci
->msix_entries
)
186 for (i
= 0; i
< xhci
->msix_count
; i
++)
187 if (xhci
->msix_entries
[i
].vector
)
188 free_irq(xhci
->msix_entries
[i
].vector
,
196 static int xhci_setup_msi(struct xhci_hcd
*xhci
)
199 struct pci_dev
*pdev
= to_pci_dev(xhci_to_hcd(xhci
)->self
.controller
);
201 ret
= pci_enable_msi(pdev
);
203 xhci_err(xhci
, "failed to allocate MSI entry\n");
207 ret
= request_irq(pdev
->irq
, (irq_handler_t
)xhci_msi_irq
,
208 0, "xhci_hcd", xhci_to_hcd(xhci
));
210 xhci_err(xhci
, "disable MSI interrupt\n");
211 pci_disable_msi(pdev
);
219 * free all IRQs request
221 static void xhci_free_irq(struct xhci_hcd
*xhci
)
223 struct pci_dev
*pdev
= to_pci_dev(xhci_to_hcd(xhci
)->self
.controller
);
226 /* return if using legacy interrupt */
227 if (xhci_to_hcd(xhci
)->irq
>= 0)
230 ret
= xhci_free_msi(xhci
);
234 free_irq(pdev
->irq
, xhci_to_hcd(xhci
));
242 static int xhci_setup_msix(struct xhci_hcd
*xhci
)
245 struct usb_hcd
*hcd
= xhci_to_hcd(xhci
);
246 struct pci_dev
*pdev
= to_pci_dev(hcd
->self
.controller
);
249 * calculate number of msi-x vectors supported.
250 * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
251 * with max number of interrupters based on the xhci HCSPARAMS1.
252 * - num_online_cpus: maximum msi-x vectors per CPUs core.
253 * Add additional 1 vector to ensure always available interrupt.
255 xhci
->msix_count
= min(num_online_cpus() + 1,
256 HCS_MAX_INTRS(xhci
->hcs_params1
));
259 kmalloc((sizeof(struct msix_entry
))*xhci
->msix_count
,
261 if (!xhci
->msix_entries
) {
262 xhci_err(xhci
, "Failed to allocate MSI-X entries\n");
266 for (i
= 0; i
< xhci
->msix_count
; i
++) {
267 xhci
->msix_entries
[i
].entry
= i
;
268 xhci
->msix_entries
[i
].vector
= 0;
271 ret
= pci_enable_msix(pdev
, xhci
->msix_entries
, xhci
->msix_count
);
273 xhci_err(xhci
, "Failed to enable MSI-X\n");
277 for (i
= 0; i
< xhci
->msix_count
; i
++) {
278 ret
= request_irq(xhci
->msix_entries
[i
].vector
,
279 (irq_handler_t
)xhci_msi_irq
,
280 0, "xhci_hcd", xhci_to_hcd(xhci
));
285 hcd
->msix_enabled
= 1;
289 xhci_err(xhci
, "disable MSI-X interrupt\n");
291 pci_disable_msix(pdev
);
293 kfree(xhci
->msix_entries
);
294 xhci
->msix_entries
= NULL
;
298 /* Free any IRQs and disable MSI-X */
299 static void xhci_cleanup_msix(struct xhci_hcd
*xhci
)
301 struct usb_hcd
*hcd
= xhci_to_hcd(xhci
);
302 struct pci_dev
*pdev
= to_pci_dev(hcd
->self
.controller
);
306 if (xhci
->msix_entries
) {
307 pci_disable_msix(pdev
);
308 kfree(xhci
->msix_entries
);
309 xhci
->msix_entries
= NULL
;
311 pci_disable_msi(pdev
);
314 hcd
->msix_enabled
= 0;
318 static void xhci_msix_sync_irqs(struct xhci_hcd
*xhci
)
322 if (xhci
->msix_entries
) {
323 for (i
= 0; i
< xhci
->msix_count
; i
++)
324 synchronize_irq(xhci
->msix_entries
[i
].vector
);
328 static int xhci_try_enable_msi(struct usb_hcd
*hcd
)
330 struct xhci_hcd
*xhci
= hcd_to_xhci(hcd
);
331 struct pci_dev
*pdev
= to_pci_dev(xhci_to_hcd(xhci
)->self
.controller
);
335 * Some Fresco Logic host controllers advertise MSI, but fail to
336 * generate interrupts. Don't even try to enable MSI.
338 if (xhci
->quirks
& XHCI_BROKEN_MSI
)
341 /* unregister the legacy interrupt */
343 free_irq(hcd
->irq
, hcd
);
346 ret
= xhci_setup_msix(xhci
);
348 /* fall back to msi*/
349 ret
= xhci_setup_msi(xhci
);
352 /* hcd->irq is -1, we have MSI */
355 /* fall back to legacy interrupt*/
356 ret
= request_irq(pdev
->irq
, &usb_hcd_irq
, IRQF_SHARED
,
357 hcd
->irq_descr
, hcd
);
359 xhci_err(xhci
, "request interrupt %d failed\n",
363 hcd
->irq
= pdev
->irq
;
369 static int xhci_try_enable_msi(struct usb_hcd
*hcd
)
374 static void xhci_cleanup_msix(struct xhci_hcd
*xhci
)
378 static void xhci_msix_sync_irqs(struct xhci_hcd
*xhci
)
385 * Initialize memory for HCD and xHC (one-time init).
387 * Program the PAGESIZE register, initialize the device context array, create
388 * device contexts (?), set up a command ring segment (or two?), create event
389 * ring (one for now).
391 int xhci_init(struct usb_hcd
*hcd
)
393 struct xhci_hcd
*xhci
= hcd_to_xhci(hcd
);
396 xhci_dbg(xhci
, "xhci_init\n");
397 spin_lock_init(&xhci
->lock
);
398 if (xhci
->hci_version
== 0x95 && link_quirk
) {
399 xhci_dbg(xhci
, "QUIRK: Not clearing Link TRB chain bits.\n");
400 xhci
->quirks
|= XHCI_LINK_TRB_QUIRK
;
402 xhci_dbg(xhci
, "xHCI doesn't need link TRB QUIRK\n");
404 retval
= xhci_mem_init(xhci
, GFP_KERNEL
);
405 xhci_dbg(xhci
, "Finished xhci_init\n");
410 /*-------------------------------------------------------------------------*/
413 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
414 static void xhci_event_ring_work(unsigned long arg
)
419 struct xhci_hcd
*xhci
= (struct xhci_hcd
*) arg
;
422 xhci_dbg(xhci
, "Poll event ring: %lu\n", jiffies
);
424 spin_lock_irqsave(&xhci
->lock
, flags
);
425 temp
= xhci_readl(xhci
, &xhci
->op_regs
->status
);
426 xhci_dbg(xhci
, "op reg status = 0x%x\n", temp
);
427 if (temp
== 0xffffffff || (xhci
->xhc_state
& XHCI_STATE_DYING
) ||
428 (xhci
->xhc_state
& XHCI_STATE_HALTED
)) {
429 xhci_dbg(xhci
, "HW died, polling stopped.\n");
430 spin_unlock_irqrestore(&xhci
->lock
, flags
);
434 temp
= xhci_readl(xhci
, &xhci
->ir_set
->irq_pending
);
435 xhci_dbg(xhci
, "ir_set 0 pending = 0x%x\n", temp
);
436 xhci_dbg(xhci
, "HC error bitmask = 0x%x\n", xhci
->error_bitmask
);
437 xhci
->error_bitmask
= 0;
438 xhci_dbg(xhci
, "Event ring:\n");
439 xhci_debug_segment(xhci
, xhci
->event_ring
->deq_seg
);
440 xhci_dbg_ring_ptrs(xhci
, xhci
->event_ring
);
441 temp_64
= xhci_read_64(xhci
, &xhci
->ir_set
->erst_dequeue
);
442 temp_64
&= ~ERST_PTR_MASK
;
443 xhci_dbg(xhci
, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64
);
444 xhci_dbg(xhci
, "Command ring:\n");
445 xhci_debug_segment(xhci
, xhci
->cmd_ring
->deq_seg
);
446 xhci_dbg_ring_ptrs(xhci
, xhci
->cmd_ring
);
447 xhci_dbg_cmd_ptrs(xhci
);
448 for (i
= 0; i
< MAX_HC_SLOTS
; ++i
) {
451 for (j
= 0; j
< 31; ++j
) {
452 xhci_dbg_ep_rings(xhci
, i
, j
, &xhci
->devs
[i
]->eps
[j
]);
455 spin_unlock_irqrestore(&xhci
->lock
, flags
);
458 mod_timer(&xhci
->event_ring_timer
, jiffies
+ POLL_TIMEOUT
* HZ
);
460 xhci_dbg(xhci
, "Quit polling the event ring.\n");
464 static int xhci_run_finished(struct xhci_hcd
*xhci
)
466 if (xhci_start(xhci
)) {
470 xhci
->shared_hcd
->state
= HC_STATE_RUNNING
;
472 if (xhci
->quirks
& XHCI_NEC_HOST
)
473 xhci_ring_cmd_db(xhci
);
475 xhci_dbg(xhci
, "Finished xhci_run for USB3 roothub\n");
480 * Start the HC after it was halted.
482 * This function is called by the USB core when the HC driver is added.
483 * Its opposite is xhci_stop().
485 * xhci_init() must be called once before this function can be called.
486 * Reset the HC, enable device slot contexts, program DCBAAP, and
487 * set command ring pointer and event ring pointer.
489 * Setup MSI-X vectors and enable interrupts.
491 int xhci_run(struct usb_hcd
*hcd
)
496 struct xhci_hcd
*xhci
= hcd_to_xhci(hcd
);
498 /* Start the xHCI host controller running only after the USB 2.0 roothub
502 hcd
->uses_new_polling
= 1;
503 if (!usb_hcd_is_primary_hcd(hcd
))
504 return xhci_run_finished(xhci
);
506 xhci_dbg(xhci
, "xhci_run\n");
508 ret
= xhci_try_enable_msi(hcd
);
512 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
513 init_timer(&xhci
->event_ring_timer
);
514 xhci
->event_ring_timer
.data
= (unsigned long) xhci
;
515 xhci
->event_ring_timer
.function
= xhci_event_ring_work
;
516 /* Poll the event ring */
517 xhci
->event_ring_timer
.expires
= jiffies
+ POLL_TIMEOUT
* HZ
;
519 xhci_dbg(xhci
, "Setting event ring polling timer\n");
520 add_timer(&xhci
->event_ring_timer
);
523 xhci_dbg(xhci
, "Command ring memory map follows:\n");
524 xhci_debug_ring(xhci
, xhci
->cmd_ring
);
525 xhci_dbg_ring_ptrs(xhci
, xhci
->cmd_ring
);
526 xhci_dbg_cmd_ptrs(xhci
);
528 xhci_dbg(xhci
, "ERST memory map follows:\n");
529 xhci_dbg_erst(xhci
, &xhci
->erst
);
530 xhci_dbg(xhci
, "Event ring:\n");
531 xhci_debug_ring(xhci
, xhci
->event_ring
);
532 xhci_dbg_ring_ptrs(xhci
, xhci
->event_ring
);
533 temp_64
= xhci_read_64(xhci
, &xhci
->ir_set
->erst_dequeue
);
534 temp_64
&= ~ERST_PTR_MASK
;
535 xhci_dbg(xhci
, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64
);
537 xhci_dbg(xhci
, "// Set the interrupt modulation register\n");
538 temp
= xhci_readl(xhci
, &xhci
->ir_set
->irq_control
);
539 temp
&= ~ER_IRQ_INTERVAL_MASK
;
541 xhci_writel(xhci
, temp
, &xhci
->ir_set
->irq_control
);
543 /* Set the HCD state before we enable the irqs */
544 temp
= xhci_readl(xhci
, &xhci
->op_regs
->command
);
546 xhci_dbg(xhci
, "// Enable interrupts, cmd = 0x%x.\n",
548 xhci_writel(xhci
, temp
, &xhci
->op_regs
->command
);
550 temp
= xhci_readl(xhci
, &xhci
->ir_set
->irq_pending
);
551 xhci_dbg(xhci
, "// Enabling event ring interrupter %p by writing 0x%x to irq_pending\n",
552 xhci
->ir_set
, (unsigned int) ER_IRQ_ENABLE(temp
));
553 xhci_writel(xhci
, ER_IRQ_ENABLE(temp
),
554 &xhci
->ir_set
->irq_pending
);
555 xhci_print_ir_set(xhci
, 0);
557 if (xhci
->quirks
& XHCI_NEC_HOST
)
558 xhci_queue_vendor_command(xhci
, 0, 0, 0,
559 TRB_TYPE(TRB_NEC_GET_FW
));
561 xhci_dbg(xhci
, "Finished xhci_run for USB2 roothub\n");
565 static void xhci_only_stop_hcd(struct usb_hcd
*hcd
)
567 struct xhci_hcd
*xhci
= hcd_to_xhci(hcd
);
569 spin_lock_irq(&xhci
->lock
);
572 /* The shared_hcd is going to be deallocated shortly (the USB core only
573 * calls this function when allocation fails in usb_add_hcd(), or
574 * usb_remove_hcd() is called). So we need to unset xHCI's pointer.
576 xhci
->shared_hcd
= NULL
;
577 spin_unlock_irq(&xhci
->lock
);
583 * This function is called by the USB core when the HC driver is removed.
584 * Its opposite is xhci_run().
586 * Disable device contexts, disable IRQs, and quiesce the HC.
587 * Reset the HC, finish any completed transactions, and cleanup memory.
589 void xhci_stop(struct usb_hcd
*hcd
)
592 struct xhci_hcd
*xhci
= hcd_to_xhci(hcd
);
594 if (!usb_hcd_is_primary_hcd(hcd
)) {
595 xhci_only_stop_hcd(xhci
->shared_hcd
);
599 spin_lock_irq(&xhci
->lock
);
600 /* Make sure the xHC is halted for a USB3 roothub
601 * (xhci_stop() could be called as part of failed init).
605 spin_unlock_irq(&xhci
->lock
);
607 xhci_cleanup_msix(xhci
);
609 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
610 /* Tell the event ring poll function not to reschedule */
612 del_timer_sync(&xhci
->event_ring_timer
);
615 if (xhci
->quirks
& XHCI_AMD_PLL_FIX
)
618 xhci_dbg(xhci
, "// Disabling event ring interrupts\n");
619 temp
= xhci_readl(xhci
, &xhci
->op_regs
->status
);
620 xhci_writel(xhci
, temp
& ~STS_EINT
, &xhci
->op_regs
->status
);
621 temp
= xhci_readl(xhci
, &xhci
->ir_set
->irq_pending
);
622 xhci_writel(xhci
, ER_IRQ_DISABLE(temp
),
623 &xhci
->ir_set
->irq_pending
);
624 xhci_print_ir_set(xhci
, 0);
626 xhci_dbg(xhci
, "cleaning up memory\n");
627 xhci_mem_cleanup(xhci
);
628 xhci_dbg(xhci
, "xhci_stop completed - status = %x\n",
629 xhci_readl(xhci
, &xhci
->op_regs
->status
));
633 * Shutdown HC (not bus-specific)
635 * This is called when the machine is rebooting or halting. We assume that the
636 * machine will be powered off, and the HC's internal state will be reset.
637 * Don't bother to free memory.
639 * This will only ever be called with the main usb_hcd (the USB3 roothub).
641 void xhci_shutdown(struct usb_hcd
*hcd
)
643 struct xhci_hcd
*xhci
= hcd_to_xhci(hcd
);
645 spin_lock_irq(&xhci
->lock
);
647 spin_unlock_irq(&xhci
->lock
);
649 xhci_cleanup_msix(xhci
);
651 xhci_dbg(xhci
, "xhci_shutdown completed - status = %x\n",
652 xhci_readl(xhci
, &xhci
->op_regs
->status
));
656 static void xhci_save_registers(struct xhci_hcd
*xhci
)
658 xhci
->s3
.command
= xhci_readl(xhci
, &xhci
->op_regs
->command
);
659 xhci
->s3
.dev_nt
= xhci_readl(xhci
, &xhci
->op_regs
->dev_notification
);
660 xhci
->s3
.dcbaa_ptr
= xhci_read_64(xhci
, &xhci
->op_regs
->dcbaa_ptr
);
661 xhci
->s3
.config_reg
= xhci_readl(xhci
, &xhci
->op_regs
->config_reg
);
662 xhci
->s3
.irq_pending
= xhci_readl(xhci
, &xhci
->ir_set
->irq_pending
);
663 xhci
->s3
.irq_control
= xhci_readl(xhci
, &xhci
->ir_set
->irq_control
);
664 xhci
->s3
.erst_size
= xhci_readl(xhci
, &xhci
->ir_set
->erst_size
);
665 xhci
->s3
.erst_base
= xhci_read_64(xhci
, &xhci
->ir_set
->erst_base
);
666 xhci
->s3
.erst_dequeue
= xhci_read_64(xhci
, &xhci
->ir_set
->erst_dequeue
);
669 static void xhci_restore_registers(struct xhci_hcd
*xhci
)
671 xhci_writel(xhci
, xhci
->s3
.command
, &xhci
->op_regs
->command
);
672 xhci_writel(xhci
, xhci
->s3
.dev_nt
, &xhci
->op_regs
->dev_notification
);
673 xhci_write_64(xhci
, xhci
->s3
.dcbaa_ptr
, &xhci
->op_regs
->dcbaa_ptr
);
674 xhci_writel(xhci
, xhci
->s3
.config_reg
, &xhci
->op_regs
->config_reg
);
675 xhci_writel(xhci
, xhci
->s3
.irq_pending
, &xhci
->ir_set
->irq_pending
);
676 xhci_writel(xhci
, xhci
->s3
.irq_control
, &xhci
->ir_set
->irq_control
);
677 xhci_writel(xhci
, xhci
->s3
.erst_size
, &xhci
->ir_set
->erst_size
);
678 xhci_write_64(xhci
, xhci
->s3
.erst_base
, &xhci
->ir_set
->erst_base
);
681 static void xhci_set_cmd_ring_deq(struct xhci_hcd
*xhci
)
685 /* step 2: initialize command ring buffer */
686 val_64
= xhci_read_64(xhci
, &xhci
->op_regs
->cmd_ring
);
687 val_64
= (val_64
& (u64
) CMD_RING_RSVD_BITS
) |
688 (xhci_trb_virt_to_dma(xhci
->cmd_ring
->deq_seg
,
689 xhci
->cmd_ring
->dequeue
) &
690 (u64
) ~CMD_RING_RSVD_BITS
) |
691 xhci
->cmd_ring
->cycle_state
;
692 xhci_dbg(xhci
, "// Setting command ring address to 0x%llx\n",
693 (long unsigned long) val_64
);
694 xhci_write_64(xhci
, val_64
, &xhci
->op_regs
->cmd_ring
);
698 * The whole command ring must be cleared to zero when we suspend the host.
700 * The host doesn't save the command ring pointer in the suspend well, so we
701 * need to re-program it on resume. Unfortunately, the pointer must be 64-byte
702 * aligned, because of the reserved bits in the command ring dequeue pointer
703 * register. Therefore, we can't just set the dequeue pointer back in the
704 * middle of the ring (TRBs are 16-byte aligned).
706 static void xhci_clear_command_ring(struct xhci_hcd
*xhci
)
708 struct xhci_ring
*ring
;
709 struct xhci_segment
*seg
;
711 ring
= xhci
->cmd_ring
;
714 memset(seg
->trbs
, 0, SEGMENT_SIZE
);
716 } while (seg
!= ring
->deq_seg
);
718 /* Reset the software enqueue and dequeue pointers */
719 ring
->deq_seg
= ring
->first_seg
;
720 ring
->dequeue
= ring
->first_seg
->trbs
;
721 ring
->enq_seg
= ring
->deq_seg
;
722 ring
->enqueue
= ring
->dequeue
;
725 * Ring is now zeroed, so the HW should look for change of ownership
726 * when the cycle bit is set to 1.
728 ring
->cycle_state
= 1;
731 * Reset the hardware dequeue pointer.
732 * Yes, this will need to be re-written after resume, but we're paranoid
733 * and want to make sure the hardware doesn't access bogus memory
734 * because, say, the BIOS or an SMI started the host without changing
735 * the command ring pointers.
737 xhci_set_cmd_ring_deq(xhci
);
741 * Stop HC (not bus-specific)
743 * This is called when the machine transition into S3/S4 mode.
746 int xhci_suspend(struct xhci_hcd
*xhci
)
749 struct usb_hcd
*hcd
= xhci_to_hcd(xhci
);
752 spin_lock_irq(&xhci
->lock
);
753 clear_bit(HCD_FLAG_HW_ACCESSIBLE
, &hcd
->flags
);
754 clear_bit(HCD_FLAG_HW_ACCESSIBLE
, &xhci
->shared_hcd
->flags
);
755 /* step 1: stop endpoint */
756 /* skipped assuming that port suspend has done */
758 /* step 2: clear Run/Stop bit */
759 command
= xhci_readl(xhci
, &xhci
->op_regs
->command
);
761 xhci_writel(xhci
, command
, &xhci
->op_regs
->command
);
762 if (handshake(xhci
, &xhci
->op_regs
->status
,
763 STS_HALT
, STS_HALT
, 100*100)) {
764 xhci_warn(xhci
, "WARN: xHC CMD_RUN timeout\n");
765 spin_unlock_irq(&xhci
->lock
);
768 xhci_clear_command_ring(xhci
);
770 /* step 3: save registers */
771 xhci_save_registers(xhci
);
773 /* step 4: set CSS flag */
774 command
= xhci_readl(xhci
, &xhci
->op_regs
->command
);
776 xhci_writel(xhci
, command
, &xhci
->op_regs
->command
);
777 if (handshake(xhci
, &xhci
->op_regs
->status
, STS_SAVE
, 0, 10*100)) {
778 xhci_warn(xhci
, "WARN: xHC CMD_CSS timeout\n");
779 spin_unlock_irq(&xhci
->lock
);
782 spin_unlock_irq(&xhci
->lock
);
784 /* step 5: remove core well power */
785 /* synchronize irq when using MSI-X */
786 xhci_msix_sync_irqs(xhci
);
792 * start xHC (not bus-specific)
794 * This is called when the machine transition from S3/S4 mode.
797 int xhci_resume(struct xhci_hcd
*xhci
, bool hibernated
)
799 u32 command
, temp
= 0;
800 struct usb_hcd
*hcd
= xhci_to_hcd(xhci
);
801 struct usb_hcd
*secondary_hcd
;
804 /* Wait a bit if either of the roothubs need to settle from the
805 * transition into bus suspend.
807 if (time_before(jiffies
, xhci
->bus_state
[0].next_statechange
) ||
809 xhci
->bus_state
[1].next_statechange
))
812 spin_lock_irq(&xhci
->lock
);
813 if (xhci
->quirks
& XHCI_RESET_ON_RESUME
)
817 /* step 1: restore register */
818 xhci_restore_registers(xhci
);
819 /* step 2: initialize command ring buffer */
820 xhci_set_cmd_ring_deq(xhci
);
821 /* step 3: restore state and start state*/
822 /* step 3: set CRS flag */
823 command
= xhci_readl(xhci
, &xhci
->op_regs
->command
);
825 xhci_writel(xhci
, command
, &xhci
->op_regs
->command
);
826 if (handshake(xhci
, &xhci
->op_regs
->status
,
827 STS_RESTORE
, 0, 10*100)) {
828 xhci_dbg(xhci
, "WARN: xHC CMD_CSS timeout\n");
829 spin_unlock_irq(&xhci
->lock
);
832 temp
= xhci_readl(xhci
, &xhci
->op_regs
->status
);
835 /* If restore operation fails, re-initialize the HC during resume */
836 if ((temp
& STS_SRE
) || hibernated
) {
837 /* Let the USB core know _both_ roothubs lost power. */
838 usb_root_hub_lost_power(xhci
->main_hcd
->self
.root_hub
);
839 usb_root_hub_lost_power(xhci
->shared_hcd
->self
.root_hub
);
841 xhci_dbg(xhci
, "Stop HCD\n");
844 spin_unlock_irq(&xhci
->lock
);
845 xhci_cleanup_msix(xhci
);
847 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
848 /* Tell the event ring poll function not to reschedule */
850 del_timer_sync(&xhci
->event_ring_timer
);
853 xhci_dbg(xhci
, "// Disabling event ring interrupts\n");
854 temp
= xhci_readl(xhci
, &xhci
->op_regs
->status
);
855 xhci_writel(xhci
, temp
& ~STS_EINT
, &xhci
->op_regs
->status
);
856 temp
= xhci_readl(xhci
, &xhci
->ir_set
->irq_pending
);
857 xhci_writel(xhci
, ER_IRQ_DISABLE(temp
),
858 &xhci
->ir_set
->irq_pending
);
859 xhci_print_ir_set(xhci
, 0);
861 xhci_dbg(xhci
, "cleaning up memory\n");
862 xhci_mem_cleanup(xhci
);
863 xhci_dbg(xhci
, "xhci_stop completed - status = %x\n",
864 xhci_readl(xhci
, &xhci
->op_regs
->status
));
866 /* USB core calls the PCI reinit and start functions twice:
867 * first with the primary HCD, and then with the secondary HCD.
868 * If we don't do the same, the host will never be started.
870 if (!usb_hcd_is_primary_hcd(hcd
))
873 secondary_hcd
= xhci
->shared_hcd
;
875 xhci_dbg(xhci
, "Initialize the xhci_hcd\n");
876 retval
= xhci_init(hcd
->primary_hcd
);
879 xhci_dbg(xhci
, "Start the primary HCD\n");
880 retval
= xhci_run(hcd
->primary_hcd
);
884 xhci_dbg(xhci
, "Start the secondary HCD\n");
885 retval
= xhci_run(secondary_hcd
);
887 set_bit(HCD_FLAG_HW_ACCESSIBLE
, &hcd
->flags
);
888 set_bit(HCD_FLAG_HW_ACCESSIBLE
,
889 &xhci
->shared_hcd
->flags
);
892 hcd
->state
= HC_STATE_SUSPENDED
;
893 xhci
->shared_hcd
->state
= HC_STATE_SUSPENDED
;
897 /* step 4: set Run/Stop bit */
898 command
= xhci_readl(xhci
, &xhci
->op_regs
->command
);
900 xhci_writel(xhci
, command
, &xhci
->op_regs
->command
);
901 handshake(xhci
, &xhci
->op_regs
->status
, STS_HALT
,
904 /* step 5: walk topology and initialize portsc,
905 * portpmsc and portli
907 /* this is done in bus_resume */
909 /* step 6: restart each of the previously
910 * Running endpoints by ringing their doorbells
913 set_bit(HCD_FLAG_HW_ACCESSIBLE
, &hcd
->flags
);
914 set_bit(HCD_FLAG_HW_ACCESSIBLE
, &xhci
->shared_hcd
->flags
);
916 spin_unlock_irq(&xhci
->lock
);
919 #endif /* CONFIG_PM */
921 /*-------------------------------------------------------------------------*/
924 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
925 * HCDs. Find the index for an endpoint given its descriptor. Use the return
926 * value to right shift 1 for the bitmask.
928 * Index = (epnum * 2) + direction - 1,
929 * where direction = 0 for OUT, 1 for IN.
930 * For control endpoints, the IN index is used (OUT index is unused), so
931 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
933 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor
*desc
)
936 if (usb_endpoint_xfer_control(desc
))
937 index
= (unsigned int) (usb_endpoint_num(desc
)*2);
939 index
= (unsigned int) (usb_endpoint_num(desc
)*2) +
940 (usb_endpoint_dir_in(desc
) ? 1 : 0) - 1;
944 /* Find the flag for this endpoint (for use in the control context). Use the
945 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
948 unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor
*desc
)
950 return 1 << (xhci_get_endpoint_index(desc
) + 1);
953 /* Find the flag for this endpoint (for use in the control context). Use the
954 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
957 unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index
)
959 return 1 << (ep_index
+ 1);
962 /* Compute the last valid endpoint context index. Basically, this is the
963 * endpoint index plus one. For slot contexts with more than valid endpoint,
964 * we find the most significant bit set in the added contexts flags.
965 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
966 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
968 unsigned int xhci_last_valid_endpoint(u32 added_ctxs
)
970 return fls(added_ctxs
) - 1;
973 /* Returns 1 if the arguments are OK;
974 * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
976 static int xhci_check_args(struct usb_hcd
*hcd
, struct usb_device
*udev
,
977 struct usb_host_endpoint
*ep
, int check_ep
, bool check_virt_dev
,
979 struct xhci_hcd
*xhci
;
980 struct xhci_virt_device
*virt_dev
;
982 if (!hcd
|| (check_ep
&& !ep
) || !udev
) {
983 printk(KERN_DEBUG
"xHCI %s called with invalid args\n",
988 printk(KERN_DEBUG
"xHCI %s called for root hub\n",
993 xhci
= hcd_to_xhci(hcd
);
994 if (xhci
->xhc_state
& XHCI_STATE_HALTED
)
997 if (check_virt_dev
) {
998 if (!udev
->slot_id
|| !xhci
->devs
[udev
->slot_id
]) {
999 printk(KERN_DEBUG
"xHCI %s called with unaddressed "
1004 virt_dev
= xhci
->devs
[udev
->slot_id
];
1005 if (virt_dev
->udev
!= udev
) {
1006 printk(KERN_DEBUG
"xHCI %s called with udev and "
1007 "virt_dev does not match\n", func
);
1015 static int xhci_configure_endpoint(struct xhci_hcd
*xhci
,
1016 struct usb_device
*udev
, struct xhci_command
*command
,
1017 bool ctx_change
, bool must_succeed
);
1020 * Full speed devices may have a max packet size greater than 8 bytes, but the
1021 * USB core doesn't know that until it reads the first 8 bytes of the
1022 * descriptor. If the usb_device's max packet size changes after that point,
1023 * we need to issue an evaluate context command and wait on it.
1025 static int xhci_check_maxpacket(struct xhci_hcd
*xhci
, unsigned int slot_id
,
1026 unsigned int ep_index
, struct urb
*urb
)
1028 struct xhci_container_ctx
*in_ctx
;
1029 struct xhci_container_ctx
*out_ctx
;
1030 struct xhci_input_control_ctx
*ctrl_ctx
;
1031 struct xhci_ep_ctx
*ep_ctx
;
1032 int max_packet_size
;
1033 int hw_max_packet_size
;
1036 out_ctx
= xhci
->devs
[slot_id
]->out_ctx
;
1037 ep_ctx
= xhci_get_ep_ctx(xhci
, out_ctx
, ep_index
);
1038 hw_max_packet_size
= MAX_PACKET_DECODED(le32_to_cpu(ep_ctx
->ep_info2
));
1039 max_packet_size
= usb_endpoint_maxp(&urb
->dev
->ep0
.desc
);
1040 if (hw_max_packet_size
!= max_packet_size
) {
1041 xhci_dbg(xhci
, "Max Packet Size for ep 0 changed.\n");
1042 xhci_dbg(xhci
, "Max packet size in usb_device = %d\n",
1044 xhci_dbg(xhci
, "Max packet size in xHCI HW = %d\n",
1045 hw_max_packet_size
);
1046 xhci_dbg(xhci
, "Issuing evaluate context command.\n");
1048 /* Set up the modified control endpoint 0 */
1049 xhci_endpoint_copy(xhci
, xhci
->devs
[slot_id
]->in_ctx
,
1050 xhci
->devs
[slot_id
]->out_ctx
, ep_index
);
1051 in_ctx
= xhci
->devs
[slot_id
]->in_ctx
;
1052 ep_ctx
= xhci_get_ep_ctx(xhci
, in_ctx
, ep_index
);
1053 ep_ctx
->ep_info2
&= cpu_to_le32(~MAX_PACKET_MASK
);
1054 ep_ctx
->ep_info2
|= cpu_to_le32(MAX_PACKET(max_packet_size
));
1056 /* Set up the input context flags for the command */
1057 /* FIXME: This won't work if a non-default control endpoint
1058 * changes max packet sizes.
1060 ctrl_ctx
= xhci_get_input_control_ctx(xhci
, in_ctx
);
1061 ctrl_ctx
->add_flags
= cpu_to_le32(EP0_FLAG
);
1062 ctrl_ctx
->drop_flags
= 0;
1064 xhci_dbg(xhci
, "Slot %d input context\n", slot_id
);
1065 xhci_dbg_ctx(xhci
, in_ctx
, ep_index
);
1066 xhci_dbg(xhci
, "Slot %d output context\n", slot_id
);
1067 xhci_dbg_ctx(xhci
, out_ctx
, ep_index
);
1069 ret
= xhci_configure_endpoint(xhci
, urb
->dev
, NULL
,
1072 /* Clean up the input context for later use by bandwidth
1075 ctrl_ctx
->add_flags
= cpu_to_le32(SLOT_FLAG
);
1081 * non-error returns are a promise to giveback() the urb later
1082 * we drop ownership so next owner (or urb unlink) can get it
1084 int xhci_urb_enqueue(struct usb_hcd
*hcd
, struct urb
*urb
, gfp_t mem_flags
)
1086 struct xhci_hcd
*xhci
= hcd_to_xhci(hcd
);
1087 struct xhci_td
*buffer
;
1088 unsigned long flags
;
1090 unsigned int slot_id
, ep_index
;
1091 struct urb_priv
*urb_priv
;
1094 if (!urb
|| xhci_check_args(hcd
, urb
->dev
, urb
->ep
,
1095 true, true, __func__
) <= 0)
1098 slot_id
= urb
->dev
->slot_id
;
1099 ep_index
= xhci_get_endpoint_index(&urb
->ep
->desc
);
1101 if (!HCD_HW_ACCESSIBLE(hcd
)) {
1102 if (!in_interrupt())
1103 xhci_dbg(xhci
, "urb submitted during PCI suspend\n");
1108 if (usb_endpoint_xfer_isoc(&urb
->ep
->desc
))
1109 size
= urb
->number_of_packets
;
1113 urb_priv
= kzalloc(sizeof(struct urb_priv
) +
1114 size
* sizeof(struct xhci_td
*), mem_flags
);
1118 buffer
= kzalloc(size
* sizeof(struct xhci_td
), mem_flags
);
1124 for (i
= 0; i
< size
; i
++) {
1125 urb_priv
->td
[i
] = buffer
;
1129 urb_priv
->length
= size
;
1130 urb_priv
->td_cnt
= 0;
1131 urb
->hcpriv
= urb_priv
;
1133 if (usb_endpoint_xfer_control(&urb
->ep
->desc
)) {
1134 /* Check to see if the max packet size for the default control
1135 * endpoint changed during FS device enumeration
1137 if (urb
->dev
->speed
== USB_SPEED_FULL
) {
1138 ret
= xhci_check_maxpacket(xhci
, slot_id
,
1141 xhci_urb_free_priv(xhci
, urb_priv
);
1147 /* We have a spinlock and interrupts disabled, so we must pass
1148 * atomic context to this function, which may allocate memory.
1150 spin_lock_irqsave(&xhci
->lock
, flags
);
1151 if (xhci
->xhc_state
& XHCI_STATE_DYING
)
1153 ret
= xhci_queue_ctrl_tx(xhci
, GFP_ATOMIC
, urb
,
1157 spin_unlock_irqrestore(&xhci
->lock
, flags
);
1158 } else if (usb_endpoint_xfer_bulk(&urb
->ep
->desc
)) {
1159 spin_lock_irqsave(&xhci
->lock
, flags
);
1160 if (xhci
->xhc_state
& XHCI_STATE_DYING
)
1162 if (xhci
->devs
[slot_id
]->eps
[ep_index
].ep_state
&
1163 EP_GETTING_STREAMS
) {
1164 xhci_warn(xhci
, "WARN: Can't enqueue URB while bulk ep "
1165 "is transitioning to using streams.\n");
1167 } else if (xhci
->devs
[slot_id
]->eps
[ep_index
].ep_state
&
1168 EP_GETTING_NO_STREAMS
) {
1169 xhci_warn(xhci
, "WARN: Can't enqueue URB while bulk ep "
1170 "is transitioning to "
1171 "not having streams.\n");
1174 ret
= xhci_queue_bulk_tx(xhci
, GFP_ATOMIC
, urb
,
1179 spin_unlock_irqrestore(&xhci
->lock
, flags
);
1180 } else if (usb_endpoint_xfer_int(&urb
->ep
->desc
)) {
1181 spin_lock_irqsave(&xhci
->lock
, flags
);
1182 if (xhci
->xhc_state
& XHCI_STATE_DYING
)
1184 ret
= xhci_queue_intr_tx(xhci
, GFP_ATOMIC
, urb
,
1188 spin_unlock_irqrestore(&xhci
->lock
, flags
);
1190 spin_lock_irqsave(&xhci
->lock
, flags
);
1191 if (xhci
->xhc_state
& XHCI_STATE_DYING
)
1193 ret
= xhci_queue_isoc_tx_prepare(xhci
, GFP_ATOMIC
, urb
,
1197 spin_unlock_irqrestore(&xhci
->lock
, flags
);
1202 xhci_dbg(xhci
, "Ep 0x%x: URB %p submitted for "
1203 "non-responsive xHCI host.\n",
1204 urb
->ep
->desc
.bEndpointAddress
, urb
);
1207 xhci_urb_free_priv(xhci
, urb_priv
);
1209 spin_unlock_irqrestore(&xhci
->lock
, flags
);
1213 /* Get the right ring for the given URB.
1214 * If the endpoint supports streams, boundary check the URB's stream ID.
1215 * If the endpoint doesn't support streams, return the singular endpoint ring.
1217 static struct xhci_ring
*xhci_urb_to_transfer_ring(struct xhci_hcd
*xhci
,
1220 unsigned int slot_id
;
1221 unsigned int ep_index
;
1222 unsigned int stream_id
;
1223 struct xhci_virt_ep
*ep
;
1225 slot_id
= urb
->dev
->slot_id
;
1226 ep_index
= xhci_get_endpoint_index(&urb
->ep
->desc
);
1227 stream_id
= urb
->stream_id
;
1228 ep
= &xhci
->devs
[slot_id
]->eps
[ep_index
];
1229 /* Common case: no streams */
1230 if (!(ep
->ep_state
& EP_HAS_STREAMS
))
1233 if (stream_id
== 0) {
1235 "WARN: Slot ID %u, ep index %u has streams, "
1236 "but URB has no stream ID.\n",
1241 if (stream_id
< ep
->stream_info
->num_streams
)
1242 return ep
->stream_info
->stream_rings
[stream_id
];
1245 "WARN: Slot ID %u, ep index %u has "
1246 "stream IDs 1 to %u allocated, "
1247 "but stream ID %u is requested.\n",
1249 ep
->stream_info
->num_streams
- 1,
1255 * Remove the URB's TD from the endpoint ring. This may cause the HC to stop
1256 * USB transfers, potentially stopping in the middle of a TRB buffer. The HC
1257 * should pick up where it left off in the TD, unless a Set Transfer Ring
1258 * Dequeue Pointer is issued.
1260 * The TRBs that make up the buffers for the canceled URB will be "removed" from
1261 * the ring. Since the ring is a contiguous structure, they can't be physically
1262 * removed. Instead, there are two options:
1264 * 1) If the HC is in the middle of processing the URB to be canceled, we
1265 * simply move the ring's dequeue pointer past those TRBs using the Set
1266 * Transfer Ring Dequeue Pointer command. This will be the common case,
1267 * when drivers timeout on the last submitted URB and attempt to cancel.
1269 * 2) If the HC is in the middle of a different TD, we turn the TRBs into a
1270 * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The
1271 * HC will need to invalidate the any TRBs it has cached after the stop
1272 * endpoint command, as noted in the xHCI 0.95 errata.
1274 * 3) The TD may have completed by the time the Stop Endpoint Command
1275 * completes, so software needs to handle that case too.
1277 * This function should protect against the TD enqueueing code ringing the
1278 * doorbell while this code is waiting for a Stop Endpoint command to complete.
1279 * It also needs to account for multiple cancellations on happening at the same
1280 * time for the same endpoint.
1282 * Note that this function can be called in any context, or so says
1283 * usb_hcd_unlink_urb()
1285 int xhci_urb_dequeue(struct usb_hcd
*hcd
, struct urb
*urb
, int status
)
1287 unsigned long flags
;
1290 struct xhci_hcd
*xhci
;
1291 struct urb_priv
*urb_priv
;
1293 unsigned int ep_index
;
1294 struct xhci_ring
*ep_ring
;
1295 struct xhci_virt_ep
*ep
;
1297 xhci
= hcd_to_xhci(hcd
);
1298 spin_lock_irqsave(&xhci
->lock
, flags
);
1299 /* Make sure the URB hasn't completed or been unlinked already */
1300 ret
= usb_hcd_check_unlink_urb(hcd
, urb
, status
);
1301 if (ret
|| !urb
->hcpriv
)
1303 temp
= xhci_readl(xhci
, &xhci
->op_regs
->status
);
1304 if (temp
== 0xffffffff || (xhci
->xhc_state
& XHCI_STATE_HALTED
)) {
1305 xhci_dbg(xhci
, "HW died, freeing TD.\n");
1306 urb_priv
= urb
->hcpriv
;
1307 for (i
= urb_priv
->td_cnt
; i
< urb_priv
->length
; i
++) {
1308 td
= urb_priv
->td
[i
];
1309 if (!list_empty(&td
->td_list
))
1310 list_del_init(&td
->td_list
);
1311 if (!list_empty(&td
->cancelled_td_list
))
1312 list_del_init(&td
->cancelled_td_list
);
1315 usb_hcd_unlink_urb_from_ep(hcd
, urb
);
1316 spin_unlock_irqrestore(&xhci
->lock
, flags
);
1317 usb_hcd_giveback_urb(hcd
, urb
, -ESHUTDOWN
);
1318 xhci_urb_free_priv(xhci
, urb_priv
);
1321 if ((xhci
->xhc_state
& XHCI_STATE_DYING
) ||
1322 (xhci
->xhc_state
& XHCI_STATE_HALTED
)) {
1323 xhci_dbg(xhci
, "Ep 0x%x: URB %p to be canceled on "
1324 "non-responsive xHCI host.\n",
1325 urb
->ep
->desc
.bEndpointAddress
, urb
);
1326 /* Let the stop endpoint command watchdog timer (which set this
1327 * state) finish cleaning up the endpoint TD lists. We must
1328 * have caught it in the middle of dropping a lock and giving
1334 xhci_dbg(xhci
, "Cancel URB %p\n", urb
);
1335 xhci_dbg(xhci
, "Event ring:\n");
1336 xhci_debug_ring(xhci
, xhci
->event_ring
);
1337 ep_index
= xhci_get_endpoint_index(&urb
->ep
->desc
);
1338 ep
= &xhci
->devs
[urb
->dev
->slot_id
]->eps
[ep_index
];
1339 ep_ring
= xhci_urb_to_transfer_ring(xhci
, urb
);
1345 xhci_dbg(xhci
, "Endpoint ring:\n");
1346 xhci_debug_ring(xhci
, ep_ring
);
1348 urb_priv
= urb
->hcpriv
;
1350 for (i
= urb_priv
->td_cnt
; i
< urb_priv
->length
; i
++) {
1351 td
= urb_priv
->td
[i
];
1352 list_add_tail(&td
->cancelled_td_list
, &ep
->cancelled_td_list
);
1355 /* Queue a stop endpoint command, but only if this is
1356 * the first cancellation to be handled.
1358 if (!(ep
->ep_state
& EP_HALT_PENDING
)) {
1359 ep
->ep_state
|= EP_HALT_PENDING
;
1360 ep
->stop_cmds_pending
++;
1361 ep
->stop_cmd_timer
.expires
= jiffies
+
1362 XHCI_STOP_EP_CMD_TIMEOUT
* HZ
;
1363 add_timer(&ep
->stop_cmd_timer
);
1364 xhci_queue_stop_endpoint(xhci
, urb
->dev
->slot_id
, ep_index
, 0);
1365 xhci_ring_cmd_db(xhci
);
1368 spin_unlock_irqrestore(&xhci
->lock
, flags
);
1372 /* Drop an endpoint from a new bandwidth configuration for this device.
1373 * Only one call to this function is allowed per endpoint before
1374 * check_bandwidth() or reset_bandwidth() must be called.
1375 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1376 * add the endpoint to the schedule with possibly new parameters denoted by a
1377 * different endpoint descriptor in usb_host_endpoint.
1378 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1381 * The USB core will not allow URBs to be queued to an endpoint that is being
1382 * disabled, so there's no need for mutual exclusion to protect
1383 * the xhci->devs[slot_id] structure.
1385 int xhci_drop_endpoint(struct usb_hcd
*hcd
, struct usb_device
*udev
,
1386 struct usb_host_endpoint
*ep
)
1388 struct xhci_hcd
*xhci
;
1389 struct xhci_container_ctx
*in_ctx
, *out_ctx
;
1390 struct xhci_input_control_ctx
*ctrl_ctx
;
1391 struct xhci_slot_ctx
*slot_ctx
;
1392 unsigned int last_ctx
;
1393 unsigned int ep_index
;
1394 struct xhci_ep_ctx
*ep_ctx
;
1396 u32 new_add_flags
, new_drop_flags
, new_slot_info
;
1399 ret
= xhci_check_args(hcd
, udev
, ep
, 1, true, __func__
);
1402 xhci
= hcd_to_xhci(hcd
);
1403 if (xhci
->xhc_state
& XHCI_STATE_DYING
)
1406 xhci_dbg(xhci
, "%s called for udev %p\n", __func__
, udev
);
1407 drop_flag
= xhci_get_endpoint_flag(&ep
->desc
);
1408 if (drop_flag
== SLOT_FLAG
|| drop_flag
== EP0_FLAG
) {
1409 xhci_dbg(xhci
, "xHCI %s - can't drop slot or ep 0 %#x\n",
1410 __func__
, drop_flag
);
1414 in_ctx
= xhci
->devs
[udev
->slot_id
]->in_ctx
;
1415 out_ctx
= xhci
->devs
[udev
->slot_id
]->out_ctx
;
1416 ctrl_ctx
= xhci_get_input_control_ctx(xhci
, in_ctx
);
1417 ep_index
= xhci_get_endpoint_index(&ep
->desc
);
1418 ep_ctx
= xhci_get_ep_ctx(xhci
, out_ctx
, ep_index
);
1419 /* If the HC already knows the endpoint is disabled,
1420 * or the HCD has noted it is disabled, ignore this request
1422 if (((ep_ctx
->ep_info
& cpu_to_le32(EP_STATE_MASK
)) ==
1423 cpu_to_le32(EP_STATE_DISABLED
)) ||
1424 le32_to_cpu(ctrl_ctx
->drop_flags
) &
1425 xhci_get_endpoint_flag(&ep
->desc
)) {
1426 xhci_warn(xhci
, "xHCI %s called with disabled ep %p\n",
1431 ctrl_ctx
->drop_flags
|= cpu_to_le32(drop_flag
);
1432 new_drop_flags
= le32_to_cpu(ctrl_ctx
->drop_flags
);
1434 ctrl_ctx
->add_flags
&= cpu_to_le32(~drop_flag
);
1435 new_add_flags
= le32_to_cpu(ctrl_ctx
->add_flags
);
1437 last_ctx
= xhci_last_valid_endpoint(le32_to_cpu(ctrl_ctx
->add_flags
));
1438 slot_ctx
= xhci_get_slot_ctx(xhci
, in_ctx
);
1439 /* Update the last valid endpoint context, if we deleted the last one */
1440 if ((le32_to_cpu(slot_ctx
->dev_info
) & LAST_CTX_MASK
) >
1441 LAST_CTX(last_ctx
)) {
1442 slot_ctx
->dev_info
&= cpu_to_le32(~LAST_CTX_MASK
);
1443 slot_ctx
->dev_info
|= cpu_to_le32(LAST_CTX(last_ctx
));
1445 new_slot_info
= le32_to_cpu(slot_ctx
->dev_info
);
1447 xhci_endpoint_zero(xhci
, xhci
->devs
[udev
->slot_id
], ep
);
1449 xhci_dbg(xhci
, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1450 (unsigned int) ep
->desc
.bEndpointAddress
,
1452 (unsigned int) new_drop_flags
,
1453 (unsigned int) new_add_flags
,
1454 (unsigned int) new_slot_info
);
1458 /* Add an endpoint to a new possible bandwidth configuration for this device.
1459 * Only one call to this function is allowed per endpoint before
1460 * check_bandwidth() or reset_bandwidth() must be called.
1461 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1462 * add the endpoint to the schedule with possibly new parameters denoted by a
1463 * different endpoint descriptor in usb_host_endpoint.
1464 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1467 * The USB core will not allow URBs to be queued to an endpoint until the
1468 * configuration or alt setting is installed in the device, so there's no need
1469 * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1471 int xhci_add_endpoint(struct usb_hcd
*hcd
, struct usb_device
*udev
,
1472 struct usb_host_endpoint
*ep
)
1474 struct xhci_hcd
*xhci
;
1475 struct xhci_container_ctx
*in_ctx
, *out_ctx
;
1476 unsigned int ep_index
;
1477 struct xhci_ep_ctx
*ep_ctx
;
1478 struct xhci_slot_ctx
*slot_ctx
;
1479 struct xhci_input_control_ctx
*ctrl_ctx
;
1481 unsigned int last_ctx
;
1482 u32 new_add_flags
, new_drop_flags
, new_slot_info
;
1483 struct xhci_virt_device
*virt_dev
;
1486 ret
= xhci_check_args(hcd
, udev
, ep
, 1, true, __func__
);
1488 /* So we won't queue a reset ep command for a root hub */
1492 xhci
= hcd_to_xhci(hcd
);
1493 if (xhci
->xhc_state
& XHCI_STATE_DYING
)
1496 added_ctxs
= xhci_get_endpoint_flag(&ep
->desc
);
1497 last_ctx
= xhci_last_valid_endpoint(added_ctxs
);
1498 if (added_ctxs
== SLOT_FLAG
|| added_ctxs
== EP0_FLAG
) {
1499 /* FIXME when we have to issue an evaluate endpoint command to
1500 * deal with ep0 max packet size changing once we get the
1503 xhci_dbg(xhci
, "xHCI %s - can't add slot or ep 0 %#x\n",
1504 __func__
, added_ctxs
);
1508 virt_dev
= xhci
->devs
[udev
->slot_id
];
1509 in_ctx
= virt_dev
->in_ctx
;
1510 out_ctx
= virt_dev
->out_ctx
;
1511 ctrl_ctx
= xhci_get_input_control_ctx(xhci
, in_ctx
);
1512 ep_index
= xhci_get_endpoint_index(&ep
->desc
);
1513 ep_ctx
= xhci_get_ep_ctx(xhci
, out_ctx
, ep_index
);
1515 /* If this endpoint is already in use, and the upper layers are trying
1516 * to add it again without dropping it, reject the addition.
1518 if (virt_dev
->eps
[ep_index
].ring
&&
1519 !(le32_to_cpu(ctrl_ctx
->drop_flags
) &
1520 xhci_get_endpoint_flag(&ep
->desc
))) {
1521 xhci_warn(xhci
, "Trying to add endpoint 0x%x "
1522 "without dropping it.\n",
1523 (unsigned int) ep
->desc
.bEndpointAddress
);
1527 /* If the HCD has already noted the endpoint is enabled,
1528 * ignore this request.
1530 if (le32_to_cpu(ctrl_ctx
->add_flags
) &
1531 xhci_get_endpoint_flag(&ep
->desc
)) {
1532 xhci_warn(xhci
, "xHCI %s called with enabled ep %p\n",
1538 * Configuration and alternate setting changes must be done in
1539 * process context, not interrupt context (or so documenation
1540 * for usb_set_interface() and usb_set_configuration() claim).
1542 if (xhci_endpoint_init(xhci
, virt_dev
, udev
, ep
, GFP_NOIO
) < 0) {
1543 dev_dbg(&udev
->dev
, "%s - could not initialize ep %#x\n",
1544 __func__
, ep
->desc
.bEndpointAddress
);
1548 ctrl_ctx
->add_flags
|= cpu_to_le32(added_ctxs
);
1549 new_add_flags
= le32_to_cpu(ctrl_ctx
->add_flags
);
1551 /* If xhci_endpoint_disable() was called for this endpoint, but the
1552 * xHC hasn't been notified yet through the check_bandwidth() call,
1553 * this re-adds a new state for the endpoint from the new endpoint
1554 * descriptors. We must drop and re-add this endpoint, so we leave the
1557 new_drop_flags
= le32_to_cpu(ctrl_ctx
->drop_flags
);
1559 slot_ctx
= xhci_get_slot_ctx(xhci
, in_ctx
);
1560 /* Update the last valid endpoint context, if we just added one past */
1561 if ((le32_to_cpu(slot_ctx
->dev_info
) & LAST_CTX_MASK
) <
1562 LAST_CTX(last_ctx
)) {
1563 slot_ctx
->dev_info
&= cpu_to_le32(~LAST_CTX_MASK
);
1564 slot_ctx
->dev_info
|= cpu_to_le32(LAST_CTX(last_ctx
));
1566 new_slot_info
= le32_to_cpu(slot_ctx
->dev_info
);
1568 /* Store the usb_device pointer for later use */
1571 xhci_dbg(xhci
, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1572 (unsigned int) ep
->desc
.bEndpointAddress
,
1574 (unsigned int) new_drop_flags
,
1575 (unsigned int) new_add_flags
,
1576 (unsigned int) new_slot_info
);
1580 static void xhci_zero_in_ctx(struct xhci_hcd
*xhci
, struct xhci_virt_device
*virt_dev
)
1582 struct xhci_input_control_ctx
*ctrl_ctx
;
1583 struct xhci_ep_ctx
*ep_ctx
;
1584 struct xhci_slot_ctx
*slot_ctx
;
1587 /* When a device's add flag and drop flag are zero, any subsequent
1588 * configure endpoint command will leave that endpoint's state
1589 * untouched. Make sure we don't leave any old state in the input
1590 * endpoint contexts.
1592 ctrl_ctx
= xhci_get_input_control_ctx(xhci
, virt_dev
->in_ctx
);
1593 ctrl_ctx
->drop_flags
= 0;
1594 ctrl_ctx
->add_flags
= 0;
1595 slot_ctx
= xhci_get_slot_ctx(xhci
, virt_dev
->in_ctx
);
1596 slot_ctx
->dev_info
&= cpu_to_le32(~LAST_CTX_MASK
);
1597 /* Endpoint 0 is always valid */
1598 slot_ctx
->dev_info
|= cpu_to_le32(LAST_CTX(1));
1599 for (i
= 1; i
< 31; ++i
) {
1600 ep_ctx
= xhci_get_ep_ctx(xhci
, virt_dev
->in_ctx
, i
);
1601 ep_ctx
->ep_info
= 0;
1602 ep_ctx
->ep_info2
= 0;
1604 ep_ctx
->tx_info
= 0;
1608 static int xhci_configure_endpoint_result(struct xhci_hcd
*xhci
,
1609 struct usb_device
*udev
, u32
*cmd_status
)
1613 switch (*cmd_status
) {
1615 dev_warn(&udev
->dev
, "Not enough host controller resources "
1616 "for new device state.\n");
1618 /* FIXME: can we allocate more resources for the HC? */
1621 dev_warn(&udev
->dev
, "Not enough bandwidth "
1622 "for new device state.\n");
1624 /* FIXME: can we go back to the old state? */
1627 /* the HCD set up something wrong */
1628 dev_warn(&udev
->dev
, "ERROR: Endpoint drop flag = 0, "
1630 "and endpoint is not disabled.\n");
1634 dev_warn(&udev
->dev
, "ERROR: Incompatible device for endpoint "
1635 "configure command.\n");
1639 dev_dbg(&udev
->dev
, "Successful Endpoint Configure command\n");
1643 xhci_err(xhci
, "ERROR: unexpected command completion "
1644 "code 0x%x.\n", *cmd_status
);
1651 static int xhci_evaluate_context_result(struct xhci_hcd
*xhci
,
1652 struct usb_device
*udev
, u32
*cmd_status
)
1655 struct xhci_virt_device
*virt_dev
= xhci
->devs
[udev
->slot_id
];
1657 switch (*cmd_status
) {
1659 dev_warn(&udev
->dev
, "WARN: xHCI driver setup invalid evaluate "
1660 "context command.\n");
1664 dev_warn(&udev
->dev
, "WARN: slot not enabled for"
1665 "evaluate context command.\n");
1666 case COMP_CTX_STATE
:
1667 dev_warn(&udev
->dev
, "WARN: invalid context state for "
1668 "evaluate context command.\n");
1669 xhci_dbg_ctx(xhci
, virt_dev
->out_ctx
, 1);
1673 dev_warn(&udev
->dev
, "ERROR: Incompatible device for evaluate "
1674 "context command.\n");
1678 /* Max Exit Latency too large error */
1679 dev_warn(&udev
->dev
, "WARN: Max Exit Latency too large\n");
1683 dev_dbg(&udev
->dev
, "Successful evaluate context command\n");
1687 xhci_err(xhci
, "ERROR: unexpected command completion "
1688 "code 0x%x.\n", *cmd_status
);
1695 static u32
xhci_count_num_new_endpoints(struct xhci_hcd
*xhci
,
1696 struct xhci_container_ctx
*in_ctx
)
1698 struct xhci_input_control_ctx
*ctrl_ctx
;
1699 u32 valid_add_flags
;
1700 u32 valid_drop_flags
;
1702 ctrl_ctx
= xhci_get_input_control_ctx(xhci
, in_ctx
);
1703 /* Ignore the slot flag (bit 0), and the default control endpoint flag
1704 * (bit 1). The default control endpoint is added during the Address
1705 * Device command and is never removed until the slot is disabled.
1707 valid_add_flags
= ctrl_ctx
->add_flags
>> 2;
1708 valid_drop_flags
= ctrl_ctx
->drop_flags
>> 2;
1710 /* Use hweight32 to count the number of ones in the add flags, or
1711 * number of endpoints added. Don't count endpoints that are changed
1712 * (both added and dropped).
1714 return hweight32(valid_add_flags
) -
1715 hweight32(valid_add_flags
& valid_drop_flags
);
1718 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd
*xhci
,
1719 struct xhci_container_ctx
*in_ctx
)
1721 struct xhci_input_control_ctx
*ctrl_ctx
;
1722 u32 valid_add_flags
;
1723 u32 valid_drop_flags
;
1725 ctrl_ctx
= xhci_get_input_control_ctx(xhci
, in_ctx
);
1726 valid_add_flags
= ctrl_ctx
->add_flags
>> 2;
1727 valid_drop_flags
= ctrl_ctx
->drop_flags
>> 2;
1729 return hweight32(valid_drop_flags
) -
1730 hweight32(valid_add_flags
& valid_drop_flags
);
1734 * We need to reserve the new number of endpoints before the configure endpoint
1735 * command completes. We can't subtract the dropped endpoints from the number
1736 * of active endpoints until the command completes because we can oversubscribe
1737 * the host in this case:
1739 * - the first configure endpoint command drops more endpoints than it adds
1740 * - a second configure endpoint command that adds more endpoints is queued
1741 * - the first configure endpoint command fails, so the config is unchanged
1742 * - the second command may succeed, even though there isn't enough resources
1744 * Must be called with xhci->lock held.
1746 static int xhci_reserve_host_resources(struct xhci_hcd
*xhci
,
1747 struct xhci_container_ctx
*in_ctx
)
1751 added_eps
= xhci_count_num_new_endpoints(xhci
, in_ctx
);
1752 if (xhci
->num_active_eps
+ added_eps
> xhci
->limit_active_eps
) {
1753 xhci_dbg(xhci
, "Not enough ep ctxs: "
1754 "%u active, need to add %u, limit is %u.\n",
1755 xhci
->num_active_eps
, added_eps
,
1756 xhci
->limit_active_eps
);
1759 xhci
->num_active_eps
+= added_eps
;
1760 xhci_dbg(xhci
, "Adding %u ep ctxs, %u now active.\n", added_eps
,
1761 xhci
->num_active_eps
);
1766 * The configure endpoint was failed by the xHC for some other reason, so we
1767 * need to revert the resources that failed configuration would have used.
1769 * Must be called with xhci->lock held.
1771 static void xhci_free_host_resources(struct xhci_hcd
*xhci
,
1772 struct xhci_container_ctx
*in_ctx
)
1776 num_failed_eps
= xhci_count_num_new_endpoints(xhci
, in_ctx
);
1777 xhci
->num_active_eps
-= num_failed_eps
;
1778 xhci_dbg(xhci
, "Removing %u failed ep ctxs, %u now active.\n",
1780 xhci
->num_active_eps
);
1784 * Now that the command has completed, clean up the active endpoint count by
1785 * subtracting out the endpoints that were dropped (but not changed).
1787 * Must be called with xhci->lock held.
1789 static void xhci_finish_resource_reservation(struct xhci_hcd
*xhci
,
1790 struct xhci_container_ctx
*in_ctx
)
1792 u32 num_dropped_eps
;
1794 num_dropped_eps
= xhci_count_num_dropped_endpoints(xhci
, in_ctx
);
1795 xhci
->num_active_eps
-= num_dropped_eps
;
1796 if (num_dropped_eps
)
1797 xhci_dbg(xhci
, "Removing %u dropped ep ctxs, %u now active.\n",
1799 xhci
->num_active_eps
);
1802 unsigned int xhci_get_block_size(struct usb_device
*udev
)
1804 switch (udev
->speed
) {
1806 case USB_SPEED_FULL
:
1808 case USB_SPEED_HIGH
:
1810 case USB_SPEED_SUPER
:
1812 case USB_SPEED_UNKNOWN
:
1813 case USB_SPEED_WIRELESS
:
1815 /* Should never happen */
1820 unsigned int xhci_get_largest_overhead(struct xhci_interval_bw
*interval_bw
)
1822 if (interval_bw
->overhead
[LS_OVERHEAD_TYPE
])
1824 if (interval_bw
->overhead
[FS_OVERHEAD_TYPE
])
1829 /* If we are changing a LS/FS device under a HS hub,
1830 * make sure (if we are activating a new TT) that the HS bus has enough
1831 * bandwidth for this new TT.
1833 static int xhci_check_tt_bw_table(struct xhci_hcd
*xhci
,
1834 struct xhci_virt_device
*virt_dev
,
1837 struct xhci_interval_bw_table
*bw_table
;
1838 struct xhci_tt_bw_info
*tt_info
;
1840 /* Find the bandwidth table for the root port this TT is attached to. */
1841 bw_table
= &xhci
->rh_bw
[virt_dev
->real_port
- 1].bw_table
;
1842 tt_info
= virt_dev
->tt_info
;
1843 /* If this TT already had active endpoints, the bandwidth for this TT
1844 * has already been added. Removing all periodic endpoints (and thus
1845 * making the TT enactive) will only decrease the bandwidth used.
1849 if (old_active_eps
== 0 && tt_info
->active_eps
!= 0) {
1850 if (bw_table
->bw_used
+ TT_HS_OVERHEAD
> HS_BW_LIMIT
)
1854 /* Not sure why we would have no new active endpoints...
1856 * Maybe because of an Evaluate Context change for a hub update or a
1857 * control endpoint 0 max packet size change?
1858 * FIXME: skip the bandwidth calculation in that case.
1863 static int xhci_check_ss_bw(struct xhci_hcd
*xhci
,
1864 struct xhci_virt_device
*virt_dev
)
1866 unsigned int bw_reserved
;
1868 bw_reserved
= DIV_ROUND_UP(SS_BW_RESERVED
*SS_BW_LIMIT_IN
, 100);
1869 if (virt_dev
->bw_table
->ss_bw_in
> (SS_BW_LIMIT_IN
- bw_reserved
))
1872 bw_reserved
= DIV_ROUND_UP(SS_BW_RESERVED
*SS_BW_LIMIT_OUT
, 100);
1873 if (virt_dev
->bw_table
->ss_bw_out
> (SS_BW_LIMIT_OUT
- bw_reserved
))
1880 * This algorithm is a very conservative estimate of the worst-case scheduling
1881 * scenario for any one interval. The hardware dynamically schedules the
1882 * packets, so we can't tell which microframe could be the limiting factor in
1883 * the bandwidth scheduling. This only takes into account periodic endpoints.
1885 * Obviously, we can't solve an NP complete problem to find the minimum worst
1886 * case scenario. Instead, we come up with an estimate that is no less than
1887 * the worst case bandwidth used for any one microframe, but may be an
1890 * We walk the requirements for each endpoint by interval, starting with the
1891 * smallest interval, and place packets in the schedule where there is only one
1892 * possible way to schedule packets for that interval. In order to simplify
1893 * this algorithm, we record the largest max packet size for each interval, and
1894 * assume all packets will be that size.
1896 * For interval 0, we obviously must schedule all packets for each interval.
1897 * The bandwidth for interval 0 is just the amount of data to be transmitted
1898 * (the sum of all max ESIT payload sizes, plus any overhead per packet times
1899 * the number of packets).
1901 * For interval 1, we have two possible microframes to schedule those packets
1902 * in. For this algorithm, if we can schedule the same number of packets for
1903 * each possible scheduling opportunity (each microframe), we will do so. The
1904 * remaining number of packets will be saved to be transmitted in the gaps in
1905 * the next interval's scheduling sequence.
1907 * As we move those remaining packets to be scheduled with interval 2 packets,
1908 * we have to double the number of remaining packets to transmit. This is
1909 * because the intervals are actually powers of 2, and we would be transmitting
1910 * the previous interval's packets twice in this interval. We also have to be
1911 * sure that when we look at the largest max packet size for this interval, we
1912 * also look at the largest max packet size for the remaining packets and take
1913 * the greater of the two.
1915 * The algorithm continues to evenly distribute packets in each scheduling
1916 * opportunity, and push the remaining packets out, until we get to the last
1917 * interval. Then those packets and their associated overhead are just added
1918 * to the bandwidth used.
1920 static int xhci_check_bw_table(struct xhci_hcd
*xhci
,
1921 struct xhci_virt_device
*virt_dev
,
1924 unsigned int bw_reserved
;
1925 unsigned int max_bandwidth
;
1926 unsigned int bw_used
;
1927 unsigned int block_size
;
1928 struct xhci_interval_bw_table
*bw_table
;
1929 unsigned int packet_size
= 0;
1930 unsigned int overhead
= 0;
1931 unsigned int packets_transmitted
= 0;
1932 unsigned int packets_remaining
= 0;
1935 if (virt_dev
->udev
->speed
== USB_SPEED_SUPER
)
1936 return xhci_check_ss_bw(xhci
, virt_dev
);
1938 if (virt_dev
->udev
->speed
== USB_SPEED_HIGH
) {
1939 max_bandwidth
= HS_BW_LIMIT
;
1940 /* Convert percent of bus BW reserved to blocks reserved */
1941 bw_reserved
= DIV_ROUND_UP(HS_BW_RESERVED
* max_bandwidth
, 100);
1943 max_bandwidth
= FS_BW_LIMIT
;
1944 bw_reserved
= DIV_ROUND_UP(FS_BW_RESERVED
* max_bandwidth
, 100);
1947 bw_table
= virt_dev
->bw_table
;
1948 /* We need to translate the max packet size and max ESIT payloads into
1949 * the units the hardware uses.
1951 block_size
= xhci_get_block_size(virt_dev
->udev
);
1953 /* If we are manipulating a LS/FS device under a HS hub, double check
1954 * that the HS bus has enough bandwidth if we are activing a new TT.
1956 if (virt_dev
->tt_info
) {
1957 xhci_dbg(xhci
, "Recalculating BW for rootport %u\n",
1958 virt_dev
->real_port
);
1959 if (xhci_check_tt_bw_table(xhci
, virt_dev
, old_active_eps
)) {
1960 xhci_warn(xhci
, "Not enough bandwidth on HS bus for "
1961 "newly activated TT.\n");
1964 xhci_dbg(xhci
, "Recalculating BW for TT slot %u port %u\n",
1965 virt_dev
->tt_info
->slot_id
,
1966 virt_dev
->tt_info
->ttport
);
1968 xhci_dbg(xhci
, "Recalculating BW for rootport %u\n",
1969 virt_dev
->real_port
);
1972 /* Add in how much bandwidth will be used for interval zero, or the
1973 * rounded max ESIT payload + number of packets * largest overhead.
1975 bw_used
= DIV_ROUND_UP(bw_table
->interval0_esit_payload
, block_size
) +
1976 bw_table
->interval_bw
[0].num_packets
*
1977 xhci_get_largest_overhead(&bw_table
->interval_bw
[0]);
1979 for (i
= 1; i
< XHCI_MAX_INTERVAL
; i
++) {
1980 unsigned int bw_added
;
1981 unsigned int largest_mps
;
1982 unsigned int interval_overhead
;
1985 * How many packets could we transmit in this interval?
1986 * If packets didn't fit in the previous interval, we will need
1987 * to transmit that many packets twice within this interval.
1989 packets_remaining
= 2 * packets_remaining
+
1990 bw_table
->interval_bw
[i
].num_packets
;
1992 /* Find the largest max packet size of this or the previous
1995 if (list_empty(&bw_table
->interval_bw
[i
].endpoints
))
1998 struct xhci_virt_ep
*virt_ep
;
1999 struct list_head
*ep_entry
;
2001 ep_entry
= bw_table
->interval_bw
[i
].endpoints
.next
;
2002 virt_ep
= list_entry(ep_entry
,
2003 struct xhci_virt_ep
, bw_endpoint_list
);
2004 /* Convert to blocks, rounding up */
2005 largest_mps
= DIV_ROUND_UP(
2006 virt_ep
->bw_info
.max_packet_size
,
2009 if (largest_mps
> packet_size
)
2010 packet_size
= largest_mps
;
2012 /* Use the larger overhead of this or the previous interval. */
2013 interval_overhead
= xhci_get_largest_overhead(
2014 &bw_table
->interval_bw
[i
]);
2015 if (interval_overhead
> overhead
)
2016 overhead
= interval_overhead
;
2018 /* How many packets can we evenly distribute across
2019 * (1 << (i + 1)) possible scheduling opportunities?
2021 packets_transmitted
= packets_remaining
>> (i
+ 1);
2023 /* Add in the bandwidth used for those scheduled packets */
2024 bw_added
= packets_transmitted
* (overhead
+ packet_size
);
2026 /* How many packets do we have remaining to transmit? */
2027 packets_remaining
= packets_remaining
% (1 << (i
+ 1));
2029 /* What largest max packet size should those packets have? */
2030 /* If we've transmitted all packets, don't carry over the
2031 * largest packet size.
2033 if (packets_remaining
== 0) {
2036 } else if (packets_transmitted
> 0) {
2037 /* Otherwise if we do have remaining packets, and we've
2038 * scheduled some packets in this interval, take the
2039 * largest max packet size from endpoints with this
2042 packet_size
= largest_mps
;
2043 overhead
= interval_overhead
;
2045 /* Otherwise carry over packet_size and overhead from the last
2046 * time we had a remainder.
2048 bw_used
+= bw_added
;
2049 if (bw_used
> max_bandwidth
) {
2050 xhci_warn(xhci
, "Not enough bandwidth. "
2051 "Proposed: %u, Max: %u\n",
2052 bw_used
, max_bandwidth
);
2057 * Ok, we know we have some packets left over after even-handedly
2058 * scheduling interval 15. We don't know which microframes they will
2059 * fit into, so we over-schedule and say they will be scheduled every
2062 if (packets_remaining
> 0)
2063 bw_used
+= overhead
+ packet_size
;
2065 if (!virt_dev
->tt_info
&& virt_dev
->udev
->speed
== USB_SPEED_HIGH
) {
2066 unsigned int port_index
= virt_dev
->real_port
- 1;
2068 /* OK, we're manipulating a HS device attached to a
2069 * root port bandwidth domain. Include the number of active TTs
2070 * in the bandwidth used.
2072 bw_used
+= TT_HS_OVERHEAD
*
2073 xhci
->rh_bw
[port_index
].num_active_tts
;
2076 xhci_dbg(xhci
, "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2077 "Available: %u " "percent\n",
2078 bw_used
, max_bandwidth
, bw_reserved
,
2079 (max_bandwidth
- bw_used
- bw_reserved
) * 100 /
2082 bw_used
+= bw_reserved
;
2083 if (bw_used
> max_bandwidth
) {
2084 xhci_warn(xhci
, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2085 bw_used
, max_bandwidth
);
2089 bw_table
->bw_used
= bw_used
;
2093 static bool xhci_is_async_ep(unsigned int ep_type
)
2095 return (ep_type
!= ISOC_OUT_EP
&& ep_type
!= INT_OUT_EP
&&
2096 ep_type
!= ISOC_IN_EP
&&
2097 ep_type
!= INT_IN_EP
);
2100 static bool xhci_is_sync_in_ep(unsigned int ep_type
)
2102 return (ep_type
== ISOC_IN_EP
|| ep_type
!= INT_IN_EP
);
2105 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info
*ep_bw
)
2107 unsigned int mps
= DIV_ROUND_UP(ep_bw
->max_packet_size
, SS_BLOCK
);
2109 if (ep_bw
->ep_interval
== 0)
2110 return SS_OVERHEAD_BURST
+
2111 (ep_bw
->mult
* ep_bw
->num_packets
*
2112 (SS_OVERHEAD
+ mps
));
2113 return DIV_ROUND_UP(ep_bw
->mult
* ep_bw
->num_packets
*
2114 (SS_OVERHEAD
+ mps
+ SS_OVERHEAD_BURST
),
2115 1 << ep_bw
->ep_interval
);
2119 void xhci_drop_ep_from_interval_table(struct xhci_hcd
*xhci
,
2120 struct xhci_bw_info
*ep_bw
,
2121 struct xhci_interval_bw_table
*bw_table
,
2122 struct usb_device
*udev
,
2123 struct xhci_virt_ep
*virt_ep
,
2124 struct xhci_tt_bw_info
*tt_info
)
2126 struct xhci_interval_bw
*interval_bw
;
2127 int normalized_interval
;
2129 if (xhci_is_async_ep(ep_bw
->type
))
2132 if (udev
->speed
== USB_SPEED_SUPER
) {
2133 if (xhci_is_sync_in_ep(ep_bw
->type
))
2134 xhci
->devs
[udev
->slot_id
]->bw_table
->ss_bw_in
-=
2135 xhci_get_ss_bw_consumed(ep_bw
);
2137 xhci
->devs
[udev
->slot_id
]->bw_table
->ss_bw_out
-=
2138 xhci_get_ss_bw_consumed(ep_bw
);
2142 /* SuperSpeed endpoints never get added to intervals in the table, so
2143 * this check is only valid for HS/FS/LS devices.
2145 if (list_empty(&virt_ep
->bw_endpoint_list
))
2147 /* For LS/FS devices, we need to translate the interval expressed in
2148 * microframes to frames.
2150 if (udev
->speed
== USB_SPEED_HIGH
)
2151 normalized_interval
= ep_bw
->ep_interval
;
2153 normalized_interval
= ep_bw
->ep_interval
- 3;
2155 if (normalized_interval
== 0)
2156 bw_table
->interval0_esit_payload
-= ep_bw
->max_esit_payload
;
2157 interval_bw
= &bw_table
->interval_bw
[normalized_interval
];
2158 interval_bw
->num_packets
-= ep_bw
->num_packets
;
2159 switch (udev
->speed
) {
2161 interval_bw
->overhead
[LS_OVERHEAD_TYPE
] -= 1;
2163 case USB_SPEED_FULL
:
2164 interval_bw
->overhead
[FS_OVERHEAD_TYPE
] -= 1;
2166 case USB_SPEED_HIGH
:
2167 interval_bw
->overhead
[HS_OVERHEAD_TYPE
] -= 1;
2169 case USB_SPEED_SUPER
:
2170 case USB_SPEED_UNKNOWN
:
2171 case USB_SPEED_WIRELESS
:
2172 /* Should never happen because only LS/FS/HS endpoints will get
2173 * added to the endpoint list.
2178 tt_info
->active_eps
-= 1;
2179 list_del_init(&virt_ep
->bw_endpoint_list
);
2182 static void xhci_add_ep_to_interval_table(struct xhci_hcd
*xhci
,
2183 struct xhci_bw_info
*ep_bw
,
2184 struct xhci_interval_bw_table
*bw_table
,
2185 struct usb_device
*udev
,
2186 struct xhci_virt_ep
*virt_ep
,
2187 struct xhci_tt_bw_info
*tt_info
)
2189 struct xhci_interval_bw
*interval_bw
;
2190 struct xhci_virt_ep
*smaller_ep
;
2191 int normalized_interval
;
2193 if (xhci_is_async_ep(ep_bw
->type
))
2196 if (udev
->speed
== USB_SPEED_SUPER
) {
2197 if (xhci_is_sync_in_ep(ep_bw
->type
))
2198 xhci
->devs
[udev
->slot_id
]->bw_table
->ss_bw_in
+=
2199 xhci_get_ss_bw_consumed(ep_bw
);
2201 xhci
->devs
[udev
->slot_id
]->bw_table
->ss_bw_out
+=
2202 xhci_get_ss_bw_consumed(ep_bw
);
2206 /* For LS/FS devices, we need to translate the interval expressed in
2207 * microframes to frames.
2209 if (udev
->speed
== USB_SPEED_HIGH
)
2210 normalized_interval
= ep_bw
->ep_interval
;
2212 normalized_interval
= ep_bw
->ep_interval
- 3;
2214 if (normalized_interval
== 0)
2215 bw_table
->interval0_esit_payload
+= ep_bw
->max_esit_payload
;
2216 interval_bw
= &bw_table
->interval_bw
[normalized_interval
];
2217 interval_bw
->num_packets
+= ep_bw
->num_packets
;
2218 switch (udev
->speed
) {
2220 interval_bw
->overhead
[LS_OVERHEAD_TYPE
] += 1;
2222 case USB_SPEED_FULL
:
2223 interval_bw
->overhead
[FS_OVERHEAD_TYPE
] += 1;
2225 case USB_SPEED_HIGH
:
2226 interval_bw
->overhead
[HS_OVERHEAD_TYPE
] += 1;
2228 case USB_SPEED_SUPER
:
2229 case USB_SPEED_UNKNOWN
:
2230 case USB_SPEED_WIRELESS
:
2231 /* Should never happen because only LS/FS/HS endpoints will get
2232 * added to the endpoint list.
2238 tt_info
->active_eps
+= 1;
2239 /* Insert the endpoint into the list, largest max packet size first. */
2240 list_for_each_entry(smaller_ep
, &interval_bw
->endpoints
,
2242 if (ep_bw
->max_packet_size
>=
2243 smaller_ep
->bw_info
.max_packet_size
) {
2244 /* Add the new ep before the smaller endpoint */
2245 list_add_tail(&virt_ep
->bw_endpoint_list
,
2246 &smaller_ep
->bw_endpoint_list
);
2250 /* Add the new endpoint at the end of the list. */
2251 list_add_tail(&virt_ep
->bw_endpoint_list
,
2252 &interval_bw
->endpoints
);
2255 void xhci_update_tt_active_eps(struct xhci_hcd
*xhci
,
2256 struct xhci_virt_device
*virt_dev
,
2259 struct xhci_root_port_bw_info
*rh_bw_info
;
2260 if (!virt_dev
->tt_info
)
2263 rh_bw_info
= &xhci
->rh_bw
[virt_dev
->real_port
- 1];
2264 if (old_active_eps
== 0 &&
2265 virt_dev
->tt_info
->active_eps
!= 0) {
2266 rh_bw_info
->num_active_tts
+= 1;
2267 rh_bw_info
->bw_table
.bw_used
+= TT_HS_OVERHEAD
;
2268 } else if (old_active_eps
!= 0 &&
2269 virt_dev
->tt_info
->active_eps
== 0) {
2270 rh_bw_info
->num_active_tts
-= 1;
2271 rh_bw_info
->bw_table
.bw_used
-= TT_HS_OVERHEAD
;
2275 static int xhci_reserve_bandwidth(struct xhci_hcd
*xhci
,
2276 struct xhci_virt_device
*virt_dev
,
2277 struct xhci_container_ctx
*in_ctx
)
2279 struct xhci_bw_info ep_bw_info
[31];
2281 struct xhci_input_control_ctx
*ctrl_ctx
;
2282 int old_active_eps
= 0;
2284 if (virt_dev
->tt_info
)
2285 old_active_eps
= virt_dev
->tt_info
->active_eps
;
2287 ctrl_ctx
= xhci_get_input_control_ctx(xhci
, in_ctx
);
2289 for (i
= 0; i
< 31; i
++) {
2290 if (!EP_IS_ADDED(ctrl_ctx
, i
) && !EP_IS_DROPPED(ctrl_ctx
, i
))
2293 /* Make a copy of the BW info in case we need to revert this */
2294 memcpy(&ep_bw_info
[i
], &virt_dev
->eps
[i
].bw_info
,
2295 sizeof(ep_bw_info
[i
]));
2296 /* Drop the endpoint from the interval table if the endpoint is
2297 * being dropped or changed.
2299 if (EP_IS_DROPPED(ctrl_ctx
, i
))
2300 xhci_drop_ep_from_interval_table(xhci
,
2301 &virt_dev
->eps
[i
].bw_info
,
2307 /* Overwrite the information stored in the endpoints' bw_info */
2308 xhci_update_bw_info(xhci
, virt_dev
->in_ctx
, ctrl_ctx
, virt_dev
);
2309 for (i
= 0; i
< 31; i
++) {
2310 /* Add any changed or added endpoints to the interval table */
2311 if (EP_IS_ADDED(ctrl_ctx
, i
))
2312 xhci_add_ep_to_interval_table(xhci
,
2313 &virt_dev
->eps
[i
].bw_info
,
2320 if (!xhci_check_bw_table(xhci
, virt_dev
, old_active_eps
)) {
2321 /* Ok, this fits in the bandwidth we have.
2322 * Update the number of active TTs.
2324 xhci_update_tt_active_eps(xhci
, virt_dev
, old_active_eps
);
2328 /* We don't have enough bandwidth for this, revert the stored info. */
2329 for (i
= 0; i
< 31; i
++) {
2330 if (!EP_IS_ADDED(ctrl_ctx
, i
) && !EP_IS_DROPPED(ctrl_ctx
, i
))
2333 /* Drop the new copies of any added or changed endpoints from
2334 * the interval table.
2336 if (EP_IS_ADDED(ctrl_ctx
, i
)) {
2337 xhci_drop_ep_from_interval_table(xhci
,
2338 &virt_dev
->eps
[i
].bw_info
,
2344 /* Revert the endpoint back to its old information */
2345 memcpy(&virt_dev
->eps
[i
].bw_info
, &ep_bw_info
[i
],
2346 sizeof(ep_bw_info
[i
]));
2347 /* Add any changed or dropped endpoints back into the table */
2348 if (EP_IS_DROPPED(ctrl_ctx
, i
))
2349 xhci_add_ep_to_interval_table(xhci
,
2350 &virt_dev
->eps
[i
].bw_info
,
2360 /* Issue a configure endpoint command or evaluate context command
2361 * and wait for it to finish.
2363 static int xhci_configure_endpoint(struct xhci_hcd
*xhci
,
2364 struct usb_device
*udev
,
2365 struct xhci_command
*command
,
2366 bool ctx_change
, bool must_succeed
)
2370 unsigned long flags
;
2371 struct xhci_container_ctx
*in_ctx
;
2372 struct completion
*cmd_completion
;
2374 struct xhci_virt_device
*virt_dev
;
2376 spin_lock_irqsave(&xhci
->lock
, flags
);
2377 virt_dev
= xhci
->devs
[udev
->slot_id
];
2380 in_ctx
= command
->in_ctx
;
2382 in_ctx
= virt_dev
->in_ctx
;
2384 if ((xhci
->quirks
& XHCI_EP_LIMIT_QUIRK
) &&
2385 xhci_reserve_host_resources(xhci
, in_ctx
)) {
2386 spin_unlock_irqrestore(&xhci
->lock
, flags
);
2387 xhci_warn(xhci
, "Not enough host resources, "
2388 "active endpoint contexts = %u\n",
2389 xhci
->num_active_eps
);
2392 if ((xhci
->quirks
& XHCI_SW_BW_CHECKING
) &&
2393 xhci_reserve_bandwidth(xhci
, virt_dev
, in_ctx
)) {
2394 if ((xhci
->quirks
& XHCI_EP_LIMIT_QUIRK
))
2395 xhci_free_host_resources(xhci
, in_ctx
);
2396 spin_unlock_irqrestore(&xhci
->lock
, flags
);
2397 xhci_warn(xhci
, "Not enough bandwidth\n");
2402 cmd_completion
= command
->completion
;
2403 cmd_status
= &command
->status
;
2404 command
->command_trb
= xhci
->cmd_ring
->enqueue
;
2406 /* Enqueue pointer can be left pointing to the link TRB,
2407 * we must handle that
2409 if (TRB_TYPE_LINK_LE32(command
->command_trb
->link
.control
))
2410 command
->command_trb
=
2411 xhci
->cmd_ring
->enq_seg
->next
->trbs
;
2413 list_add_tail(&command
->cmd_list
, &virt_dev
->cmd_list
);
2415 cmd_completion
= &virt_dev
->cmd_completion
;
2416 cmd_status
= &virt_dev
->cmd_status
;
2418 init_completion(cmd_completion
);
2421 ret
= xhci_queue_configure_endpoint(xhci
, in_ctx
->dma
,
2422 udev
->slot_id
, must_succeed
);
2424 ret
= xhci_queue_evaluate_context(xhci
, in_ctx
->dma
,
2428 list_del(&command
->cmd_list
);
2429 if ((xhci
->quirks
& XHCI_EP_LIMIT_QUIRK
))
2430 xhci_free_host_resources(xhci
, in_ctx
);
2431 spin_unlock_irqrestore(&xhci
->lock
, flags
);
2432 xhci_dbg(xhci
, "FIXME allocate a new ring segment\n");
2435 xhci_ring_cmd_db(xhci
);
2436 spin_unlock_irqrestore(&xhci
->lock
, flags
);
2438 /* Wait for the configure endpoint command to complete */
2439 timeleft
= wait_for_completion_interruptible_timeout(
2441 USB_CTRL_SET_TIMEOUT
);
2442 if (timeleft
<= 0) {
2443 xhci_warn(xhci
, "%s while waiting for %s command\n",
2444 timeleft
== 0 ? "Timeout" : "Signal",
2446 "configure endpoint" :
2447 "evaluate context");
2448 /* FIXME cancel the configure endpoint command */
2453 ret
= xhci_configure_endpoint_result(xhci
, udev
, cmd_status
);
2455 ret
= xhci_evaluate_context_result(xhci
, udev
, cmd_status
);
2457 if ((xhci
->quirks
& XHCI_EP_LIMIT_QUIRK
)) {
2458 spin_lock_irqsave(&xhci
->lock
, flags
);
2459 /* If the command failed, remove the reserved resources.
2460 * Otherwise, clean up the estimate to include dropped eps.
2463 xhci_free_host_resources(xhci
, in_ctx
);
2465 xhci_finish_resource_reservation(xhci
, in_ctx
);
2466 spin_unlock_irqrestore(&xhci
->lock
, flags
);
2471 /* Called after one or more calls to xhci_add_endpoint() or
2472 * xhci_drop_endpoint(). If this call fails, the USB core is expected
2473 * to call xhci_reset_bandwidth().
2475 * Since we are in the middle of changing either configuration or
2476 * installing a new alt setting, the USB core won't allow URBs to be
2477 * enqueued for any endpoint on the old config or interface. Nothing
2478 * else should be touching the xhci->devs[slot_id] structure, so we
2479 * don't need to take the xhci->lock for manipulating that.
2481 int xhci_check_bandwidth(struct usb_hcd
*hcd
, struct usb_device
*udev
)
2485 struct xhci_hcd
*xhci
;
2486 struct xhci_virt_device
*virt_dev
;
2487 struct xhci_input_control_ctx
*ctrl_ctx
;
2488 struct xhci_slot_ctx
*slot_ctx
;
2490 ret
= xhci_check_args(hcd
, udev
, NULL
, 0, true, __func__
);
2493 xhci
= hcd_to_xhci(hcd
);
2494 if (xhci
->xhc_state
& XHCI_STATE_DYING
)
2497 xhci_dbg(xhci
, "%s called for udev %p\n", __func__
, udev
);
2498 virt_dev
= xhci
->devs
[udev
->slot_id
];
2500 /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2501 ctrl_ctx
= xhci_get_input_control_ctx(xhci
, virt_dev
->in_ctx
);
2502 ctrl_ctx
->add_flags
|= cpu_to_le32(SLOT_FLAG
);
2503 ctrl_ctx
->add_flags
&= cpu_to_le32(~EP0_FLAG
);
2504 ctrl_ctx
->drop_flags
&= cpu_to_le32(~(SLOT_FLAG
| EP0_FLAG
));
2506 /* Don't issue the command if there's no endpoints to update. */
2507 if (ctrl_ctx
->add_flags
== cpu_to_le32(SLOT_FLAG
) &&
2508 ctrl_ctx
->drop_flags
== 0)
2511 xhci_dbg(xhci
, "New Input Control Context:\n");
2512 slot_ctx
= xhci_get_slot_ctx(xhci
, virt_dev
->in_ctx
);
2513 xhci_dbg_ctx(xhci
, virt_dev
->in_ctx
,
2514 LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx
->dev_info
)));
2516 ret
= xhci_configure_endpoint(xhci
, udev
, NULL
,
2519 /* Callee should call reset_bandwidth() */
2523 xhci_dbg(xhci
, "Output context after successful config ep cmd:\n");
2524 xhci_dbg_ctx(xhci
, virt_dev
->out_ctx
,
2525 LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx
->dev_info
)));
2527 /* Free any rings that were dropped, but not changed. */
2528 for (i
= 1; i
< 31; ++i
) {
2529 if ((le32_to_cpu(ctrl_ctx
->drop_flags
) & (1 << (i
+ 1))) &&
2530 !(le32_to_cpu(ctrl_ctx
->add_flags
) & (1 << (i
+ 1))))
2531 xhci_free_or_cache_endpoint_ring(xhci
, virt_dev
, i
);
2533 xhci_zero_in_ctx(xhci
, virt_dev
);
2535 * Install any rings for completely new endpoints or changed endpoints,
2536 * and free or cache any old rings from changed endpoints.
2538 for (i
= 1; i
< 31; ++i
) {
2539 if (!virt_dev
->eps
[i
].new_ring
)
2541 /* Only cache or free the old ring if it exists.
2542 * It may not if this is the first add of an endpoint.
2544 if (virt_dev
->eps
[i
].ring
) {
2545 xhci_free_or_cache_endpoint_ring(xhci
, virt_dev
, i
);
2547 virt_dev
->eps
[i
].ring
= virt_dev
->eps
[i
].new_ring
;
2548 virt_dev
->eps
[i
].new_ring
= NULL
;
2554 void xhci_reset_bandwidth(struct usb_hcd
*hcd
, struct usb_device
*udev
)
2556 struct xhci_hcd
*xhci
;
2557 struct xhci_virt_device
*virt_dev
;
2560 ret
= xhci_check_args(hcd
, udev
, NULL
, 0, true, __func__
);
2563 xhci
= hcd_to_xhci(hcd
);
2565 xhci_dbg(xhci
, "%s called for udev %p\n", __func__
, udev
);
2566 virt_dev
= xhci
->devs
[udev
->slot_id
];
2567 /* Free any rings allocated for added endpoints */
2568 for (i
= 0; i
< 31; ++i
) {
2569 if (virt_dev
->eps
[i
].new_ring
) {
2570 xhci_ring_free(xhci
, virt_dev
->eps
[i
].new_ring
);
2571 virt_dev
->eps
[i
].new_ring
= NULL
;
2574 xhci_zero_in_ctx(xhci
, virt_dev
);
2577 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd
*xhci
,
2578 struct xhci_container_ctx
*in_ctx
,
2579 struct xhci_container_ctx
*out_ctx
,
2580 u32 add_flags
, u32 drop_flags
)
2582 struct xhci_input_control_ctx
*ctrl_ctx
;
2583 ctrl_ctx
= xhci_get_input_control_ctx(xhci
, in_ctx
);
2584 ctrl_ctx
->add_flags
= cpu_to_le32(add_flags
);
2585 ctrl_ctx
->drop_flags
= cpu_to_le32(drop_flags
);
2586 xhci_slot_copy(xhci
, in_ctx
, out_ctx
);
2587 ctrl_ctx
->add_flags
|= cpu_to_le32(SLOT_FLAG
);
2589 xhci_dbg(xhci
, "Input Context:\n");
2590 xhci_dbg_ctx(xhci
, in_ctx
, xhci_last_valid_endpoint(add_flags
));
2593 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd
*xhci
,
2594 unsigned int slot_id
, unsigned int ep_index
,
2595 struct xhci_dequeue_state
*deq_state
)
2597 struct xhci_container_ctx
*in_ctx
;
2598 struct xhci_ep_ctx
*ep_ctx
;
2602 xhci_endpoint_copy(xhci
, xhci
->devs
[slot_id
]->in_ctx
,
2603 xhci
->devs
[slot_id
]->out_ctx
, ep_index
);
2604 in_ctx
= xhci
->devs
[slot_id
]->in_ctx
;
2605 ep_ctx
= xhci_get_ep_ctx(xhci
, in_ctx
, ep_index
);
2606 addr
= xhci_trb_virt_to_dma(deq_state
->new_deq_seg
,
2607 deq_state
->new_deq_ptr
);
2609 xhci_warn(xhci
, "WARN Cannot submit config ep after "
2610 "reset ep command\n");
2611 xhci_warn(xhci
, "WARN deq seg = %p, deq ptr = %p\n",
2612 deq_state
->new_deq_seg
,
2613 deq_state
->new_deq_ptr
);
2616 ep_ctx
->deq
= cpu_to_le64(addr
| deq_state
->new_cycle_state
);
2618 added_ctxs
= xhci_get_endpoint_flag_from_index(ep_index
);
2619 xhci_setup_input_ctx_for_config_ep(xhci
, xhci
->devs
[slot_id
]->in_ctx
,
2620 xhci
->devs
[slot_id
]->out_ctx
, added_ctxs
, added_ctxs
);
2623 void xhci_cleanup_stalled_ring(struct xhci_hcd
*xhci
,
2624 struct usb_device
*udev
, unsigned int ep_index
)
2626 struct xhci_dequeue_state deq_state
;
2627 struct xhci_virt_ep
*ep
;
2629 xhci_dbg(xhci
, "Cleaning up stalled endpoint ring\n");
2630 ep
= &xhci
->devs
[udev
->slot_id
]->eps
[ep_index
];
2631 /* We need to move the HW's dequeue pointer past this TD,
2632 * or it will attempt to resend it on the next doorbell ring.
2634 xhci_find_new_dequeue_state(xhci
, udev
->slot_id
,
2635 ep_index
, ep
->stopped_stream
, ep
->stopped_td
,
2638 /* HW with the reset endpoint quirk will use the saved dequeue state to
2639 * issue a configure endpoint command later.
2641 if (!(xhci
->quirks
& XHCI_RESET_EP_QUIRK
)) {
2642 xhci_dbg(xhci
, "Queueing new dequeue state\n");
2643 xhci_queue_new_dequeue_state(xhci
, udev
->slot_id
,
2644 ep_index
, ep
->stopped_stream
, &deq_state
);
2646 /* Better hope no one uses the input context between now and the
2647 * reset endpoint completion!
2648 * XXX: No idea how this hardware will react when stream rings
2651 xhci_dbg(xhci
, "Setting up input context for "
2652 "configure endpoint command\n");
2653 xhci_setup_input_ctx_for_quirk(xhci
, udev
->slot_id
,
2654 ep_index
, &deq_state
);
2658 /* Deal with stalled endpoints. The core should have sent the control message
2659 * to clear the halt condition. However, we need to make the xHCI hardware
2660 * reset its sequence number, since a device will expect a sequence number of
2661 * zero after the halt condition is cleared.
2662 * Context: in_interrupt
2664 void xhci_endpoint_reset(struct usb_hcd
*hcd
,
2665 struct usb_host_endpoint
*ep
)
2667 struct xhci_hcd
*xhci
;
2668 struct usb_device
*udev
;
2669 unsigned int ep_index
;
2670 unsigned long flags
;
2672 struct xhci_virt_ep
*virt_ep
;
2674 xhci
= hcd_to_xhci(hcd
);
2675 udev
= (struct usb_device
*) ep
->hcpriv
;
2676 /* Called with a root hub endpoint (or an endpoint that wasn't added
2677 * with xhci_add_endpoint()
2681 ep_index
= xhci_get_endpoint_index(&ep
->desc
);
2682 virt_ep
= &xhci
->devs
[udev
->slot_id
]->eps
[ep_index
];
2683 if (!virt_ep
->stopped_td
) {
2684 xhci_dbg(xhci
, "Endpoint 0x%x not halted, refusing to reset.\n",
2685 ep
->desc
.bEndpointAddress
);
2688 if (usb_endpoint_xfer_control(&ep
->desc
)) {
2689 xhci_dbg(xhci
, "Control endpoint stall already handled.\n");
2693 xhci_dbg(xhci
, "Queueing reset endpoint command\n");
2694 spin_lock_irqsave(&xhci
->lock
, flags
);
2695 ret
= xhci_queue_reset_ep(xhci
, udev
->slot_id
, ep_index
);
2697 * Can't change the ring dequeue pointer until it's transitioned to the
2698 * stopped state, which is only upon a successful reset endpoint
2699 * command. Better hope that last command worked!
2702 xhci_cleanup_stalled_ring(xhci
, udev
, ep_index
);
2703 kfree(virt_ep
->stopped_td
);
2704 xhci_ring_cmd_db(xhci
);
2706 virt_ep
->stopped_td
= NULL
;
2707 virt_ep
->stopped_trb
= NULL
;
2708 virt_ep
->stopped_stream
= 0;
2709 spin_unlock_irqrestore(&xhci
->lock
, flags
);
2712 xhci_warn(xhci
, "FIXME allocate a new ring segment\n");
2715 static int xhci_check_streams_endpoint(struct xhci_hcd
*xhci
,
2716 struct usb_device
*udev
, struct usb_host_endpoint
*ep
,
2717 unsigned int slot_id
)
2720 unsigned int ep_index
;
2721 unsigned int ep_state
;
2725 ret
= xhci_check_args(xhci_to_hcd(xhci
), udev
, ep
, 1, true, __func__
);
2728 if (ep
->ss_ep_comp
.bmAttributes
== 0) {
2729 xhci_warn(xhci
, "WARN: SuperSpeed Endpoint Companion"
2730 " descriptor for ep 0x%x does not support streams\n",
2731 ep
->desc
.bEndpointAddress
);
2735 ep_index
= xhci_get_endpoint_index(&ep
->desc
);
2736 ep_state
= xhci
->devs
[slot_id
]->eps
[ep_index
].ep_state
;
2737 if (ep_state
& EP_HAS_STREAMS
||
2738 ep_state
& EP_GETTING_STREAMS
) {
2739 xhci_warn(xhci
, "WARN: SuperSpeed bulk endpoint 0x%x "
2740 "already has streams set up.\n",
2741 ep
->desc
.bEndpointAddress
);
2742 xhci_warn(xhci
, "Send email to xHCI maintainer and ask for "
2743 "dynamic stream context array reallocation.\n");
2746 if (!list_empty(&xhci
->devs
[slot_id
]->eps
[ep_index
].ring
->td_list
)) {
2747 xhci_warn(xhci
, "Cannot setup streams for SuperSpeed bulk "
2748 "endpoint 0x%x; URBs are pending.\n",
2749 ep
->desc
.bEndpointAddress
);
2755 static void xhci_calculate_streams_entries(struct xhci_hcd
*xhci
,
2756 unsigned int *num_streams
, unsigned int *num_stream_ctxs
)
2758 unsigned int max_streams
;
2760 /* The stream context array size must be a power of two */
2761 *num_stream_ctxs
= roundup_pow_of_two(*num_streams
);
2763 * Find out how many primary stream array entries the host controller
2764 * supports. Later we may use secondary stream arrays (similar to 2nd
2765 * level page entries), but that's an optional feature for xHCI host
2766 * controllers. xHCs must support at least 4 stream IDs.
2768 max_streams
= HCC_MAX_PSA(xhci
->hcc_params
);
2769 if (*num_stream_ctxs
> max_streams
) {
2770 xhci_dbg(xhci
, "xHCI HW only supports %u stream ctx entries.\n",
2772 *num_stream_ctxs
= max_streams
;
2773 *num_streams
= max_streams
;
2777 /* Returns an error code if one of the endpoint already has streams.
2778 * This does not change any data structures, it only checks and gathers
2781 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd
*xhci
,
2782 struct usb_device
*udev
,
2783 struct usb_host_endpoint
**eps
, unsigned int num_eps
,
2784 unsigned int *num_streams
, u32
*changed_ep_bitmask
)
2786 unsigned int max_streams
;
2787 unsigned int endpoint_flag
;
2791 for (i
= 0; i
< num_eps
; i
++) {
2792 ret
= xhci_check_streams_endpoint(xhci
, udev
,
2793 eps
[i
], udev
->slot_id
);
2797 max_streams
= USB_SS_MAX_STREAMS(
2798 eps
[i
]->ss_ep_comp
.bmAttributes
);
2799 if (max_streams
< (*num_streams
- 1)) {
2800 xhci_dbg(xhci
, "Ep 0x%x only supports %u stream IDs.\n",
2801 eps
[i
]->desc
.bEndpointAddress
,
2803 *num_streams
= max_streams
+1;
2806 endpoint_flag
= xhci_get_endpoint_flag(&eps
[i
]->desc
);
2807 if (*changed_ep_bitmask
& endpoint_flag
)
2809 *changed_ep_bitmask
|= endpoint_flag
;
2814 static u32
xhci_calculate_no_streams_bitmask(struct xhci_hcd
*xhci
,
2815 struct usb_device
*udev
,
2816 struct usb_host_endpoint
**eps
, unsigned int num_eps
)
2818 u32 changed_ep_bitmask
= 0;
2819 unsigned int slot_id
;
2820 unsigned int ep_index
;
2821 unsigned int ep_state
;
2824 slot_id
= udev
->slot_id
;
2825 if (!xhci
->devs
[slot_id
])
2828 for (i
= 0; i
< num_eps
; i
++) {
2829 ep_index
= xhci_get_endpoint_index(&eps
[i
]->desc
);
2830 ep_state
= xhci
->devs
[slot_id
]->eps
[ep_index
].ep_state
;
2831 /* Are streams already being freed for the endpoint? */
2832 if (ep_state
& EP_GETTING_NO_STREAMS
) {
2833 xhci_warn(xhci
, "WARN Can't disable streams for "
2835 "streams are being disabled already.",
2836 eps
[i
]->desc
.bEndpointAddress
);
2839 /* Are there actually any streams to free? */
2840 if (!(ep_state
& EP_HAS_STREAMS
) &&
2841 !(ep_state
& EP_GETTING_STREAMS
)) {
2842 xhci_warn(xhci
, "WARN Can't disable streams for "
2844 "streams are already disabled!",
2845 eps
[i
]->desc
.bEndpointAddress
);
2846 xhci_warn(xhci
, "WARN xhci_free_streams() called "
2847 "with non-streams endpoint\n");
2850 changed_ep_bitmask
|= xhci_get_endpoint_flag(&eps
[i
]->desc
);
2852 return changed_ep_bitmask
;
2856 * The USB device drivers use this function (though the HCD interface in USB
2857 * core) to prepare a set of bulk endpoints to use streams. Streams are used to
2858 * coordinate mass storage command queueing across multiple endpoints (basically
2859 * a stream ID == a task ID).
2861 * Setting up streams involves allocating the same size stream context array
2862 * for each endpoint and issuing a configure endpoint command for all endpoints.
2864 * Don't allow the call to succeed if one endpoint only supports one stream
2865 * (which means it doesn't support streams at all).
2867 * Drivers may get less stream IDs than they asked for, if the host controller
2868 * hardware or endpoints claim they can't support the number of requested
2871 int xhci_alloc_streams(struct usb_hcd
*hcd
, struct usb_device
*udev
,
2872 struct usb_host_endpoint
**eps
, unsigned int num_eps
,
2873 unsigned int num_streams
, gfp_t mem_flags
)
2876 struct xhci_hcd
*xhci
;
2877 struct xhci_virt_device
*vdev
;
2878 struct xhci_command
*config_cmd
;
2879 unsigned int ep_index
;
2880 unsigned int num_stream_ctxs
;
2881 unsigned long flags
;
2882 u32 changed_ep_bitmask
= 0;
2887 /* Add one to the number of streams requested to account for
2888 * stream 0 that is reserved for xHCI usage.
2891 xhci
= hcd_to_xhci(hcd
);
2892 xhci_dbg(xhci
, "Driver wants %u stream IDs (including stream 0).\n",
2895 config_cmd
= xhci_alloc_command(xhci
, true, true, mem_flags
);
2897 xhci_dbg(xhci
, "Could not allocate xHCI command structure.\n");
2901 /* Check to make sure all endpoints are not already configured for
2902 * streams. While we're at it, find the maximum number of streams that
2903 * all the endpoints will support and check for duplicate endpoints.
2905 spin_lock_irqsave(&xhci
->lock
, flags
);
2906 ret
= xhci_calculate_streams_and_bitmask(xhci
, udev
, eps
,
2907 num_eps
, &num_streams
, &changed_ep_bitmask
);
2909 xhci_free_command(xhci
, config_cmd
);
2910 spin_unlock_irqrestore(&xhci
->lock
, flags
);
2913 if (num_streams
<= 1) {
2914 xhci_warn(xhci
, "WARN: endpoints can't handle "
2915 "more than one stream.\n");
2916 xhci_free_command(xhci
, config_cmd
);
2917 spin_unlock_irqrestore(&xhci
->lock
, flags
);
2920 vdev
= xhci
->devs
[udev
->slot_id
];
2921 /* Mark each endpoint as being in transition, so
2922 * xhci_urb_enqueue() will reject all URBs.
2924 for (i
= 0; i
< num_eps
; i
++) {
2925 ep_index
= xhci_get_endpoint_index(&eps
[i
]->desc
);
2926 vdev
->eps
[ep_index
].ep_state
|= EP_GETTING_STREAMS
;
2928 spin_unlock_irqrestore(&xhci
->lock
, flags
);
2930 /* Setup internal data structures and allocate HW data structures for
2931 * streams (but don't install the HW structures in the input context
2932 * until we're sure all memory allocation succeeded).
2934 xhci_calculate_streams_entries(xhci
, &num_streams
, &num_stream_ctxs
);
2935 xhci_dbg(xhci
, "Need %u stream ctx entries for %u stream IDs.\n",
2936 num_stream_ctxs
, num_streams
);
2938 for (i
= 0; i
< num_eps
; i
++) {
2939 ep_index
= xhci_get_endpoint_index(&eps
[i
]->desc
);
2940 vdev
->eps
[ep_index
].stream_info
= xhci_alloc_stream_info(xhci
,
2942 num_streams
, mem_flags
);
2943 if (!vdev
->eps
[ep_index
].stream_info
)
2945 /* Set maxPstreams in endpoint context and update deq ptr to
2946 * point to stream context array. FIXME
2950 /* Set up the input context for a configure endpoint command. */
2951 for (i
= 0; i
< num_eps
; i
++) {
2952 struct xhci_ep_ctx
*ep_ctx
;
2954 ep_index
= xhci_get_endpoint_index(&eps
[i
]->desc
);
2955 ep_ctx
= xhci_get_ep_ctx(xhci
, config_cmd
->in_ctx
, ep_index
);
2957 xhci_endpoint_copy(xhci
, config_cmd
->in_ctx
,
2958 vdev
->out_ctx
, ep_index
);
2959 xhci_setup_streams_ep_input_ctx(xhci
, ep_ctx
,
2960 vdev
->eps
[ep_index
].stream_info
);
2962 /* Tell the HW to drop its old copy of the endpoint context info
2963 * and add the updated copy from the input context.
2965 xhci_setup_input_ctx_for_config_ep(xhci
, config_cmd
->in_ctx
,
2966 vdev
->out_ctx
, changed_ep_bitmask
, changed_ep_bitmask
);
2968 /* Issue and wait for the configure endpoint command */
2969 ret
= xhci_configure_endpoint(xhci
, udev
, config_cmd
,
2972 /* xHC rejected the configure endpoint command for some reason, so we
2973 * leave the old ring intact and free our internal streams data
2979 spin_lock_irqsave(&xhci
->lock
, flags
);
2980 for (i
= 0; i
< num_eps
; i
++) {
2981 ep_index
= xhci_get_endpoint_index(&eps
[i
]->desc
);
2982 vdev
->eps
[ep_index
].ep_state
&= ~EP_GETTING_STREAMS
;
2983 xhci_dbg(xhci
, "Slot %u ep ctx %u now has streams.\n",
2984 udev
->slot_id
, ep_index
);
2985 vdev
->eps
[ep_index
].ep_state
|= EP_HAS_STREAMS
;
2987 xhci_free_command(xhci
, config_cmd
);
2988 spin_unlock_irqrestore(&xhci
->lock
, flags
);
2990 /* Subtract 1 for stream 0, which drivers can't use */
2991 return num_streams
- 1;
2994 /* If it didn't work, free the streams! */
2995 for (i
= 0; i
< num_eps
; i
++) {
2996 ep_index
= xhci_get_endpoint_index(&eps
[i
]->desc
);
2997 xhci_free_stream_info(xhci
, vdev
->eps
[ep_index
].stream_info
);
2998 vdev
->eps
[ep_index
].stream_info
= NULL
;
2999 /* FIXME Unset maxPstreams in endpoint context and
3000 * update deq ptr to point to normal string ring.
3002 vdev
->eps
[ep_index
].ep_state
&= ~EP_GETTING_STREAMS
;
3003 vdev
->eps
[ep_index
].ep_state
&= ~EP_HAS_STREAMS
;
3004 xhci_endpoint_zero(xhci
, vdev
, eps
[i
]);
3006 xhci_free_command(xhci
, config_cmd
);
3010 /* Transition the endpoint from using streams to being a "normal" endpoint
3013 * Modify the endpoint context state, submit a configure endpoint command,
3014 * and free all endpoint rings for streams if that completes successfully.
3016 int xhci_free_streams(struct usb_hcd
*hcd
, struct usb_device
*udev
,
3017 struct usb_host_endpoint
**eps
, unsigned int num_eps
,
3021 struct xhci_hcd
*xhci
;
3022 struct xhci_virt_device
*vdev
;
3023 struct xhci_command
*command
;
3024 unsigned int ep_index
;
3025 unsigned long flags
;
3026 u32 changed_ep_bitmask
;
3028 xhci
= hcd_to_xhci(hcd
);
3029 vdev
= xhci
->devs
[udev
->slot_id
];
3031 /* Set up a configure endpoint command to remove the streams rings */
3032 spin_lock_irqsave(&xhci
->lock
, flags
);
3033 changed_ep_bitmask
= xhci_calculate_no_streams_bitmask(xhci
,
3034 udev
, eps
, num_eps
);
3035 if (changed_ep_bitmask
== 0) {
3036 spin_unlock_irqrestore(&xhci
->lock
, flags
);
3040 /* Use the xhci_command structure from the first endpoint. We may have
3041 * allocated too many, but the driver may call xhci_free_streams() for
3042 * each endpoint it grouped into one call to xhci_alloc_streams().
3044 ep_index
= xhci_get_endpoint_index(&eps
[0]->desc
);
3045 command
= vdev
->eps
[ep_index
].stream_info
->free_streams_command
;
3046 for (i
= 0; i
< num_eps
; i
++) {
3047 struct xhci_ep_ctx
*ep_ctx
;
3049 ep_index
= xhci_get_endpoint_index(&eps
[i
]->desc
);
3050 ep_ctx
= xhci_get_ep_ctx(xhci
, command
->in_ctx
, ep_index
);
3051 xhci
->devs
[udev
->slot_id
]->eps
[ep_index
].ep_state
|=
3052 EP_GETTING_NO_STREAMS
;
3054 xhci_endpoint_copy(xhci
, command
->in_ctx
,
3055 vdev
->out_ctx
, ep_index
);
3056 xhci_setup_no_streams_ep_input_ctx(xhci
, ep_ctx
,
3057 &vdev
->eps
[ep_index
]);
3059 xhci_setup_input_ctx_for_config_ep(xhci
, command
->in_ctx
,
3060 vdev
->out_ctx
, changed_ep_bitmask
, changed_ep_bitmask
);
3061 spin_unlock_irqrestore(&xhci
->lock
, flags
);
3063 /* Issue and wait for the configure endpoint command,
3064 * which must succeed.
3066 ret
= xhci_configure_endpoint(xhci
, udev
, command
,
3069 /* xHC rejected the configure endpoint command for some reason, so we
3070 * leave the streams rings intact.
3075 spin_lock_irqsave(&xhci
->lock
, flags
);
3076 for (i
= 0; i
< num_eps
; i
++) {
3077 ep_index
= xhci_get_endpoint_index(&eps
[i
]->desc
);
3078 xhci_free_stream_info(xhci
, vdev
->eps
[ep_index
].stream_info
);
3079 vdev
->eps
[ep_index
].stream_info
= NULL
;
3080 /* FIXME Unset maxPstreams in endpoint context and
3081 * update deq ptr to point to normal string ring.
3083 vdev
->eps
[ep_index
].ep_state
&= ~EP_GETTING_NO_STREAMS
;
3084 vdev
->eps
[ep_index
].ep_state
&= ~EP_HAS_STREAMS
;
3086 spin_unlock_irqrestore(&xhci
->lock
, flags
);
3092 * Deletes endpoint resources for endpoints that were active before a Reset
3093 * Device command, or a Disable Slot command. The Reset Device command leaves
3094 * the control endpoint intact, whereas the Disable Slot command deletes it.
3096 * Must be called with xhci->lock held.
3098 void xhci_free_device_endpoint_resources(struct xhci_hcd
*xhci
,
3099 struct xhci_virt_device
*virt_dev
, bool drop_control_ep
)
3102 unsigned int num_dropped_eps
= 0;
3103 unsigned int drop_flags
= 0;
3105 for (i
= (drop_control_ep
? 0 : 1); i
< 31; i
++) {
3106 if (virt_dev
->eps
[i
].ring
) {
3107 drop_flags
|= 1 << i
;
3111 xhci
->num_active_eps
-= num_dropped_eps
;
3112 if (num_dropped_eps
)
3113 xhci_dbg(xhci
, "Dropped %u ep ctxs, flags = 0x%x, "
3115 num_dropped_eps
, drop_flags
,
3116 xhci
->num_active_eps
);
3120 * This submits a Reset Device Command, which will set the device state to 0,
3121 * set the device address to 0, and disable all the endpoints except the default
3122 * control endpoint. The USB core should come back and call
3123 * xhci_address_device(), and then re-set up the configuration. If this is
3124 * called because of a usb_reset_and_verify_device(), then the old alternate
3125 * settings will be re-installed through the normal bandwidth allocation
3128 * Wait for the Reset Device command to finish. Remove all structures
3129 * associated with the endpoints that were disabled. Clear the input device
3130 * structure? Cache the rings? Reset the control endpoint 0 max packet size?
3132 * If the virt_dev to be reset does not exist or does not match the udev,
3133 * it means the device is lost, possibly due to the xHC restore error and
3134 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3135 * re-allocate the device.
3137 int xhci_discover_or_reset_device(struct usb_hcd
*hcd
, struct usb_device
*udev
)
3140 unsigned long flags
;
3141 struct xhci_hcd
*xhci
;
3142 unsigned int slot_id
;
3143 struct xhci_virt_device
*virt_dev
;
3144 struct xhci_command
*reset_device_cmd
;
3146 int last_freed_endpoint
;
3147 struct xhci_slot_ctx
*slot_ctx
;
3148 int old_active_eps
= 0;
3150 ret
= xhci_check_args(hcd
, udev
, NULL
, 0, false, __func__
);
3153 xhci
= hcd_to_xhci(hcd
);
3154 slot_id
= udev
->slot_id
;
3155 virt_dev
= xhci
->devs
[slot_id
];
3157 xhci_dbg(xhci
, "The device to be reset with slot ID %u does "
3158 "not exist. Re-allocate the device\n", slot_id
);
3159 ret
= xhci_alloc_dev(hcd
, udev
);
3166 if (virt_dev
->udev
!= udev
) {
3167 /* If the virt_dev and the udev does not match, this virt_dev
3168 * may belong to another udev.
3169 * Re-allocate the device.
3171 xhci_dbg(xhci
, "The device to be reset with slot ID %u does "
3172 "not match the udev. Re-allocate the device\n",
3174 ret
= xhci_alloc_dev(hcd
, udev
);
3181 /* If device is not setup, there is no point in resetting it */
3182 slot_ctx
= xhci_get_slot_ctx(xhci
, virt_dev
->out_ctx
);
3183 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx
->dev_state
)) ==
3184 SLOT_STATE_DISABLED
)
3187 xhci_dbg(xhci
, "Resetting device with slot ID %u\n", slot_id
);
3188 /* Allocate the command structure that holds the struct completion.
3189 * Assume we're in process context, since the normal device reset
3190 * process has to wait for the device anyway. Storage devices are
3191 * reset as part of error handling, so use GFP_NOIO instead of
3194 reset_device_cmd
= xhci_alloc_command(xhci
, false, true, GFP_NOIO
);
3195 if (!reset_device_cmd
) {
3196 xhci_dbg(xhci
, "Couldn't allocate command structure.\n");
3200 /* Attempt to submit the Reset Device command to the command ring */
3201 spin_lock_irqsave(&xhci
->lock
, flags
);
3202 reset_device_cmd
->command_trb
= xhci
->cmd_ring
->enqueue
;
3204 /* Enqueue pointer can be left pointing to the link TRB,
3205 * we must handle that
3207 if (TRB_TYPE_LINK_LE32(reset_device_cmd
->command_trb
->link
.control
))
3208 reset_device_cmd
->command_trb
=
3209 xhci
->cmd_ring
->enq_seg
->next
->trbs
;
3211 list_add_tail(&reset_device_cmd
->cmd_list
, &virt_dev
->cmd_list
);
3212 ret
= xhci_queue_reset_device(xhci
, slot_id
);
3214 xhci_dbg(xhci
, "FIXME: allocate a command ring segment\n");
3215 list_del(&reset_device_cmd
->cmd_list
);
3216 spin_unlock_irqrestore(&xhci
->lock
, flags
);
3217 goto command_cleanup
;
3219 xhci_ring_cmd_db(xhci
);
3220 spin_unlock_irqrestore(&xhci
->lock
, flags
);
3222 /* Wait for the Reset Device command to finish */
3223 timeleft
= wait_for_completion_interruptible_timeout(
3224 reset_device_cmd
->completion
,
3225 USB_CTRL_SET_TIMEOUT
);
3226 if (timeleft
<= 0) {
3227 xhci_warn(xhci
, "%s while waiting for reset device command\n",
3228 timeleft
== 0 ? "Timeout" : "Signal");
3229 spin_lock_irqsave(&xhci
->lock
, flags
);
3230 /* The timeout might have raced with the event ring handler, so
3231 * only delete from the list if the item isn't poisoned.
3233 if (reset_device_cmd
->cmd_list
.next
!= LIST_POISON1
)
3234 list_del(&reset_device_cmd
->cmd_list
);
3235 spin_unlock_irqrestore(&xhci
->lock
, flags
);
3237 goto command_cleanup
;
3240 /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3241 * unless we tried to reset a slot ID that wasn't enabled,
3242 * or the device wasn't in the addressed or configured state.
3244 ret
= reset_device_cmd
->status
;
3246 case COMP_EBADSLT
: /* 0.95 completion code for bad slot ID */
3247 case COMP_CTX_STATE
: /* 0.96 completion code for same thing */
3248 xhci_info(xhci
, "Can't reset device (slot ID %u) in %s state\n",
3250 xhci_get_slot_state(xhci
, virt_dev
->out_ctx
));
3251 xhci_info(xhci
, "Not freeing device rings.\n");
3252 /* Don't treat this as an error. May change my mind later. */
3254 goto command_cleanup
;
3256 xhci_dbg(xhci
, "Successful reset device command.\n");
3259 if (xhci_is_vendor_info_code(xhci
, ret
))
3261 xhci_warn(xhci
, "Unknown completion code %u for "
3262 "reset device command.\n", ret
);
3264 goto command_cleanup
;
3267 /* Free up host controller endpoint resources */
3268 if ((xhci
->quirks
& XHCI_EP_LIMIT_QUIRK
)) {
3269 spin_lock_irqsave(&xhci
->lock
, flags
);
3270 /* Don't delete the default control endpoint resources */
3271 xhci_free_device_endpoint_resources(xhci
, virt_dev
, false);
3272 spin_unlock_irqrestore(&xhci
->lock
, flags
);
3275 /* Everything but endpoint 0 is disabled, so free or cache the rings. */
3276 last_freed_endpoint
= 1;
3277 for (i
= 1; i
< 31; ++i
) {
3278 struct xhci_virt_ep
*ep
= &virt_dev
->eps
[i
];
3280 if (ep
->ep_state
& EP_HAS_STREAMS
) {
3281 xhci_free_stream_info(xhci
, ep
->stream_info
);
3282 ep
->stream_info
= NULL
;
3283 ep
->ep_state
&= ~EP_HAS_STREAMS
;
3287 xhci_free_or_cache_endpoint_ring(xhci
, virt_dev
, i
);
3288 last_freed_endpoint
= i
;
3290 if (!list_empty(&virt_dev
->eps
[i
].bw_endpoint_list
))
3291 xhci_drop_ep_from_interval_table(xhci
,
3292 &virt_dev
->eps
[i
].bw_info
,
3297 xhci_clear_endpoint_bw_info(&virt_dev
->eps
[i
].bw_info
);
3299 /* If necessary, update the number of active TTs on this root port */
3300 xhci_update_tt_active_eps(xhci
, virt_dev
, old_active_eps
);
3302 xhci_dbg(xhci
, "Output context after successful reset device cmd:\n");
3303 xhci_dbg_ctx(xhci
, virt_dev
->out_ctx
, last_freed_endpoint
);
3307 xhci_free_command(xhci
, reset_device_cmd
);
3312 * At this point, the struct usb_device is about to go away, the device has
3313 * disconnected, and all traffic has been stopped and the endpoints have been
3314 * disabled. Free any HC data structures associated with that device.
3316 void xhci_free_dev(struct usb_hcd
*hcd
, struct usb_device
*udev
)
3318 struct xhci_hcd
*xhci
= hcd_to_xhci(hcd
);
3319 struct xhci_virt_device
*virt_dev
;
3320 unsigned long flags
;
3324 ret
= xhci_check_args(hcd
, udev
, NULL
, 0, true, __func__
);
3325 /* If the host is halted due to driver unload, we still need to free the
3328 if (ret
<= 0 && ret
!= -ENODEV
)
3331 virt_dev
= xhci
->devs
[udev
->slot_id
];
3333 /* Stop any wayward timer functions (which may grab the lock) */
3334 for (i
= 0; i
< 31; ++i
) {
3335 virt_dev
->eps
[i
].ep_state
&= ~EP_HALT_PENDING
;
3336 del_timer_sync(&virt_dev
->eps
[i
].stop_cmd_timer
);
3339 if (udev
->usb2_hw_lpm_enabled
) {
3340 xhci_set_usb2_hardware_lpm(hcd
, udev
, 0);
3341 udev
->usb2_hw_lpm_enabled
= 0;
3344 spin_lock_irqsave(&xhci
->lock
, flags
);
3345 /* Don't disable the slot if the host controller is dead. */
3346 state
= xhci_readl(xhci
, &xhci
->op_regs
->status
);
3347 if (state
== 0xffffffff || (xhci
->xhc_state
& XHCI_STATE_DYING
) ||
3348 (xhci
->xhc_state
& XHCI_STATE_HALTED
)) {
3349 xhci_free_virt_device(xhci
, udev
->slot_id
);
3350 spin_unlock_irqrestore(&xhci
->lock
, flags
);
3354 if (xhci_queue_slot_control(xhci
, TRB_DISABLE_SLOT
, udev
->slot_id
)) {
3355 spin_unlock_irqrestore(&xhci
->lock
, flags
);
3356 xhci_dbg(xhci
, "FIXME: allocate a command ring segment\n");
3359 xhci_ring_cmd_db(xhci
);
3360 spin_unlock_irqrestore(&xhci
->lock
, flags
);
3362 * Event command completion handler will free any data structures
3363 * associated with the slot. XXX Can free sleep?
3368 * Checks if we have enough host controller resources for the default control
3371 * Must be called with xhci->lock held.
3373 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd
*xhci
)
3375 if (xhci
->num_active_eps
+ 1 > xhci
->limit_active_eps
) {
3376 xhci_dbg(xhci
, "Not enough ep ctxs: "
3377 "%u active, need to add 1, limit is %u.\n",
3378 xhci
->num_active_eps
, xhci
->limit_active_eps
);
3381 xhci
->num_active_eps
+= 1;
3382 xhci_dbg(xhci
, "Adding 1 ep ctx, %u now active.\n",
3383 xhci
->num_active_eps
);
3389 * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3390 * timed out, or allocating memory failed. Returns 1 on success.
3392 int xhci_alloc_dev(struct usb_hcd
*hcd
, struct usb_device
*udev
)
3394 struct xhci_hcd
*xhci
= hcd_to_xhci(hcd
);
3395 unsigned long flags
;
3399 spin_lock_irqsave(&xhci
->lock
, flags
);
3400 ret
= xhci_queue_slot_control(xhci
, TRB_ENABLE_SLOT
, 0);
3402 spin_unlock_irqrestore(&xhci
->lock
, flags
);
3403 xhci_dbg(xhci
, "FIXME: allocate a command ring segment\n");
3406 xhci_ring_cmd_db(xhci
);
3407 spin_unlock_irqrestore(&xhci
->lock
, flags
);
3409 /* XXX: how much time for xHC slot assignment? */
3410 timeleft
= wait_for_completion_interruptible_timeout(&xhci
->addr_dev
,
3411 USB_CTRL_SET_TIMEOUT
);
3412 if (timeleft
<= 0) {
3413 xhci_warn(xhci
, "%s while waiting for a slot\n",
3414 timeleft
== 0 ? "Timeout" : "Signal");
3415 /* FIXME cancel the enable slot request */
3419 if (!xhci
->slot_id
) {
3420 xhci_err(xhci
, "Error while assigning device slot ID\n");
3424 if ((xhci
->quirks
& XHCI_EP_LIMIT_QUIRK
)) {
3425 spin_lock_irqsave(&xhci
->lock
, flags
);
3426 ret
= xhci_reserve_host_control_ep_resources(xhci
);
3428 spin_unlock_irqrestore(&xhci
->lock
, flags
);
3429 xhci_warn(xhci
, "Not enough host resources, "
3430 "active endpoint contexts = %u\n",
3431 xhci
->num_active_eps
);
3434 spin_unlock_irqrestore(&xhci
->lock
, flags
);
3436 /* Use GFP_NOIO, since this function can be called from
3437 * xhci_discover_or_reset_device(), which may be called as part of
3438 * mass storage driver error handling.
3440 if (!xhci_alloc_virt_device(xhci
, xhci
->slot_id
, udev
, GFP_NOIO
)) {
3441 xhci_warn(xhci
, "Could not allocate xHCI USB device data structures\n");
3444 udev
->slot_id
= xhci
->slot_id
;
3445 /* Is this a LS or FS device under a HS hub? */
3446 /* Hub or peripherial? */
3450 /* Disable slot, if we can do it without mem alloc */
3451 spin_lock_irqsave(&xhci
->lock
, flags
);
3452 if (!xhci_queue_slot_control(xhci
, TRB_DISABLE_SLOT
, udev
->slot_id
))
3453 xhci_ring_cmd_db(xhci
);
3454 spin_unlock_irqrestore(&xhci
->lock
, flags
);
3459 * Issue an Address Device command (which will issue a SetAddress request to
3461 * We should be protected by the usb_address0_mutex in khubd's hub_port_init, so
3462 * we should only issue and wait on one address command at the same time.
3464 * We add one to the device address issued by the hardware because the USB core
3465 * uses address 1 for the root hubs (even though they're not really devices).
3467 int xhci_address_device(struct usb_hcd
*hcd
, struct usb_device
*udev
)
3469 unsigned long flags
;
3471 struct xhci_virt_device
*virt_dev
;
3473 struct xhci_hcd
*xhci
= hcd_to_xhci(hcd
);
3474 struct xhci_slot_ctx
*slot_ctx
;
3475 struct xhci_input_control_ctx
*ctrl_ctx
;
3478 if (!udev
->slot_id
) {
3479 xhci_dbg(xhci
, "Bad Slot ID %d\n", udev
->slot_id
);
3483 virt_dev
= xhci
->devs
[udev
->slot_id
];
3485 if (WARN_ON(!virt_dev
)) {
3487 * In plug/unplug torture test with an NEC controller,
3488 * a zero-dereference was observed once due to virt_dev = 0.
3489 * Print useful debug rather than crash if it is observed again!
3491 xhci_warn(xhci
, "Virt dev invalid for slot_id 0x%x!\n",
3496 slot_ctx
= xhci_get_slot_ctx(xhci
, virt_dev
->in_ctx
);
3498 * If this is the first Set Address since device plug-in or
3499 * virt_device realloaction after a resume with an xHCI power loss,
3500 * then set up the slot context.
3502 if (!slot_ctx
->dev_info
)
3503 xhci_setup_addressable_virt_dev(xhci
, udev
);
3504 /* Otherwise, update the control endpoint ring enqueue pointer. */
3506 xhci_copy_ep0_dequeue_into_input_ctx(xhci
, udev
);
3507 xhci_dbg(xhci
, "Slot ID %d Input Context:\n", udev
->slot_id
);
3508 xhci_dbg_ctx(xhci
, virt_dev
->in_ctx
, 2);
3510 spin_lock_irqsave(&xhci
->lock
, flags
);
3511 ret
= xhci_queue_address_device(xhci
, virt_dev
->in_ctx
->dma
,
3514 spin_unlock_irqrestore(&xhci
->lock
, flags
);
3515 xhci_dbg(xhci
, "FIXME: allocate a command ring segment\n");
3518 xhci_ring_cmd_db(xhci
);
3519 spin_unlock_irqrestore(&xhci
->lock
, flags
);
3521 /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
3522 timeleft
= wait_for_completion_interruptible_timeout(&xhci
->addr_dev
,
3523 USB_CTRL_SET_TIMEOUT
);
3524 /* FIXME: From section 4.3.4: "Software shall be responsible for timing
3525 * the SetAddress() "recovery interval" required by USB and aborting the
3526 * command on a timeout.
3528 if (timeleft
<= 0) {
3529 xhci_warn(xhci
, "%s while waiting for address device command\n",
3530 timeleft
== 0 ? "Timeout" : "Signal");
3531 /* FIXME cancel the address device command */
3535 switch (virt_dev
->cmd_status
) {
3536 case COMP_CTX_STATE
:
3538 xhci_err(xhci
, "Setup ERROR: address device command for slot %d.\n",
3543 dev_warn(&udev
->dev
, "Device not responding to set address.\n");
3547 dev_warn(&udev
->dev
, "ERROR: Incompatible device for address "
3548 "device command.\n");
3552 xhci_dbg(xhci
, "Successful Address Device command\n");
3555 xhci_err(xhci
, "ERROR: unexpected command completion "
3556 "code 0x%x.\n", virt_dev
->cmd_status
);
3557 xhci_dbg(xhci
, "Slot ID %d Output Context:\n", udev
->slot_id
);
3558 xhci_dbg_ctx(xhci
, virt_dev
->out_ctx
, 2);
3565 temp_64
= xhci_read_64(xhci
, &xhci
->op_regs
->dcbaa_ptr
);
3566 xhci_dbg(xhci
, "Op regs DCBAA ptr = %#016llx\n", temp_64
);
3567 xhci_dbg(xhci
, "Slot ID %d dcbaa entry @%p = %#016llx\n",
3569 &xhci
->dcbaa
->dev_context_ptrs
[udev
->slot_id
],
3570 (unsigned long long)
3571 le64_to_cpu(xhci
->dcbaa
->dev_context_ptrs
[udev
->slot_id
]));
3572 xhci_dbg(xhci
, "Output Context DMA address = %#08llx\n",
3573 (unsigned long long)virt_dev
->out_ctx
->dma
);
3574 xhci_dbg(xhci
, "Slot ID %d Input Context:\n", udev
->slot_id
);
3575 xhci_dbg_ctx(xhci
, virt_dev
->in_ctx
, 2);
3576 xhci_dbg(xhci
, "Slot ID %d Output Context:\n", udev
->slot_id
);
3577 xhci_dbg_ctx(xhci
, virt_dev
->out_ctx
, 2);
3579 * USB core uses address 1 for the roothubs, so we add one to the
3580 * address given back to us by the HC.
3582 slot_ctx
= xhci_get_slot_ctx(xhci
, virt_dev
->out_ctx
);
3583 /* Use kernel assigned address for devices; store xHC assigned
3584 * address locally. */
3585 virt_dev
->address
= (le32_to_cpu(slot_ctx
->dev_state
) & DEV_ADDR_MASK
)
3587 /* Zero the input context control for later use */
3588 ctrl_ctx
= xhci_get_input_control_ctx(xhci
, virt_dev
->in_ctx
);
3589 ctrl_ctx
->add_flags
= 0;
3590 ctrl_ctx
->drop_flags
= 0;
3592 xhci_dbg(xhci
, "Internal device address = %d\n", virt_dev
->address
);
3597 #ifdef CONFIG_USB_SUSPEND
3599 /* BESL to HIRD Encoding array for USB2 LPM */
3600 static int xhci_besl_encoding
[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
3601 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
3603 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
3604 static int xhci_calculate_hird_besl(int u2del
, bool use_besl
)
3609 for (hird
= 0; hird
< 16; hird
++) {
3610 if (xhci_besl_encoding
[hird
] >= u2del
)
3617 hird
= (u2del
- 51) / 75 + 1;
3626 static int xhci_usb2_software_lpm_test(struct usb_hcd
*hcd
,
3627 struct usb_device
*udev
)
3629 struct xhci_hcd
*xhci
= hcd_to_xhci(hcd
);
3630 struct dev_info
*dev_info
;
3631 __le32 __iomem
**port_array
;
3632 __le32 __iomem
*addr
, *pm_addr
;
3634 unsigned int port_num
;
3635 unsigned long flags
;
3639 if (hcd
->speed
== HCD_USB3
|| !xhci
->sw_lpm_support
||
3643 /* we only support lpm for non-hub device connected to root hub yet */
3644 if (!udev
->parent
|| udev
->parent
->parent
||
3645 udev
->descriptor
.bDeviceClass
== USB_CLASS_HUB
)
3648 spin_lock_irqsave(&xhci
->lock
, flags
);
3650 /* Look for devices in lpm_failed_devs list */
3651 dev_id
= le16_to_cpu(udev
->descriptor
.idVendor
) << 16 |
3652 le16_to_cpu(udev
->descriptor
.idProduct
);
3653 list_for_each_entry(dev_info
, &xhci
->lpm_failed_devs
, list
) {
3654 if (dev_info
->dev_id
== dev_id
) {
3660 port_array
= xhci
->usb2_ports
;
3661 port_num
= udev
->portnum
- 1;
3663 if (port_num
> HCS_MAX_PORTS(xhci
->hcs_params1
)) {
3664 xhci_dbg(xhci
, "invalid port number %d\n", udev
->portnum
);
3670 * Test USB 2.0 software LPM.
3671 * FIXME: some xHCI 1.0 hosts may implement a new register to set up
3672 * hardware-controlled USB 2.0 LPM. See section 5.4.11 and 4.23.5.1.1.1
3673 * in the June 2011 errata release.
3675 xhci_dbg(xhci
, "test port %d software LPM\n", port_num
);
3677 * Set L1 Device Slot and HIRD/BESL.
3678 * Check device's USB 2.0 extension descriptor to determine whether
3679 * HIRD or BESL shoule be used. See USB2.0 LPM errata.
3681 pm_addr
= port_array
[port_num
] + 1;
3682 u2del
= HCS_U2_LATENCY(xhci
->hcs_params3
);
3683 if (le32_to_cpu(udev
->bos
->ext_cap
->bmAttributes
) & (1 << 2))
3684 hird
= xhci_calculate_hird_besl(u2del
, 1);
3686 hird
= xhci_calculate_hird_besl(u2del
, 0);
3688 temp
= PORT_L1DS(udev
->slot_id
) | PORT_HIRD(hird
);
3689 xhci_writel(xhci
, temp
, pm_addr
);
3691 /* Set port link state to U2(L1) */
3692 addr
= port_array
[port_num
];
3693 xhci_set_link_state(xhci
, port_array
, port_num
, XDEV_U2
);
3696 spin_unlock_irqrestore(&xhci
->lock
, flags
);
3698 spin_lock_irqsave(&xhci
->lock
, flags
);
3700 /* Check L1 Status */
3701 ret
= handshake(xhci
, pm_addr
, PORT_L1S_MASK
, PORT_L1S_SUCCESS
, 125);
3702 if (ret
!= -ETIMEDOUT
) {
3703 /* enter L1 successfully */
3704 temp
= xhci_readl(xhci
, addr
);
3705 xhci_dbg(xhci
, "port %d entered L1 state, port status 0x%x\n",
3709 temp
= xhci_readl(xhci
, pm_addr
);
3710 xhci_dbg(xhci
, "port %d software lpm failed, L1 status %d\n",
3711 port_num
, temp
& PORT_L1S_MASK
);
3715 /* Resume the port */
3716 xhci_set_link_state(xhci
, port_array
, port_num
, XDEV_U0
);
3718 spin_unlock_irqrestore(&xhci
->lock
, flags
);
3720 spin_lock_irqsave(&xhci
->lock
, flags
);
3723 xhci_test_and_clear_bit(xhci
, port_array
, port_num
, PORT_PLC
);
3725 /* Check PORTSC to make sure the device is in the right state */
3727 temp
= xhci_readl(xhci
, addr
);
3728 xhci_dbg(xhci
, "resumed port %d status 0x%x\n", port_num
, temp
);
3729 if (!(temp
& PORT_CONNECT
) || !(temp
& PORT_PE
) ||
3730 (temp
& PORT_PLS_MASK
) != XDEV_U0
) {
3731 xhci_dbg(xhci
, "port L1 resume fail\n");
3737 /* Insert dev to lpm_failed_devs list */
3738 xhci_warn(xhci
, "device LPM test failed, may disconnect and "
3740 dev_info
= kzalloc(sizeof(struct dev_info
), GFP_ATOMIC
);
3745 dev_info
->dev_id
= dev_id
;
3746 INIT_LIST_HEAD(&dev_info
->list
);
3747 list_add(&dev_info
->list
, &xhci
->lpm_failed_devs
);
3749 xhci_ring_device(xhci
, udev
->slot_id
);
3753 spin_unlock_irqrestore(&xhci
->lock
, flags
);
3757 int xhci_set_usb2_hardware_lpm(struct usb_hcd
*hcd
,
3758 struct usb_device
*udev
, int enable
)
3760 struct xhci_hcd
*xhci
= hcd_to_xhci(hcd
);
3761 __le32 __iomem
**port_array
;
3762 __le32 __iomem
*pm_addr
;
3764 unsigned int port_num
;
3765 unsigned long flags
;
3768 if (hcd
->speed
== HCD_USB3
|| !xhci
->hw_lpm_support
||
3772 if (!udev
->parent
|| udev
->parent
->parent
||
3773 udev
->descriptor
.bDeviceClass
== USB_CLASS_HUB
)
3776 if (udev
->usb2_hw_lpm_capable
!= 1)
3779 spin_lock_irqsave(&xhci
->lock
, flags
);
3781 port_array
= xhci
->usb2_ports
;
3782 port_num
= udev
->portnum
- 1;
3783 pm_addr
= port_array
[port_num
] + 1;
3784 temp
= xhci_readl(xhci
, pm_addr
);
3786 xhci_dbg(xhci
, "%s port %d USB2 hardware LPM\n",
3787 enable
? "enable" : "disable", port_num
);
3789 u2del
= HCS_U2_LATENCY(xhci
->hcs_params3
);
3790 if (le32_to_cpu(udev
->bos
->ext_cap
->bmAttributes
) & (1 << 2))
3791 hird
= xhci_calculate_hird_besl(u2del
, 1);
3793 hird
= xhci_calculate_hird_besl(u2del
, 0);
3796 temp
&= ~PORT_HIRD_MASK
;
3797 temp
|= PORT_HIRD(hird
) | PORT_RWE
;
3798 xhci_writel(xhci
, temp
, pm_addr
);
3799 temp
= xhci_readl(xhci
, pm_addr
);
3801 xhci_writel(xhci
, temp
, pm_addr
);
3803 temp
&= ~(PORT_HLE
| PORT_RWE
| PORT_HIRD_MASK
);
3804 xhci_writel(xhci
, temp
, pm_addr
);
3807 spin_unlock_irqrestore(&xhci
->lock
, flags
);
3811 int xhci_update_device(struct usb_hcd
*hcd
, struct usb_device
*udev
)
3813 struct xhci_hcd
*xhci
= hcd_to_xhci(hcd
);
3816 ret
= xhci_usb2_software_lpm_test(hcd
, udev
);
3818 xhci_dbg(xhci
, "software LPM test succeed\n");
3819 if (xhci
->hw_lpm_support
== 1) {
3820 udev
->usb2_hw_lpm_capable
= 1;
3821 ret
= xhci_set_usb2_hardware_lpm(hcd
, udev
, 1);
3823 udev
->usb2_hw_lpm_enabled
= 1;
3832 int xhci_set_usb2_hardware_lpm(struct usb_hcd
*hcd
,
3833 struct usb_device
*udev
, int enable
)
3838 int xhci_update_device(struct usb_hcd
*hcd
, struct usb_device
*udev
)
3843 #endif /* CONFIG_USB_SUSPEND */
3845 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
3846 * internal data structures for the device.
3848 int xhci_update_hub_device(struct usb_hcd
*hcd
, struct usb_device
*hdev
,
3849 struct usb_tt
*tt
, gfp_t mem_flags
)
3851 struct xhci_hcd
*xhci
= hcd_to_xhci(hcd
);
3852 struct xhci_virt_device
*vdev
;
3853 struct xhci_command
*config_cmd
;
3854 struct xhci_input_control_ctx
*ctrl_ctx
;
3855 struct xhci_slot_ctx
*slot_ctx
;
3856 unsigned long flags
;
3857 unsigned think_time
;
3860 /* Ignore root hubs */
3864 vdev
= xhci
->devs
[hdev
->slot_id
];
3866 xhci_warn(xhci
, "Cannot update hub desc for unknown device.\n");
3869 config_cmd
= xhci_alloc_command(xhci
, true, true, mem_flags
);
3871 xhci_dbg(xhci
, "Could not allocate xHCI command structure.\n");
3875 spin_lock_irqsave(&xhci
->lock
, flags
);
3876 if (hdev
->speed
== USB_SPEED_HIGH
&&
3877 xhci_alloc_tt_info(xhci
, vdev
, hdev
, tt
, GFP_ATOMIC
)) {
3878 xhci_dbg(xhci
, "Could not allocate xHCI TT structure.\n");
3879 xhci_free_command(xhci
, config_cmd
);
3880 spin_unlock_irqrestore(&xhci
->lock
, flags
);
3884 xhci_slot_copy(xhci
, config_cmd
->in_ctx
, vdev
->out_ctx
);
3885 ctrl_ctx
= xhci_get_input_control_ctx(xhci
, config_cmd
->in_ctx
);
3886 ctrl_ctx
->add_flags
|= cpu_to_le32(SLOT_FLAG
);
3887 slot_ctx
= xhci_get_slot_ctx(xhci
, config_cmd
->in_ctx
);
3888 slot_ctx
->dev_info
|= cpu_to_le32(DEV_HUB
);
3890 slot_ctx
->dev_info
|= cpu_to_le32(DEV_MTT
);
3891 if (xhci
->hci_version
> 0x95) {
3892 xhci_dbg(xhci
, "xHCI version %x needs hub "
3893 "TT think time and number of ports\n",
3894 (unsigned int) xhci
->hci_version
);
3895 slot_ctx
->dev_info2
|= cpu_to_le32(XHCI_MAX_PORTS(hdev
->maxchild
));
3896 /* Set TT think time - convert from ns to FS bit times.
3897 * 0 = 8 FS bit times, 1 = 16 FS bit times,
3898 * 2 = 24 FS bit times, 3 = 32 FS bit times.
3900 * xHCI 1.0: this field shall be 0 if the device is not a
3903 think_time
= tt
->think_time
;
3904 if (think_time
!= 0)
3905 think_time
= (think_time
/ 666) - 1;
3906 if (xhci
->hci_version
< 0x100 || hdev
->speed
== USB_SPEED_HIGH
)
3907 slot_ctx
->tt_info
|=
3908 cpu_to_le32(TT_THINK_TIME(think_time
));
3910 xhci_dbg(xhci
, "xHCI version %x doesn't need hub "
3911 "TT think time or number of ports\n",
3912 (unsigned int) xhci
->hci_version
);
3914 slot_ctx
->dev_state
= 0;
3915 spin_unlock_irqrestore(&xhci
->lock
, flags
);
3917 xhci_dbg(xhci
, "Set up %s for hub device.\n",
3918 (xhci
->hci_version
> 0x95) ?
3919 "configure endpoint" : "evaluate context");
3920 xhci_dbg(xhci
, "Slot %u Input Context:\n", hdev
->slot_id
);
3921 xhci_dbg_ctx(xhci
, config_cmd
->in_ctx
, 0);
3923 /* Issue and wait for the configure endpoint or
3924 * evaluate context command.
3926 if (xhci
->hci_version
> 0x95)
3927 ret
= xhci_configure_endpoint(xhci
, hdev
, config_cmd
,
3930 ret
= xhci_configure_endpoint(xhci
, hdev
, config_cmd
,
3933 xhci_dbg(xhci
, "Slot %u Output Context:\n", hdev
->slot_id
);
3934 xhci_dbg_ctx(xhci
, vdev
->out_ctx
, 0);
3936 xhci_free_command(xhci
, config_cmd
);
3940 int xhci_get_frame(struct usb_hcd
*hcd
)
3942 struct xhci_hcd
*xhci
= hcd_to_xhci(hcd
);
3943 /* EHCI mods by the periodic size. Why? */
3944 return xhci_readl(xhci
, &xhci
->run_regs
->microframe_index
) >> 3;
3947 int xhci_gen_setup(struct usb_hcd
*hcd
, xhci_get_quirks_t get_quirks
)
3949 struct xhci_hcd
*xhci
;
3950 struct device
*dev
= hcd
->self
.controller
;
3954 hcd
->self
.sg_tablesize
= TRBS_PER_SEGMENT
- 2;
3956 if (usb_hcd_is_primary_hcd(hcd
)) {
3957 xhci
= kzalloc(sizeof(struct xhci_hcd
), GFP_KERNEL
);
3960 *((struct xhci_hcd
**) hcd
->hcd_priv
) = xhci
;
3961 xhci
->main_hcd
= hcd
;
3962 /* Mark the first roothub as being USB 2.0.
3963 * The xHCI driver will register the USB 3.0 roothub.
3965 hcd
->speed
= HCD_USB2
;
3966 hcd
->self
.root_hub
->speed
= USB_SPEED_HIGH
;
3968 * USB 2.0 roothub under xHCI has an integrated TT,
3969 * (rate matching hub) as opposed to having an OHCI/UHCI
3970 * companion controller.
3974 /* xHCI private pointer was set in xhci_pci_probe for the second
3975 * registered roothub.
3977 xhci
= hcd_to_xhci(hcd
);
3978 temp
= xhci_readl(xhci
, &xhci
->cap_regs
->hcc_params
);
3979 if (HCC_64BIT_ADDR(temp
)) {
3980 xhci_dbg(xhci
, "Enabling 64-bit DMA addresses.\n");
3981 dma_set_mask(hcd
->self
.controller
, DMA_BIT_MASK(64));
3983 dma_set_mask(hcd
->self
.controller
, DMA_BIT_MASK(32));
3988 xhci
->cap_regs
= hcd
->regs
;
3989 xhci
->op_regs
= hcd
->regs
+
3990 HC_LENGTH(xhci_readl(xhci
, &xhci
->cap_regs
->hc_capbase
));
3991 xhci
->run_regs
= hcd
->regs
+
3992 (xhci_readl(xhci
, &xhci
->cap_regs
->run_regs_off
) & RTSOFF_MASK
);
3993 /* Cache read-only capability registers */
3994 xhci
->hcs_params1
= xhci_readl(xhci
, &xhci
->cap_regs
->hcs_params1
);
3995 xhci
->hcs_params2
= xhci_readl(xhci
, &xhci
->cap_regs
->hcs_params2
);
3996 xhci
->hcs_params3
= xhci_readl(xhci
, &xhci
->cap_regs
->hcs_params3
);
3997 xhci
->hcc_params
= xhci_readl(xhci
, &xhci
->cap_regs
->hc_capbase
);
3998 xhci
->hci_version
= HC_VERSION(xhci
->hcc_params
);
3999 xhci
->hcc_params
= xhci_readl(xhci
, &xhci
->cap_regs
->hcc_params
);
4000 xhci_print_registers(xhci
);
4002 get_quirks(dev
, xhci
);
4004 /* Make sure the HC is halted. */
4005 retval
= xhci_halt(xhci
);
4009 xhci_dbg(xhci
, "Resetting HCD\n");
4010 /* Reset the internal HC memory state and registers. */
4011 retval
= xhci_reset(xhci
);
4014 xhci_dbg(xhci
, "Reset complete\n");
4016 temp
= xhci_readl(xhci
, &xhci
->cap_regs
->hcc_params
);
4017 if (HCC_64BIT_ADDR(temp
)) {
4018 xhci_dbg(xhci
, "Enabling 64-bit DMA addresses.\n");
4019 dma_set_mask(hcd
->self
.controller
, DMA_BIT_MASK(64));
4021 dma_set_mask(hcd
->self
.controller
, DMA_BIT_MASK(32));
4024 xhci_dbg(xhci
, "Calling HCD init\n");
4025 /* Initialize HCD and host controller data structures. */
4026 retval
= xhci_init(hcd
);
4029 xhci_dbg(xhci
, "Called HCD init\n");
4036 MODULE_DESCRIPTION(DRIVER_DESC
);
4037 MODULE_AUTHOR(DRIVER_AUTHOR
);
4038 MODULE_LICENSE("GPL");
4040 static int __init
xhci_hcd_init(void)
4044 retval
= xhci_register_pci();
4046 printk(KERN_DEBUG
"Problem registering PCI driver.");
4050 * Check the compiler generated sizes of structures that must be laid
4051 * out in specific ways for hardware access.
4053 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array
) != 256*32/8);
4054 BUILD_BUG_ON(sizeof(struct xhci_slot_ctx
) != 8*32/8);
4055 BUILD_BUG_ON(sizeof(struct xhci_ep_ctx
) != 8*32/8);
4056 /* xhci_device_control has eight fields, and also
4057 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
4059 BUILD_BUG_ON(sizeof(struct xhci_stream_ctx
) != 4*32/8);
4060 BUILD_BUG_ON(sizeof(union xhci_trb
) != 4*32/8);
4061 BUILD_BUG_ON(sizeof(struct xhci_erst_entry
) != 4*32/8);
4062 BUILD_BUG_ON(sizeof(struct xhci_cap_regs
) != 7*32/8);
4063 BUILD_BUG_ON(sizeof(struct xhci_intr_reg
) != 8*32/8);
4064 /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
4065 BUILD_BUG_ON(sizeof(struct xhci_run_regs
) != (8+8*128)*32/8);
4066 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array
) != 256*32/8);
4069 module_init(xhci_hcd_init
);
4071 static void __exit
xhci_hcd_cleanup(void)
4073 xhci_unregister_pci();
4075 module_exit(xhci_hcd_cleanup
);