MIPS: Yosemite, Emma: Fix off-by-two in arcs_cmdline buffer size check
[linux-2.6/linux-mips.git] / kernel / sched_rt.c
blob056cbd2e2a27fea8cb15e76bfc711fe32de03303
1 /*
2 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
3 * policies)
4 */
6 #ifdef CONFIG_RT_GROUP_SCHED
8 #define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
10 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
12 #ifdef CONFIG_SCHED_DEBUG
13 WARN_ON_ONCE(!rt_entity_is_task(rt_se));
14 #endif
15 return container_of(rt_se, struct task_struct, rt);
18 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
20 return rt_rq->rq;
23 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
25 return rt_se->rt_rq;
28 #else /* CONFIG_RT_GROUP_SCHED */
30 #define rt_entity_is_task(rt_se) (1)
32 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
34 return container_of(rt_se, struct task_struct, rt);
37 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
39 return container_of(rt_rq, struct rq, rt);
42 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
44 struct task_struct *p = rt_task_of(rt_se);
45 struct rq *rq = task_rq(p);
47 return &rq->rt;
50 #endif /* CONFIG_RT_GROUP_SCHED */
52 #ifdef CONFIG_SMP
54 static inline int rt_overloaded(struct rq *rq)
56 return atomic_read(&rq->rd->rto_count);
59 static inline void rt_set_overload(struct rq *rq)
61 if (!rq->online)
62 return;
64 cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
66 * Make sure the mask is visible before we set
67 * the overload count. That is checked to determine
68 * if we should look at the mask. It would be a shame
69 * if we looked at the mask, but the mask was not
70 * updated yet.
72 wmb();
73 atomic_inc(&rq->rd->rto_count);
76 static inline void rt_clear_overload(struct rq *rq)
78 if (!rq->online)
79 return;
81 /* the order here really doesn't matter */
82 atomic_dec(&rq->rd->rto_count);
83 cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
86 static void update_rt_migration(struct rt_rq *rt_rq)
88 if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
89 if (!rt_rq->overloaded) {
90 rt_set_overload(rq_of_rt_rq(rt_rq));
91 rt_rq->overloaded = 1;
93 } else if (rt_rq->overloaded) {
94 rt_clear_overload(rq_of_rt_rq(rt_rq));
95 rt_rq->overloaded = 0;
99 static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
101 if (!rt_entity_is_task(rt_se))
102 return;
104 rt_rq = &rq_of_rt_rq(rt_rq)->rt;
106 rt_rq->rt_nr_total++;
107 if (rt_se->nr_cpus_allowed > 1)
108 rt_rq->rt_nr_migratory++;
110 update_rt_migration(rt_rq);
113 static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
115 if (!rt_entity_is_task(rt_se))
116 return;
118 rt_rq = &rq_of_rt_rq(rt_rq)->rt;
120 rt_rq->rt_nr_total--;
121 if (rt_se->nr_cpus_allowed > 1)
122 rt_rq->rt_nr_migratory--;
124 update_rt_migration(rt_rq);
127 static inline int has_pushable_tasks(struct rq *rq)
129 return !plist_head_empty(&rq->rt.pushable_tasks);
132 static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
134 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
135 plist_node_init(&p->pushable_tasks, p->prio);
136 plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
138 /* Update the highest prio pushable task */
139 if (p->prio < rq->rt.highest_prio.next)
140 rq->rt.highest_prio.next = p->prio;
143 static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
145 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
147 /* Update the new highest prio pushable task */
148 if (has_pushable_tasks(rq)) {
149 p = plist_first_entry(&rq->rt.pushable_tasks,
150 struct task_struct, pushable_tasks);
151 rq->rt.highest_prio.next = p->prio;
152 } else
153 rq->rt.highest_prio.next = MAX_RT_PRIO;
156 #else
158 static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
162 static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
166 static inline
167 void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
171 static inline
172 void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
176 #endif /* CONFIG_SMP */
178 static inline int on_rt_rq(struct sched_rt_entity *rt_se)
180 return !list_empty(&rt_se->run_list);
183 #ifdef CONFIG_RT_GROUP_SCHED
185 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
187 if (!rt_rq->tg)
188 return RUNTIME_INF;
190 return rt_rq->rt_runtime;
193 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
195 return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
198 typedef struct task_group *rt_rq_iter_t;
200 static inline struct task_group *next_task_group(struct task_group *tg)
202 do {
203 tg = list_entry_rcu(tg->list.next,
204 typeof(struct task_group), list);
205 } while (&tg->list != &task_groups && task_group_is_autogroup(tg));
207 if (&tg->list == &task_groups)
208 tg = NULL;
210 return tg;
213 #define for_each_rt_rq(rt_rq, iter, rq) \
214 for (iter = container_of(&task_groups, typeof(*iter), list); \
215 (iter = next_task_group(iter)) && \
216 (rt_rq = iter->rt_rq[cpu_of(rq)]);)
218 static inline void list_add_leaf_rt_rq(struct rt_rq *rt_rq)
220 list_add_rcu(&rt_rq->leaf_rt_rq_list,
221 &rq_of_rt_rq(rt_rq)->leaf_rt_rq_list);
224 static inline void list_del_leaf_rt_rq(struct rt_rq *rt_rq)
226 list_del_rcu(&rt_rq->leaf_rt_rq_list);
229 #define for_each_leaf_rt_rq(rt_rq, rq) \
230 list_for_each_entry_rcu(rt_rq, &rq->leaf_rt_rq_list, leaf_rt_rq_list)
232 #define for_each_sched_rt_entity(rt_se) \
233 for (; rt_se; rt_se = rt_se->parent)
235 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
237 return rt_se->my_q;
240 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head);
241 static void dequeue_rt_entity(struct sched_rt_entity *rt_se);
243 static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
245 struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
246 struct sched_rt_entity *rt_se;
248 int cpu = cpu_of(rq_of_rt_rq(rt_rq));
250 rt_se = rt_rq->tg->rt_se[cpu];
252 if (rt_rq->rt_nr_running) {
253 if (rt_se && !on_rt_rq(rt_se))
254 enqueue_rt_entity(rt_se, false);
255 if (rt_rq->highest_prio.curr < curr->prio)
256 resched_task(curr);
260 static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
262 struct sched_rt_entity *rt_se;
263 int cpu = cpu_of(rq_of_rt_rq(rt_rq));
265 rt_se = rt_rq->tg->rt_se[cpu];
267 if (rt_se && on_rt_rq(rt_se))
268 dequeue_rt_entity(rt_se);
271 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
273 return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
276 static int rt_se_boosted(struct sched_rt_entity *rt_se)
278 struct rt_rq *rt_rq = group_rt_rq(rt_se);
279 struct task_struct *p;
281 if (rt_rq)
282 return !!rt_rq->rt_nr_boosted;
284 p = rt_task_of(rt_se);
285 return p->prio != p->normal_prio;
288 #ifdef CONFIG_SMP
289 static inline const struct cpumask *sched_rt_period_mask(void)
291 return cpu_rq(smp_processor_id())->rd->span;
293 #else
294 static inline const struct cpumask *sched_rt_period_mask(void)
296 return cpu_online_mask;
298 #endif
300 static inline
301 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
303 return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
306 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
308 return &rt_rq->tg->rt_bandwidth;
311 #else /* !CONFIG_RT_GROUP_SCHED */
313 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
315 return rt_rq->rt_runtime;
318 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
320 return ktime_to_ns(def_rt_bandwidth.rt_period);
323 typedef struct rt_rq *rt_rq_iter_t;
325 #define for_each_rt_rq(rt_rq, iter, rq) \
326 for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
328 static inline void list_add_leaf_rt_rq(struct rt_rq *rt_rq)
332 static inline void list_del_leaf_rt_rq(struct rt_rq *rt_rq)
336 #define for_each_leaf_rt_rq(rt_rq, rq) \
337 for (rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
339 #define for_each_sched_rt_entity(rt_se) \
340 for (; rt_se; rt_se = NULL)
342 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
344 return NULL;
347 static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
349 if (rt_rq->rt_nr_running)
350 resched_task(rq_of_rt_rq(rt_rq)->curr);
353 static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
357 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
359 return rt_rq->rt_throttled;
362 static inline const struct cpumask *sched_rt_period_mask(void)
364 return cpu_online_mask;
367 static inline
368 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
370 return &cpu_rq(cpu)->rt;
373 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
375 return &def_rt_bandwidth;
378 #endif /* CONFIG_RT_GROUP_SCHED */
380 #ifdef CONFIG_SMP
382 * We ran out of runtime, see if we can borrow some from our neighbours.
384 static int do_balance_runtime(struct rt_rq *rt_rq)
386 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
387 struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
388 int i, weight, more = 0;
389 u64 rt_period;
391 weight = cpumask_weight(rd->span);
393 raw_spin_lock(&rt_b->rt_runtime_lock);
394 rt_period = ktime_to_ns(rt_b->rt_period);
395 for_each_cpu(i, rd->span) {
396 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
397 s64 diff;
399 if (iter == rt_rq)
400 continue;
402 raw_spin_lock(&iter->rt_runtime_lock);
404 * Either all rqs have inf runtime and there's nothing to steal
405 * or __disable_runtime() below sets a specific rq to inf to
406 * indicate its been disabled and disalow stealing.
408 if (iter->rt_runtime == RUNTIME_INF)
409 goto next;
412 * From runqueues with spare time, take 1/n part of their
413 * spare time, but no more than our period.
415 diff = iter->rt_runtime - iter->rt_time;
416 if (diff > 0) {
417 diff = div_u64((u64)diff, weight);
418 if (rt_rq->rt_runtime + diff > rt_period)
419 diff = rt_period - rt_rq->rt_runtime;
420 iter->rt_runtime -= diff;
421 rt_rq->rt_runtime += diff;
422 more = 1;
423 if (rt_rq->rt_runtime == rt_period) {
424 raw_spin_unlock(&iter->rt_runtime_lock);
425 break;
428 next:
429 raw_spin_unlock(&iter->rt_runtime_lock);
431 raw_spin_unlock(&rt_b->rt_runtime_lock);
433 return more;
437 * Ensure this RQ takes back all the runtime it lend to its neighbours.
439 static void __disable_runtime(struct rq *rq)
441 struct root_domain *rd = rq->rd;
442 rt_rq_iter_t iter;
443 struct rt_rq *rt_rq;
445 if (unlikely(!scheduler_running))
446 return;
448 for_each_rt_rq(rt_rq, iter, rq) {
449 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
450 s64 want;
451 int i;
453 raw_spin_lock(&rt_b->rt_runtime_lock);
454 raw_spin_lock(&rt_rq->rt_runtime_lock);
456 * Either we're all inf and nobody needs to borrow, or we're
457 * already disabled and thus have nothing to do, or we have
458 * exactly the right amount of runtime to take out.
460 if (rt_rq->rt_runtime == RUNTIME_INF ||
461 rt_rq->rt_runtime == rt_b->rt_runtime)
462 goto balanced;
463 raw_spin_unlock(&rt_rq->rt_runtime_lock);
466 * Calculate the difference between what we started out with
467 * and what we current have, that's the amount of runtime
468 * we lend and now have to reclaim.
470 want = rt_b->rt_runtime - rt_rq->rt_runtime;
473 * Greedy reclaim, take back as much as we can.
475 for_each_cpu(i, rd->span) {
476 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
477 s64 diff;
480 * Can't reclaim from ourselves or disabled runqueues.
482 if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
483 continue;
485 raw_spin_lock(&iter->rt_runtime_lock);
486 if (want > 0) {
487 diff = min_t(s64, iter->rt_runtime, want);
488 iter->rt_runtime -= diff;
489 want -= diff;
490 } else {
491 iter->rt_runtime -= want;
492 want -= want;
494 raw_spin_unlock(&iter->rt_runtime_lock);
496 if (!want)
497 break;
500 raw_spin_lock(&rt_rq->rt_runtime_lock);
502 * We cannot be left wanting - that would mean some runtime
503 * leaked out of the system.
505 BUG_ON(want);
506 balanced:
508 * Disable all the borrow logic by pretending we have inf
509 * runtime - in which case borrowing doesn't make sense.
511 rt_rq->rt_runtime = RUNTIME_INF;
512 raw_spin_unlock(&rt_rq->rt_runtime_lock);
513 raw_spin_unlock(&rt_b->rt_runtime_lock);
517 static void disable_runtime(struct rq *rq)
519 unsigned long flags;
521 raw_spin_lock_irqsave(&rq->lock, flags);
522 __disable_runtime(rq);
523 raw_spin_unlock_irqrestore(&rq->lock, flags);
526 static void __enable_runtime(struct rq *rq)
528 rt_rq_iter_t iter;
529 struct rt_rq *rt_rq;
531 if (unlikely(!scheduler_running))
532 return;
535 * Reset each runqueue's bandwidth settings
537 for_each_rt_rq(rt_rq, iter, rq) {
538 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
540 raw_spin_lock(&rt_b->rt_runtime_lock);
541 raw_spin_lock(&rt_rq->rt_runtime_lock);
542 rt_rq->rt_runtime = rt_b->rt_runtime;
543 rt_rq->rt_time = 0;
544 rt_rq->rt_throttled = 0;
545 raw_spin_unlock(&rt_rq->rt_runtime_lock);
546 raw_spin_unlock(&rt_b->rt_runtime_lock);
550 static void enable_runtime(struct rq *rq)
552 unsigned long flags;
554 raw_spin_lock_irqsave(&rq->lock, flags);
555 __enable_runtime(rq);
556 raw_spin_unlock_irqrestore(&rq->lock, flags);
559 static int balance_runtime(struct rt_rq *rt_rq)
561 int more = 0;
563 if (rt_rq->rt_time > rt_rq->rt_runtime) {
564 raw_spin_unlock(&rt_rq->rt_runtime_lock);
565 more = do_balance_runtime(rt_rq);
566 raw_spin_lock(&rt_rq->rt_runtime_lock);
569 return more;
571 #else /* !CONFIG_SMP */
572 static inline int balance_runtime(struct rt_rq *rt_rq)
574 return 0;
576 #endif /* CONFIG_SMP */
578 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
580 int i, idle = 1;
581 const struct cpumask *span;
583 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
584 return 1;
586 span = sched_rt_period_mask();
587 for_each_cpu(i, span) {
588 int enqueue = 0;
589 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
590 struct rq *rq = rq_of_rt_rq(rt_rq);
592 raw_spin_lock(&rq->lock);
593 if (rt_rq->rt_time) {
594 u64 runtime;
596 raw_spin_lock(&rt_rq->rt_runtime_lock);
597 if (rt_rq->rt_throttled)
598 balance_runtime(rt_rq);
599 runtime = rt_rq->rt_runtime;
600 rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
601 if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
602 rt_rq->rt_throttled = 0;
603 enqueue = 1;
606 * Force a clock update if the CPU was idle,
607 * lest wakeup -> unthrottle time accumulate.
609 if (rt_rq->rt_nr_running && rq->curr == rq->idle)
610 rq->skip_clock_update = -1;
612 if (rt_rq->rt_time || rt_rq->rt_nr_running)
613 idle = 0;
614 raw_spin_unlock(&rt_rq->rt_runtime_lock);
615 } else if (rt_rq->rt_nr_running) {
616 idle = 0;
617 if (!rt_rq_throttled(rt_rq))
618 enqueue = 1;
621 if (enqueue)
622 sched_rt_rq_enqueue(rt_rq);
623 raw_spin_unlock(&rq->lock);
626 return idle;
629 static inline int rt_se_prio(struct sched_rt_entity *rt_se)
631 #ifdef CONFIG_RT_GROUP_SCHED
632 struct rt_rq *rt_rq = group_rt_rq(rt_se);
634 if (rt_rq)
635 return rt_rq->highest_prio.curr;
636 #endif
638 return rt_task_of(rt_se)->prio;
641 static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
643 u64 runtime = sched_rt_runtime(rt_rq);
645 if (rt_rq->rt_throttled)
646 return rt_rq_throttled(rt_rq);
648 if (sched_rt_runtime(rt_rq) >= sched_rt_period(rt_rq))
649 return 0;
651 balance_runtime(rt_rq);
652 runtime = sched_rt_runtime(rt_rq);
653 if (runtime == RUNTIME_INF)
654 return 0;
656 if (rt_rq->rt_time > runtime) {
657 rt_rq->rt_throttled = 1;
658 printk_once(KERN_WARNING "sched: RT throttling activated\n");
659 if (rt_rq_throttled(rt_rq)) {
660 sched_rt_rq_dequeue(rt_rq);
661 return 1;
665 return 0;
669 * Update the current task's runtime statistics. Skip current tasks that
670 * are not in our scheduling class.
672 static void update_curr_rt(struct rq *rq)
674 struct task_struct *curr = rq->curr;
675 struct sched_rt_entity *rt_se = &curr->rt;
676 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
677 u64 delta_exec;
679 if (curr->sched_class != &rt_sched_class)
680 return;
682 delta_exec = rq->clock_task - curr->se.exec_start;
683 if (unlikely((s64)delta_exec < 0))
684 delta_exec = 0;
686 schedstat_set(curr->se.statistics.exec_max, max(curr->se.statistics.exec_max, delta_exec));
688 curr->se.sum_exec_runtime += delta_exec;
689 account_group_exec_runtime(curr, delta_exec);
691 curr->se.exec_start = rq->clock_task;
692 cpuacct_charge(curr, delta_exec);
694 sched_rt_avg_update(rq, delta_exec);
696 if (!rt_bandwidth_enabled())
697 return;
699 for_each_sched_rt_entity(rt_se) {
700 rt_rq = rt_rq_of_se(rt_se);
702 if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
703 raw_spin_lock(&rt_rq->rt_runtime_lock);
704 rt_rq->rt_time += delta_exec;
705 if (sched_rt_runtime_exceeded(rt_rq))
706 resched_task(curr);
707 raw_spin_unlock(&rt_rq->rt_runtime_lock);
712 #if defined CONFIG_SMP
714 static void
715 inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
717 struct rq *rq = rq_of_rt_rq(rt_rq);
719 if (rq->online && prio < prev_prio)
720 cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
723 static void
724 dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
726 struct rq *rq = rq_of_rt_rq(rt_rq);
728 if (rq->online && rt_rq->highest_prio.curr != prev_prio)
729 cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
732 #else /* CONFIG_SMP */
734 static inline
735 void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
736 static inline
737 void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
739 #endif /* CONFIG_SMP */
741 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
742 static void
743 inc_rt_prio(struct rt_rq *rt_rq, int prio)
745 int prev_prio = rt_rq->highest_prio.curr;
747 if (prio < prev_prio)
748 rt_rq->highest_prio.curr = prio;
750 inc_rt_prio_smp(rt_rq, prio, prev_prio);
753 static void
754 dec_rt_prio(struct rt_rq *rt_rq, int prio)
756 int prev_prio = rt_rq->highest_prio.curr;
758 if (rt_rq->rt_nr_running) {
760 WARN_ON(prio < prev_prio);
763 * This may have been our highest task, and therefore
764 * we may have some recomputation to do
766 if (prio == prev_prio) {
767 struct rt_prio_array *array = &rt_rq->active;
769 rt_rq->highest_prio.curr =
770 sched_find_first_bit(array->bitmap);
773 } else
774 rt_rq->highest_prio.curr = MAX_RT_PRIO;
776 dec_rt_prio_smp(rt_rq, prio, prev_prio);
779 #else
781 static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
782 static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
784 #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
786 #ifdef CONFIG_RT_GROUP_SCHED
788 static void
789 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
791 if (rt_se_boosted(rt_se))
792 rt_rq->rt_nr_boosted++;
794 if (rt_rq->tg)
795 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
798 static void
799 dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
801 if (rt_se_boosted(rt_se))
802 rt_rq->rt_nr_boosted--;
804 WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
807 #else /* CONFIG_RT_GROUP_SCHED */
809 static void
810 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
812 start_rt_bandwidth(&def_rt_bandwidth);
815 static inline
816 void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
818 #endif /* CONFIG_RT_GROUP_SCHED */
820 static inline
821 void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
823 int prio = rt_se_prio(rt_se);
825 WARN_ON(!rt_prio(prio));
826 rt_rq->rt_nr_running++;
828 inc_rt_prio(rt_rq, prio);
829 inc_rt_migration(rt_se, rt_rq);
830 inc_rt_group(rt_se, rt_rq);
833 static inline
834 void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
836 WARN_ON(!rt_prio(rt_se_prio(rt_se)));
837 WARN_ON(!rt_rq->rt_nr_running);
838 rt_rq->rt_nr_running--;
840 dec_rt_prio(rt_rq, rt_se_prio(rt_se));
841 dec_rt_migration(rt_se, rt_rq);
842 dec_rt_group(rt_se, rt_rq);
845 static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
847 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
848 struct rt_prio_array *array = &rt_rq->active;
849 struct rt_rq *group_rq = group_rt_rq(rt_se);
850 struct list_head *queue = array->queue + rt_se_prio(rt_se);
853 * Don't enqueue the group if its throttled, or when empty.
854 * The latter is a consequence of the former when a child group
855 * get throttled and the current group doesn't have any other
856 * active members.
858 if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running))
859 return;
861 if (!rt_rq->rt_nr_running)
862 list_add_leaf_rt_rq(rt_rq);
864 if (head)
865 list_add(&rt_se->run_list, queue);
866 else
867 list_add_tail(&rt_se->run_list, queue);
868 __set_bit(rt_se_prio(rt_se), array->bitmap);
870 inc_rt_tasks(rt_se, rt_rq);
873 static void __dequeue_rt_entity(struct sched_rt_entity *rt_se)
875 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
876 struct rt_prio_array *array = &rt_rq->active;
878 list_del_init(&rt_se->run_list);
879 if (list_empty(array->queue + rt_se_prio(rt_se)))
880 __clear_bit(rt_se_prio(rt_se), array->bitmap);
882 dec_rt_tasks(rt_se, rt_rq);
883 if (!rt_rq->rt_nr_running)
884 list_del_leaf_rt_rq(rt_rq);
888 * Because the prio of an upper entry depends on the lower
889 * entries, we must remove entries top - down.
891 static void dequeue_rt_stack(struct sched_rt_entity *rt_se)
893 struct sched_rt_entity *back = NULL;
895 for_each_sched_rt_entity(rt_se) {
896 rt_se->back = back;
897 back = rt_se;
900 for (rt_se = back; rt_se; rt_se = rt_se->back) {
901 if (on_rt_rq(rt_se))
902 __dequeue_rt_entity(rt_se);
906 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
908 dequeue_rt_stack(rt_se);
909 for_each_sched_rt_entity(rt_se)
910 __enqueue_rt_entity(rt_se, head);
913 static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
915 dequeue_rt_stack(rt_se);
917 for_each_sched_rt_entity(rt_se) {
918 struct rt_rq *rt_rq = group_rt_rq(rt_se);
920 if (rt_rq && rt_rq->rt_nr_running)
921 __enqueue_rt_entity(rt_se, false);
926 * Adding/removing a task to/from a priority array:
928 static void
929 enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
931 struct sched_rt_entity *rt_se = &p->rt;
933 if (flags & ENQUEUE_WAKEUP)
934 rt_se->timeout = 0;
936 enqueue_rt_entity(rt_se, flags & ENQUEUE_HEAD);
938 if (!task_current(rq, p) && p->rt.nr_cpus_allowed > 1)
939 enqueue_pushable_task(rq, p);
941 inc_nr_running(rq);
944 static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
946 struct sched_rt_entity *rt_se = &p->rt;
948 update_curr_rt(rq);
949 dequeue_rt_entity(rt_se);
951 dequeue_pushable_task(rq, p);
953 dec_nr_running(rq);
957 * Put task to the end of the run list without the overhead of dequeue
958 * followed by enqueue.
960 static void
961 requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
963 if (on_rt_rq(rt_se)) {
964 struct rt_prio_array *array = &rt_rq->active;
965 struct list_head *queue = array->queue + rt_se_prio(rt_se);
967 if (head)
968 list_move(&rt_se->run_list, queue);
969 else
970 list_move_tail(&rt_se->run_list, queue);
974 static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
976 struct sched_rt_entity *rt_se = &p->rt;
977 struct rt_rq *rt_rq;
979 for_each_sched_rt_entity(rt_se) {
980 rt_rq = rt_rq_of_se(rt_se);
981 requeue_rt_entity(rt_rq, rt_se, head);
985 static void yield_task_rt(struct rq *rq)
987 requeue_task_rt(rq, rq->curr, 0);
990 #ifdef CONFIG_SMP
991 static int find_lowest_rq(struct task_struct *task);
993 static int
994 select_task_rq_rt(struct task_struct *p, int sd_flag, int flags)
996 struct task_struct *curr;
997 struct rq *rq;
998 int cpu;
1000 cpu = task_cpu(p);
1002 /* For anything but wake ups, just return the task_cpu */
1003 if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK)
1004 goto out;
1006 rq = cpu_rq(cpu);
1008 rcu_read_lock();
1009 curr = ACCESS_ONCE(rq->curr); /* unlocked access */
1012 * If the current task on @p's runqueue is an RT task, then
1013 * try to see if we can wake this RT task up on another
1014 * runqueue. Otherwise simply start this RT task
1015 * on its current runqueue.
1017 * We want to avoid overloading runqueues. If the woken
1018 * task is a higher priority, then it will stay on this CPU
1019 * and the lower prio task should be moved to another CPU.
1020 * Even though this will probably make the lower prio task
1021 * lose its cache, we do not want to bounce a higher task
1022 * around just because it gave up its CPU, perhaps for a
1023 * lock?
1025 * For equal prio tasks, we just let the scheduler sort it out.
1027 * Otherwise, just let it ride on the affined RQ and the
1028 * post-schedule router will push the preempted task away
1030 * This test is optimistic, if we get it wrong the load-balancer
1031 * will have to sort it out.
1033 if (curr && unlikely(rt_task(curr)) &&
1034 (curr->rt.nr_cpus_allowed < 2 ||
1035 curr->prio <= p->prio) &&
1036 (p->rt.nr_cpus_allowed > 1)) {
1037 int target = find_lowest_rq(p);
1039 if (target != -1)
1040 cpu = target;
1042 rcu_read_unlock();
1044 out:
1045 return cpu;
1048 static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
1050 if (rq->curr->rt.nr_cpus_allowed == 1)
1051 return;
1053 if (p->rt.nr_cpus_allowed != 1
1054 && cpupri_find(&rq->rd->cpupri, p, NULL))
1055 return;
1057 if (!cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
1058 return;
1061 * There appears to be other cpus that can accept
1062 * current and none to run 'p', so lets reschedule
1063 * to try and push current away:
1065 requeue_task_rt(rq, p, 1);
1066 resched_task(rq->curr);
1069 #endif /* CONFIG_SMP */
1072 * Preempt the current task with a newly woken task if needed:
1074 static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
1076 if (p->prio < rq->curr->prio) {
1077 resched_task(rq->curr);
1078 return;
1081 #ifdef CONFIG_SMP
1083 * If:
1085 * - the newly woken task is of equal priority to the current task
1086 * - the newly woken task is non-migratable while current is migratable
1087 * - current will be preempted on the next reschedule
1089 * we should check to see if current can readily move to a different
1090 * cpu. If so, we will reschedule to allow the push logic to try
1091 * to move current somewhere else, making room for our non-migratable
1092 * task.
1094 if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
1095 check_preempt_equal_prio(rq, p);
1096 #endif
1099 static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
1100 struct rt_rq *rt_rq)
1102 struct rt_prio_array *array = &rt_rq->active;
1103 struct sched_rt_entity *next = NULL;
1104 struct list_head *queue;
1105 int idx;
1107 idx = sched_find_first_bit(array->bitmap);
1108 BUG_ON(idx >= MAX_RT_PRIO);
1110 queue = array->queue + idx;
1111 next = list_entry(queue->next, struct sched_rt_entity, run_list);
1113 return next;
1116 static struct task_struct *_pick_next_task_rt(struct rq *rq)
1118 struct sched_rt_entity *rt_se;
1119 struct task_struct *p;
1120 struct rt_rq *rt_rq;
1122 rt_rq = &rq->rt;
1124 if (!rt_rq->rt_nr_running)
1125 return NULL;
1127 if (rt_rq_throttled(rt_rq))
1128 return NULL;
1130 do {
1131 rt_se = pick_next_rt_entity(rq, rt_rq);
1132 BUG_ON(!rt_se);
1133 rt_rq = group_rt_rq(rt_se);
1134 } while (rt_rq);
1136 p = rt_task_of(rt_se);
1137 p->se.exec_start = rq->clock_task;
1139 return p;
1142 static struct task_struct *pick_next_task_rt(struct rq *rq)
1144 struct task_struct *p = _pick_next_task_rt(rq);
1146 /* The running task is never eligible for pushing */
1147 if (p)
1148 dequeue_pushable_task(rq, p);
1150 #ifdef CONFIG_SMP
1152 * We detect this state here so that we can avoid taking the RQ
1153 * lock again later if there is no need to push
1155 rq->post_schedule = has_pushable_tasks(rq);
1156 #endif
1158 return p;
1161 static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
1163 update_curr_rt(rq);
1166 * The previous task needs to be made eligible for pushing
1167 * if it is still active
1169 if (on_rt_rq(&p->rt) && p->rt.nr_cpus_allowed > 1)
1170 enqueue_pushable_task(rq, p);
1173 #ifdef CONFIG_SMP
1175 /* Only try algorithms three times */
1176 #define RT_MAX_TRIES 3
1178 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep);
1180 static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
1182 if (!task_running(rq, p) &&
1183 (cpu < 0 || cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) &&
1184 (p->rt.nr_cpus_allowed > 1))
1185 return 1;
1186 return 0;
1189 /* Return the second highest RT task, NULL otherwise */
1190 static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu)
1192 struct task_struct *next = NULL;
1193 struct sched_rt_entity *rt_se;
1194 struct rt_prio_array *array;
1195 struct rt_rq *rt_rq;
1196 int idx;
1198 for_each_leaf_rt_rq(rt_rq, rq) {
1199 array = &rt_rq->active;
1200 idx = sched_find_first_bit(array->bitmap);
1201 next_idx:
1202 if (idx >= MAX_RT_PRIO)
1203 continue;
1204 if (next && next->prio < idx)
1205 continue;
1206 list_for_each_entry(rt_se, array->queue + idx, run_list) {
1207 struct task_struct *p;
1209 if (!rt_entity_is_task(rt_se))
1210 continue;
1212 p = rt_task_of(rt_se);
1213 if (pick_rt_task(rq, p, cpu)) {
1214 next = p;
1215 break;
1218 if (!next) {
1219 idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1);
1220 goto next_idx;
1224 return next;
1227 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
1229 static int find_lowest_rq(struct task_struct *task)
1231 struct sched_domain *sd;
1232 struct cpumask *lowest_mask = __get_cpu_var(local_cpu_mask);
1233 int this_cpu = smp_processor_id();
1234 int cpu = task_cpu(task);
1236 /* Make sure the mask is initialized first */
1237 if (unlikely(!lowest_mask))
1238 return -1;
1240 if (task->rt.nr_cpus_allowed == 1)
1241 return -1; /* No other targets possible */
1243 if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
1244 return -1; /* No targets found */
1247 * At this point we have built a mask of cpus representing the
1248 * lowest priority tasks in the system. Now we want to elect
1249 * the best one based on our affinity and topology.
1251 * We prioritize the last cpu that the task executed on since
1252 * it is most likely cache-hot in that location.
1254 if (cpumask_test_cpu(cpu, lowest_mask))
1255 return cpu;
1258 * Otherwise, we consult the sched_domains span maps to figure
1259 * out which cpu is logically closest to our hot cache data.
1261 if (!cpumask_test_cpu(this_cpu, lowest_mask))
1262 this_cpu = -1; /* Skip this_cpu opt if not among lowest */
1264 rcu_read_lock();
1265 for_each_domain(cpu, sd) {
1266 if (sd->flags & SD_WAKE_AFFINE) {
1267 int best_cpu;
1270 * "this_cpu" is cheaper to preempt than a
1271 * remote processor.
1273 if (this_cpu != -1 &&
1274 cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1275 rcu_read_unlock();
1276 return this_cpu;
1279 best_cpu = cpumask_first_and(lowest_mask,
1280 sched_domain_span(sd));
1281 if (best_cpu < nr_cpu_ids) {
1282 rcu_read_unlock();
1283 return best_cpu;
1287 rcu_read_unlock();
1290 * And finally, if there were no matches within the domains
1291 * just give the caller *something* to work with from the compatible
1292 * locations.
1294 if (this_cpu != -1)
1295 return this_cpu;
1297 cpu = cpumask_any(lowest_mask);
1298 if (cpu < nr_cpu_ids)
1299 return cpu;
1300 return -1;
1303 /* Will lock the rq it finds */
1304 static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
1306 struct rq *lowest_rq = NULL;
1307 int tries;
1308 int cpu;
1310 for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1311 cpu = find_lowest_rq(task);
1313 if ((cpu == -1) || (cpu == rq->cpu))
1314 break;
1316 lowest_rq = cpu_rq(cpu);
1318 /* if the prio of this runqueue changed, try again */
1319 if (double_lock_balance(rq, lowest_rq)) {
1321 * We had to unlock the run queue. In
1322 * the mean time, task could have
1323 * migrated already or had its affinity changed.
1324 * Also make sure that it wasn't scheduled on its rq.
1326 if (unlikely(task_rq(task) != rq ||
1327 !cpumask_test_cpu(lowest_rq->cpu,
1328 tsk_cpus_allowed(task)) ||
1329 task_running(rq, task) ||
1330 !task->on_rq)) {
1332 raw_spin_unlock(&lowest_rq->lock);
1333 lowest_rq = NULL;
1334 break;
1338 /* If this rq is still suitable use it. */
1339 if (lowest_rq->rt.highest_prio.curr > task->prio)
1340 break;
1342 /* try again */
1343 double_unlock_balance(rq, lowest_rq);
1344 lowest_rq = NULL;
1347 return lowest_rq;
1350 static struct task_struct *pick_next_pushable_task(struct rq *rq)
1352 struct task_struct *p;
1354 if (!has_pushable_tasks(rq))
1355 return NULL;
1357 p = plist_first_entry(&rq->rt.pushable_tasks,
1358 struct task_struct, pushable_tasks);
1360 BUG_ON(rq->cpu != task_cpu(p));
1361 BUG_ON(task_current(rq, p));
1362 BUG_ON(p->rt.nr_cpus_allowed <= 1);
1364 BUG_ON(!p->on_rq);
1365 BUG_ON(!rt_task(p));
1367 return p;
1371 * If the current CPU has more than one RT task, see if the non
1372 * running task can migrate over to a CPU that is running a task
1373 * of lesser priority.
1375 static int push_rt_task(struct rq *rq)
1377 struct task_struct *next_task;
1378 struct rq *lowest_rq;
1379 int ret = 0;
1381 if (!rq->rt.overloaded)
1382 return 0;
1384 next_task = pick_next_pushable_task(rq);
1385 if (!next_task)
1386 return 0;
1388 retry:
1389 if (unlikely(next_task == rq->curr)) {
1390 WARN_ON(1);
1391 return 0;
1395 * It's possible that the next_task slipped in of
1396 * higher priority than current. If that's the case
1397 * just reschedule current.
1399 if (unlikely(next_task->prio < rq->curr->prio)) {
1400 resched_task(rq->curr);
1401 return 0;
1404 /* We might release rq lock */
1405 get_task_struct(next_task);
1407 /* find_lock_lowest_rq locks the rq if found */
1408 lowest_rq = find_lock_lowest_rq(next_task, rq);
1409 if (!lowest_rq) {
1410 struct task_struct *task;
1412 * find_lock_lowest_rq releases rq->lock
1413 * so it is possible that next_task has migrated.
1415 * We need to make sure that the task is still on the same
1416 * run-queue and is also still the next task eligible for
1417 * pushing.
1419 task = pick_next_pushable_task(rq);
1420 if (task_cpu(next_task) == rq->cpu && task == next_task) {
1422 * The task hasn't migrated, and is still the next
1423 * eligible task, but we failed to find a run-queue
1424 * to push it to. Do not retry in this case, since
1425 * other cpus will pull from us when ready.
1427 goto out;
1430 if (!task)
1431 /* No more tasks, just exit */
1432 goto out;
1435 * Something has shifted, try again.
1437 put_task_struct(next_task);
1438 next_task = task;
1439 goto retry;
1442 deactivate_task(rq, next_task, 0);
1443 set_task_cpu(next_task, lowest_rq->cpu);
1444 activate_task(lowest_rq, next_task, 0);
1445 ret = 1;
1447 resched_task(lowest_rq->curr);
1449 double_unlock_balance(rq, lowest_rq);
1451 out:
1452 put_task_struct(next_task);
1454 return ret;
1457 static void push_rt_tasks(struct rq *rq)
1459 /* push_rt_task will return true if it moved an RT */
1460 while (push_rt_task(rq))
1464 static int pull_rt_task(struct rq *this_rq)
1466 int this_cpu = this_rq->cpu, ret = 0, cpu;
1467 struct task_struct *p;
1468 struct rq *src_rq;
1470 if (likely(!rt_overloaded(this_rq)))
1471 return 0;
1473 for_each_cpu(cpu, this_rq->rd->rto_mask) {
1474 if (this_cpu == cpu)
1475 continue;
1477 src_rq = cpu_rq(cpu);
1480 * Don't bother taking the src_rq->lock if the next highest
1481 * task is known to be lower-priority than our current task.
1482 * This may look racy, but if this value is about to go
1483 * logically higher, the src_rq will push this task away.
1484 * And if its going logically lower, we do not care
1486 if (src_rq->rt.highest_prio.next >=
1487 this_rq->rt.highest_prio.curr)
1488 continue;
1491 * We can potentially drop this_rq's lock in
1492 * double_lock_balance, and another CPU could
1493 * alter this_rq
1495 double_lock_balance(this_rq, src_rq);
1498 * Are there still pullable RT tasks?
1500 if (src_rq->rt.rt_nr_running <= 1)
1501 goto skip;
1503 p = pick_next_highest_task_rt(src_rq, this_cpu);
1506 * Do we have an RT task that preempts
1507 * the to-be-scheduled task?
1509 if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
1510 WARN_ON(p == src_rq->curr);
1511 WARN_ON(!p->on_rq);
1514 * There's a chance that p is higher in priority
1515 * than what's currently running on its cpu.
1516 * This is just that p is wakeing up and hasn't
1517 * had a chance to schedule. We only pull
1518 * p if it is lower in priority than the
1519 * current task on the run queue
1521 if (p->prio < src_rq->curr->prio)
1522 goto skip;
1524 ret = 1;
1526 deactivate_task(src_rq, p, 0);
1527 set_task_cpu(p, this_cpu);
1528 activate_task(this_rq, p, 0);
1530 * We continue with the search, just in
1531 * case there's an even higher prio task
1532 * in another runqueue. (low likelihood
1533 * but possible)
1536 skip:
1537 double_unlock_balance(this_rq, src_rq);
1540 return ret;
1543 static void pre_schedule_rt(struct rq *rq, struct task_struct *prev)
1545 /* Try to pull RT tasks here if we lower this rq's prio */
1546 if (rq->rt.highest_prio.curr > prev->prio)
1547 pull_rt_task(rq);
1550 static void post_schedule_rt(struct rq *rq)
1552 push_rt_tasks(rq);
1556 * If we are not running and we are not going to reschedule soon, we should
1557 * try to push tasks away now
1559 static void task_woken_rt(struct rq *rq, struct task_struct *p)
1561 if (!task_running(rq, p) &&
1562 !test_tsk_need_resched(rq->curr) &&
1563 has_pushable_tasks(rq) &&
1564 p->rt.nr_cpus_allowed > 1 &&
1565 rt_task(rq->curr) &&
1566 (rq->curr->rt.nr_cpus_allowed < 2 ||
1567 rq->curr->prio <= p->prio))
1568 push_rt_tasks(rq);
1571 static void set_cpus_allowed_rt(struct task_struct *p,
1572 const struct cpumask *new_mask)
1574 int weight = cpumask_weight(new_mask);
1576 BUG_ON(!rt_task(p));
1579 * Update the migration status of the RQ if we have an RT task
1580 * which is running AND changing its weight value.
1582 if (p->on_rq && (weight != p->rt.nr_cpus_allowed)) {
1583 struct rq *rq = task_rq(p);
1585 if (!task_current(rq, p)) {
1587 * Make sure we dequeue this task from the pushable list
1588 * before going further. It will either remain off of
1589 * the list because we are no longer pushable, or it
1590 * will be requeued.
1592 if (p->rt.nr_cpus_allowed > 1)
1593 dequeue_pushable_task(rq, p);
1596 * Requeue if our weight is changing and still > 1
1598 if (weight > 1)
1599 enqueue_pushable_task(rq, p);
1603 if ((p->rt.nr_cpus_allowed <= 1) && (weight > 1)) {
1604 rq->rt.rt_nr_migratory++;
1605 } else if ((p->rt.nr_cpus_allowed > 1) && (weight <= 1)) {
1606 BUG_ON(!rq->rt.rt_nr_migratory);
1607 rq->rt.rt_nr_migratory--;
1610 update_rt_migration(&rq->rt);
1614 /* Assumes rq->lock is held */
1615 static void rq_online_rt(struct rq *rq)
1617 if (rq->rt.overloaded)
1618 rt_set_overload(rq);
1620 __enable_runtime(rq);
1622 cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
1625 /* Assumes rq->lock is held */
1626 static void rq_offline_rt(struct rq *rq)
1628 if (rq->rt.overloaded)
1629 rt_clear_overload(rq);
1631 __disable_runtime(rq);
1633 cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
1637 * When switch from the rt queue, we bring ourselves to a position
1638 * that we might want to pull RT tasks from other runqueues.
1640 static void switched_from_rt(struct rq *rq, struct task_struct *p)
1643 * If there are other RT tasks then we will reschedule
1644 * and the scheduling of the other RT tasks will handle
1645 * the balancing. But if we are the last RT task
1646 * we may need to handle the pulling of RT tasks
1647 * now.
1649 if (p->on_rq && !rq->rt.rt_nr_running)
1650 pull_rt_task(rq);
1653 static inline void init_sched_rt_class(void)
1655 unsigned int i;
1657 for_each_possible_cpu(i)
1658 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
1659 GFP_KERNEL, cpu_to_node(i));
1661 #endif /* CONFIG_SMP */
1664 * When switching a task to RT, we may overload the runqueue
1665 * with RT tasks. In this case we try to push them off to
1666 * other runqueues.
1668 static void switched_to_rt(struct rq *rq, struct task_struct *p)
1670 int check_resched = 1;
1673 * If we are already running, then there's nothing
1674 * that needs to be done. But if we are not running
1675 * we may need to preempt the current running task.
1676 * If that current running task is also an RT task
1677 * then see if we can move to another run queue.
1679 if (p->on_rq && rq->curr != p) {
1680 #ifdef CONFIG_SMP
1681 if (rq->rt.overloaded && push_rt_task(rq) &&
1682 /* Don't resched if we changed runqueues */
1683 rq != task_rq(p))
1684 check_resched = 0;
1685 #endif /* CONFIG_SMP */
1686 if (check_resched && p->prio < rq->curr->prio)
1687 resched_task(rq->curr);
1692 * Priority of the task has changed. This may cause
1693 * us to initiate a push or pull.
1695 static void
1696 prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
1698 if (!p->on_rq)
1699 return;
1701 if (rq->curr == p) {
1702 #ifdef CONFIG_SMP
1704 * If our priority decreases while running, we
1705 * may need to pull tasks to this runqueue.
1707 if (oldprio < p->prio)
1708 pull_rt_task(rq);
1710 * If there's a higher priority task waiting to run
1711 * then reschedule. Note, the above pull_rt_task
1712 * can release the rq lock and p could migrate.
1713 * Only reschedule if p is still on the same runqueue.
1715 if (p->prio > rq->rt.highest_prio.curr && rq->curr == p)
1716 resched_task(p);
1717 #else
1718 /* For UP simply resched on drop of prio */
1719 if (oldprio < p->prio)
1720 resched_task(p);
1721 #endif /* CONFIG_SMP */
1722 } else {
1724 * This task is not running, but if it is
1725 * greater than the current running task
1726 * then reschedule.
1728 if (p->prio < rq->curr->prio)
1729 resched_task(rq->curr);
1733 static void watchdog(struct rq *rq, struct task_struct *p)
1735 unsigned long soft, hard;
1737 /* max may change after cur was read, this will be fixed next tick */
1738 soft = task_rlimit(p, RLIMIT_RTTIME);
1739 hard = task_rlimit_max(p, RLIMIT_RTTIME);
1741 if (soft != RLIM_INFINITY) {
1742 unsigned long next;
1744 p->rt.timeout++;
1745 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
1746 if (p->rt.timeout > next)
1747 p->cputime_expires.sched_exp = p->se.sum_exec_runtime;
1751 static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
1753 update_curr_rt(rq);
1755 watchdog(rq, p);
1758 * RR tasks need a special form of timeslice management.
1759 * FIFO tasks have no timeslices.
1761 if (p->policy != SCHED_RR)
1762 return;
1764 if (--p->rt.time_slice)
1765 return;
1767 p->rt.time_slice = DEF_TIMESLICE;
1770 * Requeue to the end of queue if we are not the only element
1771 * on the queue:
1773 if (p->rt.run_list.prev != p->rt.run_list.next) {
1774 requeue_task_rt(rq, p, 0);
1775 set_tsk_need_resched(p);
1779 static void set_curr_task_rt(struct rq *rq)
1781 struct task_struct *p = rq->curr;
1783 p->se.exec_start = rq->clock_task;
1785 /* The running task is never eligible for pushing */
1786 dequeue_pushable_task(rq, p);
1789 static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
1792 * Time slice is 0 for SCHED_FIFO tasks
1794 if (task->policy == SCHED_RR)
1795 return DEF_TIMESLICE;
1796 else
1797 return 0;
1800 static const struct sched_class rt_sched_class = {
1801 .next = &fair_sched_class,
1802 .enqueue_task = enqueue_task_rt,
1803 .dequeue_task = dequeue_task_rt,
1804 .yield_task = yield_task_rt,
1806 .check_preempt_curr = check_preempt_curr_rt,
1808 .pick_next_task = pick_next_task_rt,
1809 .put_prev_task = put_prev_task_rt,
1811 #ifdef CONFIG_SMP
1812 .select_task_rq = select_task_rq_rt,
1814 .set_cpus_allowed = set_cpus_allowed_rt,
1815 .rq_online = rq_online_rt,
1816 .rq_offline = rq_offline_rt,
1817 .pre_schedule = pre_schedule_rt,
1818 .post_schedule = post_schedule_rt,
1819 .task_woken = task_woken_rt,
1820 .switched_from = switched_from_rt,
1821 #endif
1823 .set_curr_task = set_curr_task_rt,
1824 .task_tick = task_tick_rt,
1826 .get_rr_interval = get_rr_interval_rt,
1828 .prio_changed = prio_changed_rt,
1829 .switched_to = switched_to_rt,
1832 #ifdef CONFIG_SCHED_DEBUG
1833 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
1835 static void print_rt_stats(struct seq_file *m, int cpu)
1837 rt_rq_iter_t iter;
1838 struct rt_rq *rt_rq;
1840 rcu_read_lock();
1841 for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
1842 print_rt_rq(m, cpu, rt_rq);
1843 rcu_read_unlock();
1845 #endif /* CONFIG_SCHED_DEBUG */