1 #include <linux/ceph/ceph_debug.h>
3 #include <linux/crc32c.h>
4 #include <linux/ctype.h>
5 #include <linux/highmem.h>
6 #include <linux/inet.h>
7 #include <linux/kthread.h>
9 #include <linux/slab.h>
10 #include <linux/socket.h>
11 #include <linux/string.h>
12 #include <linux/bio.h>
13 #include <linux/blkdev.h>
14 #include <linux/dns_resolver.h>
17 #include <linux/ceph/libceph.h>
18 #include <linux/ceph/messenger.h>
19 #include <linux/ceph/decode.h>
20 #include <linux/ceph/pagelist.h>
23 * Ceph uses the messenger to exchange ceph_msg messages with other
24 * hosts in the system. The messenger provides ordered and reliable
25 * delivery. We tolerate TCP disconnects by reconnecting (with
26 * exponential backoff) in the case of a fault (disconnection, bad
27 * crc, protocol error). Acks allow sent messages to be discarded by
31 /* static tag bytes (protocol control messages) */
32 static char tag_msg
= CEPH_MSGR_TAG_MSG
;
33 static char tag_ack
= CEPH_MSGR_TAG_ACK
;
34 static char tag_keepalive
= CEPH_MSGR_TAG_KEEPALIVE
;
37 static struct lock_class_key socket_class
;
41 static void queue_con(struct ceph_connection
*con
);
42 static void con_work(struct work_struct
*);
43 static void ceph_fault(struct ceph_connection
*con
);
46 * nicely render a sockaddr as a string.
48 #define MAX_ADDR_STR 20
49 #define MAX_ADDR_STR_LEN 60
50 static char addr_str
[MAX_ADDR_STR
][MAX_ADDR_STR_LEN
];
51 static DEFINE_SPINLOCK(addr_str_lock
);
52 static int last_addr_str
;
54 const char *ceph_pr_addr(const struct sockaddr_storage
*ss
)
58 struct sockaddr_in
*in4
= (void *)ss
;
59 struct sockaddr_in6
*in6
= (void *)ss
;
61 spin_lock(&addr_str_lock
);
63 if (last_addr_str
== MAX_ADDR_STR
)
65 spin_unlock(&addr_str_lock
);
68 switch (ss
->ss_family
) {
70 snprintf(s
, MAX_ADDR_STR_LEN
, "%pI4:%u", &in4
->sin_addr
,
71 (unsigned int)ntohs(in4
->sin_port
));
75 snprintf(s
, MAX_ADDR_STR_LEN
, "[%pI6c]:%u", &in6
->sin6_addr
,
76 (unsigned int)ntohs(in6
->sin6_port
));
80 snprintf(s
, MAX_ADDR_STR_LEN
, "(unknown sockaddr family %d)",
86 EXPORT_SYMBOL(ceph_pr_addr
);
88 static void encode_my_addr(struct ceph_messenger
*msgr
)
90 memcpy(&msgr
->my_enc_addr
, &msgr
->inst
.addr
, sizeof(msgr
->my_enc_addr
));
91 ceph_encode_addr(&msgr
->my_enc_addr
);
95 * work queue for all reading and writing to/from the socket.
97 struct workqueue_struct
*ceph_msgr_wq
;
99 int ceph_msgr_init(void)
101 ceph_msgr_wq
= alloc_workqueue("ceph-msgr", WQ_NON_REENTRANT
, 0);
103 pr_err("msgr_init failed to create workqueue\n");
108 EXPORT_SYMBOL(ceph_msgr_init
);
110 void ceph_msgr_exit(void)
112 destroy_workqueue(ceph_msgr_wq
);
114 EXPORT_SYMBOL(ceph_msgr_exit
);
116 void ceph_msgr_flush(void)
118 flush_workqueue(ceph_msgr_wq
);
120 EXPORT_SYMBOL(ceph_msgr_flush
);
124 * socket callback functions
127 /* data available on socket, or listen socket received a connect */
128 static void ceph_data_ready(struct sock
*sk
, int count_unused
)
130 struct ceph_connection
*con
=
131 (struct ceph_connection
*)sk
->sk_user_data
;
132 if (sk
->sk_state
!= TCP_CLOSE_WAIT
) {
133 dout("ceph_data_ready on %p state = %lu, queueing work\n",
139 /* socket has buffer space for writing */
140 static void ceph_write_space(struct sock
*sk
)
142 struct ceph_connection
*con
=
143 (struct ceph_connection
*)sk
->sk_user_data
;
145 /* only queue to workqueue if there is data we want to write. */
146 if (test_bit(WRITE_PENDING
, &con
->state
)) {
147 dout("ceph_write_space %p queueing write work\n", con
);
150 dout("ceph_write_space %p nothing to write\n", con
);
153 /* since we have our own write_space, clear the SOCK_NOSPACE flag */
154 clear_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
);
157 /* socket's state has changed */
158 static void ceph_state_change(struct sock
*sk
)
160 struct ceph_connection
*con
=
161 (struct ceph_connection
*)sk
->sk_user_data
;
163 dout("ceph_state_change %p state = %lu sk_state = %u\n",
164 con
, con
->state
, sk
->sk_state
);
166 if (test_bit(CLOSED
, &con
->state
))
169 switch (sk
->sk_state
) {
171 dout("ceph_state_change TCP_CLOSE\n");
173 dout("ceph_state_change TCP_CLOSE_WAIT\n");
174 if (test_and_set_bit(SOCK_CLOSED
, &con
->state
) == 0) {
175 if (test_bit(CONNECTING
, &con
->state
))
176 con
->error_msg
= "connection failed";
178 con
->error_msg
= "socket closed";
182 case TCP_ESTABLISHED
:
183 dout("ceph_state_change TCP_ESTABLISHED\n");
190 * set up socket callbacks
192 static void set_sock_callbacks(struct socket
*sock
,
193 struct ceph_connection
*con
)
195 struct sock
*sk
= sock
->sk
;
196 sk
->sk_user_data
= (void *)con
;
197 sk
->sk_data_ready
= ceph_data_ready
;
198 sk
->sk_write_space
= ceph_write_space
;
199 sk
->sk_state_change
= ceph_state_change
;
208 * initiate connection to a remote socket.
210 static struct socket
*ceph_tcp_connect(struct ceph_connection
*con
)
212 struct sockaddr_storage
*paddr
= &con
->peer_addr
.in_addr
;
217 ret
= sock_create_kern(con
->peer_addr
.in_addr
.ss_family
, SOCK_STREAM
,
222 sock
->sk
->sk_allocation
= GFP_NOFS
;
224 #ifdef CONFIG_LOCKDEP
225 lockdep_set_class(&sock
->sk
->sk_lock
, &socket_class
);
228 set_sock_callbacks(sock
, con
);
230 dout("connect %s\n", ceph_pr_addr(&con
->peer_addr
.in_addr
));
232 ret
= sock
->ops
->connect(sock
, (struct sockaddr
*)paddr
, sizeof(*paddr
),
234 if (ret
== -EINPROGRESS
) {
235 dout("connect %s EINPROGRESS sk_state = %u\n",
236 ceph_pr_addr(&con
->peer_addr
.in_addr
),
241 pr_err("connect %s error %d\n",
242 ceph_pr_addr(&con
->peer_addr
.in_addr
), ret
);
245 con
->error_msg
= "connect error";
253 static int ceph_tcp_recvmsg(struct socket
*sock
, void *buf
, size_t len
)
255 struct kvec iov
= {buf
, len
};
256 struct msghdr msg
= { .msg_flags
= MSG_DONTWAIT
| MSG_NOSIGNAL
};
259 r
= kernel_recvmsg(sock
, &msg
, &iov
, 1, len
, msg
.msg_flags
);
266 * write something. @more is true if caller will be sending more data
269 static int ceph_tcp_sendmsg(struct socket
*sock
, struct kvec
*iov
,
270 size_t kvlen
, size_t len
, int more
)
272 struct msghdr msg
= { .msg_flags
= MSG_DONTWAIT
| MSG_NOSIGNAL
};
276 msg
.msg_flags
|= MSG_MORE
;
278 msg
.msg_flags
|= MSG_EOR
; /* superfluous, but what the hell */
280 r
= kernel_sendmsg(sock
, &msg
, iov
, kvlen
, len
);
288 * Shutdown/close the socket for the given connection.
290 static int con_close_socket(struct ceph_connection
*con
)
294 dout("con_close_socket on %p sock %p\n", con
, con
->sock
);
297 set_bit(SOCK_CLOSED
, &con
->state
);
298 rc
= con
->sock
->ops
->shutdown(con
->sock
, SHUT_RDWR
);
299 sock_release(con
->sock
);
301 clear_bit(SOCK_CLOSED
, &con
->state
);
306 * Reset a connection. Discard all incoming and outgoing messages
307 * and clear *_seq state.
309 static void ceph_msg_remove(struct ceph_msg
*msg
)
311 list_del_init(&msg
->list_head
);
314 static void ceph_msg_remove_list(struct list_head
*head
)
316 while (!list_empty(head
)) {
317 struct ceph_msg
*msg
= list_first_entry(head
, struct ceph_msg
,
319 ceph_msg_remove(msg
);
323 static void reset_connection(struct ceph_connection
*con
)
325 /* reset connection, out_queue, msg_ and connect_seq */
326 /* discard existing out_queue and msg_seq */
327 ceph_msg_remove_list(&con
->out_queue
);
328 ceph_msg_remove_list(&con
->out_sent
);
331 ceph_msg_put(con
->in_msg
);
335 con
->connect_seq
= 0;
338 ceph_msg_put(con
->out_msg
);
342 con
->in_seq_acked
= 0;
346 * mark a peer down. drop any open connections.
348 void ceph_con_close(struct ceph_connection
*con
)
350 dout("con_close %p peer %s\n", con
,
351 ceph_pr_addr(&con
->peer_addr
.in_addr
));
352 set_bit(CLOSED
, &con
->state
); /* in case there's queued work */
353 clear_bit(STANDBY
, &con
->state
); /* avoid connect_seq bump */
354 clear_bit(LOSSYTX
, &con
->state
); /* so we retry next connect */
355 clear_bit(KEEPALIVE_PENDING
, &con
->state
);
356 clear_bit(WRITE_PENDING
, &con
->state
);
357 mutex_lock(&con
->mutex
);
358 reset_connection(con
);
359 con
->peer_global_seq
= 0;
360 cancel_delayed_work(&con
->work
);
361 mutex_unlock(&con
->mutex
);
364 EXPORT_SYMBOL(ceph_con_close
);
367 * Reopen a closed connection, with a new peer address.
369 void ceph_con_open(struct ceph_connection
*con
, struct ceph_entity_addr
*addr
)
371 dout("con_open %p %s\n", con
, ceph_pr_addr(&addr
->in_addr
));
372 set_bit(OPENING
, &con
->state
);
373 clear_bit(CLOSED
, &con
->state
);
374 memcpy(&con
->peer_addr
, addr
, sizeof(*addr
));
375 con
->delay
= 0; /* reset backoff memory */
378 EXPORT_SYMBOL(ceph_con_open
);
381 * return true if this connection ever successfully opened
383 bool ceph_con_opened(struct ceph_connection
*con
)
385 return con
->connect_seq
> 0;
391 struct ceph_connection
*ceph_con_get(struct ceph_connection
*con
)
393 dout("con_get %p nref = %d -> %d\n", con
,
394 atomic_read(&con
->nref
), atomic_read(&con
->nref
) + 1);
395 if (atomic_inc_not_zero(&con
->nref
))
400 void ceph_con_put(struct ceph_connection
*con
)
402 dout("con_put %p nref = %d -> %d\n", con
,
403 atomic_read(&con
->nref
), atomic_read(&con
->nref
) - 1);
404 BUG_ON(atomic_read(&con
->nref
) == 0);
405 if (atomic_dec_and_test(&con
->nref
)) {
412 * initialize a new connection.
414 void ceph_con_init(struct ceph_messenger
*msgr
, struct ceph_connection
*con
)
416 dout("con_init %p\n", con
);
417 memset(con
, 0, sizeof(*con
));
418 atomic_set(&con
->nref
, 1);
420 mutex_init(&con
->mutex
);
421 INIT_LIST_HEAD(&con
->out_queue
);
422 INIT_LIST_HEAD(&con
->out_sent
);
423 INIT_DELAYED_WORK(&con
->work
, con_work
);
425 EXPORT_SYMBOL(ceph_con_init
);
429 * We maintain a global counter to order connection attempts. Get
430 * a unique seq greater than @gt.
432 static u32
get_global_seq(struct ceph_messenger
*msgr
, u32 gt
)
436 spin_lock(&msgr
->global_seq_lock
);
437 if (msgr
->global_seq
< gt
)
438 msgr
->global_seq
= gt
;
439 ret
= ++msgr
->global_seq
;
440 spin_unlock(&msgr
->global_seq_lock
);
446 * Prepare footer for currently outgoing message, and finish things
447 * off. Assumes out_kvec* are already valid.. we just add on to the end.
449 static void prepare_write_message_footer(struct ceph_connection
*con
, int v
)
451 struct ceph_msg
*m
= con
->out_msg
;
453 dout("prepare_write_message_footer %p\n", con
);
454 con
->out_kvec_is_msg
= true;
455 con
->out_kvec
[v
].iov_base
= &m
->footer
;
456 con
->out_kvec
[v
].iov_len
= sizeof(m
->footer
);
457 con
->out_kvec_bytes
+= sizeof(m
->footer
);
458 con
->out_kvec_left
++;
459 con
->out_more
= m
->more_to_follow
;
460 con
->out_msg_done
= true;
464 * Prepare headers for the next outgoing message.
466 static void prepare_write_message(struct ceph_connection
*con
)
471 con
->out_kvec_bytes
= 0;
472 con
->out_kvec_is_msg
= true;
473 con
->out_msg_done
= false;
475 /* Sneak an ack in there first? If we can get it into the same
476 * TCP packet that's a good thing. */
477 if (con
->in_seq
> con
->in_seq_acked
) {
478 con
->in_seq_acked
= con
->in_seq
;
479 con
->out_kvec
[v
].iov_base
= &tag_ack
;
480 con
->out_kvec
[v
++].iov_len
= 1;
481 con
->out_temp_ack
= cpu_to_le64(con
->in_seq_acked
);
482 con
->out_kvec
[v
].iov_base
= &con
->out_temp_ack
;
483 con
->out_kvec
[v
++].iov_len
= sizeof(con
->out_temp_ack
);
484 con
->out_kvec_bytes
= 1 + sizeof(con
->out_temp_ack
);
487 m
= list_first_entry(&con
->out_queue
,
488 struct ceph_msg
, list_head
);
491 /* put message on sent list */
493 list_move_tail(&m
->list_head
, &con
->out_sent
);
496 * only assign outgoing seq # if we haven't sent this message
497 * yet. if it is requeued, resend with it's original seq.
499 if (m
->needs_out_seq
) {
500 m
->hdr
.seq
= cpu_to_le64(++con
->out_seq
);
501 m
->needs_out_seq
= false;
504 dout("prepare_write_message %p seq %lld type %d len %d+%d+%d %d pgs\n",
505 m
, con
->out_seq
, le16_to_cpu(m
->hdr
.type
),
506 le32_to_cpu(m
->hdr
.front_len
), le32_to_cpu(m
->hdr
.middle_len
),
507 le32_to_cpu(m
->hdr
.data_len
),
509 BUG_ON(le32_to_cpu(m
->hdr
.front_len
) != m
->front
.iov_len
);
511 /* tag + hdr + front + middle */
512 con
->out_kvec
[v
].iov_base
= &tag_msg
;
513 con
->out_kvec
[v
++].iov_len
= 1;
514 con
->out_kvec
[v
].iov_base
= &m
->hdr
;
515 con
->out_kvec
[v
++].iov_len
= sizeof(m
->hdr
);
516 con
->out_kvec
[v
++] = m
->front
;
518 con
->out_kvec
[v
++] = m
->middle
->vec
;
519 con
->out_kvec_left
= v
;
520 con
->out_kvec_bytes
+= 1 + sizeof(m
->hdr
) + m
->front
.iov_len
+
521 (m
->middle
? m
->middle
->vec
.iov_len
: 0);
522 con
->out_kvec_cur
= con
->out_kvec
;
524 /* fill in crc (except data pages), footer */
525 con
->out_msg
->hdr
.crc
=
526 cpu_to_le32(crc32c(0, (void *)&m
->hdr
,
527 sizeof(m
->hdr
) - sizeof(m
->hdr
.crc
)));
528 con
->out_msg
->footer
.flags
= CEPH_MSG_FOOTER_COMPLETE
;
529 con
->out_msg
->footer
.front_crc
=
530 cpu_to_le32(crc32c(0, m
->front
.iov_base
, m
->front
.iov_len
));
532 con
->out_msg
->footer
.middle_crc
=
533 cpu_to_le32(crc32c(0, m
->middle
->vec
.iov_base
,
534 m
->middle
->vec
.iov_len
));
536 con
->out_msg
->footer
.middle_crc
= 0;
537 con
->out_msg
->footer
.data_crc
= 0;
538 dout("prepare_write_message front_crc %u data_crc %u\n",
539 le32_to_cpu(con
->out_msg
->footer
.front_crc
),
540 le32_to_cpu(con
->out_msg
->footer
.middle_crc
));
542 /* is there a data payload? */
543 if (le32_to_cpu(m
->hdr
.data_len
) > 0) {
544 /* initialize page iterator */
545 con
->out_msg_pos
.page
= 0;
547 con
->out_msg_pos
.page_pos
= m
->page_alignment
;
549 con
->out_msg_pos
.page_pos
= 0;
550 con
->out_msg_pos
.data_pos
= 0;
551 con
->out_msg_pos
.did_page_crc
= 0;
552 con
->out_more
= 1; /* data + footer will follow */
554 /* no, queue up footer too and be done */
555 prepare_write_message_footer(con
, v
);
558 set_bit(WRITE_PENDING
, &con
->state
);
564 static void prepare_write_ack(struct ceph_connection
*con
)
566 dout("prepare_write_ack %p %llu -> %llu\n", con
,
567 con
->in_seq_acked
, con
->in_seq
);
568 con
->in_seq_acked
= con
->in_seq
;
570 con
->out_kvec
[0].iov_base
= &tag_ack
;
571 con
->out_kvec
[0].iov_len
= 1;
572 con
->out_temp_ack
= cpu_to_le64(con
->in_seq_acked
);
573 con
->out_kvec
[1].iov_base
= &con
->out_temp_ack
;
574 con
->out_kvec
[1].iov_len
= sizeof(con
->out_temp_ack
);
575 con
->out_kvec_left
= 2;
576 con
->out_kvec_bytes
= 1 + sizeof(con
->out_temp_ack
);
577 con
->out_kvec_cur
= con
->out_kvec
;
578 con
->out_more
= 1; /* more will follow.. eventually.. */
579 set_bit(WRITE_PENDING
, &con
->state
);
583 * Prepare to write keepalive byte.
585 static void prepare_write_keepalive(struct ceph_connection
*con
)
587 dout("prepare_write_keepalive %p\n", con
);
588 con
->out_kvec
[0].iov_base
= &tag_keepalive
;
589 con
->out_kvec
[0].iov_len
= 1;
590 con
->out_kvec_left
= 1;
591 con
->out_kvec_bytes
= 1;
592 con
->out_kvec_cur
= con
->out_kvec
;
593 set_bit(WRITE_PENDING
, &con
->state
);
597 * Connection negotiation.
600 static int prepare_connect_authorizer(struct ceph_connection
*con
)
604 int auth_protocol
= 0;
606 mutex_unlock(&con
->mutex
);
607 if (con
->ops
->get_authorizer
)
608 con
->ops
->get_authorizer(con
, &auth_buf
, &auth_len
,
609 &auth_protocol
, &con
->auth_reply_buf
,
610 &con
->auth_reply_buf_len
,
612 mutex_lock(&con
->mutex
);
614 if (test_bit(CLOSED
, &con
->state
) ||
615 test_bit(OPENING
, &con
->state
))
618 con
->out_connect
.authorizer_protocol
= cpu_to_le32(auth_protocol
);
619 con
->out_connect
.authorizer_len
= cpu_to_le32(auth_len
);
622 con
->out_kvec
[con
->out_kvec_left
].iov_base
= auth_buf
;
623 con
->out_kvec
[con
->out_kvec_left
].iov_len
= auth_len
;
624 con
->out_kvec_left
++;
625 con
->out_kvec_bytes
+= auth_len
;
631 * We connected to a peer and are saying hello.
633 static void prepare_write_banner(struct ceph_messenger
*msgr
,
634 struct ceph_connection
*con
)
636 int len
= strlen(CEPH_BANNER
);
638 con
->out_kvec
[0].iov_base
= CEPH_BANNER
;
639 con
->out_kvec
[0].iov_len
= len
;
640 con
->out_kvec
[1].iov_base
= &msgr
->my_enc_addr
;
641 con
->out_kvec
[1].iov_len
= sizeof(msgr
->my_enc_addr
);
642 con
->out_kvec_left
= 2;
643 con
->out_kvec_bytes
= len
+ sizeof(msgr
->my_enc_addr
);
644 con
->out_kvec_cur
= con
->out_kvec
;
646 set_bit(WRITE_PENDING
, &con
->state
);
649 static int prepare_write_connect(struct ceph_messenger
*msgr
,
650 struct ceph_connection
*con
,
653 unsigned global_seq
= get_global_seq(con
->msgr
, 0);
656 switch (con
->peer_name
.type
) {
657 case CEPH_ENTITY_TYPE_MON
:
658 proto
= CEPH_MONC_PROTOCOL
;
660 case CEPH_ENTITY_TYPE_OSD
:
661 proto
= CEPH_OSDC_PROTOCOL
;
663 case CEPH_ENTITY_TYPE_MDS
:
664 proto
= CEPH_MDSC_PROTOCOL
;
670 dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con
,
671 con
->connect_seq
, global_seq
, proto
);
673 con
->out_connect
.features
= cpu_to_le64(msgr
->supported_features
);
674 con
->out_connect
.host_type
= cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT
);
675 con
->out_connect
.connect_seq
= cpu_to_le32(con
->connect_seq
);
676 con
->out_connect
.global_seq
= cpu_to_le32(global_seq
);
677 con
->out_connect
.protocol_version
= cpu_to_le32(proto
);
678 con
->out_connect
.flags
= 0;
681 con
->out_kvec_left
= 0;
682 con
->out_kvec_bytes
= 0;
684 con
->out_kvec
[con
->out_kvec_left
].iov_base
= &con
->out_connect
;
685 con
->out_kvec
[con
->out_kvec_left
].iov_len
= sizeof(con
->out_connect
);
686 con
->out_kvec_left
++;
687 con
->out_kvec_bytes
+= sizeof(con
->out_connect
);
688 con
->out_kvec_cur
= con
->out_kvec
;
690 set_bit(WRITE_PENDING
, &con
->state
);
692 return prepare_connect_authorizer(con
);
697 * write as much of pending kvecs to the socket as we can.
699 * 0 -> socket full, but more to do
702 static int write_partial_kvec(struct ceph_connection
*con
)
706 dout("write_partial_kvec %p %d left\n", con
, con
->out_kvec_bytes
);
707 while (con
->out_kvec_bytes
> 0) {
708 ret
= ceph_tcp_sendmsg(con
->sock
, con
->out_kvec_cur
,
709 con
->out_kvec_left
, con
->out_kvec_bytes
,
713 con
->out_kvec_bytes
-= ret
;
714 if (con
->out_kvec_bytes
== 0)
717 if (ret
>= con
->out_kvec_cur
->iov_len
) {
718 ret
-= con
->out_kvec_cur
->iov_len
;
720 con
->out_kvec_left
--;
722 con
->out_kvec_cur
->iov_len
-= ret
;
723 con
->out_kvec_cur
->iov_base
+= ret
;
729 con
->out_kvec_left
= 0;
730 con
->out_kvec_is_msg
= false;
733 dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con
,
734 con
->out_kvec_bytes
, con
->out_kvec_left
, ret
);
735 return ret
; /* done! */
739 static void init_bio_iter(struct bio
*bio
, struct bio
**iter
, int *seg
)
750 static void iter_bio_next(struct bio
**bio_iter
, int *seg
)
752 if (*bio_iter
== NULL
)
755 BUG_ON(*seg
>= (*bio_iter
)->bi_vcnt
);
758 if (*seg
== (*bio_iter
)->bi_vcnt
)
759 init_bio_iter((*bio_iter
)->bi_next
, bio_iter
, seg
);
764 * Write as much message data payload as we can. If we finish, queue
766 * 1 -> done, footer is now queued in out_kvec[].
767 * 0 -> socket full, but more to do
770 static int write_partial_msg_pages(struct ceph_connection
*con
)
772 struct ceph_msg
*msg
= con
->out_msg
;
773 unsigned data_len
= le32_to_cpu(msg
->hdr
.data_len
);
775 int crc
= con
->msgr
->nocrc
;
779 size_t trail_len
= (msg
->trail
? msg
->trail
->length
: 0);
781 dout("write_partial_msg_pages %p msg %p page %d/%d offset %d\n",
782 con
, con
->out_msg
, con
->out_msg_pos
.page
, con
->out_msg
->nr_pages
,
783 con
->out_msg_pos
.page_pos
);
786 if (msg
->bio
&& !msg
->bio_iter
)
787 init_bio_iter(msg
->bio
, &msg
->bio_iter
, &msg
->bio_seg
);
790 while (data_len
> con
->out_msg_pos
.data_pos
) {
791 struct page
*page
= NULL
;
793 int max_write
= PAGE_SIZE
;
796 total_max_write
= data_len
- trail_len
-
797 con
->out_msg_pos
.data_pos
;
800 * if we are calculating the data crc (the default), we need
801 * to map the page. if our pages[] has been revoked, use the
805 /* have we reached the trail part of the data? */
806 if (con
->out_msg_pos
.data_pos
>= data_len
- trail_len
) {
809 total_max_write
= data_len
- con
->out_msg_pos
.data_pos
;
811 page
= list_first_entry(&msg
->trail
->head
,
815 max_write
= PAGE_SIZE
;
816 } else if (msg
->pages
) {
817 page
= msg
->pages
[con
->out_msg_pos
.page
];
820 } else if (msg
->pagelist
) {
821 page
= list_first_entry(&msg
->pagelist
->head
,
826 } else if (msg
->bio
) {
829 bv
= bio_iovec_idx(msg
->bio_iter
, msg
->bio_seg
);
831 page_shift
= bv
->bv_offset
;
833 kaddr
= kmap(page
) + page_shift
;
834 max_write
= bv
->bv_len
;
837 page
= con
->msgr
->zero_page
;
839 kaddr
= page_address(con
->msgr
->zero_page
);
841 len
= min_t(int, max_write
- con
->out_msg_pos
.page_pos
,
844 if (crc
&& !con
->out_msg_pos
.did_page_crc
) {
845 void *base
= kaddr
+ con
->out_msg_pos
.page_pos
;
846 u32 tmpcrc
= le32_to_cpu(con
->out_msg
->footer
.data_crc
);
848 BUG_ON(kaddr
== NULL
);
849 con
->out_msg
->footer
.data_crc
=
850 cpu_to_le32(crc32c(tmpcrc
, base
, len
));
851 con
->out_msg_pos
.did_page_crc
= 1;
853 ret
= kernel_sendpage(con
->sock
, page
,
854 con
->out_msg_pos
.page_pos
+ page_shift
,
856 MSG_DONTWAIT
| MSG_NOSIGNAL
|
860 (msg
->pages
|| msg
->pagelist
|| msg
->bio
|| in_trail
))
868 con
->out_msg_pos
.data_pos
+= ret
;
869 con
->out_msg_pos
.page_pos
+= ret
;
871 con
->out_msg_pos
.page_pos
= 0;
872 con
->out_msg_pos
.page
++;
873 con
->out_msg_pos
.did_page_crc
= 0;
875 list_move_tail(&page
->lru
,
877 else if (msg
->pagelist
)
878 list_move_tail(&page
->lru
,
879 &msg
->pagelist
->head
);
882 iter_bio_next(&msg
->bio_iter
, &msg
->bio_seg
);
887 dout("write_partial_msg_pages %p msg %p done\n", con
, msg
);
889 /* prepare and queue up footer, too */
891 con
->out_msg
->footer
.flags
|= CEPH_MSG_FOOTER_NOCRC
;
892 con
->out_kvec_bytes
= 0;
893 con
->out_kvec_left
= 0;
894 con
->out_kvec_cur
= con
->out_kvec
;
895 prepare_write_message_footer(con
, 0);
904 static int write_partial_skip(struct ceph_connection
*con
)
908 while (con
->out_skip
> 0) {
910 .iov_base
= page_address(con
->msgr
->zero_page
),
911 .iov_len
= min(con
->out_skip
, (int)PAGE_CACHE_SIZE
)
914 ret
= ceph_tcp_sendmsg(con
->sock
, &iov
, 1, iov
.iov_len
, 1);
917 con
->out_skip
-= ret
;
925 * Prepare to read connection handshake, or an ack.
927 static void prepare_read_banner(struct ceph_connection
*con
)
929 dout("prepare_read_banner %p\n", con
);
930 con
->in_base_pos
= 0;
933 static void prepare_read_connect(struct ceph_connection
*con
)
935 dout("prepare_read_connect %p\n", con
);
936 con
->in_base_pos
= 0;
939 static void prepare_read_ack(struct ceph_connection
*con
)
941 dout("prepare_read_ack %p\n", con
);
942 con
->in_base_pos
= 0;
945 static void prepare_read_tag(struct ceph_connection
*con
)
947 dout("prepare_read_tag %p\n", con
);
948 con
->in_base_pos
= 0;
949 con
->in_tag
= CEPH_MSGR_TAG_READY
;
953 * Prepare to read a message.
955 static int prepare_read_message(struct ceph_connection
*con
)
957 dout("prepare_read_message %p\n", con
);
958 BUG_ON(con
->in_msg
!= NULL
);
959 con
->in_base_pos
= 0;
960 con
->in_front_crc
= con
->in_middle_crc
= con
->in_data_crc
= 0;
965 static int read_partial(struct ceph_connection
*con
,
966 int *to
, int size
, void *object
)
969 while (con
->in_base_pos
< *to
) {
970 int left
= *to
- con
->in_base_pos
;
971 int have
= size
- left
;
972 int ret
= ceph_tcp_recvmsg(con
->sock
, object
+ have
, left
);
975 con
->in_base_pos
+= ret
;
982 * Read all or part of the connect-side handshake on a new connection
984 static int read_partial_banner(struct ceph_connection
*con
)
988 dout("read_partial_banner %p at %d\n", con
, con
->in_base_pos
);
991 ret
= read_partial(con
, &to
, strlen(CEPH_BANNER
), con
->in_banner
);
994 ret
= read_partial(con
, &to
, sizeof(con
->actual_peer_addr
),
995 &con
->actual_peer_addr
);
998 ret
= read_partial(con
, &to
, sizeof(con
->peer_addr_for_me
),
999 &con
->peer_addr_for_me
);
1006 static int read_partial_connect(struct ceph_connection
*con
)
1010 dout("read_partial_connect %p at %d\n", con
, con
->in_base_pos
);
1012 ret
= read_partial(con
, &to
, sizeof(con
->in_reply
), &con
->in_reply
);
1015 ret
= read_partial(con
, &to
, le32_to_cpu(con
->in_reply
.authorizer_len
),
1016 con
->auth_reply_buf
);
1020 dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
1021 con
, (int)con
->in_reply
.tag
,
1022 le32_to_cpu(con
->in_reply
.connect_seq
),
1023 le32_to_cpu(con
->in_reply
.global_seq
));
1030 * Verify the hello banner looks okay.
1032 static int verify_hello(struct ceph_connection
*con
)
1034 if (memcmp(con
->in_banner
, CEPH_BANNER
, strlen(CEPH_BANNER
))) {
1035 pr_err("connect to %s got bad banner\n",
1036 ceph_pr_addr(&con
->peer_addr
.in_addr
));
1037 con
->error_msg
= "protocol error, bad banner";
1043 static bool addr_is_blank(struct sockaddr_storage
*ss
)
1045 switch (ss
->ss_family
) {
1047 return ((struct sockaddr_in
*)ss
)->sin_addr
.s_addr
== 0;
1050 ((struct sockaddr_in6
*)ss
)->sin6_addr
.s6_addr32
[0] == 0 &&
1051 ((struct sockaddr_in6
*)ss
)->sin6_addr
.s6_addr32
[1] == 0 &&
1052 ((struct sockaddr_in6
*)ss
)->sin6_addr
.s6_addr32
[2] == 0 &&
1053 ((struct sockaddr_in6
*)ss
)->sin6_addr
.s6_addr32
[3] == 0;
1058 static int addr_port(struct sockaddr_storage
*ss
)
1060 switch (ss
->ss_family
) {
1062 return ntohs(((struct sockaddr_in
*)ss
)->sin_port
);
1064 return ntohs(((struct sockaddr_in6
*)ss
)->sin6_port
);
1069 static void addr_set_port(struct sockaddr_storage
*ss
, int p
)
1071 switch (ss
->ss_family
) {
1073 ((struct sockaddr_in
*)ss
)->sin_port
= htons(p
);
1076 ((struct sockaddr_in6
*)ss
)->sin6_port
= htons(p
);
1082 * Unlike other *_pton function semantics, zero indicates success.
1084 static int ceph_pton(const char *str
, size_t len
, struct sockaddr_storage
*ss
,
1085 char delim
, const char **ipend
)
1087 struct sockaddr_in
*in4
= (void *)ss
;
1088 struct sockaddr_in6
*in6
= (void *)ss
;
1090 memset(ss
, 0, sizeof(*ss
));
1092 if (in4_pton(str
, len
, (u8
*)&in4
->sin_addr
.s_addr
, delim
, ipend
)) {
1093 ss
->ss_family
= AF_INET
;
1097 if (in6_pton(str
, len
, (u8
*)&in6
->sin6_addr
.s6_addr
, delim
, ipend
)) {
1098 ss
->ss_family
= AF_INET6
;
1106 * Extract hostname string and resolve using kernel DNS facility.
1108 #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
1109 static int ceph_dns_resolve_name(const char *name
, size_t namelen
,
1110 struct sockaddr_storage
*ss
, char delim
, const char **ipend
)
1112 const char *end
, *delim_p
;
1113 char *colon_p
, *ip_addr
= NULL
;
1117 * The end of the hostname occurs immediately preceding the delimiter or
1118 * the port marker (':') where the delimiter takes precedence.
1120 delim_p
= memchr(name
, delim
, namelen
);
1121 colon_p
= memchr(name
, ':', namelen
);
1123 if (delim_p
&& colon_p
)
1124 end
= delim_p
< colon_p
? delim_p
: colon_p
;
1125 else if (!delim_p
&& colon_p
)
1129 if (!end
) /* case: hostname:/ */
1130 end
= name
+ namelen
;
1136 /* do dns_resolve upcall */
1137 ip_len
= dns_query(NULL
, name
, end
- name
, NULL
, &ip_addr
, NULL
);
1139 ret
= ceph_pton(ip_addr
, ip_len
, ss
, -1, NULL
);
1147 pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end
- name
), name
,
1148 ret
, ret
? "failed" : ceph_pr_addr(ss
));
1153 static inline int ceph_dns_resolve_name(const char *name
, size_t namelen
,
1154 struct sockaddr_storage
*ss
, char delim
, const char **ipend
)
1161 * Parse a server name (IP or hostname). If a valid IP address is not found
1162 * then try to extract a hostname to resolve using userspace DNS upcall.
1164 static int ceph_parse_server_name(const char *name
, size_t namelen
,
1165 struct sockaddr_storage
*ss
, char delim
, const char **ipend
)
1169 ret
= ceph_pton(name
, namelen
, ss
, delim
, ipend
);
1171 ret
= ceph_dns_resolve_name(name
, namelen
, ss
, delim
, ipend
);
1177 * Parse an ip[:port] list into an addr array. Use the default
1178 * monitor port if a port isn't specified.
1180 int ceph_parse_ips(const char *c
, const char *end
,
1181 struct ceph_entity_addr
*addr
,
1182 int max_count
, int *count
)
1184 int i
, ret
= -EINVAL
;
1187 dout("parse_ips on '%.*s'\n", (int)(end
-c
), c
);
1188 for (i
= 0; i
< max_count
; i
++) {
1190 struct sockaddr_storage
*ss
= &addr
[i
].in_addr
;
1199 ret
= ceph_parse_server_name(p
, end
- p
, ss
, delim
, &ipend
);
1208 dout("missing matching ']'\n");
1215 if (p
< end
&& *p
== ':') {
1218 while (p
< end
&& *p
>= '0' && *p
<= '9') {
1219 port
= (port
* 10) + (*p
- '0');
1222 if (port
> 65535 || port
== 0)
1225 port
= CEPH_MON_PORT
;
1228 addr_set_port(ss
, port
);
1230 dout("parse_ips got %s\n", ceph_pr_addr(ss
));
1247 pr_err("parse_ips bad ip '%.*s'\n", (int)(end
- c
), c
);
1250 EXPORT_SYMBOL(ceph_parse_ips
);
1252 static int process_banner(struct ceph_connection
*con
)
1254 dout("process_banner on %p\n", con
);
1256 if (verify_hello(con
) < 0)
1259 ceph_decode_addr(&con
->actual_peer_addr
);
1260 ceph_decode_addr(&con
->peer_addr_for_me
);
1263 * Make sure the other end is who we wanted. note that the other
1264 * end may not yet know their ip address, so if it's 0.0.0.0, give
1265 * them the benefit of the doubt.
1267 if (memcmp(&con
->peer_addr
, &con
->actual_peer_addr
,
1268 sizeof(con
->peer_addr
)) != 0 &&
1269 !(addr_is_blank(&con
->actual_peer_addr
.in_addr
) &&
1270 con
->actual_peer_addr
.nonce
== con
->peer_addr
.nonce
)) {
1271 pr_warning("wrong peer, want %s/%d, got %s/%d\n",
1272 ceph_pr_addr(&con
->peer_addr
.in_addr
),
1273 (int)le32_to_cpu(con
->peer_addr
.nonce
),
1274 ceph_pr_addr(&con
->actual_peer_addr
.in_addr
),
1275 (int)le32_to_cpu(con
->actual_peer_addr
.nonce
));
1276 con
->error_msg
= "wrong peer at address";
1281 * did we learn our address?
1283 if (addr_is_blank(&con
->msgr
->inst
.addr
.in_addr
)) {
1284 int port
= addr_port(&con
->msgr
->inst
.addr
.in_addr
);
1286 memcpy(&con
->msgr
->inst
.addr
.in_addr
,
1287 &con
->peer_addr_for_me
.in_addr
,
1288 sizeof(con
->peer_addr_for_me
.in_addr
));
1289 addr_set_port(&con
->msgr
->inst
.addr
.in_addr
, port
);
1290 encode_my_addr(con
->msgr
);
1291 dout("process_banner learned my addr is %s\n",
1292 ceph_pr_addr(&con
->msgr
->inst
.addr
.in_addr
));
1295 set_bit(NEGOTIATING
, &con
->state
);
1296 prepare_read_connect(con
);
1300 static void fail_protocol(struct ceph_connection
*con
)
1302 reset_connection(con
);
1303 set_bit(CLOSED
, &con
->state
); /* in case there's queued work */
1305 mutex_unlock(&con
->mutex
);
1306 if (con
->ops
->bad_proto
)
1307 con
->ops
->bad_proto(con
);
1308 mutex_lock(&con
->mutex
);
1311 static int process_connect(struct ceph_connection
*con
)
1313 u64 sup_feat
= con
->msgr
->supported_features
;
1314 u64 req_feat
= con
->msgr
->required_features
;
1315 u64 server_feat
= le64_to_cpu(con
->in_reply
.features
);
1318 dout("process_connect on %p tag %d\n", con
, (int)con
->in_tag
);
1320 switch (con
->in_reply
.tag
) {
1321 case CEPH_MSGR_TAG_FEATURES
:
1322 pr_err("%s%lld %s feature set mismatch,"
1323 " my %llx < server's %llx, missing %llx\n",
1324 ENTITY_NAME(con
->peer_name
),
1325 ceph_pr_addr(&con
->peer_addr
.in_addr
),
1326 sup_feat
, server_feat
, server_feat
& ~sup_feat
);
1327 con
->error_msg
= "missing required protocol features";
1331 case CEPH_MSGR_TAG_BADPROTOVER
:
1332 pr_err("%s%lld %s protocol version mismatch,"
1333 " my %d != server's %d\n",
1334 ENTITY_NAME(con
->peer_name
),
1335 ceph_pr_addr(&con
->peer_addr
.in_addr
),
1336 le32_to_cpu(con
->out_connect
.protocol_version
),
1337 le32_to_cpu(con
->in_reply
.protocol_version
));
1338 con
->error_msg
= "protocol version mismatch";
1342 case CEPH_MSGR_TAG_BADAUTHORIZER
:
1344 dout("process_connect %p got BADAUTHORIZER attempt %d\n", con
,
1346 if (con
->auth_retry
== 2) {
1347 con
->error_msg
= "connect authorization failure";
1350 con
->auth_retry
= 1;
1351 ret
= prepare_write_connect(con
->msgr
, con
, 0);
1354 prepare_read_connect(con
);
1357 case CEPH_MSGR_TAG_RESETSESSION
:
1359 * If we connected with a large connect_seq but the peer
1360 * has no record of a session with us (no connection, or
1361 * connect_seq == 0), they will send RESETSESION to indicate
1362 * that they must have reset their session, and may have
1365 dout("process_connect got RESET peer seq %u\n",
1366 le32_to_cpu(con
->in_connect
.connect_seq
));
1367 pr_err("%s%lld %s connection reset\n",
1368 ENTITY_NAME(con
->peer_name
),
1369 ceph_pr_addr(&con
->peer_addr
.in_addr
));
1370 reset_connection(con
);
1371 prepare_write_connect(con
->msgr
, con
, 0);
1372 prepare_read_connect(con
);
1374 /* Tell ceph about it. */
1375 mutex_unlock(&con
->mutex
);
1376 pr_info("reset on %s%lld\n", ENTITY_NAME(con
->peer_name
));
1377 if (con
->ops
->peer_reset
)
1378 con
->ops
->peer_reset(con
);
1379 mutex_lock(&con
->mutex
);
1380 if (test_bit(CLOSED
, &con
->state
) ||
1381 test_bit(OPENING
, &con
->state
))
1385 case CEPH_MSGR_TAG_RETRY_SESSION
:
1387 * If we sent a smaller connect_seq than the peer has, try
1388 * again with a larger value.
1390 dout("process_connect got RETRY my seq = %u, peer_seq = %u\n",
1391 le32_to_cpu(con
->out_connect
.connect_seq
),
1392 le32_to_cpu(con
->in_connect
.connect_seq
));
1393 con
->connect_seq
= le32_to_cpu(con
->in_connect
.connect_seq
);
1394 prepare_write_connect(con
->msgr
, con
, 0);
1395 prepare_read_connect(con
);
1398 case CEPH_MSGR_TAG_RETRY_GLOBAL
:
1400 * If we sent a smaller global_seq than the peer has, try
1401 * again with a larger value.
1403 dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
1404 con
->peer_global_seq
,
1405 le32_to_cpu(con
->in_connect
.global_seq
));
1406 get_global_seq(con
->msgr
,
1407 le32_to_cpu(con
->in_connect
.global_seq
));
1408 prepare_write_connect(con
->msgr
, con
, 0);
1409 prepare_read_connect(con
);
1412 case CEPH_MSGR_TAG_READY
:
1413 if (req_feat
& ~server_feat
) {
1414 pr_err("%s%lld %s protocol feature mismatch,"
1415 " my required %llx > server's %llx, need %llx\n",
1416 ENTITY_NAME(con
->peer_name
),
1417 ceph_pr_addr(&con
->peer_addr
.in_addr
),
1418 req_feat
, server_feat
, req_feat
& ~server_feat
);
1419 con
->error_msg
= "missing required protocol features";
1423 clear_bit(CONNECTING
, &con
->state
);
1424 con
->peer_global_seq
= le32_to_cpu(con
->in_reply
.global_seq
);
1426 con
->peer_features
= server_feat
;
1427 dout("process_connect got READY gseq %d cseq %d (%d)\n",
1428 con
->peer_global_seq
,
1429 le32_to_cpu(con
->in_reply
.connect_seq
),
1431 WARN_ON(con
->connect_seq
!=
1432 le32_to_cpu(con
->in_reply
.connect_seq
));
1434 if (con
->in_reply
.flags
& CEPH_MSG_CONNECT_LOSSY
)
1435 set_bit(LOSSYTX
, &con
->state
);
1437 prepare_read_tag(con
);
1440 case CEPH_MSGR_TAG_WAIT
:
1442 * If there is a connection race (we are opening
1443 * connections to each other), one of us may just have
1444 * to WAIT. This shouldn't happen if we are the
1447 pr_err("process_connect got WAIT as client\n");
1448 con
->error_msg
= "protocol error, got WAIT as client";
1452 pr_err("connect protocol error, will retry\n");
1453 con
->error_msg
= "protocol error, garbage tag during connect";
1461 * read (part of) an ack
1463 static int read_partial_ack(struct ceph_connection
*con
)
1467 return read_partial(con
, &to
, sizeof(con
->in_temp_ack
),
1473 * We can finally discard anything that's been acked.
1475 static void process_ack(struct ceph_connection
*con
)
1478 u64 ack
= le64_to_cpu(con
->in_temp_ack
);
1481 while (!list_empty(&con
->out_sent
)) {
1482 m
= list_first_entry(&con
->out_sent
, struct ceph_msg
,
1484 seq
= le64_to_cpu(m
->hdr
.seq
);
1487 dout("got ack for seq %llu type %d at %p\n", seq
,
1488 le16_to_cpu(m
->hdr
.type
), m
);
1489 m
->ack_stamp
= jiffies
;
1492 prepare_read_tag(con
);
1498 static int read_partial_message_section(struct ceph_connection
*con
,
1499 struct kvec
*section
,
1500 unsigned int sec_len
, u32
*crc
)
1506 while (section
->iov_len
< sec_len
) {
1507 BUG_ON(section
->iov_base
== NULL
);
1508 left
= sec_len
- section
->iov_len
;
1509 ret
= ceph_tcp_recvmsg(con
->sock
, (char *)section
->iov_base
+
1510 section
->iov_len
, left
);
1513 section
->iov_len
+= ret
;
1514 if (section
->iov_len
== sec_len
)
1515 *crc
= crc32c(0, section
->iov_base
,
1522 static struct ceph_msg
*ceph_alloc_msg(struct ceph_connection
*con
,
1523 struct ceph_msg_header
*hdr
,
1527 static int read_partial_message_pages(struct ceph_connection
*con
,
1528 struct page
**pages
,
1529 unsigned data_len
, int datacrc
)
1535 left
= min((int)(data_len
- con
->in_msg_pos
.data_pos
),
1536 (int)(PAGE_SIZE
- con
->in_msg_pos
.page_pos
));
1538 BUG_ON(pages
== NULL
);
1539 p
= kmap(pages
[con
->in_msg_pos
.page
]);
1540 ret
= ceph_tcp_recvmsg(con
->sock
, p
+ con
->in_msg_pos
.page_pos
,
1542 if (ret
> 0 && datacrc
)
1544 crc32c(con
->in_data_crc
,
1545 p
+ con
->in_msg_pos
.page_pos
, ret
);
1546 kunmap(pages
[con
->in_msg_pos
.page
]);
1549 con
->in_msg_pos
.data_pos
+= ret
;
1550 con
->in_msg_pos
.page_pos
+= ret
;
1551 if (con
->in_msg_pos
.page_pos
== PAGE_SIZE
) {
1552 con
->in_msg_pos
.page_pos
= 0;
1553 con
->in_msg_pos
.page
++;
1560 static int read_partial_message_bio(struct ceph_connection
*con
,
1561 struct bio
**bio_iter
, int *bio_seg
,
1562 unsigned data_len
, int datacrc
)
1564 struct bio_vec
*bv
= bio_iovec_idx(*bio_iter
, *bio_seg
);
1571 left
= min((int)(data_len
- con
->in_msg_pos
.data_pos
),
1572 (int)(bv
->bv_len
- con
->in_msg_pos
.page_pos
));
1574 p
= kmap(bv
->bv_page
) + bv
->bv_offset
;
1576 ret
= ceph_tcp_recvmsg(con
->sock
, p
+ con
->in_msg_pos
.page_pos
,
1578 if (ret
> 0 && datacrc
)
1580 crc32c(con
->in_data_crc
,
1581 p
+ con
->in_msg_pos
.page_pos
, ret
);
1582 kunmap(bv
->bv_page
);
1585 con
->in_msg_pos
.data_pos
+= ret
;
1586 con
->in_msg_pos
.page_pos
+= ret
;
1587 if (con
->in_msg_pos
.page_pos
== bv
->bv_len
) {
1588 con
->in_msg_pos
.page_pos
= 0;
1589 iter_bio_next(bio_iter
, bio_seg
);
1597 * read (part of) a message.
1599 static int read_partial_message(struct ceph_connection
*con
)
1601 struct ceph_msg
*m
= con
->in_msg
;
1604 unsigned front_len
, middle_len
, data_len
;
1605 int datacrc
= con
->msgr
->nocrc
;
1609 dout("read_partial_message con %p msg %p\n", con
, m
);
1612 while (con
->in_base_pos
< sizeof(con
->in_hdr
)) {
1613 left
= sizeof(con
->in_hdr
) - con
->in_base_pos
;
1614 ret
= ceph_tcp_recvmsg(con
->sock
,
1615 (char *)&con
->in_hdr
+ con
->in_base_pos
,
1619 con
->in_base_pos
+= ret
;
1620 if (con
->in_base_pos
== sizeof(con
->in_hdr
)) {
1621 u32 crc
= crc32c(0, (void *)&con
->in_hdr
,
1622 sizeof(con
->in_hdr
) - sizeof(con
->in_hdr
.crc
));
1623 if (crc
!= le32_to_cpu(con
->in_hdr
.crc
)) {
1624 pr_err("read_partial_message bad hdr "
1625 " crc %u != expected %u\n",
1626 crc
, con
->in_hdr
.crc
);
1631 front_len
= le32_to_cpu(con
->in_hdr
.front_len
);
1632 if (front_len
> CEPH_MSG_MAX_FRONT_LEN
)
1634 middle_len
= le32_to_cpu(con
->in_hdr
.middle_len
);
1635 if (middle_len
> CEPH_MSG_MAX_DATA_LEN
)
1637 data_len
= le32_to_cpu(con
->in_hdr
.data_len
);
1638 if (data_len
> CEPH_MSG_MAX_DATA_LEN
)
1642 seq
= le64_to_cpu(con
->in_hdr
.seq
);
1643 if ((s64
)seq
- (s64
)con
->in_seq
< 1) {
1644 pr_info("skipping %s%lld %s seq %lld expected %lld\n",
1645 ENTITY_NAME(con
->peer_name
),
1646 ceph_pr_addr(&con
->peer_addr
.in_addr
),
1647 seq
, con
->in_seq
+ 1);
1648 con
->in_base_pos
= -front_len
- middle_len
- data_len
-
1650 con
->in_tag
= CEPH_MSGR_TAG_READY
;
1652 } else if ((s64
)seq
- (s64
)con
->in_seq
> 1) {
1653 pr_err("read_partial_message bad seq %lld expected %lld\n",
1654 seq
, con
->in_seq
+ 1);
1655 con
->error_msg
= "bad message sequence # for incoming message";
1659 /* allocate message? */
1661 dout("got hdr type %d front %d data %d\n", con
->in_hdr
.type
,
1662 con
->in_hdr
.front_len
, con
->in_hdr
.data_len
);
1664 con
->in_msg
= ceph_alloc_msg(con
, &con
->in_hdr
, &skip
);
1666 /* skip this message */
1667 dout("alloc_msg said skip message\n");
1668 BUG_ON(con
->in_msg
);
1669 con
->in_base_pos
= -front_len
- middle_len
- data_len
-
1671 con
->in_tag
= CEPH_MSGR_TAG_READY
;
1677 "error allocating memory for incoming message";
1681 m
->front
.iov_len
= 0; /* haven't read it yet */
1683 m
->middle
->vec
.iov_len
= 0;
1685 con
->in_msg_pos
.page
= 0;
1687 con
->in_msg_pos
.page_pos
= m
->page_alignment
;
1689 con
->in_msg_pos
.page_pos
= 0;
1690 con
->in_msg_pos
.data_pos
= 0;
1694 ret
= read_partial_message_section(con
, &m
->front
, front_len
,
1695 &con
->in_front_crc
);
1701 ret
= read_partial_message_section(con
, &m
->middle
->vec
,
1703 &con
->in_middle_crc
);
1708 if (m
->bio
&& !m
->bio_iter
)
1709 init_bio_iter(m
->bio
, &m
->bio_iter
, &m
->bio_seg
);
1713 while (con
->in_msg_pos
.data_pos
< data_len
) {
1715 ret
= read_partial_message_pages(con
, m
->pages
,
1720 } else if (m
->bio
) {
1722 ret
= read_partial_message_bio(con
,
1723 &m
->bio_iter
, &m
->bio_seg
,
1734 to
= sizeof(m
->hdr
) + sizeof(m
->footer
);
1735 while (con
->in_base_pos
< to
) {
1736 left
= to
- con
->in_base_pos
;
1737 ret
= ceph_tcp_recvmsg(con
->sock
, (char *)&m
->footer
+
1738 (con
->in_base_pos
- sizeof(m
->hdr
)),
1742 con
->in_base_pos
+= ret
;
1744 dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
1745 m
, front_len
, m
->footer
.front_crc
, middle_len
,
1746 m
->footer
.middle_crc
, data_len
, m
->footer
.data_crc
);
1749 if (con
->in_front_crc
!= le32_to_cpu(m
->footer
.front_crc
)) {
1750 pr_err("read_partial_message %p front crc %u != exp. %u\n",
1751 m
, con
->in_front_crc
, m
->footer
.front_crc
);
1754 if (con
->in_middle_crc
!= le32_to_cpu(m
->footer
.middle_crc
)) {
1755 pr_err("read_partial_message %p middle crc %u != exp %u\n",
1756 m
, con
->in_middle_crc
, m
->footer
.middle_crc
);
1760 (m
->footer
.flags
& CEPH_MSG_FOOTER_NOCRC
) == 0 &&
1761 con
->in_data_crc
!= le32_to_cpu(m
->footer
.data_crc
)) {
1762 pr_err("read_partial_message %p data crc %u != exp. %u\n", m
,
1763 con
->in_data_crc
, le32_to_cpu(m
->footer
.data_crc
));
1767 return 1; /* done! */
1771 * Process message. This happens in the worker thread. The callback should
1772 * be careful not to do anything that waits on other incoming messages or it
1775 static void process_message(struct ceph_connection
*con
)
1777 struct ceph_msg
*msg
;
1782 /* if first message, set peer_name */
1783 if (con
->peer_name
.type
== 0)
1784 con
->peer_name
= msg
->hdr
.src
;
1787 mutex_unlock(&con
->mutex
);
1789 dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
1790 msg
, le64_to_cpu(msg
->hdr
.seq
),
1791 ENTITY_NAME(msg
->hdr
.src
),
1792 le16_to_cpu(msg
->hdr
.type
),
1793 ceph_msg_type_name(le16_to_cpu(msg
->hdr
.type
)),
1794 le32_to_cpu(msg
->hdr
.front_len
),
1795 le32_to_cpu(msg
->hdr
.data_len
),
1796 con
->in_front_crc
, con
->in_middle_crc
, con
->in_data_crc
);
1797 con
->ops
->dispatch(con
, msg
);
1799 mutex_lock(&con
->mutex
);
1800 prepare_read_tag(con
);
1805 * Write something to the socket. Called in a worker thread when the
1806 * socket appears to be writeable and we have something ready to send.
1808 static int try_write(struct ceph_connection
*con
)
1810 struct ceph_messenger
*msgr
= con
->msgr
;
1813 dout("try_write start %p state %lu nref %d\n", con
, con
->state
,
1814 atomic_read(&con
->nref
));
1817 dout("try_write out_kvec_bytes %d\n", con
->out_kvec_bytes
);
1819 /* open the socket first? */
1820 if (con
->sock
== NULL
) {
1821 prepare_write_banner(msgr
, con
);
1822 prepare_write_connect(msgr
, con
, 1);
1823 prepare_read_banner(con
);
1824 set_bit(CONNECTING
, &con
->state
);
1825 clear_bit(NEGOTIATING
, &con
->state
);
1827 BUG_ON(con
->in_msg
);
1828 con
->in_tag
= CEPH_MSGR_TAG_READY
;
1829 dout("try_write initiating connect on %p new state %lu\n",
1831 con
->sock
= ceph_tcp_connect(con
);
1832 if (IS_ERR(con
->sock
)) {
1834 con
->error_msg
= "connect error";
1841 /* kvec data queued? */
1842 if (con
->out_skip
) {
1843 ret
= write_partial_skip(con
);
1847 if (con
->out_kvec_left
) {
1848 ret
= write_partial_kvec(con
);
1855 if (con
->out_msg_done
) {
1856 ceph_msg_put(con
->out_msg
);
1857 con
->out_msg
= NULL
; /* we're done with this one */
1861 ret
= write_partial_msg_pages(con
);
1863 goto more_kvec
; /* we need to send the footer, too! */
1867 dout("try_write write_partial_msg_pages err %d\n",
1874 if (!test_bit(CONNECTING
, &con
->state
)) {
1875 /* is anything else pending? */
1876 if (!list_empty(&con
->out_queue
)) {
1877 prepare_write_message(con
);
1880 if (con
->in_seq
> con
->in_seq_acked
) {
1881 prepare_write_ack(con
);
1884 if (test_and_clear_bit(KEEPALIVE_PENDING
, &con
->state
)) {
1885 prepare_write_keepalive(con
);
1890 /* Nothing to do! */
1891 clear_bit(WRITE_PENDING
, &con
->state
);
1892 dout("try_write nothing else to write.\n");
1895 dout("try_write done on %p ret %d\n", con
, ret
);
1902 * Read what we can from the socket.
1904 static int try_read(struct ceph_connection
*con
)
1911 if (test_bit(STANDBY
, &con
->state
))
1914 dout("try_read start on %p\n", con
);
1917 dout("try_read tag %d in_base_pos %d\n", (int)con
->in_tag
,
1921 * process_connect and process_message drop and re-take
1922 * con->mutex. make sure we handle a racing close or reopen.
1924 if (test_bit(CLOSED
, &con
->state
) ||
1925 test_bit(OPENING
, &con
->state
)) {
1930 if (test_bit(CONNECTING
, &con
->state
)) {
1931 if (!test_bit(NEGOTIATING
, &con
->state
)) {
1932 dout("try_read connecting\n");
1933 ret
= read_partial_banner(con
);
1936 ret
= process_banner(con
);
1940 ret
= read_partial_connect(con
);
1943 ret
= process_connect(con
);
1949 if (con
->in_base_pos
< 0) {
1951 * skipping + discarding content.
1953 * FIXME: there must be a better way to do this!
1955 static char buf
[1024];
1956 int skip
= min(1024, -con
->in_base_pos
);
1957 dout("skipping %d / %d bytes\n", skip
, -con
->in_base_pos
);
1958 ret
= ceph_tcp_recvmsg(con
->sock
, buf
, skip
);
1961 con
->in_base_pos
+= ret
;
1962 if (con
->in_base_pos
)
1965 if (con
->in_tag
== CEPH_MSGR_TAG_READY
) {
1969 ret
= ceph_tcp_recvmsg(con
->sock
, &con
->in_tag
, 1);
1972 dout("try_read got tag %d\n", (int)con
->in_tag
);
1973 switch (con
->in_tag
) {
1974 case CEPH_MSGR_TAG_MSG
:
1975 prepare_read_message(con
);
1977 case CEPH_MSGR_TAG_ACK
:
1978 prepare_read_ack(con
);
1980 case CEPH_MSGR_TAG_CLOSE
:
1981 set_bit(CLOSED
, &con
->state
); /* fixme */
1987 if (con
->in_tag
== CEPH_MSGR_TAG_MSG
) {
1988 ret
= read_partial_message(con
);
1992 con
->error_msg
= "bad crc";
1996 con
->error_msg
= "io error";
2001 if (con
->in_tag
== CEPH_MSGR_TAG_READY
)
2003 process_message(con
);
2006 if (con
->in_tag
== CEPH_MSGR_TAG_ACK
) {
2007 ret
= read_partial_ack(con
);
2015 dout("try_read done on %p ret %d\n", con
, ret
);
2019 pr_err("try_read bad con->in_tag = %d\n", (int)con
->in_tag
);
2020 con
->error_msg
= "protocol error, garbage tag";
2027 * Atomically queue work on a connection. Bump @con reference to
2028 * avoid races with connection teardown.
2030 static void queue_con(struct ceph_connection
*con
)
2032 if (test_bit(DEAD
, &con
->state
)) {
2033 dout("queue_con %p ignoring: DEAD\n",
2038 if (!con
->ops
->get(con
)) {
2039 dout("queue_con %p ref count 0\n", con
);
2043 if (!queue_delayed_work(ceph_msgr_wq
, &con
->work
, 0)) {
2044 dout("queue_con %p - already queued\n", con
);
2047 dout("queue_con %p\n", con
);
2052 * Do some work on a connection. Drop a connection ref when we're done.
2054 static void con_work(struct work_struct
*work
)
2056 struct ceph_connection
*con
= container_of(work
, struct ceph_connection
,
2060 mutex_lock(&con
->mutex
);
2062 if (test_and_clear_bit(BACKOFF
, &con
->state
)) {
2063 dout("con_work %p backing off\n", con
);
2064 if (queue_delayed_work(ceph_msgr_wq
, &con
->work
,
2065 round_jiffies_relative(con
->delay
))) {
2066 dout("con_work %p backoff %lu\n", con
, con
->delay
);
2067 mutex_unlock(&con
->mutex
);
2071 dout("con_work %p FAILED to back off %lu\n", con
,
2076 if (test_bit(STANDBY
, &con
->state
)) {
2077 dout("con_work %p STANDBY\n", con
);
2080 if (test_bit(CLOSED
, &con
->state
)) { /* e.g. if we are replaced */
2081 dout("con_work CLOSED\n");
2082 con_close_socket(con
);
2085 if (test_and_clear_bit(OPENING
, &con
->state
)) {
2086 /* reopen w/ new peer */
2087 dout("con_work OPENING\n");
2088 con_close_socket(con
);
2091 if (test_and_clear_bit(SOCK_CLOSED
, &con
->state
))
2094 ret
= try_read(con
);
2100 ret
= try_write(con
);
2107 mutex_unlock(&con
->mutex
);
2113 mutex_unlock(&con
->mutex
);
2114 ceph_fault(con
); /* error/fault path */
2120 * Generic error/fault handler. A retry mechanism is used with
2121 * exponential backoff
2123 static void ceph_fault(struct ceph_connection
*con
)
2125 pr_err("%s%lld %s %s\n", ENTITY_NAME(con
->peer_name
),
2126 ceph_pr_addr(&con
->peer_addr
.in_addr
), con
->error_msg
);
2127 dout("fault %p state %lu to peer %s\n",
2128 con
, con
->state
, ceph_pr_addr(&con
->peer_addr
.in_addr
));
2130 if (test_bit(LOSSYTX
, &con
->state
)) {
2131 dout("fault on LOSSYTX channel\n");
2135 mutex_lock(&con
->mutex
);
2136 if (test_bit(CLOSED
, &con
->state
))
2139 con_close_socket(con
);
2142 ceph_msg_put(con
->in_msg
);
2146 /* Requeue anything that hasn't been acked */
2147 list_splice_init(&con
->out_sent
, &con
->out_queue
);
2149 /* If there are no messages queued or keepalive pending, place
2150 * the connection in a STANDBY state */
2151 if (list_empty(&con
->out_queue
) &&
2152 !test_bit(KEEPALIVE_PENDING
, &con
->state
)) {
2153 dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con
);
2154 clear_bit(WRITE_PENDING
, &con
->state
);
2155 set_bit(STANDBY
, &con
->state
);
2157 /* retry after a delay. */
2158 if (con
->delay
== 0)
2159 con
->delay
= BASE_DELAY_INTERVAL
;
2160 else if (con
->delay
< MAX_DELAY_INTERVAL
)
2163 if (queue_delayed_work(ceph_msgr_wq
, &con
->work
,
2164 round_jiffies_relative(con
->delay
))) {
2165 dout("fault queued %p delay %lu\n", con
, con
->delay
);
2168 dout("fault failed to queue %p delay %lu, backoff\n",
2171 * In many cases we see a socket state change
2172 * while con_work is running and end up
2173 * queuing (non-delayed) work, such that we
2174 * can't backoff with a delay. Set a flag so
2175 * that when con_work restarts we schedule the
2178 set_bit(BACKOFF
, &con
->state
);
2183 mutex_unlock(&con
->mutex
);
2186 * in case we faulted due to authentication, invalidate our
2187 * current tickets so that we can get new ones.
2189 if (con
->auth_retry
&& con
->ops
->invalidate_authorizer
) {
2190 dout("calling invalidate_authorizer()\n");
2191 con
->ops
->invalidate_authorizer(con
);
2194 if (con
->ops
->fault
)
2195 con
->ops
->fault(con
);
2201 * create a new messenger instance
2203 struct ceph_messenger
*ceph_messenger_create(struct ceph_entity_addr
*myaddr
,
2204 u32 supported_features
,
2205 u32 required_features
)
2207 struct ceph_messenger
*msgr
;
2209 msgr
= kzalloc(sizeof(*msgr
), GFP_KERNEL
);
2211 return ERR_PTR(-ENOMEM
);
2213 msgr
->supported_features
= supported_features
;
2214 msgr
->required_features
= required_features
;
2216 spin_lock_init(&msgr
->global_seq_lock
);
2218 /* the zero page is needed if a request is "canceled" while the message
2219 * is being written over the socket */
2220 msgr
->zero_page
= __page_cache_alloc(GFP_KERNEL
| __GFP_ZERO
);
2221 if (!msgr
->zero_page
) {
2223 return ERR_PTR(-ENOMEM
);
2225 kmap(msgr
->zero_page
);
2228 msgr
->inst
.addr
= *myaddr
;
2230 /* select a random nonce */
2231 msgr
->inst
.addr
.type
= 0;
2232 get_random_bytes(&msgr
->inst
.addr
.nonce
, sizeof(msgr
->inst
.addr
.nonce
));
2233 encode_my_addr(msgr
);
2235 dout("messenger_create %p\n", msgr
);
2238 EXPORT_SYMBOL(ceph_messenger_create
);
2240 void ceph_messenger_destroy(struct ceph_messenger
*msgr
)
2242 dout("destroy %p\n", msgr
);
2243 kunmap(msgr
->zero_page
);
2244 __free_page(msgr
->zero_page
);
2246 dout("destroyed messenger %p\n", msgr
);
2248 EXPORT_SYMBOL(ceph_messenger_destroy
);
2250 static void clear_standby(struct ceph_connection
*con
)
2252 /* come back from STANDBY? */
2253 if (test_and_clear_bit(STANDBY
, &con
->state
)) {
2254 mutex_lock(&con
->mutex
);
2255 dout("clear_standby %p and ++connect_seq\n", con
);
2257 WARN_ON(test_bit(WRITE_PENDING
, &con
->state
));
2258 WARN_ON(test_bit(KEEPALIVE_PENDING
, &con
->state
));
2259 mutex_unlock(&con
->mutex
);
2264 * Queue up an outgoing message on the given connection.
2266 void ceph_con_send(struct ceph_connection
*con
, struct ceph_msg
*msg
)
2268 if (test_bit(CLOSED
, &con
->state
)) {
2269 dout("con_send %p closed, dropping %p\n", con
, msg
);
2275 msg
->hdr
.src
= con
->msgr
->inst
.name
;
2277 BUG_ON(msg
->front
.iov_len
!= le32_to_cpu(msg
->hdr
.front_len
));
2279 msg
->needs_out_seq
= true;
2282 mutex_lock(&con
->mutex
);
2283 BUG_ON(!list_empty(&msg
->list_head
));
2284 list_add_tail(&msg
->list_head
, &con
->out_queue
);
2285 dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg
,
2286 ENTITY_NAME(con
->peer_name
), le16_to_cpu(msg
->hdr
.type
),
2287 ceph_msg_type_name(le16_to_cpu(msg
->hdr
.type
)),
2288 le32_to_cpu(msg
->hdr
.front_len
),
2289 le32_to_cpu(msg
->hdr
.middle_len
),
2290 le32_to_cpu(msg
->hdr
.data_len
));
2291 mutex_unlock(&con
->mutex
);
2293 /* if there wasn't anything waiting to send before, queue
2296 if (test_and_set_bit(WRITE_PENDING
, &con
->state
) == 0)
2299 EXPORT_SYMBOL(ceph_con_send
);
2302 * Revoke a message that was previously queued for send
2304 void ceph_con_revoke(struct ceph_connection
*con
, struct ceph_msg
*msg
)
2306 mutex_lock(&con
->mutex
);
2307 if (!list_empty(&msg
->list_head
)) {
2308 dout("con_revoke %p msg %p - was on queue\n", con
, msg
);
2309 list_del_init(&msg
->list_head
);
2313 if (con
->out_msg
== msg
) {
2314 dout("con_revoke %p msg %p - was sending\n", con
, msg
);
2315 con
->out_msg
= NULL
;
2316 if (con
->out_kvec_is_msg
) {
2317 con
->out_skip
= con
->out_kvec_bytes
;
2318 con
->out_kvec_is_msg
= false;
2323 mutex_unlock(&con
->mutex
);
2327 * Revoke a message that we may be reading data into
2329 void ceph_con_revoke_message(struct ceph_connection
*con
, struct ceph_msg
*msg
)
2331 mutex_lock(&con
->mutex
);
2332 if (con
->in_msg
&& con
->in_msg
== msg
) {
2333 unsigned front_len
= le32_to_cpu(con
->in_hdr
.front_len
);
2334 unsigned middle_len
= le32_to_cpu(con
->in_hdr
.middle_len
);
2335 unsigned data_len
= le32_to_cpu(con
->in_hdr
.data_len
);
2337 /* skip rest of message */
2338 dout("con_revoke_pages %p msg %p revoked\n", con
, msg
);
2339 con
->in_base_pos
= con
->in_base_pos
-
2340 sizeof(struct ceph_msg_header
) -
2344 sizeof(struct ceph_msg_footer
);
2345 ceph_msg_put(con
->in_msg
);
2347 con
->in_tag
= CEPH_MSGR_TAG_READY
;
2350 dout("con_revoke_pages %p msg %p pages %p no-op\n",
2351 con
, con
->in_msg
, msg
);
2353 mutex_unlock(&con
->mutex
);
2357 * Queue a keepalive byte to ensure the tcp connection is alive.
2359 void ceph_con_keepalive(struct ceph_connection
*con
)
2361 dout("con_keepalive %p\n", con
);
2363 if (test_and_set_bit(KEEPALIVE_PENDING
, &con
->state
) == 0 &&
2364 test_and_set_bit(WRITE_PENDING
, &con
->state
) == 0)
2367 EXPORT_SYMBOL(ceph_con_keepalive
);
2371 * construct a new message with given type, size
2372 * the new msg has a ref count of 1.
2374 struct ceph_msg
*ceph_msg_new(int type
, int front_len
, gfp_t flags
,
2379 m
= kmalloc(sizeof(*m
), flags
);
2382 kref_init(&m
->kref
);
2383 INIT_LIST_HEAD(&m
->list_head
);
2386 m
->hdr
.type
= cpu_to_le16(type
);
2387 m
->hdr
.priority
= cpu_to_le16(CEPH_MSG_PRIO_DEFAULT
);
2389 m
->hdr
.front_len
= cpu_to_le32(front_len
);
2390 m
->hdr
.middle_len
= 0;
2391 m
->hdr
.data_len
= 0;
2392 m
->hdr
.data_off
= 0;
2393 m
->hdr
.reserved
= 0;
2394 m
->footer
.front_crc
= 0;
2395 m
->footer
.middle_crc
= 0;
2396 m
->footer
.data_crc
= 0;
2397 m
->footer
.flags
= 0;
2398 m
->front_max
= front_len
;
2399 m
->front_is_vmalloc
= false;
2400 m
->more_to_follow
= false;
2409 m
->page_alignment
= 0;
2419 if (front_len
> PAGE_CACHE_SIZE
) {
2420 m
->front
.iov_base
= __vmalloc(front_len
, flags
,
2422 m
->front_is_vmalloc
= true;
2424 m
->front
.iov_base
= kmalloc(front_len
, flags
);
2426 if (m
->front
.iov_base
== NULL
) {
2427 dout("ceph_msg_new can't allocate %d bytes\n",
2432 m
->front
.iov_base
= NULL
;
2434 m
->front
.iov_len
= front_len
;
2436 dout("ceph_msg_new %p front %d\n", m
, front_len
);
2443 pr_err("msg_new can't create type %d front %d\n", type
,
2447 dout("msg_new can't create type %d front %d\n", type
,
2452 EXPORT_SYMBOL(ceph_msg_new
);
2455 * Allocate "middle" portion of a message, if it is needed and wasn't
2456 * allocated by alloc_msg. This allows us to read a small fixed-size
2457 * per-type header in the front and then gracefully fail (i.e.,
2458 * propagate the error to the caller based on info in the front) when
2459 * the middle is too large.
2461 static int ceph_alloc_middle(struct ceph_connection
*con
, struct ceph_msg
*msg
)
2463 int type
= le16_to_cpu(msg
->hdr
.type
);
2464 int middle_len
= le32_to_cpu(msg
->hdr
.middle_len
);
2466 dout("alloc_middle %p type %d %s middle_len %d\n", msg
, type
,
2467 ceph_msg_type_name(type
), middle_len
);
2468 BUG_ON(!middle_len
);
2469 BUG_ON(msg
->middle
);
2471 msg
->middle
= ceph_buffer_new(middle_len
, GFP_NOFS
);
2478 * Generic message allocator, for incoming messages.
2480 static struct ceph_msg
*ceph_alloc_msg(struct ceph_connection
*con
,
2481 struct ceph_msg_header
*hdr
,
2484 int type
= le16_to_cpu(hdr
->type
);
2485 int front_len
= le32_to_cpu(hdr
->front_len
);
2486 int middle_len
= le32_to_cpu(hdr
->middle_len
);
2487 struct ceph_msg
*msg
= NULL
;
2490 if (con
->ops
->alloc_msg
) {
2491 mutex_unlock(&con
->mutex
);
2492 msg
= con
->ops
->alloc_msg(con
, hdr
, skip
);
2493 mutex_lock(&con
->mutex
);
2499 msg
= ceph_msg_new(type
, front_len
, GFP_NOFS
, false);
2501 pr_err("unable to allocate msg type %d len %d\n",
2505 msg
->page_alignment
= le16_to_cpu(hdr
->data_off
);
2507 memcpy(&msg
->hdr
, &con
->in_hdr
, sizeof(con
->in_hdr
));
2509 if (middle_len
&& !msg
->middle
) {
2510 ret
= ceph_alloc_middle(con
, msg
);
2522 * Free a generically kmalloc'd message.
2524 void ceph_msg_kfree(struct ceph_msg
*m
)
2526 dout("msg_kfree %p\n", m
);
2527 if (m
->front_is_vmalloc
)
2528 vfree(m
->front
.iov_base
);
2530 kfree(m
->front
.iov_base
);
2535 * Drop a msg ref. Destroy as needed.
2537 void ceph_msg_last_put(struct kref
*kref
)
2539 struct ceph_msg
*m
= container_of(kref
, struct ceph_msg
, kref
);
2541 dout("ceph_msg_put last one on %p\n", m
);
2542 WARN_ON(!list_empty(&m
->list_head
));
2544 /* drop middle, data, if any */
2546 ceph_buffer_put(m
->middle
);
2553 ceph_pagelist_release(m
->pagelist
);
2561 ceph_msgpool_put(m
->pool
, m
);
2565 EXPORT_SYMBOL(ceph_msg_last_put
);
2567 void ceph_msg_dump(struct ceph_msg
*msg
)
2569 pr_debug("msg_dump %p (front_max %d nr_pages %d)\n", msg
,
2570 msg
->front_max
, msg
->nr_pages
);
2571 print_hex_dump(KERN_DEBUG
, "header: ",
2572 DUMP_PREFIX_OFFSET
, 16, 1,
2573 &msg
->hdr
, sizeof(msg
->hdr
), true);
2574 print_hex_dump(KERN_DEBUG
, " front: ",
2575 DUMP_PREFIX_OFFSET
, 16, 1,
2576 msg
->front
.iov_base
, msg
->front
.iov_len
, true);
2578 print_hex_dump(KERN_DEBUG
, "middle: ",
2579 DUMP_PREFIX_OFFSET
, 16, 1,
2580 msg
->middle
->vec
.iov_base
,
2581 msg
->middle
->vec
.iov_len
, true);
2582 print_hex_dump(KERN_DEBUG
, "footer: ",
2583 DUMP_PREFIX_OFFSET
, 16, 1,
2584 &msg
->footer
, sizeof(msg
->footer
), true);
2586 EXPORT_SYMBOL(ceph_msg_dump
);