MIPS: Yosemite, Emma: Fix off-by-two in arcs_cmdline buffer size check
[linux-2.6/linux-mips.git] / net / ceph / messenger.c
blobf466930e26faf9a9b8f43730641cdf5a1b7f7dee
1 #include <linux/ceph/ceph_debug.h>
3 #include <linux/crc32c.h>
4 #include <linux/ctype.h>
5 #include <linux/highmem.h>
6 #include <linux/inet.h>
7 #include <linux/kthread.h>
8 #include <linux/net.h>
9 #include <linux/slab.h>
10 #include <linux/socket.h>
11 #include <linux/string.h>
12 #include <linux/bio.h>
13 #include <linux/blkdev.h>
14 #include <linux/dns_resolver.h>
15 #include <net/tcp.h>
17 #include <linux/ceph/libceph.h>
18 #include <linux/ceph/messenger.h>
19 #include <linux/ceph/decode.h>
20 #include <linux/ceph/pagelist.h>
23 * Ceph uses the messenger to exchange ceph_msg messages with other
24 * hosts in the system. The messenger provides ordered and reliable
25 * delivery. We tolerate TCP disconnects by reconnecting (with
26 * exponential backoff) in the case of a fault (disconnection, bad
27 * crc, protocol error). Acks allow sent messages to be discarded by
28 * the sender.
31 /* static tag bytes (protocol control messages) */
32 static char tag_msg = CEPH_MSGR_TAG_MSG;
33 static char tag_ack = CEPH_MSGR_TAG_ACK;
34 static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE;
36 #ifdef CONFIG_LOCKDEP
37 static struct lock_class_key socket_class;
38 #endif
41 static void queue_con(struct ceph_connection *con);
42 static void con_work(struct work_struct *);
43 static void ceph_fault(struct ceph_connection *con);
46 * nicely render a sockaddr as a string.
48 #define MAX_ADDR_STR 20
49 #define MAX_ADDR_STR_LEN 60
50 static char addr_str[MAX_ADDR_STR][MAX_ADDR_STR_LEN];
51 static DEFINE_SPINLOCK(addr_str_lock);
52 static int last_addr_str;
54 const char *ceph_pr_addr(const struct sockaddr_storage *ss)
56 int i;
57 char *s;
58 struct sockaddr_in *in4 = (void *)ss;
59 struct sockaddr_in6 *in6 = (void *)ss;
61 spin_lock(&addr_str_lock);
62 i = last_addr_str++;
63 if (last_addr_str == MAX_ADDR_STR)
64 last_addr_str = 0;
65 spin_unlock(&addr_str_lock);
66 s = addr_str[i];
68 switch (ss->ss_family) {
69 case AF_INET:
70 snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%u", &in4->sin_addr,
71 (unsigned int)ntohs(in4->sin_port));
72 break;
74 case AF_INET6:
75 snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%u", &in6->sin6_addr,
76 (unsigned int)ntohs(in6->sin6_port));
77 break;
79 default:
80 snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %d)",
81 (int)ss->ss_family);
84 return s;
86 EXPORT_SYMBOL(ceph_pr_addr);
88 static void encode_my_addr(struct ceph_messenger *msgr)
90 memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr));
91 ceph_encode_addr(&msgr->my_enc_addr);
95 * work queue for all reading and writing to/from the socket.
97 struct workqueue_struct *ceph_msgr_wq;
99 int ceph_msgr_init(void)
101 ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_NON_REENTRANT, 0);
102 if (!ceph_msgr_wq) {
103 pr_err("msgr_init failed to create workqueue\n");
104 return -ENOMEM;
106 return 0;
108 EXPORT_SYMBOL(ceph_msgr_init);
110 void ceph_msgr_exit(void)
112 destroy_workqueue(ceph_msgr_wq);
114 EXPORT_SYMBOL(ceph_msgr_exit);
116 void ceph_msgr_flush(void)
118 flush_workqueue(ceph_msgr_wq);
120 EXPORT_SYMBOL(ceph_msgr_flush);
124 * socket callback functions
127 /* data available on socket, or listen socket received a connect */
128 static void ceph_data_ready(struct sock *sk, int count_unused)
130 struct ceph_connection *con =
131 (struct ceph_connection *)sk->sk_user_data;
132 if (sk->sk_state != TCP_CLOSE_WAIT) {
133 dout("ceph_data_ready on %p state = %lu, queueing work\n",
134 con, con->state);
135 queue_con(con);
139 /* socket has buffer space for writing */
140 static void ceph_write_space(struct sock *sk)
142 struct ceph_connection *con =
143 (struct ceph_connection *)sk->sk_user_data;
145 /* only queue to workqueue if there is data we want to write. */
146 if (test_bit(WRITE_PENDING, &con->state)) {
147 dout("ceph_write_space %p queueing write work\n", con);
148 queue_con(con);
149 } else {
150 dout("ceph_write_space %p nothing to write\n", con);
153 /* since we have our own write_space, clear the SOCK_NOSPACE flag */
154 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
157 /* socket's state has changed */
158 static void ceph_state_change(struct sock *sk)
160 struct ceph_connection *con =
161 (struct ceph_connection *)sk->sk_user_data;
163 dout("ceph_state_change %p state = %lu sk_state = %u\n",
164 con, con->state, sk->sk_state);
166 if (test_bit(CLOSED, &con->state))
167 return;
169 switch (sk->sk_state) {
170 case TCP_CLOSE:
171 dout("ceph_state_change TCP_CLOSE\n");
172 case TCP_CLOSE_WAIT:
173 dout("ceph_state_change TCP_CLOSE_WAIT\n");
174 if (test_and_set_bit(SOCK_CLOSED, &con->state) == 0) {
175 if (test_bit(CONNECTING, &con->state))
176 con->error_msg = "connection failed";
177 else
178 con->error_msg = "socket closed";
179 queue_con(con);
181 break;
182 case TCP_ESTABLISHED:
183 dout("ceph_state_change TCP_ESTABLISHED\n");
184 queue_con(con);
185 break;
190 * set up socket callbacks
192 static void set_sock_callbacks(struct socket *sock,
193 struct ceph_connection *con)
195 struct sock *sk = sock->sk;
196 sk->sk_user_data = (void *)con;
197 sk->sk_data_ready = ceph_data_ready;
198 sk->sk_write_space = ceph_write_space;
199 sk->sk_state_change = ceph_state_change;
204 * socket helpers
208 * initiate connection to a remote socket.
210 static struct socket *ceph_tcp_connect(struct ceph_connection *con)
212 struct sockaddr_storage *paddr = &con->peer_addr.in_addr;
213 struct socket *sock;
214 int ret;
216 BUG_ON(con->sock);
217 ret = sock_create_kern(con->peer_addr.in_addr.ss_family, SOCK_STREAM,
218 IPPROTO_TCP, &sock);
219 if (ret)
220 return ERR_PTR(ret);
221 con->sock = sock;
222 sock->sk->sk_allocation = GFP_NOFS;
224 #ifdef CONFIG_LOCKDEP
225 lockdep_set_class(&sock->sk->sk_lock, &socket_class);
226 #endif
228 set_sock_callbacks(sock, con);
230 dout("connect %s\n", ceph_pr_addr(&con->peer_addr.in_addr));
232 ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr),
233 O_NONBLOCK);
234 if (ret == -EINPROGRESS) {
235 dout("connect %s EINPROGRESS sk_state = %u\n",
236 ceph_pr_addr(&con->peer_addr.in_addr),
237 sock->sk->sk_state);
238 ret = 0;
240 if (ret < 0) {
241 pr_err("connect %s error %d\n",
242 ceph_pr_addr(&con->peer_addr.in_addr), ret);
243 sock_release(sock);
244 con->sock = NULL;
245 con->error_msg = "connect error";
248 if (ret < 0)
249 return ERR_PTR(ret);
250 return sock;
253 static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len)
255 struct kvec iov = {buf, len};
256 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
257 int r;
259 r = kernel_recvmsg(sock, &msg, &iov, 1, len, msg.msg_flags);
260 if (r == -EAGAIN)
261 r = 0;
262 return r;
266 * write something. @more is true if caller will be sending more data
267 * shortly.
269 static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov,
270 size_t kvlen, size_t len, int more)
272 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
273 int r;
275 if (more)
276 msg.msg_flags |= MSG_MORE;
277 else
278 msg.msg_flags |= MSG_EOR; /* superfluous, but what the hell */
280 r = kernel_sendmsg(sock, &msg, iov, kvlen, len);
281 if (r == -EAGAIN)
282 r = 0;
283 return r;
288 * Shutdown/close the socket for the given connection.
290 static int con_close_socket(struct ceph_connection *con)
292 int rc;
294 dout("con_close_socket on %p sock %p\n", con, con->sock);
295 if (!con->sock)
296 return 0;
297 set_bit(SOCK_CLOSED, &con->state);
298 rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
299 sock_release(con->sock);
300 con->sock = NULL;
301 clear_bit(SOCK_CLOSED, &con->state);
302 return rc;
306 * Reset a connection. Discard all incoming and outgoing messages
307 * and clear *_seq state.
309 static void ceph_msg_remove(struct ceph_msg *msg)
311 list_del_init(&msg->list_head);
312 ceph_msg_put(msg);
314 static void ceph_msg_remove_list(struct list_head *head)
316 while (!list_empty(head)) {
317 struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
318 list_head);
319 ceph_msg_remove(msg);
323 static void reset_connection(struct ceph_connection *con)
325 /* reset connection, out_queue, msg_ and connect_seq */
326 /* discard existing out_queue and msg_seq */
327 ceph_msg_remove_list(&con->out_queue);
328 ceph_msg_remove_list(&con->out_sent);
330 if (con->in_msg) {
331 ceph_msg_put(con->in_msg);
332 con->in_msg = NULL;
335 con->connect_seq = 0;
336 con->out_seq = 0;
337 if (con->out_msg) {
338 ceph_msg_put(con->out_msg);
339 con->out_msg = NULL;
341 con->in_seq = 0;
342 con->in_seq_acked = 0;
346 * mark a peer down. drop any open connections.
348 void ceph_con_close(struct ceph_connection *con)
350 dout("con_close %p peer %s\n", con,
351 ceph_pr_addr(&con->peer_addr.in_addr));
352 set_bit(CLOSED, &con->state); /* in case there's queued work */
353 clear_bit(STANDBY, &con->state); /* avoid connect_seq bump */
354 clear_bit(LOSSYTX, &con->state); /* so we retry next connect */
355 clear_bit(KEEPALIVE_PENDING, &con->state);
356 clear_bit(WRITE_PENDING, &con->state);
357 mutex_lock(&con->mutex);
358 reset_connection(con);
359 con->peer_global_seq = 0;
360 cancel_delayed_work(&con->work);
361 mutex_unlock(&con->mutex);
362 queue_con(con);
364 EXPORT_SYMBOL(ceph_con_close);
367 * Reopen a closed connection, with a new peer address.
369 void ceph_con_open(struct ceph_connection *con, struct ceph_entity_addr *addr)
371 dout("con_open %p %s\n", con, ceph_pr_addr(&addr->in_addr));
372 set_bit(OPENING, &con->state);
373 clear_bit(CLOSED, &con->state);
374 memcpy(&con->peer_addr, addr, sizeof(*addr));
375 con->delay = 0; /* reset backoff memory */
376 queue_con(con);
378 EXPORT_SYMBOL(ceph_con_open);
381 * return true if this connection ever successfully opened
383 bool ceph_con_opened(struct ceph_connection *con)
385 return con->connect_seq > 0;
389 * generic get/put
391 struct ceph_connection *ceph_con_get(struct ceph_connection *con)
393 dout("con_get %p nref = %d -> %d\n", con,
394 atomic_read(&con->nref), atomic_read(&con->nref) + 1);
395 if (atomic_inc_not_zero(&con->nref))
396 return con;
397 return NULL;
400 void ceph_con_put(struct ceph_connection *con)
402 dout("con_put %p nref = %d -> %d\n", con,
403 atomic_read(&con->nref), atomic_read(&con->nref) - 1);
404 BUG_ON(atomic_read(&con->nref) == 0);
405 if (atomic_dec_and_test(&con->nref)) {
406 BUG_ON(con->sock);
407 kfree(con);
412 * initialize a new connection.
414 void ceph_con_init(struct ceph_messenger *msgr, struct ceph_connection *con)
416 dout("con_init %p\n", con);
417 memset(con, 0, sizeof(*con));
418 atomic_set(&con->nref, 1);
419 con->msgr = msgr;
420 mutex_init(&con->mutex);
421 INIT_LIST_HEAD(&con->out_queue);
422 INIT_LIST_HEAD(&con->out_sent);
423 INIT_DELAYED_WORK(&con->work, con_work);
425 EXPORT_SYMBOL(ceph_con_init);
429 * We maintain a global counter to order connection attempts. Get
430 * a unique seq greater than @gt.
432 static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt)
434 u32 ret;
436 spin_lock(&msgr->global_seq_lock);
437 if (msgr->global_seq < gt)
438 msgr->global_seq = gt;
439 ret = ++msgr->global_seq;
440 spin_unlock(&msgr->global_seq_lock);
441 return ret;
446 * Prepare footer for currently outgoing message, and finish things
447 * off. Assumes out_kvec* are already valid.. we just add on to the end.
449 static void prepare_write_message_footer(struct ceph_connection *con, int v)
451 struct ceph_msg *m = con->out_msg;
453 dout("prepare_write_message_footer %p\n", con);
454 con->out_kvec_is_msg = true;
455 con->out_kvec[v].iov_base = &m->footer;
456 con->out_kvec[v].iov_len = sizeof(m->footer);
457 con->out_kvec_bytes += sizeof(m->footer);
458 con->out_kvec_left++;
459 con->out_more = m->more_to_follow;
460 con->out_msg_done = true;
464 * Prepare headers for the next outgoing message.
466 static void prepare_write_message(struct ceph_connection *con)
468 struct ceph_msg *m;
469 int v = 0;
471 con->out_kvec_bytes = 0;
472 con->out_kvec_is_msg = true;
473 con->out_msg_done = false;
475 /* Sneak an ack in there first? If we can get it into the same
476 * TCP packet that's a good thing. */
477 if (con->in_seq > con->in_seq_acked) {
478 con->in_seq_acked = con->in_seq;
479 con->out_kvec[v].iov_base = &tag_ack;
480 con->out_kvec[v++].iov_len = 1;
481 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
482 con->out_kvec[v].iov_base = &con->out_temp_ack;
483 con->out_kvec[v++].iov_len = sizeof(con->out_temp_ack);
484 con->out_kvec_bytes = 1 + sizeof(con->out_temp_ack);
487 m = list_first_entry(&con->out_queue,
488 struct ceph_msg, list_head);
489 con->out_msg = m;
491 /* put message on sent list */
492 ceph_msg_get(m);
493 list_move_tail(&m->list_head, &con->out_sent);
496 * only assign outgoing seq # if we haven't sent this message
497 * yet. if it is requeued, resend with it's original seq.
499 if (m->needs_out_seq) {
500 m->hdr.seq = cpu_to_le64(++con->out_seq);
501 m->needs_out_seq = false;
504 dout("prepare_write_message %p seq %lld type %d len %d+%d+%d %d pgs\n",
505 m, con->out_seq, le16_to_cpu(m->hdr.type),
506 le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len),
507 le32_to_cpu(m->hdr.data_len),
508 m->nr_pages);
509 BUG_ON(le32_to_cpu(m->hdr.front_len) != m->front.iov_len);
511 /* tag + hdr + front + middle */
512 con->out_kvec[v].iov_base = &tag_msg;
513 con->out_kvec[v++].iov_len = 1;
514 con->out_kvec[v].iov_base = &m->hdr;
515 con->out_kvec[v++].iov_len = sizeof(m->hdr);
516 con->out_kvec[v++] = m->front;
517 if (m->middle)
518 con->out_kvec[v++] = m->middle->vec;
519 con->out_kvec_left = v;
520 con->out_kvec_bytes += 1 + sizeof(m->hdr) + m->front.iov_len +
521 (m->middle ? m->middle->vec.iov_len : 0);
522 con->out_kvec_cur = con->out_kvec;
524 /* fill in crc (except data pages), footer */
525 con->out_msg->hdr.crc =
526 cpu_to_le32(crc32c(0, (void *)&m->hdr,
527 sizeof(m->hdr) - sizeof(m->hdr.crc)));
528 con->out_msg->footer.flags = CEPH_MSG_FOOTER_COMPLETE;
529 con->out_msg->footer.front_crc =
530 cpu_to_le32(crc32c(0, m->front.iov_base, m->front.iov_len));
531 if (m->middle)
532 con->out_msg->footer.middle_crc =
533 cpu_to_le32(crc32c(0, m->middle->vec.iov_base,
534 m->middle->vec.iov_len));
535 else
536 con->out_msg->footer.middle_crc = 0;
537 con->out_msg->footer.data_crc = 0;
538 dout("prepare_write_message front_crc %u data_crc %u\n",
539 le32_to_cpu(con->out_msg->footer.front_crc),
540 le32_to_cpu(con->out_msg->footer.middle_crc));
542 /* is there a data payload? */
543 if (le32_to_cpu(m->hdr.data_len) > 0) {
544 /* initialize page iterator */
545 con->out_msg_pos.page = 0;
546 if (m->pages)
547 con->out_msg_pos.page_pos = m->page_alignment;
548 else
549 con->out_msg_pos.page_pos = 0;
550 con->out_msg_pos.data_pos = 0;
551 con->out_msg_pos.did_page_crc = 0;
552 con->out_more = 1; /* data + footer will follow */
553 } else {
554 /* no, queue up footer too and be done */
555 prepare_write_message_footer(con, v);
558 set_bit(WRITE_PENDING, &con->state);
562 * Prepare an ack.
564 static void prepare_write_ack(struct ceph_connection *con)
566 dout("prepare_write_ack %p %llu -> %llu\n", con,
567 con->in_seq_acked, con->in_seq);
568 con->in_seq_acked = con->in_seq;
570 con->out_kvec[0].iov_base = &tag_ack;
571 con->out_kvec[0].iov_len = 1;
572 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
573 con->out_kvec[1].iov_base = &con->out_temp_ack;
574 con->out_kvec[1].iov_len = sizeof(con->out_temp_ack);
575 con->out_kvec_left = 2;
576 con->out_kvec_bytes = 1 + sizeof(con->out_temp_ack);
577 con->out_kvec_cur = con->out_kvec;
578 con->out_more = 1; /* more will follow.. eventually.. */
579 set_bit(WRITE_PENDING, &con->state);
583 * Prepare to write keepalive byte.
585 static void prepare_write_keepalive(struct ceph_connection *con)
587 dout("prepare_write_keepalive %p\n", con);
588 con->out_kvec[0].iov_base = &tag_keepalive;
589 con->out_kvec[0].iov_len = 1;
590 con->out_kvec_left = 1;
591 con->out_kvec_bytes = 1;
592 con->out_kvec_cur = con->out_kvec;
593 set_bit(WRITE_PENDING, &con->state);
597 * Connection negotiation.
600 static int prepare_connect_authorizer(struct ceph_connection *con)
602 void *auth_buf;
603 int auth_len = 0;
604 int auth_protocol = 0;
606 mutex_unlock(&con->mutex);
607 if (con->ops->get_authorizer)
608 con->ops->get_authorizer(con, &auth_buf, &auth_len,
609 &auth_protocol, &con->auth_reply_buf,
610 &con->auth_reply_buf_len,
611 con->auth_retry);
612 mutex_lock(&con->mutex);
614 if (test_bit(CLOSED, &con->state) ||
615 test_bit(OPENING, &con->state))
616 return -EAGAIN;
618 con->out_connect.authorizer_protocol = cpu_to_le32(auth_protocol);
619 con->out_connect.authorizer_len = cpu_to_le32(auth_len);
621 if (auth_len) {
622 con->out_kvec[con->out_kvec_left].iov_base = auth_buf;
623 con->out_kvec[con->out_kvec_left].iov_len = auth_len;
624 con->out_kvec_left++;
625 con->out_kvec_bytes += auth_len;
627 return 0;
631 * We connected to a peer and are saying hello.
633 static void prepare_write_banner(struct ceph_messenger *msgr,
634 struct ceph_connection *con)
636 int len = strlen(CEPH_BANNER);
638 con->out_kvec[0].iov_base = CEPH_BANNER;
639 con->out_kvec[0].iov_len = len;
640 con->out_kvec[1].iov_base = &msgr->my_enc_addr;
641 con->out_kvec[1].iov_len = sizeof(msgr->my_enc_addr);
642 con->out_kvec_left = 2;
643 con->out_kvec_bytes = len + sizeof(msgr->my_enc_addr);
644 con->out_kvec_cur = con->out_kvec;
645 con->out_more = 0;
646 set_bit(WRITE_PENDING, &con->state);
649 static int prepare_write_connect(struct ceph_messenger *msgr,
650 struct ceph_connection *con,
651 int after_banner)
653 unsigned global_seq = get_global_seq(con->msgr, 0);
654 int proto;
656 switch (con->peer_name.type) {
657 case CEPH_ENTITY_TYPE_MON:
658 proto = CEPH_MONC_PROTOCOL;
659 break;
660 case CEPH_ENTITY_TYPE_OSD:
661 proto = CEPH_OSDC_PROTOCOL;
662 break;
663 case CEPH_ENTITY_TYPE_MDS:
664 proto = CEPH_MDSC_PROTOCOL;
665 break;
666 default:
667 BUG();
670 dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con,
671 con->connect_seq, global_seq, proto);
673 con->out_connect.features = cpu_to_le64(msgr->supported_features);
674 con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT);
675 con->out_connect.connect_seq = cpu_to_le32(con->connect_seq);
676 con->out_connect.global_seq = cpu_to_le32(global_seq);
677 con->out_connect.protocol_version = cpu_to_le32(proto);
678 con->out_connect.flags = 0;
680 if (!after_banner) {
681 con->out_kvec_left = 0;
682 con->out_kvec_bytes = 0;
684 con->out_kvec[con->out_kvec_left].iov_base = &con->out_connect;
685 con->out_kvec[con->out_kvec_left].iov_len = sizeof(con->out_connect);
686 con->out_kvec_left++;
687 con->out_kvec_bytes += sizeof(con->out_connect);
688 con->out_kvec_cur = con->out_kvec;
689 con->out_more = 0;
690 set_bit(WRITE_PENDING, &con->state);
692 return prepare_connect_authorizer(con);
697 * write as much of pending kvecs to the socket as we can.
698 * 1 -> done
699 * 0 -> socket full, but more to do
700 * <0 -> error
702 static int write_partial_kvec(struct ceph_connection *con)
704 int ret;
706 dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes);
707 while (con->out_kvec_bytes > 0) {
708 ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur,
709 con->out_kvec_left, con->out_kvec_bytes,
710 con->out_more);
711 if (ret <= 0)
712 goto out;
713 con->out_kvec_bytes -= ret;
714 if (con->out_kvec_bytes == 0)
715 break; /* done */
716 while (ret > 0) {
717 if (ret >= con->out_kvec_cur->iov_len) {
718 ret -= con->out_kvec_cur->iov_len;
719 con->out_kvec_cur++;
720 con->out_kvec_left--;
721 } else {
722 con->out_kvec_cur->iov_len -= ret;
723 con->out_kvec_cur->iov_base += ret;
724 ret = 0;
725 break;
729 con->out_kvec_left = 0;
730 con->out_kvec_is_msg = false;
731 ret = 1;
732 out:
733 dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con,
734 con->out_kvec_bytes, con->out_kvec_left, ret);
735 return ret; /* done! */
738 #ifdef CONFIG_BLOCK
739 static void init_bio_iter(struct bio *bio, struct bio **iter, int *seg)
741 if (!bio) {
742 *iter = NULL;
743 *seg = 0;
744 return;
746 *iter = bio;
747 *seg = bio->bi_idx;
750 static void iter_bio_next(struct bio **bio_iter, int *seg)
752 if (*bio_iter == NULL)
753 return;
755 BUG_ON(*seg >= (*bio_iter)->bi_vcnt);
757 (*seg)++;
758 if (*seg == (*bio_iter)->bi_vcnt)
759 init_bio_iter((*bio_iter)->bi_next, bio_iter, seg);
761 #endif
764 * Write as much message data payload as we can. If we finish, queue
765 * up the footer.
766 * 1 -> done, footer is now queued in out_kvec[].
767 * 0 -> socket full, but more to do
768 * <0 -> error
770 static int write_partial_msg_pages(struct ceph_connection *con)
772 struct ceph_msg *msg = con->out_msg;
773 unsigned data_len = le32_to_cpu(msg->hdr.data_len);
774 size_t len;
775 int crc = con->msgr->nocrc;
776 int ret;
777 int total_max_write;
778 int in_trail = 0;
779 size_t trail_len = (msg->trail ? msg->trail->length : 0);
781 dout("write_partial_msg_pages %p msg %p page %d/%d offset %d\n",
782 con, con->out_msg, con->out_msg_pos.page, con->out_msg->nr_pages,
783 con->out_msg_pos.page_pos);
785 #ifdef CONFIG_BLOCK
786 if (msg->bio && !msg->bio_iter)
787 init_bio_iter(msg->bio, &msg->bio_iter, &msg->bio_seg);
788 #endif
790 while (data_len > con->out_msg_pos.data_pos) {
791 struct page *page = NULL;
792 void *kaddr = NULL;
793 int max_write = PAGE_SIZE;
794 int page_shift = 0;
796 total_max_write = data_len - trail_len -
797 con->out_msg_pos.data_pos;
800 * if we are calculating the data crc (the default), we need
801 * to map the page. if our pages[] has been revoked, use the
802 * zero page.
805 /* have we reached the trail part of the data? */
806 if (con->out_msg_pos.data_pos >= data_len - trail_len) {
807 in_trail = 1;
809 total_max_write = data_len - con->out_msg_pos.data_pos;
811 page = list_first_entry(&msg->trail->head,
812 struct page, lru);
813 if (crc)
814 kaddr = kmap(page);
815 max_write = PAGE_SIZE;
816 } else if (msg->pages) {
817 page = msg->pages[con->out_msg_pos.page];
818 if (crc)
819 kaddr = kmap(page);
820 } else if (msg->pagelist) {
821 page = list_first_entry(&msg->pagelist->head,
822 struct page, lru);
823 if (crc)
824 kaddr = kmap(page);
825 #ifdef CONFIG_BLOCK
826 } else if (msg->bio) {
827 struct bio_vec *bv;
829 bv = bio_iovec_idx(msg->bio_iter, msg->bio_seg);
830 page = bv->bv_page;
831 page_shift = bv->bv_offset;
832 if (crc)
833 kaddr = kmap(page) + page_shift;
834 max_write = bv->bv_len;
835 #endif
836 } else {
837 page = con->msgr->zero_page;
838 if (crc)
839 kaddr = page_address(con->msgr->zero_page);
841 len = min_t(int, max_write - con->out_msg_pos.page_pos,
842 total_max_write);
844 if (crc && !con->out_msg_pos.did_page_crc) {
845 void *base = kaddr + con->out_msg_pos.page_pos;
846 u32 tmpcrc = le32_to_cpu(con->out_msg->footer.data_crc);
848 BUG_ON(kaddr == NULL);
849 con->out_msg->footer.data_crc =
850 cpu_to_le32(crc32c(tmpcrc, base, len));
851 con->out_msg_pos.did_page_crc = 1;
853 ret = kernel_sendpage(con->sock, page,
854 con->out_msg_pos.page_pos + page_shift,
855 len,
856 MSG_DONTWAIT | MSG_NOSIGNAL |
857 MSG_MORE);
859 if (crc &&
860 (msg->pages || msg->pagelist || msg->bio || in_trail))
861 kunmap(page);
863 if (ret == -EAGAIN)
864 ret = 0;
865 if (ret <= 0)
866 goto out;
868 con->out_msg_pos.data_pos += ret;
869 con->out_msg_pos.page_pos += ret;
870 if (ret == len) {
871 con->out_msg_pos.page_pos = 0;
872 con->out_msg_pos.page++;
873 con->out_msg_pos.did_page_crc = 0;
874 if (in_trail)
875 list_move_tail(&page->lru,
876 &msg->trail->head);
877 else if (msg->pagelist)
878 list_move_tail(&page->lru,
879 &msg->pagelist->head);
880 #ifdef CONFIG_BLOCK
881 else if (msg->bio)
882 iter_bio_next(&msg->bio_iter, &msg->bio_seg);
883 #endif
887 dout("write_partial_msg_pages %p msg %p done\n", con, msg);
889 /* prepare and queue up footer, too */
890 if (!crc)
891 con->out_msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC;
892 con->out_kvec_bytes = 0;
893 con->out_kvec_left = 0;
894 con->out_kvec_cur = con->out_kvec;
895 prepare_write_message_footer(con, 0);
896 ret = 1;
897 out:
898 return ret;
902 * write some zeros
904 static int write_partial_skip(struct ceph_connection *con)
906 int ret;
908 while (con->out_skip > 0) {
909 struct kvec iov = {
910 .iov_base = page_address(con->msgr->zero_page),
911 .iov_len = min(con->out_skip, (int)PAGE_CACHE_SIZE)
914 ret = ceph_tcp_sendmsg(con->sock, &iov, 1, iov.iov_len, 1);
915 if (ret <= 0)
916 goto out;
917 con->out_skip -= ret;
919 ret = 1;
920 out:
921 return ret;
925 * Prepare to read connection handshake, or an ack.
927 static void prepare_read_banner(struct ceph_connection *con)
929 dout("prepare_read_banner %p\n", con);
930 con->in_base_pos = 0;
933 static void prepare_read_connect(struct ceph_connection *con)
935 dout("prepare_read_connect %p\n", con);
936 con->in_base_pos = 0;
939 static void prepare_read_ack(struct ceph_connection *con)
941 dout("prepare_read_ack %p\n", con);
942 con->in_base_pos = 0;
945 static void prepare_read_tag(struct ceph_connection *con)
947 dout("prepare_read_tag %p\n", con);
948 con->in_base_pos = 0;
949 con->in_tag = CEPH_MSGR_TAG_READY;
953 * Prepare to read a message.
955 static int prepare_read_message(struct ceph_connection *con)
957 dout("prepare_read_message %p\n", con);
958 BUG_ON(con->in_msg != NULL);
959 con->in_base_pos = 0;
960 con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0;
961 return 0;
965 static int read_partial(struct ceph_connection *con,
966 int *to, int size, void *object)
968 *to += size;
969 while (con->in_base_pos < *to) {
970 int left = *to - con->in_base_pos;
971 int have = size - left;
972 int ret = ceph_tcp_recvmsg(con->sock, object + have, left);
973 if (ret <= 0)
974 return ret;
975 con->in_base_pos += ret;
977 return 1;
982 * Read all or part of the connect-side handshake on a new connection
984 static int read_partial_banner(struct ceph_connection *con)
986 int ret, to = 0;
988 dout("read_partial_banner %p at %d\n", con, con->in_base_pos);
990 /* peer's banner */
991 ret = read_partial(con, &to, strlen(CEPH_BANNER), con->in_banner);
992 if (ret <= 0)
993 goto out;
994 ret = read_partial(con, &to, sizeof(con->actual_peer_addr),
995 &con->actual_peer_addr);
996 if (ret <= 0)
997 goto out;
998 ret = read_partial(con, &to, sizeof(con->peer_addr_for_me),
999 &con->peer_addr_for_me);
1000 if (ret <= 0)
1001 goto out;
1002 out:
1003 return ret;
1006 static int read_partial_connect(struct ceph_connection *con)
1008 int ret, to = 0;
1010 dout("read_partial_connect %p at %d\n", con, con->in_base_pos);
1012 ret = read_partial(con, &to, sizeof(con->in_reply), &con->in_reply);
1013 if (ret <= 0)
1014 goto out;
1015 ret = read_partial(con, &to, le32_to_cpu(con->in_reply.authorizer_len),
1016 con->auth_reply_buf);
1017 if (ret <= 0)
1018 goto out;
1020 dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
1021 con, (int)con->in_reply.tag,
1022 le32_to_cpu(con->in_reply.connect_seq),
1023 le32_to_cpu(con->in_reply.global_seq));
1024 out:
1025 return ret;
1030 * Verify the hello banner looks okay.
1032 static int verify_hello(struct ceph_connection *con)
1034 if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) {
1035 pr_err("connect to %s got bad banner\n",
1036 ceph_pr_addr(&con->peer_addr.in_addr));
1037 con->error_msg = "protocol error, bad banner";
1038 return -1;
1040 return 0;
1043 static bool addr_is_blank(struct sockaddr_storage *ss)
1045 switch (ss->ss_family) {
1046 case AF_INET:
1047 return ((struct sockaddr_in *)ss)->sin_addr.s_addr == 0;
1048 case AF_INET6:
1049 return
1050 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[0] == 0 &&
1051 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[1] == 0 &&
1052 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[2] == 0 &&
1053 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[3] == 0;
1055 return false;
1058 static int addr_port(struct sockaddr_storage *ss)
1060 switch (ss->ss_family) {
1061 case AF_INET:
1062 return ntohs(((struct sockaddr_in *)ss)->sin_port);
1063 case AF_INET6:
1064 return ntohs(((struct sockaddr_in6 *)ss)->sin6_port);
1066 return 0;
1069 static void addr_set_port(struct sockaddr_storage *ss, int p)
1071 switch (ss->ss_family) {
1072 case AF_INET:
1073 ((struct sockaddr_in *)ss)->sin_port = htons(p);
1074 break;
1075 case AF_INET6:
1076 ((struct sockaddr_in6 *)ss)->sin6_port = htons(p);
1077 break;
1082 * Unlike other *_pton function semantics, zero indicates success.
1084 static int ceph_pton(const char *str, size_t len, struct sockaddr_storage *ss,
1085 char delim, const char **ipend)
1087 struct sockaddr_in *in4 = (void *)ss;
1088 struct sockaddr_in6 *in6 = (void *)ss;
1090 memset(ss, 0, sizeof(*ss));
1092 if (in4_pton(str, len, (u8 *)&in4->sin_addr.s_addr, delim, ipend)) {
1093 ss->ss_family = AF_INET;
1094 return 0;
1097 if (in6_pton(str, len, (u8 *)&in6->sin6_addr.s6_addr, delim, ipend)) {
1098 ss->ss_family = AF_INET6;
1099 return 0;
1102 return -EINVAL;
1106 * Extract hostname string and resolve using kernel DNS facility.
1108 #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
1109 static int ceph_dns_resolve_name(const char *name, size_t namelen,
1110 struct sockaddr_storage *ss, char delim, const char **ipend)
1112 const char *end, *delim_p;
1113 char *colon_p, *ip_addr = NULL;
1114 int ip_len, ret;
1117 * The end of the hostname occurs immediately preceding the delimiter or
1118 * the port marker (':') where the delimiter takes precedence.
1120 delim_p = memchr(name, delim, namelen);
1121 colon_p = memchr(name, ':', namelen);
1123 if (delim_p && colon_p)
1124 end = delim_p < colon_p ? delim_p : colon_p;
1125 else if (!delim_p && colon_p)
1126 end = colon_p;
1127 else {
1128 end = delim_p;
1129 if (!end) /* case: hostname:/ */
1130 end = name + namelen;
1133 if (end <= name)
1134 return -EINVAL;
1136 /* do dns_resolve upcall */
1137 ip_len = dns_query(NULL, name, end - name, NULL, &ip_addr, NULL);
1138 if (ip_len > 0)
1139 ret = ceph_pton(ip_addr, ip_len, ss, -1, NULL);
1140 else
1141 ret = -ESRCH;
1143 kfree(ip_addr);
1145 *ipend = end;
1147 pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name,
1148 ret, ret ? "failed" : ceph_pr_addr(ss));
1150 return ret;
1152 #else
1153 static inline int ceph_dns_resolve_name(const char *name, size_t namelen,
1154 struct sockaddr_storage *ss, char delim, const char **ipend)
1156 return -EINVAL;
1158 #endif
1161 * Parse a server name (IP or hostname). If a valid IP address is not found
1162 * then try to extract a hostname to resolve using userspace DNS upcall.
1164 static int ceph_parse_server_name(const char *name, size_t namelen,
1165 struct sockaddr_storage *ss, char delim, const char **ipend)
1167 int ret;
1169 ret = ceph_pton(name, namelen, ss, delim, ipend);
1170 if (ret)
1171 ret = ceph_dns_resolve_name(name, namelen, ss, delim, ipend);
1173 return ret;
1177 * Parse an ip[:port] list into an addr array. Use the default
1178 * monitor port if a port isn't specified.
1180 int ceph_parse_ips(const char *c, const char *end,
1181 struct ceph_entity_addr *addr,
1182 int max_count, int *count)
1184 int i, ret = -EINVAL;
1185 const char *p = c;
1187 dout("parse_ips on '%.*s'\n", (int)(end-c), c);
1188 for (i = 0; i < max_count; i++) {
1189 const char *ipend;
1190 struct sockaddr_storage *ss = &addr[i].in_addr;
1191 int port;
1192 char delim = ',';
1194 if (*p == '[') {
1195 delim = ']';
1196 p++;
1199 ret = ceph_parse_server_name(p, end - p, ss, delim, &ipend);
1200 if (ret)
1201 goto bad;
1202 ret = -EINVAL;
1204 p = ipend;
1206 if (delim == ']') {
1207 if (*p != ']') {
1208 dout("missing matching ']'\n");
1209 goto bad;
1211 p++;
1214 /* port? */
1215 if (p < end && *p == ':') {
1216 port = 0;
1217 p++;
1218 while (p < end && *p >= '0' && *p <= '9') {
1219 port = (port * 10) + (*p - '0');
1220 p++;
1222 if (port > 65535 || port == 0)
1223 goto bad;
1224 } else {
1225 port = CEPH_MON_PORT;
1228 addr_set_port(ss, port);
1230 dout("parse_ips got %s\n", ceph_pr_addr(ss));
1232 if (p == end)
1233 break;
1234 if (*p != ',')
1235 goto bad;
1236 p++;
1239 if (p != end)
1240 goto bad;
1242 if (count)
1243 *count = i + 1;
1244 return 0;
1246 bad:
1247 pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c);
1248 return ret;
1250 EXPORT_SYMBOL(ceph_parse_ips);
1252 static int process_banner(struct ceph_connection *con)
1254 dout("process_banner on %p\n", con);
1256 if (verify_hello(con) < 0)
1257 return -1;
1259 ceph_decode_addr(&con->actual_peer_addr);
1260 ceph_decode_addr(&con->peer_addr_for_me);
1263 * Make sure the other end is who we wanted. note that the other
1264 * end may not yet know their ip address, so if it's 0.0.0.0, give
1265 * them the benefit of the doubt.
1267 if (memcmp(&con->peer_addr, &con->actual_peer_addr,
1268 sizeof(con->peer_addr)) != 0 &&
1269 !(addr_is_blank(&con->actual_peer_addr.in_addr) &&
1270 con->actual_peer_addr.nonce == con->peer_addr.nonce)) {
1271 pr_warning("wrong peer, want %s/%d, got %s/%d\n",
1272 ceph_pr_addr(&con->peer_addr.in_addr),
1273 (int)le32_to_cpu(con->peer_addr.nonce),
1274 ceph_pr_addr(&con->actual_peer_addr.in_addr),
1275 (int)le32_to_cpu(con->actual_peer_addr.nonce));
1276 con->error_msg = "wrong peer at address";
1277 return -1;
1281 * did we learn our address?
1283 if (addr_is_blank(&con->msgr->inst.addr.in_addr)) {
1284 int port = addr_port(&con->msgr->inst.addr.in_addr);
1286 memcpy(&con->msgr->inst.addr.in_addr,
1287 &con->peer_addr_for_me.in_addr,
1288 sizeof(con->peer_addr_for_me.in_addr));
1289 addr_set_port(&con->msgr->inst.addr.in_addr, port);
1290 encode_my_addr(con->msgr);
1291 dout("process_banner learned my addr is %s\n",
1292 ceph_pr_addr(&con->msgr->inst.addr.in_addr));
1295 set_bit(NEGOTIATING, &con->state);
1296 prepare_read_connect(con);
1297 return 0;
1300 static void fail_protocol(struct ceph_connection *con)
1302 reset_connection(con);
1303 set_bit(CLOSED, &con->state); /* in case there's queued work */
1305 mutex_unlock(&con->mutex);
1306 if (con->ops->bad_proto)
1307 con->ops->bad_proto(con);
1308 mutex_lock(&con->mutex);
1311 static int process_connect(struct ceph_connection *con)
1313 u64 sup_feat = con->msgr->supported_features;
1314 u64 req_feat = con->msgr->required_features;
1315 u64 server_feat = le64_to_cpu(con->in_reply.features);
1316 int ret;
1318 dout("process_connect on %p tag %d\n", con, (int)con->in_tag);
1320 switch (con->in_reply.tag) {
1321 case CEPH_MSGR_TAG_FEATURES:
1322 pr_err("%s%lld %s feature set mismatch,"
1323 " my %llx < server's %llx, missing %llx\n",
1324 ENTITY_NAME(con->peer_name),
1325 ceph_pr_addr(&con->peer_addr.in_addr),
1326 sup_feat, server_feat, server_feat & ~sup_feat);
1327 con->error_msg = "missing required protocol features";
1328 fail_protocol(con);
1329 return -1;
1331 case CEPH_MSGR_TAG_BADPROTOVER:
1332 pr_err("%s%lld %s protocol version mismatch,"
1333 " my %d != server's %d\n",
1334 ENTITY_NAME(con->peer_name),
1335 ceph_pr_addr(&con->peer_addr.in_addr),
1336 le32_to_cpu(con->out_connect.protocol_version),
1337 le32_to_cpu(con->in_reply.protocol_version));
1338 con->error_msg = "protocol version mismatch";
1339 fail_protocol(con);
1340 return -1;
1342 case CEPH_MSGR_TAG_BADAUTHORIZER:
1343 con->auth_retry++;
1344 dout("process_connect %p got BADAUTHORIZER attempt %d\n", con,
1345 con->auth_retry);
1346 if (con->auth_retry == 2) {
1347 con->error_msg = "connect authorization failure";
1348 return -1;
1350 con->auth_retry = 1;
1351 ret = prepare_write_connect(con->msgr, con, 0);
1352 if (ret < 0)
1353 return ret;
1354 prepare_read_connect(con);
1355 break;
1357 case CEPH_MSGR_TAG_RESETSESSION:
1359 * If we connected with a large connect_seq but the peer
1360 * has no record of a session with us (no connection, or
1361 * connect_seq == 0), they will send RESETSESION to indicate
1362 * that they must have reset their session, and may have
1363 * dropped messages.
1365 dout("process_connect got RESET peer seq %u\n",
1366 le32_to_cpu(con->in_connect.connect_seq));
1367 pr_err("%s%lld %s connection reset\n",
1368 ENTITY_NAME(con->peer_name),
1369 ceph_pr_addr(&con->peer_addr.in_addr));
1370 reset_connection(con);
1371 prepare_write_connect(con->msgr, con, 0);
1372 prepare_read_connect(con);
1374 /* Tell ceph about it. */
1375 mutex_unlock(&con->mutex);
1376 pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name));
1377 if (con->ops->peer_reset)
1378 con->ops->peer_reset(con);
1379 mutex_lock(&con->mutex);
1380 if (test_bit(CLOSED, &con->state) ||
1381 test_bit(OPENING, &con->state))
1382 return -EAGAIN;
1383 break;
1385 case CEPH_MSGR_TAG_RETRY_SESSION:
1387 * If we sent a smaller connect_seq than the peer has, try
1388 * again with a larger value.
1390 dout("process_connect got RETRY my seq = %u, peer_seq = %u\n",
1391 le32_to_cpu(con->out_connect.connect_seq),
1392 le32_to_cpu(con->in_connect.connect_seq));
1393 con->connect_seq = le32_to_cpu(con->in_connect.connect_seq);
1394 prepare_write_connect(con->msgr, con, 0);
1395 prepare_read_connect(con);
1396 break;
1398 case CEPH_MSGR_TAG_RETRY_GLOBAL:
1400 * If we sent a smaller global_seq than the peer has, try
1401 * again with a larger value.
1403 dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
1404 con->peer_global_seq,
1405 le32_to_cpu(con->in_connect.global_seq));
1406 get_global_seq(con->msgr,
1407 le32_to_cpu(con->in_connect.global_seq));
1408 prepare_write_connect(con->msgr, con, 0);
1409 prepare_read_connect(con);
1410 break;
1412 case CEPH_MSGR_TAG_READY:
1413 if (req_feat & ~server_feat) {
1414 pr_err("%s%lld %s protocol feature mismatch,"
1415 " my required %llx > server's %llx, need %llx\n",
1416 ENTITY_NAME(con->peer_name),
1417 ceph_pr_addr(&con->peer_addr.in_addr),
1418 req_feat, server_feat, req_feat & ~server_feat);
1419 con->error_msg = "missing required protocol features";
1420 fail_protocol(con);
1421 return -1;
1423 clear_bit(CONNECTING, &con->state);
1424 con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq);
1425 con->connect_seq++;
1426 con->peer_features = server_feat;
1427 dout("process_connect got READY gseq %d cseq %d (%d)\n",
1428 con->peer_global_seq,
1429 le32_to_cpu(con->in_reply.connect_seq),
1430 con->connect_seq);
1431 WARN_ON(con->connect_seq !=
1432 le32_to_cpu(con->in_reply.connect_seq));
1434 if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY)
1435 set_bit(LOSSYTX, &con->state);
1437 prepare_read_tag(con);
1438 break;
1440 case CEPH_MSGR_TAG_WAIT:
1442 * If there is a connection race (we are opening
1443 * connections to each other), one of us may just have
1444 * to WAIT. This shouldn't happen if we are the
1445 * client.
1447 pr_err("process_connect got WAIT as client\n");
1448 con->error_msg = "protocol error, got WAIT as client";
1449 return -1;
1451 default:
1452 pr_err("connect protocol error, will retry\n");
1453 con->error_msg = "protocol error, garbage tag during connect";
1454 return -1;
1456 return 0;
1461 * read (part of) an ack
1463 static int read_partial_ack(struct ceph_connection *con)
1465 int to = 0;
1467 return read_partial(con, &to, sizeof(con->in_temp_ack),
1468 &con->in_temp_ack);
1473 * We can finally discard anything that's been acked.
1475 static void process_ack(struct ceph_connection *con)
1477 struct ceph_msg *m;
1478 u64 ack = le64_to_cpu(con->in_temp_ack);
1479 u64 seq;
1481 while (!list_empty(&con->out_sent)) {
1482 m = list_first_entry(&con->out_sent, struct ceph_msg,
1483 list_head);
1484 seq = le64_to_cpu(m->hdr.seq);
1485 if (seq > ack)
1486 break;
1487 dout("got ack for seq %llu type %d at %p\n", seq,
1488 le16_to_cpu(m->hdr.type), m);
1489 m->ack_stamp = jiffies;
1490 ceph_msg_remove(m);
1492 prepare_read_tag(con);
1498 static int read_partial_message_section(struct ceph_connection *con,
1499 struct kvec *section,
1500 unsigned int sec_len, u32 *crc)
1502 int ret, left;
1504 BUG_ON(!section);
1506 while (section->iov_len < sec_len) {
1507 BUG_ON(section->iov_base == NULL);
1508 left = sec_len - section->iov_len;
1509 ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base +
1510 section->iov_len, left);
1511 if (ret <= 0)
1512 return ret;
1513 section->iov_len += ret;
1514 if (section->iov_len == sec_len)
1515 *crc = crc32c(0, section->iov_base,
1516 section->iov_len);
1519 return 1;
1522 static struct ceph_msg *ceph_alloc_msg(struct ceph_connection *con,
1523 struct ceph_msg_header *hdr,
1524 int *skip);
1527 static int read_partial_message_pages(struct ceph_connection *con,
1528 struct page **pages,
1529 unsigned data_len, int datacrc)
1531 void *p;
1532 int ret;
1533 int left;
1535 left = min((int)(data_len - con->in_msg_pos.data_pos),
1536 (int)(PAGE_SIZE - con->in_msg_pos.page_pos));
1537 /* (page) data */
1538 BUG_ON(pages == NULL);
1539 p = kmap(pages[con->in_msg_pos.page]);
1540 ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos,
1541 left);
1542 if (ret > 0 && datacrc)
1543 con->in_data_crc =
1544 crc32c(con->in_data_crc,
1545 p + con->in_msg_pos.page_pos, ret);
1546 kunmap(pages[con->in_msg_pos.page]);
1547 if (ret <= 0)
1548 return ret;
1549 con->in_msg_pos.data_pos += ret;
1550 con->in_msg_pos.page_pos += ret;
1551 if (con->in_msg_pos.page_pos == PAGE_SIZE) {
1552 con->in_msg_pos.page_pos = 0;
1553 con->in_msg_pos.page++;
1556 return ret;
1559 #ifdef CONFIG_BLOCK
1560 static int read_partial_message_bio(struct ceph_connection *con,
1561 struct bio **bio_iter, int *bio_seg,
1562 unsigned data_len, int datacrc)
1564 struct bio_vec *bv = bio_iovec_idx(*bio_iter, *bio_seg);
1565 void *p;
1566 int ret, left;
1568 if (IS_ERR(bv))
1569 return PTR_ERR(bv);
1571 left = min((int)(data_len - con->in_msg_pos.data_pos),
1572 (int)(bv->bv_len - con->in_msg_pos.page_pos));
1574 p = kmap(bv->bv_page) + bv->bv_offset;
1576 ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos,
1577 left);
1578 if (ret > 0 && datacrc)
1579 con->in_data_crc =
1580 crc32c(con->in_data_crc,
1581 p + con->in_msg_pos.page_pos, ret);
1582 kunmap(bv->bv_page);
1583 if (ret <= 0)
1584 return ret;
1585 con->in_msg_pos.data_pos += ret;
1586 con->in_msg_pos.page_pos += ret;
1587 if (con->in_msg_pos.page_pos == bv->bv_len) {
1588 con->in_msg_pos.page_pos = 0;
1589 iter_bio_next(bio_iter, bio_seg);
1592 return ret;
1594 #endif
1597 * read (part of) a message.
1599 static int read_partial_message(struct ceph_connection *con)
1601 struct ceph_msg *m = con->in_msg;
1602 int ret;
1603 int to, left;
1604 unsigned front_len, middle_len, data_len;
1605 int datacrc = con->msgr->nocrc;
1606 int skip;
1607 u64 seq;
1609 dout("read_partial_message con %p msg %p\n", con, m);
1611 /* header */
1612 while (con->in_base_pos < sizeof(con->in_hdr)) {
1613 left = sizeof(con->in_hdr) - con->in_base_pos;
1614 ret = ceph_tcp_recvmsg(con->sock,
1615 (char *)&con->in_hdr + con->in_base_pos,
1616 left);
1617 if (ret <= 0)
1618 return ret;
1619 con->in_base_pos += ret;
1620 if (con->in_base_pos == sizeof(con->in_hdr)) {
1621 u32 crc = crc32c(0, (void *)&con->in_hdr,
1622 sizeof(con->in_hdr) - sizeof(con->in_hdr.crc));
1623 if (crc != le32_to_cpu(con->in_hdr.crc)) {
1624 pr_err("read_partial_message bad hdr "
1625 " crc %u != expected %u\n",
1626 crc, con->in_hdr.crc);
1627 return -EBADMSG;
1631 front_len = le32_to_cpu(con->in_hdr.front_len);
1632 if (front_len > CEPH_MSG_MAX_FRONT_LEN)
1633 return -EIO;
1634 middle_len = le32_to_cpu(con->in_hdr.middle_len);
1635 if (middle_len > CEPH_MSG_MAX_DATA_LEN)
1636 return -EIO;
1637 data_len = le32_to_cpu(con->in_hdr.data_len);
1638 if (data_len > CEPH_MSG_MAX_DATA_LEN)
1639 return -EIO;
1641 /* verify seq# */
1642 seq = le64_to_cpu(con->in_hdr.seq);
1643 if ((s64)seq - (s64)con->in_seq < 1) {
1644 pr_info("skipping %s%lld %s seq %lld expected %lld\n",
1645 ENTITY_NAME(con->peer_name),
1646 ceph_pr_addr(&con->peer_addr.in_addr),
1647 seq, con->in_seq + 1);
1648 con->in_base_pos = -front_len - middle_len - data_len -
1649 sizeof(m->footer);
1650 con->in_tag = CEPH_MSGR_TAG_READY;
1651 return 0;
1652 } else if ((s64)seq - (s64)con->in_seq > 1) {
1653 pr_err("read_partial_message bad seq %lld expected %lld\n",
1654 seq, con->in_seq + 1);
1655 con->error_msg = "bad message sequence # for incoming message";
1656 return -EBADMSG;
1659 /* allocate message? */
1660 if (!con->in_msg) {
1661 dout("got hdr type %d front %d data %d\n", con->in_hdr.type,
1662 con->in_hdr.front_len, con->in_hdr.data_len);
1663 skip = 0;
1664 con->in_msg = ceph_alloc_msg(con, &con->in_hdr, &skip);
1665 if (skip) {
1666 /* skip this message */
1667 dout("alloc_msg said skip message\n");
1668 BUG_ON(con->in_msg);
1669 con->in_base_pos = -front_len - middle_len - data_len -
1670 sizeof(m->footer);
1671 con->in_tag = CEPH_MSGR_TAG_READY;
1672 con->in_seq++;
1673 return 0;
1675 if (!con->in_msg) {
1676 con->error_msg =
1677 "error allocating memory for incoming message";
1678 return -ENOMEM;
1680 m = con->in_msg;
1681 m->front.iov_len = 0; /* haven't read it yet */
1682 if (m->middle)
1683 m->middle->vec.iov_len = 0;
1685 con->in_msg_pos.page = 0;
1686 if (m->pages)
1687 con->in_msg_pos.page_pos = m->page_alignment;
1688 else
1689 con->in_msg_pos.page_pos = 0;
1690 con->in_msg_pos.data_pos = 0;
1693 /* front */
1694 ret = read_partial_message_section(con, &m->front, front_len,
1695 &con->in_front_crc);
1696 if (ret <= 0)
1697 return ret;
1699 /* middle */
1700 if (m->middle) {
1701 ret = read_partial_message_section(con, &m->middle->vec,
1702 middle_len,
1703 &con->in_middle_crc);
1704 if (ret <= 0)
1705 return ret;
1707 #ifdef CONFIG_BLOCK
1708 if (m->bio && !m->bio_iter)
1709 init_bio_iter(m->bio, &m->bio_iter, &m->bio_seg);
1710 #endif
1712 /* (page) data */
1713 while (con->in_msg_pos.data_pos < data_len) {
1714 if (m->pages) {
1715 ret = read_partial_message_pages(con, m->pages,
1716 data_len, datacrc);
1717 if (ret <= 0)
1718 return ret;
1719 #ifdef CONFIG_BLOCK
1720 } else if (m->bio) {
1722 ret = read_partial_message_bio(con,
1723 &m->bio_iter, &m->bio_seg,
1724 data_len, datacrc);
1725 if (ret <= 0)
1726 return ret;
1727 #endif
1728 } else {
1729 BUG_ON(1);
1733 /* footer */
1734 to = sizeof(m->hdr) + sizeof(m->footer);
1735 while (con->in_base_pos < to) {
1736 left = to - con->in_base_pos;
1737 ret = ceph_tcp_recvmsg(con->sock, (char *)&m->footer +
1738 (con->in_base_pos - sizeof(m->hdr)),
1739 left);
1740 if (ret <= 0)
1741 return ret;
1742 con->in_base_pos += ret;
1744 dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
1745 m, front_len, m->footer.front_crc, middle_len,
1746 m->footer.middle_crc, data_len, m->footer.data_crc);
1748 /* crc ok? */
1749 if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) {
1750 pr_err("read_partial_message %p front crc %u != exp. %u\n",
1751 m, con->in_front_crc, m->footer.front_crc);
1752 return -EBADMSG;
1754 if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) {
1755 pr_err("read_partial_message %p middle crc %u != exp %u\n",
1756 m, con->in_middle_crc, m->footer.middle_crc);
1757 return -EBADMSG;
1759 if (datacrc &&
1760 (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 &&
1761 con->in_data_crc != le32_to_cpu(m->footer.data_crc)) {
1762 pr_err("read_partial_message %p data crc %u != exp. %u\n", m,
1763 con->in_data_crc, le32_to_cpu(m->footer.data_crc));
1764 return -EBADMSG;
1767 return 1; /* done! */
1771 * Process message. This happens in the worker thread. The callback should
1772 * be careful not to do anything that waits on other incoming messages or it
1773 * may deadlock.
1775 static void process_message(struct ceph_connection *con)
1777 struct ceph_msg *msg;
1779 msg = con->in_msg;
1780 con->in_msg = NULL;
1782 /* if first message, set peer_name */
1783 if (con->peer_name.type == 0)
1784 con->peer_name = msg->hdr.src;
1786 con->in_seq++;
1787 mutex_unlock(&con->mutex);
1789 dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
1790 msg, le64_to_cpu(msg->hdr.seq),
1791 ENTITY_NAME(msg->hdr.src),
1792 le16_to_cpu(msg->hdr.type),
1793 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
1794 le32_to_cpu(msg->hdr.front_len),
1795 le32_to_cpu(msg->hdr.data_len),
1796 con->in_front_crc, con->in_middle_crc, con->in_data_crc);
1797 con->ops->dispatch(con, msg);
1799 mutex_lock(&con->mutex);
1800 prepare_read_tag(con);
1805 * Write something to the socket. Called in a worker thread when the
1806 * socket appears to be writeable and we have something ready to send.
1808 static int try_write(struct ceph_connection *con)
1810 struct ceph_messenger *msgr = con->msgr;
1811 int ret = 1;
1813 dout("try_write start %p state %lu nref %d\n", con, con->state,
1814 atomic_read(&con->nref));
1816 more:
1817 dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes);
1819 /* open the socket first? */
1820 if (con->sock == NULL) {
1821 prepare_write_banner(msgr, con);
1822 prepare_write_connect(msgr, con, 1);
1823 prepare_read_banner(con);
1824 set_bit(CONNECTING, &con->state);
1825 clear_bit(NEGOTIATING, &con->state);
1827 BUG_ON(con->in_msg);
1828 con->in_tag = CEPH_MSGR_TAG_READY;
1829 dout("try_write initiating connect on %p new state %lu\n",
1830 con, con->state);
1831 con->sock = ceph_tcp_connect(con);
1832 if (IS_ERR(con->sock)) {
1833 con->sock = NULL;
1834 con->error_msg = "connect error";
1835 ret = -1;
1836 goto out;
1840 more_kvec:
1841 /* kvec data queued? */
1842 if (con->out_skip) {
1843 ret = write_partial_skip(con);
1844 if (ret <= 0)
1845 goto out;
1847 if (con->out_kvec_left) {
1848 ret = write_partial_kvec(con);
1849 if (ret <= 0)
1850 goto out;
1853 /* msg pages? */
1854 if (con->out_msg) {
1855 if (con->out_msg_done) {
1856 ceph_msg_put(con->out_msg);
1857 con->out_msg = NULL; /* we're done with this one */
1858 goto do_next;
1861 ret = write_partial_msg_pages(con);
1862 if (ret == 1)
1863 goto more_kvec; /* we need to send the footer, too! */
1864 if (ret == 0)
1865 goto out;
1866 if (ret < 0) {
1867 dout("try_write write_partial_msg_pages err %d\n",
1868 ret);
1869 goto out;
1873 do_next:
1874 if (!test_bit(CONNECTING, &con->state)) {
1875 /* is anything else pending? */
1876 if (!list_empty(&con->out_queue)) {
1877 prepare_write_message(con);
1878 goto more;
1880 if (con->in_seq > con->in_seq_acked) {
1881 prepare_write_ack(con);
1882 goto more;
1884 if (test_and_clear_bit(KEEPALIVE_PENDING, &con->state)) {
1885 prepare_write_keepalive(con);
1886 goto more;
1890 /* Nothing to do! */
1891 clear_bit(WRITE_PENDING, &con->state);
1892 dout("try_write nothing else to write.\n");
1893 ret = 0;
1894 out:
1895 dout("try_write done on %p ret %d\n", con, ret);
1896 return ret;
1902 * Read what we can from the socket.
1904 static int try_read(struct ceph_connection *con)
1906 int ret = -1;
1908 if (!con->sock)
1909 return 0;
1911 if (test_bit(STANDBY, &con->state))
1912 return 0;
1914 dout("try_read start on %p\n", con);
1916 more:
1917 dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag,
1918 con->in_base_pos);
1921 * process_connect and process_message drop and re-take
1922 * con->mutex. make sure we handle a racing close or reopen.
1924 if (test_bit(CLOSED, &con->state) ||
1925 test_bit(OPENING, &con->state)) {
1926 ret = -EAGAIN;
1927 goto out;
1930 if (test_bit(CONNECTING, &con->state)) {
1931 if (!test_bit(NEGOTIATING, &con->state)) {
1932 dout("try_read connecting\n");
1933 ret = read_partial_banner(con);
1934 if (ret <= 0)
1935 goto out;
1936 ret = process_banner(con);
1937 if (ret < 0)
1938 goto out;
1940 ret = read_partial_connect(con);
1941 if (ret <= 0)
1942 goto out;
1943 ret = process_connect(con);
1944 if (ret < 0)
1945 goto out;
1946 goto more;
1949 if (con->in_base_pos < 0) {
1951 * skipping + discarding content.
1953 * FIXME: there must be a better way to do this!
1955 static char buf[1024];
1956 int skip = min(1024, -con->in_base_pos);
1957 dout("skipping %d / %d bytes\n", skip, -con->in_base_pos);
1958 ret = ceph_tcp_recvmsg(con->sock, buf, skip);
1959 if (ret <= 0)
1960 goto out;
1961 con->in_base_pos += ret;
1962 if (con->in_base_pos)
1963 goto more;
1965 if (con->in_tag == CEPH_MSGR_TAG_READY) {
1967 * what's next?
1969 ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1);
1970 if (ret <= 0)
1971 goto out;
1972 dout("try_read got tag %d\n", (int)con->in_tag);
1973 switch (con->in_tag) {
1974 case CEPH_MSGR_TAG_MSG:
1975 prepare_read_message(con);
1976 break;
1977 case CEPH_MSGR_TAG_ACK:
1978 prepare_read_ack(con);
1979 break;
1980 case CEPH_MSGR_TAG_CLOSE:
1981 set_bit(CLOSED, &con->state); /* fixme */
1982 goto out;
1983 default:
1984 goto bad_tag;
1987 if (con->in_tag == CEPH_MSGR_TAG_MSG) {
1988 ret = read_partial_message(con);
1989 if (ret <= 0) {
1990 switch (ret) {
1991 case -EBADMSG:
1992 con->error_msg = "bad crc";
1993 ret = -EIO;
1994 break;
1995 case -EIO:
1996 con->error_msg = "io error";
1997 break;
1999 goto out;
2001 if (con->in_tag == CEPH_MSGR_TAG_READY)
2002 goto more;
2003 process_message(con);
2004 goto more;
2006 if (con->in_tag == CEPH_MSGR_TAG_ACK) {
2007 ret = read_partial_ack(con);
2008 if (ret <= 0)
2009 goto out;
2010 process_ack(con);
2011 goto more;
2014 out:
2015 dout("try_read done on %p ret %d\n", con, ret);
2016 return ret;
2018 bad_tag:
2019 pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag);
2020 con->error_msg = "protocol error, garbage tag";
2021 ret = -1;
2022 goto out;
2027 * Atomically queue work on a connection. Bump @con reference to
2028 * avoid races with connection teardown.
2030 static void queue_con(struct ceph_connection *con)
2032 if (test_bit(DEAD, &con->state)) {
2033 dout("queue_con %p ignoring: DEAD\n",
2034 con);
2035 return;
2038 if (!con->ops->get(con)) {
2039 dout("queue_con %p ref count 0\n", con);
2040 return;
2043 if (!queue_delayed_work(ceph_msgr_wq, &con->work, 0)) {
2044 dout("queue_con %p - already queued\n", con);
2045 con->ops->put(con);
2046 } else {
2047 dout("queue_con %p\n", con);
2052 * Do some work on a connection. Drop a connection ref when we're done.
2054 static void con_work(struct work_struct *work)
2056 struct ceph_connection *con = container_of(work, struct ceph_connection,
2057 work.work);
2058 int ret;
2060 mutex_lock(&con->mutex);
2061 restart:
2062 if (test_and_clear_bit(BACKOFF, &con->state)) {
2063 dout("con_work %p backing off\n", con);
2064 if (queue_delayed_work(ceph_msgr_wq, &con->work,
2065 round_jiffies_relative(con->delay))) {
2066 dout("con_work %p backoff %lu\n", con, con->delay);
2067 mutex_unlock(&con->mutex);
2068 return;
2069 } else {
2070 con->ops->put(con);
2071 dout("con_work %p FAILED to back off %lu\n", con,
2072 con->delay);
2076 if (test_bit(STANDBY, &con->state)) {
2077 dout("con_work %p STANDBY\n", con);
2078 goto done;
2080 if (test_bit(CLOSED, &con->state)) { /* e.g. if we are replaced */
2081 dout("con_work CLOSED\n");
2082 con_close_socket(con);
2083 goto done;
2085 if (test_and_clear_bit(OPENING, &con->state)) {
2086 /* reopen w/ new peer */
2087 dout("con_work OPENING\n");
2088 con_close_socket(con);
2091 if (test_and_clear_bit(SOCK_CLOSED, &con->state))
2092 goto fault;
2094 ret = try_read(con);
2095 if (ret == -EAGAIN)
2096 goto restart;
2097 if (ret < 0)
2098 goto fault;
2100 ret = try_write(con);
2101 if (ret == -EAGAIN)
2102 goto restart;
2103 if (ret < 0)
2104 goto fault;
2106 done:
2107 mutex_unlock(&con->mutex);
2108 done_unlocked:
2109 con->ops->put(con);
2110 return;
2112 fault:
2113 mutex_unlock(&con->mutex);
2114 ceph_fault(con); /* error/fault path */
2115 goto done_unlocked;
2120 * Generic error/fault handler. A retry mechanism is used with
2121 * exponential backoff
2123 static void ceph_fault(struct ceph_connection *con)
2125 pr_err("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
2126 ceph_pr_addr(&con->peer_addr.in_addr), con->error_msg);
2127 dout("fault %p state %lu to peer %s\n",
2128 con, con->state, ceph_pr_addr(&con->peer_addr.in_addr));
2130 if (test_bit(LOSSYTX, &con->state)) {
2131 dout("fault on LOSSYTX channel\n");
2132 goto out;
2135 mutex_lock(&con->mutex);
2136 if (test_bit(CLOSED, &con->state))
2137 goto out_unlock;
2139 con_close_socket(con);
2141 if (con->in_msg) {
2142 ceph_msg_put(con->in_msg);
2143 con->in_msg = NULL;
2146 /* Requeue anything that hasn't been acked */
2147 list_splice_init(&con->out_sent, &con->out_queue);
2149 /* If there are no messages queued or keepalive pending, place
2150 * the connection in a STANDBY state */
2151 if (list_empty(&con->out_queue) &&
2152 !test_bit(KEEPALIVE_PENDING, &con->state)) {
2153 dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
2154 clear_bit(WRITE_PENDING, &con->state);
2155 set_bit(STANDBY, &con->state);
2156 } else {
2157 /* retry after a delay. */
2158 if (con->delay == 0)
2159 con->delay = BASE_DELAY_INTERVAL;
2160 else if (con->delay < MAX_DELAY_INTERVAL)
2161 con->delay *= 2;
2162 con->ops->get(con);
2163 if (queue_delayed_work(ceph_msgr_wq, &con->work,
2164 round_jiffies_relative(con->delay))) {
2165 dout("fault queued %p delay %lu\n", con, con->delay);
2166 } else {
2167 con->ops->put(con);
2168 dout("fault failed to queue %p delay %lu, backoff\n",
2169 con, con->delay);
2171 * In many cases we see a socket state change
2172 * while con_work is running and end up
2173 * queuing (non-delayed) work, such that we
2174 * can't backoff with a delay. Set a flag so
2175 * that when con_work restarts we schedule the
2176 * delay then.
2178 set_bit(BACKOFF, &con->state);
2182 out_unlock:
2183 mutex_unlock(&con->mutex);
2184 out:
2186 * in case we faulted due to authentication, invalidate our
2187 * current tickets so that we can get new ones.
2189 if (con->auth_retry && con->ops->invalidate_authorizer) {
2190 dout("calling invalidate_authorizer()\n");
2191 con->ops->invalidate_authorizer(con);
2194 if (con->ops->fault)
2195 con->ops->fault(con);
2201 * create a new messenger instance
2203 struct ceph_messenger *ceph_messenger_create(struct ceph_entity_addr *myaddr,
2204 u32 supported_features,
2205 u32 required_features)
2207 struct ceph_messenger *msgr;
2209 msgr = kzalloc(sizeof(*msgr), GFP_KERNEL);
2210 if (msgr == NULL)
2211 return ERR_PTR(-ENOMEM);
2213 msgr->supported_features = supported_features;
2214 msgr->required_features = required_features;
2216 spin_lock_init(&msgr->global_seq_lock);
2218 /* the zero page is needed if a request is "canceled" while the message
2219 * is being written over the socket */
2220 msgr->zero_page = __page_cache_alloc(GFP_KERNEL | __GFP_ZERO);
2221 if (!msgr->zero_page) {
2222 kfree(msgr);
2223 return ERR_PTR(-ENOMEM);
2225 kmap(msgr->zero_page);
2227 if (myaddr)
2228 msgr->inst.addr = *myaddr;
2230 /* select a random nonce */
2231 msgr->inst.addr.type = 0;
2232 get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce));
2233 encode_my_addr(msgr);
2235 dout("messenger_create %p\n", msgr);
2236 return msgr;
2238 EXPORT_SYMBOL(ceph_messenger_create);
2240 void ceph_messenger_destroy(struct ceph_messenger *msgr)
2242 dout("destroy %p\n", msgr);
2243 kunmap(msgr->zero_page);
2244 __free_page(msgr->zero_page);
2245 kfree(msgr);
2246 dout("destroyed messenger %p\n", msgr);
2248 EXPORT_SYMBOL(ceph_messenger_destroy);
2250 static void clear_standby(struct ceph_connection *con)
2252 /* come back from STANDBY? */
2253 if (test_and_clear_bit(STANDBY, &con->state)) {
2254 mutex_lock(&con->mutex);
2255 dout("clear_standby %p and ++connect_seq\n", con);
2256 con->connect_seq++;
2257 WARN_ON(test_bit(WRITE_PENDING, &con->state));
2258 WARN_ON(test_bit(KEEPALIVE_PENDING, &con->state));
2259 mutex_unlock(&con->mutex);
2264 * Queue up an outgoing message on the given connection.
2266 void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
2268 if (test_bit(CLOSED, &con->state)) {
2269 dout("con_send %p closed, dropping %p\n", con, msg);
2270 ceph_msg_put(msg);
2271 return;
2274 /* set src+dst */
2275 msg->hdr.src = con->msgr->inst.name;
2277 BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
2279 msg->needs_out_seq = true;
2281 /* queue */
2282 mutex_lock(&con->mutex);
2283 BUG_ON(!list_empty(&msg->list_head));
2284 list_add_tail(&msg->list_head, &con->out_queue);
2285 dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
2286 ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
2287 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2288 le32_to_cpu(msg->hdr.front_len),
2289 le32_to_cpu(msg->hdr.middle_len),
2290 le32_to_cpu(msg->hdr.data_len));
2291 mutex_unlock(&con->mutex);
2293 /* if there wasn't anything waiting to send before, queue
2294 * new work */
2295 clear_standby(con);
2296 if (test_and_set_bit(WRITE_PENDING, &con->state) == 0)
2297 queue_con(con);
2299 EXPORT_SYMBOL(ceph_con_send);
2302 * Revoke a message that was previously queued for send
2304 void ceph_con_revoke(struct ceph_connection *con, struct ceph_msg *msg)
2306 mutex_lock(&con->mutex);
2307 if (!list_empty(&msg->list_head)) {
2308 dout("con_revoke %p msg %p - was on queue\n", con, msg);
2309 list_del_init(&msg->list_head);
2310 ceph_msg_put(msg);
2311 msg->hdr.seq = 0;
2313 if (con->out_msg == msg) {
2314 dout("con_revoke %p msg %p - was sending\n", con, msg);
2315 con->out_msg = NULL;
2316 if (con->out_kvec_is_msg) {
2317 con->out_skip = con->out_kvec_bytes;
2318 con->out_kvec_is_msg = false;
2320 ceph_msg_put(msg);
2321 msg->hdr.seq = 0;
2323 mutex_unlock(&con->mutex);
2327 * Revoke a message that we may be reading data into
2329 void ceph_con_revoke_message(struct ceph_connection *con, struct ceph_msg *msg)
2331 mutex_lock(&con->mutex);
2332 if (con->in_msg && con->in_msg == msg) {
2333 unsigned front_len = le32_to_cpu(con->in_hdr.front_len);
2334 unsigned middle_len = le32_to_cpu(con->in_hdr.middle_len);
2335 unsigned data_len = le32_to_cpu(con->in_hdr.data_len);
2337 /* skip rest of message */
2338 dout("con_revoke_pages %p msg %p revoked\n", con, msg);
2339 con->in_base_pos = con->in_base_pos -
2340 sizeof(struct ceph_msg_header) -
2341 front_len -
2342 middle_len -
2343 data_len -
2344 sizeof(struct ceph_msg_footer);
2345 ceph_msg_put(con->in_msg);
2346 con->in_msg = NULL;
2347 con->in_tag = CEPH_MSGR_TAG_READY;
2348 con->in_seq++;
2349 } else {
2350 dout("con_revoke_pages %p msg %p pages %p no-op\n",
2351 con, con->in_msg, msg);
2353 mutex_unlock(&con->mutex);
2357 * Queue a keepalive byte to ensure the tcp connection is alive.
2359 void ceph_con_keepalive(struct ceph_connection *con)
2361 dout("con_keepalive %p\n", con);
2362 clear_standby(con);
2363 if (test_and_set_bit(KEEPALIVE_PENDING, &con->state) == 0 &&
2364 test_and_set_bit(WRITE_PENDING, &con->state) == 0)
2365 queue_con(con);
2367 EXPORT_SYMBOL(ceph_con_keepalive);
2371 * construct a new message with given type, size
2372 * the new msg has a ref count of 1.
2374 struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags,
2375 bool can_fail)
2377 struct ceph_msg *m;
2379 m = kmalloc(sizeof(*m), flags);
2380 if (m == NULL)
2381 goto out;
2382 kref_init(&m->kref);
2383 INIT_LIST_HEAD(&m->list_head);
2385 m->hdr.tid = 0;
2386 m->hdr.type = cpu_to_le16(type);
2387 m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
2388 m->hdr.version = 0;
2389 m->hdr.front_len = cpu_to_le32(front_len);
2390 m->hdr.middle_len = 0;
2391 m->hdr.data_len = 0;
2392 m->hdr.data_off = 0;
2393 m->hdr.reserved = 0;
2394 m->footer.front_crc = 0;
2395 m->footer.middle_crc = 0;
2396 m->footer.data_crc = 0;
2397 m->footer.flags = 0;
2398 m->front_max = front_len;
2399 m->front_is_vmalloc = false;
2400 m->more_to_follow = false;
2401 m->ack_stamp = 0;
2402 m->pool = NULL;
2404 /* middle */
2405 m->middle = NULL;
2407 /* data */
2408 m->nr_pages = 0;
2409 m->page_alignment = 0;
2410 m->pages = NULL;
2411 m->pagelist = NULL;
2412 m->bio = NULL;
2413 m->bio_iter = NULL;
2414 m->bio_seg = 0;
2415 m->trail = NULL;
2417 /* front */
2418 if (front_len) {
2419 if (front_len > PAGE_CACHE_SIZE) {
2420 m->front.iov_base = __vmalloc(front_len, flags,
2421 PAGE_KERNEL);
2422 m->front_is_vmalloc = true;
2423 } else {
2424 m->front.iov_base = kmalloc(front_len, flags);
2426 if (m->front.iov_base == NULL) {
2427 dout("ceph_msg_new can't allocate %d bytes\n",
2428 front_len);
2429 goto out2;
2431 } else {
2432 m->front.iov_base = NULL;
2434 m->front.iov_len = front_len;
2436 dout("ceph_msg_new %p front %d\n", m, front_len);
2437 return m;
2439 out2:
2440 ceph_msg_put(m);
2441 out:
2442 if (!can_fail) {
2443 pr_err("msg_new can't create type %d front %d\n", type,
2444 front_len);
2445 WARN_ON(1);
2446 } else {
2447 dout("msg_new can't create type %d front %d\n", type,
2448 front_len);
2450 return NULL;
2452 EXPORT_SYMBOL(ceph_msg_new);
2455 * Allocate "middle" portion of a message, if it is needed and wasn't
2456 * allocated by alloc_msg. This allows us to read a small fixed-size
2457 * per-type header in the front and then gracefully fail (i.e.,
2458 * propagate the error to the caller based on info in the front) when
2459 * the middle is too large.
2461 static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
2463 int type = le16_to_cpu(msg->hdr.type);
2464 int middle_len = le32_to_cpu(msg->hdr.middle_len);
2466 dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
2467 ceph_msg_type_name(type), middle_len);
2468 BUG_ON(!middle_len);
2469 BUG_ON(msg->middle);
2471 msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
2472 if (!msg->middle)
2473 return -ENOMEM;
2474 return 0;
2478 * Generic message allocator, for incoming messages.
2480 static struct ceph_msg *ceph_alloc_msg(struct ceph_connection *con,
2481 struct ceph_msg_header *hdr,
2482 int *skip)
2484 int type = le16_to_cpu(hdr->type);
2485 int front_len = le32_to_cpu(hdr->front_len);
2486 int middle_len = le32_to_cpu(hdr->middle_len);
2487 struct ceph_msg *msg = NULL;
2488 int ret;
2490 if (con->ops->alloc_msg) {
2491 mutex_unlock(&con->mutex);
2492 msg = con->ops->alloc_msg(con, hdr, skip);
2493 mutex_lock(&con->mutex);
2494 if (!msg || *skip)
2495 return NULL;
2497 if (!msg) {
2498 *skip = 0;
2499 msg = ceph_msg_new(type, front_len, GFP_NOFS, false);
2500 if (!msg) {
2501 pr_err("unable to allocate msg type %d len %d\n",
2502 type, front_len);
2503 return NULL;
2505 msg->page_alignment = le16_to_cpu(hdr->data_off);
2507 memcpy(&msg->hdr, &con->in_hdr, sizeof(con->in_hdr));
2509 if (middle_len && !msg->middle) {
2510 ret = ceph_alloc_middle(con, msg);
2511 if (ret < 0) {
2512 ceph_msg_put(msg);
2513 return NULL;
2517 return msg;
2522 * Free a generically kmalloc'd message.
2524 void ceph_msg_kfree(struct ceph_msg *m)
2526 dout("msg_kfree %p\n", m);
2527 if (m->front_is_vmalloc)
2528 vfree(m->front.iov_base);
2529 else
2530 kfree(m->front.iov_base);
2531 kfree(m);
2535 * Drop a msg ref. Destroy as needed.
2537 void ceph_msg_last_put(struct kref *kref)
2539 struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
2541 dout("ceph_msg_put last one on %p\n", m);
2542 WARN_ON(!list_empty(&m->list_head));
2544 /* drop middle, data, if any */
2545 if (m->middle) {
2546 ceph_buffer_put(m->middle);
2547 m->middle = NULL;
2549 m->nr_pages = 0;
2550 m->pages = NULL;
2552 if (m->pagelist) {
2553 ceph_pagelist_release(m->pagelist);
2554 kfree(m->pagelist);
2555 m->pagelist = NULL;
2558 m->trail = NULL;
2560 if (m->pool)
2561 ceph_msgpool_put(m->pool, m);
2562 else
2563 ceph_msg_kfree(m);
2565 EXPORT_SYMBOL(ceph_msg_last_put);
2567 void ceph_msg_dump(struct ceph_msg *msg)
2569 pr_debug("msg_dump %p (front_max %d nr_pages %d)\n", msg,
2570 msg->front_max, msg->nr_pages);
2571 print_hex_dump(KERN_DEBUG, "header: ",
2572 DUMP_PREFIX_OFFSET, 16, 1,
2573 &msg->hdr, sizeof(msg->hdr), true);
2574 print_hex_dump(KERN_DEBUG, " front: ",
2575 DUMP_PREFIX_OFFSET, 16, 1,
2576 msg->front.iov_base, msg->front.iov_len, true);
2577 if (msg->middle)
2578 print_hex_dump(KERN_DEBUG, "middle: ",
2579 DUMP_PREFIX_OFFSET, 16, 1,
2580 msg->middle->vec.iov_base,
2581 msg->middle->vec.iov_len, true);
2582 print_hex_dump(KERN_DEBUG, "footer: ",
2583 DUMP_PREFIX_OFFSET, 16, 1,
2584 &msg->footer, sizeof(msg->footer), true);
2586 EXPORT_SYMBOL(ceph_msg_dump);