MIPS: Yosemite, Emma: Fix off-by-two in arcs_cmdline buffer size check
[linux-2.6/linux-mips.git] / net / wireless / reg.c
blob2520a1b7e7db7947754dafe3c814405ea26798e7
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
5 * Copyright 2008 Luis R. Rodriguez <lrodriguz@atheros.com>
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
12 /**
13 * DOC: Wireless regulatory infrastructure
15 * The usual implementation is for a driver to read a device EEPROM to
16 * determine which regulatory domain it should be operating under, then
17 * looking up the allowable channels in a driver-local table and finally
18 * registering those channels in the wiphy structure.
20 * Another set of compliance enforcement is for drivers to use their
21 * own compliance limits which can be stored on the EEPROM. The host
22 * driver or firmware may ensure these are used.
24 * In addition to all this we provide an extra layer of regulatory
25 * conformance. For drivers which do not have any regulatory
26 * information CRDA provides the complete regulatory solution.
27 * For others it provides a community effort on further restrictions
28 * to enhance compliance.
30 * Note: When number of rules --> infinity we will not be able to
31 * index on alpha2 any more, instead we'll probably have to
32 * rely on some SHA1 checksum of the regdomain for example.
36 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
38 #include <linux/kernel.h>
39 #include <linux/slab.h>
40 #include <linux/list.h>
41 #include <linux/random.h>
42 #include <linux/ctype.h>
43 #include <linux/nl80211.h>
44 #include <linux/platform_device.h>
45 #include <net/cfg80211.h>
46 #include "core.h"
47 #include "reg.h"
48 #include "regdb.h"
49 #include "nl80211.h"
51 #ifdef CONFIG_CFG80211_REG_DEBUG
52 #define REG_DBG_PRINT(format, args...) \
53 printk(KERN_DEBUG pr_fmt(format), ##args)
54 #else
55 #define REG_DBG_PRINT(args...)
56 #endif
58 /* Receipt of information from last regulatory request */
59 static struct regulatory_request *last_request;
61 /* To trigger userspace events */
62 static struct platform_device *reg_pdev;
64 static struct device_type reg_device_type = {
65 .uevent = reg_device_uevent,
69 * Central wireless core regulatory domains, we only need two,
70 * the current one and a world regulatory domain in case we have no
71 * information to give us an alpha2
73 const struct ieee80211_regdomain *cfg80211_regdomain;
76 * Protects static reg.c components:
77 * - cfg80211_world_regdom
78 * - cfg80211_regdom
79 * - last_request
81 static DEFINE_MUTEX(reg_mutex);
83 static inline void assert_reg_lock(void)
85 lockdep_assert_held(&reg_mutex);
88 /* Used to queue up regulatory hints */
89 static LIST_HEAD(reg_requests_list);
90 static spinlock_t reg_requests_lock;
92 /* Used to queue up beacon hints for review */
93 static LIST_HEAD(reg_pending_beacons);
94 static spinlock_t reg_pending_beacons_lock;
96 /* Used to keep track of processed beacon hints */
97 static LIST_HEAD(reg_beacon_list);
99 struct reg_beacon {
100 struct list_head list;
101 struct ieee80211_channel chan;
104 static void reg_todo(struct work_struct *work);
105 static DECLARE_WORK(reg_work, reg_todo);
107 static void reg_timeout_work(struct work_struct *work);
108 static DECLARE_DELAYED_WORK(reg_timeout, reg_timeout_work);
110 /* We keep a static world regulatory domain in case of the absence of CRDA */
111 static const struct ieee80211_regdomain world_regdom = {
112 .n_reg_rules = 5,
113 .alpha2 = "00",
114 .reg_rules = {
115 /* IEEE 802.11b/g, channels 1..11 */
116 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
117 /* IEEE 802.11b/g, channels 12..13. No HT40
118 * channel fits here. */
119 REG_RULE(2467-10, 2472+10, 20, 6, 20,
120 NL80211_RRF_PASSIVE_SCAN |
121 NL80211_RRF_NO_IBSS),
122 /* IEEE 802.11 channel 14 - Only JP enables
123 * this and for 802.11b only */
124 REG_RULE(2484-10, 2484+10, 20, 6, 20,
125 NL80211_RRF_PASSIVE_SCAN |
126 NL80211_RRF_NO_IBSS |
127 NL80211_RRF_NO_OFDM),
128 /* IEEE 802.11a, channel 36..48 */
129 REG_RULE(5180-10, 5240+10, 40, 6, 20,
130 NL80211_RRF_PASSIVE_SCAN |
131 NL80211_RRF_NO_IBSS),
133 /* NB: 5260 MHz - 5700 MHz requies DFS */
135 /* IEEE 802.11a, channel 149..165 */
136 REG_RULE(5745-10, 5825+10, 40, 6, 20,
137 NL80211_RRF_PASSIVE_SCAN |
138 NL80211_RRF_NO_IBSS),
142 static const struct ieee80211_regdomain *cfg80211_world_regdom =
143 &world_regdom;
145 static char *ieee80211_regdom = "00";
146 static char user_alpha2[2];
148 module_param(ieee80211_regdom, charp, 0444);
149 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
151 static void reset_regdomains(void)
153 /* avoid freeing static information or freeing something twice */
154 if (cfg80211_regdomain == cfg80211_world_regdom)
155 cfg80211_regdomain = NULL;
156 if (cfg80211_world_regdom == &world_regdom)
157 cfg80211_world_regdom = NULL;
158 if (cfg80211_regdomain == &world_regdom)
159 cfg80211_regdomain = NULL;
161 kfree(cfg80211_regdomain);
162 kfree(cfg80211_world_regdom);
164 cfg80211_world_regdom = &world_regdom;
165 cfg80211_regdomain = NULL;
169 * Dynamic world regulatory domain requested by the wireless
170 * core upon initialization
172 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
174 BUG_ON(!last_request);
176 reset_regdomains();
178 cfg80211_world_regdom = rd;
179 cfg80211_regdomain = rd;
182 bool is_world_regdom(const char *alpha2)
184 if (!alpha2)
185 return false;
186 if (alpha2[0] == '0' && alpha2[1] == '0')
187 return true;
188 return false;
191 static bool is_alpha2_set(const char *alpha2)
193 if (!alpha2)
194 return false;
195 if (alpha2[0] != 0 && alpha2[1] != 0)
196 return true;
197 return false;
200 static bool is_unknown_alpha2(const char *alpha2)
202 if (!alpha2)
203 return false;
205 * Special case where regulatory domain was built by driver
206 * but a specific alpha2 cannot be determined
208 if (alpha2[0] == '9' && alpha2[1] == '9')
209 return true;
210 return false;
213 static bool is_intersected_alpha2(const char *alpha2)
215 if (!alpha2)
216 return false;
218 * Special case where regulatory domain is the
219 * result of an intersection between two regulatory domain
220 * structures
222 if (alpha2[0] == '9' && alpha2[1] == '8')
223 return true;
224 return false;
227 static bool is_an_alpha2(const char *alpha2)
229 if (!alpha2)
230 return false;
231 if (isalpha(alpha2[0]) && isalpha(alpha2[1]))
232 return true;
233 return false;
236 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
238 if (!alpha2_x || !alpha2_y)
239 return false;
240 if (alpha2_x[0] == alpha2_y[0] &&
241 alpha2_x[1] == alpha2_y[1])
242 return true;
243 return false;
246 static bool regdom_changes(const char *alpha2)
248 assert_cfg80211_lock();
250 if (!cfg80211_regdomain)
251 return true;
252 if (alpha2_equal(cfg80211_regdomain->alpha2, alpha2))
253 return false;
254 return true;
258 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
259 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
260 * has ever been issued.
262 static bool is_user_regdom_saved(void)
264 if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
265 return false;
267 /* This would indicate a mistake on the design */
268 if (WARN((!is_world_regdom(user_alpha2) &&
269 !is_an_alpha2(user_alpha2)),
270 "Unexpected user alpha2: %c%c\n",
271 user_alpha2[0],
272 user_alpha2[1]))
273 return false;
275 return true;
278 static int reg_copy_regd(const struct ieee80211_regdomain **dst_regd,
279 const struct ieee80211_regdomain *src_regd)
281 struct ieee80211_regdomain *regd;
282 int size_of_regd = 0;
283 unsigned int i;
285 size_of_regd = sizeof(struct ieee80211_regdomain) +
286 ((src_regd->n_reg_rules + 1) * sizeof(struct ieee80211_reg_rule));
288 regd = kzalloc(size_of_regd, GFP_KERNEL);
289 if (!regd)
290 return -ENOMEM;
292 memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
294 for (i = 0; i < src_regd->n_reg_rules; i++)
295 memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
296 sizeof(struct ieee80211_reg_rule));
298 *dst_regd = regd;
299 return 0;
302 #ifdef CONFIG_CFG80211_INTERNAL_REGDB
303 struct reg_regdb_search_request {
304 char alpha2[2];
305 struct list_head list;
308 static LIST_HEAD(reg_regdb_search_list);
309 static DEFINE_MUTEX(reg_regdb_search_mutex);
311 static void reg_regdb_search(struct work_struct *work)
313 struct reg_regdb_search_request *request;
314 const struct ieee80211_regdomain *curdom, *regdom;
315 int i, r;
317 mutex_lock(&reg_regdb_search_mutex);
318 while (!list_empty(&reg_regdb_search_list)) {
319 request = list_first_entry(&reg_regdb_search_list,
320 struct reg_regdb_search_request,
321 list);
322 list_del(&request->list);
324 for (i=0; i<reg_regdb_size; i++) {
325 curdom = reg_regdb[i];
327 if (!memcmp(request->alpha2, curdom->alpha2, 2)) {
328 r = reg_copy_regd(&regdom, curdom);
329 if (r)
330 break;
331 mutex_lock(&cfg80211_mutex);
332 set_regdom(regdom);
333 mutex_unlock(&cfg80211_mutex);
334 break;
338 kfree(request);
340 mutex_unlock(&reg_regdb_search_mutex);
343 static DECLARE_WORK(reg_regdb_work, reg_regdb_search);
345 static void reg_regdb_query(const char *alpha2)
347 struct reg_regdb_search_request *request;
349 if (!alpha2)
350 return;
352 request = kzalloc(sizeof(struct reg_regdb_search_request), GFP_KERNEL);
353 if (!request)
354 return;
356 memcpy(request->alpha2, alpha2, 2);
358 mutex_lock(&reg_regdb_search_mutex);
359 list_add_tail(&request->list, &reg_regdb_search_list);
360 mutex_unlock(&reg_regdb_search_mutex);
362 schedule_work(&reg_regdb_work);
364 #else
365 static inline void reg_regdb_query(const char *alpha2) {}
366 #endif /* CONFIG_CFG80211_INTERNAL_REGDB */
369 * This lets us keep regulatory code which is updated on a regulatory
370 * basis in userspace. Country information is filled in by
371 * reg_device_uevent
373 static int call_crda(const char *alpha2)
375 if (!is_world_regdom((char *) alpha2))
376 pr_info("Calling CRDA for country: %c%c\n",
377 alpha2[0], alpha2[1]);
378 else
379 pr_info("Calling CRDA to update world regulatory domain\n");
381 /* query internal regulatory database (if it exists) */
382 reg_regdb_query(alpha2);
384 return kobject_uevent(&reg_pdev->dev.kobj, KOBJ_CHANGE);
387 /* Used by nl80211 before kmalloc'ing our regulatory domain */
388 bool reg_is_valid_request(const char *alpha2)
390 assert_cfg80211_lock();
392 if (!last_request)
393 return false;
395 return alpha2_equal(last_request->alpha2, alpha2);
398 /* Sanity check on a regulatory rule */
399 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
401 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
402 u32 freq_diff;
404 if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
405 return false;
407 if (freq_range->start_freq_khz > freq_range->end_freq_khz)
408 return false;
410 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
412 if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
413 freq_range->max_bandwidth_khz > freq_diff)
414 return false;
416 return true;
419 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
421 const struct ieee80211_reg_rule *reg_rule = NULL;
422 unsigned int i;
424 if (!rd->n_reg_rules)
425 return false;
427 if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
428 return false;
430 for (i = 0; i < rd->n_reg_rules; i++) {
431 reg_rule = &rd->reg_rules[i];
432 if (!is_valid_reg_rule(reg_rule))
433 return false;
436 return true;
439 static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
440 u32 center_freq_khz,
441 u32 bw_khz)
443 u32 start_freq_khz, end_freq_khz;
445 start_freq_khz = center_freq_khz - (bw_khz/2);
446 end_freq_khz = center_freq_khz + (bw_khz/2);
448 if (start_freq_khz >= freq_range->start_freq_khz &&
449 end_freq_khz <= freq_range->end_freq_khz)
450 return true;
452 return false;
456 * freq_in_rule_band - tells us if a frequency is in a frequency band
457 * @freq_range: frequency rule we want to query
458 * @freq_khz: frequency we are inquiring about
460 * This lets us know if a specific frequency rule is or is not relevant to
461 * a specific frequency's band. Bands are device specific and artificial
462 * definitions (the "2.4 GHz band" and the "5 GHz band"), however it is
463 * safe for now to assume that a frequency rule should not be part of a
464 * frequency's band if the start freq or end freq are off by more than 2 GHz.
465 * This resolution can be lowered and should be considered as we add
466 * regulatory rule support for other "bands".
468 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
469 u32 freq_khz)
471 #define ONE_GHZ_IN_KHZ 1000000
472 if (abs(freq_khz - freq_range->start_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
473 return true;
474 if (abs(freq_khz - freq_range->end_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
475 return true;
476 return false;
477 #undef ONE_GHZ_IN_KHZ
481 * Helper for regdom_intersect(), this does the real
482 * mathematical intersection fun
484 static int reg_rules_intersect(
485 const struct ieee80211_reg_rule *rule1,
486 const struct ieee80211_reg_rule *rule2,
487 struct ieee80211_reg_rule *intersected_rule)
489 const struct ieee80211_freq_range *freq_range1, *freq_range2;
490 struct ieee80211_freq_range *freq_range;
491 const struct ieee80211_power_rule *power_rule1, *power_rule2;
492 struct ieee80211_power_rule *power_rule;
493 u32 freq_diff;
495 freq_range1 = &rule1->freq_range;
496 freq_range2 = &rule2->freq_range;
497 freq_range = &intersected_rule->freq_range;
499 power_rule1 = &rule1->power_rule;
500 power_rule2 = &rule2->power_rule;
501 power_rule = &intersected_rule->power_rule;
503 freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
504 freq_range2->start_freq_khz);
505 freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
506 freq_range2->end_freq_khz);
507 freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz,
508 freq_range2->max_bandwidth_khz);
510 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
511 if (freq_range->max_bandwidth_khz > freq_diff)
512 freq_range->max_bandwidth_khz = freq_diff;
514 power_rule->max_eirp = min(power_rule1->max_eirp,
515 power_rule2->max_eirp);
516 power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
517 power_rule2->max_antenna_gain);
519 intersected_rule->flags = (rule1->flags | rule2->flags);
521 if (!is_valid_reg_rule(intersected_rule))
522 return -EINVAL;
524 return 0;
528 * regdom_intersect - do the intersection between two regulatory domains
529 * @rd1: first regulatory domain
530 * @rd2: second regulatory domain
532 * Use this function to get the intersection between two regulatory domains.
533 * Once completed we will mark the alpha2 for the rd as intersected, "98",
534 * as no one single alpha2 can represent this regulatory domain.
536 * Returns a pointer to the regulatory domain structure which will hold the
537 * resulting intersection of rules between rd1 and rd2. We will
538 * kzalloc() this structure for you.
540 static struct ieee80211_regdomain *regdom_intersect(
541 const struct ieee80211_regdomain *rd1,
542 const struct ieee80211_regdomain *rd2)
544 int r, size_of_regd;
545 unsigned int x, y;
546 unsigned int num_rules = 0, rule_idx = 0;
547 const struct ieee80211_reg_rule *rule1, *rule2;
548 struct ieee80211_reg_rule *intersected_rule;
549 struct ieee80211_regdomain *rd;
550 /* This is just a dummy holder to help us count */
551 struct ieee80211_reg_rule irule;
553 /* Uses the stack temporarily for counter arithmetic */
554 intersected_rule = &irule;
556 memset(intersected_rule, 0, sizeof(struct ieee80211_reg_rule));
558 if (!rd1 || !rd2)
559 return NULL;
562 * First we get a count of the rules we'll need, then we actually
563 * build them. This is to so we can malloc() and free() a
564 * regdomain once. The reason we use reg_rules_intersect() here
565 * is it will return -EINVAL if the rule computed makes no sense.
566 * All rules that do check out OK are valid.
569 for (x = 0; x < rd1->n_reg_rules; x++) {
570 rule1 = &rd1->reg_rules[x];
571 for (y = 0; y < rd2->n_reg_rules; y++) {
572 rule2 = &rd2->reg_rules[y];
573 if (!reg_rules_intersect(rule1, rule2,
574 intersected_rule))
575 num_rules++;
576 memset(intersected_rule, 0,
577 sizeof(struct ieee80211_reg_rule));
581 if (!num_rules)
582 return NULL;
584 size_of_regd = sizeof(struct ieee80211_regdomain) +
585 ((num_rules + 1) * sizeof(struct ieee80211_reg_rule));
587 rd = kzalloc(size_of_regd, GFP_KERNEL);
588 if (!rd)
589 return NULL;
591 for (x = 0; x < rd1->n_reg_rules; x++) {
592 rule1 = &rd1->reg_rules[x];
593 for (y = 0; y < rd2->n_reg_rules; y++) {
594 rule2 = &rd2->reg_rules[y];
596 * This time around instead of using the stack lets
597 * write to the target rule directly saving ourselves
598 * a memcpy()
600 intersected_rule = &rd->reg_rules[rule_idx];
601 r = reg_rules_intersect(rule1, rule2,
602 intersected_rule);
604 * No need to memset here the intersected rule here as
605 * we're not using the stack anymore
607 if (r)
608 continue;
609 rule_idx++;
613 if (rule_idx != num_rules) {
614 kfree(rd);
615 return NULL;
618 rd->n_reg_rules = num_rules;
619 rd->alpha2[0] = '9';
620 rd->alpha2[1] = '8';
622 return rd;
626 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
627 * want to just have the channel structure use these
629 static u32 map_regdom_flags(u32 rd_flags)
631 u32 channel_flags = 0;
632 if (rd_flags & NL80211_RRF_PASSIVE_SCAN)
633 channel_flags |= IEEE80211_CHAN_PASSIVE_SCAN;
634 if (rd_flags & NL80211_RRF_NO_IBSS)
635 channel_flags |= IEEE80211_CHAN_NO_IBSS;
636 if (rd_flags & NL80211_RRF_DFS)
637 channel_flags |= IEEE80211_CHAN_RADAR;
638 return channel_flags;
641 static int freq_reg_info_regd(struct wiphy *wiphy,
642 u32 center_freq,
643 u32 desired_bw_khz,
644 const struct ieee80211_reg_rule **reg_rule,
645 const struct ieee80211_regdomain *custom_regd)
647 int i;
648 bool band_rule_found = false;
649 const struct ieee80211_regdomain *regd;
650 bool bw_fits = false;
652 if (!desired_bw_khz)
653 desired_bw_khz = MHZ_TO_KHZ(20);
655 regd = custom_regd ? custom_regd : cfg80211_regdomain;
658 * Follow the driver's regulatory domain, if present, unless a country
659 * IE has been processed or a user wants to help complaince further
661 if (!custom_regd &&
662 last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
663 last_request->initiator != NL80211_REGDOM_SET_BY_USER &&
664 wiphy->regd)
665 regd = wiphy->regd;
667 if (!regd)
668 return -EINVAL;
670 for (i = 0; i < regd->n_reg_rules; i++) {
671 const struct ieee80211_reg_rule *rr;
672 const struct ieee80211_freq_range *fr = NULL;
674 rr = &regd->reg_rules[i];
675 fr = &rr->freq_range;
678 * We only need to know if one frequency rule was
679 * was in center_freq's band, that's enough, so lets
680 * not overwrite it once found
682 if (!band_rule_found)
683 band_rule_found = freq_in_rule_band(fr, center_freq);
685 bw_fits = reg_does_bw_fit(fr,
686 center_freq,
687 desired_bw_khz);
689 if (band_rule_found && bw_fits) {
690 *reg_rule = rr;
691 return 0;
695 if (!band_rule_found)
696 return -ERANGE;
698 return -EINVAL;
701 int freq_reg_info(struct wiphy *wiphy,
702 u32 center_freq,
703 u32 desired_bw_khz,
704 const struct ieee80211_reg_rule **reg_rule)
706 assert_cfg80211_lock();
707 return freq_reg_info_regd(wiphy,
708 center_freq,
709 desired_bw_khz,
710 reg_rule,
711 NULL);
713 EXPORT_SYMBOL(freq_reg_info);
715 #ifdef CONFIG_CFG80211_REG_DEBUG
716 static const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
718 switch (initiator) {
719 case NL80211_REGDOM_SET_BY_CORE:
720 return "Set by core";
721 case NL80211_REGDOM_SET_BY_USER:
722 return "Set by user";
723 case NL80211_REGDOM_SET_BY_DRIVER:
724 return "Set by driver";
725 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
726 return "Set by country IE";
727 default:
728 WARN_ON(1);
729 return "Set by bug";
733 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
734 u32 desired_bw_khz,
735 const struct ieee80211_reg_rule *reg_rule)
737 const struct ieee80211_power_rule *power_rule;
738 const struct ieee80211_freq_range *freq_range;
739 char max_antenna_gain[32];
741 power_rule = &reg_rule->power_rule;
742 freq_range = &reg_rule->freq_range;
744 if (!power_rule->max_antenna_gain)
745 snprintf(max_antenna_gain, 32, "N/A");
746 else
747 snprintf(max_antenna_gain, 32, "%d", power_rule->max_antenna_gain);
749 REG_DBG_PRINT("Updating information on frequency %d MHz "
750 "for a %d MHz width channel with regulatory rule:\n",
751 chan->center_freq,
752 KHZ_TO_MHZ(desired_bw_khz));
754 REG_DBG_PRINT("%d KHz - %d KHz @ %d KHz), (%s mBi, %d mBm)\n",
755 freq_range->start_freq_khz,
756 freq_range->end_freq_khz,
757 freq_range->max_bandwidth_khz,
758 max_antenna_gain,
759 power_rule->max_eirp);
761 #else
762 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
763 u32 desired_bw_khz,
764 const struct ieee80211_reg_rule *reg_rule)
766 return;
768 #endif
771 * Note that right now we assume the desired channel bandwidth
772 * is always 20 MHz for each individual channel (HT40 uses 20 MHz
773 * per channel, the primary and the extension channel). To support
774 * smaller custom bandwidths such as 5 MHz or 10 MHz we'll need a
775 * new ieee80211_channel.target_bw and re run the regulatory check
776 * on the wiphy with the target_bw specified. Then we can simply use
777 * that below for the desired_bw_khz below.
779 static void handle_channel(struct wiphy *wiphy,
780 enum nl80211_reg_initiator initiator,
781 enum ieee80211_band band,
782 unsigned int chan_idx)
784 int r;
785 u32 flags, bw_flags = 0;
786 u32 desired_bw_khz = MHZ_TO_KHZ(20);
787 const struct ieee80211_reg_rule *reg_rule = NULL;
788 const struct ieee80211_power_rule *power_rule = NULL;
789 const struct ieee80211_freq_range *freq_range = NULL;
790 struct ieee80211_supported_band *sband;
791 struct ieee80211_channel *chan;
792 struct wiphy *request_wiphy = NULL;
794 assert_cfg80211_lock();
796 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
798 sband = wiphy->bands[band];
799 BUG_ON(chan_idx >= sband->n_channels);
800 chan = &sband->channels[chan_idx];
802 flags = chan->orig_flags;
804 r = freq_reg_info(wiphy,
805 MHZ_TO_KHZ(chan->center_freq),
806 desired_bw_khz,
807 &reg_rule);
809 if (r) {
811 * We will disable all channels that do not match our
812 * received regulatory rule unless the hint is coming
813 * from a Country IE and the Country IE had no information
814 * about a band. The IEEE 802.11 spec allows for an AP
815 * to send only a subset of the regulatory rules allowed,
816 * so an AP in the US that only supports 2.4 GHz may only send
817 * a country IE with information for the 2.4 GHz band
818 * while 5 GHz is still supported.
820 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
821 r == -ERANGE)
822 return;
824 REG_DBG_PRINT("Disabling freq %d MHz\n", chan->center_freq);
825 chan->flags = IEEE80211_CHAN_DISABLED;
826 return;
829 chan_reg_rule_print_dbg(chan, desired_bw_khz, reg_rule);
831 power_rule = &reg_rule->power_rule;
832 freq_range = &reg_rule->freq_range;
834 if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
835 bw_flags = IEEE80211_CHAN_NO_HT40;
837 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
838 request_wiphy && request_wiphy == wiphy &&
839 request_wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
841 * This guarantees the driver's requested regulatory domain
842 * will always be used as a base for further regulatory
843 * settings
845 chan->flags = chan->orig_flags =
846 map_regdom_flags(reg_rule->flags) | bw_flags;
847 chan->max_antenna_gain = chan->orig_mag =
848 (int) MBI_TO_DBI(power_rule->max_antenna_gain);
849 chan->max_power = chan->orig_mpwr =
850 (int) MBM_TO_DBM(power_rule->max_eirp);
851 return;
854 chan->beacon_found = false;
855 chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
856 chan->max_antenna_gain = min(chan->orig_mag,
857 (int) MBI_TO_DBI(power_rule->max_antenna_gain));
858 if (chan->orig_mpwr)
859 chan->max_power = min(chan->orig_mpwr,
860 (int) MBM_TO_DBM(power_rule->max_eirp));
861 else
862 chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
865 static void handle_band(struct wiphy *wiphy,
866 enum ieee80211_band band,
867 enum nl80211_reg_initiator initiator)
869 unsigned int i;
870 struct ieee80211_supported_band *sband;
872 BUG_ON(!wiphy->bands[band]);
873 sband = wiphy->bands[band];
875 for (i = 0; i < sband->n_channels; i++)
876 handle_channel(wiphy, initiator, band, i);
879 static bool ignore_reg_update(struct wiphy *wiphy,
880 enum nl80211_reg_initiator initiator)
882 if (!last_request) {
883 REG_DBG_PRINT("Ignoring regulatory request %s since "
884 "last_request is not set\n",
885 reg_initiator_name(initiator));
886 return true;
889 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
890 wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY) {
891 REG_DBG_PRINT("Ignoring regulatory request %s "
892 "since the driver uses its own custom "
893 "regulatory domain\n",
894 reg_initiator_name(initiator));
895 return true;
899 * wiphy->regd will be set once the device has its own
900 * desired regulatory domain set
902 if (wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY && !wiphy->regd &&
903 initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
904 !is_world_regdom(last_request->alpha2)) {
905 REG_DBG_PRINT("Ignoring regulatory request %s "
906 "since the driver requires its own regulatory "
907 "domain to be set first\n",
908 reg_initiator_name(initiator));
909 return true;
912 return false;
915 static void handle_reg_beacon(struct wiphy *wiphy,
916 unsigned int chan_idx,
917 struct reg_beacon *reg_beacon)
919 struct ieee80211_supported_band *sband;
920 struct ieee80211_channel *chan;
921 bool channel_changed = false;
922 struct ieee80211_channel chan_before;
924 assert_cfg80211_lock();
926 sband = wiphy->bands[reg_beacon->chan.band];
927 chan = &sband->channels[chan_idx];
929 if (likely(chan->center_freq != reg_beacon->chan.center_freq))
930 return;
932 if (chan->beacon_found)
933 return;
935 chan->beacon_found = true;
937 if (wiphy->flags & WIPHY_FLAG_DISABLE_BEACON_HINTS)
938 return;
940 chan_before.center_freq = chan->center_freq;
941 chan_before.flags = chan->flags;
943 if (chan->flags & IEEE80211_CHAN_PASSIVE_SCAN) {
944 chan->flags &= ~IEEE80211_CHAN_PASSIVE_SCAN;
945 channel_changed = true;
948 if (chan->flags & IEEE80211_CHAN_NO_IBSS) {
949 chan->flags &= ~IEEE80211_CHAN_NO_IBSS;
950 channel_changed = true;
953 if (channel_changed)
954 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
958 * Called when a scan on a wiphy finds a beacon on
959 * new channel
961 static void wiphy_update_new_beacon(struct wiphy *wiphy,
962 struct reg_beacon *reg_beacon)
964 unsigned int i;
965 struct ieee80211_supported_band *sband;
967 assert_cfg80211_lock();
969 if (!wiphy->bands[reg_beacon->chan.band])
970 return;
972 sband = wiphy->bands[reg_beacon->chan.band];
974 for (i = 0; i < sband->n_channels; i++)
975 handle_reg_beacon(wiphy, i, reg_beacon);
979 * Called upon reg changes or a new wiphy is added
981 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
983 unsigned int i;
984 struct ieee80211_supported_band *sband;
985 struct reg_beacon *reg_beacon;
987 assert_cfg80211_lock();
989 if (list_empty(&reg_beacon_list))
990 return;
992 list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
993 if (!wiphy->bands[reg_beacon->chan.band])
994 continue;
995 sband = wiphy->bands[reg_beacon->chan.band];
996 for (i = 0; i < sband->n_channels; i++)
997 handle_reg_beacon(wiphy, i, reg_beacon);
1001 static bool reg_is_world_roaming(struct wiphy *wiphy)
1003 if (is_world_regdom(cfg80211_regdomain->alpha2) ||
1004 (wiphy->regd && is_world_regdom(wiphy->regd->alpha2)))
1005 return true;
1006 if (last_request &&
1007 last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1008 wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY)
1009 return true;
1010 return false;
1013 /* Reap the advantages of previously found beacons */
1014 static void reg_process_beacons(struct wiphy *wiphy)
1017 * Means we are just firing up cfg80211, so no beacons would
1018 * have been processed yet.
1020 if (!last_request)
1021 return;
1022 if (!reg_is_world_roaming(wiphy))
1023 return;
1024 wiphy_update_beacon_reg(wiphy);
1027 static bool is_ht40_not_allowed(struct ieee80211_channel *chan)
1029 if (!chan)
1030 return true;
1031 if (chan->flags & IEEE80211_CHAN_DISABLED)
1032 return true;
1033 /* This would happen when regulatory rules disallow HT40 completely */
1034 if (IEEE80211_CHAN_NO_HT40 == (chan->flags & (IEEE80211_CHAN_NO_HT40)))
1035 return true;
1036 return false;
1039 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
1040 enum ieee80211_band band,
1041 unsigned int chan_idx)
1043 struct ieee80211_supported_band *sband;
1044 struct ieee80211_channel *channel;
1045 struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
1046 unsigned int i;
1048 assert_cfg80211_lock();
1050 sband = wiphy->bands[band];
1051 BUG_ON(chan_idx >= sband->n_channels);
1052 channel = &sband->channels[chan_idx];
1054 if (is_ht40_not_allowed(channel)) {
1055 channel->flags |= IEEE80211_CHAN_NO_HT40;
1056 return;
1060 * We need to ensure the extension channels exist to
1061 * be able to use HT40- or HT40+, this finds them (or not)
1063 for (i = 0; i < sband->n_channels; i++) {
1064 struct ieee80211_channel *c = &sband->channels[i];
1065 if (c->center_freq == (channel->center_freq - 20))
1066 channel_before = c;
1067 if (c->center_freq == (channel->center_freq + 20))
1068 channel_after = c;
1072 * Please note that this assumes target bandwidth is 20 MHz,
1073 * if that ever changes we also need to change the below logic
1074 * to include that as well.
1076 if (is_ht40_not_allowed(channel_before))
1077 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1078 else
1079 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1081 if (is_ht40_not_allowed(channel_after))
1082 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1083 else
1084 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1087 static void reg_process_ht_flags_band(struct wiphy *wiphy,
1088 enum ieee80211_band band)
1090 unsigned int i;
1091 struct ieee80211_supported_band *sband;
1093 BUG_ON(!wiphy->bands[band]);
1094 sband = wiphy->bands[band];
1096 for (i = 0; i < sband->n_channels; i++)
1097 reg_process_ht_flags_channel(wiphy, band, i);
1100 static void reg_process_ht_flags(struct wiphy *wiphy)
1102 enum ieee80211_band band;
1104 if (!wiphy)
1105 return;
1107 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1108 if (wiphy->bands[band])
1109 reg_process_ht_flags_band(wiphy, band);
1114 static void wiphy_update_regulatory(struct wiphy *wiphy,
1115 enum nl80211_reg_initiator initiator)
1117 enum ieee80211_band band;
1119 assert_reg_lock();
1121 if (ignore_reg_update(wiphy, initiator))
1122 return;
1124 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1125 if (wiphy->bands[band])
1126 handle_band(wiphy, band, initiator);
1129 reg_process_beacons(wiphy);
1130 reg_process_ht_flags(wiphy);
1131 if (wiphy->reg_notifier)
1132 wiphy->reg_notifier(wiphy, last_request);
1135 void regulatory_update(struct wiphy *wiphy,
1136 enum nl80211_reg_initiator setby)
1138 mutex_lock(&reg_mutex);
1139 wiphy_update_regulatory(wiphy, setby);
1140 mutex_unlock(&reg_mutex);
1143 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
1145 struct cfg80211_registered_device *rdev;
1147 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1148 wiphy_update_regulatory(&rdev->wiphy, initiator);
1151 static void handle_channel_custom(struct wiphy *wiphy,
1152 enum ieee80211_band band,
1153 unsigned int chan_idx,
1154 const struct ieee80211_regdomain *regd)
1156 int r;
1157 u32 desired_bw_khz = MHZ_TO_KHZ(20);
1158 u32 bw_flags = 0;
1159 const struct ieee80211_reg_rule *reg_rule = NULL;
1160 const struct ieee80211_power_rule *power_rule = NULL;
1161 const struct ieee80211_freq_range *freq_range = NULL;
1162 struct ieee80211_supported_band *sband;
1163 struct ieee80211_channel *chan;
1165 assert_reg_lock();
1167 sband = wiphy->bands[band];
1168 BUG_ON(chan_idx >= sband->n_channels);
1169 chan = &sband->channels[chan_idx];
1171 r = freq_reg_info_regd(wiphy,
1172 MHZ_TO_KHZ(chan->center_freq),
1173 desired_bw_khz,
1174 &reg_rule,
1175 regd);
1177 if (r) {
1178 REG_DBG_PRINT("Disabling freq %d MHz as custom "
1179 "regd has no rule that fits a %d MHz "
1180 "wide channel\n",
1181 chan->center_freq,
1182 KHZ_TO_MHZ(desired_bw_khz));
1183 chan->flags = IEEE80211_CHAN_DISABLED;
1184 return;
1187 chan_reg_rule_print_dbg(chan, desired_bw_khz, reg_rule);
1189 power_rule = &reg_rule->power_rule;
1190 freq_range = &reg_rule->freq_range;
1192 if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
1193 bw_flags = IEEE80211_CHAN_NO_HT40;
1195 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1196 chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1197 chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1200 static void handle_band_custom(struct wiphy *wiphy, enum ieee80211_band band,
1201 const struct ieee80211_regdomain *regd)
1203 unsigned int i;
1204 struct ieee80211_supported_band *sband;
1206 BUG_ON(!wiphy->bands[band]);
1207 sband = wiphy->bands[band];
1209 for (i = 0; i < sband->n_channels; i++)
1210 handle_channel_custom(wiphy, band, i, regd);
1213 /* Used by drivers prior to wiphy registration */
1214 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
1215 const struct ieee80211_regdomain *regd)
1217 enum ieee80211_band band;
1218 unsigned int bands_set = 0;
1220 mutex_lock(&reg_mutex);
1221 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1222 if (!wiphy->bands[band])
1223 continue;
1224 handle_band_custom(wiphy, band, regd);
1225 bands_set++;
1227 mutex_unlock(&reg_mutex);
1230 * no point in calling this if it won't have any effect
1231 * on your device's supportd bands.
1233 WARN_ON(!bands_set);
1235 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
1238 * Return value which can be used by ignore_request() to indicate
1239 * it has been determined we should intersect two regulatory domains
1241 #define REG_INTERSECT 1
1243 /* This has the logic which determines when a new request
1244 * should be ignored. */
1245 static int ignore_request(struct wiphy *wiphy,
1246 struct regulatory_request *pending_request)
1248 struct wiphy *last_wiphy = NULL;
1250 assert_cfg80211_lock();
1252 /* All initial requests are respected */
1253 if (!last_request)
1254 return 0;
1256 switch (pending_request->initiator) {
1257 case NL80211_REGDOM_SET_BY_CORE:
1258 return 0;
1259 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1261 last_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
1263 if (unlikely(!is_an_alpha2(pending_request->alpha2)))
1264 return -EINVAL;
1265 if (last_request->initiator ==
1266 NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1267 if (last_wiphy != wiphy) {
1269 * Two cards with two APs claiming different
1270 * Country IE alpha2s. We could
1271 * intersect them, but that seems unlikely
1272 * to be correct. Reject second one for now.
1274 if (regdom_changes(pending_request->alpha2))
1275 return -EOPNOTSUPP;
1276 return -EALREADY;
1279 * Two consecutive Country IE hints on the same wiphy.
1280 * This should be picked up early by the driver/stack
1282 if (WARN_ON(regdom_changes(pending_request->alpha2)))
1283 return 0;
1284 return -EALREADY;
1286 return 0;
1287 case NL80211_REGDOM_SET_BY_DRIVER:
1288 if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE) {
1289 if (regdom_changes(pending_request->alpha2))
1290 return 0;
1291 return -EALREADY;
1295 * This would happen if you unplug and plug your card
1296 * back in or if you add a new device for which the previously
1297 * loaded card also agrees on the regulatory domain.
1299 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1300 !regdom_changes(pending_request->alpha2))
1301 return -EALREADY;
1303 return REG_INTERSECT;
1304 case NL80211_REGDOM_SET_BY_USER:
1305 if (last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1306 return REG_INTERSECT;
1308 * If the user knows better the user should set the regdom
1309 * to their country before the IE is picked up
1311 if (last_request->initiator == NL80211_REGDOM_SET_BY_USER &&
1312 last_request->intersect)
1313 return -EOPNOTSUPP;
1315 * Process user requests only after previous user/driver/core
1316 * requests have been processed
1318 if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE ||
1319 last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
1320 last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1321 if (regdom_changes(last_request->alpha2))
1322 return -EAGAIN;
1325 if (!regdom_changes(pending_request->alpha2))
1326 return -EALREADY;
1328 return 0;
1331 return -EINVAL;
1334 static void reg_set_request_processed(void)
1336 bool need_more_processing = false;
1338 last_request->processed = true;
1340 spin_lock(&reg_requests_lock);
1341 if (!list_empty(&reg_requests_list))
1342 need_more_processing = true;
1343 spin_unlock(&reg_requests_lock);
1345 if (last_request->initiator == NL80211_REGDOM_SET_BY_USER)
1346 cancel_delayed_work_sync(&reg_timeout);
1348 if (need_more_processing)
1349 schedule_work(&reg_work);
1353 * __regulatory_hint - hint to the wireless core a regulatory domain
1354 * @wiphy: if the hint comes from country information from an AP, this
1355 * is required to be set to the wiphy that received the information
1356 * @pending_request: the regulatory request currently being processed
1358 * The Wireless subsystem can use this function to hint to the wireless core
1359 * what it believes should be the current regulatory domain.
1361 * Returns zero if all went fine, %-EALREADY if a regulatory domain had
1362 * already been set or other standard error codes.
1364 * Caller must hold &cfg80211_mutex and &reg_mutex
1366 static int __regulatory_hint(struct wiphy *wiphy,
1367 struct regulatory_request *pending_request)
1369 bool intersect = false;
1370 int r = 0;
1372 assert_cfg80211_lock();
1374 r = ignore_request(wiphy, pending_request);
1376 if (r == REG_INTERSECT) {
1377 if (pending_request->initiator ==
1378 NL80211_REGDOM_SET_BY_DRIVER) {
1379 r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1380 if (r) {
1381 kfree(pending_request);
1382 return r;
1385 intersect = true;
1386 } else if (r) {
1388 * If the regulatory domain being requested by the
1389 * driver has already been set just copy it to the
1390 * wiphy
1392 if (r == -EALREADY &&
1393 pending_request->initiator ==
1394 NL80211_REGDOM_SET_BY_DRIVER) {
1395 r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1396 if (r) {
1397 kfree(pending_request);
1398 return r;
1400 r = -EALREADY;
1401 goto new_request;
1403 kfree(pending_request);
1404 return r;
1407 new_request:
1408 kfree(last_request);
1410 last_request = pending_request;
1411 last_request->intersect = intersect;
1413 pending_request = NULL;
1415 if (last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1416 user_alpha2[0] = last_request->alpha2[0];
1417 user_alpha2[1] = last_request->alpha2[1];
1420 /* When r == REG_INTERSECT we do need to call CRDA */
1421 if (r < 0) {
1423 * Since CRDA will not be called in this case as we already
1424 * have applied the requested regulatory domain before we just
1425 * inform userspace we have processed the request
1427 if (r == -EALREADY) {
1428 nl80211_send_reg_change_event(last_request);
1429 reg_set_request_processed();
1431 return r;
1434 return call_crda(last_request->alpha2);
1437 /* This processes *all* regulatory hints */
1438 static void reg_process_hint(struct regulatory_request *reg_request)
1440 int r = 0;
1441 struct wiphy *wiphy = NULL;
1442 enum nl80211_reg_initiator initiator = reg_request->initiator;
1444 BUG_ON(!reg_request->alpha2);
1446 if (wiphy_idx_valid(reg_request->wiphy_idx))
1447 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
1449 if (reg_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1450 !wiphy) {
1451 kfree(reg_request);
1452 return;
1455 r = __regulatory_hint(wiphy, reg_request);
1456 /* This is required so that the orig_* parameters are saved */
1457 if (r == -EALREADY && wiphy &&
1458 wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
1459 wiphy_update_regulatory(wiphy, initiator);
1460 return;
1464 * We only time out user hints, given that they should be the only
1465 * source of bogus requests.
1467 if (r != -EALREADY &&
1468 reg_request->initiator == NL80211_REGDOM_SET_BY_USER)
1469 schedule_delayed_work(&reg_timeout, msecs_to_jiffies(3142));
1473 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
1474 * Regulatory hints come on a first come first serve basis and we
1475 * must process each one atomically.
1477 static void reg_process_pending_hints(void)
1479 struct regulatory_request *reg_request;
1481 mutex_lock(&cfg80211_mutex);
1482 mutex_lock(&reg_mutex);
1484 /* When last_request->processed becomes true this will be rescheduled */
1485 if (last_request && !last_request->processed) {
1486 REG_DBG_PRINT("Pending regulatory request, waiting "
1487 "for it to be processed...\n");
1488 goto out;
1491 spin_lock(&reg_requests_lock);
1493 if (list_empty(&reg_requests_list)) {
1494 spin_unlock(&reg_requests_lock);
1495 goto out;
1498 reg_request = list_first_entry(&reg_requests_list,
1499 struct regulatory_request,
1500 list);
1501 list_del_init(&reg_request->list);
1503 spin_unlock(&reg_requests_lock);
1505 reg_process_hint(reg_request);
1507 out:
1508 mutex_unlock(&reg_mutex);
1509 mutex_unlock(&cfg80211_mutex);
1512 /* Processes beacon hints -- this has nothing to do with country IEs */
1513 static void reg_process_pending_beacon_hints(void)
1515 struct cfg80211_registered_device *rdev;
1516 struct reg_beacon *pending_beacon, *tmp;
1519 * No need to hold the reg_mutex here as we just touch wiphys
1520 * and do not read or access regulatory variables.
1522 mutex_lock(&cfg80211_mutex);
1524 /* This goes through the _pending_ beacon list */
1525 spin_lock_bh(&reg_pending_beacons_lock);
1527 if (list_empty(&reg_pending_beacons)) {
1528 spin_unlock_bh(&reg_pending_beacons_lock);
1529 goto out;
1532 list_for_each_entry_safe(pending_beacon, tmp,
1533 &reg_pending_beacons, list) {
1535 list_del_init(&pending_beacon->list);
1537 /* Applies the beacon hint to current wiphys */
1538 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1539 wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
1541 /* Remembers the beacon hint for new wiphys or reg changes */
1542 list_add_tail(&pending_beacon->list, &reg_beacon_list);
1545 spin_unlock_bh(&reg_pending_beacons_lock);
1546 out:
1547 mutex_unlock(&cfg80211_mutex);
1550 static void reg_todo(struct work_struct *work)
1552 reg_process_pending_hints();
1553 reg_process_pending_beacon_hints();
1556 static void queue_regulatory_request(struct regulatory_request *request)
1558 if (isalpha(request->alpha2[0]))
1559 request->alpha2[0] = toupper(request->alpha2[0]);
1560 if (isalpha(request->alpha2[1]))
1561 request->alpha2[1] = toupper(request->alpha2[1]);
1563 spin_lock(&reg_requests_lock);
1564 list_add_tail(&request->list, &reg_requests_list);
1565 spin_unlock(&reg_requests_lock);
1567 schedule_work(&reg_work);
1571 * Core regulatory hint -- happens during cfg80211_init()
1572 * and when we restore regulatory settings.
1574 static int regulatory_hint_core(const char *alpha2)
1576 struct regulatory_request *request;
1578 kfree(last_request);
1579 last_request = NULL;
1581 request = kzalloc(sizeof(struct regulatory_request),
1582 GFP_KERNEL);
1583 if (!request)
1584 return -ENOMEM;
1586 request->alpha2[0] = alpha2[0];
1587 request->alpha2[1] = alpha2[1];
1588 request->initiator = NL80211_REGDOM_SET_BY_CORE;
1590 queue_regulatory_request(request);
1592 return 0;
1595 /* User hints */
1596 int regulatory_hint_user(const char *alpha2)
1598 struct regulatory_request *request;
1600 BUG_ON(!alpha2);
1602 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1603 if (!request)
1604 return -ENOMEM;
1606 request->wiphy_idx = WIPHY_IDX_STALE;
1607 request->alpha2[0] = alpha2[0];
1608 request->alpha2[1] = alpha2[1];
1609 request->initiator = NL80211_REGDOM_SET_BY_USER;
1611 queue_regulatory_request(request);
1613 return 0;
1616 /* Driver hints */
1617 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
1619 struct regulatory_request *request;
1621 BUG_ON(!alpha2);
1622 BUG_ON(!wiphy);
1624 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1625 if (!request)
1626 return -ENOMEM;
1628 request->wiphy_idx = get_wiphy_idx(wiphy);
1630 /* Must have registered wiphy first */
1631 BUG_ON(!wiphy_idx_valid(request->wiphy_idx));
1633 request->alpha2[0] = alpha2[0];
1634 request->alpha2[1] = alpha2[1];
1635 request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
1637 queue_regulatory_request(request);
1639 return 0;
1641 EXPORT_SYMBOL(regulatory_hint);
1644 * We hold wdev_lock() here so we cannot hold cfg80211_mutex() and
1645 * therefore cannot iterate over the rdev list here.
1647 void regulatory_hint_11d(struct wiphy *wiphy,
1648 enum ieee80211_band band,
1649 u8 *country_ie,
1650 u8 country_ie_len)
1652 char alpha2[2];
1653 enum environment_cap env = ENVIRON_ANY;
1654 struct regulatory_request *request;
1656 mutex_lock(&reg_mutex);
1658 if (unlikely(!last_request))
1659 goto out;
1661 /* IE len must be evenly divisible by 2 */
1662 if (country_ie_len & 0x01)
1663 goto out;
1665 if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
1666 goto out;
1668 alpha2[0] = country_ie[0];
1669 alpha2[1] = country_ie[1];
1671 if (country_ie[2] == 'I')
1672 env = ENVIRON_INDOOR;
1673 else if (country_ie[2] == 'O')
1674 env = ENVIRON_OUTDOOR;
1677 * We will run this only upon a successful connection on cfg80211.
1678 * We leave conflict resolution to the workqueue, where can hold
1679 * cfg80211_mutex.
1681 if (likely(last_request->initiator ==
1682 NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1683 wiphy_idx_valid(last_request->wiphy_idx)))
1684 goto out;
1686 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1687 if (!request)
1688 goto out;
1690 request->wiphy_idx = get_wiphy_idx(wiphy);
1691 request->alpha2[0] = alpha2[0];
1692 request->alpha2[1] = alpha2[1];
1693 request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
1694 request->country_ie_env = env;
1696 mutex_unlock(&reg_mutex);
1698 queue_regulatory_request(request);
1700 return;
1702 out:
1703 mutex_unlock(&reg_mutex);
1706 static void restore_alpha2(char *alpha2, bool reset_user)
1708 /* indicates there is no alpha2 to consider for restoration */
1709 alpha2[0] = '9';
1710 alpha2[1] = '7';
1712 /* The user setting has precedence over the module parameter */
1713 if (is_user_regdom_saved()) {
1714 /* Unless we're asked to ignore it and reset it */
1715 if (reset_user) {
1716 REG_DBG_PRINT("Restoring regulatory settings "
1717 "including user preference\n");
1718 user_alpha2[0] = '9';
1719 user_alpha2[1] = '7';
1722 * If we're ignoring user settings, we still need to
1723 * check the module parameter to ensure we put things
1724 * back as they were for a full restore.
1726 if (!is_world_regdom(ieee80211_regdom)) {
1727 REG_DBG_PRINT("Keeping preference on "
1728 "module parameter ieee80211_regdom: %c%c\n",
1729 ieee80211_regdom[0],
1730 ieee80211_regdom[1]);
1731 alpha2[0] = ieee80211_regdom[0];
1732 alpha2[1] = ieee80211_regdom[1];
1734 } else {
1735 REG_DBG_PRINT("Restoring regulatory settings "
1736 "while preserving user preference for: %c%c\n",
1737 user_alpha2[0],
1738 user_alpha2[1]);
1739 alpha2[0] = user_alpha2[0];
1740 alpha2[1] = user_alpha2[1];
1742 } else if (!is_world_regdom(ieee80211_regdom)) {
1743 REG_DBG_PRINT("Keeping preference on "
1744 "module parameter ieee80211_regdom: %c%c\n",
1745 ieee80211_regdom[0],
1746 ieee80211_regdom[1]);
1747 alpha2[0] = ieee80211_regdom[0];
1748 alpha2[1] = ieee80211_regdom[1];
1749 } else
1750 REG_DBG_PRINT("Restoring regulatory settings\n");
1754 * Restoring regulatory settings involves ingoring any
1755 * possibly stale country IE information and user regulatory
1756 * settings if so desired, this includes any beacon hints
1757 * learned as we could have traveled outside to another country
1758 * after disconnection. To restore regulatory settings we do
1759 * exactly what we did at bootup:
1761 * - send a core regulatory hint
1762 * - send a user regulatory hint if applicable
1764 * Device drivers that send a regulatory hint for a specific country
1765 * keep their own regulatory domain on wiphy->regd so that does does
1766 * not need to be remembered.
1768 static void restore_regulatory_settings(bool reset_user)
1770 char alpha2[2];
1771 struct reg_beacon *reg_beacon, *btmp;
1772 struct regulatory_request *reg_request, *tmp;
1773 LIST_HEAD(tmp_reg_req_list);
1775 mutex_lock(&cfg80211_mutex);
1776 mutex_lock(&reg_mutex);
1778 reset_regdomains();
1779 restore_alpha2(alpha2, reset_user);
1782 * If there's any pending requests we simply
1783 * stash them to a temporary pending queue and
1784 * add then after we've restored regulatory
1785 * settings.
1787 spin_lock(&reg_requests_lock);
1788 if (!list_empty(&reg_requests_list)) {
1789 list_for_each_entry_safe(reg_request, tmp,
1790 &reg_requests_list, list) {
1791 if (reg_request->initiator !=
1792 NL80211_REGDOM_SET_BY_USER)
1793 continue;
1794 list_del(&reg_request->list);
1795 list_add_tail(&reg_request->list, &tmp_reg_req_list);
1798 spin_unlock(&reg_requests_lock);
1800 /* Clear beacon hints */
1801 spin_lock_bh(&reg_pending_beacons_lock);
1802 if (!list_empty(&reg_pending_beacons)) {
1803 list_for_each_entry_safe(reg_beacon, btmp,
1804 &reg_pending_beacons, list) {
1805 list_del(&reg_beacon->list);
1806 kfree(reg_beacon);
1809 spin_unlock_bh(&reg_pending_beacons_lock);
1811 if (!list_empty(&reg_beacon_list)) {
1812 list_for_each_entry_safe(reg_beacon, btmp,
1813 &reg_beacon_list, list) {
1814 list_del(&reg_beacon->list);
1815 kfree(reg_beacon);
1819 /* First restore to the basic regulatory settings */
1820 cfg80211_regdomain = cfg80211_world_regdom;
1822 mutex_unlock(&reg_mutex);
1823 mutex_unlock(&cfg80211_mutex);
1825 regulatory_hint_core(cfg80211_regdomain->alpha2);
1828 * This restores the ieee80211_regdom module parameter
1829 * preference or the last user requested regulatory
1830 * settings, user regulatory settings takes precedence.
1832 if (is_an_alpha2(alpha2))
1833 regulatory_hint_user(user_alpha2);
1835 if (list_empty(&tmp_reg_req_list))
1836 return;
1838 mutex_lock(&cfg80211_mutex);
1839 mutex_lock(&reg_mutex);
1841 spin_lock(&reg_requests_lock);
1842 list_for_each_entry_safe(reg_request, tmp, &tmp_reg_req_list, list) {
1843 REG_DBG_PRINT("Adding request for country %c%c back "
1844 "into the queue\n",
1845 reg_request->alpha2[0],
1846 reg_request->alpha2[1]);
1847 list_del(&reg_request->list);
1848 list_add_tail(&reg_request->list, &reg_requests_list);
1850 spin_unlock(&reg_requests_lock);
1852 mutex_unlock(&reg_mutex);
1853 mutex_unlock(&cfg80211_mutex);
1855 REG_DBG_PRINT("Kicking the queue\n");
1857 schedule_work(&reg_work);
1860 void regulatory_hint_disconnect(void)
1862 REG_DBG_PRINT("All devices are disconnected, going to "
1863 "restore regulatory settings\n");
1864 restore_regulatory_settings(false);
1867 static bool freq_is_chan_12_13_14(u16 freq)
1869 if (freq == ieee80211_channel_to_frequency(12, IEEE80211_BAND_2GHZ) ||
1870 freq == ieee80211_channel_to_frequency(13, IEEE80211_BAND_2GHZ) ||
1871 freq == ieee80211_channel_to_frequency(14, IEEE80211_BAND_2GHZ))
1872 return true;
1873 return false;
1876 int regulatory_hint_found_beacon(struct wiphy *wiphy,
1877 struct ieee80211_channel *beacon_chan,
1878 gfp_t gfp)
1880 struct reg_beacon *reg_beacon;
1882 if (likely((beacon_chan->beacon_found ||
1883 (beacon_chan->flags & IEEE80211_CHAN_RADAR) ||
1884 (beacon_chan->band == IEEE80211_BAND_2GHZ &&
1885 !freq_is_chan_12_13_14(beacon_chan->center_freq)))))
1886 return 0;
1888 reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
1889 if (!reg_beacon)
1890 return -ENOMEM;
1892 REG_DBG_PRINT("Found new beacon on "
1893 "frequency: %d MHz (Ch %d) on %s\n",
1894 beacon_chan->center_freq,
1895 ieee80211_frequency_to_channel(beacon_chan->center_freq),
1896 wiphy_name(wiphy));
1898 memcpy(&reg_beacon->chan, beacon_chan,
1899 sizeof(struct ieee80211_channel));
1903 * Since we can be called from BH or and non-BH context
1904 * we must use spin_lock_bh()
1906 spin_lock_bh(&reg_pending_beacons_lock);
1907 list_add_tail(&reg_beacon->list, &reg_pending_beacons);
1908 spin_unlock_bh(&reg_pending_beacons_lock);
1910 schedule_work(&reg_work);
1912 return 0;
1915 static void print_rd_rules(const struct ieee80211_regdomain *rd)
1917 unsigned int i;
1918 const struct ieee80211_reg_rule *reg_rule = NULL;
1919 const struct ieee80211_freq_range *freq_range = NULL;
1920 const struct ieee80211_power_rule *power_rule = NULL;
1922 pr_info(" (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp)\n");
1924 for (i = 0; i < rd->n_reg_rules; i++) {
1925 reg_rule = &rd->reg_rules[i];
1926 freq_range = &reg_rule->freq_range;
1927 power_rule = &reg_rule->power_rule;
1930 * There may not be documentation for max antenna gain
1931 * in certain regions
1933 if (power_rule->max_antenna_gain)
1934 pr_info(" (%d KHz - %d KHz @ %d KHz), (%d mBi, %d mBm)\n",
1935 freq_range->start_freq_khz,
1936 freq_range->end_freq_khz,
1937 freq_range->max_bandwidth_khz,
1938 power_rule->max_antenna_gain,
1939 power_rule->max_eirp);
1940 else
1941 pr_info(" (%d KHz - %d KHz @ %d KHz), (N/A, %d mBm)\n",
1942 freq_range->start_freq_khz,
1943 freq_range->end_freq_khz,
1944 freq_range->max_bandwidth_khz,
1945 power_rule->max_eirp);
1949 static void print_regdomain(const struct ieee80211_regdomain *rd)
1952 if (is_intersected_alpha2(rd->alpha2)) {
1954 if (last_request->initiator ==
1955 NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1956 struct cfg80211_registered_device *rdev;
1957 rdev = cfg80211_rdev_by_wiphy_idx(
1958 last_request->wiphy_idx);
1959 if (rdev) {
1960 pr_info("Current regulatory domain updated by AP to: %c%c\n",
1961 rdev->country_ie_alpha2[0],
1962 rdev->country_ie_alpha2[1]);
1963 } else
1964 pr_info("Current regulatory domain intersected:\n");
1965 } else
1966 pr_info("Current regulatory domain intersected:\n");
1967 } else if (is_world_regdom(rd->alpha2))
1968 pr_info("World regulatory domain updated:\n");
1969 else {
1970 if (is_unknown_alpha2(rd->alpha2))
1971 pr_info("Regulatory domain changed to driver built-in settings (unknown country)\n");
1972 else
1973 pr_info("Regulatory domain changed to country: %c%c\n",
1974 rd->alpha2[0], rd->alpha2[1]);
1976 print_rd_rules(rd);
1979 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
1981 pr_info("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
1982 print_rd_rules(rd);
1985 /* Takes ownership of rd only if it doesn't fail */
1986 static int __set_regdom(const struct ieee80211_regdomain *rd)
1988 const struct ieee80211_regdomain *intersected_rd = NULL;
1989 struct cfg80211_registered_device *rdev = NULL;
1990 struct wiphy *request_wiphy;
1991 /* Some basic sanity checks first */
1993 if (is_world_regdom(rd->alpha2)) {
1994 if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
1995 return -EINVAL;
1996 update_world_regdomain(rd);
1997 return 0;
2000 if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
2001 !is_unknown_alpha2(rd->alpha2))
2002 return -EINVAL;
2004 if (!last_request)
2005 return -EINVAL;
2008 * Lets only bother proceeding on the same alpha2 if the current
2009 * rd is non static (it means CRDA was present and was used last)
2010 * and the pending request came in from a country IE
2012 if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2014 * If someone else asked us to change the rd lets only bother
2015 * checking if the alpha2 changes if CRDA was already called
2017 if (!regdom_changes(rd->alpha2))
2018 return -EINVAL;
2022 * Now lets set the regulatory domain, update all driver channels
2023 * and finally inform them of what we have done, in case they want
2024 * to review or adjust their own settings based on their own
2025 * internal EEPROM data
2028 if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
2029 return -EINVAL;
2031 if (!is_valid_rd(rd)) {
2032 pr_err("Invalid regulatory domain detected:\n");
2033 print_regdomain_info(rd);
2034 return -EINVAL;
2037 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2039 if (!last_request->intersect) {
2040 int r;
2042 if (last_request->initiator != NL80211_REGDOM_SET_BY_DRIVER) {
2043 reset_regdomains();
2044 cfg80211_regdomain = rd;
2045 return 0;
2049 * For a driver hint, lets copy the regulatory domain the
2050 * driver wanted to the wiphy to deal with conflicts
2054 * Userspace could have sent two replies with only
2055 * one kernel request.
2057 if (request_wiphy->regd)
2058 return -EALREADY;
2060 r = reg_copy_regd(&request_wiphy->regd, rd);
2061 if (r)
2062 return r;
2064 reset_regdomains();
2065 cfg80211_regdomain = rd;
2066 return 0;
2069 /* Intersection requires a bit more work */
2071 if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2073 intersected_rd = regdom_intersect(rd, cfg80211_regdomain);
2074 if (!intersected_rd)
2075 return -EINVAL;
2078 * We can trash what CRDA provided now.
2079 * However if a driver requested this specific regulatory
2080 * domain we keep it for its private use
2082 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER)
2083 request_wiphy->regd = rd;
2084 else
2085 kfree(rd);
2087 rd = NULL;
2089 reset_regdomains();
2090 cfg80211_regdomain = intersected_rd;
2092 return 0;
2095 if (!intersected_rd)
2096 return -EINVAL;
2098 rdev = wiphy_to_dev(request_wiphy);
2100 rdev->country_ie_alpha2[0] = rd->alpha2[0];
2101 rdev->country_ie_alpha2[1] = rd->alpha2[1];
2102 rdev->env = last_request->country_ie_env;
2104 BUG_ON(intersected_rd == rd);
2106 kfree(rd);
2107 rd = NULL;
2109 reset_regdomains();
2110 cfg80211_regdomain = intersected_rd;
2112 return 0;
2117 * Use this call to set the current regulatory domain. Conflicts with
2118 * multiple drivers can be ironed out later. Caller must've already
2119 * kmalloc'd the rd structure. Caller must hold cfg80211_mutex
2121 int set_regdom(const struct ieee80211_regdomain *rd)
2123 int r;
2125 assert_cfg80211_lock();
2127 mutex_lock(&reg_mutex);
2129 /* Note that this doesn't update the wiphys, this is done below */
2130 r = __set_regdom(rd);
2131 if (r) {
2132 kfree(rd);
2133 mutex_unlock(&reg_mutex);
2134 return r;
2137 /* This would make this whole thing pointless */
2138 if (!last_request->intersect)
2139 BUG_ON(rd != cfg80211_regdomain);
2141 /* update all wiphys now with the new established regulatory domain */
2142 update_all_wiphy_regulatory(last_request->initiator);
2144 print_regdomain(cfg80211_regdomain);
2146 nl80211_send_reg_change_event(last_request);
2148 reg_set_request_processed();
2150 mutex_unlock(&reg_mutex);
2152 return r;
2155 #ifdef CONFIG_HOTPLUG
2156 int reg_device_uevent(struct device *dev, struct kobj_uevent_env *env)
2158 if (last_request && !last_request->processed) {
2159 if (add_uevent_var(env, "COUNTRY=%c%c",
2160 last_request->alpha2[0],
2161 last_request->alpha2[1]))
2162 return -ENOMEM;
2165 return 0;
2167 #else
2168 int reg_device_uevent(struct device *dev, struct kobj_uevent_env *env)
2170 return -ENODEV;
2172 #endif /* CONFIG_HOTPLUG */
2174 /* Caller must hold cfg80211_mutex */
2175 void reg_device_remove(struct wiphy *wiphy)
2177 struct wiphy *request_wiphy = NULL;
2179 assert_cfg80211_lock();
2181 mutex_lock(&reg_mutex);
2183 kfree(wiphy->regd);
2185 if (last_request)
2186 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2188 if (!request_wiphy || request_wiphy != wiphy)
2189 goto out;
2191 last_request->wiphy_idx = WIPHY_IDX_STALE;
2192 last_request->country_ie_env = ENVIRON_ANY;
2193 out:
2194 mutex_unlock(&reg_mutex);
2197 static void reg_timeout_work(struct work_struct *work)
2199 REG_DBG_PRINT("Timeout while waiting for CRDA to reply, "
2200 "restoring regulatory settings\n");
2201 restore_regulatory_settings(true);
2204 int __init regulatory_init(void)
2206 int err = 0;
2208 reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
2209 if (IS_ERR(reg_pdev))
2210 return PTR_ERR(reg_pdev);
2212 reg_pdev->dev.type = &reg_device_type;
2214 spin_lock_init(&reg_requests_lock);
2215 spin_lock_init(&reg_pending_beacons_lock);
2217 cfg80211_regdomain = cfg80211_world_regdom;
2219 user_alpha2[0] = '9';
2220 user_alpha2[1] = '7';
2222 /* We always try to get an update for the static regdomain */
2223 err = regulatory_hint_core(cfg80211_regdomain->alpha2);
2224 if (err) {
2225 if (err == -ENOMEM)
2226 return err;
2228 * N.B. kobject_uevent_env() can fail mainly for when we're out
2229 * memory which is handled and propagated appropriately above
2230 * but it can also fail during a netlink_broadcast() or during
2231 * early boot for call_usermodehelper(). For now treat these
2232 * errors as non-fatal.
2234 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
2235 #ifdef CONFIG_CFG80211_REG_DEBUG
2236 /* We want to find out exactly why when debugging */
2237 WARN_ON(err);
2238 #endif
2242 * Finally, if the user set the module parameter treat it
2243 * as a user hint.
2245 if (!is_world_regdom(ieee80211_regdom))
2246 regulatory_hint_user(ieee80211_regdom);
2248 return 0;
2251 void /* __init_or_exit */ regulatory_exit(void)
2253 struct regulatory_request *reg_request, *tmp;
2254 struct reg_beacon *reg_beacon, *btmp;
2256 cancel_work_sync(&reg_work);
2257 cancel_delayed_work_sync(&reg_timeout);
2259 mutex_lock(&cfg80211_mutex);
2260 mutex_lock(&reg_mutex);
2262 reset_regdomains();
2264 kfree(last_request);
2266 platform_device_unregister(reg_pdev);
2268 spin_lock_bh(&reg_pending_beacons_lock);
2269 if (!list_empty(&reg_pending_beacons)) {
2270 list_for_each_entry_safe(reg_beacon, btmp,
2271 &reg_pending_beacons, list) {
2272 list_del(&reg_beacon->list);
2273 kfree(reg_beacon);
2276 spin_unlock_bh(&reg_pending_beacons_lock);
2278 if (!list_empty(&reg_beacon_list)) {
2279 list_for_each_entry_safe(reg_beacon, btmp,
2280 &reg_beacon_list, list) {
2281 list_del(&reg_beacon->list);
2282 kfree(reg_beacon);
2286 spin_lock(&reg_requests_lock);
2287 if (!list_empty(&reg_requests_list)) {
2288 list_for_each_entry_safe(reg_request, tmp,
2289 &reg_requests_list, list) {
2290 list_del(&reg_request->list);
2291 kfree(reg_request);
2294 spin_unlock(&reg_requests_lock);
2296 mutex_unlock(&reg_mutex);
2297 mutex_unlock(&cfg80211_mutex);