3 * BRIEF MODULE DESCRIPTION
4 * The Descriptor Based DMA channel manager that first appeared
5 * on the Au1550. I started with dma.c, but I think all that is
6 * left is this initial comment :-)
8 * Copyright 2004 Embedded Edge, LLC
11 * This program is free software; you can redistribute it and/or modify it
12 * under the terms of the GNU General Public License as published by the
13 * Free Software Foundation; either version 2 of the License, or (at your
14 * option) any later version.
16 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
17 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
18 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
19 * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
22 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
23 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 * You should have received a copy of the GNU General Public License along
28 * with this program; if not, write to the Free Software Foundation, Inc.,
29 * 675 Mass Ave, Cambridge, MA 02139, USA.
33 #include <linux/init.h>
34 #include <linux/kernel.h>
35 #include <linux/slab.h>
36 #include <linux/spinlock.h>
37 #include <linux/interrupt.h>
38 #include <linux/module.h>
39 #include <linux/syscore_ops.h>
40 #include <asm/mach-au1x00/au1000.h>
41 #include <asm/mach-au1x00/au1xxx_dbdma.h>
43 #if defined(CONFIG_SOC_AU1550) || defined(CONFIG_SOC_AU1200)
46 * The Descriptor Based DMA supports up to 16 channels.
48 * There are 32 devices defined. We keep an internal structure
49 * of devices using these channels, along with additional
52 * We allocate the descriptors and allow access to them through various
53 * functions. The drivers allocate the data buffers and assign them
56 static DEFINE_SPINLOCK(au1xxx_dbdma_spin_lock
);
58 /* I couldn't find a macro that did this... */
59 #define ALIGN_ADDR(x, a) ((((u32)(x)) + (a-1)) & ~(a-1))
61 static dbdma_global_t
*dbdma_gptr
=
62 (dbdma_global_t
*)KSEG1ADDR(AU1550_DBDMA_CONF_PHYS_ADDR
);
63 static int dbdma_initialized
;
65 static dbdev_tab_t dbdev_tab
[] = {
66 #ifdef CONFIG_SOC_AU1550
68 { DSCR_CMD0_UART0_TX
, DEV_FLAGS_OUT
, 0, 8, 0x11100004, 0, 0 },
69 { DSCR_CMD0_UART0_RX
, DEV_FLAGS_IN
, 0, 8, 0x11100000, 0, 0 },
70 { DSCR_CMD0_UART3_TX
, DEV_FLAGS_OUT
, 0, 8, 0x11400004, 0, 0 },
71 { DSCR_CMD0_UART3_RX
, DEV_FLAGS_IN
, 0, 8, 0x11400000, 0, 0 },
74 { DSCR_CMD0_DMA_REQ0
, 0, 0, 0, 0x00000000, 0, 0 },
75 { DSCR_CMD0_DMA_REQ1
, 0, 0, 0, 0x00000000, 0, 0 },
76 { DSCR_CMD0_DMA_REQ2
, 0, 0, 0, 0x00000000, 0, 0 },
77 { DSCR_CMD0_DMA_REQ3
, 0, 0, 0, 0x00000000, 0, 0 },
80 { DSCR_CMD0_USBDEV_RX0
, DEV_FLAGS_IN
, 4, 8, 0x10200000, 0, 0 },
81 { DSCR_CMD0_USBDEV_TX0
, DEV_FLAGS_OUT
, 4, 8, 0x10200004, 0, 0 },
82 { DSCR_CMD0_USBDEV_TX1
, DEV_FLAGS_OUT
, 4, 8, 0x10200008, 0, 0 },
83 { DSCR_CMD0_USBDEV_TX2
, DEV_FLAGS_OUT
, 4, 8, 0x1020000c, 0, 0 },
84 { DSCR_CMD0_USBDEV_RX3
, DEV_FLAGS_IN
, 4, 8, 0x10200010, 0, 0 },
85 { DSCR_CMD0_USBDEV_RX4
, DEV_FLAGS_IN
, 4, 8, 0x10200014, 0, 0 },
88 { DSCR_CMD0_PSC0_TX
, DEV_FLAGS_OUT
, 0, 0, 0x11a0001c, 0, 0 },
89 { DSCR_CMD0_PSC0_RX
, DEV_FLAGS_IN
, 0, 0, 0x11a0001c, 0, 0 },
92 { DSCR_CMD0_PSC1_TX
, DEV_FLAGS_OUT
, 0, 0, 0x11b0001c, 0, 0 },
93 { DSCR_CMD0_PSC1_RX
, DEV_FLAGS_IN
, 0, 0, 0x11b0001c, 0, 0 },
96 { DSCR_CMD0_PSC2_TX
, DEV_FLAGS_OUT
, 0, 0, 0x10a0001c, 0, 0 },
97 { DSCR_CMD0_PSC2_RX
, DEV_FLAGS_IN
, 0, 0, 0x10a0001c, 0, 0 },
100 { DSCR_CMD0_PSC3_TX
, DEV_FLAGS_OUT
, 0, 0, 0x10b0001c, 0, 0 },
101 { DSCR_CMD0_PSC3_RX
, DEV_FLAGS_IN
, 0, 0, 0x10b0001c, 0, 0 },
103 { DSCR_CMD0_PCI_WRITE
, 0, 0, 0, 0x00000000, 0, 0 }, /* PCI */
104 { DSCR_CMD0_NAND_FLASH
, 0, 0, 0, 0x00000000, 0, 0 }, /* NAND */
107 { DSCR_CMD0_MAC0_RX
, DEV_FLAGS_IN
, 0, 0, 0x00000000, 0, 0 },
108 { DSCR_CMD0_MAC0_TX
, DEV_FLAGS_OUT
, 0, 0, 0x00000000, 0, 0 },
111 { DSCR_CMD0_MAC1_RX
, DEV_FLAGS_IN
, 0, 0, 0x00000000, 0, 0 },
112 { DSCR_CMD0_MAC1_TX
, DEV_FLAGS_OUT
, 0, 0, 0x00000000, 0, 0 },
114 #endif /* CONFIG_SOC_AU1550 */
116 #ifdef CONFIG_SOC_AU1200
117 { DSCR_CMD0_UART0_TX
, DEV_FLAGS_OUT
, 0, 8, 0x11100004, 0, 0 },
118 { DSCR_CMD0_UART0_RX
, DEV_FLAGS_IN
, 0, 8, 0x11100000, 0, 0 },
119 { DSCR_CMD0_UART1_TX
, DEV_FLAGS_OUT
, 0, 8, 0x11200004, 0, 0 },
120 { DSCR_CMD0_UART1_RX
, DEV_FLAGS_IN
, 0, 8, 0x11200000, 0, 0 },
122 { DSCR_CMD0_DMA_REQ0
, 0, 0, 0, 0x00000000, 0, 0 },
123 { DSCR_CMD0_DMA_REQ1
, 0, 0, 0, 0x00000000, 0, 0 },
125 { DSCR_CMD0_MAE_BE
, DEV_FLAGS_ANYUSE
, 0, 0, 0x00000000, 0, 0 },
126 { DSCR_CMD0_MAE_FE
, DEV_FLAGS_ANYUSE
, 0, 0, 0x00000000, 0, 0 },
127 { DSCR_CMD0_MAE_BOTH
, DEV_FLAGS_ANYUSE
, 0, 0, 0x00000000, 0, 0 },
128 { DSCR_CMD0_LCD
, DEV_FLAGS_ANYUSE
, 0, 0, 0x00000000, 0, 0 },
130 { DSCR_CMD0_SDMS_TX0
, DEV_FLAGS_OUT
, 4, 8, 0x10600000, 0, 0 },
131 { DSCR_CMD0_SDMS_RX0
, DEV_FLAGS_IN
, 4, 8, 0x10600004, 0, 0 },
132 { DSCR_CMD0_SDMS_TX1
, DEV_FLAGS_OUT
, 4, 8, 0x10680000, 0, 0 },
133 { DSCR_CMD0_SDMS_RX1
, DEV_FLAGS_IN
, 4, 8, 0x10680004, 0, 0 },
135 { DSCR_CMD0_AES_RX
, DEV_FLAGS_IN
, 4, 32, 0x10300008, 0, 0 },
136 { DSCR_CMD0_AES_TX
, DEV_FLAGS_OUT
, 4, 32, 0x10300004, 0, 0 },
138 { DSCR_CMD0_PSC0_TX
, DEV_FLAGS_OUT
, 0, 16, 0x11a0001c, 0, 0 },
139 { DSCR_CMD0_PSC0_RX
, DEV_FLAGS_IN
, 0, 16, 0x11a0001c, 0, 0 },
140 { DSCR_CMD0_PSC0_SYNC
, DEV_FLAGS_ANYUSE
, 0, 0, 0x00000000, 0, 0 },
142 { DSCR_CMD0_PSC1_TX
, DEV_FLAGS_OUT
, 0, 16, 0x11b0001c, 0, 0 },
143 { DSCR_CMD0_PSC1_RX
, DEV_FLAGS_IN
, 0, 16, 0x11b0001c, 0, 0 },
144 { DSCR_CMD0_PSC1_SYNC
, DEV_FLAGS_ANYUSE
, 0, 0, 0x00000000, 0, 0 },
146 { DSCR_CMD0_CIM_RXA
, DEV_FLAGS_IN
, 0, 32, 0x14004020, 0, 0 },
147 { DSCR_CMD0_CIM_RXB
, DEV_FLAGS_IN
, 0, 32, 0x14004040, 0, 0 },
148 { DSCR_CMD0_CIM_RXC
, DEV_FLAGS_IN
, 0, 32, 0x14004060, 0, 0 },
149 { DSCR_CMD0_CIM_SYNC
, DEV_FLAGS_ANYUSE
, 0, 0, 0x00000000, 0, 0 },
151 { DSCR_CMD0_NAND_FLASH
, DEV_FLAGS_IN
, 0, 0, 0x00000000, 0, 0 },
153 #endif /* CONFIG_SOC_AU1200 */
155 { DSCR_CMD0_THROTTLE
, DEV_FLAGS_ANYUSE
, 0, 0, 0x00000000, 0, 0 },
156 { DSCR_CMD0_ALWAYS
, DEV_FLAGS_ANYUSE
, 0, 0, 0x00000000, 0, 0 },
158 /* Provide 16 user definable device types */
159 { ~0, 0, 0, 0, 0, 0, 0 },
160 { ~0, 0, 0, 0, 0, 0, 0 },
161 { ~0, 0, 0, 0, 0, 0, 0 },
162 { ~0, 0, 0, 0, 0, 0, 0 },
163 { ~0, 0, 0, 0, 0, 0, 0 },
164 { ~0, 0, 0, 0, 0, 0, 0 },
165 { ~0, 0, 0, 0, 0, 0, 0 },
166 { ~0, 0, 0, 0, 0, 0, 0 },
167 { ~0, 0, 0, 0, 0, 0, 0 },
168 { ~0, 0, 0, 0, 0, 0, 0 },
169 { ~0, 0, 0, 0, 0, 0, 0 },
170 { ~0, 0, 0, 0, 0, 0, 0 },
171 { ~0, 0, 0, 0, 0, 0, 0 },
172 { ~0, 0, 0, 0, 0, 0, 0 },
173 { ~0, 0, 0, 0, 0, 0, 0 },
174 { ~0, 0, 0, 0, 0, 0, 0 },
177 #define DBDEV_TAB_SIZE ARRAY_SIZE(dbdev_tab)
180 static chan_tab_t
*chan_tab_ptr
[NUM_DBDMA_CHANS
];
182 static dbdev_tab_t
*find_dbdev_id(u32 id
)
186 for (i
= 0; i
< DBDEV_TAB_SIZE
; ++i
) {
194 void *au1xxx_ddma_get_nextptr_virt(au1x_ddma_desc_t
*dp
)
196 return phys_to_virt(DSCR_GET_NXTPTR(dp
->dscr_nxtptr
));
198 EXPORT_SYMBOL(au1xxx_ddma_get_nextptr_virt
);
200 u32
au1xxx_ddma_add_device(dbdev_tab_t
*dev
)
204 static u16 new_id
= 0x1000;
206 p
= find_dbdev_id(~0);
208 memcpy(p
, dev
, sizeof(dbdev_tab_t
));
209 p
->dev_id
= DSCR_DEV2CUSTOM_ID(new_id
, dev
->dev_id
);
213 printk(KERN_DEBUG
"add_device: id:%x flags:%x padd:%x\n",
214 p
->dev_id
, p
->dev_flags
, p
->dev_physaddr
);
220 EXPORT_SYMBOL(au1xxx_ddma_add_device
);
222 void au1xxx_ddma_del_device(u32 devid
)
224 dbdev_tab_t
*p
= find_dbdev_id(devid
);
227 memset(p
, 0, sizeof(dbdev_tab_t
));
231 EXPORT_SYMBOL(au1xxx_ddma_del_device
);
233 /* Allocate a channel and return a non-zero descriptor if successful. */
234 u32
au1xxx_dbdma_chan_alloc(u32 srcid
, u32 destid
,
235 void (*callback
)(int, void *), void *callparam
)
241 dbdev_tab_t
*stp
, *dtp
;
246 * We do the intialization on the first channel allocation.
247 * We have to wait because of the interrupt handler initialization
248 * which can't be done successfully during board set up.
250 if (!dbdma_initialized
)
253 stp
= find_dbdev_id(srcid
);
256 dtp
= find_dbdev_id(destid
);
262 /* Check to see if we can get both channels. */
263 spin_lock_irqsave(&au1xxx_dbdma_spin_lock
, flags
);
264 if (!(stp
->dev_flags
& DEV_FLAGS_INUSE
) ||
265 (stp
->dev_flags
& DEV_FLAGS_ANYUSE
)) {
267 stp
->dev_flags
|= DEV_FLAGS_INUSE
;
268 if (!(dtp
->dev_flags
& DEV_FLAGS_INUSE
) ||
269 (dtp
->dev_flags
& DEV_FLAGS_ANYUSE
)) {
270 /* Got destination */
271 dtp
->dev_flags
|= DEV_FLAGS_INUSE
;
273 /* Can't get dest. Release src. */
274 stp
->dev_flags
&= ~DEV_FLAGS_INUSE
;
279 spin_unlock_irqrestore(&au1xxx_dbdma_spin_lock
, flags
);
284 /* Let's see if we can allocate a channel for it. */
287 spin_lock_irqsave(&au1xxx_dbdma_spin_lock
, flags
);
288 for (i
= 0; i
< NUM_DBDMA_CHANS
; i
++)
289 if (chan_tab_ptr
[i
] == NULL
) {
291 * If kmalloc fails, it is caught below same
292 * as a channel not available.
294 ctp
= kmalloc(sizeof(chan_tab_t
), GFP_ATOMIC
);
295 chan_tab_ptr
[i
] = ctp
;
298 spin_unlock_irqrestore(&au1xxx_dbdma_spin_lock
, flags
);
301 memset(ctp
, 0, sizeof(chan_tab_t
));
302 ctp
->chan_index
= chan
= i
;
303 dcp
= KSEG1ADDR(AU1550_DBDMA_PHYS_ADDR
);
304 dcp
+= (0x0100 * chan
);
305 ctp
->chan_ptr
= (au1x_dma_chan_t
*)dcp
;
306 cp
= (au1x_dma_chan_t
*)dcp
;
308 ctp
->chan_dest
= dtp
;
309 ctp
->chan_callback
= callback
;
310 ctp
->chan_callparam
= callparam
;
312 /* Initialize channel configuration. */
314 if (stp
->dev_intlevel
)
316 if (stp
->dev_intpolarity
)
318 if (dtp
->dev_intlevel
)
320 if (dtp
->dev_intpolarity
)
322 if ((stp
->dev_flags
& DEV_FLAGS_SYNC
) ||
323 (dtp
->dev_flags
& DEV_FLAGS_SYNC
))
329 * Return a non-zero value that can be used to find the channel
330 * information in subsequent operations.
332 return (u32
)(&chan_tab_ptr
[chan
]);
335 /* Release devices */
336 stp
->dev_flags
&= ~DEV_FLAGS_INUSE
;
337 dtp
->dev_flags
&= ~DEV_FLAGS_INUSE
;
341 EXPORT_SYMBOL(au1xxx_dbdma_chan_alloc
);
344 * Set the device width if source or destination is a FIFO.
345 * Should be 8, 16, or 32 bits.
347 u32
au1xxx_dbdma_set_devwidth(u32 chanid
, int bits
)
351 dbdev_tab_t
*stp
, *dtp
;
353 ctp
= *((chan_tab_t
**)chanid
);
355 dtp
= ctp
->chan_dest
;
358 if (stp
->dev_flags
& DEV_FLAGS_IN
) { /* Source in fifo */
359 rv
= stp
->dev_devwidth
;
360 stp
->dev_devwidth
= bits
;
362 if (dtp
->dev_flags
& DEV_FLAGS_OUT
) { /* Destination out fifo */
363 rv
= dtp
->dev_devwidth
;
364 dtp
->dev_devwidth
= bits
;
369 EXPORT_SYMBOL(au1xxx_dbdma_set_devwidth
);
371 /* Allocate a descriptor ring, initializing as much as possible. */
372 u32
au1xxx_dbdma_ring_alloc(u32 chanid
, int entries
)
375 u32 desc_base
, srcid
, destid
;
376 u32 cmd0
, cmd1
, src1
, dest1
;
379 dbdev_tab_t
*stp
, *dtp
;
380 au1x_ddma_desc_t
*dp
;
383 * I guess we could check this to be within the
384 * range of the table......
386 ctp
= *((chan_tab_t
**)chanid
);
388 dtp
= ctp
->chan_dest
;
391 * The descriptors must be 32-byte aligned. There is a
392 * possibility the allocation will give us such an address,
393 * and if we try that first we are likely to not waste larger
396 desc_base
= (u32
)kmalloc(entries
* sizeof(au1x_ddma_desc_t
),
401 if (desc_base
& 0x1f) {
403 * Lost....do it again, allocate extra, and round
406 kfree((const void *)desc_base
);
407 i
= entries
* sizeof(au1x_ddma_desc_t
);
408 i
+= (sizeof(au1x_ddma_desc_t
) - 1);
409 desc_base
= (u32
)kmalloc(i
, GFP_KERNEL
|GFP_DMA
);
413 ctp
->cdb_membase
= desc_base
;
414 desc_base
= ALIGN_ADDR(desc_base
, sizeof(au1x_ddma_desc_t
));
416 ctp
->cdb_membase
= desc_base
;
418 dp
= (au1x_ddma_desc_t
*)desc_base
;
420 /* Keep track of the base descriptor. */
421 ctp
->chan_desc_base
= dp
;
423 /* Initialize the rings with as much information as we know. */
425 destid
= dtp
->dev_id
;
427 cmd0
= cmd1
= src1
= dest1
= 0;
430 cmd0
|= DSCR_CMD0_SID(srcid
);
431 cmd0
|= DSCR_CMD0_DID(destid
);
432 cmd0
|= DSCR_CMD0_IE
| DSCR_CMD0_CV
;
433 cmd0
|= DSCR_CMD0_ST(DSCR_CMD0_ST_NOCHANGE
);
435 /* Is it mem to mem transfer? */
436 if (((DSCR_CUSTOM2DEV_ID(srcid
) == DSCR_CMD0_THROTTLE
) ||
437 (DSCR_CUSTOM2DEV_ID(srcid
) == DSCR_CMD0_ALWAYS
)) &&
438 ((DSCR_CUSTOM2DEV_ID(destid
) == DSCR_CMD0_THROTTLE
) ||
439 (DSCR_CUSTOM2DEV_ID(destid
) == DSCR_CMD0_ALWAYS
)))
440 cmd0
|= DSCR_CMD0_MEM
;
442 switch (stp
->dev_devwidth
) {
444 cmd0
|= DSCR_CMD0_SW(DSCR_CMD0_BYTE
);
447 cmd0
|= DSCR_CMD0_SW(DSCR_CMD0_HALFWORD
);
451 cmd0
|= DSCR_CMD0_SW(DSCR_CMD0_WORD
);
455 switch (dtp
->dev_devwidth
) {
457 cmd0
|= DSCR_CMD0_DW(DSCR_CMD0_BYTE
);
460 cmd0
|= DSCR_CMD0_DW(DSCR_CMD0_HALFWORD
);
464 cmd0
|= DSCR_CMD0_DW(DSCR_CMD0_WORD
);
469 * If the device is marked as an in/out FIFO, ensure it is
472 if (stp
->dev_flags
& DEV_FLAGS_IN
)
473 cmd0
|= DSCR_CMD0_SN
; /* Source in FIFO */
474 if (dtp
->dev_flags
& DEV_FLAGS_OUT
)
475 cmd0
|= DSCR_CMD0_DN
; /* Destination out FIFO */
478 * Set up source1. For now, assume no stride and increment.
479 * A channel attribute update can change this later.
481 switch (stp
->dev_tsize
) {
483 src1
|= DSCR_SRC1_STS(DSCR_xTS_SIZE1
);
486 src1
|= DSCR_SRC1_STS(DSCR_xTS_SIZE2
);
489 src1
|= DSCR_SRC1_STS(DSCR_xTS_SIZE4
);
493 src1
|= DSCR_SRC1_STS(DSCR_xTS_SIZE8
);
497 /* If source input is FIFO, set static address. */
498 if (stp
->dev_flags
& DEV_FLAGS_IN
) {
499 if (stp
->dev_flags
& DEV_FLAGS_BURSTABLE
)
500 src1
|= DSCR_SRC1_SAM(DSCR_xAM_BURST
);
502 src1
|= DSCR_SRC1_SAM(DSCR_xAM_STATIC
);
505 if (stp
->dev_physaddr
)
506 src0
= stp
->dev_physaddr
;
509 * Set up dest1. For now, assume no stride and increment.
510 * A channel attribute update can change this later.
512 switch (dtp
->dev_tsize
) {
514 dest1
|= DSCR_DEST1_DTS(DSCR_xTS_SIZE1
);
517 dest1
|= DSCR_DEST1_DTS(DSCR_xTS_SIZE2
);
520 dest1
|= DSCR_DEST1_DTS(DSCR_xTS_SIZE4
);
524 dest1
|= DSCR_DEST1_DTS(DSCR_xTS_SIZE8
);
528 /* If destination output is FIFO, set static address. */
529 if (dtp
->dev_flags
& DEV_FLAGS_OUT
) {
530 if (dtp
->dev_flags
& DEV_FLAGS_BURSTABLE
)
531 dest1
|= DSCR_DEST1_DAM(DSCR_xAM_BURST
);
533 dest1
|= DSCR_DEST1_DAM(DSCR_xAM_STATIC
);
536 if (dtp
->dev_physaddr
)
537 dest0
= dtp
->dev_physaddr
;
540 printk(KERN_DEBUG
"did:%x sid:%x cmd0:%x cmd1:%x source0:%x "
541 "source1:%x dest0:%x dest1:%x\n",
542 dtp
->dev_id
, stp
->dev_id
, cmd0
, cmd1
, src0
,
545 for (i
= 0; i
< entries
; i
++) {
546 dp
->dscr_cmd0
= cmd0
;
547 dp
->dscr_cmd1
= cmd1
;
548 dp
->dscr_source0
= src0
;
549 dp
->dscr_source1
= src1
;
550 dp
->dscr_dest0
= dest0
;
551 dp
->dscr_dest1
= dest1
;
555 dp
->dscr_nxtptr
= DSCR_NXTPTR(virt_to_phys(dp
+ 1));
559 /* Make last descrptor point to the first. */
561 dp
->dscr_nxtptr
= DSCR_NXTPTR(virt_to_phys(ctp
->chan_desc_base
));
562 ctp
->get_ptr
= ctp
->put_ptr
= ctp
->cur_ptr
= ctp
->chan_desc_base
;
564 return (u32
)ctp
->chan_desc_base
;
566 EXPORT_SYMBOL(au1xxx_dbdma_ring_alloc
);
569 * Put a source buffer into the DMA ring.
570 * This updates the source pointer and byte count. Normally used
571 * for memory to fifo transfers.
573 u32
au1xxx_dbdma_put_source(u32 chanid
, dma_addr_t buf
, int nbytes
, u32 flags
)
576 au1x_ddma_desc_t
*dp
;
579 * I guess we could check this to be within the
580 * range of the table......
582 ctp
= *(chan_tab_t
**)chanid
;
585 * We should have multiple callers for a particular channel,
586 * an interrupt doesn't affect this pointer nor the descriptor,
587 * so no locking should be needed.
592 * If the descriptor is valid, we are way ahead of the DMA
593 * engine, so just return an error condition.
595 if (dp
->dscr_cmd0
& DSCR_CMD0_V
)
598 /* Load up buffer address and byte count. */
599 dp
->dscr_source0
= buf
& ~0UL;
600 dp
->dscr_cmd1
= nbytes
;
602 if (flags
& DDMA_FLAGS_IE
)
603 dp
->dscr_cmd0
|= DSCR_CMD0_IE
;
604 if (flags
& DDMA_FLAGS_NOIE
)
605 dp
->dscr_cmd0
&= ~DSCR_CMD0_IE
;
608 * There is an errata on the Au1200/Au1550 parts that could result
609 * in "stale" data being DMA'ed. It has to do with the snoop logic on
610 * the cache eviction buffer. DMA_NONCOHERENT is on by default for
611 * these parts. If it is fixed in the future, these dma_cache_inv will
612 * just be nothing more than empty macros. See io.h.
614 dma_cache_wback_inv((unsigned long)buf
, nbytes
);
615 dp
->dscr_cmd0
|= DSCR_CMD0_V
; /* Let it rip */
617 dma_cache_wback_inv((unsigned long)dp
, sizeof(*dp
));
618 ctp
->chan_ptr
->ddma_dbell
= 0;
620 /* Get next descriptor pointer. */
621 ctp
->put_ptr
= phys_to_virt(DSCR_GET_NXTPTR(dp
->dscr_nxtptr
));
623 /* Return something non-zero. */
626 EXPORT_SYMBOL(au1xxx_dbdma_put_source
);
628 /* Put a destination buffer into the DMA ring.
629 * This updates the destination pointer and byte count. Normally used
630 * to place an empty buffer into the ring for fifo to memory transfers.
632 u32
au1xxx_dbdma_put_dest(u32 chanid
, dma_addr_t buf
, int nbytes
, u32 flags
)
635 au1x_ddma_desc_t
*dp
;
637 /* I guess we could check this to be within the
638 * range of the table......
640 ctp
= *((chan_tab_t
**)chanid
);
642 /* We should have multiple callers for a particular channel,
643 * an interrupt doesn't affect this pointer nor the descriptor,
644 * so no locking should be needed.
648 /* If the descriptor is valid, we are way ahead of the DMA
649 * engine, so just return an error condition.
651 if (dp
->dscr_cmd0
& DSCR_CMD0_V
)
654 /* Load up buffer address and byte count */
657 if (flags
& DDMA_FLAGS_IE
)
658 dp
->dscr_cmd0
|= DSCR_CMD0_IE
;
659 if (flags
& DDMA_FLAGS_NOIE
)
660 dp
->dscr_cmd0
&= ~DSCR_CMD0_IE
;
662 dp
->dscr_dest0
= buf
& ~0UL;
663 dp
->dscr_cmd1
= nbytes
;
665 printk(KERN_DEBUG
"cmd0:%x cmd1:%x source0:%x source1:%x dest0:%x dest1:%x\n",
666 dp
->dscr_cmd0
, dp
->dscr_cmd1
, dp
->dscr_source0
,
667 dp
->dscr_source1
, dp
->dscr_dest0
, dp
->dscr_dest1
);
670 * There is an errata on the Au1200/Au1550 parts that could result in
671 * "stale" data being DMA'ed. It has to do with the snoop logic on the
672 * cache eviction buffer. DMA_NONCOHERENT is on by default for these
673 * parts. If it is fixed in the future, these dma_cache_inv will just
674 * be nothing more than empty macros. See io.h.
676 dma_cache_inv((unsigned long)buf
, nbytes
);
677 dp
->dscr_cmd0
|= DSCR_CMD0_V
; /* Let it rip */
679 dma_cache_wback_inv((unsigned long)dp
, sizeof(*dp
));
680 ctp
->chan_ptr
->ddma_dbell
= 0;
682 /* Get next descriptor pointer. */
683 ctp
->put_ptr
= phys_to_virt(DSCR_GET_NXTPTR(dp
->dscr_nxtptr
));
685 /* Return something non-zero. */
688 EXPORT_SYMBOL(au1xxx_dbdma_put_dest
);
691 * Get a destination buffer into the DMA ring.
692 * Normally used to get a full buffer from the ring during fifo
693 * to memory transfers. This does not set the valid bit, you will
694 * have to put another destination buffer to keep the DMA going.
696 u32
au1xxx_dbdma_get_dest(u32 chanid
, void **buf
, int *nbytes
)
699 au1x_ddma_desc_t
*dp
;
703 * I guess we could check this to be within the
704 * range of the table......
706 ctp
= *((chan_tab_t
**)chanid
);
709 * We should have multiple callers for a particular channel,
710 * an interrupt doesn't affect this pointer nor the descriptor,
711 * so no locking should be needed.
716 * If the descriptor is valid, we are way ahead of the DMA
717 * engine, so just return an error condition.
719 if (dp
->dscr_cmd0
& DSCR_CMD0_V
)
722 /* Return buffer address and byte count. */
723 *buf
= (void *)(phys_to_virt(dp
->dscr_dest0
));
724 *nbytes
= dp
->dscr_cmd1
;
727 /* Get next descriptor pointer. */
728 ctp
->get_ptr
= phys_to_virt(DSCR_GET_NXTPTR(dp
->dscr_nxtptr
));
730 /* Return something non-zero. */
733 EXPORT_SYMBOL_GPL(au1xxx_dbdma_get_dest
);
735 void au1xxx_dbdma_stop(u32 chanid
)
739 int halt_timeout
= 0;
741 ctp
= *((chan_tab_t
**)chanid
);
744 cp
->ddma_cfg
&= ~DDMA_CFG_EN
; /* Disable channel */
746 while (!(cp
->ddma_stat
& DDMA_STAT_H
)) {
749 if (halt_timeout
> 100) {
750 printk(KERN_WARNING
"warning: DMA channel won't halt\n");
754 /* clear current desc valid and doorbell */
755 cp
->ddma_stat
|= (DDMA_STAT_DB
| DDMA_STAT_V
);
758 EXPORT_SYMBOL(au1xxx_dbdma_stop
);
761 * Start using the current descriptor pointer. If the DBDMA encounters
762 * a non-valid descriptor, it will stop. In this case, we can just
763 * continue by adding a buffer to the list and starting again.
765 void au1xxx_dbdma_start(u32 chanid
)
770 ctp
= *((chan_tab_t
**)chanid
);
772 cp
->ddma_desptr
= virt_to_phys(ctp
->cur_ptr
);
773 cp
->ddma_cfg
|= DDMA_CFG_EN
; /* Enable channel */
778 EXPORT_SYMBOL(au1xxx_dbdma_start
);
780 void au1xxx_dbdma_reset(u32 chanid
)
783 au1x_ddma_desc_t
*dp
;
785 au1xxx_dbdma_stop(chanid
);
787 ctp
= *((chan_tab_t
**)chanid
);
788 ctp
->get_ptr
= ctp
->put_ptr
= ctp
->cur_ptr
= ctp
->chan_desc_base
;
790 /* Run through the descriptors and reset the valid indicator. */
791 dp
= ctp
->chan_desc_base
;
794 dp
->dscr_cmd0
&= ~DSCR_CMD0_V
;
796 * Reset our software status -- this is used to determine
797 * if a descriptor is in use by upper level software. Since
798 * posting can reset 'V' bit.
801 dp
= phys_to_virt(DSCR_GET_NXTPTR(dp
->dscr_nxtptr
));
802 } while (dp
!= ctp
->chan_desc_base
);
804 EXPORT_SYMBOL(au1xxx_dbdma_reset
);
806 u32
au1xxx_get_dma_residue(u32 chanid
)
812 ctp
= *((chan_tab_t
**)chanid
);
815 /* This is only valid if the channel is stopped. */
816 rv
= cp
->ddma_bytecnt
;
821 EXPORT_SYMBOL_GPL(au1xxx_get_dma_residue
);
823 void au1xxx_dbdma_chan_free(u32 chanid
)
826 dbdev_tab_t
*stp
, *dtp
;
828 ctp
= *((chan_tab_t
**)chanid
);
830 dtp
= ctp
->chan_dest
;
832 au1xxx_dbdma_stop(chanid
);
834 kfree((void *)ctp
->cdb_membase
);
836 stp
->dev_flags
&= ~DEV_FLAGS_INUSE
;
837 dtp
->dev_flags
&= ~DEV_FLAGS_INUSE
;
838 chan_tab_ptr
[ctp
->chan_index
] = NULL
;
842 EXPORT_SYMBOL(au1xxx_dbdma_chan_free
);
844 static irqreturn_t
dbdma_interrupt(int irq
, void *dev_id
)
849 au1x_ddma_desc_t
*dp
;
852 intstat
= dbdma_gptr
->ddma_intstat
;
854 chan_index
= __ffs(intstat
);
856 ctp
= chan_tab_ptr
[chan_index
];
860 /* Reset interrupt. */
864 if (ctp
->chan_callback
)
865 ctp
->chan_callback(irq
, ctp
->chan_callparam
);
867 ctp
->cur_ptr
= phys_to_virt(DSCR_GET_NXTPTR(dp
->dscr_nxtptr
));
868 return IRQ_RETVAL(1);
871 void au1xxx_dbdma_dump(u32 chanid
)
874 au1x_ddma_desc_t
*dp
;
875 dbdev_tab_t
*stp
, *dtp
;
879 ctp
= *((chan_tab_t
**)chanid
);
881 dtp
= ctp
->chan_dest
;
884 printk(KERN_DEBUG
"Chan %x, stp %x (dev %d) dtp %x (dev %d)\n",
885 (u32
)ctp
, (u32
)stp
, stp
- dbdev_tab
, (u32
)dtp
,
887 printk(KERN_DEBUG
"desc base %x, get %x, put %x, cur %x\n",
888 (u32
)(ctp
->chan_desc_base
), (u32
)(ctp
->get_ptr
),
889 (u32
)(ctp
->put_ptr
), (u32
)(ctp
->cur_ptr
));
891 printk(KERN_DEBUG
"dbdma chan %x\n", (u32
)cp
);
892 printk(KERN_DEBUG
"cfg %08x, desptr %08x, statptr %08x\n",
893 cp
->ddma_cfg
, cp
->ddma_desptr
, cp
->ddma_statptr
);
894 printk(KERN_DEBUG
"dbell %08x, irq %08x, stat %08x, bytecnt %08x\n",
895 cp
->ddma_dbell
, cp
->ddma_irq
, cp
->ddma_stat
,
898 /* Run through the descriptors */
899 dp
= ctp
->chan_desc_base
;
902 printk(KERN_DEBUG
"Dp[%d]= %08x, cmd0 %08x, cmd1 %08x\n",
903 i
++, (u32
)dp
, dp
->dscr_cmd0
, dp
->dscr_cmd1
);
904 printk(KERN_DEBUG
"src0 %08x, src1 %08x, dest0 %08x, dest1 %08x\n",
905 dp
->dscr_source0
, dp
->dscr_source1
,
906 dp
->dscr_dest0
, dp
->dscr_dest1
);
907 printk(KERN_DEBUG
"stat %08x, nxtptr %08x\n",
908 dp
->dscr_stat
, dp
->dscr_nxtptr
);
909 dp
= phys_to_virt(DSCR_GET_NXTPTR(dp
->dscr_nxtptr
));
910 } while (dp
!= ctp
->chan_desc_base
);
913 /* Put a descriptor into the DMA ring.
914 * This updates the source/destination pointers and byte count.
916 u32
au1xxx_dbdma_put_dscr(u32 chanid
, au1x_ddma_desc_t
*dscr
)
919 au1x_ddma_desc_t
*dp
;
923 * I guess we could check this to be within the
924 * range of the table......
926 ctp
= *((chan_tab_t
**)chanid
);
929 * We should have multiple callers for a particular channel,
930 * an interrupt doesn't affect this pointer nor the descriptor,
931 * so no locking should be needed.
936 * If the descriptor is valid, we are way ahead of the DMA
937 * engine, so just return an error condition.
939 if (dp
->dscr_cmd0
& DSCR_CMD0_V
)
942 /* Load up buffer addresses and byte count. */
943 dp
->dscr_dest0
= dscr
->dscr_dest0
;
944 dp
->dscr_source0
= dscr
->dscr_source0
;
945 dp
->dscr_dest1
= dscr
->dscr_dest1
;
946 dp
->dscr_source1
= dscr
->dscr_source1
;
947 dp
->dscr_cmd1
= dscr
->dscr_cmd1
;
948 nbytes
= dscr
->dscr_cmd1
;
949 /* Allow the caller to specifiy if an interrupt is generated */
950 dp
->dscr_cmd0
&= ~DSCR_CMD0_IE
;
951 dp
->dscr_cmd0
|= dscr
->dscr_cmd0
| DSCR_CMD0_V
;
952 ctp
->chan_ptr
->ddma_dbell
= 0;
954 /* Get next descriptor pointer. */
955 ctp
->put_ptr
= phys_to_virt(DSCR_GET_NXTPTR(dp
->dscr_nxtptr
));
957 /* Return something non-zero. */
962 static unsigned long alchemy_dbdma_pm_data
[NUM_DBDMA_CHANS
+ 1][6];
964 static int alchemy_dbdma_suspend(void)
969 addr
= (void __iomem
*)KSEG1ADDR(AU1550_DBDMA_CONF_PHYS_ADDR
);
970 alchemy_dbdma_pm_data
[0][0] = __raw_readl(addr
+ 0x00);
971 alchemy_dbdma_pm_data
[0][1] = __raw_readl(addr
+ 0x04);
972 alchemy_dbdma_pm_data
[0][2] = __raw_readl(addr
+ 0x08);
973 alchemy_dbdma_pm_data
[0][3] = __raw_readl(addr
+ 0x0c);
975 /* save channel configurations */
976 addr
= (void __iomem
*)KSEG1ADDR(AU1550_DBDMA_PHYS_ADDR
);
977 for (i
= 1; i
<= NUM_DBDMA_CHANS
; i
++) {
978 alchemy_dbdma_pm_data
[i
][0] = __raw_readl(addr
+ 0x00);
979 alchemy_dbdma_pm_data
[i
][1] = __raw_readl(addr
+ 0x04);
980 alchemy_dbdma_pm_data
[i
][2] = __raw_readl(addr
+ 0x08);
981 alchemy_dbdma_pm_data
[i
][3] = __raw_readl(addr
+ 0x0c);
982 alchemy_dbdma_pm_data
[i
][4] = __raw_readl(addr
+ 0x10);
983 alchemy_dbdma_pm_data
[i
][5] = __raw_readl(addr
+ 0x14);
986 __raw_writel(alchemy_dbdma_pm_data
[i
][0] & ~1, addr
+ 0x00);
988 while (!(__raw_readl(addr
+ 0x14) & 1))
991 addr
+= 0x100; /* next channel base */
993 /* disable channel interrupts */
994 addr
= (void __iomem
*)KSEG1ADDR(AU1550_DBDMA_CONF_PHYS_ADDR
);
995 __raw_writel(0, addr
+ 0x0c);
1001 static void alchemy_dbdma_resume(void)
1006 addr
= (void __iomem
*)KSEG1ADDR(AU1550_DBDMA_CONF_PHYS_ADDR
);
1007 __raw_writel(alchemy_dbdma_pm_data
[0][0], addr
+ 0x00);
1008 __raw_writel(alchemy_dbdma_pm_data
[0][1], addr
+ 0x04);
1009 __raw_writel(alchemy_dbdma_pm_data
[0][2], addr
+ 0x08);
1010 __raw_writel(alchemy_dbdma_pm_data
[0][3], addr
+ 0x0c);
1012 /* restore channel configurations */
1013 addr
= (void __iomem
*)KSEG1ADDR(AU1550_DBDMA_PHYS_ADDR
);
1014 for (i
= 1; i
<= NUM_DBDMA_CHANS
; i
++) {
1015 __raw_writel(alchemy_dbdma_pm_data
[i
][0], addr
+ 0x00);
1016 __raw_writel(alchemy_dbdma_pm_data
[i
][1], addr
+ 0x04);
1017 __raw_writel(alchemy_dbdma_pm_data
[i
][2], addr
+ 0x08);
1018 __raw_writel(alchemy_dbdma_pm_data
[i
][3], addr
+ 0x0c);
1019 __raw_writel(alchemy_dbdma_pm_data
[i
][4], addr
+ 0x10);
1020 __raw_writel(alchemy_dbdma_pm_data
[i
][5], addr
+ 0x14);
1022 addr
+= 0x100; /* next channel base */
1026 static struct syscore_ops alchemy_dbdma_syscore_ops
= {
1027 .suspend
= alchemy_dbdma_suspend
,
1028 .resume
= alchemy_dbdma_resume
,
1031 static int __init
au1xxx_dbdma_init(void)
1035 dbdma_gptr
->ddma_config
= 0;
1036 dbdma_gptr
->ddma_throttle
= 0;
1037 dbdma_gptr
->ddma_inten
= 0xffff;
1040 switch (alchemy_get_cputype()) {
1041 case ALCHEMY_CPU_AU1550
:
1042 irq_nr
= AU1550_DDMA_INT
;
1044 case ALCHEMY_CPU_AU1200
:
1045 irq_nr
= AU1200_DDMA_INT
;
1051 ret
= request_irq(irq_nr
, dbdma_interrupt
, IRQF_DISABLED
,
1052 "Au1xxx dbdma", (void *)dbdma_gptr
);
1054 printk(KERN_ERR
"Cannot grab DBDMA interrupt!\n");
1056 dbdma_initialized
= 1;
1057 printk(KERN_INFO
"Alchemy DBDMA initialized\n");
1058 register_syscore_ops(&alchemy_dbdma_syscore_ops
);
1063 subsys_initcall(au1xxx_dbdma_init
);
1065 #endif /* defined(CONFIG_SOC_AU1550) || defined(CONFIG_SOC_AU1200) */