MIPS: Alchemy: Convert dbdma.c to syscore_ops
[linux-2.6/linux-mips.git] / net / ipv4 / ip_fragment.c
blobb1d282f11be7e23ae4099901ac4be00c5fd8cd12
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * The IP fragmentation functionality.
8 * Authors: Fred N. van Kempen <waltje@uWalt.NL.Mugnet.ORG>
9 * Alan Cox <alan@lxorguk.ukuu.org.uk>
11 * Fixes:
12 * Alan Cox : Split from ip.c , see ip_input.c for history.
13 * David S. Miller : Begin massive cleanup...
14 * Andi Kleen : Add sysctls.
15 * xxxx : Overlapfrag bug.
16 * Ultima : ip_expire() kernel panic.
17 * Bill Hawes : Frag accounting and evictor fixes.
18 * John McDonald : 0 length frag bug.
19 * Alexey Kuznetsov: SMP races, threading, cleanup.
20 * Patrick McHardy : LRU queue of frag heads for evictor.
23 #include <linux/compiler.h>
24 #include <linux/module.h>
25 #include <linux/types.h>
26 #include <linux/mm.h>
27 #include <linux/jiffies.h>
28 #include <linux/skbuff.h>
29 #include <linux/list.h>
30 #include <linux/ip.h>
31 #include <linux/icmp.h>
32 #include <linux/netdevice.h>
33 #include <linux/jhash.h>
34 #include <linux/random.h>
35 #include <linux/slab.h>
36 #include <net/route.h>
37 #include <net/dst.h>
38 #include <net/sock.h>
39 #include <net/ip.h>
40 #include <net/icmp.h>
41 #include <net/checksum.h>
42 #include <net/inetpeer.h>
43 #include <net/inet_frag.h>
44 #include <linux/tcp.h>
45 #include <linux/udp.h>
46 #include <linux/inet.h>
47 #include <linux/netfilter_ipv4.h>
48 #include <net/inet_ecn.h>
50 /* NOTE. Logic of IP defragmentation is parallel to corresponding IPv6
51 * code now. If you change something here, _PLEASE_ update ipv6/reassembly.c
52 * as well. Or notify me, at least. --ANK
55 static int sysctl_ipfrag_max_dist __read_mostly = 64;
57 struct ipfrag_skb_cb
59 struct inet_skb_parm h;
60 int offset;
63 #define FRAG_CB(skb) ((struct ipfrag_skb_cb *)((skb)->cb))
65 /* Describe an entry in the "incomplete datagrams" queue. */
66 struct ipq {
67 struct inet_frag_queue q;
69 u32 user;
70 __be32 saddr;
71 __be32 daddr;
72 __be16 id;
73 u8 protocol;
74 u8 ecn; /* RFC3168 support */
75 int iif;
76 unsigned int rid;
77 struct inet_peer *peer;
80 #define IPFRAG_ECN_CLEAR 0x01 /* one frag had INET_ECN_NOT_ECT */
81 #define IPFRAG_ECN_SET_CE 0x04 /* one frag had INET_ECN_CE */
83 static inline u8 ip4_frag_ecn(u8 tos)
85 tos = (tos & INET_ECN_MASK) + 1;
87 * After the last operation we have (in binary):
88 * INET_ECN_NOT_ECT => 001
89 * INET_ECN_ECT_1 => 010
90 * INET_ECN_ECT_0 => 011
91 * INET_ECN_CE => 100
93 return (tos & 2) ? 0 : tos;
96 static struct inet_frags ip4_frags;
98 int ip_frag_nqueues(struct net *net)
100 return net->ipv4.frags.nqueues;
103 int ip_frag_mem(struct net *net)
105 return atomic_read(&net->ipv4.frags.mem);
108 static int ip_frag_reasm(struct ipq *qp, struct sk_buff *prev,
109 struct net_device *dev);
111 struct ip4_create_arg {
112 struct iphdr *iph;
113 u32 user;
116 static unsigned int ipqhashfn(__be16 id, __be32 saddr, __be32 daddr, u8 prot)
118 return jhash_3words((__force u32)id << 16 | prot,
119 (__force u32)saddr, (__force u32)daddr,
120 ip4_frags.rnd) & (INETFRAGS_HASHSZ - 1);
123 static unsigned int ip4_hashfn(struct inet_frag_queue *q)
125 struct ipq *ipq;
127 ipq = container_of(q, struct ipq, q);
128 return ipqhashfn(ipq->id, ipq->saddr, ipq->daddr, ipq->protocol);
131 static int ip4_frag_match(struct inet_frag_queue *q, void *a)
133 struct ipq *qp;
134 struct ip4_create_arg *arg = a;
136 qp = container_of(q, struct ipq, q);
137 return qp->id == arg->iph->id &&
138 qp->saddr == arg->iph->saddr &&
139 qp->daddr == arg->iph->daddr &&
140 qp->protocol == arg->iph->protocol &&
141 qp->user == arg->user;
144 /* Memory Tracking Functions. */
145 static void frag_kfree_skb(struct netns_frags *nf, struct sk_buff *skb)
147 atomic_sub(skb->truesize, &nf->mem);
148 kfree_skb(skb);
151 static void ip4_frag_init(struct inet_frag_queue *q, void *a)
153 struct ipq *qp = container_of(q, struct ipq, q);
154 struct ip4_create_arg *arg = a;
156 qp->protocol = arg->iph->protocol;
157 qp->id = arg->iph->id;
158 qp->ecn = ip4_frag_ecn(arg->iph->tos);
159 qp->saddr = arg->iph->saddr;
160 qp->daddr = arg->iph->daddr;
161 qp->user = arg->user;
162 qp->peer = sysctl_ipfrag_max_dist ?
163 inet_getpeer_v4(arg->iph->saddr, 1) : NULL;
166 static __inline__ void ip4_frag_free(struct inet_frag_queue *q)
168 struct ipq *qp;
170 qp = container_of(q, struct ipq, q);
171 if (qp->peer)
172 inet_putpeer(qp->peer);
176 /* Destruction primitives. */
178 static __inline__ void ipq_put(struct ipq *ipq)
180 inet_frag_put(&ipq->q, &ip4_frags);
183 /* Kill ipq entry. It is not destroyed immediately,
184 * because caller (and someone more) holds reference count.
186 static void ipq_kill(struct ipq *ipq)
188 inet_frag_kill(&ipq->q, &ip4_frags);
191 /* Memory limiting on fragments. Evictor trashes the oldest
192 * fragment queue until we are back under the threshold.
194 static void ip_evictor(struct net *net)
196 int evicted;
198 evicted = inet_frag_evictor(&net->ipv4.frags, &ip4_frags);
199 if (evicted)
200 IP_ADD_STATS_BH(net, IPSTATS_MIB_REASMFAILS, evicted);
204 * Oops, a fragment queue timed out. Kill it and send an ICMP reply.
206 static void ip_expire(unsigned long arg)
208 struct ipq *qp;
209 struct net *net;
211 qp = container_of((struct inet_frag_queue *) arg, struct ipq, q);
212 net = container_of(qp->q.net, struct net, ipv4.frags);
214 spin_lock(&qp->q.lock);
216 if (qp->q.last_in & INET_FRAG_COMPLETE)
217 goto out;
219 ipq_kill(qp);
221 IP_INC_STATS_BH(net, IPSTATS_MIB_REASMTIMEOUT);
222 IP_INC_STATS_BH(net, IPSTATS_MIB_REASMFAILS);
224 if ((qp->q.last_in & INET_FRAG_FIRST_IN) && qp->q.fragments != NULL) {
225 struct sk_buff *head = qp->q.fragments;
226 const struct iphdr *iph;
227 int err;
229 rcu_read_lock();
230 head->dev = dev_get_by_index_rcu(net, qp->iif);
231 if (!head->dev)
232 goto out_rcu_unlock;
234 /* skb dst is stale, drop it, and perform route lookup again */
235 skb_dst_drop(head);
236 iph = ip_hdr(head);
237 err = ip_route_input_noref(head, iph->daddr, iph->saddr,
238 iph->tos, head->dev);
239 if (err)
240 goto out_rcu_unlock;
243 * Only an end host needs to send an ICMP
244 * "Fragment Reassembly Timeout" message, per RFC792.
246 if (qp->user == IP_DEFRAG_CONNTRACK_IN &&
247 skb_rtable(head)->rt_type != RTN_LOCAL)
248 goto out_rcu_unlock;
251 /* Send an ICMP "Fragment Reassembly Timeout" message. */
252 icmp_send(head, ICMP_TIME_EXCEEDED, ICMP_EXC_FRAGTIME, 0);
253 out_rcu_unlock:
254 rcu_read_unlock();
256 out:
257 spin_unlock(&qp->q.lock);
258 ipq_put(qp);
261 /* Find the correct entry in the "incomplete datagrams" queue for
262 * this IP datagram, and create new one, if nothing is found.
264 static inline struct ipq *ip_find(struct net *net, struct iphdr *iph, u32 user)
266 struct inet_frag_queue *q;
267 struct ip4_create_arg arg;
268 unsigned int hash;
270 arg.iph = iph;
271 arg.user = user;
273 read_lock(&ip4_frags.lock);
274 hash = ipqhashfn(iph->id, iph->saddr, iph->daddr, iph->protocol);
276 q = inet_frag_find(&net->ipv4.frags, &ip4_frags, &arg, hash);
277 if (q == NULL)
278 goto out_nomem;
280 return container_of(q, struct ipq, q);
282 out_nomem:
283 LIMIT_NETDEBUG(KERN_ERR "ip_frag_create: no memory left !\n");
284 return NULL;
287 /* Is the fragment too far ahead to be part of ipq? */
288 static inline int ip_frag_too_far(struct ipq *qp)
290 struct inet_peer *peer = qp->peer;
291 unsigned int max = sysctl_ipfrag_max_dist;
292 unsigned int start, end;
294 int rc;
296 if (!peer || !max)
297 return 0;
299 start = qp->rid;
300 end = atomic_inc_return(&peer->rid);
301 qp->rid = end;
303 rc = qp->q.fragments && (end - start) > max;
305 if (rc) {
306 struct net *net;
308 net = container_of(qp->q.net, struct net, ipv4.frags);
309 IP_INC_STATS_BH(net, IPSTATS_MIB_REASMFAILS);
312 return rc;
315 static int ip_frag_reinit(struct ipq *qp)
317 struct sk_buff *fp;
319 if (!mod_timer(&qp->q.timer, jiffies + qp->q.net->timeout)) {
320 atomic_inc(&qp->q.refcnt);
321 return -ETIMEDOUT;
324 fp = qp->q.fragments;
325 do {
326 struct sk_buff *xp = fp->next;
327 frag_kfree_skb(qp->q.net, fp);
328 fp = xp;
329 } while (fp);
331 qp->q.last_in = 0;
332 qp->q.len = 0;
333 qp->q.meat = 0;
334 qp->q.fragments = NULL;
335 qp->q.fragments_tail = NULL;
336 qp->iif = 0;
337 qp->ecn = 0;
339 return 0;
342 /* Add new segment to existing queue. */
343 static int ip_frag_queue(struct ipq *qp, struct sk_buff *skb)
345 struct sk_buff *prev, *next;
346 struct net_device *dev;
347 int flags, offset;
348 int ihl, end;
349 int err = -ENOENT;
350 u8 ecn;
352 if (qp->q.last_in & INET_FRAG_COMPLETE)
353 goto err;
355 if (!(IPCB(skb)->flags & IPSKB_FRAG_COMPLETE) &&
356 unlikely(ip_frag_too_far(qp)) &&
357 unlikely(err = ip_frag_reinit(qp))) {
358 ipq_kill(qp);
359 goto err;
362 ecn = ip4_frag_ecn(ip_hdr(skb)->tos);
363 offset = ntohs(ip_hdr(skb)->frag_off);
364 flags = offset & ~IP_OFFSET;
365 offset &= IP_OFFSET;
366 offset <<= 3; /* offset is in 8-byte chunks */
367 ihl = ip_hdrlen(skb);
369 /* Determine the position of this fragment. */
370 end = offset + skb->len - ihl;
371 err = -EINVAL;
373 /* Is this the final fragment? */
374 if ((flags & IP_MF) == 0) {
375 /* If we already have some bits beyond end
376 * or have different end, the segment is corrrupted.
378 if (end < qp->q.len ||
379 ((qp->q.last_in & INET_FRAG_LAST_IN) && end != qp->q.len))
380 goto err;
381 qp->q.last_in |= INET_FRAG_LAST_IN;
382 qp->q.len = end;
383 } else {
384 if (end&7) {
385 end &= ~7;
386 if (skb->ip_summed != CHECKSUM_UNNECESSARY)
387 skb->ip_summed = CHECKSUM_NONE;
389 if (end > qp->q.len) {
390 /* Some bits beyond end -> corruption. */
391 if (qp->q.last_in & INET_FRAG_LAST_IN)
392 goto err;
393 qp->q.len = end;
396 if (end == offset)
397 goto err;
399 err = -ENOMEM;
400 if (pskb_pull(skb, ihl) == NULL)
401 goto err;
403 err = pskb_trim_rcsum(skb, end - offset);
404 if (err)
405 goto err;
407 /* Find out which fragments are in front and at the back of us
408 * in the chain of fragments so far. We must know where to put
409 * this fragment, right?
411 prev = qp->q.fragments_tail;
412 if (!prev || FRAG_CB(prev)->offset < offset) {
413 next = NULL;
414 goto found;
416 prev = NULL;
417 for (next = qp->q.fragments; next != NULL; next = next->next) {
418 if (FRAG_CB(next)->offset >= offset)
419 break; /* bingo! */
420 prev = next;
423 found:
424 /* We found where to put this one. Check for overlap with
425 * preceding fragment, and, if needed, align things so that
426 * any overlaps are eliminated.
428 if (prev) {
429 int i = (FRAG_CB(prev)->offset + prev->len) - offset;
431 if (i > 0) {
432 offset += i;
433 err = -EINVAL;
434 if (end <= offset)
435 goto err;
436 err = -ENOMEM;
437 if (!pskb_pull(skb, i))
438 goto err;
439 if (skb->ip_summed != CHECKSUM_UNNECESSARY)
440 skb->ip_summed = CHECKSUM_NONE;
444 err = -ENOMEM;
446 while (next && FRAG_CB(next)->offset < end) {
447 int i = end - FRAG_CB(next)->offset; /* overlap is 'i' bytes */
449 if (i < next->len) {
450 /* Eat head of the next overlapped fragment
451 * and leave the loop. The next ones cannot overlap.
453 if (!pskb_pull(next, i))
454 goto err;
455 FRAG_CB(next)->offset += i;
456 qp->q.meat -= i;
457 if (next->ip_summed != CHECKSUM_UNNECESSARY)
458 next->ip_summed = CHECKSUM_NONE;
459 break;
460 } else {
461 struct sk_buff *free_it = next;
463 /* Old fragment is completely overridden with
464 * new one drop it.
466 next = next->next;
468 if (prev)
469 prev->next = next;
470 else
471 qp->q.fragments = next;
473 qp->q.meat -= free_it->len;
474 frag_kfree_skb(qp->q.net, free_it);
478 FRAG_CB(skb)->offset = offset;
480 /* Insert this fragment in the chain of fragments. */
481 skb->next = next;
482 if (!next)
483 qp->q.fragments_tail = skb;
484 if (prev)
485 prev->next = skb;
486 else
487 qp->q.fragments = skb;
489 dev = skb->dev;
490 if (dev) {
491 qp->iif = dev->ifindex;
492 skb->dev = NULL;
494 qp->q.stamp = skb->tstamp;
495 qp->q.meat += skb->len;
496 qp->ecn |= ecn;
497 atomic_add(skb->truesize, &qp->q.net->mem);
498 if (offset == 0)
499 qp->q.last_in |= INET_FRAG_FIRST_IN;
501 if (qp->q.last_in == (INET_FRAG_FIRST_IN | INET_FRAG_LAST_IN) &&
502 qp->q.meat == qp->q.len)
503 return ip_frag_reasm(qp, prev, dev);
505 write_lock(&ip4_frags.lock);
506 list_move_tail(&qp->q.lru_list, &qp->q.net->lru_list);
507 write_unlock(&ip4_frags.lock);
508 return -EINPROGRESS;
510 err:
511 kfree_skb(skb);
512 return err;
516 /* Build a new IP datagram from all its fragments. */
518 static int ip_frag_reasm(struct ipq *qp, struct sk_buff *prev,
519 struct net_device *dev)
521 struct net *net = container_of(qp->q.net, struct net, ipv4.frags);
522 struct iphdr *iph;
523 struct sk_buff *fp, *head = qp->q.fragments;
524 int len;
525 int ihlen;
526 int err;
528 ipq_kill(qp);
530 /* Make the one we just received the head. */
531 if (prev) {
532 head = prev->next;
533 fp = skb_clone(head, GFP_ATOMIC);
534 if (!fp)
535 goto out_nomem;
537 fp->next = head->next;
538 if (!fp->next)
539 qp->q.fragments_tail = fp;
540 prev->next = fp;
542 skb_morph(head, qp->q.fragments);
543 head->next = qp->q.fragments->next;
545 kfree_skb(qp->q.fragments);
546 qp->q.fragments = head;
549 WARN_ON(head == NULL);
550 WARN_ON(FRAG_CB(head)->offset != 0);
552 /* Allocate a new buffer for the datagram. */
553 ihlen = ip_hdrlen(head);
554 len = ihlen + qp->q.len;
556 err = -E2BIG;
557 if (len > 65535)
558 goto out_oversize;
560 /* Head of list must not be cloned. */
561 if (skb_cloned(head) && pskb_expand_head(head, 0, 0, GFP_ATOMIC))
562 goto out_nomem;
564 /* If the first fragment is fragmented itself, we split
565 * it to two chunks: the first with data and paged part
566 * and the second, holding only fragments. */
567 if (skb_has_frag_list(head)) {
568 struct sk_buff *clone;
569 int i, plen = 0;
571 if ((clone = alloc_skb(0, GFP_ATOMIC)) == NULL)
572 goto out_nomem;
573 clone->next = head->next;
574 head->next = clone;
575 skb_shinfo(clone)->frag_list = skb_shinfo(head)->frag_list;
576 skb_frag_list_init(head);
577 for (i=0; i<skb_shinfo(head)->nr_frags; i++)
578 plen += skb_shinfo(head)->frags[i].size;
579 clone->len = clone->data_len = head->data_len - plen;
580 head->data_len -= clone->len;
581 head->len -= clone->len;
582 clone->csum = 0;
583 clone->ip_summed = head->ip_summed;
584 atomic_add(clone->truesize, &qp->q.net->mem);
587 skb_shinfo(head)->frag_list = head->next;
588 skb_push(head, head->data - skb_network_header(head));
590 for (fp=head->next; fp; fp = fp->next) {
591 head->data_len += fp->len;
592 head->len += fp->len;
593 if (head->ip_summed != fp->ip_summed)
594 head->ip_summed = CHECKSUM_NONE;
595 else if (head->ip_summed == CHECKSUM_COMPLETE)
596 head->csum = csum_add(head->csum, fp->csum);
597 head->truesize += fp->truesize;
599 atomic_sub(head->truesize, &qp->q.net->mem);
601 head->next = NULL;
602 head->dev = dev;
603 head->tstamp = qp->q.stamp;
605 iph = ip_hdr(head);
606 iph->frag_off = 0;
607 iph->tot_len = htons(len);
608 /* RFC3168 5.3 Fragmentation support
609 * If one fragment had INET_ECN_NOT_ECT,
610 * reassembled frame also has INET_ECN_NOT_ECT
611 * Elif one fragment had INET_ECN_CE
612 * reassembled frame also has INET_ECN_CE
614 if (qp->ecn & IPFRAG_ECN_CLEAR)
615 iph->tos &= ~INET_ECN_MASK;
616 else if (qp->ecn & IPFRAG_ECN_SET_CE)
617 iph->tos |= INET_ECN_CE;
619 IP_INC_STATS_BH(net, IPSTATS_MIB_REASMOKS);
620 qp->q.fragments = NULL;
621 qp->q.fragments_tail = NULL;
622 return 0;
624 out_nomem:
625 LIMIT_NETDEBUG(KERN_ERR "IP: queue_glue: no memory for gluing "
626 "queue %p\n", qp);
627 err = -ENOMEM;
628 goto out_fail;
629 out_oversize:
630 if (net_ratelimit())
631 printk(KERN_INFO "Oversized IP packet from %pI4.\n",
632 &qp->saddr);
633 out_fail:
634 IP_INC_STATS_BH(net, IPSTATS_MIB_REASMFAILS);
635 return err;
638 /* Process an incoming IP datagram fragment. */
639 int ip_defrag(struct sk_buff *skb, u32 user)
641 struct ipq *qp;
642 struct net *net;
644 net = skb->dev ? dev_net(skb->dev) : dev_net(skb_dst(skb)->dev);
645 IP_INC_STATS_BH(net, IPSTATS_MIB_REASMREQDS);
647 /* Start by cleaning up the memory. */
648 if (atomic_read(&net->ipv4.frags.mem) > net->ipv4.frags.high_thresh)
649 ip_evictor(net);
651 /* Lookup (or create) queue header */
652 if ((qp = ip_find(net, ip_hdr(skb), user)) != NULL) {
653 int ret;
655 spin_lock(&qp->q.lock);
657 ret = ip_frag_queue(qp, skb);
659 spin_unlock(&qp->q.lock);
660 ipq_put(qp);
661 return ret;
664 IP_INC_STATS_BH(net, IPSTATS_MIB_REASMFAILS);
665 kfree_skb(skb);
666 return -ENOMEM;
668 EXPORT_SYMBOL(ip_defrag);
670 #ifdef CONFIG_SYSCTL
671 static int zero;
673 static struct ctl_table ip4_frags_ns_ctl_table[] = {
675 .procname = "ipfrag_high_thresh",
676 .data = &init_net.ipv4.frags.high_thresh,
677 .maxlen = sizeof(int),
678 .mode = 0644,
679 .proc_handler = proc_dointvec
682 .procname = "ipfrag_low_thresh",
683 .data = &init_net.ipv4.frags.low_thresh,
684 .maxlen = sizeof(int),
685 .mode = 0644,
686 .proc_handler = proc_dointvec
689 .procname = "ipfrag_time",
690 .data = &init_net.ipv4.frags.timeout,
691 .maxlen = sizeof(int),
692 .mode = 0644,
693 .proc_handler = proc_dointvec_jiffies,
698 static struct ctl_table ip4_frags_ctl_table[] = {
700 .procname = "ipfrag_secret_interval",
701 .data = &ip4_frags.secret_interval,
702 .maxlen = sizeof(int),
703 .mode = 0644,
704 .proc_handler = proc_dointvec_jiffies,
707 .procname = "ipfrag_max_dist",
708 .data = &sysctl_ipfrag_max_dist,
709 .maxlen = sizeof(int),
710 .mode = 0644,
711 .proc_handler = proc_dointvec_minmax,
712 .extra1 = &zero
717 static int __net_init ip4_frags_ns_ctl_register(struct net *net)
719 struct ctl_table *table;
720 struct ctl_table_header *hdr;
722 table = ip4_frags_ns_ctl_table;
723 if (!net_eq(net, &init_net)) {
724 table = kmemdup(table, sizeof(ip4_frags_ns_ctl_table), GFP_KERNEL);
725 if (table == NULL)
726 goto err_alloc;
728 table[0].data = &net->ipv4.frags.high_thresh;
729 table[1].data = &net->ipv4.frags.low_thresh;
730 table[2].data = &net->ipv4.frags.timeout;
733 hdr = register_net_sysctl_table(net, net_ipv4_ctl_path, table);
734 if (hdr == NULL)
735 goto err_reg;
737 net->ipv4.frags_hdr = hdr;
738 return 0;
740 err_reg:
741 if (!net_eq(net, &init_net))
742 kfree(table);
743 err_alloc:
744 return -ENOMEM;
747 static void __net_exit ip4_frags_ns_ctl_unregister(struct net *net)
749 struct ctl_table *table;
751 table = net->ipv4.frags_hdr->ctl_table_arg;
752 unregister_net_sysctl_table(net->ipv4.frags_hdr);
753 kfree(table);
756 static void ip4_frags_ctl_register(void)
758 register_net_sysctl_rotable(net_ipv4_ctl_path, ip4_frags_ctl_table);
760 #else
761 static inline int ip4_frags_ns_ctl_register(struct net *net)
763 return 0;
766 static inline void ip4_frags_ns_ctl_unregister(struct net *net)
770 static inline void ip4_frags_ctl_register(void)
773 #endif
775 static int __net_init ipv4_frags_init_net(struct net *net)
778 * Fragment cache limits. We will commit 256K at one time. Should we
779 * cross that limit we will prune down to 192K. This should cope with
780 * even the most extreme cases without allowing an attacker to
781 * measurably harm machine performance.
783 net->ipv4.frags.high_thresh = 256 * 1024;
784 net->ipv4.frags.low_thresh = 192 * 1024;
786 * Important NOTE! Fragment queue must be destroyed before MSL expires.
787 * RFC791 is wrong proposing to prolongate timer each fragment arrival
788 * by TTL.
790 net->ipv4.frags.timeout = IP_FRAG_TIME;
792 inet_frags_init_net(&net->ipv4.frags);
794 return ip4_frags_ns_ctl_register(net);
797 static void __net_exit ipv4_frags_exit_net(struct net *net)
799 ip4_frags_ns_ctl_unregister(net);
800 inet_frags_exit_net(&net->ipv4.frags, &ip4_frags);
803 static struct pernet_operations ip4_frags_ops = {
804 .init = ipv4_frags_init_net,
805 .exit = ipv4_frags_exit_net,
808 void __init ipfrag_init(void)
810 ip4_frags_ctl_register();
811 register_pernet_subsys(&ip4_frags_ops);
812 ip4_frags.hashfn = ip4_hashfn;
813 ip4_frags.constructor = ip4_frag_init;
814 ip4_frags.destructor = ip4_frag_free;
815 ip4_frags.skb_free = NULL;
816 ip4_frags.qsize = sizeof(struct ipq);
817 ip4_frags.match = ip4_frag_match;
818 ip4_frags.frag_expire = ip_expire;
819 ip4_frags.secret_interval = 10 * 60 * HZ;
820 inet_frags_init(&ip4_frags);