2 * NET An implementation of the SOCKET network access protocol.
4 * Version: @(#)socket.c 1.1.93 18/02/95
6 * Authors: Orest Zborowski, <obz@Kodak.COM>
8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
13 * Alan Cox : verify_area() fixes
14 * Alan Cox : Removed DDI
15 * Jonathan Kamens : SOCK_DGRAM reconnect bug
16 * Alan Cox : Moved a load of checks to the very
18 * Alan Cox : Move address structures to/from user
19 * mode above the protocol layers.
20 * Rob Janssen : Allow 0 length sends.
21 * Alan Cox : Asynchronous I/O support (cribbed from the
23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
24 * Jeff Uphoff : Made max number of sockets command-line
26 * Matti Aarnio : Made the number of sockets dynamic,
27 * to be allocated when needed, and mr.
28 * Uphoff's max is used as max to be
29 * allowed to allocate.
30 * Linus : Argh. removed all the socket allocation
31 * altogether: it's in the inode now.
32 * Alan Cox : Made sock_alloc()/sock_release() public
33 * for NetROM and future kernel nfsd type
35 * Alan Cox : sendmsg/recvmsg basics.
36 * Tom Dyas : Export net symbols.
37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
38 * Alan Cox : Added thread locking to sys_* calls
39 * for sockets. May have errors at the
41 * Kevin Buhr : Fixed the dumb errors in the above.
42 * Andi Kleen : Some small cleanups, optimizations,
43 * and fixed a copy_from_user() bug.
44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
45 * Tigran Aivazian : Made listen(2) backlog sanity checks
46 * protocol-independent
49 * This program is free software; you can redistribute it and/or
50 * modify it under the terms of the GNU General Public License
51 * as published by the Free Software Foundation; either version
52 * 2 of the License, or (at your option) any later version.
55 * This module is effectively the top level interface to the BSD socket
58 * Based upon Swansea University Computer Society NET3.039
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/wanrouter.h>
73 #include <linux/if_bridge.h>
74 #include <linux/if_frad.h>
75 #include <linux/if_vlan.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
88 #include <linux/nsproxy.h>
89 #include <linux/magic.h>
91 #include <asm/uaccess.h>
92 #include <asm/unistd.h>
94 #include <net/compat.h>
98 #include <linux/netfilter.h>
100 static int sock_no_open(struct inode
*irrelevant
, struct file
*dontcare
);
101 static ssize_t
sock_aio_read(struct kiocb
*iocb
, const struct iovec
*iov
,
102 unsigned long nr_segs
, loff_t pos
);
103 static ssize_t
sock_aio_write(struct kiocb
*iocb
, const struct iovec
*iov
,
104 unsigned long nr_segs
, loff_t pos
);
105 static int sock_mmap(struct file
*file
, struct vm_area_struct
*vma
);
107 static int sock_close(struct inode
*inode
, struct file
*file
);
108 static unsigned int sock_poll(struct file
*file
,
109 struct poll_table_struct
*wait
);
110 static long sock_ioctl(struct file
*file
, unsigned int cmd
, unsigned long arg
);
112 static long compat_sock_ioctl(struct file
*file
,
113 unsigned int cmd
, unsigned long arg
);
115 static int sock_fasync(int fd
, struct file
*filp
, int on
);
116 static ssize_t
sock_sendpage(struct file
*file
, struct page
*page
,
117 int offset
, size_t size
, loff_t
*ppos
, int more
);
118 static ssize_t
sock_splice_read(struct file
*file
, loff_t
*ppos
,
119 struct pipe_inode_info
*pipe
, size_t len
,
123 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
124 * in the operation structures but are done directly via the socketcall() multiplexor.
127 static const struct file_operations socket_file_ops
= {
128 .owner
= THIS_MODULE
,
130 .aio_read
= sock_aio_read
,
131 .aio_write
= sock_aio_write
,
133 .unlocked_ioctl
= sock_ioctl
,
135 .compat_ioctl
= compat_sock_ioctl
,
138 .open
= sock_no_open
, /* special open code to disallow open via /proc */
139 .release
= sock_close
,
140 .fasync
= sock_fasync
,
141 .sendpage
= sock_sendpage
,
142 .splice_write
= generic_splice_sendpage
,
143 .splice_read
= sock_splice_read
,
147 * The protocol list. Each protocol is registered in here.
150 static DEFINE_SPINLOCK(net_family_lock
);
151 static const struct net_proto_family
*net_families
[NPROTO
] __read_mostly
;
154 * Statistics counters of the socket lists
157 static DEFINE_PER_CPU(int, sockets_in_use
) = 0;
161 * Move socket addresses back and forth across the kernel/user
162 * divide and look after the messy bits.
165 #define MAX_SOCK_ADDR 128 /* 108 for Unix domain -
166 16 for IP, 16 for IPX,
169 must be at least one bigger than
170 the AF_UNIX size (see net/unix/af_unix.c
175 * move_addr_to_kernel - copy a socket address into kernel space
176 * @uaddr: Address in user space
177 * @kaddr: Address in kernel space
178 * @ulen: Length in user space
180 * The address is copied into kernel space. If the provided address is
181 * too long an error code of -EINVAL is returned. If the copy gives
182 * invalid addresses -EFAULT is returned. On a success 0 is returned.
185 int move_addr_to_kernel(void __user
*uaddr
, int ulen
, struct sockaddr
*kaddr
)
187 if (ulen
< 0 || ulen
> sizeof(struct sockaddr_storage
))
191 if (copy_from_user(kaddr
, uaddr
, ulen
))
193 return audit_sockaddr(ulen
, kaddr
);
197 * move_addr_to_user - copy an address to user space
198 * @kaddr: kernel space address
199 * @klen: length of address in kernel
200 * @uaddr: user space address
201 * @ulen: pointer to user length field
203 * The value pointed to by ulen on entry is the buffer length available.
204 * This is overwritten with the buffer space used. -EINVAL is returned
205 * if an overlong buffer is specified or a negative buffer size. -EFAULT
206 * is returned if either the buffer or the length field are not
208 * After copying the data up to the limit the user specifies, the true
209 * length of the data is written over the length limit the user
210 * specified. Zero is returned for a success.
213 int move_addr_to_user(struct sockaddr
*kaddr
, int klen
, void __user
*uaddr
,
219 err
= get_user(len
, ulen
);
224 if (len
< 0 || len
> sizeof(struct sockaddr_storage
))
227 if (audit_sockaddr(klen
, kaddr
))
229 if (copy_to_user(uaddr
, kaddr
, len
))
233 * "fromlen shall refer to the value before truncation.."
236 return __put_user(klen
, ulen
);
239 static struct kmem_cache
*sock_inode_cachep __read_mostly
;
241 static struct inode
*sock_alloc_inode(struct super_block
*sb
)
243 struct socket_alloc
*ei
;
245 ei
= kmem_cache_alloc(sock_inode_cachep
, GFP_KERNEL
);
248 init_waitqueue_head(&ei
->socket
.wait
);
250 ei
->socket
.fasync_list
= NULL
;
251 ei
->socket
.state
= SS_UNCONNECTED
;
252 ei
->socket
.flags
= 0;
253 ei
->socket
.ops
= NULL
;
254 ei
->socket
.sk
= NULL
;
255 ei
->socket
.file
= NULL
;
257 return &ei
->vfs_inode
;
260 static void sock_destroy_inode(struct inode
*inode
)
262 kmem_cache_free(sock_inode_cachep
,
263 container_of(inode
, struct socket_alloc
, vfs_inode
));
266 static void init_once(void *foo
)
268 struct socket_alloc
*ei
= (struct socket_alloc
*)foo
;
270 inode_init_once(&ei
->vfs_inode
);
273 static int init_inodecache(void)
275 sock_inode_cachep
= kmem_cache_create("sock_inode_cache",
276 sizeof(struct socket_alloc
),
278 (SLAB_HWCACHE_ALIGN
|
279 SLAB_RECLAIM_ACCOUNT
|
282 if (sock_inode_cachep
== NULL
)
287 static const struct super_operations sockfs_ops
= {
288 .alloc_inode
= sock_alloc_inode
,
289 .destroy_inode
=sock_destroy_inode
,
290 .statfs
= simple_statfs
,
293 static int sockfs_get_sb(struct file_system_type
*fs_type
,
294 int flags
, const char *dev_name
, void *data
,
295 struct vfsmount
*mnt
)
297 return get_sb_pseudo(fs_type
, "socket:", &sockfs_ops
, SOCKFS_MAGIC
,
301 static struct vfsmount
*sock_mnt __read_mostly
;
303 static struct file_system_type sock_fs_type
= {
305 .get_sb
= sockfs_get_sb
,
306 .kill_sb
= kill_anon_super
,
309 static int sockfs_delete_dentry(struct dentry
*dentry
)
312 * At creation time, we pretended this dentry was hashed
313 * (by clearing DCACHE_UNHASHED bit in d_flags)
314 * At delete time, we restore the truth : not hashed.
315 * (so that dput() can proceed correctly)
317 dentry
->d_flags
|= DCACHE_UNHASHED
;
322 * sockfs_dname() is called from d_path().
324 static char *sockfs_dname(struct dentry
*dentry
, char *buffer
, int buflen
)
326 return dynamic_dname(dentry
, buffer
, buflen
, "socket:[%lu]",
327 dentry
->d_inode
->i_ino
);
330 static const struct dentry_operations sockfs_dentry_operations
= {
331 .d_delete
= sockfs_delete_dentry
,
332 .d_dname
= sockfs_dname
,
336 * Obtains the first available file descriptor and sets it up for use.
338 * These functions create file structures and maps them to fd space
339 * of the current process. On success it returns file descriptor
340 * and file struct implicitly stored in sock->file.
341 * Note that another thread may close file descriptor before we return
342 * from this function. We use the fact that now we do not refer
343 * to socket after mapping. If one day we will need it, this
344 * function will increment ref. count on file by 1.
346 * In any case returned fd MAY BE not valid!
347 * This race condition is unavoidable
348 * with shared fd spaces, we cannot solve it inside kernel,
349 * but we take care of internal coherence yet.
352 static int sock_alloc_fd(struct file
**filep
, int flags
)
356 fd
= get_unused_fd_flags(flags
);
357 if (likely(fd
>= 0)) {
358 struct file
*file
= get_empty_filp();
361 if (unlikely(!file
)) {
370 static int sock_attach_fd(struct socket
*sock
, struct file
*file
, int flags
)
372 struct dentry
*dentry
;
373 struct qstr name
= { .name
= "" };
375 dentry
= d_alloc(sock_mnt
->mnt_sb
->s_root
, &name
);
376 if (unlikely(!dentry
))
379 dentry
->d_op
= &sockfs_dentry_operations
;
381 * We dont want to push this dentry into global dentry hash table.
382 * We pretend dentry is already hashed, by unsetting DCACHE_UNHASHED
383 * This permits a working /proc/$pid/fd/XXX on sockets
385 dentry
->d_flags
&= ~DCACHE_UNHASHED
;
386 d_instantiate(dentry
, SOCK_INODE(sock
));
389 init_file(file
, sock_mnt
, dentry
, FMODE_READ
| FMODE_WRITE
,
391 SOCK_INODE(sock
)->i_fop
= &socket_file_ops
;
392 file
->f_flags
= O_RDWR
| (flags
& O_NONBLOCK
);
394 file
->private_data
= sock
;
399 int sock_map_fd(struct socket
*sock
, int flags
)
401 struct file
*newfile
;
402 int fd
= sock_alloc_fd(&newfile
, flags
);
404 if (likely(fd
>= 0)) {
405 int err
= sock_attach_fd(sock
, newfile
, flags
);
407 if (unlikely(err
< 0)) {
412 fd_install(fd
, newfile
);
417 static struct socket
*sock_from_file(struct file
*file
, int *err
)
419 if (file
->f_op
== &socket_file_ops
)
420 return file
->private_data
; /* set in sock_map_fd */
427 * sockfd_lookup - Go from a file number to its socket slot
429 * @err: pointer to an error code return
431 * The file handle passed in is locked and the socket it is bound
432 * too is returned. If an error occurs the err pointer is overwritten
433 * with a negative errno code and NULL is returned. The function checks
434 * for both invalid handles and passing a handle which is not a socket.
436 * On a success the socket object pointer is returned.
439 struct socket
*sockfd_lookup(int fd
, int *err
)
450 sock
= sock_from_file(file
, err
);
456 static struct socket
*sockfd_lookup_light(int fd
, int *err
, int *fput_needed
)
462 file
= fget_light(fd
, fput_needed
);
464 sock
= sock_from_file(file
, err
);
467 fput_light(file
, *fput_needed
);
473 * sock_alloc - allocate a socket
475 * Allocate a new inode and socket object. The two are bound together
476 * and initialised. The socket is then returned. If we are out of inodes
480 static struct socket
*sock_alloc(void)
485 inode
= new_inode(sock_mnt
->mnt_sb
);
489 sock
= SOCKET_I(inode
);
491 kmemcheck_annotate_bitfield(sock
, type
);
492 inode
->i_mode
= S_IFSOCK
| S_IRWXUGO
;
493 inode
->i_uid
= current_fsuid();
494 inode
->i_gid
= current_fsgid();
496 percpu_add(sockets_in_use
, 1);
501 * In theory you can't get an open on this inode, but /proc provides
502 * a back door. Remember to keep it shut otherwise you'll let the
503 * creepy crawlies in.
506 static int sock_no_open(struct inode
*irrelevant
, struct file
*dontcare
)
511 const struct file_operations bad_sock_fops
= {
512 .owner
= THIS_MODULE
,
513 .open
= sock_no_open
,
517 * sock_release - close a socket
518 * @sock: socket to close
520 * The socket is released from the protocol stack if it has a release
521 * callback, and the inode is then released if the socket is bound to
522 * an inode not a file.
525 void sock_release(struct socket
*sock
)
528 struct module
*owner
= sock
->ops
->owner
;
530 sock
->ops
->release(sock
);
535 if (sock
->fasync_list
)
536 printk(KERN_ERR
"sock_release: fasync list not empty!\n");
538 percpu_sub(sockets_in_use
, 1);
540 iput(SOCK_INODE(sock
));
546 int sock_tx_timestamp(struct msghdr
*msg
, struct sock
*sk
,
547 union skb_shared_tx
*shtx
)
550 if (sock_flag(sk
, SOCK_TIMESTAMPING_TX_HARDWARE
))
552 if (sock_flag(sk
, SOCK_TIMESTAMPING_TX_SOFTWARE
))
556 EXPORT_SYMBOL(sock_tx_timestamp
);
558 static inline int __sock_sendmsg(struct kiocb
*iocb
, struct socket
*sock
,
559 struct msghdr
*msg
, size_t size
)
561 struct sock_iocb
*si
= kiocb_to_siocb(iocb
);
569 err
= security_socket_sendmsg(sock
, msg
, size
);
573 return sock
->ops
->sendmsg(iocb
, sock
, msg
, size
);
576 int sock_sendmsg(struct socket
*sock
, struct msghdr
*msg
, size_t size
)
579 struct sock_iocb siocb
;
582 init_sync_kiocb(&iocb
, NULL
);
583 iocb
.private = &siocb
;
584 ret
= __sock_sendmsg(&iocb
, sock
, msg
, size
);
585 if (-EIOCBQUEUED
== ret
)
586 ret
= wait_on_sync_kiocb(&iocb
);
590 int kernel_sendmsg(struct socket
*sock
, struct msghdr
*msg
,
591 struct kvec
*vec
, size_t num
, size_t size
)
593 mm_segment_t oldfs
= get_fs();
598 * the following is safe, since for compiler definitions of kvec and
599 * iovec are identical, yielding the same in-core layout and alignment
601 msg
->msg_iov
= (struct iovec
*)vec
;
602 msg
->msg_iovlen
= num
;
603 result
= sock_sendmsg(sock
, msg
, size
);
608 static int ktime2ts(ktime_t kt
, struct timespec
*ts
)
611 *ts
= ktime_to_timespec(kt
);
619 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
621 void __sock_recv_timestamp(struct msghdr
*msg
, struct sock
*sk
,
624 int need_software_tstamp
= sock_flag(sk
, SOCK_RCVTSTAMP
);
625 struct timespec ts
[3];
627 struct skb_shared_hwtstamps
*shhwtstamps
=
630 /* Race occurred between timestamp enabling and packet
631 receiving. Fill in the current time for now. */
632 if (need_software_tstamp
&& skb
->tstamp
.tv64
== 0)
633 __net_timestamp(skb
);
635 if (need_software_tstamp
) {
636 if (!sock_flag(sk
, SOCK_RCVTSTAMPNS
)) {
638 skb_get_timestamp(skb
, &tv
);
639 put_cmsg(msg
, SOL_SOCKET
, SCM_TIMESTAMP
,
643 skb_get_timestampns(skb
, &ts
);
644 put_cmsg(msg
, SOL_SOCKET
, SCM_TIMESTAMPNS
,
650 memset(ts
, 0, sizeof(ts
));
651 if (skb
->tstamp
.tv64
&&
652 sock_flag(sk
, SOCK_TIMESTAMPING_SOFTWARE
)) {
653 skb_get_timestampns(skb
, ts
+ 0);
657 if (sock_flag(sk
, SOCK_TIMESTAMPING_SYS_HARDWARE
) &&
658 ktime2ts(shhwtstamps
->syststamp
, ts
+ 1))
660 if (sock_flag(sk
, SOCK_TIMESTAMPING_RAW_HARDWARE
) &&
661 ktime2ts(shhwtstamps
->hwtstamp
, ts
+ 2))
665 put_cmsg(msg
, SOL_SOCKET
,
666 SCM_TIMESTAMPING
, sizeof(ts
), &ts
);
669 EXPORT_SYMBOL_GPL(__sock_recv_timestamp
);
671 static inline int __sock_recvmsg(struct kiocb
*iocb
, struct socket
*sock
,
672 struct msghdr
*msg
, size_t size
, int flags
)
675 struct sock_iocb
*si
= kiocb_to_siocb(iocb
);
683 err
= security_socket_recvmsg(sock
, msg
, size
, flags
);
687 return sock
->ops
->recvmsg(iocb
, sock
, msg
, size
, flags
);
690 int sock_recvmsg(struct socket
*sock
, struct msghdr
*msg
,
691 size_t size
, int flags
)
694 struct sock_iocb siocb
;
697 init_sync_kiocb(&iocb
, NULL
);
698 iocb
.private = &siocb
;
699 ret
= __sock_recvmsg(&iocb
, sock
, msg
, size
, flags
);
700 if (-EIOCBQUEUED
== ret
)
701 ret
= wait_on_sync_kiocb(&iocb
);
705 int kernel_recvmsg(struct socket
*sock
, struct msghdr
*msg
,
706 struct kvec
*vec
, size_t num
, size_t size
, int flags
)
708 mm_segment_t oldfs
= get_fs();
713 * the following is safe, since for compiler definitions of kvec and
714 * iovec are identical, yielding the same in-core layout and alignment
716 msg
->msg_iov
= (struct iovec
*)vec
, msg
->msg_iovlen
= num
;
717 result
= sock_recvmsg(sock
, msg
, size
, flags
);
722 static void sock_aio_dtor(struct kiocb
*iocb
)
724 kfree(iocb
->private);
727 static ssize_t
sock_sendpage(struct file
*file
, struct page
*page
,
728 int offset
, size_t size
, loff_t
*ppos
, int more
)
733 sock
= file
->private_data
;
735 flags
= !(file
->f_flags
& O_NONBLOCK
) ? 0 : MSG_DONTWAIT
;
739 return kernel_sendpage(sock
, page
, offset
, size
, flags
);
742 static ssize_t
sock_splice_read(struct file
*file
, loff_t
*ppos
,
743 struct pipe_inode_info
*pipe
, size_t len
,
746 struct socket
*sock
= file
->private_data
;
748 if (unlikely(!sock
->ops
->splice_read
))
751 return sock
->ops
->splice_read(sock
, ppos
, pipe
, len
, flags
);
754 static struct sock_iocb
*alloc_sock_iocb(struct kiocb
*iocb
,
755 struct sock_iocb
*siocb
)
757 if (!is_sync_kiocb(iocb
)) {
758 siocb
= kmalloc(sizeof(*siocb
), GFP_KERNEL
);
761 iocb
->ki_dtor
= sock_aio_dtor
;
765 iocb
->private = siocb
;
769 static ssize_t
do_sock_read(struct msghdr
*msg
, struct kiocb
*iocb
,
770 struct file
*file
, const struct iovec
*iov
,
771 unsigned long nr_segs
)
773 struct socket
*sock
= file
->private_data
;
777 for (i
= 0; i
< nr_segs
; i
++)
778 size
+= iov
[i
].iov_len
;
780 msg
->msg_name
= NULL
;
781 msg
->msg_namelen
= 0;
782 msg
->msg_control
= NULL
;
783 msg
->msg_controllen
= 0;
784 msg
->msg_iov
= (struct iovec
*)iov
;
785 msg
->msg_iovlen
= nr_segs
;
786 msg
->msg_flags
= (file
->f_flags
& O_NONBLOCK
) ? MSG_DONTWAIT
: 0;
788 return __sock_recvmsg(iocb
, sock
, msg
, size
, msg
->msg_flags
);
791 static ssize_t
sock_aio_read(struct kiocb
*iocb
, const struct iovec
*iov
,
792 unsigned long nr_segs
, loff_t pos
)
794 struct sock_iocb siocb
, *x
;
799 if (iocb
->ki_left
== 0) /* Match SYS5 behaviour */
803 x
= alloc_sock_iocb(iocb
, &siocb
);
806 return do_sock_read(&x
->async_msg
, iocb
, iocb
->ki_filp
, iov
, nr_segs
);
809 static ssize_t
do_sock_write(struct msghdr
*msg
, struct kiocb
*iocb
,
810 struct file
*file
, const struct iovec
*iov
,
811 unsigned long nr_segs
)
813 struct socket
*sock
= file
->private_data
;
817 for (i
= 0; i
< nr_segs
; i
++)
818 size
+= iov
[i
].iov_len
;
820 msg
->msg_name
= NULL
;
821 msg
->msg_namelen
= 0;
822 msg
->msg_control
= NULL
;
823 msg
->msg_controllen
= 0;
824 msg
->msg_iov
= (struct iovec
*)iov
;
825 msg
->msg_iovlen
= nr_segs
;
826 msg
->msg_flags
= (file
->f_flags
& O_NONBLOCK
) ? MSG_DONTWAIT
: 0;
827 if (sock
->type
== SOCK_SEQPACKET
)
828 msg
->msg_flags
|= MSG_EOR
;
830 return __sock_sendmsg(iocb
, sock
, msg
, size
);
833 static ssize_t
sock_aio_write(struct kiocb
*iocb
, const struct iovec
*iov
,
834 unsigned long nr_segs
, loff_t pos
)
836 struct sock_iocb siocb
, *x
;
841 x
= alloc_sock_iocb(iocb
, &siocb
);
845 return do_sock_write(&x
->async_msg
, iocb
, iocb
->ki_filp
, iov
, nr_segs
);
849 * Atomic setting of ioctl hooks to avoid race
850 * with module unload.
853 static DEFINE_MUTEX(br_ioctl_mutex
);
854 static int (*br_ioctl_hook
) (struct net
*, unsigned int cmd
, void __user
*arg
) = NULL
;
856 void brioctl_set(int (*hook
) (struct net
*, unsigned int, void __user
*))
858 mutex_lock(&br_ioctl_mutex
);
859 br_ioctl_hook
= hook
;
860 mutex_unlock(&br_ioctl_mutex
);
863 EXPORT_SYMBOL(brioctl_set
);
865 static DEFINE_MUTEX(vlan_ioctl_mutex
);
866 static int (*vlan_ioctl_hook
) (struct net
*, void __user
*arg
);
868 void vlan_ioctl_set(int (*hook
) (struct net
*, void __user
*))
870 mutex_lock(&vlan_ioctl_mutex
);
871 vlan_ioctl_hook
= hook
;
872 mutex_unlock(&vlan_ioctl_mutex
);
875 EXPORT_SYMBOL(vlan_ioctl_set
);
877 static DEFINE_MUTEX(dlci_ioctl_mutex
);
878 static int (*dlci_ioctl_hook
) (unsigned int, void __user
*);
880 void dlci_ioctl_set(int (*hook
) (unsigned int, void __user
*))
882 mutex_lock(&dlci_ioctl_mutex
);
883 dlci_ioctl_hook
= hook
;
884 mutex_unlock(&dlci_ioctl_mutex
);
887 EXPORT_SYMBOL(dlci_ioctl_set
);
890 * With an ioctl, arg may well be a user mode pointer, but we don't know
891 * what to do with it - that's up to the protocol still.
894 static long sock_ioctl(struct file
*file
, unsigned cmd
, unsigned long arg
)
898 void __user
*argp
= (void __user
*)arg
;
902 sock
= file
->private_data
;
905 if (cmd
>= SIOCDEVPRIVATE
&& cmd
<= (SIOCDEVPRIVATE
+ 15)) {
906 err
= dev_ioctl(net
, cmd
, argp
);
908 #ifdef CONFIG_WIRELESS_EXT
909 if (cmd
>= SIOCIWFIRST
&& cmd
<= SIOCIWLAST
) {
910 err
= dev_ioctl(net
, cmd
, argp
);
912 #endif /* CONFIG_WIRELESS_EXT */
917 if (get_user(pid
, (int __user
*)argp
))
919 err
= f_setown(sock
->file
, pid
, 1);
923 err
= put_user(f_getown(sock
->file
),
932 request_module("bridge");
934 mutex_lock(&br_ioctl_mutex
);
936 err
= br_ioctl_hook(net
, cmd
, argp
);
937 mutex_unlock(&br_ioctl_mutex
);
942 if (!vlan_ioctl_hook
)
943 request_module("8021q");
945 mutex_lock(&vlan_ioctl_mutex
);
947 err
= vlan_ioctl_hook(net
, argp
);
948 mutex_unlock(&vlan_ioctl_mutex
);
953 if (!dlci_ioctl_hook
)
954 request_module("dlci");
956 mutex_lock(&dlci_ioctl_mutex
);
958 err
= dlci_ioctl_hook(cmd
, argp
);
959 mutex_unlock(&dlci_ioctl_mutex
);
962 err
= sock
->ops
->ioctl(sock
, cmd
, arg
);
965 * If this ioctl is unknown try to hand it down
968 if (err
== -ENOIOCTLCMD
)
969 err
= dev_ioctl(net
, cmd
, argp
);
975 int sock_create_lite(int family
, int type
, int protocol
, struct socket
**res
)
978 struct socket
*sock
= NULL
;
980 err
= security_socket_create(family
, type
, protocol
, 1);
991 err
= security_socket_post_create(sock
, family
, type
, protocol
, 1);
1004 /* No kernel lock held - perfect */
1005 static unsigned int sock_poll(struct file
*file
, poll_table
*wait
)
1007 struct socket
*sock
;
1010 * We can't return errors to poll, so it's either yes or no.
1012 sock
= file
->private_data
;
1013 return sock
->ops
->poll(file
, sock
, wait
);
1016 static int sock_mmap(struct file
*file
, struct vm_area_struct
*vma
)
1018 struct socket
*sock
= file
->private_data
;
1020 return sock
->ops
->mmap(file
, sock
, vma
);
1023 static int sock_close(struct inode
*inode
, struct file
*filp
)
1026 * It was possible the inode is NULL we were
1027 * closing an unfinished socket.
1031 printk(KERN_DEBUG
"sock_close: NULL inode\n");
1034 sock_release(SOCKET_I(inode
));
1039 * Update the socket async list
1041 * Fasync_list locking strategy.
1043 * 1. fasync_list is modified only under process context socket lock
1044 * i.e. under semaphore.
1045 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1046 * or under socket lock.
1047 * 3. fasync_list can be used from softirq context, so that
1048 * modification under socket lock have to be enhanced with
1049 * write_lock_bh(&sk->sk_callback_lock).
1053 static int sock_fasync(int fd
, struct file
*filp
, int on
)
1055 struct fasync_struct
*fa
, *fna
= NULL
, **prev
;
1056 struct socket
*sock
;
1060 fna
= kmalloc(sizeof(struct fasync_struct
), GFP_KERNEL
);
1065 sock
= filp
->private_data
;
1075 spin_lock(&filp
->f_lock
);
1077 filp
->f_flags
|= FASYNC
;
1079 filp
->f_flags
&= ~FASYNC
;
1080 spin_unlock(&filp
->f_lock
);
1082 prev
= &(sock
->fasync_list
);
1084 for (fa
= *prev
; fa
!= NULL
; prev
= &fa
->fa_next
, fa
= *prev
)
1085 if (fa
->fa_file
== filp
)
1090 write_lock_bh(&sk
->sk_callback_lock
);
1092 write_unlock_bh(&sk
->sk_callback_lock
);
1097 fna
->fa_file
= filp
;
1099 fna
->magic
= FASYNC_MAGIC
;
1100 fna
->fa_next
= sock
->fasync_list
;
1101 write_lock_bh(&sk
->sk_callback_lock
);
1102 sock
->fasync_list
= fna
;
1103 write_unlock_bh(&sk
->sk_callback_lock
);
1106 write_lock_bh(&sk
->sk_callback_lock
);
1107 *prev
= fa
->fa_next
;
1108 write_unlock_bh(&sk
->sk_callback_lock
);
1114 release_sock(sock
->sk
);
1118 /* This function may be called only under socket lock or callback_lock */
1120 int sock_wake_async(struct socket
*sock
, int how
, int band
)
1122 if (!sock
|| !sock
->fasync_list
)
1125 case SOCK_WAKE_WAITD
:
1126 if (test_bit(SOCK_ASYNC_WAITDATA
, &sock
->flags
))
1129 case SOCK_WAKE_SPACE
:
1130 if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE
, &sock
->flags
))
1135 __kill_fasync(sock
->fasync_list
, SIGIO
, band
);
1138 __kill_fasync(sock
->fasync_list
, SIGURG
, band
);
1143 static int __sock_create(struct net
*net
, int family
, int type
, int protocol
,
1144 struct socket
**res
, int kern
)
1147 struct socket
*sock
;
1148 const struct net_proto_family
*pf
;
1151 * Check protocol is in range
1153 if (family
< 0 || family
>= NPROTO
)
1154 return -EAFNOSUPPORT
;
1155 if (type
< 0 || type
>= SOCK_MAX
)
1160 This uglymoron is moved from INET layer to here to avoid
1161 deadlock in module load.
1163 if (family
== PF_INET
&& type
== SOCK_PACKET
) {
1167 printk(KERN_INFO
"%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1173 err
= security_socket_create(family
, type
, protocol
, kern
);
1178 * Allocate the socket and allow the family to set things up. if
1179 * the protocol is 0, the family is instructed to select an appropriate
1182 sock
= sock_alloc();
1184 if (net_ratelimit())
1185 printk(KERN_WARNING
"socket: no more sockets\n");
1186 return -ENFILE
; /* Not exactly a match, but its the
1187 closest posix thing */
1192 #ifdef CONFIG_MODULES
1193 /* Attempt to load a protocol module if the find failed.
1195 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1196 * requested real, full-featured networking support upon configuration.
1197 * Otherwise module support will break!
1199 if (net_families
[family
] == NULL
)
1200 request_module("net-pf-%d", family
);
1204 pf
= rcu_dereference(net_families
[family
]);
1205 err
= -EAFNOSUPPORT
;
1210 * We will call the ->create function, that possibly is in a loadable
1211 * module, so we have to bump that loadable module refcnt first.
1213 if (!try_module_get(pf
->owner
))
1216 /* Now protected by module ref count */
1219 err
= pf
->create(net
, sock
, protocol
);
1221 goto out_module_put
;
1224 * Now to bump the refcnt of the [loadable] module that owns this
1225 * socket at sock_release time we decrement its refcnt.
1227 if (!try_module_get(sock
->ops
->owner
))
1228 goto out_module_busy
;
1231 * Now that we're done with the ->create function, the [loadable]
1232 * module can have its refcnt decremented
1234 module_put(pf
->owner
);
1235 err
= security_socket_post_create(sock
, family
, type
, protocol
, kern
);
1237 goto out_sock_release
;
1243 err
= -EAFNOSUPPORT
;
1246 module_put(pf
->owner
);
1253 goto out_sock_release
;
1256 int sock_create(int family
, int type
, int protocol
, struct socket
**res
)
1258 return __sock_create(current
->nsproxy
->net_ns
, family
, type
, protocol
, res
, 0);
1261 int sock_create_kern(int family
, int type
, int protocol
, struct socket
**res
)
1263 return __sock_create(&init_net
, family
, type
, protocol
, res
, 1);
1266 SYSCALL_DEFINE3(socket
, int, family
, int, type
, int, protocol
)
1269 struct socket
*sock
;
1272 /* Check the SOCK_* constants for consistency. */
1273 BUILD_BUG_ON(SOCK_CLOEXEC
!= O_CLOEXEC
);
1274 BUILD_BUG_ON((SOCK_MAX
| SOCK_TYPE_MASK
) != SOCK_TYPE_MASK
);
1275 BUILD_BUG_ON(SOCK_CLOEXEC
& SOCK_TYPE_MASK
);
1276 BUILD_BUG_ON(SOCK_NONBLOCK
& SOCK_TYPE_MASK
);
1278 flags
= type
& ~SOCK_TYPE_MASK
;
1279 if (flags
& ~(SOCK_CLOEXEC
| SOCK_NONBLOCK
))
1281 type
&= SOCK_TYPE_MASK
;
1283 if (SOCK_NONBLOCK
!= O_NONBLOCK
&& (flags
& SOCK_NONBLOCK
))
1284 flags
= (flags
& ~SOCK_NONBLOCK
) | O_NONBLOCK
;
1286 retval
= sock_create(family
, type
, protocol
, &sock
);
1290 retval
= sock_map_fd(sock
, flags
& (O_CLOEXEC
| O_NONBLOCK
));
1295 /* It may be already another descriptor 8) Not kernel problem. */
1304 * Create a pair of connected sockets.
1307 SYSCALL_DEFINE4(socketpair
, int, family
, int, type
, int, protocol
,
1308 int __user
*, usockvec
)
1310 struct socket
*sock1
, *sock2
;
1312 struct file
*newfile1
, *newfile2
;
1315 flags
= type
& ~SOCK_TYPE_MASK
;
1316 if (flags
& ~(SOCK_CLOEXEC
| SOCK_NONBLOCK
))
1318 type
&= SOCK_TYPE_MASK
;
1320 if (SOCK_NONBLOCK
!= O_NONBLOCK
&& (flags
& SOCK_NONBLOCK
))
1321 flags
= (flags
& ~SOCK_NONBLOCK
) | O_NONBLOCK
;
1324 * Obtain the first socket and check if the underlying protocol
1325 * supports the socketpair call.
1328 err
= sock_create(family
, type
, protocol
, &sock1
);
1332 err
= sock_create(family
, type
, protocol
, &sock2
);
1336 err
= sock1
->ops
->socketpair(sock1
, sock2
);
1338 goto out_release_both
;
1340 fd1
= sock_alloc_fd(&newfile1
, flags
& O_CLOEXEC
);
1341 if (unlikely(fd1
< 0)) {
1343 goto out_release_both
;
1346 fd2
= sock_alloc_fd(&newfile2
, flags
& O_CLOEXEC
);
1347 if (unlikely(fd2
< 0)) {
1351 goto out_release_both
;
1354 err
= sock_attach_fd(sock1
, newfile1
, flags
& O_NONBLOCK
);
1355 if (unlikely(err
< 0)) {
1359 err
= sock_attach_fd(sock2
, newfile2
, flags
& O_NONBLOCK
);
1360 if (unlikely(err
< 0)) {
1365 audit_fd_pair(fd1
, fd2
);
1366 fd_install(fd1
, newfile1
);
1367 fd_install(fd2
, newfile2
);
1368 /* fd1 and fd2 may be already another descriptors.
1369 * Not kernel problem.
1372 err
= put_user(fd1
, &usockvec
[0]);
1374 err
= put_user(fd2
, &usockvec
[1]);
1383 sock_release(sock2
);
1385 sock_release(sock1
);
1391 sock_release(sock1
);
1394 sock_release(sock2
);
1401 * Bind a name to a socket. Nothing much to do here since it's
1402 * the protocol's responsibility to handle the local address.
1404 * We move the socket address to kernel space before we call
1405 * the protocol layer (having also checked the address is ok).
1408 SYSCALL_DEFINE3(bind
, int, fd
, struct sockaddr __user
*, umyaddr
, int, addrlen
)
1410 struct socket
*sock
;
1411 struct sockaddr_storage address
;
1412 int err
, fput_needed
;
1414 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1416 err
= move_addr_to_kernel(umyaddr
, addrlen
, (struct sockaddr
*)&address
);
1418 err
= security_socket_bind(sock
,
1419 (struct sockaddr
*)&address
,
1422 err
= sock
->ops
->bind(sock
,
1426 fput_light(sock
->file
, fput_needed
);
1432 * Perform a listen. Basically, we allow the protocol to do anything
1433 * necessary for a listen, and if that works, we mark the socket as
1434 * ready for listening.
1437 SYSCALL_DEFINE2(listen
, int, fd
, int, backlog
)
1439 struct socket
*sock
;
1440 int err
, fput_needed
;
1443 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1445 somaxconn
= sock_net(sock
->sk
)->core
.sysctl_somaxconn
;
1446 if ((unsigned)backlog
> somaxconn
)
1447 backlog
= somaxconn
;
1449 err
= security_socket_listen(sock
, backlog
);
1451 err
= sock
->ops
->listen(sock
, backlog
);
1453 fput_light(sock
->file
, fput_needed
);
1459 * For accept, we attempt to create a new socket, set up the link
1460 * with the client, wake up the client, then return the new
1461 * connected fd. We collect the address of the connector in kernel
1462 * space and move it to user at the very end. This is unclean because
1463 * we open the socket then return an error.
1465 * 1003.1g adds the ability to recvmsg() to query connection pending
1466 * status to recvmsg. We need to add that support in a way thats
1467 * clean when we restucture accept also.
1470 SYSCALL_DEFINE4(accept4
, int, fd
, struct sockaddr __user
*, upeer_sockaddr
,
1471 int __user
*, upeer_addrlen
, int, flags
)
1473 struct socket
*sock
, *newsock
;
1474 struct file
*newfile
;
1475 int err
, len
, newfd
, fput_needed
;
1476 struct sockaddr_storage address
;
1478 if (flags
& ~(SOCK_CLOEXEC
| SOCK_NONBLOCK
))
1481 if (SOCK_NONBLOCK
!= O_NONBLOCK
&& (flags
& SOCK_NONBLOCK
))
1482 flags
= (flags
& ~SOCK_NONBLOCK
) | O_NONBLOCK
;
1484 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1489 if (!(newsock
= sock_alloc()))
1492 newsock
->type
= sock
->type
;
1493 newsock
->ops
= sock
->ops
;
1496 * We don't need try_module_get here, as the listening socket (sock)
1497 * has the protocol module (sock->ops->owner) held.
1499 __module_get(newsock
->ops
->owner
);
1501 newfd
= sock_alloc_fd(&newfile
, flags
& O_CLOEXEC
);
1502 if (unlikely(newfd
< 0)) {
1504 sock_release(newsock
);
1508 err
= sock_attach_fd(newsock
, newfile
, flags
& O_NONBLOCK
);
1512 err
= security_socket_accept(sock
, newsock
);
1516 err
= sock
->ops
->accept(sock
, newsock
, sock
->file
->f_flags
);
1520 if (upeer_sockaddr
) {
1521 if (newsock
->ops
->getname(newsock
, (struct sockaddr
*)&address
,
1523 err
= -ECONNABORTED
;
1526 err
= move_addr_to_user((struct sockaddr
*)&address
,
1527 len
, upeer_sockaddr
, upeer_addrlen
);
1532 /* File flags are not inherited via accept() unlike another OSes. */
1534 fd_install(newfd
, newfile
);
1538 fput_light(sock
->file
, fput_needed
);
1542 sock_release(newsock
);
1544 put_unused_fd(newfd
);
1548 put_unused_fd(newfd
);
1552 SYSCALL_DEFINE3(accept
, int, fd
, struct sockaddr __user
*, upeer_sockaddr
,
1553 int __user
*, upeer_addrlen
)
1555 return sys_accept4(fd
, upeer_sockaddr
, upeer_addrlen
, 0);
1559 * Attempt to connect to a socket with the server address. The address
1560 * is in user space so we verify it is OK and move it to kernel space.
1562 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1565 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1566 * other SEQPACKET protocols that take time to connect() as it doesn't
1567 * include the -EINPROGRESS status for such sockets.
1570 SYSCALL_DEFINE3(connect
, int, fd
, struct sockaddr __user
*, uservaddr
,
1573 struct socket
*sock
;
1574 struct sockaddr_storage address
;
1575 int err
, fput_needed
;
1577 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1580 err
= move_addr_to_kernel(uservaddr
, addrlen
, (struct sockaddr
*)&address
);
1585 security_socket_connect(sock
, (struct sockaddr
*)&address
, addrlen
);
1589 err
= sock
->ops
->connect(sock
, (struct sockaddr
*)&address
, addrlen
,
1590 sock
->file
->f_flags
);
1592 fput_light(sock
->file
, fput_needed
);
1598 * Get the local address ('name') of a socket object. Move the obtained
1599 * name to user space.
1602 SYSCALL_DEFINE3(getsockname
, int, fd
, struct sockaddr __user
*, usockaddr
,
1603 int __user
*, usockaddr_len
)
1605 struct socket
*sock
;
1606 struct sockaddr_storage address
;
1607 int len
, err
, fput_needed
;
1609 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1613 err
= security_socket_getsockname(sock
);
1617 err
= sock
->ops
->getname(sock
, (struct sockaddr
*)&address
, &len
, 0);
1620 err
= move_addr_to_user((struct sockaddr
*)&address
, len
, usockaddr
, usockaddr_len
);
1623 fput_light(sock
->file
, fput_needed
);
1629 * Get the remote address ('name') of a socket object. Move the obtained
1630 * name to user space.
1633 SYSCALL_DEFINE3(getpeername
, int, fd
, struct sockaddr __user
*, usockaddr
,
1634 int __user
*, usockaddr_len
)
1636 struct socket
*sock
;
1637 struct sockaddr_storage address
;
1638 int len
, err
, fput_needed
;
1640 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1642 err
= security_socket_getpeername(sock
);
1644 fput_light(sock
->file
, fput_needed
);
1649 sock
->ops
->getname(sock
, (struct sockaddr
*)&address
, &len
,
1652 err
= move_addr_to_user((struct sockaddr
*)&address
, len
, usockaddr
,
1654 fput_light(sock
->file
, fput_needed
);
1660 * Send a datagram to a given address. We move the address into kernel
1661 * space and check the user space data area is readable before invoking
1665 SYSCALL_DEFINE6(sendto
, int, fd
, void __user
*, buff
, size_t, len
,
1666 unsigned, flags
, struct sockaddr __user
*, addr
,
1669 struct socket
*sock
;
1670 struct sockaddr_storage address
;
1676 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1680 iov
.iov_base
= buff
;
1682 msg
.msg_name
= NULL
;
1685 msg
.msg_control
= NULL
;
1686 msg
.msg_controllen
= 0;
1687 msg
.msg_namelen
= 0;
1689 err
= move_addr_to_kernel(addr
, addr_len
, (struct sockaddr
*)&address
);
1692 msg
.msg_name
= (struct sockaddr
*)&address
;
1693 msg
.msg_namelen
= addr_len
;
1695 if (sock
->file
->f_flags
& O_NONBLOCK
)
1696 flags
|= MSG_DONTWAIT
;
1697 msg
.msg_flags
= flags
;
1698 err
= sock_sendmsg(sock
, &msg
, len
);
1701 fput_light(sock
->file
, fput_needed
);
1707 * Send a datagram down a socket.
1710 SYSCALL_DEFINE4(send
, int, fd
, void __user
*, buff
, size_t, len
,
1713 return sys_sendto(fd
, buff
, len
, flags
, NULL
, 0);
1717 * Receive a frame from the socket and optionally record the address of the
1718 * sender. We verify the buffers are writable and if needed move the
1719 * sender address from kernel to user space.
1722 SYSCALL_DEFINE6(recvfrom
, int, fd
, void __user
*, ubuf
, size_t, size
,
1723 unsigned, flags
, struct sockaddr __user
*, addr
,
1724 int __user
*, addr_len
)
1726 struct socket
*sock
;
1729 struct sockaddr_storage address
;
1733 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1737 msg
.msg_control
= NULL
;
1738 msg
.msg_controllen
= 0;
1742 iov
.iov_base
= ubuf
;
1743 msg
.msg_name
= (struct sockaddr
*)&address
;
1744 msg
.msg_namelen
= sizeof(address
);
1745 if (sock
->file
->f_flags
& O_NONBLOCK
)
1746 flags
|= MSG_DONTWAIT
;
1747 err
= sock_recvmsg(sock
, &msg
, size
, flags
);
1749 if (err
>= 0 && addr
!= NULL
) {
1750 err2
= move_addr_to_user((struct sockaddr
*)&address
,
1751 msg
.msg_namelen
, addr
, addr_len
);
1756 fput_light(sock
->file
, fput_needed
);
1762 * Receive a datagram from a socket.
1765 asmlinkage
long sys_recv(int fd
, void __user
*ubuf
, size_t size
,
1768 return sys_recvfrom(fd
, ubuf
, size
, flags
, NULL
, NULL
);
1772 * Set a socket option. Because we don't know the option lengths we have
1773 * to pass the user mode parameter for the protocols to sort out.
1776 SYSCALL_DEFINE5(setsockopt
, int, fd
, int, level
, int, optname
,
1777 char __user
*, optval
, int, optlen
)
1779 int err
, fput_needed
;
1780 struct socket
*sock
;
1785 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1787 err
= security_socket_setsockopt(sock
, level
, optname
);
1791 if (level
== SOL_SOCKET
)
1793 sock_setsockopt(sock
, level
, optname
, optval
,
1797 sock
->ops
->setsockopt(sock
, level
, optname
, optval
,
1800 fput_light(sock
->file
, fput_needed
);
1806 * Get a socket option. Because we don't know the option lengths we have
1807 * to pass a user mode parameter for the protocols to sort out.
1810 SYSCALL_DEFINE5(getsockopt
, int, fd
, int, level
, int, optname
,
1811 char __user
*, optval
, int __user
*, optlen
)
1813 int err
, fput_needed
;
1814 struct socket
*sock
;
1816 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1818 err
= security_socket_getsockopt(sock
, level
, optname
);
1822 if (level
== SOL_SOCKET
)
1824 sock_getsockopt(sock
, level
, optname
, optval
,
1828 sock
->ops
->getsockopt(sock
, level
, optname
, optval
,
1831 fput_light(sock
->file
, fput_needed
);
1837 * Shutdown a socket.
1840 SYSCALL_DEFINE2(shutdown
, int, fd
, int, how
)
1842 int err
, fput_needed
;
1843 struct socket
*sock
;
1845 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1847 err
= security_socket_shutdown(sock
, how
);
1849 err
= sock
->ops
->shutdown(sock
, how
);
1850 fput_light(sock
->file
, fput_needed
);
1855 /* A couple of helpful macros for getting the address of the 32/64 bit
1856 * fields which are the same type (int / unsigned) on our platforms.
1858 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1859 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
1860 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
1863 * BSD sendmsg interface
1866 SYSCALL_DEFINE3(sendmsg
, int, fd
, struct msghdr __user
*, msg
, unsigned, flags
)
1868 struct compat_msghdr __user
*msg_compat
=
1869 (struct compat_msghdr __user
*)msg
;
1870 struct socket
*sock
;
1871 struct sockaddr_storage address
;
1872 struct iovec iovstack
[UIO_FASTIOV
], *iov
= iovstack
;
1873 unsigned char ctl
[sizeof(struct cmsghdr
) + 20]
1874 __attribute__ ((aligned(sizeof(__kernel_size_t
))));
1875 /* 20 is size of ipv6_pktinfo */
1876 unsigned char *ctl_buf
= ctl
;
1877 struct msghdr msg_sys
;
1878 int err
, ctl_len
, iov_size
, total_len
;
1882 if (MSG_CMSG_COMPAT
& flags
) {
1883 if (get_compat_msghdr(&msg_sys
, msg_compat
))
1886 else if (copy_from_user(&msg_sys
, msg
, sizeof(struct msghdr
)))
1889 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1893 /* do not move before msg_sys is valid */
1895 if (msg_sys
.msg_iovlen
> UIO_MAXIOV
)
1898 /* Check whether to allocate the iovec area */
1900 iov_size
= msg_sys
.msg_iovlen
* sizeof(struct iovec
);
1901 if (msg_sys
.msg_iovlen
> UIO_FASTIOV
) {
1902 iov
= sock_kmalloc(sock
->sk
, iov_size
, GFP_KERNEL
);
1907 /* This will also move the address data into kernel space */
1908 if (MSG_CMSG_COMPAT
& flags
) {
1909 err
= verify_compat_iovec(&msg_sys
, iov
,
1910 (struct sockaddr
*)&address
,
1913 err
= verify_iovec(&msg_sys
, iov
,
1914 (struct sockaddr
*)&address
,
1922 if (msg_sys
.msg_controllen
> INT_MAX
)
1924 ctl_len
= msg_sys
.msg_controllen
;
1925 if ((MSG_CMSG_COMPAT
& flags
) && ctl_len
) {
1927 cmsghdr_from_user_compat_to_kern(&msg_sys
, sock
->sk
, ctl
,
1931 ctl_buf
= msg_sys
.msg_control
;
1932 ctl_len
= msg_sys
.msg_controllen
;
1933 } else if (ctl_len
) {
1934 if (ctl_len
> sizeof(ctl
)) {
1935 ctl_buf
= sock_kmalloc(sock
->sk
, ctl_len
, GFP_KERNEL
);
1936 if (ctl_buf
== NULL
)
1941 * Careful! Before this, msg_sys.msg_control contains a user pointer.
1942 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
1943 * checking falls down on this.
1945 if (copy_from_user(ctl_buf
, (void __user
*)msg_sys
.msg_control
,
1948 msg_sys
.msg_control
= ctl_buf
;
1950 msg_sys
.msg_flags
= flags
;
1952 if (sock
->file
->f_flags
& O_NONBLOCK
)
1953 msg_sys
.msg_flags
|= MSG_DONTWAIT
;
1954 err
= sock_sendmsg(sock
, &msg_sys
, total_len
);
1958 sock_kfree_s(sock
->sk
, ctl_buf
, ctl_len
);
1960 if (iov
!= iovstack
)
1961 sock_kfree_s(sock
->sk
, iov
, iov_size
);
1963 fput_light(sock
->file
, fput_needed
);
1969 * BSD recvmsg interface
1972 SYSCALL_DEFINE3(recvmsg
, int, fd
, struct msghdr __user
*, msg
,
1973 unsigned int, flags
)
1975 struct compat_msghdr __user
*msg_compat
=
1976 (struct compat_msghdr __user
*)msg
;
1977 struct socket
*sock
;
1978 struct iovec iovstack
[UIO_FASTIOV
];
1979 struct iovec
*iov
= iovstack
;
1980 struct msghdr msg_sys
;
1981 unsigned long cmsg_ptr
;
1982 int err
, iov_size
, total_len
, len
;
1985 /* kernel mode address */
1986 struct sockaddr_storage addr
;
1988 /* user mode address pointers */
1989 struct sockaddr __user
*uaddr
;
1990 int __user
*uaddr_len
;
1992 if (MSG_CMSG_COMPAT
& flags
) {
1993 if (get_compat_msghdr(&msg_sys
, msg_compat
))
1996 else if (copy_from_user(&msg_sys
, msg
, sizeof(struct msghdr
)))
1999 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
2004 if (msg_sys
.msg_iovlen
> UIO_MAXIOV
)
2007 /* Check whether to allocate the iovec area */
2009 iov_size
= msg_sys
.msg_iovlen
* sizeof(struct iovec
);
2010 if (msg_sys
.msg_iovlen
> UIO_FASTIOV
) {
2011 iov
= sock_kmalloc(sock
->sk
, iov_size
, GFP_KERNEL
);
2017 * Save the user-mode address (verify_iovec will change the
2018 * kernel msghdr to use the kernel address space)
2021 uaddr
= (__force
void __user
*)msg_sys
.msg_name
;
2022 uaddr_len
= COMPAT_NAMELEN(msg
);
2023 if (MSG_CMSG_COMPAT
& flags
) {
2024 err
= verify_compat_iovec(&msg_sys
, iov
,
2025 (struct sockaddr
*)&addr
,
2028 err
= verify_iovec(&msg_sys
, iov
,
2029 (struct sockaddr
*)&addr
,
2035 cmsg_ptr
= (unsigned long)msg_sys
.msg_control
;
2036 msg_sys
.msg_flags
= flags
& (MSG_CMSG_CLOEXEC
|MSG_CMSG_COMPAT
);
2038 if (sock
->file
->f_flags
& O_NONBLOCK
)
2039 flags
|= MSG_DONTWAIT
;
2040 err
= sock_recvmsg(sock
, &msg_sys
, total_len
, flags
);
2045 if (uaddr
!= NULL
) {
2046 err
= move_addr_to_user((struct sockaddr
*)&addr
,
2047 msg_sys
.msg_namelen
, uaddr
,
2052 err
= __put_user((msg_sys
.msg_flags
& ~MSG_CMSG_COMPAT
),
2056 if (MSG_CMSG_COMPAT
& flags
)
2057 err
= __put_user((unsigned long)msg_sys
.msg_control
- cmsg_ptr
,
2058 &msg_compat
->msg_controllen
);
2060 err
= __put_user((unsigned long)msg_sys
.msg_control
- cmsg_ptr
,
2061 &msg
->msg_controllen
);
2067 if (iov
!= iovstack
)
2068 sock_kfree_s(sock
->sk
, iov
, iov_size
);
2070 fput_light(sock
->file
, fput_needed
);
2075 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2077 /* Argument list sizes for sys_socketcall */
2078 #define AL(x) ((x) * sizeof(unsigned long))
2079 static const unsigned char nargs
[19]={
2080 AL(0),AL(3),AL(3),AL(3),AL(2),AL(3),
2081 AL(3),AL(3),AL(4),AL(4),AL(4),AL(6),
2082 AL(6),AL(2),AL(5),AL(5),AL(3),AL(3),
2089 * System call vectors.
2091 * Argument checking cleaned up. Saved 20% in size.
2092 * This function doesn't need to set the kernel lock because
2093 * it is set by the callees.
2096 SYSCALL_DEFINE2(socketcall
, int, call
, unsigned long __user
*, args
)
2099 unsigned long a0
, a1
;
2103 if (call
< 1 || call
> SYS_ACCEPT4
)
2107 if (len
> sizeof(a
))
2110 /* copy_from_user should be SMP safe. */
2111 if (copy_from_user(a
, args
, len
))
2114 audit_socketcall(nargs
[call
] / sizeof(unsigned long), a
);
2121 err
= sys_socket(a0
, a1
, a
[2]);
2124 err
= sys_bind(a0
, (struct sockaddr __user
*)a1
, a
[2]);
2127 err
= sys_connect(a0
, (struct sockaddr __user
*)a1
, a
[2]);
2130 err
= sys_listen(a0
, a1
);
2133 err
= sys_accept4(a0
, (struct sockaddr __user
*)a1
,
2134 (int __user
*)a
[2], 0);
2136 case SYS_GETSOCKNAME
:
2138 sys_getsockname(a0
, (struct sockaddr __user
*)a1
,
2139 (int __user
*)a
[2]);
2141 case SYS_GETPEERNAME
:
2143 sys_getpeername(a0
, (struct sockaddr __user
*)a1
,
2144 (int __user
*)a
[2]);
2146 case SYS_SOCKETPAIR
:
2147 err
= sys_socketpair(a0
, a1
, a
[2], (int __user
*)a
[3]);
2150 err
= sys_send(a0
, (void __user
*)a1
, a
[2], a
[3]);
2153 err
= sys_sendto(a0
, (void __user
*)a1
, a
[2], a
[3],
2154 (struct sockaddr __user
*)a
[4], a
[5]);
2157 err
= sys_recv(a0
, (void __user
*)a1
, a
[2], a
[3]);
2160 err
= sys_recvfrom(a0
, (void __user
*)a1
, a
[2], a
[3],
2161 (struct sockaddr __user
*)a
[4],
2162 (int __user
*)a
[5]);
2165 err
= sys_shutdown(a0
, a1
);
2167 case SYS_SETSOCKOPT
:
2168 err
= sys_setsockopt(a0
, a1
, a
[2], (char __user
*)a
[3], a
[4]);
2170 case SYS_GETSOCKOPT
:
2172 sys_getsockopt(a0
, a1
, a
[2], (char __user
*)a
[3],
2173 (int __user
*)a
[4]);
2176 err
= sys_sendmsg(a0
, (struct msghdr __user
*)a1
, a
[2]);
2179 err
= sys_recvmsg(a0
, (struct msghdr __user
*)a1
, a
[2]);
2182 err
= sys_accept4(a0
, (struct sockaddr __user
*)a1
,
2183 (int __user
*)a
[2], a
[3]);
2192 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
2195 * sock_register - add a socket protocol handler
2196 * @ops: description of protocol
2198 * This function is called by a protocol handler that wants to
2199 * advertise its address family, and have it linked into the
2200 * socket interface. The value ops->family coresponds to the
2201 * socket system call protocol family.
2203 int sock_register(const struct net_proto_family
*ops
)
2207 if (ops
->family
>= NPROTO
) {
2208 printk(KERN_CRIT
"protocol %d >= NPROTO(%d)\n", ops
->family
,
2213 spin_lock(&net_family_lock
);
2214 if (net_families
[ops
->family
])
2217 net_families
[ops
->family
] = ops
;
2220 spin_unlock(&net_family_lock
);
2222 printk(KERN_INFO
"NET: Registered protocol family %d\n", ops
->family
);
2227 * sock_unregister - remove a protocol handler
2228 * @family: protocol family to remove
2230 * This function is called by a protocol handler that wants to
2231 * remove its address family, and have it unlinked from the
2232 * new socket creation.
2234 * If protocol handler is a module, then it can use module reference
2235 * counts to protect against new references. If protocol handler is not
2236 * a module then it needs to provide its own protection in
2237 * the ops->create routine.
2239 void sock_unregister(int family
)
2241 BUG_ON(family
< 0 || family
>= NPROTO
);
2243 spin_lock(&net_family_lock
);
2244 net_families
[family
] = NULL
;
2245 spin_unlock(&net_family_lock
);
2249 printk(KERN_INFO
"NET: Unregistered protocol family %d\n", family
);
2252 static int __init
sock_init(void)
2255 * Initialize sock SLAB cache.
2261 * Initialize skbuff SLAB cache
2266 * Initialize the protocols module.
2270 register_filesystem(&sock_fs_type
);
2271 sock_mnt
= kern_mount(&sock_fs_type
);
2273 /* The real protocol initialization is performed in later initcalls.
2276 #ifdef CONFIG_NETFILTER
2283 core_initcall(sock_init
); /* early initcall */
2285 #ifdef CONFIG_PROC_FS
2286 void socket_seq_show(struct seq_file
*seq
)
2291 for_each_possible_cpu(cpu
)
2292 counter
+= per_cpu(sockets_in_use
, cpu
);
2294 /* It can be negative, by the way. 8) */
2298 seq_printf(seq
, "sockets: used %d\n", counter
);
2300 #endif /* CONFIG_PROC_FS */
2302 #ifdef CONFIG_COMPAT
2303 static long compat_sock_ioctl(struct file
*file
, unsigned cmd
,
2306 struct socket
*sock
= file
->private_data
;
2307 int ret
= -ENOIOCTLCMD
;
2314 if (sock
->ops
->compat_ioctl
)
2315 ret
= sock
->ops
->compat_ioctl(sock
, cmd
, arg
);
2317 if (ret
== -ENOIOCTLCMD
&&
2318 (cmd
>= SIOCIWFIRST
&& cmd
<= SIOCIWLAST
))
2319 ret
= compat_wext_handle_ioctl(net
, cmd
, arg
);
2325 int kernel_bind(struct socket
*sock
, struct sockaddr
*addr
, int addrlen
)
2327 return sock
->ops
->bind(sock
, addr
, addrlen
);
2330 int kernel_listen(struct socket
*sock
, int backlog
)
2332 return sock
->ops
->listen(sock
, backlog
);
2335 int kernel_accept(struct socket
*sock
, struct socket
**newsock
, int flags
)
2337 struct sock
*sk
= sock
->sk
;
2340 err
= sock_create_lite(sk
->sk_family
, sk
->sk_type
, sk
->sk_protocol
,
2345 err
= sock
->ops
->accept(sock
, *newsock
, flags
);
2347 sock_release(*newsock
);
2352 (*newsock
)->ops
= sock
->ops
;
2353 __module_get((*newsock
)->ops
->owner
);
2359 int kernel_connect(struct socket
*sock
, struct sockaddr
*addr
, int addrlen
,
2362 return sock
->ops
->connect(sock
, addr
, addrlen
, flags
);
2365 int kernel_getsockname(struct socket
*sock
, struct sockaddr
*addr
,
2368 return sock
->ops
->getname(sock
, addr
, addrlen
, 0);
2371 int kernel_getpeername(struct socket
*sock
, struct sockaddr
*addr
,
2374 return sock
->ops
->getname(sock
, addr
, addrlen
, 1);
2377 int kernel_getsockopt(struct socket
*sock
, int level
, int optname
,
2378 char *optval
, int *optlen
)
2380 mm_segment_t oldfs
= get_fs();
2384 if (level
== SOL_SOCKET
)
2385 err
= sock_getsockopt(sock
, level
, optname
, optval
, optlen
);
2387 err
= sock
->ops
->getsockopt(sock
, level
, optname
, optval
,
2393 int kernel_setsockopt(struct socket
*sock
, int level
, int optname
,
2394 char *optval
, int optlen
)
2396 mm_segment_t oldfs
= get_fs();
2400 if (level
== SOL_SOCKET
)
2401 err
= sock_setsockopt(sock
, level
, optname
, optval
, optlen
);
2403 err
= sock
->ops
->setsockopt(sock
, level
, optname
, optval
,
2409 int kernel_sendpage(struct socket
*sock
, struct page
*page
, int offset
,
2410 size_t size
, int flags
)
2412 if (sock
->ops
->sendpage
)
2413 return sock
->ops
->sendpage(sock
, page
, offset
, size
, flags
);
2415 return sock_no_sendpage(sock
, page
, offset
, size
, flags
);
2418 int kernel_sock_ioctl(struct socket
*sock
, int cmd
, unsigned long arg
)
2420 mm_segment_t oldfs
= get_fs();
2424 err
= sock
->ops
->ioctl(sock
, cmd
, arg
);
2430 int kernel_sock_shutdown(struct socket
*sock
, enum sock_shutdown_cmd how
)
2432 return sock
->ops
->shutdown(sock
, how
);
2435 EXPORT_SYMBOL(sock_create
);
2436 EXPORT_SYMBOL(sock_create_kern
);
2437 EXPORT_SYMBOL(sock_create_lite
);
2438 EXPORT_SYMBOL(sock_map_fd
);
2439 EXPORT_SYMBOL(sock_recvmsg
);
2440 EXPORT_SYMBOL(sock_register
);
2441 EXPORT_SYMBOL(sock_release
);
2442 EXPORT_SYMBOL(sock_sendmsg
);
2443 EXPORT_SYMBOL(sock_unregister
);
2444 EXPORT_SYMBOL(sock_wake_async
);
2445 EXPORT_SYMBOL(sockfd_lookup
);
2446 EXPORT_SYMBOL(kernel_sendmsg
);
2447 EXPORT_SYMBOL(kernel_recvmsg
);
2448 EXPORT_SYMBOL(kernel_bind
);
2449 EXPORT_SYMBOL(kernel_listen
);
2450 EXPORT_SYMBOL(kernel_accept
);
2451 EXPORT_SYMBOL(kernel_connect
);
2452 EXPORT_SYMBOL(kernel_getsockname
);
2453 EXPORT_SYMBOL(kernel_getpeername
);
2454 EXPORT_SYMBOL(kernel_getsockopt
);
2455 EXPORT_SYMBOL(kernel_setsockopt
);
2456 EXPORT_SYMBOL(kernel_sendpage
);
2457 EXPORT_SYMBOL(kernel_sock_ioctl
);
2458 EXPORT_SYMBOL(kernel_sock_shutdown
);