uio: fix allocating minor id for uio device
[linux-2.6/linux-mips.git] / kernel / sched_fair.c
blob6fa833ab2cb80ebac3e3f38007f0d7c47995769e
1 /*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
23 #include <linux/latencytop.h>
24 #include <linux/sched.h>
25 #include <linux/cpumask.h>
28 * Targeted preemption latency for CPU-bound tasks:
29 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
31 * NOTE: this latency value is not the same as the concept of
32 * 'timeslice length' - timeslices in CFS are of variable length
33 * and have no persistent notion like in traditional, time-slice
34 * based scheduling concepts.
36 * (to see the precise effective timeslice length of your workload,
37 * run vmstat and monitor the context-switches (cs) field)
39 unsigned int sysctl_sched_latency = 6000000ULL;
40 unsigned int normalized_sysctl_sched_latency = 6000000ULL;
43 * The initial- and re-scaling of tunables is configurable
44 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
46 * Options are:
47 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
48 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
49 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
51 enum sched_tunable_scaling sysctl_sched_tunable_scaling
52 = SCHED_TUNABLESCALING_LOG;
55 * Minimal preemption granularity for CPU-bound tasks:
56 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
58 unsigned int sysctl_sched_min_granularity = 750000ULL;
59 unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
62 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
64 static unsigned int sched_nr_latency = 8;
67 * After fork, child runs first. If set to 0 (default) then
68 * parent will (try to) run first.
70 unsigned int sysctl_sched_child_runs_first __read_mostly;
73 * SCHED_OTHER wake-up granularity.
74 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
76 * This option delays the preemption effects of decoupled workloads
77 * and reduces their over-scheduling. Synchronous workloads will still
78 * have immediate wakeup/sleep latencies.
80 unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
81 unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
83 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
86 * The exponential sliding window over which load is averaged for shares
87 * distribution.
88 * (default: 10msec)
90 unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
92 static const struct sched_class fair_sched_class;
94 /**************************************************************
95 * CFS operations on generic schedulable entities:
98 #ifdef CONFIG_FAIR_GROUP_SCHED
100 /* cpu runqueue to which this cfs_rq is attached */
101 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
103 return cfs_rq->rq;
106 /* An entity is a task if it doesn't "own" a runqueue */
107 #define entity_is_task(se) (!se->my_q)
109 static inline struct task_struct *task_of(struct sched_entity *se)
111 #ifdef CONFIG_SCHED_DEBUG
112 WARN_ON_ONCE(!entity_is_task(se));
113 #endif
114 return container_of(se, struct task_struct, se);
117 /* Walk up scheduling entities hierarchy */
118 #define for_each_sched_entity(se) \
119 for (; se; se = se->parent)
121 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
123 return p->se.cfs_rq;
126 /* runqueue on which this entity is (to be) queued */
127 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
129 return se->cfs_rq;
132 /* runqueue "owned" by this group */
133 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
135 return grp->my_q;
138 /* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
139 * another cpu ('this_cpu')
141 static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
143 return cfs_rq->tg->cfs_rq[this_cpu];
146 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
148 if (!cfs_rq->on_list) {
150 * Ensure we either appear before our parent (if already
151 * enqueued) or force our parent to appear after us when it is
152 * enqueued. The fact that we always enqueue bottom-up
153 * reduces this to two cases.
155 if (cfs_rq->tg->parent &&
156 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
157 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
158 &rq_of(cfs_rq)->leaf_cfs_rq_list);
159 } else {
160 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
161 &rq_of(cfs_rq)->leaf_cfs_rq_list);
164 cfs_rq->on_list = 1;
168 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
170 if (cfs_rq->on_list) {
171 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
172 cfs_rq->on_list = 0;
176 /* Iterate thr' all leaf cfs_rq's on a runqueue */
177 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
178 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
180 /* Do the two (enqueued) entities belong to the same group ? */
181 static inline int
182 is_same_group(struct sched_entity *se, struct sched_entity *pse)
184 if (se->cfs_rq == pse->cfs_rq)
185 return 1;
187 return 0;
190 static inline struct sched_entity *parent_entity(struct sched_entity *se)
192 return se->parent;
195 /* return depth at which a sched entity is present in the hierarchy */
196 static inline int depth_se(struct sched_entity *se)
198 int depth = 0;
200 for_each_sched_entity(se)
201 depth++;
203 return depth;
206 static void
207 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
209 int se_depth, pse_depth;
212 * preemption test can be made between sibling entities who are in the
213 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
214 * both tasks until we find their ancestors who are siblings of common
215 * parent.
218 /* First walk up until both entities are at same depth */
219 se_depth = depth_se(*se);
220 pse_depth = depth_se(*pse);
222 while (se_depth > pse_depth) {
223 se_depth--;
224 *se = parent_entity(*se);
227 while (pse_depth > se_depth) {
228 pse_depth--;
229 *pse = parent_entity(*pse);
232 while (!is_same_group(*se, *pse)) {
233 *se = parent_entity(*se);
234 *pse = parent_entity(*pse);
238 #else /* !CONFIG_FAIR_GROUP_SCHED */
240 static inline struct task_struct *task_of(struct sched_entity *se)
242 return container_of(se, struct task_struct, se);
245 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
247 return container_of(cfs_rq, struct rq, cfs);
250 #define entity_is_task(se) 1
252 #define for_each_sched_entity(se) \
253 for (; se; se = NULL)
255 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
257 return &task_rq(p)->cfs;
260 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
262 struct task_struct *p = task_of(se);
263 struct rq *rq = task_rq(p);
265 return &rq->cfs;
268 /* runqueue "owned" by this group */
269 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
271 return NULL;
274 static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
276 return &cpu_rq(this_cpu)->cfs;
279 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
283 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
287 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
288 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
290 static inline int
291 is_same_group(struct sched_entity *se, struct sched_entity *pse)
293 return 1;
296 static inline struct sched_entity *parent_entity(struct sched_entity *se)
298 return NULL;
301 static inline void
302 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
306 #endif /* CONFIG_FAIR_GROUP_SCHED */
309 /**************************************************************
310 * Scheduling class tree data structure manipulation methods:
313 static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
315 s64 delta = (s64)(vruntime - min_vruntime);
316 if (delta > 0)
317 min_vruntime = vruntime;
319 return min_vruntime;
322 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
324 s64 delta = (s64)(vruntime - min_vruntime);
325 if (delta < 0)
326 min_vruntime = vruntime;
328 return min_vruntime;
331 static inline int entity_before(struct sched_entity *a,
332 struct sched_entity *b)
334 return (s64)(a->vruntime - b->vruntime) < 0;
337 static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
339 return se->vruntime - cfs_rq->min_vruntime;
342 static void update_min_vruntime(struct cfs_rq *cfs_rq)
344 u64 vruntime = cfs_rq->min_vruntime;
346 if (cfs_rq->curr)
347 vruntime = cfs_rq->curr->vruntime;
349 if (cfs_rq->rb_leftmost) {
350 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
351 struct sched_entity,
352 run_node);
354 if (!cfs_rq->curr)
355 vruntime = se->vruntime;
356 else
357 vruntime = min_vruntime(vruntime, se->vruntime);
360 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
364 * Enqueue an entity into the rb-tree:
366 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
368 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
369 struct rb_node *parent = NULL;
370 struct sched_entity *entry;
371 s64 key = entity_key(cfs_rq, se);
372 int leftmost = 1;
375 * Find the right place in the rbtree:
377 while (*link) {
378 parent = *link;
379 entry = rb_entry(parent, struct sched_entity, run_node);
381 * We dont care about collisions. Nodes with
382 * the same key stay together.
384 if (key < entity_key(cfs_rq, entry)) {
385 link = &parent->rb_left;
386 } else {
387 link = &parent->rb_right;
388 leftmost = 0;
393 * Maintain a cache of leftmost tree entries (it is frequently
394 * used):
396 if (leftmost)
397 cfs_rq->rb_leftmost = &se->run_node;
399 rb_link_node(&se->run_node, parent, link);
400 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
403 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
405 if (cfs_rq->rb_leftmost == &se->run_node) {
406 struct rb_node *next_node;
408 next_node = rb_next(&se->run_node);
409 cfs_rq->rb_leftmost = next_node;
412 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
415 static struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
417 struct rb_node *left = cfs_rq->rb_leftmost;
419 if (!left)
420 return NULL;
422 return rb_entry(left, struct sched_entity, run_node);
425 static struct sched_entity *__pick_next_entity(struct sched_entity *se)
427 struct rb_node *next = rb_next(&se->run_node);
429 if (!next)
430 return NULL;
432 return rb_entry(next, struct sched_entity, run_node);
435 #ifdef CONFIG_SCHED_DEBUG
436 static struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
438 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
440 if (!last)
441 return NULL;
443 return rb_entry(last, struct sched_entity, run_node);
446 /**************************************************************
447 * Scheduling class statistics methods:
450 int sched_proc_update_handler(struct ctl_table *table, int write,
451 void __user *buffer, size_t *lenp,
452 loff_t *ppos)
454 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
455 int factor = get_update_sysctl_factor();
457 if (ret || !write)
458 return ret;
460 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
461 sysctl_sched_min_granularity);
463 #define WRT_SYSCTL(name) \
464 (normalized_sysctl_##name = sysctl_##name / (factor))
465 WRT_SYSCTL(sched_min_granularity);
466 WRT_SYSCTL(sched_latency);
467 WRT_SYSCTL(sched_wakeup_granularity);
468 #undef WRT_SYSCTL
470 return 0;
472 #endif
475 * delta /= w
477 static inline unsigned long
478 calc_delta_fair(unsigned long delta, struct sched_entity *se)
480 if (unlikely(se->load.weight != NICE_0_LOAD))
481 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
483 return delta;
487 * The idea is to set a period in which each task runs once.
489 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
490 * this period because otherwise the slices get too small.
492 * p = (nr <= nl) ? l : l*nr/nl
494 static u64 __sched_period(unsigned long nr_running)
496 u64 period = sysctl_sched_latency;
497 unsigned long nr_latency = sched_nr_latency;
499 if (unlikely(nr_running > nr_latency)) {
500 period = sysctl_sched_min_granularity;
501 period *= nr_running;
504 return period;
508 * We calculate the wall-time slice from the period by taking a part
509 * proportional to the weight.
511 * s = p*P[w/rw]
513 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
515 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
517 for_each_sched_entity(se) {
518 struct load_weight *load;
519 struct load_weight lw;
521 cfs_rq = cfs_rq_of(se);
522 load = &cfs_rq->load;
524 if (unlikely(!se->on_rq)) {
525 lw = cfs_rq->load;
527 update_load_add(&lw, se->load.weight);
528 load = &lw;
530 slice = calc_delta_mine(slice, se->load.weight, load);
532 return slice;
536 * We calculate the vruntime slice of a to be inserted task
538 * vs = s/w
540 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
542 return calc_delta_fair(sched_slice(cfs_rq, se), se);
545 static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update);
546 static void update_cfs_shares(struct cfs_rq *cfs_rq);
549 * Update the current task's runtime statistics. Skip current tasks that
550 * are not in our scheduling class.
552 static inline void
553 __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
554 unsigned long delta_exec)
556 unsigned long delta_exec_weighted;
558 schedstat_set(curr->statistics.exec_max,
559 max((u64)delta_exec, curr->statistics.exec_max));
561 curr->sum_exec_runtime += delta_exec;
562 schedstat_add(cfs_rq, exec_clock, delta_exec);
563 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
565 curr->vruntime += delta_exec_weighted;
566 update_min_vruntime(cfs_rq);
568 #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
569 cfs_rq->load_unacc_exec_time += delta_exec;
570 #endif
573 static void update_curr(struct cfs_rq *cfs_rq)
575 struct sched_entity *curr = cfs_rq->curr;
576 u64 now = rq_of(cfs_rq)->clock_task;
577 unsigned long delta_exec;
579 if (unlikely(!curr))
580 return;
583 * Get the amount of time the current task was running
584 * since the last time we changed load (this cannot
585 * overflow on 32 bits):
587 delta_exec = (unsigned long)(now - curr->exec_start);
588 if (!delta_exec)
589 return;
591 __update_curr(cfs_rq, curr, delta_exec);
592 curr->exec_start = now;
594 if (entity_is_task(curr)) {
595 struct task_struct *curtask = task_of(curr);
597 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
598 cpuacct_charge(curtask, delta_exec);
599 account_group_exec_runtime(curtask, delta_exec);
603 static inline void
604 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
606 schedstat_set(se->statistics.wait_start, rq_of(cfs_rq)->clock);
610 * Task is being enqueued - update stats:
612 static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
615 * Are we enqueueing a waiting task? (for current tasks
616 * a dequeue/enqueue event is a NOP)
618 if (se != cfs_rq->curr)
619 update_stats_wait_start(cfs_rq, se);
622 static void
623 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
625 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
626 rq_of(cfs_rq)->clock - se->statistics.wait_start));
627 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
628 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
629 rq_of(cfs_rq)->clock - se->statistics.wait_start);
630 #ifdef CONFIG_SCHEDSTATS
631 if (entity_is_task(se)) {
632 trace_sched_stat_wait(task_of(se),
633 rq_of(cfs_rq)->clock - se->statistics.wait_start);
635 #endif
636 schedstat_set(se->statistics.wait_start, 0);
639 static inline void
640 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
643 * Mark the end of the wait period if dequeueing a
644 * waiting task:
646 if (se != cfs_rq->curr)
647 update_stats_wait_end(cfs_rq, se);
651 * We are picking a new current task - update its stats:
653 static inline void
654 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
657 * We are starting a new run period:
659 se->exec_start = rq_of(cfs_rq)->clock_task;
662 /**************************************************
663 * Scheduling class queueing methods:
666 #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
667 static void
668 add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
670 cfs_rq->task_weight += weight;
672 #else
673 static inline void
674 add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
677 #endif
679 static void
680 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
682 update_load_add(&cfs_rq->load, se->load.weight);
683 if (!parent_entity(se))
684 inc_cpu_load(rq_of(cfs_rq), se->load.weight);
685 if (entity_is_task(se)) {
686 add_cfs_task_weight(cfs_rq, se->load.weight);
687 list_add(&se->group_node, &cfs_rq->tasks);
689 cfs_rq->nr_running++;
692 static void
693 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
695 update_load_sub(&cfs_rq->load, se->load.weight);
696 if (!parent_entity(se))
697 dec_cpu_load(rq_of(cfs_rq), se->load.weight);
698 if (entity_is_task(se)) {
699 add_cfs_task_weight(cfs_rq, -se->load.weight);
700 list_del_init(&se->group_node);
702 cfs_rq->nr_running--;
705 #ifdef CONFIG_FAIR_GROUP_SCHED
706 # ifdef CONFIG_SMP
707 static void update_cfs_rq_load_contribution(struct cfs_rq *cfs_rq,
708 int global_update)
710 struct task_group *tg = cfs_rq->tg;
711 long load_avg;
713 load_avg = div64_u64(cfs_rq->load_avg, cfs_rq->load_period+1);
714 load_avg -= cfs_rq->load_contribution;
716 if (global_update || abs(load_avg) > cfs_rq->load_contribution / 8) {
717 atomic_add(load_avg, &tg->load_weight);
718 cfs_rq->load_contribution += load_avg;
722 static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
724 u64 period = sysctl_sched_shares_window;
725 u64 now, delta;
726 unsigned long load = cfs_rq->load.weight;
728 if (cfs_rq->tg == &root_task_group)
729 return;
731 now = rq_of(cfs_rq)->clock_task;
732 delta = now - cfs_rq->load_stamp;
734 /* truncate load history at 4 idle periods */
735 if (cfs_rq->load_stamp > cfs_rq->load_last &&
736 now - cfs_rq->load_last > 4 * period) {
737 cfs_rq->load_period = 0;
738 cfs_rq->load_avg = 0;
739 delta = period - 1;
742 cfs_rq->load_stamp = now;
743 cfs_rq->load_unacc_exec_time = 0;
744 cfs_rq->load_period += delta;
745 if (load) {
746 cfs_rq->load_last = now;
747 cfs_rq->load_avg += delta * load;
750 /* consider updating load contribution on each fold or truncate */
751 if (global_update || cfs_rq->load_period > period
752 || !cfs_rq->load_period)
753 update_cfs_rq_load_contribution(cfs_rq, global_update);
755 while (cfs_rq->load_period > period) {
757 * Inline assembly required to prevent the compiler
758 * optimising this loop into a divmod call.
759 * See __iter_div_u64_rem() for another example of this.
761 asm("" : "+rm" (cfs_rq->load_period));
762 cfs_rq->load_period /= 2;
763 cfs_rq->load_avg /= 2;
766 if (!cfs_rq->curr && !cfs_rq->nr_running && !cfs_rq->load_avg)
767 list_del_leaf_cfs_rq(cfs_rq);
770 static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
772 long load_weight, load, shares;
774 load = cfs_rq->load.weight;
776 load_weight = atomic_read(&tg->load_weight);
777 load_weight += load;
778 load_weight -= cfs_rq->load_contribution;
780 shares = (tg->shares * load);
781 if (load_weight)
782 shares /= load_weight;
784 if (shares < MIN_SHARES)
785 shares = MIN_SHARES;
786 if (shares > tg->shares)
787 shares = tg->shares;
789 return shares;
792 static void update_entity_shares_tick(struct cfs_rq *cfs_rq)
794 if (cfs_rq->load_unacc_exec_time > sysctl_sched_shares_window) {
795 update_cfs_load(cfs_rq, 0);
796 update_cfs_shares(cfs_rq);
799 # else /* CONFIG_SMP */
800 static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
804 static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
806 return tg->shares;
809 static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq)
812 # endif /* CONFIG_SMP */
813 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
814 unsigned long weight)
816 if (se->on_rq) {
817 /* commit outstanding execution time */
818 if (cfs_rq->curr == se)
819 update_curr(cfs_rq);
820 account_entity_dequeue(cfs_rq, se);
823 update_load_set(&se->load, weight);
825 if (se->on_rq)
826 account_entity_enqueue(cfs_rq, se);
829 static void update_cfs_shares(struct cfs_rq *cfs_rq)
831 struct task_group *tg;
832 struct sched_entity *se;
833 long shares;
835 tg = cfs_rq->tg;
836 se = tg->se[cpu_of(rq_of(cfs_rq))];
837 if (!se)
838 return;
839 #ifndef CONFIG_SMP
840 if (likely(se->load.weight == tg->shares))
841 return;
842 #endif
843 shares = calc_cfs_shares(cfs_rq, tg);
845 reweight_entity(cfs_rq_of(se), se, shares);
847 #else /* CONFIG_FAIR_GROUP_SCHED */
848 static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
852 static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
856 static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq)
859 #endif /* CONFIG_FAIR_GROUP_SCHED */
861 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
863 #ifdef CONFIG_SCHEDSTATS
864 struct task_struct *tsk = NULL;
866 if (entity_is_task(se))
867 tsk = task_of(se);
869 if (se->statistics.sleep_start) {
870 u64 delta = rq_of(cfs_rq)->clock - se->statistics.sleep_start;
872 if ((s64)delta < 0)
873 delta = 0;
875 if (unlikely(delta > se->statistics.sleep_max))
876 se->statistics.sleep_max = delta;
878 se->statistics.sleep_start = 0;
879 se->statistics.sum_sleep_runtime += delta;
881 if (tsk) {
882 account_scheduler_latency(tsk, delta >> 10, 1);
883 trace_sched_stat_sleep(tsk, delta);
886 if (se->statistics.block_start) {
887 u64 delta = rq_of(cfs_rq)->clock - se->statistics.block_start;
889 if ((s64)delta < 0)
890 delta = 0;
892 if (unlikely(delta > se->statistics.block_max))
893 se->statistics.block_max = delta;
895 se->statistics.block_start = 0;
896 se->statistics.sum_sleep_runtime += delta;
898 if (tsk) {
899 if (tsk->in_iowait) {
900 se->statistics.iowait_sum += delta;
901 se->statistics.iowait_count++;
902 trace_sched_stat_iowait(tsk, delta);
906 * Blocking time is in units of nanosecs, so shift by
907 * 20 to get a milliseconds-range estimation of the
908 * amount of time that the task spent sleeping:
910 if (unlikely(prof_on == SLEEP_PROFILING)) {
911 profile_hits(SLEEP_PROFILING,
912 (void *)get_wchan(tsk),
913 delta >> 20);
915 account_scheduler_latency(tsk, delta >> 10, 0);
918 #endif
921 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
923 #ifdef CONFIG_SCHED_DEBUG
924 s64 d = se->vruntime - cfs_rq->min_vruntime;
926 if (d < 0)
927 d = -d;
929 if (d > 3*sysctl_sched_latency)
930 schedstat_inc(cfs_rq, nr_spread_over);
931 #endif
934 static void
935 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
937 u64 vruntime = cfs_rq->min_vruntime;
940 * The 'current' period is already promised to the current tasks,
941 * however the extra weight of the new task will slow them down a
942 * little, place the new task so that it fits in the slot that
943 * stays open at the end.
945 if (initial && sched_feat(START_DEBIT))
946 vruntime += sched_vslice(cfs_rq, se);
948 /* sleeps up to a single latency don't count. */
949 if (!initial) {
950 unsigned long thresh = sysctl_sched_latency;
953 * Halve their sleep time's effect, to allow
954 * for a gentler effect of sleepers:
956 if (sched_feat(GENTLE_FAIR_SLEEPERS))
957 thresh >>= 1;
959 vruntime -= thresh;
962 /* ensure we never gain time by being placed backwards. */
963 vruntime = max_vruntime(se->vruntime, vruntime);
965 se->vruntime = vruntime;
968 static void
969 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
972 * Update the normalized vruntime before updating min_vruntime
973 * through callig update_curr().
975 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
976 se->vruntime += cfs_rq->min_vruntime;
979 * Update run-time statistics of the 'current'.
981 update_curr(cfs_rq);
982 update_cfs_load(cfs_rq, 0);
983 account_entity_enqueue(cfs_rq, se);
984 update_cfs_shares(cfs_rq);
986 if (flags & ENQUEUE_WAKEUP) {
987 place_entity(cfs_rq, se, 0);
988 enqueue_sleeper(cfs_rq, se);
991 update_stats_enqueue(cfs_rq, se);
992 check_spread(cfs_rq, se);
993 if (se != cfs_rq->curr)
994 __enqueue_entity(cfs_rq, se);
995 se->on_rq = 1;
997 if (cfs_rq->nr_running == 1)
998 list_add_leaf_cfs_rq(cfs_rq);
1001 static void __clear_buddies_last(struct sched_entity *se)
1003 for_each_sched_entity(se) {
1004 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1005 if (cfs_rq->last == se)
1006 cfs_rq->last = NULL;
1007 else
1008 break;
1012 static void __clear_buddies_next(struct sched_entity *se)
1014 for_each_sched_entity(se) {
1015 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1016 if (cfs_rq->next == se)
1017 cfs_rq->next = NULL;
1018 else
1019 break;
1023 static void __clear_buddies_skip(struct sched_entity *se)
1025 for_each_sched_entity(se) {
1026 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1027 if (cfs_rq->skip == se)
1028 cfs_rq->skip = NULL;
1029 else
1030 break;
1034 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
1036 if (cfs_rq->last == se)
1037 __clear_buddies_last(se);
1039 if (cfs_rq->next == se)
1040 __clear_buddies_next(se);
1042 if (cfs_rq->skip == se)
1043 __clear_buddies_skip(se);
1046 static void
1047 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1050 * Update run-time statistics of the 'current'.
1052 update_curr(cfs_rq);
1054 update_stats_dequeue(cfs_rq, se);
1055 if (flags & DEQUEUE_SLEEP) {
1056 #ifdef CONFIG_SCHEDSTATS
1057 if (entity_is_task(se)) {
1058 struct task_struct *tsk = task_of(se);
1060 if (tsk->state & TASK_INTERRUPTIBLE)
1061 se->statistics.sleep_start = rq_of(cfs_rq)->clock;
1062 if (tsk->state & TASK_UNINTERRUPTIBLE)
1063 se->statistics.block_start = rq_of(cfs_rq)->clock;
1065 #endif
1068 clear_buddies(cfs_rq, se);
1070 if (se != cfs_rq->curr)
1071 __dequeue_entity(cfs_rq, se);
1072 se->on_rq = 0;
1073 update_cfs_load(cfs_rq, 0);
1074 account_entity_dequeue(cfs_rq, se);
1075 update_min_vruntime(cfs_rq);
1076 update_cfs_shares(cfs_rq);
1079 * Normalize the entity after updating the min_vruntime because the
1080 * update can refer to the ->curr item and we need to reflect this
1081 * movement in our normalized position.
1083 if (!(flags & DEQUEUE_SLEEP))
1084 se->vruntime -= cfs_rq->min_vruntime;
1088 * Preempt the current task with a newly woken task if needed:
1090 static void
1091 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
1093 unsigned long ideal_runtime, delta_exec;
1095 ideal_runtime = sched_slice(cfs_rq, curr);
1096 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
1097 if (delta_exec > ideal_runtime) {
1098 resched_task(rq_of(cfs_rq)->curr);
1100 * The current task ran long enough, ensure it doesn't get
1101 * re-elected due to buddy favours.
1103 clear_buddies(cfs_rq, curr);
1104 return;
1108 * Ensure that a task that missed wakeup preemption by a
1109 * narrow margin doesn't have to wait for a full slice.
1110 * This also mitigates buddy induced latencies under load.
1112 if (!sched_feat(WAKEUP_PREEMPT))
1113 return;
1115 if (delta_exec < sysctl_sched_min_granularity)
1116 return;
1118 if (cfs_rq->nr_running > 1) {
1119 struct sched_entity *se = __pick_first_entity(cfs_rq);
1120 s64 delta = curr->vruntime - se->vruntime;
1122 if (delta < 0)
1123 return;
1125 if (delta > ideal_runtime)
1126 resched_task(rq_of(cfs_rq)->curr);
1130 static void
1131 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
1133 /* 'current' is not kept within the tree. */
1134 if (se->on_rq) {
1136 * Any task has to be enqueued before it get to execute on
1137 * a CPU. So account for the time it spent waiting on the
1138 * runqueue.
1140 update_stats_wait_end(cfs_rq, se);
1141 __dequeue_entity(cfs_rq, se);
1144 update_stats_curr_start(cfs_rq, se);
1145 cfs_rq->curr = se;
1146 #ifdef CONFIG_SCHEDSTATS
1148 * Track our maximum slice length, if the CPU's load is at
1149 * least twice that of our own weight (i.e. dont track it
1150 * when there are only lesser-weight tasks around):
1152 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
1153 se->statistics.slice_max = max(se->statistics.slice_max,
1154 se->sum_exec_runtime - se->prev_sum_exec_runtime);
1156 #endif
1157 se->prev_sum_exec_runtime = se->sum_exec_runtime;
1160 static int
1161 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
1164 * Pick the next process, keeping these things in mind, in this order:
1165 * 1) keep things fair between processes/task groups
1166 * 2) pick the "next" process, since someone really wants that to run
1167 * 3) pick the "last" process, for cache locality
1168 * 4) do not run the "skip" process, if something else is available
1170 static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
1172 struct sched_entity *se = __pick_first_entity(cfs_rq);
1173 struct sched_entity *left = se;
1176 * Avoid running the skip buddy, if running something else can
1177 * be done without getting too unfair.
1179 if (cfs_rq->skip == se) {
1180 struct sched_entity *second = __pick_next_entity(se);
1181 if (second && wakeup_preempt_entity(second, left) < 1)
1182 se = second;
1186 * Prefer last buddy, try to return the CPU to a preempted task.
1188 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
1189 se = cfs_rq->last;
1192 * Someone really wants this to run. If it's not unfair, run it.
1194 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
1195 se = cfs_rq->next;
1197 clear_buddies(cfs_rq, se);
1199 return se;
1202 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
1205 * If still on the runqueue then deactivate_task()
1206 * was not called and update_curr() has to be done:
1208 if (prev->on_rq)
1209 update_curr(cfs_rq);
1211 check_spread(cfs_rq, prev);
1212 if (prev->on_rq) {
1213 update_stats_wait_start(cfs_rq, prev);
1214 /* Put 'current' back into the tree. */
1215 __enqueue_entity(cfs_rq, prev);
1217 cfs_rq->curr = NULL;
1220 static void
1221 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
1224 * Update run-time statistics of the 'current'.
1226 update_curr(cfs_rq);
1229 * Update share accounting for long-running entities.
1231 update_entity_shares_tick(cfs_rq);
1233 #ifdef CONFIG_SCHED_HRTICK
1235 * queued ticks are scheduled to match the slice, so don't bother
1236 * validating it and just reschedule.
1238 if (queued) {
1239 resched_task(rq_of(cfs_rq)->curr);
1240 return;
1243 * don't let the period tick interfere with the hrtick preemption
1245 if (!sched_feat(DOUBLE_TICK) &&
1246 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
1247 return;
1248 #endif
1250 if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
1251 check_preempt_tick(cfs_rq, curr);
1254 /**************************************************
1255 * CFS operations on tasks:
1258 #ifdef CONFIG_SCHED_HRTICK
1259 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
1261 struct sched_entity *se = &p->se;
1262 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1264 WARN_ON(task_rq(p) != rq);
1266 if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
1267 u64 slice = sched_slice(cfs_rq, se);
1268 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
1269 s64 delta = slice - ran;
1271 if (delta < 0) {
1272 if (rq->curr == p)
1273 resched_task(p);
1274 return;
1278 * Don't schedule slices shorter than 10000ns, that just
1279 * doesn't make sense. Rely on vruntime for fairness.
1281 if (rq->curr != p)
1282 delta = max_t(s64, 10000LL, delta);
1284 hrtick_start(rq, delta);
1289 * called from enqueue/dequeue and updates the hrtick when the
1290 * current task is from our class and nr_running is low enough
1291 * to matter.
1293 static void hrtick_update(struct rq *rq)
1295 struct task_struct *curr = rq->curr;
1297 if (curr->sched_class != &fair_sched_class)
1298 return;
1300 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
1301 hrtick_start_fair(rq, curr);
1303 #else /* !CONFIG_SCHED_HRTICK */
1304 static inline void
1305 hrtick_start_fair(struct rq *rq, struct task_struct *p)
1309 static inline void hrtick_update(struct rq *rq)
1312 #endif
1315 * The enqueue_task method is called before nr_running is
1316 * increased. Here we update the fair scheduling stats and
1317 * then put the task into the rbtree:
1319 static void
1320 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
1322 struct cfs_rq *cfs_rq;
1323 struct sched_entity *se = &p->se;
1325 for_each_sched_entity(se) {
1326 if (se->on_rq)
1327 break;
1328 cfs_rq = cfs_rq_of(se);
1329 enqueue_entity(cfs_rq, se, flags);
1330 flags = ENQUEUE_WAKEUP;
1333 for_each_sched_entity(se) {
1334 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1336 update_cfs_load(cfs_rq, 0);
1337 update_cfs_shares(cfs_rq);
1340 hrtick_update(rq);
1344 * The dequeue_task method is called before nr_running is
1345 * decreased. We remove the task from the rbtree and
1346 * update the fair scheduling stats:
1348 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
1350 struct cfs_rq *cfs_rq;
1351 struct sched_entity *se = &p->se;
1353 for_each_sched_entity(se) {
1354 cfs_rq = cfs_rq_of(se);
1355 dequeue_entity(cfs_rq, se, flags);
1357 /* Don't dequeue parent if it has other entities besides us */
1358 if (cfs_rq->load.weight)
1359 break;
1360 flags |= DEQUEUE_SLEEP;
1363 for_each_sched_entity(se) {
1364 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1366 update_cfs_load(cfs_rq, 0);
1367 update_cfs_shares(cfs_rq);
1370 hrtick_update(rq);
1373 #ifdef CONFIG_SMP
1375 static void task_waking_fair(struct rq *rq, struct task_struct *p)
1377 struct sched_entity *se = &p->se;
1378 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1380 se->vruntime -= cfs_rq->min_vruntime;
1383 #ifdef CONFIG_FAIR_GROUP_SCHED
1385 * effective_load() calculates the load change as seen from the root_task_group
1387 * Adding load to a group doesn't make a group heavier, but can cause movement
1388 * of group shares between cpus. Assuming the shares were perfectly aligned one
1389 * can calculate the shift in shares.
1391 static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
1393 struct sched_entity *se = tg->se[cpu];
1395 if (!tg->parent)
1396 return wl;
1398 for_each_sched_entity(se) {
1399 long lw, w;
1401 tg = se->my_q->tg;
1402 w = se->my_q->load.weight;
1404 /* use this cpu's instantaneous contribution */
1405 lw = atomic_read(&tg->load_weight);
1406 lw -= se->my_q->load_contribution;
1407 lw += w + wg;
1409 wl += w;
1411 if (lw > 0 && wl < lw)
1412 wl = (wl * tg->shares) / lw;
1413 else
1414 wl = tg->shares;
1416 /* zero point is MIN_SHARES */
1417 if (wl < MIN_SHARES)
1418 wl = MIN_SHARES;
1419 wl -= se->load.weight;
1420 wg = 0;
1423 return wl;
1426 #else
1428 static inline unsigned long effective_load(struct task_group *tg, int cpu,
1429 unsigned long wl, unsigned long wg)
1431 return wl;
1434 #endif
1436 static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
1438 s64 this_load, load;
1439 int idx, this_cpu, prev_cpu;
1440 unsigned long tl_per_task;
1441 struct task_group *tg;
1442 unsigned long weight;
1443 int balanced;
1445 idx = sd->wake_idx;
1446 this_cpu = smp_processor_id();
1447 prev_cpu = task_cpu(p);
1448 load = source_load(prev_cpu, idx);
1449 this_load = target_load(this_cpu, idx);
1452 * If sync wakeup then subtract the (maximum possible)
1453 * effect of the currently running task from the load
1454 * of the current CPU:
1456 rcu_read_lock();
1457 if (sync) {
1458 tg = task_group(current);
1459 weight = current->se.load.weight;
1461 this_load += effective_load(tg, this_cpu, -weight, -weight);
1462 load += effective_load(tg, prev_cpu, 0, -weight);
1465 tg = task_group(p);
1466 weight = p->se.load.weight;
1469 * In low-load situations, where prev_cpu is idle and this_cpu is idle
1470 * due to the sync cause above having dropped this_load to 0, we'll
1471 * always have an imbalance, but there's really nothing you can do
1472 * about that, so that's good too.
1474 * Otherwise check if either cpus are near enough in load to allow this
1475 * task to be woken on this_cpu.
1477 if (this_load > 0) {
1478 s64 this_eff_load, prev_eff_load;
1480 this_eff_load = 100;
1481 this_eff_load *= power_of(prev_cpu);
1482 this_eff_load *= this_load +
1483 effective_load(tg, this_cpu, weight, weight);
1485 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
1486 prev_eff_load *= power_of(this_cpu);
1487 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
1489 balanced = this_eff_load <= prev_eff_load;
1490 } else
1491 balanced = true;
1492 rcu_read_unlock();
1495 * If the currently running task will sleep within
1496 * a reasonable amount of time then attract this newly
1497 * woken task:
1499 if (sync && balanced)
1500 return 1;
1502 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
1503 tl_per_task = cpu_avg_load_per_task(this_cpu);
1505 if (balanced ||
1506 (this_load <= load &&
1507 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
1509 * This domain has SD_WAKE_AFFINE and
1510 * p is cache cold in this domain, and
1511 * there is no bad imbalance.
1513 schedstat_inc(sd, ttwu_move_affine);
1514 schedstat_inc(p, se.statistics.nr_wakeups_affine);
1516 return 1;
1518 return 0;
1522 * find_idlest_group finds and returns the least busy CPU group within the
1523 * domain.
1525 static struct sched_group *
1526 find_idlest_group(struct sched_domain *sd, struct task_struct *p,
1527 int this_cpu, int load_idx)
1529 struct sched_group *idlest = NULL, *group = sd->groups;
1530 unsigned long min_load = ULONG_MAX, this_load = 0;
1531 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1533 do {
1534 unsigned long load, avg_load;
1535 int local_group;
1536 int i;
1538 /* Skip over this group if it has no CPUs allowed */
1539 if (!cpumask_intersects(sched_group_cpus(group),
1540 &p->cpus_allowed))
1541 continue;
1543 local_group = cpumask_test_cpu(this_cpu,
1544 sched_group_cpus(group));
1546 /* Tally up the load of all CPUs in the group */
1547 avg_load = 0;
1549 for_each_cpu(i, sched_group_cpus(group)) {
1550 /* Bias balancing toward cpus of our domain */
1551 if (local_group)
1552 load = source_load(i, load_idx);
1553 else
1554 load = target_load(i, load_idx);
1556 avg_load += load;
1559 /* Adjust by relative CPU power of the group */
1560 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
1562 if (local_group) {
1563 this_load = avg_load;
1564 } else if (avg_load < min_load) {
1565 min_load = avg_load;
1566 idlest = group;
1568 } while (group = group->next, group != sd->groups);
1570 if (!idlest || 100*this_load < imbalance*min_load)
1571 return NULL;
1572 return idlest;
1576 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1578 static int
1579 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1581 unsigned long load, min_load = ULONG_MAX;
1582 int idlest = -1;
1583 int i;
1585 /* Traverse only the allowed CPUs */
1586 for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
1587 load = weighted_cpuload(i);
1589 if (load < min_load || (load == min_load && i == this_cpu)) {
1590 min_load = load;
1591 idlest = i;
1595 return idlest;
1599 * Try and locate an idle CPU in the sched_domain.
1601 static int select_idle_sibling(struct task_struct *p, int target)
1603 int cpu = smp_processor_id();
1604 int prev_cpu = task_cpu(p);
1605 struct sched_domain *sd;
1606 int i;
1609 * If the task is going to be woken-up on this cpu and if it is
1610 * already idle, then it is the right target.
1612 if (target == cpu && idle_cpu(cpu))
1613 return cpu;
1616 * If the task is going to be woken-up on the cpu where it previously
1617 * ran and if it is currently idle, then it the right target.
1619 if (target == prev_cpu && idle_cpu(prev_cpu))
1620 return prev_cpu;
1623 * Otherwise, iterate the domains and find an elegible idle cpu.
1625 for_each_domain(target, sd) {
1626 if (!(sd->flags & SD_SHARE_PKG_RESOURCES))
1627 break;
1629 for_each_cpu_and(i, sched_domain_span(sd), &p->cpus_allowed) {
1630 if (idle_cpu(i)) {
1631 target = i;
1632 break;
1637 * Lets stop looking for an idle sibling when we reached
1638 * the domain that spans the current cpu and prev_cpu.
1640 if (cpumask_test_cpu(cpu, sched_domain_span(sd)) &&
1641 cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
1642 break;
1645 return target;
1649 * sched_balance_self: balance the current task (running on cpu) in domains
1650 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1651 * SD_BALANCE_EXEC.
1653 * Balance, ie. select the least loaded group.
1655 * Returns the target CPU number, or the same CPU if no balancing is needed.
1657 * preempt must be disabled.
1659 static int
1660 select_task_rq_fair(struct rq *rq, struct task_struct *p, int sd_flag, int wake_flags)
1662 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
1663 int cpu = smp_processor_id();
1664 int prev_cpu = task_cpu(p);
1665 int new_cpu = cpu;
1666 int want_affine = 0;
1667 int want_sd = 1;
1668 int sync = wake_flags & WF_SYNC;
1670 if (sd_flag & SD_BALANCE_WAKE) {
1671 if (cpumask_test_cpu(cpu, &p->cpus_allowed))
1672 want_affine = 1;
1673 new_cpu = prev_cpu;
1676 for_each_domain(cpu, tmp) {
1677 if (!(tmp->flags & SD_LOAD_BALANCE))
1678 continue;
1681 * If power savings logic is enabled for a domain, see if we
1682 * are not overloaded, if so, don't balance wider.
1684 if (tmp->flags & (SD_POWERSAVINGS_BALANCE|SD_PREFER_LOCAL)) {
1685 unsigned long power = 0;
1686 unsigned long nr_running = 0;
1687 unsigned long capacity;
1688 int i;
1690 for_each_cpu(i, sched_domain_span(tmp)) {
1691 power += power_of(i);
1692 nr_running += cpu_rq(i)->cfs.nr_running;
1695 capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
1697 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1698 nr_running /= 2;
1700 if (nr_running < capacity)
1701 want_sd = 0;
1705 * If both cpu and prev_cpu are part of this domain,
1706 * cpu is a valid SD_WAKE_AFFINE target.
1708 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
1709 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
1710 affine_sd = tmp;
1711 want_affine = 0;
1714 if (!want_sd && !want_affine)
1715 break;
1717 if (!(tmp->flags & sd_flag))
1718 continue;
1720 if (want_sd)
1721 sd = tmp;
1724 if (affine_sd) {
1725 if (cpu == prev_cpu || wake_affine(affine_sd, p, sync))
1726 return select_idle_sibling(p, cpu);
1727 else
1728 return select_idle_sibling(p, prev_cpu);
1731 while (sd) {
1732 int load_idx = sd->forkexec_idx;
1733 struct sched_group *group;
1734 int weight;
1736 if (!(sd->flags & sd_flag)) {
1737 sd = sd->child;
1738 continue;
1741 if (sd_flag & SD_BALANCE_WAKE)
1742 load_idx = sd->wake_idx;
1744 group = find_idlest_group(sd, p, cpu, load_idx);
1745 if (!group) {
1746 sd = sd->child;
1747 continue;
1750 new_cpu = find_idlest_cpu(group, p, cpu);
1751 if (new_cpu == -1 || new_cpu == cpu) {
1752 /* Now try balancing at a lower domain level of cpu */
1753 sd = sd->child;
1754 continue;
1757 /* Now try balancing at a lower domain level of new_cpu */
1758 cpu = new_cpu;
1759 weight = sd->span_weight;
1760 sd = NULL;
1761 for_each_domain(cpu, tmp) {
1762 if (weight <= tmp->span_weight)
1763 break;
1764 if (tmp->flags & sd_flag)
1765 sd = tmp;
1767 /* while loop will break here if sd == NULL */
1770 return new_cpu;
1772 #endif /* CONFIG_SMP */
1774 static unsigned long
1775 wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
1777 unsigned long gran = sysctl_sched_wakeup_granularity;
1780 * Since its curr running now, convert the gran from real-time
1781 * to virtual-time in his units.
1783 * By using 'se' instead of 'curr' we penalize light tasks, so
1784 * they get preempted easier. That is, if 'se' < 'curr' then
1785 * the resulting gran will be larger, therefore penalizing the
1786 * lighter, if otoh 'se' > 'curr' then the resulting gran will
1787 * be smaller, again penalizing the lighter task.
1789 * This is especially important for buddies when the leftmost
1790 * task is higher priority than the buddy.
1792 if (unlikely(se->load.weight != NICE_0_LOAD))
1793 gran = calc_delta_fair(gran, se);
1795 return gran;
1799 * Should 'se' preempt 'curr'.
1801 * |s1
1802 * |s2
1803 * |s3
1805 * |<--->|c
1807 * w(c, s1) = -1
1808 * w(c, s2) = 0
1809 * w(c, s3) = 1
1812 static int
1813 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
1815 s64 gran, vdiff = curr->vruntime - se->vruntime;
1817 if (vdiff <= 0)
1818 return -1;
1820 gran = wakeup_gran(curr, se);
1821 if (vdiff > gran)
1822 return 1;
1824 return 0;
1827 static void set_last_buddy(struct sched_entity *se)
1829 if (likely(task_of(se)->policy != SCHED_IDLE)) {
1830 for_each_sched_entity(se)
1831 cfs_rq_of(se)->last = se;
1835 static void set_next_buddy(struct sched_entity *se)
1837 if (likely(task_of(se)->policy != SCHED_IDLE)) {
1838 for_each_sched_entity(se)
1839 cfs_rq_of(se)->next = se;
1843 static void set_skip_buddy(struct sched_entity *se)
1845 if (likely(task_of(se)->policy != SCHED_IDLE)) {
1846 for_each_sched_entity(se)
1847 cfs_rq_of(se)->skip = se;
1852 * Preempt the current task with a newly woken task if needed:
1854 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1856 struct task_struct *curr = rq->curr;
1857 struct sched_entity *se = &curr->se, *pse = &p->se;
1858 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
1859 int scale = cfs_rq->nr_running >= sched_nr_latency;
1861 if (unlikely(se == pse))
1862 return;
1864 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK))
1865 set_next_buddy(pse);
1868 * We can come here with TIF_NEED_RESCHED already set from new task
1869 * wake up path.
1871 if (test_tsk_need_resched(curr))
1872 return;
1874 /* Idle tasks are by definition preempted by non-idle tasks. */
1875 if (unlikely(curr->policy == SCHED_IDLE) &&
1876 likely(p->policy != SCHED_IDLE))
1877 goto preempt;
1880 * Batch and idle tasks do not preempt non-idle tasks (their preemption
1881 * is driven by the tick):
1883 if (unlikely(p->policy != SCHED_NORMAL))
1884 return;
1887 if (!sched_feat(WAKEUP_PREEMPT))
1888 return;
1890 update_curr(cfs_rq);
1891 find_matching_se(&se, &pse);
1892 BUG_ON(!pse);
1893 if (wakeup_preempt_entity(se, pse) == 1)
1894 goto preempt;
1896 return;
1898 preempt:
1899 resched_task(curr);
1901 * Only set the backward buddy when the current task is still
1902 * on the rq. This can happen when a wakeup gets interleaved
1903 * with schedule on the ->pre_schedule() or idle_balance()
1904 * point, either of which can * drop the rq lock.
1906 * Also, during early boot the idle thread is in the fair class,
1907 * for obvious reasons its a bad idea to schedule back to it.
1909 if (unlikely(!se->on_rq || curr == rq->idle))
1910 return;
1912 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
1913 set_last_buddy(se);
1916 static struct task_struct *pick_next_task_fair(struct rq *rq)
1918 struct task_struct *p;
1919 struct cfs_rq *cfs_rq = &rq->cfs;
1920 struct sched_entity *se;
1922 if (!cfs_rq->nr_running)
1923 return NULL;
1925 do {
1926 se = pick_next_entity(cfs_rq);
1927 set_next_entity(cfs_rq, se);
1928 cfs_rq = group_cfs_rq(se);
1929 } while (cfs_rq);
1931 p = task_of(se);
1932 hrtick_start_fair(rq, p);
1934 return p;
1938 * Account for a descheduled task:
1940 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
1942 struct sched_entity *se = &prev->se;
1943 struct cfs_rq *cfs_rq;
1945 for_each_sched_entity(se) {
1946 cfs_rq = cfs_rq_of(se);
1947 put_prev_entity(cfs_rq, se);
1952 * sched_yield() is very simple
1954 * The magic of dealing with the ->skip buddy is in pick_next_entity.
1956 static void yield_task_fair(struct rq *rq)
1958 struct task_struct *curr = rq->curr;
1959 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
1960 struct sched_entity *se = &curr->se;
1963 * Are we the only task in the tree?
1965 if (unlikely(rq->nr_running == 1))
1966 return;
1968 clear_buddies(cfs_rq, se);
1970 if (curr->policy != SCHED_BATCH) {
1971 update_rq_clock(rq);
1973 * Update run-time statistics of the 'current'.
1975 update_curr(cfs_rq);
1978 set_skip_buddy(se);
1981 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
1983 struct sched_entity *se = &p->se;
1985 if (!se->on_rq)
1986 return false;
1988 /* Tell the scheduler that we'd really like pse to run next. */
1989 set_next_buddy(se);
1991 yield_task_fair(rq);
1993 return true;
1996 #ifdef CONFIG_SMP
1997 /**************************************************
1998 * Fair scheduling class load-balancing methods:
2002 * pull_task - move a task from a remote runqueue to the local runqueue.
2003 * Both runqueues must be locked.
2005 static void pull_task(struct rq *src_rq, struct task_struct *p,
2006 struct rq *this_rq, int this_cpu)
2008 deactivate_task(src_rq, p, 0);
2009 set_task_cpu(p, this_cpu);
2010 activate_task(this_rq, p, 0);
2011 check_preempt_curr(this_rq, p, 0);
2015 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2017 static
2018 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
2019 struct sched_domain *sd, enum cpu_idle_type idle,
2020 int *all_pinned)
2022 int tsk_cache_hot = 0;
2024 * We do not migrate tasks that are:
2025 * 1) running (obviously), or
2026 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2027 * 3) are cache-hot on their current CPU.
2029 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
2030 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
2031 return 0;
2033 *all_pinned = 0;
2035 if (task_running(rq, p)) {
2036 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
2037 return 0;
2041 * Aggressive migration if:
2042 * 1) task is cache cold, or
2043 * 2) too many balance attempts have failed.
2046 tsk_cache_hot = task_hot(p, rq->clock_task, sd);
2047 if (!tsk_cache_hot ||
2048 sd->nr_balance_failed > sd->cache_nice_tries) {
2049 #ifdef CONFIG_SCHEDSTATS
2050 if (tsk_cache_hot) {
2051 schedstat_inc(sd, lb_hot_gained[idle]);
2052 schedstat_inc(p, se.statistics.nr_forced_migrations);
2054 #endif
2055 return 1;
2058 if (tsk_cache_hot) {
2059 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
2060 return 0;
2062 return 1;
2066 * move_one_task tries to move exactly one task from busiest to this_rq, as
2067 * part of active balancing operations within "domain".
2068 * Returns 1 if successful and 0 otherwise.
2070 * Called with both runqueues locked.
2072 static int
2073 move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2074 struct sched_domain *sd, enum cpu_idle_type idle)
2076 struct task_struct *p, *n;
2077 struct cfs_rq *cfs_rq;
2078 int pinned = 0;
2080 for_each_leaf_cfs_rq(busiest, cfs_rq) {
2081 list_for_each_entry_safe(p, n, &cfs_rq->tasks, se.group_node) {
2083 if (!can_migrate_task(p, busiest, this_cpu,
2084 sd, idle, &pinned))
2085 continue;
2087 pull_task(busiest, p, this_rq, this_cpu);
2089 * Right now, this is only the second place pull_task()
2090 * is called, so we can safely collect pull_task()
2091 * stats here rather than inside pull_task().
2093 schedstat_inc(sd, lb_gained[idle]);
2094 return 1;
2098 return 0;
2101 static unsigned long
2102 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2103 unsigned long max_load_move, struct sched_domain *sd,
2104 enum cpu_idle_type idle, int *all_pinned,
2105 int *this_best_prio, struct cfs_rq *busiest_cfs_rq)
2107 int loops = 0, pulled = 0;
2108 long rem_load_move = max_load_move;
2109 struct task_struct *p, *n;
2111 if (max_load_move == 0)
2112 goto out;
2114 list_for_each_entry_safe(p, n, &busiest_cfs_rq->tasks, se.group_node) {
2115 if (loops++ > sysctl_sched_nr_migrate)
2116 break;
2118 if ((p->se.load.weight >> 1) > rem_load_move ||
2119 !can_migrate_task(p, busiest, this_cpu, sd, idle,
2120 all_pinned))
2121 continue;
2123 pull_task(busiest, p, this_rq, this_cpu);
2124 pulled++;
2125 rem_load_move -= p->se.load.weight;
2127 #ifdef CONFIG_PREEMPT
2129 * NEWIDLE balancing is a source of latency, so preemptible
2130 * kernels will stop after the first task is pulled to minimize
2131 * the critical section.
2133 if (idle == CPU_NEWLY_IDLE)
2134 break;
2135 #endif
2138 * We only want to steal up to the prescribed amount of
2139 * weighted load.
2141 if (rem_load_move <= 0)
2142 break;
2144 if (p->prio < *this_best_prio)
2145 *this_best_prio = p->prio;
2147 out:
2149 * Right now, this is one of only two places pull_task() is called,
2150 * so we can safely collect pull_task() stats here rather than
2151 * inside pull_task().
2153 schedstat_add(sd, lb_gained[idle], pulled);
2155 return max_load_move - rem_load_move;
2158 #ifdef CONFIG_FAIR_GROUP_SCHED
2160 * update tg->load_weight by folding this cpu's load_avg
2162 static int update_shares_cpu(struct task_group *tg, int cpu)
2164 struct cfs_rq *cfs_rq;
2165 unsigned long flags;
2166 struct rq *rq;
2168 if (!tg->se[cpu])
2169 return 0;
2171 rq = cpu_rq(cpu);
2172 cfs_rq = tg->cfs_rq[cpu];
2174 raw_spin_lock_irqsave(&rq->lock, flags);
2176 update_rq_clock(rq);
2177 update_cfs_load(cfs_rq, 1);
2180 * We need to update shares after updating tg->load_weight in
2181 * order to adjust the weight of groups with long running tasks.
2183 update_cfs_shares(cfs_rq);
2185 raw_spin_unlock_irqrestore(&rq->lock, flags);
2187 return 0;
2190 static void update_shares(int cpu)
2192 struct cfs_rq *cfs_rq;
2193 struct rq *rq = cpu_rq(cpu);
2195 rcu_read_lock();
2196 for_each_leaf_cfs_rq(rq, cfs_rq)
2197 update_shares_cpu(cfs_rq->tg, cpu);
2198 rcu_read_unlock();
2201 static unsigned long
2202 load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
2203 unsigned long max_load_move,
2204 struct sched_domain *sd, enum cpu_idle_type idle,
2205 int *all_pinned, int *this_best_prio)
2207 long rem_load_move = max_load_move;
2208 int busiest_cpu = cpu_of(busiest);
2209 struct task_group *tg;
2211 rcu_read_lock();
2212 update_h_load(busiest_cpu);
2214 list_for_each_entry_rcu(tg, &task_groups, list) {
2215 struct cfs_rq *busiest_cfs_rq = tg->cfs_rq[busiest_cpu];
2216 unsigned long busiest_h_load = busiest_cfs_rq->h_load;
2217 unsigned long busiest_weight = busiest_cfs_rq->load.weight;
2218 u64 rem_load, moved_load;
2221 * empty group
2223 if (!busiest_cfs_rq->task_weight)
2224 continue;
2226 rem_load = (u64)rem_load_move * busiest_weight;
2227 rem_load = div_u64(rem_load, busiest_h_load + 1);
2229 moved_load = balance_tasks(this_rq, this_cpu, busiest,
2230 rem_load, sd, idle, all_pinned, this_best_prio,
2231 busiest_cfs_rq);
2233 if (!moved_load)
2234 continue;
2236 moved_load *= busiest_h_load;
2237 moved_load = div_u64(moved_load, busiest_weight + 1);
2239 rem_load_move -= moved_load;
2240 if (rem_load_move < 0)
2241 break;
2243 rcu_read_unlock();
2245 return max_load_move - rem_load_move;
2247 #else
2248 static inline void update_shares(int cpu)
2252 static unsigned long
2253 load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
2254 unsigned long max_load_move,
2255 struct sched_domain *sd, enum cpu_idle_type idle,
2256 int *all_pinned, int *this_best_prio)
2258 return balance_tasks(this_rq, this_cpu, busiest,
2259 max_load_move, sd, idle, all_pinned,
2260 this_best_prio, &busiest->cfs);
2262 #endif
2265 * move_tasks tries to move up to max_load_move weighted load from busiest to
2266 * this_rq, as part of a balancing operation within domain "sd".
2267 * Returns 1 if successful and 0 otherwise.
2269 * Called with both runqueues locked.
2271 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2272 unsigned long max_load_move,
2273 struct sched_domain *sd, enum cpu_idle_type idle,
2274 int *all_pinned)
2276 unsigned long total_load_moved = 0, load_moved;
2277 int this_best_prio = this_rq->curr->prio;
2279 do {
2280 load_moved = load_balance_fair(this_rq, this_cpu, busiest,
2281 max_load_move - total_load_moved,
2282 sd, idle, all_pinned, &this_best_prio);
2284 total_load_moved += load_moved;
2286 #ifdef CONFIG_PREEMPT
2288 * NEWIDLE balancing is a source of latency, so preemptible
2289 * kernels will stop after the first task is pulled to minimize
2290 * the critical section.
2292 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
2293 break;
2295 if (raw_spin_is_contended(&this_rq->lock) ||
2296 raw_spin_is_contended(&busiest->lock))
2297 break;
2298 #endif
2299 } while (load_moved && max_load_move > total_load_moved);
2301 return total_load_moved > 0;
2304 /********** Helpers for find_busiest_group ************************/
2306 * sd_lb_stats - Structure to store the statistics of a sched_domain
2307 * during load balancing.
2309 struct sd_lb_stats {
2310 struct sched_group *busiest; /* Busiest group in this sd */
2311 struct sched_group *this; /* Local group in this sd */
2312 unsigned long total_load; /* Total load of all groups in sd */
2313 unsigned long total_pwr; /* Total power of all groups in sd */
2314 unsigned long avg_load; /* Average load across all groups in sd */
2316 /** Statistics of this group */
2317 unsigned long this_load;
2318 unsigned long this_load_per_task;
2319 unsigned long this_nr_running;
2320 unsigned long this_has_capacity;
2321 unsigned int this_idle_cpus;
2323 /* Statistics of the busiest group */
2324 unsigned int busiest_idle_cpus;
2325 unsigned long max_load;
2326 unsigned long busiest_load_per_task;
2327 unsigned long busiest_nr_running;
2328 unsigned long busiest_group_capacity;
2329 unsigned long busiest_has_capacity;
2330 unsigned int busiest_group_weight;
2332 int group_imb; /* Is there imbalance in this sd */
2333 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2334 int power_savings_balance; /* Is powersave balance needed for this sd */
2335 struct sched_group *group_min; /* Least loaded group in sd */
2336 struct sched_group *group_leader; /* Group which relieves group_min */
2337 unsigned long min_load_per_task; /* load_per_task in group_min */
2338 unsigned long leader_nr_running; /* Nr running of group_leader */
2339 unsigned long min_nr_running; /* Nr running of group_min */
2340 #endif
2344 * sg_lb_stats - stats of a sched_group required for load_balancing
2346 struct sg_lb_stats {
2347 unsigned long avg_load; /*Avg load across the CPUs of the group */
2348 unsigned long group_load; /* Total load over the CPUs of the group */
2349 unsigned long sum_nr_running; /* Nr tasks running in the group */
2350 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
2351 unsigned long group_capacity;
2352 unsigned long idle_cpus;
2353 unsigned long group_weight;
2354 int group_imb; /* Is there an imbalance in the group ? */
2355 int group_has_capacity; /* Is there extra capacity in the group? */
2359 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
2360 * @group: The group whose first cpu is to be returned.
2362 static inline unsigned int group_first_cpu(struct sched_group *group)
2364 return cpumask_first(sched_group_cpus(group));
2368 * get_sd_load_idx - Obtain the load index for a given sched domain.
2369 * @sd: The sched_domain whose load_idx is to be obtained.
2370 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
2372 static inline int get_sd_load_idx(struct sched_domain *sd,
2373 enum cpu_idle_type idle)
2375 int load_idx;
2377 switch (idle) {
2378 case CPU_NOT_IDLE:
2379 load_idx = sd->busy_idx;
2380 break;
2382 case CPU_NEWLY_IDLE:
2383 load_idx = sd->newidle_idx;
2384 break;
2385 default:
2386 load_idx = sd->idle_idx;
2387 break;
2390 return load_idx;
2394 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2396 * init_sd_power_savings_stats - Initialize power savings statistics for
2397 * the given sched_domain, during load balancing.
2399 * @sd: Sched domain whose power-savings statistics are to be initialized.
2400 * @sds: Variable containing the statistics for sd.
2401 * @idle: Idle status of the CPU at which we're performing load-balancing.
2403 static inline void init_sd_power_savings_stats(struct sched_domain *sd,
2404 struct sd_lb_stats *sds, enum cpu_idle_type idle)
2407 * Busy processors will not participate in power savings
2408 * balance.
2410 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2411 sds->power_savings_balance = 0;
2412 else {
2413 sds->power_savings_balance = 1;
2414 sds->min_nr_running = ULONG_MAX;
2415 sds->leader_nr_running = 0;
2420 * update_sd_power_savings_stats - Update the power saving stats for a
2421 * sched_domain while performing load balancing.
2423 * @group: sched_group belonging to the sched_domain under consideration.
2424 * @sds: Variable containing the statistics of the sched_domain
2425 * @local_group: Does group contain the CPU for which we're performing
2426 * load balancing ?
2427 * @sgs: Variable containing the statistics of the group.
2429 static inline void update_sd_power_savings_stats(struct sched_group *group,
2430 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
2433 if (!sds->power_savings_balance)
2434 return;
2437 * If the local group is idle or completely loaded
2438 * no need to do power savings balance at this domain
2440 if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
2441 !sds->this_nr_running))
2442 sds->power_savings_balance = 0;
2445 * If a group is already running at full capacity or idle,
2446 * don't include that group in power savings calculations
2448 if (!sds->power_savings_balance ||
2449 sgs->sum_nr_running >= sgs->group_capacity ||
2450 !sgs->sum_nr_running)
2451 return;
2454 * Calculate the group which has the least non-idle load.
2455 * This is the group from where we need to pick up the load
2456 * for saving power
2458 if ((sgs->sum_nr_running < sds->min_nr_running) ||
2459 (sgs->sum_nr_running == sds->min_nr_running &&
2460 group_first_cpu(group) > group_first_cpu(sds->group_min))) {
2461 sds->group_min = group;
2462 sds->min_nr_running = sgs->sum_nr_running;
2463 sds->min_load_per_task = sgs->sum_weighted_load /
2464 sgs->sum_nr_running;
2468 * Calculate the group which is almost near its
2469 * capacity but still has some space to pick up some load
2470 * from other group and save more power
2472 if (sgs->sum_nr_running + 1 > sgs->group_capacity)
2473 return;
2475 if (sgs->sum_nr_running > sds->leader_nr_running ||
2476 (sgs->sum_nr_running == sds->leader_nr_running &&
2477 group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
2478 sds->group_leader = group;
2479 sds->leader_nr_running = sgs->sum_nr_running;
2484 * check_power_save_busiest_group - see if there is potential for some power-savings balance
2485 * @sds: Variable containing the statistics of the sched_domain
2486 * under consideration.
2487 * @this_cpu: Cpu at which we're currently performing load-balancing.
2488 * @imbalance: Variable to store the imbalance.
2490 * Description:
2491 * Check if we have potential to perform some power-savings balance.
2492 * If yes, set the busiest group to be the least loaded group in the
2493 * sched_domain, so that it's CPUs can be put to idle.
2495 * Returns 1 if there is potential to perform power-savings balance.
2496 * Else returns 0.
2498 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
2499 int this_cpu, unsigned long *imbalance)
2501 if (!sds->power_savings_balance)
2502 return 0;
2504 if (sds->this != sds->group_leader ||
2505 sds->group_leader == sds->group_min)
2506 return 0;
2508 *imbalance = sds->min_load_per_task;
2509 sds->busiest = sds->group_min;
2511 return 1;
2514 #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
2515 static inline void init_sd_power_savings_stats(struct sched_domain *sd,
2516 struct sd_lb_stats *sds, enum cpu_idle_type idle)
2518 return;
2521 static inline void update_sd_power_savings_stats(struct sched_group *group,
2522 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
2524 return;
2527 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
2528 int this_cpu, unsigned long *imbalance)
2530 return 0;
2532 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
2535 unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
2537 return SCHED_LOAD_SCALE;
2540 unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
2542 return default_scale_freq_power(sd, cpu);
2545 unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
2547 unsigned long weight = sd->span_weight;
2548 unsigned long smt_gain = sd->smt_gain;
2550 smt_gain /= weight;
2552 return smt_gain;
2555 unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
2557 return default_scale_smt_power(sd, cpu);
2560 unsigned long scale_rt_power(int cpu)
2562 struct rq *rq = cpu_rq(cpu);
2563 u64 total, available;
2565 total = sched_avg_period() + (rq->clock - rq->age_stamp);
2567 if (unlikely(total < rq->rt_avg)) {
2568 /* Ensures that power won't end up being negative */
2569 available = 0;
2570 } else {
2571 available = total - rq->rt_avg;
2574 if (unlikely((s64)total < SCHED_LOAD_SCALE))
2575 total = SCHED_LOAD_SCALE;
2577 total >>= SCHED_LOAD_SHIFT;
2579 return div_u64(available, total);
2582 static void update_cpu_power(struct sched_domain *sd, int cpu)
2584 unsigned long weight = sd->span_weight;
2585 unsigned long power = SCHED_LOAD_SCALE;
2586 struct sched_group *sdg = sd->groups;
2588 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
2589 if (sched_feat(ARCH_POWER))
2590 power *= arch_scale_smt_power(sd, cpu);
2591 else
2592 power *= default_scale_smt_power(sd, cpu);
2594 power >>= SCHED_LOAD_SHIFT;
2597 sdg->cpu_power_orig = power;
2599 if (sched_feat(ARCH_POWER))
2600 power *= arch_scale_freq_power(sd, cpu);
2601 else
2602 power *= default_scale_freq_power(sd, cpu);
2604 power >>= SCHED_LOAD_SHIFT;
2606 power *= scale_rt_power(cpu);
2607 power >>= SCHED_LOAD_SHIFT;
2609 if (!power)
2610 power = 1;
2612 cpu_rq(cpu)->cpu_power = power;
2613 sdg->cpu_power = power;
2616 static void update_group_power(struct sched_domain *sd, int cpu)
2618 struct sched_domain *child = sd->child;
2619 struct sched_group *group, *sdg = sd->groups;
2620 unsigned long power;
2622 if (!child) {
2623 update_cpu_power(sd, cpu);
2624 return;
2627 power = 0;
2629 group = child->groups;
2630 do {
2631 power += group->cpu_power;
2632 group = group->next;
2633 } while (group != child->groups);
2635 sdg->cpu_power = power;
2639 * Try and fix up capacity for tiny siblings, this is needed when
2640 * things like SD_ASYM_PACKING need f_b_g to select another sibling
2641 * which on its own isn't powerful enough.
2643 * See update_sd_pick_busiest() and check_asym_packing().
2645 static inline int
2646 fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
2649 * Only siblings can have significantly less than SCHED_LOAD_SCALE
2651 if (sd->level != SD_LV_SIBLING)
2652 return 0;
2655 * If ~90% of the cpu_power is still there, we're good.
2657 if (group->cpu_power * 32 > group->cpu_power_orig * 29)
2658 return 1;
2660 return 0;
2664 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
2665 * @sd: The sched_domain whose statistics are to be updated.
2666 * @group: sched_group whose statistics are to be updated.
2667 * @this_cpu: Cpu for which load balance is currently performed.
2668 * @idle: Idle status of this_cpu
2669 * @load_idx: Load index of sched_domain of this_cpu for load calc.
2670 * @local_group: Does group contain this_cpu.
2671 * @cpus: Set of cpus considered for load balancing.
2672 * @balance: Should we balance.
2673 * @sgs: variable to hold the statistics for this group.
2675 static inline void update_sg_lb_stats(struct sched_domain *sd,
2676 struct sched_group *group, int this_cpu,
2677 enum cpu_idle_type idle, int load_idx,
2678 int local_group, const struct cpumask *cpus,
2679 int *balance, struct sg_lb_stats *sgs)
2681 unsigned long load, max_cpu_load, min_cpu_load, max_nr_running;
2682 int i;
2683 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2684 unsigned long avg_load_per_task = 0;
2686 if (local_group)
2687 balance_cpu = group_first_cpu(group);
2689 /* Tally up the load of all CPUs in the group */
2690 max_cpu_load = 0;
2691 min_cpu_load = ~0UL;
2692 max_nr_running = 0;
2694 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
2695 struct rq *rq = cpu_rq(i);
2697 /* Bias balancing toward cpus of our domain */
2698 if (local_group) {
2699 if (idle_cpu(i) && !first_idle_cpu) {
2700 first_idle_cpu = 1;
2701 balance_cpu = i;
2704 load = target_load(i, load_idx);
2705 } else {
2706 load = source_load(i, load_idx);
2707 if (load > max_cpu_load) {
2708 max_cpu_load = load;
2709 max_nr_running = rq->nr_running;
2711 if (min_cpu_load > load)
2712 min_cpu_load = load;
2715 sgs->group_load += load;
2716 sgs->sum_nr_running += rq->nr_running;
2717 sgs->sum_weighted_load += weighted_cpuload(i);
2718 if (idle_cpu(i))
2719 sgs->idle_cpus++;
2723 * First idle cpu or the first cpu(busiest) in this sched group
2724 * is eligible for doing load balancing at this and above
2725 * domains. In the newly idle case, we will allow all the cpu's
2726 * to do the newly idle load balance.
2728 if (idle != CPU_NEWLY_IDLE && local_group) {
2729 if (balance_cpu != this_cpu) {
2730 *balance = 0;
2731 return;
2733 update_group_power(sd, this_cpu);
2736 /* Adjust by relative CPU power of the group */
2737 sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power;
2740 * Consider the group unbalanced when the imbalance is larger
2741 * than the average weight of a task.
2743 * APZ: with cgroup the avg task weight can vary wildly and
2744 * might not be a suitable number - should we keep a
2745 * normalized nr_running number somewhere that negates
2746 * the hierarchy?
2748 if (sgs->sum_nr_running)
2749 avg_load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
2751 if ((max_cpu_load - min_cpu_load) >= avg_load_per_task && max_nr_running > 1)
2752 sgs->group_imb = 1;
2754 sgs->group_capacity = DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE);
2755 if (!sgs->group_capacity)
2756 sgs->group_capacity = fix_small_capacity(sd, group);
2757 sgs->group_weight = group->group_weight;
2759 if (sgs->group_capacity > sgs->sum_nr_running)
2760 sgs->group_has_capacity = 1;
2764 * update_sd_pick_busiest - return 1 on busiest group
2765 * @sd: sched_domain whose statistics are to be checked
2766 * @sds: sched_domain statistics
2767 * @sg: sched_group candidate to be checked for being the busiest
2768 * @sgs: sched_group statistics
2769 * @this_cpu: the current cpu
2771 * Determine if @sg is a busier group than the previously selected
2772 * busiest group.
2774 static bool update_sd_pick_busiest(struct sched_domain *sd,
2775 struct sd_lb_stats *sds,
2776 struct sched_group *sg,
2777 struct sg_lb_stats *sgs,
2778 int this_cpu)
2780 if (sgs->avg_load <= sds->max_load)
2781 return false;
2783 if (sgs->sum_nr_running > sgs->group_capacity)
2784 return true;
2786 if (sgs->group_imb)
2787 return true;
2790 * ASYM_PACKING needs to move all the work to the lowest
2791 * numbered CPUs in the group, therefore mark all groups
2792 * higher than ourself as busy.
2794 if ((sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
2795 this_cpu < group_first_cpu(sg)) {
2796 if (!sds->busiest)
2797 return true;
2799 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
2800 return true;
2803 return false;
2807 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
2808 * @sd: sched_domain whose statistics are to be updated.
2809 * @this_cpu: Cpu for which load balance is currently performed.
2810 * @idle: Idle status of this_cpu
2811 * @cpus: Set of cpus considered for load balancing.
2812 * @balance: Should we balance.
2813 * @sds: variable to hold the statistics for this sched_domain.
2815 static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
2816 enum cpu_idle_type idle, const struct cpumask *cpus,
2817 int *balance, struct sd_lb_stats *sds)
2819 struct sched_domain *child = sd->child;
2820 struct sched_group *sg = sd->groups;
2821 struct sg_lb_stats sgs;
2822 int load_idx, prefer_sibling = 0;
2824 if (child && child->flags & SD_PREFER_SIBLING)
2825 prefer_sibling = 1;
2827 init_sd_power_savings_stats(sd, sds, idle);
2828 load_idx = get_sd_load_idx(sd, idle);
2830 do {
2831 int local_group;
2833 local_group = cpumask_test_cpu(this_cpu, sched_group_cpus(sg));
2834 memset(&sgs, 0, sizeof(sgs));
2835 update_sg_lb_stats(sd, sg, this_cpu, idle, load_idx,
2836 local_group, cpus, balance, &sgs);
2838 if (local_group && !(*balance))
2839 return;
2841 sds->total_load += sgs.group_load;
2842 sds->total_pwr += sg->cpu_power;
2845 * In case the child domain prefers tasks go to siblings
2846 * first, lower the sg capacity to one so that we'll try
2847 * and move all the excess tasks away. We lower the capacity
2848 * of a group only if the local group has the capacity to fit
2849 * these excess tasks, i.e. nr_running < group_capacity. The
2850 * extra check prevents the case where you always pull from the
2851 * heaviest group when it is already under-utilized (possible
2852 * with a large weight task outweighs the tasks on the system).
2854 if (prefer_sibling && !local_group && sds->this_has_capacity)
2855 sgs.group_capacity = min(sgs.group_capacity, 1UL);
2857 if (local_group) {
2858 sds->this_load = sgs.avg_load;
2859 sds->this = sg;
2860 sds->this_nr_running = sgs.sum_nr_running;
2861 sds->this_load_per_task = sgs.sum_weighted_load;
2862 sds->this_has_capacity = sgs.group_has_capacity;
2863 sds->this_idle_cpus = sgs.idle_cpus;
2864 } else if (update_sd_pick_busiest(sd, sds, sg, &sgs, this_cpu)) {
2865 sds->max_load = sgs.avg_load;
2866 sds->busiest = sg;
2867 sds->busiest_nr_running = sgs.sum_nr_running;
2868 sds->busiest_idle_cpus = sgs.idle_cpus;
2869 sds->busiest_group_capacity = sgs.group_capacity;
2870 sds->busiest_load_per_task = sgs.sum_weighted_load;
2871 sds->busiest_has_capacity = sgs.group_has_capacity;
2872 sds->busiest_group_weight = sgs.group_weight;
2873 sds->group_imb = sgs.group_imb;
2876 update_sd_power_savings_stats(sg, sds, local_group, &sgs);
2877 sg = sg->next;
2878 } while (sg != sd->groups);
2881 int __weak arch_sd_sibling_asym_packing(void)
2883 return 0*SD_ASYM_PACKING;
2887 * check_asym_packing - Check to see if the group is packed into the
2888 * sched doman.
2890 * This is primarily intended to used at the sibling level. Some
2891 * cores like POWER7 prefer to use lower numbered SMT threads. In the
2892 * case of POWER7, it can move to lower SMT modes only when higher
2893 * threads are idle. When in lower SMT modes, the threads will
2894 * perform better since they share less core resources. Hence when we
2895 * have idle threads, we want them to be the higher ones.
2897 * This packing function is run on idle threads. It checks to see if
2898 * the busiest CPU in this domain (core in the P7 case) has a higher
2899 * CPU number than the packing function is being run on. Here we are
2900 * assuming lower CPU number will be equivalent to lower a SMT thread
2901 * number.
2903 * Returns 1 when packing is required and a task should be moved to
2904 * this CPU. The amount of the imbalance is returned in *imbalance.
2906 * @sd: The sched_domain whose packing is to be checked.
2907 * @sds: Statistics of the sched_domain which is to be packed
2908 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
2909 * @imbalance: returns amount of imbalanced due to packing.
2911 static int check_asym_packing(struct sched_domain *sd,
2912 struct sd_lb_stats *sds,
2913 int this_cpu, unsigned long *imbalance)
2915 int busiest_cpu;
2917 if (!(sd->flags & SD_ASYM_PACKING))
2918 return 0;
2920 if (!sds->busiest)
2921 return 0;
2923 busiest_cpu = group_first_cpu(sds->busiest);
2924 if (this_cpu > busiest_cpu)
2925 return 0;
2927 *imbalance = DIV_ROUND_CLOSEST(sds->max_load * sds->busiest->cpu_power,
2928 SCHED_LOAD_SCALE);
2929 return 1;
2933 * fix_small_imbalance - Calculate the minor imbalance that exists
2934 * amongst the groups of a sched_domain, during
2935 * load balancing.
2936 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
2937 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
2938 * @imbalance: Variable to store the imbalance.
2940 static inline void fix_small_imbalance(struct sd_lb_stats *sds,
2941 int this_cpu, unsigned long *imbalance)
2943 unsigned long tmp, pwr_now = 0, pwr_move = 0;
2944 unsigned int imbn = 2;
2945 unsigned long scaled_busy_load_per_task;
2947 if (sds->this_nr_running) {
2948 sds->this_load_per_task /= sds->this_nr_running;
2949 if (sds->busiest_load_per_task >
2950 sds->this_load_per_task)
2951 imbn = 1;
2952 } else
2953 sds->this_load_per_task =
2954 cpu_avg_load_per_task(this_cpu);
2956 scaled_busy_load_per_task = sds->busiest_load_per_task
2957 * SCHED_LOAD_SCALE;
2958 scaled_busy_load_per_task /= sds->busiest->cpu_power;
2960 if (sds->max_load - sds->this_load + scaled_busy_load_per_task >=
2961 (scaled_busy_load_per_task * imbn)) {
2962 *imbalance = sds->busiest_load_per_task;
2963 return;
2967 * OK, we don't have enough imbalance to justify moving tasks,
2968 * however we may be able to increase total CPU power used by
2969 * moving them.
2972 pwr_now += sds->busiest->cpu_power *
2973 min(sds->busiest_load_per_task, sds->max_load);
2974 pwr_now += sds->this->cpu_power *
2975 min(sds->this_load_per_task, sds->this_load);
2976 pwr_now /= SCHED_LOAD_SCALE;
2978 /* Amount of load we'd subtract */
2979 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
2980 sds->busiest->cpu_power;
2981 if (sds->max_load > tmp)
2982 pwr_move += sds->busiest->cpu_power *
2983 min(sds->busiest_load_per_task, sds->max_load - tmp);
2985 /* Amount of load we'd add */
2986 if (sds->max_load * sds->busiest->cpu_power <
2987 sds->busiest_load_per_task * SCHED_LOAD_SCALE)
2988 tmp = (sds->max_load * sds->busiest->cpu_power) /
2989 sds->this->cpu_power;
2990 else
2991 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
2992 sds->this->cpu_power;
2993 pwr_move += sds->this->cpu_power *
2994 min(sds->this_load_per_task, sds->this_load + tmp);
2995 pwr_move /= SCHED_LOAD_SCALE;
2997 /* Move if we gain throughput */
2998 if (pwr_move > pwr_now)
2999 *imbalance = sds->busiest_load_per_task;
3003 * calculate_imbalance - Calculate the amount of imbalance present within the
3004 * groups of a given sched_domain during load balance.
3005 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
3006 * @this_cpu: Cpu for which currently load balance is being performed.
3007 * @imbalance: The variable to store the imbalance.
3009 static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
3010 unsigned long *imbalance)
3012 unsigned long max_pull, load_above_capacity = ~0UL;
3014 sds->busiest_load_per_task /= sds->busiest_nr_running;
3015 if (sds->group_imb) {
3016 sds->busiest_load_per_task =
3017 min(sds->busiest_load_per_task, sds->avg_load);
3021 * In the presence of smp nice balancing, certain scenarios can have
3022 * max load less than avg load(as we skip the groups at or below
3023 * its cpu_power, while calculating max_load..)
3025 if (sds->max_load < sds->avg_load) {
3026 *imbalance = 0;
3027 return fix_small_imbalance(sds, this_cpu, imbalance);
3030 if (!sds->group_imb) {
3032 * Don't want to pull so many tasks that a group would go idle.
3034 load_above_capacity = (sds->busiest_nr_running -
3035 sds->busiest_group_capacity);
3037 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_LOAD_SCALE);
3039 load_above_capacity /= sds->busiest->cpu_power;
3043 * We're trying to get all the cpus to the average_load, so we don't
3044 * want to push ourselves above the average load, nor do we wish to
3045 * reduce the max loaded cpu below the average load. At the same time,
3046 * we also don't want to reduce the group load below the group capacity
3047 * (so that we can implement power-savings policies etc). Thus we look
3048 * for the minimum possible imbalance.
3049 * Be careful of negative numbers as they'll appear as very large values
3050 * with unsigned longs.
3052 max_pull = min(sds->max_load - sds->avg_load, load_above_capacity);
3054 /* How much load to actually move to equalise the imbalance */
3055 *imbalance = min(max_pull * sds->busiest->cpu_power,
3056 (sds->avg_load - sds->this_load) * sds->this->cpu_power)
3057 / SCHED_LOAD_SCALE;
3060 * if *imbalance is less than the average load per runnable task
3061 * there is no guarantee that any tasks will be moved so we'll have
3062 * a think about bumping its value to force at least one task to be
3063 * moved
3065 if (*imbalance < sds->busiest_load_per_task)
3066 return fix_small_imbalance(sds, this_cpu, imbalance);
3070 /******* find_busiest_group() helpers end here *********************/
3073 * find_busiest_group - Returns the busiest group within the sched_domain
3074 * if there is an imbalance. If there isn't an imbalance, and
3075 * the user has opted for power-savings, it returns a group whose
3076 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
3077 * such a group exists.
3079 * Also calculates the amount of weighted load which should be moved
3080 * to restore balance.
3082 * @sd: The sched_domain whose busiest group is to be returned.
3083 * @this_cpu: The cpu for which load balancing is currently being performed.
3084 * @imbalance: Variable which stores amount of weighted load which should
3085 * be moved to restore balance/put a group to idle.
3086 * @idle: The idle status of this_cpu.
3087 * @cpus: The set of CPUs under consideration for load-balancing.
3088 * @balance: Pointer to a variable indicating if this_cpu
3089 * is the appropriate cpu to perform load balancing at this_level.
3091 * Returns: - the busiest group if imbalance exists.
3092 * - If no imbalance and user has opted for power-savings balance,
3093 * return the least loaded group whose CPUs can be
3094 * put to idle by rebalancing its tasks onto our group.
3096 static struct sched_group *
3097 find_busiest_group(struct sched_domain *sd, int this_cpu,
3098 unsigned long *imbalance, enum cpu_idle_type idle,
3099 const struct cpumask *cpus, int *balance)
3101 struct sd_lb_stats sds;
3103 memset(&sds, 0, sizeof(sds));
3106 * Compute the various statistics relavent for load balancing at
3107 * this level.
3109 update_sd_lb_stats(sd, this_cpu, idle, cpus, balance, &sds);
3112 * this_cpu is not the appropriate cpu to perform load balancing at
3113 * this level.
3115 if (!(*balance))
3116 goto ret;
3118 if ((idle == CPU_IDLE || idle == CPU_NEWLY_IDLE) &&
3119 check_asym_packing(sd, &sds, this_cpu, imbalance))
3120 return sds.busiest;
3122 /* There is no busy sibling group to pull tasks from */
3123 if (!sds.busiest || sds.busiest_nr_running == 0)
3124 goto out_balanced;
3126 sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
3129 * If the busiest group is imbalanced the below checks don't
3130 * work because they assumes all things are equal, which typically
3131 * isn't true due to cpus_allowed constraints and the like.
3133 if (sds.group_imb)
3134 goto force_balance;
3136 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
3137 if (idle == CPU_NEWLY_IDLE && sds.this_has_capacity &&
3138 !sds.busiest_has_capacity)
3139 goto force_balance;
3142 * If the local group is more busy than the selected busiest group
3143 * don't try and pull any tasks.
3145 if (sds.this_load >= sds.max_load)
3146 goto out_balanced;
3149 * Don't pull any tasks if this group is already above the domain
3150 * average load.
3152 if (sds.this_load >= sds.avg_load)
3153 goto out_balanced;
3155 if (idle == CPU_IDLE) {
3157 * This cpu is idle. If the busiest group load doesn't
3158 * have more tasks than the number of available cpu's and
3159 * there is no imbalance between this and busiest group
3160 * wrt to idle cpu's, it is balanced.
3162 if ((sds.this_idle_cpus <= sds.busiest_idle_cpus + 1) &&
3163 sds.busiest_nr_running <= sds.busiest_group_weight)
3164 goto out_balanced;
3165 } else {
3167 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
3168 * imbalance_pct to be conservative.
3170 if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
3171 goto out_balanced;
3174 force_balance:
3175 /* Looks like there is an imbalance. Compute it */
3176 calculate_imbalance(&sds, this_cpu, imbalance);
3177 return sds.busiest;
3179 out_balanced:
3181 * There is no obvious imbalance. But check if we can do some balancing
3182 * to save power.
3184 if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
3185 return sds.busiest;
3186 ret:
3187 *imbalance = 0;
3188 return NULL;
3192 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3194 static struct rq *
3195 find_busiest_queue(struct sched_domain *sd, struct sched_group *group,
3196 enum cpu_idle_type idle, unsigned long imbalance,
3197 const struct cpumask *cpus)
3199 struct rq *busiest = NULL, *rq;
3200 unsigned long max_load = 0;
3201 int i;
3203 for_each_cpu(i, sched_group_cpus(group)) {
3204 unsigned long power = power_of(i);
3205 unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
3206 unsigned long wl;
3208 if (!capacity)
3209 capacity = fix_small_capacity(sd, group);
3211 if (!cpumask_test_cpu(i, cpus))
3212 continue;
3214 rq = cpu_rq(i);
3215 wl = weighted_cpuload(i);
3218 * When comparing with imbalance, use weighted_cpuload()
3219 * which is not scaled with the cpu power.
3221 if (capacity && rq->nr_running == 1 && wl > imbalance)
3222 continue;
3225 * For the load comparisons with the other cpu's, consider
3226 * the weighted_cpuload() scaled with the cpu power, so that
3227 * the load can be moved away from the cpu that is potentially
3228 * running at a lower capacity.
3230 wl = (wl * SCHED_LOAD_SCALE) / power;
3232 if (wl > max_load) {
3233 max_load = wl;
3234 busiest = rq;
3238 return busiest;
3242 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3243 * so long as it is large enough.
3245 #define MAX_PINNED_INTERVAL 512
3247 /* Working cpumask for load_balance and load_balance_newidle. */
3248 static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
3250 static int need_active_balance(struct sched_domain *sd, int idle,
3251 int busiest_cpu, int this_cpu)
3253 if (idle == CPU_NEWLY_IDLE) {
3256 * ASYM_PACKING needs to force migrate tasks from busy but
3257 * higher numbered CPUs in order to pack all tasks in the
3258 * lowest numbered CPUs.
3260 if ((sd->flags & SD_ASYM_PACKING) && busiest_cpu > this_cpu)
3261 return 1;
3264 * The only task running in a non-idle cpu can be moved to this
3265 * cpu in an attempt to completely freeup the other CPU
3266 * package.
3268 * The package power saving logic comes from
3269 * find_busiest_group(). If there are no imbalance, then
3270 * f_b_g() will return NULL. However when sched_mc={1,2} then
3271 * f_b_g() will select a group from which a running task may be
3272 * pulled to this cpu in order to make the other package idle.
3273 * If there is no opportunity to make a package idle and if
3274 * there are no imbalance, then f_b_g() will return NULL and no
3275 * action will be taken in load_balance_newidle().
3277 * Under normal task pull operation due to imbalance, there
3278 * will be more than one task in the source run queue and
3279 * move_tasks() will succeed. ld_moved will be true and this
3280 * active balance code will not be triggered.
3282 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
3283 return 0;
3286 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
3289 static int active_load_balance_cpu_stop(void *data);
3292 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3293 * tasks if there is an imbalance.
3295 static int load_balance(int this_cpu, struct rq *this_rq,
3296 struct sched_domain *sd, enum cpu_idle_type idle,
3297 int *balance)
3299 int ld_moved, all_pinned = 0, active_balance = 0;
3300 struct sched_group *group;
3301 unsigned long imbalance;
3302 struct rq *busiest;
3303 unsigned long flags;
3304 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
3306 cpumask_copy(cpus, cpu_active_mask);
3308 schedstat_inc(sd, lb_count[idle]);
3310 redo:
3311 group = find_busiest_group(sd, this_cpu, &imbalance, idle,
3312 cpus, balance);
3314 if (*balance == 0)
3315 goto out_balanced;
3317 if (!group) {
3318 schedstat_inc(sd, lb_nobusyg[idle]);
3319 goto out_balanced;
3322 busiest = find_busiest_queue(sd, group, idle, imbalance, cpus);
3323 if (!busiest) {
3324 schedstat_inc(sd, lb_nobusyq[idle]);
3325 goto out_balanced;
3328 BUG_ON(busiest == this_rq);
3330 schedstat_add(sd, lb_imbalance[idle], imbalance);
3332 ld_moved = 0;
3333 if (busiest->nr_running > 1) {
3335 * Attempt to move tasks. If find_busiest_group has found
3336 * an imbalance but busiest->nr_running <= 1, the group is
3337 * still unbalanced. ld_moved simply stays zero, so it is
3338 * correctly treated as an imbalance.
3340 all_pinned = 1;
3341 local_irq_save(flags);
3342 double_rq_lock(this_rq, busiest);
3343 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3344 imbalance, sd, idle, &all_pinned);
3345 double_rq_unlock(this_rq, busiest);
3346 local_irq_restore(flags);
3349 * some other cpu did the load balance for us.
3351 if (ld_moved && this_cpu != smp_processor_id())
3352 resched_cpu(this_cpu);
3354 /* All tasks on this runqueue were pinned by CPU affinity */
3355 if (unlikely(all_pinned)) {
3356 cpumask_clear_cpu(cpu_of(busiest), cpus);
3357 if (!cpumask_empty(cpus))
3358 goto redo;
3359 goto out_balanced;
3363 if (!ld_moved) {
3364 schedstat_inc(sd, lb_failed[idle]);
3366 * Increment the failure counter only on periodic balance.
3367 * We do not want newidle balance, which can be very
3368 * frequent, pollute the failure counter causing
3369 * excessive cache_hot migrations and active balances.
3371 if (idle != CPU_NEWLY_IDLE)
3372 sd->nr_balance_failed++;
3374 if (need_active_balance(sd, idle, cpu_of(busiest), this_cpu)) {
3375 raw_spin_lock_irqsave(&busiest->lock, flags);
3377 /* don't kick the active_load_balance_cpu_stop,
3378 * if the curr task on busiest cpu can't be
3379 * moved to this_cpu
3381 if (!cpumask_test_cpu(this_cpu,
3382 &busiest->curr->cpus_allowed)) {
3383 raw_spin_unlock_irqrestore(&busiest->lock,
3384 flags);
3385 all_pinned = 1;
3386 goto out_one_pinned;
3390 * ->active_balance synchronizes accesses to
3391 * ->active_balance_work. Once set, it's cleared
3392 * only after active load balance is finished.
3394 if (!busiest->active_balance) {
3395 busiest->active_balance = 1;
3396 busiest->push_cpu = this_cpu;
3397 active_balance = 1;
3399 raw_spin_unlock_irqrestore(&busiest->lock, flags);
3401 if (active_balance)
3402 stop_one_cpu_nowait(cpu_of(busiest),
3403 active_load_balance_cpu_stop, busiest,
3404 &busiest->active_balance_work);
3407 * We've kicked active balancing, reset the failure
3408 * counter.
3410 sd->nr_balance_failed = sd->cache_nice_tries+1;
3412 } else
3413 sd->nr_balance_failed = 0;
3415 if (likely(!active_balance)) {
3416 /* We were unbalanced, so reset the balancing interval */
3417 sd->balance_interval = sd->min_interval;
3418 } else {
3420 * If we've begun active balancing, start to back off. This
3421 * case may not be covered by the all_pinned logic if there
3422 * is only 1 task on the busy runqueue (because we don't call
3423 * move_tasks).
3425 if (sd->balance_interval < sd->max_interval)
3426 sd->balance_interval *= 2;
3429 goto out;
3431 out_balanced:
3432 schedstat_inc(sd, lb_balanced[idle]);
3434 sd->nr_balance_failed = 0;
3436 out_one_pinned:
3437 /* tune up the balancing interval */
3438 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3439 (sd->balance_interval < sd->max_interval))
3440 sd->balance_interval *= 2;
3442 ld_moved = 0;
3443 out:
3444 return ld_moved;
3448 * idle_balance is called by schedule() if this_cpu is about to become
3449 * idle. Attempts to pull tasks from other CPUs.
3451 static void idle_balance(int this_cpu, struct rq *this_rq)
3453 struct sched_domain *sd;
3454 int pulled_task = 0;
3455 unsigned long next_balance = jiffies + HZ;
3457 this_rq->idle_stamp = this_rq->clock;
3459 if (this_rq->avg_idle < sysctl_sched_migration_cost)
3460 return;
3463 * Drop the rq->lock, but keep IRQ/preempt disabled.
3465 raw_spin_unlock(&this_rq->lock);
3467 update_shares(this_cpu);
3468 for_each_domain(this_cpu, sd) {
3469 unsigned long interval;
3470 int balance = 1;
3472 if (!(sd->flags & SD_LOAD_BALANCE))
3473 continue;
3475 if (sd->flags & SD_BALANCE_NEWIDLE) {
3476 /* If we've pulled tasks over stop searching: */
3477 pulled_task = load_balance(this_cpu, this_rq,
3478 sd, CPU_NEWLY_IDLE, &balance);
3481 interval = msecs_to_jiffies(sd->balance_interval);
3482 if (time_after(next_balance, sd->last_balance + interval))
3483 next_balance = sd->last_balance + interval;
3484 if (pulled_task) {
3485 this_rq->idle_stamp = 0;
3486 break;
3490 raw_spin_lock(&this_rq->lock);
3492 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3494 * We are going idle. next_balance may be set based on
3495 * a busy processor. So reset next_balance.
3497 this_rq->next_balance = next_balance;
3502 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
3503 * running tasks off the busiest CPU onto idle CPUs. It requires at
3504 * least 1 task to be running on each physical CPU where possible, and
3505 * avoids physical / logical imbalances.
3507 static int active_load_balance_cpu_stop(void *data)
3509 struct rq *busiest_rq = data;
3510 int busiest_cpu = cpu_of(busiest_rq);
3511 int target_cpu = busiest_rq->push_cpu;
3512 struct rq *target_rq = cpu_rq(target_cpu);
3513 struct sched_domain *sd;
3515 raw_spin_lock_irq(&busiest_rq->lock);
3517 /* make sure the requested cpu hasn't gone down in the meantime */
3518 if (unlikely(busiest_cpu != smp_processor_id() ||
3519 !busiest_rq->active_balance))
3520 goto out_unlock;
3522 /* Is there any task to move? */
3523 if (busiest_rq->nr_running <= 1)
3524 goto out_unlock;
3527 * This condition is "impossible", if it occurs
3528 * we need to fix it. Originally reported by
3529 * Bjorn Helgaas on a 128-cpu setup.
3531 BUG_ON(busiest_rq == target_rq);
3533 /* move a task from busiest_rq to target_rq */
3534 double_lock_balance(busiest_rq, target_rq);
3536 /* Search for an sd spanning us and the target CPU. */
3537 for_each_domain(target_cpu, sd) {
3538 if ((sd->flags & SD_LOAD_BALANCE) &&
3539 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
3540 break;
3543 if (likely(sd)) {
3544 schedstat_inc(sd, alb_count);
3546 if (move_one_task(target_rq, target_cpu, busiest_rq,
3547 sd, CPU_IDLE))
3548 schedstat_inc(sd, alb_pushed);
3549 else
3550 schedstat_inc(sd, alb_failed);
3552 double_unlock_balance(busiest_rq, target_rq);
3553 out_unlock:
3554 busiest_rq->active_balance = 0;
3555 raw_spin_unlock_irq(&busiest_rq->lock);
3556 return 0;
3559 #ifdef CONFIG_NO_HZ
3561 static DEFINE_PER_CPU(struct call_single_data, remote_sched_softirq_cb);
3563 static void trigger_sched_softirq(void *data)
3565 raise_softirq_irqoff(SCHED_SOFTIRQ);
3568 static inline void init_sched_softirq_csd(struct call_single_data *csd)
3570 csd->func = trigger_sched_softirq;
3571 csd->info = NULL;
3572 csd->flags = 0;
3573 csd->priv = 0;
3577 * idle load balancing details
3578 * - One of the idle CPUs nominates itself as idle load_balancer, while
3579 * entering idle.
3580 * - This idle load balancer CPU will also go into tickless mode when
3581 * it is idle, just like all other idle CPUs
3582 * - When one of the busy CPUs notice that there may be an idle rebalancing
3583 * needed, they will kick the idle load balancer, which then does idle
3584 * load balancing for all the idle CPUs.
3586 static struct {
3587 atomic_t load_balancer;
3588 atomic_t first_pick_cpu;
3589 atomic_t second_pick_cpu;
3590 cpumask_var_t idle_cpus_mask;
3591 cpumask_var_t grp_idle_mask;
3592 unsigned long next_balance; /* in jiffy units */
3593 } nohz ____cacheline_aligned;
3595 int get_nohz_load_balancer(void)
3597 return atomic_read(&nohz.load_balancer);
3600 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3602 * lowest_flag_domain - Return lowest sched_domain containing flag.
3603 * @cpu: The cpu whose lowest level of sched domain is to
3604 * be returned.
3605 * @flag: The flag to check for the lowest sched_domain
3606 * for the given cpu.
3608 * Returns the lowest sched_domain of a cpu which contains the given flag.
3610 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
3612 struct sched_domain *sd;
3614 for_each_domain(cpu, sd)
3615 if (sd && (sd->flags & flag))
3616 break;
3618 return sd;
3622 * for_each_flag_domain - Iterates over sched_domains containing the flag.
3623 * @cpu: The cpu whose domains we're iterating over.
3624 * @sd: variable holding the value of the power_savings_sd
3625 * for cpu.
3626 * @flag: The flag to filter the sched_domains to be iterated.
3628 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
3629 * set, starting from the lowest sched_domain to the highest.
3631 #define for_each_flag_domain(cpu, sd, flag) \
3632 for (sd = lowest_flag_domain(cpu, flag); \
3633 (sd && (sd->flags & flag)); sd = sd->parent)
3636 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
3637 * @ilb_group: group to be checked for semi-idleness
3639 * Returns: 1 if the group is semi-idle. 0 otherwise.
3641 * We define a sched_group to be semi idle if it has atleast one idle-CPU
3642 * and atleast one non-idle CPU. This helper function checks if the given
3643 * sched_group is semi-idle or not.
3645 static inline int is_semi_idle_group(struct sched_group *ilb_group)
3647 cpumask_and(nohz.grp_idle_mask, nohz.idle_cpus_mask,
3648 sched_group_cpus(ilb_group));
3651 * A sched_group is semi-idle when it has atleast one busy cpu
3652 * and atleast one idle cpu.
3654 if (cpumask_empty(nohz.grp_idle_mask))
3655 return 0;
3657 if (cpumask_equal(nohz.grp_idle_mask, sched_group_cpus(ilb_group)))
3658 return 0;
3660 return 1;
3663 * find_new_ilb - Finds the optimum idle load balancer for nomination.
3664 * @cpu: The cpu which is nominating a new idle_load_balancer.
3666 * Returns: Returns the id of the idle load balancer if it exists,
3667 * Else, returns >= nr_cpu_ids.
3669 * This algorithm picks the idle load balancer such that it belongs to a
3670 * semi-idle powersavings sched_domain. The idea is to try and avoid
3671 * completely idle packages/cores just for the purpose of idle load balancing
3672 * when there are other idle cpu's which are better suited for that job.
3674 static int find_new_ilb(int cpu)
3676 struct sched_domain *sd;
3677 struct sched_group *ilb_group;
3680 * Have idle load balancer selection from semi-idle packages only
3681 * when power-aware load balancing is enabled
3683 if (!(sched_smt_power_savings || sched_mc_power_savings))
3684 goto out_done;
3687 * Optimize for the case when we have no idle CPUs or only one
3688 * idle CPU. Don't walk the sched_domain hierarchy in such cases
3690 if (cpumask_weight(nohz.idle_cpus_mask) < 2)
3691 goto out_done;
3693 for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
3694 ilb_group = sd->groups;
3696 do {
3697 if (is_semi_idle_group(ilb_group))
3698 return cpumask_first(nohz.grp_idle_mask);
3700 ilb_group = ilb_group->next;
3702 } while (ilb_group != sd->groups);
3705 out_done:
3706 return nr_cpu_ids;
3708 #else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
3709 static inline int find_new_ilb(int call_cpu)
3711 return nr_cpu_ids;
3713 #endif
3716 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
3717 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
3718 * CPU (if there is one).
3720 static void nohz_balancer_kick(int cpu)
3722 int ilb_cpu;
3724 nohz.next_balance++;
3726 ilb_cpu = get_nohz_load_balancer();
3728 if (ilb_cpu >= nr_cpu_ids) {
3729 ilb_cpu = cpumask_first(nohz.idle_cpus_mask);
3730 if (ilb_cpu >= nr_cpu_ids)
3731 return;
3734 if (!cpu_rq(ilb_cpu)->nohz_balance_kick) {
3735 struct call_single_data *cp;
3737 cpu_rq(ilb_cpu)->nohz_balance_kick = 1;
3738 cp = &per_cpu(remote_sched_softirq_cb, cpu);
3739 __smp_call_function_single(ilb_cpu, cp, 0);
3741 return;
3745 * This routine will try to nominate the ilb (idle load balancing)
3746 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3747 * load balancing on behalf of all those cpus.
3749 * When the ilb owner becomes busy, we will not have new ilb owner until some
3750 * idle CPU wakes up and goes back to idle or some busy CPU tries to kick
3751 * idle load balancing by kicking one of the idle CPUs.
3753 * Ticks are stopped for the ilb owner as well, with busy CPU kicking this
3754 * ilb owner CPU in future (when there is a need for idle load balancing on
3755 * behalf of all idle CPUs).
3757 void select_nohz_load_balancer(int stop_tick)
3759 int cpu = smp_processor_id();
3761 if (stop_tick) {
3762 if (!cpu_active(cpu)) {
3763 if (atomic_read(&nohz.load_balancer) != cpu)
3764 return;
3767 * If we are going offline and still the leader,
3768 * give up!
3770 if (atomic_cmpxchg(&nohz.load_balancer, cpu,
3771 nr_cpu_ids) != cpu)
3772 BUG();
3774 return;
3777 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
3779 if (atomic_read(&nohz.first_pick_cpu) == cpu)
3780 atomic_cmpxchg(&nohz.first_pick_cpu, cpu, nr_cpu_ids);
3781 if (atomic_read(&nohz.second_pick_cpu) == cpu)
3782 atomic_cmpxchg(&nohz.second_pick_cpu, cpu, nr_cpu_ids);
3784 if (atomic_read(&nohz.load_balancer) >= nr_cpu_ids) {
3785 int new_ilb;
3787 /* make me the ilb owner */
3788 if (atomic_cmpxchg(&nohz.load_balancer, nr_cpu_ids,
3789 cpu) != nr_cpu_ids)
3790 return;
3793 * Check to see if there is a more power-efficient
3794 * ilb.
3796 new_ilb = find_new_ilb(cpu);
3797 if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
3798 atomic_set(&nohz.load_balancer, nr_cpu_ids);
3799 resched_cpu(new_ilb);
3800 return;
3802 return;
3804 } else {
3805 if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
3806 return;
3808 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
3810 if (atomic_read(&nohz.load_balancer) == cpu)
3811 if (atomic_cmpxchg(&nohz.load_balancer, cpu,
3812 nr_cpu_ids) != cpu)
3813 BUG();
3815 return;
3817 #endif
3819 static DEFINE_SPINLOCK(balancing);
3821 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
3824 * Scale the max load_balance interval with the number of CPUs in the system.
3825 * This trades load-balance latency on larger machines for less cross talk.
3827 static void update_max_interval(void)
3829 max_load_balance_interval = HZ*num_online_cpus()/10;
3833 * It checks each scheduling domain to see if it is due to be balanced,
3834 * and initiates a balancing operation if so.
3836 * Balancing parameters are set up in arch_init_sched_domains.
3838 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3840 int balance = 1;
3841 struct rq *rq = cpu_rq(cpu);
3842 unsigned long interval;
3843 struct sched_domain *sd;
3844 /* Earliest time when we have to do rebalance again */
3845 unsigned long next_balance = jiffies + 60*HZ;
3846 int update_next_balance = 0;
3847 int need_serialize;
3849 update_shares(cpu);
3851 for_each_domain(cpu, sd) {
3852 if (!(sd->flags & SD_LOAD_BALANCE))
3853 continue;
3855 interval = sd->balance_interval;
3856 if (idle != CPU_IDLE)
3857 interval *= sd->busy_factor;
3859 /* scale ms to jiffies */
3860 interval = msecs_to_jiffies(interval);
3861 interval = clamp(interval, 1UL, max_load_balance_interval);
3863 need_serialize = sd->flags & SD_SERIALIZE;
3865 if (need_serialize) {
3866 if (!spin_trylock(&balancing))
3867 goto out;
3870 if (time_after_eq(jiffies, sd->last_balance + interval)) {
3871 if (load_balance(cpu, rq, sd, idle, &balance)) {
3873 * We've pulled tasks over so either we're no
3874 * longer idle.
3876 idle = CPU_NOT_IDLE;
3878 sd->last_balance = jiffies;
3880 if (need_serialize)
3881 spin_unlock(&balancing);
3882 out:
3883 if (time_after(next_balance, sd->last_balance + interval)) {
3884 next_balance = sd->last_balance + interval;
3885 update_next_balance = 1;
3889 * Stop the load balance at this level. There is another
3890 * CPU in our sched group which is doing load balancing more
3891 * actively.
3893 if (!balance)
3894 break;
3898 * next_balance will be updated only when there is a need.
3899 * When the cpu is attached to null domain for ex, it will not be
3900 * updated.
3902 if (likely(update_next_balance))
3903 rq->next_balance = next_balance;
3906 #ifdef CONFIG_NO_HZ
3908 * In CONFIG_NO_HZ case, the idle balance kickee will do the
3909 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3911 static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
3913 struct rq *this_rq = cpu_rq(this_cpu);
3914 struct rq *rq;
3915 int balance_cpu;
3917 if (idle != CPU_IDLE || !this_rq->nohz_balance_kick)
3918 return;
3920 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
3921 if (balance_cpu == this_cpu)
3922 continue;
3925 * If this cpu gets work to do, stop the load balancing
3926 * work being done for other cpus. Next load
3927 * balancing owner will pick it up.
3929 if (need_resched()) {
3930 this_rq->nohz_balance_kick = 0;
3931 break;
3934 raw_spin_lock_irq(&this_rq->lock);
3935 update_rq_clock(this_rq);
3936 update_cpu_load(this_rq);
3937 raw_spin_unlock_irq(&this_rq->lock);
3939 rebalance_domains(balance_cpu, CPU_IDLE);
3941 rq = cpu_rq(balance_cpu);
3942 if (time_after(this_rq->next_balance, rq->next_balance))
3943 this_rq->next_balance = rq->next_balance;
3945 nohz.next_balance = this_rq->next_balance;
3946 this_rq->nohz_balance_kick = 0;
3950 * Current heuristic for kicking the idle load balancer
3951 * - first_pick_cpu is the one of the busy CPUs. It will kick
3952 * idle load balancer when it has more than one process active. This
3953 * eliminates the need for idle load balancing altogether when we have
3954 * only one running process in the system (common case).
3955 * - If there are more than one busy CPU, idle load balancer may have
3956 * to run for active_load_balance to happen (i.e., two busy CPUs are
3957 * SMT or core siblings and can run better if they move to different
3958 * physical CPUs). So, second_pick_cpu is the second of the busy CPUs
3959 * which will kick idle load balancer as soon as it has any load.
3961 static inline int nohz_kick_needed(struct rq *rq, int cpu)
3963 unsigned long now = jiffies;
3964 int ret;
3965 int first_pick_cpu, second_pick_cpu;
3967 if (time_before(now, nohz.next_balance))
3968 return 0;
3970 if (rq->idle_at_tick)
3971 return 0;
3973 first_pick_cpu = atomic_read(&nohz.first_pick_cpu);
3974 second_pick_cpu = atomic_read(&nohz.second_pick_cpu);
3976 if (first_pick_cpu < nr_cpu_ids && first_pick_cpu != cpu &&
3977 second_pick_cpu < nr_cpu_ids && second_pick_cpu != cpu)
3978 return 0;
3980 ret = atomic_cmpxchg(&nohz.first_pick_cpu, nr_cpu_ids, cpu);
3981 if (ret == nr_cpu_ids || ret == cpu) {
3982 atomic_cmpxchg(&nohz.second_pick_cpu, cpu, nr_cpu_ids);
3983 if (rq->nr_running > 1)
3984 return 1;
3985 } else {
3986 ret = atomic_cmpxchg(&nohz.second_pick_cpu, nr_cpu_ids, cpu);
3987 if (ret == nr_cpu_ids || ret == cpu) {
3988 if (rq->nr_running)
3989 return 1;
3992 return 0;
3994 #else
3995 static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
3996 #endif
3999 * run_rebalance_domains is triggered when needed from the scheduler tick.
4000 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
4002 static void run_rebalance_domains(struct softirq_action *h)
4004 int this_cpu = smp_processor_id();
4005 struct rq *this_rq = cpu_rq(this_cpu);
4006 enum cpu_idle_type idle = this_rq->idle_at_tick ?
4007 CPU_IDLE : CPU_NOT_IDLE;
4009 rebalance_domains(this_cpu, idle);
4012 * If this cpu has a pending nohz_balance_kick, then do the
4013 * balancing on behalf of the other idle cpus whose ticks are
4014 * stopped.
4016 nohz_idle_balance(this_cpu, idle);
4019 static inline int on_null_domain(int cpu)
4021 return !rcu_dereference_sched(cpu_rq(cpu)->sd);
4025 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4027 static inline void trigger_load_balance(struct rq *rq, int cpu)
4029 /* Don't need to rebalance while attached to NULL domain */
4030 if (time_after_eq(jiffies, rq->next_balance) &&
4031 likely(!on_null_domain(cpu)))
4032 raise_softirq(SCHED_SOFTIRQ);
4033 #ifdef CONFIG_NO_HZ
4034 else if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
4035 nohz_balancer_kick(cpu);
4036 #endif
4039 static void rq_online_fair(struct rq *rq)
4041 update_sysctl();
4044 static void rq_offline_fair(struct rq *rq)
4046 update_sysctl();
4049 #else /* CONFIG_SMP */
4052 * on UP we do not need to balance between CPUs:
4054 static inline void idle_balance(int cpu, struct rq *rq)
4058 #endif /* CONFIG_SMP */
4061 * scheduler tick hitting a task of our scheduling class:
4063 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
4065 struct cfs_rq *cfs_rq;
4066 struct sched_entity *se = &curr->se;
4068 for_each_sched_entity(se) {
4069 cfs_rq = cfs_rq_of(se);
4070 entity_tick(cfs_rq, se, queued);
4075 * called on fork with the child task as argument from the parent's context
4076 * - child not yet on the tasklist
4077 * - preemption disabled
4079 static void task_fork_fair(struct task_struct *p)
4081 struct cfs_rq *cfs_rq = task_cfs_rq(current);
4082 struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
4083 int this_cpu = smp_processor_id();
4084 struct rq *rq = this_rq();
4085 unsigned long flags;
4087 raw_spin_lock_irqsave(&rq->lock, flags);
4089 update_rq_clock(rq);
4091 if (unlikely(task_cpu(p) != this_cpu)) {
4092 rcu_read_lock();
4093 __set_task_cpu(p, this_cpu);
4094 rcu_read_unlock();
4097 update_curr(cfs_rq);
4099 if (curr)
4100 se->vruntime = curr->vruntime;
4101 place_entity(cfs_rq, se, 1);
4103 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
4105 * Upon rescheduling, sched_class::put_prev_task() will place
4106 * 'current' within the tree based on its new key value.
4108 swap(curr->vruntime, se->vruntime);
4109 resched_task(rq->curr);
4112 se->vruntime -= cfs_rq->min_vruntime;
4114 raw_spin_unlock_irqrestore(&rq->lock, flags);
4118 * Priority of the task has changed. Check to see if we preempt
4119 * the current task.
4121 static void
4122 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
4124 if (!p->se.on_rq)
4125 return;
4128 * Reschedule if we are currently running on this runqueue and
4129 * our priority decreased, or if we are not currently running on
4130 * this runqueue and our priority is higher than the current's
4132 if (rq->curr == p) {
4133 if (p->prio > oldprio)
4134 resched_task(rq->curr);
4135 } else
4136 check_preempt_curr(rq, p, 0);
4139 static void switched_from_fair(struct rq *rq, struct task_struct *p)
4141 struct sched_entity *se = &p->se;
4142 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4145 * Ensure the task's vruntime is normalized, so that when its
4146 * switched back to the fair class the enqueue_entity(.flags=0) will
4147 * do the right thing.
4149 * If it was on_rq, then the dequeue_entity(.flags=0) will already
4150 * have normalized the vruntime, if it was !on_rq, then only when
4151 * the task is sleeping will it still have non-normalized vruntime.
4153 if (!se->on_rq && p->state != TASK_RUNNING) {
4155 * Fix up our vruntime so that the current sleep doesn't
4156 * cause 'unlimited' sleep bonus.
4158 place_entity(cfs_rq, se, 0);
4159 se->vruntime -= cfs_rq->min_vruntime;
4164 * We switched to the sched_fair class.
4166 static void switched_to_fair(struct rq *rq, struct task_struct *p)
4168 if (!p->se.on_rq)
4169 return;
4172 * We were most likely switched from sched_rt, so
4173 * kick off the schedule if running, otherwise just see
4174 * if we can still preempt the current task.
4176 if (rq->curr == p)
4177 resched_task(rq->curr);
4178 else
4179 check_preempt_curr(rq, p, 0);
4182 /* Account for a task changing its policy or group.
4184 * This routine is mostly called to set cfs_rq->curr field when a task
4185 * migrates between groups/classes.
4187 static void set_curr_task_fair(struct rq *rq)
4189 struct sched_entity *se = &rq->curr->se;
4191 for_each_sched_entity(se)
4192 set_next_entity(cfs_rq_of(se), se);
4195 #ifdef CONFIG_FAIR_GROUP_SCHED
4196 static void task_move_group_fair(struct task_struct *p, int on_rq)
4199 * If the task was not on the rq at the time of this cgroup movement
4200 * it must have been asleep, sleeping tasks keep their ->vruntime
4201 * absolute on their old rq until wakeup (needed for the fair sleeper
4202 * bonus in place_entity()).
4204 * If it was on the rq, we've just 'preempted' it, which does convert
4205 * ->vruntime to a relative base.
4207 * Make sure both cases convert their relative position when migrating
4208 * to another cgroup's rq. This does somewhat interfere with the
4209 * fair sleeper stuff for the first placement, but who cares.
4211 if (!on_rq)
4212 p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
4213 set_task_rq(p, task_cpu(p));
4214 if (!on_rq)
4215 p->se.vruntime += cfs_rq_of(&p->se)->min_vruntime;
4217 #endif
4219 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
4221 struct sched_entity *se = &task->se;
4222 unsigned int rr_interval = 0;
4225 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
4226 * idle runqueue:
4228 if (rq->cfs.load.weight)
4229 rr_interval = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
4231 return rr_interval;
4235 * All the scheduling class methods:
4237 static const struct sched_class fair_sched_class = {
4238 .next = &idle_sched_class,
4239 .enqueue_task = enqueue_task_fair,
4240 .dequeue_task = dequeue_task_fair,
4241 .yield_task = yield_task_fair,
4242 .yield_to_task = yield_to_task_fair,
4244 .check_preempt_curr = check_preempt_wakeup,
4246 .pick_next_task = pick_next_task_fair,
4247 .put_prev_task = put_prev_task_fair,
4249 #ifdef CONFIG_SMP
4250 .select_task_rq = select_task_rq_fair,
4252 .rq_online = rq_online_fair,
4253 .rq_offline = rq_offline_fair,
4255 .task_waking = task_waking_fair,
4256 #endif
4258 .set_curr_task = set_curr_task_fair,
4259 .task_tick = task_tick_fair,
4260 .task_fork = task_fork_fair,
4262 .prio_changed = prio_changed_fair,
4263 .switched_from = switched_from_fair,
4264 .switched_to = switched_to_fair,
4266 .get_rr_interval = get_rr_interval_fair,
4268 #ifdef CONFIG_FAIR_GROUP_SCHED
4269 .task_move_group = task_move_group_fair,
4270 #endif
4273 #ifdef CONFIG_SCHED_DEBUG
4274 static void print_cfs_stats(struct seq_file *m, int cpu)
4276 struct cfs_rq *cfs_rq;
4278 rcu_read_lock();
4279 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
4280 print_cfs_rq(m, cpu, cfs_rq);
4281 rcu_read_unlock();
4283 #endif