Merge branch 'x86/apic' into x86/platform
[linux-2.6/linux-mips.git] / kernel / time / ntp.c
blob5c00242fa921cca007ee2f366493903e246d4769
1 /*
2 * NTP state machine interfaces and logic.
4 * This code was mainly moved from kernel/timer.c and kernel/time.c
5 * Please see those files for relevant copyright info and historical
6 * changelogs.
7 */
8 #include <linux/capability.h>
9 #include <linux/clocksource.h>
10 #include <linux/workqueue.h>
11 #include <linux/hrtimer.h>
12 #include <linux/jiffies.h>
13 #include <linux/math64.h>
14 #include <linux/timex.h>
15 #include <linux/time.h>
16 #include <linux/mm.h>
17 #include <linux/module.h>
20 * NTP timekeeping variables:
23 /* USER_HZ period (usecs): */
24 unsigned long tick_usec = TICK_USEC;
26 /* ACTHZ period (nsecs): */
27 unsigned long tick_nsec;
29 u64 tick_length;
30 static u64 tick_length_base;
32 static struct hrtimer leap_timer;
34 #define MAX_TICKADJ 500LL /* usecs */
35 #define MAX_TICKADJ_SCALED \
36 (((MAX_TICKADJ * NSEC_PER_USEC) << NTP_SCALE_SHIFT) / NTP_INTERVAL_FREQ)
39 * phase-lock loop variables
43 * clock synchronization status
45 * (TIME_ERROR prevents overwriting the CMOS clock)
47 static int time_state = TIME_OK;
49 /* clock status bits: */
50 int time_status = STA_UNSYNC;
52 /* TAI offset (secs): */
53 static long time_tai;
55 /* time adjustment (nsecs): */
56 static s64 time_offset;
58 /* pll time constant: */
59 static long time_constant = 2;
61 /* maximum error (usecs): */
62 static long time_maxerror = NTP_PHASE_LIMIT;
64 /* estimated error (usecs): */
65 static long time_esterror = NTP_PHASE_LIMIT;
67 /* frequency offset (scaled nsecs/secs): */
68 static s64 time_freq;
70 /* time at last adjustment (secs): */
71 static long time_reftime;
73 static long time_adjust;
75 /* constant (boot-param configurable) NTP tick adjustment (upscaled) */
76 static s64 ntp_tick_adj;
78 #ifdef CONFIG_NTP_PPS
81 * The following variables are used when a pulse-per-second (PPS) signal
82 * is available. They establish the engineering parameters of the clock
83 * discipline loop when controlled by the PPS signal.
85 #define PPS_VALID 10 /* PPS signal watchdog max (s) */
86 #define PPS_POPCORN 4 /* popcorn spike threshold (shift) */
87 #define PPS_INTMIN 2 /* min freq interval (s) (shift) */
88 #define PPS_INTMAX 8 /* max freq interval (s) (shift) */
89 #define PPS_INTCOUNT 4 /* number of consecutive good intervals to
90 increase pps_shift or consecutive bad
91 intervals to decrease it */
92 #define PPS_MAXWANDER 100000 /* max PPS freq wander (ns/s) */
94 static int pps_valid; /* signal watchdog counter */
95 static long pps_tf[3]; /* phase median filter */
96 static long pps_jitter; /* current jitter (ns) */
97 static struct timespec pps_fbase; /* beginning of the last freq interval */
98 static int pps_shift; /* current interval duration (s) (shift) */
99 static int pps_intcnt; /* interval counter */
100 static s64 pps_freq; /* frequency offset (scaled ns/s) */
101 static long pps_stabil; /* current stability (scaled ns/s) */
104 * PPS signal quality monitors
106 static long pps_calcnt; /* calibration intervals */
107 static long pps_jitcnt; /* jitter limit exceeded */
108 static long pps_stbcnt; /* stability limit exceeded */
109 static long pps_errcnt; /* calibration errors */
112 /* PPS kernel consumer compensates the whole phase error immediately.
113 * Otherwise, reduce the offset by a fixed factor times the time constant.
115 static inline s64 ntp_offset_chunk(s64 offset)
117 if (time_status & STA_PPSTIME && time_status & STA_PPSSIGNAL)
118 return offset;
119 else
120 return shift_right(offset, SHIFT_PLL + time_constant);
123 static inline void pps_reset_freq_interval(void)
125 /* the PPS calibration interval may end
126 surprisingly early */
127 pps_shift = PPS_INTMIN;
128 pps_intcnt = 0;
132 * pps_clear - Clears the PPS state variables
134 * Must be called while holding a write on the xtime_lock
136 static inline void pps_clear(void)
138 pps_reset_freq_interval();
139 pps_tf[0] = 0;
140 pps_tf[1] = 0;
141 pps_tf[2] = 0;
142 pps_fbase.tv_sec = pps_fbase.tv_nsec = 0;
143 pps_freq = 0;
146 /* Decrease pps_valid to indicate that another second has passed since
147 * the last PPS signal. When it reaches 0, indicate that PPS signal is
148 * missing.
150 * Must be called while holding a write on the xtime_lock
152 static inline void pps_dec_valid(void)
154 if (pps_valid > 0)
155 pps_valid--;
156 else {
157 time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
158 STA_PPSWANDER | STA_PPSERROR);
159 pps_clear();
163 static inline void pps_set_freq(s64 freq)
165 pps_freq = freq;
168 static inline int is_error_status(int status)
170 return (time_status & (STA_UNSYNC|STA_CLOCKERR))
171 /* PPS signal lost when either PPS time or
172 * PPS frequency synchronization requested
174 || ((time_status & (STA_PPSFREQ|STA_PPSTIME))
175 && !(time_status & STA_PPSSIGNAL))
176 /* PPS jitter exceeded when
177 * PPS time synchronization requested */
178 || ((time_status & (STA_PPSTIME|STA_PPSJITTER))
179 == (STA_PPSTIME|STA_PPSJITTER))
180 /* PPS wander exceeded or calibration error when
181 * PPS frequency synchronization requested
183 || ((time_status & STA_PPSFREQ)
184 && (time_status & (STA_PPSWANDER|STA_PPSERROR)));
187 static inline void pps_fill_timex(struct timex *txc)
189 txc->ppsfreq = shift_right((pps_freq >> PPM_SCALE_INV_SHIFT) *
190 PPM_SCALE_INV, NTP_SCALE_SHIFT);
191 txc->jitter = pps_jitter;
192 if (!(time_status & STA_NANO))
193 txc->jitter /= NSEC_PER_USEC;
194 txc->shift = pps_shift;
195 txc->stabil = pps_stabil;
196 txc->jitcnt = pps_jitcnt;
197 txc->calcnt = pps_calcnt;
198 txc->errcnt = pps_errcnt;
199 txc->stbcnt = pps_stbcnt;
202 #else /* !CONFIG_NTP_PPS */
204 static inline s64 ntp_offset_chunk(s64 offset)
206 return shift_right(offset, SHIFT_PLL + time_constant);
209 static inline void pps_reset_freq_interval(void) {}
210 static inline void pps_clear(void) {}
211 static inline void pps_dec_valid(void) {}
212 static inline void pps_set_freq(s64 freq) {}
214 static inline int is_error_status(int status)
216 return status & (STA_UNSYNC|STA_CLOCKERR);
219 static inline void pps_fill_timex(struct timex *txc)
221 /* PPS is not implemented, so these are zero */
222 txc->ppsfreq = 0;
223 txc->jitter = 0;
224 txc->shift = 0;
225 txc->stabil = 0;
226 txc->jitcnt = 0;
227 txc->calcnt = 0;
228 txc->errcnt = 0;
229 txc->stbcnt = 0;
232 #endif /* CONFIG_NTP_PPS */
235 * NTP methods:
239 * Update (tick_length, tick_length_base, tick_nsec), based
240 * on (tick_usec, ntp_tick_adj, time_freq):
242 static void ntp_update_frequency(void)
244 u64 second_length;
245 u64 new_base;
247 second_length = (u64)(tick_usec * NSEC_PER_USEC * USER_HZ)
248 << NTP_SCALE_SHIFT;
250 second_length += ntp_tick_adj;
251 second_length += time_freq;
253 tick_nsec = div_u64(second_length, HZ) >> NTP_SCALE_SHIFT;
254 new_base = div_u64(second_length, NTP_INTERVAL_FREQ);
257 * Don't wait for the next second_overflow, apply
258 * the change to the tick length immediately:
260 tick_length += new_base - tick_length_base;
261 tick_length_base = new_base;
264 static inline s64 ntp_update_offset_fll(s64 offset64, long secs)
266 time_status &= ~STA_MODE;
268 if (secs < MINSEC)
269 return 0;
271 if (!(time_status & STA_FLL) && (secs <= MAXSEC))
272 return 0;
274 time_status |= STA_MODE;
276 return div_s64(offset64 << (NTP_SCALE_SHIFT - SHIFT_FLL), secs);
279 static void ntp_update_offset(long offset)
281 s64 freq_adj;
282 s64 offset64;
283 long secs;
285 if (!(time_status & STA_PLL))
286 return;
288 if (!(time_status & STA_NANO))
289 offset *= NSEC_PER_USEC;
292 * Scale the phase adjustment and
293 * clamp to the operating range.
295 offset = min(offset, MAXPHASE);
296 offset = max(offset, -MAXPHASE);
299 * Select how the frequency is to be controlled
300 * and in which mode (PLL or FLL).
302 secs = get_seconds() - time_reftime;
303 if (unlikely(time_status & STA_FREQHOLD))
304 secs = 0;
306 time_reftime = get_seconds();
308 offset64 = offset;
309 freq_adj = ntp_update_offset_fll(offset64, secs);
312 * Clamp update interval to reduce PLL gain with low
313 * sampling rate (e.g. intermittent network connection)
314 * to avoid instability.
316 if (unlikely(secs > 1 << (SHIFT_PLL + 1 + time_constant)))
317 secs = 1 << (SHIFT_PLL + 1 + time_constant);
319 freq_adj += (offset64 * secs) <<
320 (NTP_SCALE_SHIFT - 2 * (SHIFT_PLL + 2 + time_constant));
322 freq_adj = min(freq_adj + time_freq, MAXFREQ_SCALED);
324 time_freq = max(freq_adj, -MAXFREQ_SCALED);
326 time_offset = div_s64(offset64 << NTP_SCALE_SHIFT, NTP_INTERVAL_FREQ);
330 * ntp_clear - Clears the NTP state variables
332 * Must be called while holding a write on the xtime_lock
334 void ntp_clear(void)
336 time_adjust = 0; /* stop active adjtime() */
337 time_status |= STA_UNSYNC;
338 time_maxerror = NTP_PHASE_LIMIT;
339 time_esterror = NTP_PHASE_LIMIT;
341 ntp_update_frequency();
343 tick_length = tick_length_base;
344 time_offset = 0;
346 /* Clear PPS state variables */
347 pps_clear();
351 * Leap second processing. If in leap-insert state at the end of the
352 * day, the system clock is set back one second; if in leap-delete
353 * state, the system clock is set ahead one second.
355 static enum hrtimer_restart ntp_leap_second(struct hrtimer *timer)
357 enum hrtimer_restart res = HRTIMER_NORESTART;
359 write_seqlock(&xtime_lock);
361 switch (time_state) {
362 case TIME_OK:
363 break;
364 case TIME_INS:
365 timekeeping_leap_insert(-1);
366 time_state = TIME_OOP;
367 printk(KERN_NOTICE
368 "Clock: inserting leap second 23:59:60 UTC\n");
369 hrtimer_add_expires_ns(&leap_timer, NSEC_PER_SEC);
370 res = HRTIMER_RESTART;
371 break;
372 case TIME_DEL:
373 timekeeping_leap_insert(1);
374 time_tai--;
375 time_state = TIME_WAIT;
376 printk(KERN_NOTICE
377 "Clock: deleting leap second 23:59:59 UTC\n");
378 break;
379 case TIME_OOP:
380 time_tai++;
381 time_state = TIME_WAIT;
382 /* fall through */
383 case TIME_WAIT:
384 if (!(time_status & (STA_INS | STA_DEL)))
385 time_state = TIME_OK;
386 break;
389 write_sequnlock(&xtime_lock);
391 return res;
395 * this routine handles the overflow of the microsecond field
397 * The tricky bits of code to handle the accurate clock support
398 * were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame.
399 * They were originally developed for SUN and DEC kernels.
400 * All the kudos should go to Dave for this stuff.
402 void second_overflow(void)
404 s64 delta;
406 /* Bump the maxerror field */
407 time_maxerror += MAXFREQ / NSEC_PER_USEC;
408 if (time_maxerror > NTP_PHASE_LIMIT) {
409 time_maxerror = NTP_PHASE_LIMIT;
410 time_status |= STA_UNSYNC;
413 /* Compute the phase adjustment for the next second */
414 tick_length = tick_length_base;
416 delta = ntp_offset_chunk(time_offset);
417 time_offset -= delta;
418 tick_length += delta;
420 /* Check PPS signal */
421 pps_dec_valid();
423 if (!time_adjust)
424 return;
426 if (time_adjust > MAX_TICKADJ) {
427 time_adjust -= MAX_TICKADJ;
428 tick_length += MAX_TICKADJ_SCALED;
429 return;
432 if (time_adjust < -MAX_TICKADJ) {
433 time_adjust += MAX_TICKADJ;
434 tick_length -= MAX_TICKADJ_SCALED;
435 return;
438 tick_length += (s64)(time_adjust * NSEC_PER_USEC / NTP_INTERVAL_FREQ)
439 << NTP_SCALE_SHIFT;
440 time_adjust = 0;
443 #ifdef CONFIG_GENERIC_CMOS_UPDATE
445 /* Disable the cmos update - used by virtualization and embedded */
446 int no_sync_cmos_clock __read_mostly;
448 static void sync_cmos_clock(struct work_struct *work);
450 static DECLARE_DELAYED_WORK(sync_cmos_work, sync_cmos_clock);
452 static void sync_cmos_clock(struct work_struct *work)
454 struct timespec now, next;
455 int fail = 1;
458 * If we have an externally synchronized Linux clock, then update
459 * CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be
460 * called as close as possible to 500 ms before the new second starts.
461 * This code is run on a timer. If the clock is set, that timer
462 * may not expire at the correct time. Thus, we adjust...
464 if (!ntp_synced()) {
466 * Not synced, exit, do not restart a timer (if one is
467 * running, let it run out).
469 return;
472 getnstimeofday(&now);
473 if (abs(now.tv_nsec - (NSEC_PER_SEC / 2)) <= tick_nsec / 2)
474 fail = update_persistent_clock(now);
476 next.tv_nsec = (NSEC_PER_SEC / 2) - now.tv_nsec - (TICK_NSEC / 2);
477 if (next.tv_nsec <= 0)
478 next.tv_nsec += NSEC_PER_SEC;
480 if (!fail)
481 next.tv_sec = 659;
482 else
483 next.tv_sec = 0;
485 if (next.tv_nsec >= NSEC_PER_SEC) {
486 next.tv_sec++;
487 next.tv_nsec -= NSEC_PER_SEC;
489 schedule_delayed_work(&sync_cmos_work, timespec_to_jiffies(&next));
492 static void notify_cmos_timer(void)
494 if (!no_sync_cmos_clock)
495 schedule_delayed_work(&sync_cmos_work, 0);
498 #else
499 static inline void notify_cmos_timer(void) { }
500 #endif
503 * Start the leap seconds timer:
505 static inline void ntp_start_leap_timer(struct timespec *ts)
507 long now = ts->tv_sec;
509 if (time_status & STA_INS) {
510 time_state = TIME_INS;
511 now += 86400 - now % 86400;
512 hrtimer_start(&leap_timer, ktime_set(now, 0), HRTIMER_MODE_ABS);
514 return;
517 if (time_status & STA_DEL) {
518 time_state = TIME_DEL;
519 now += 86400 - (now + 1) % 86400;
520 hrtimer_start(&leap_timer, ktime_set(now, 0), HRTIMER_MODE_ABS);
525 * Propagate a new txc->status value into the NTP state:
527 static inline void process_adj_status(struct timex *txc, struct timespec *ts)
529 if ((time_status & STA_PLL) && !(txc->status & STA_PLL)) {
530 time_state = TIME_OK;
531 time_status = STA_UNSYNC;
532 /* restart PPS frequency calibration */
533 pps_reset_freq_interval();
537 * If we turn on PLL adjustments then reset the
538 * reference time to current time.
540 if (!(time_status & STA_PLL) && (txc->status & STA_PLL))
541 time_reftime = get_seconds();
543 /* only set allowed bits */
544 time_status &= STA_RONLY;
545 time_status |= txc->status & ~STA_RONLY;
547 switch (time_state) {
548 case TIME_OK:
549 ntp_start_leap_timer(ts);
550 break;
551 case TIME_INS:
552 case TIME_DEL:
553 time_state = TIME_OK;
554 ntp_start_leap_timer(ts);
555 case TIME_WAIT:
556 if (!(time_status & (STA_INS | STA_DEL)))
557 time_state = TIME_OK;
558 break;
559 case TIME_OOP:
560 hrtimer_restart(&leap_timer);
561 break;
565 * Called with the xtime lock held, so we can access and modify
566 * all the global NTP state:
568 static inline void process_adjtimex_modes(struct timex *txc, struct timespec *ts)
570 if (txc->modes & ADJ_STATUS)
571 process_adj_status(txc, ts);
573 if (txc->modes & ADJ_NANO)
574 time_status |= STA_NANO;
576 if (txc->modes & ADJ_MICRO)
577 time_status &= ~STA_NANO;
579 if (txc->modes & ADJ_FREQUENCY) {
580 time_freq = txc->freq * PPM_SCALE;
581 time_freq = min(time_freq, MAXFREQ_SCALED);
582 time_freq = max(time_freq, -MAXFREQ_SCALED);
583 /* update pps_freq */
584 pps_set_freq(time_freq);
587 if (txc->modes & ADJ_MAXERROR)
588 time_maxerror = txc->maxerror;
590 if (txc->modes & ADJ_ESTERROR)
591 time_esterror = txc->esterror;
593 if (txc->modes & ADJ_TIMECONST) {
594 time_constant = txc->constant;
595 if (!(time_status & STA_NANO))
596 time_constant += 4;
597 time_constant = min(time_constant, (long)MAXTC);
598 time_constant = max(time_constant, 0l);
601 if (txc->modes & ADJ_TAI && txc->constant > 0)
602 time_tai = txc->constant;
604 if (txc->modes & ADJ_OFFSET)
605 ntp_update_offset(txc->offset);
607 if (txc->modes & ADJ_TICK)
608 tick_usec = txc->tick;
610 if (txc->modes & (ADJ_TICK|ADJ_FREQUENCY|ADJ_OFFSET))
611 ntp_update_frequency();
615 * adjtimex mainly allows reading (and writing, if superuser) of
616 * kernel time-keeping variables. used by xntpd.
618 int do_adjtimex(struct timex *txc)
620 struct timespec ts;
621 int result;
623 /* Validate the data before disabling interrupts */
624 if (txc->modes & ADJ_ADJTIME) {
625 /* singleshot must not be used with any other mode bits */
626 if (!(txc->modes & ADJ_OFFSET_SINGLESHOT))
627 return -EINVAL;
628 if (!(txc->modes & ADJ_OFFSET_READONLY) &&
629 !capable(CAP_SYS_TIME))
630 return -EPERM;
631 } else {
632 /* In order to modify anything, you gotta be super-user! */
633 if (txc->modes && !capable(CAP_SYS_TIME))
634 return -EPERM;
637 * if the quartz is off by more than 10% then
638 * something is VERY wrong!
640 if (txc->modes & ADJ_TICK &&
641 (txc->tick < 900000/USER_HZ ||
642 txc->tick > 1100000/USER_HZ))
643 return -EINVAL;
645 if (txc->modes & ADJ_STATUS && time_state != TIME_OK)
646 hrtimer_cancel(&leap_timer);
649 getnstimeofday(&ts);
651 write_seqlock_irq(&xtime_lock);
653 if (txc->modes & ADJ_ADJTIME) {
654 long save_adjust = time_adjust;
656 if (!(txc->modes & ADJ_OFFSET_READONLY)) {
657 /* adjtime() is independent from ntp_adjtime() */
658 time_adjust = txc->offset;
659 ntp_update_frequency();
661 txc->offset = save_adjust;
662 } else {
664 /* If there are input parameters, then process them: */
665 if (txc->modes)
666 process_adjtimex_modes(txc, &ts);
668 txc->offset = shift_right(time_offset * NTP_INTERVAL_FREQ,
669 NTP_SCALE_SHIFT);
670 if (!(time_status & STA_NANO))
671 txc->offset /= NSEC_PER_USEC;
674 result = time_state; /* mostly `TIME_OK' */
675 /* check for errors */
676 if (is_error_status(time_status))
677 result = TIME_ERROR;
679 txc->freq = shift_right((time_freq >> PPM_SCALE_INV_SHIFT) *
680 PPM_SCALE_INV, NTP_SCALE_SHIFT);
681 txc->maxerror = time_maxerror;
682 txc->esterror = time_esterror;
683 txc->status = time_status;
684 txc->constant = time_constant;
685 txc->precision = 1;
686 txc->tolerance = MAXFREQ_SCALED / PPM_SCALE;
687 txc->tick = tick_usec;
688 txc->tai = time_tai;
690 /* fill PPS status fields */
691 pps_fill_timex(txc);
693 write_sequnlock_irq(&xtime_lock);
695 txc->time.tv_sec = ts.tv_sec;
696 txc->time.tv_usec = ts.tv_nsec;
697 if (!(time_status & STA_NANO))
698 txc->time.tv_usec /= NSEC_PER_USEC;
700 notify_cmos_timer();
702 return result;
705 #ifdef CONFIG_NTP_PPS
707 /* actually struct pps_normtime is good old struct timespec, but it is
708 * semantically different (and it is the reason why it was invented):
709 * pps_normtime.nsec has a range of ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ]
710 * while timespec.tv_nsec has a range of [0, NSEC_PER_SEC) */
711 struct pps_normtime {
712 __kernel_time_t sec; /* seconds */
713 long nsec; /* nanoseconds */
716 /* normalize the timestamp so that nsec is in the
717 ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ] interval */
718 static inline struct pps_normtime pps_normalize_ts(struct timespec ts)
720 struct pps_normtime norm = {
721 .sec = ts.tv_sec,
722 .nsec = ts.tv_nsec
725 if (norm.nsec > (NSEC_PER_SEC >> 1)) {
726 norm.nsec -= NSEC_PER_SEC;
727 norm.sec++;
730 return norm;
733 /* get current phase correction and jitter */
734 static inline long pps_phase_filter_get(long *jitter)
736 *jitter = pps_tf[0] - pps_tf[1];
737 if (*jitter < 0)
738 *jitter = -*jitter;
740 /* TODO: test various filters */
741 return pps_tf[0];
744 /* add the sample to the phase filter */
745 static inline void pps_phase_filter_add(long err)
747 pps_tf[2] = pps_tf[1];
748 pps_tf[1] = pps_tf[0];
749 pps_tf[0] = err;
752 /* decrease frequency calibration interval length.
753 * It is halved after four consecutive unstable intervals.
755 static inline void pps_dec_freq_interval(void)
757 if (--pps_intcnt <= -PPS_INTCOUNT) {
758 pps_intcnt = -PPS_INTCOUNT;
759 if (pps_shift > PPS_INTMIN) {
760 pps_shift--;
761 pps_intcnt = 0;
766 /* increase frequency calibration interval length.
767 * It is doubled after four consecutive stable intervals.
769 static inline void pps_inc_freq_interval(void)
771 if (++pps_intcnt >= PPS_INTCOUNT) {
772 pps_intcnt = PPS_INTCOUNT;
773 if (pps_shift < PPS_INTMAX) {
774 pps_shift++;
775 pps_intcnt = 0;
780 /* update clock frequency based on MONOTONIC_RAW clock PPS signal
781 * timestamps
783 * At the end of the calibration interval the difference between the
784 * first and last MONOTONIC_RAW clock timestamps divided by the length
785 * of the interval becomes the frequency update. If the interval was
786 * too long, the data are discarded.
787 * Returns the difference between old and new frequency values.
789 static long hardpps_update_freq(struct pps_normtime freq_norm)
791 long delta, delta_mod;
792 s64 ftemp;
794 /* check if the frequency interval was too long */
795 if (freq_norm.sec > (2 << pps_shift)) {
796 time_status |= STA_PPSERROR;
797 pps_errcnt++;
798 pps_dec_freq_interval();
799 pr_err("hardpps: PPSERROR: interval too long - %ld s\n",
800 freq_norm.sec);
801 return 0;
804 /* here the raw frequency offset and wander (stability) is
805 * calculated. If the wander is less than the wander threshold
806 * the interval is increased; otherwise it is decreased.
808 ftemp = div_s64(((s64)(-freq_norm.nsec)) << NTP_SCALE_SHIFT,
809 freq_norm.sec);
810 delta = shift_right(ftemp - pps_freq, NTP_SCALE_SHIFT);
811 pps_freq = ftemp;
812 if (delta > PPS_MAXWANDER || delta < -PPS_MAXWANDER) {
813 pr_warning("hardpps: PPSWANDER: change=%ld\n", delta);
814 time_status |= STA_PPSWANDER;
815 pps_stbcnt++;
816 pps_dec_freq_interval();
817 } else { /* good sample */
818 pps_inc_freq_interval();
821 /* the stability metric is calculated as the average of recent
822 * frequency changes, but is used only for performance
823 * monitoring
825 delta_mod = delta;
826 if (delta_mod < 0)
827 delta_mod = -delta_mod;
828 pps_stabil += (div_s64(((s64)delta_mod) <<
829 (NTP_SCALE_SHIFT - SHIFT_USEC),
830 NSEC_PER_USEC) - pps_stabil) >> PPS_INTMIN;
832 /* if enabled, the system clock frequency is updated */
833 if ((time_status & STA_PPSFREQ) != 0 &&
834 (time_status & STA_FREQHOLD) == 0) {
835 time_freq = pps_freq;
836 ntp_update_frequency();
839 return delta;
842 /* correct REALTIME clock phase error against PPS signal */
843 static void hardpps_update_phase(long error)
845 long correction = -error;
846 long jitter;
848 /* add the sample to the median filter */
849 pps_phase_filter_add(correction);
850 correction = pps_phase_filter_get(&jitter);
852 /* Nominal jitter is due to PPS signal noise. If it exceeds the
853 * threshold, the sample is discarded; otherwise, if so enabled,
854 * the time offset is updated.
856 if (jitter > (pps_jitter << PPS_POPCORN)) {
857 pr_warning("hardpps: PPSJITTER: jitter=%ld, limit=%ld\n",
858 jitter, (pps_jitter << PPS_POPCORN));
859 time_status |= STA_PPSJITTER;
860 pps_jitcnt++;
861 } else if (time_status & STA_PPSTIME) {
862 /* correct the time using the phase offset */
863 time_offset = div_s64(((s64)correction) << NTP_SCALE_SHIFT,
864 NTP_INTERVAL_FREQ);
865 /* cancel running adjtime() */
866 time_adjust = 0;
868 /* update jitter */
869 pps_jitter += (jitter - pps_jitter) >> PPS_INTMIN;
873 * hardpps() - discipline CPU clock oscillator to external PPS signal
875 * This routine is called at each PPS signal arrival in order to
876 * discipline the CPU clock oscillator to the PPS signal. It takes two
877 * parameters: REALTIME and MONOTONIC_RAW clock timestamps. The former
878 * is used to correct clock phase error and the latter is used to
879 * correct the frequency.
881 * This code is based on David Mills's reference nanokernel
882 * implementation. It was mostly rewritten but keeps the same idea.
884 void hardpps(const struct timespec *phase_ts, const struct timespec *raw_ts)
886 struct pps_normtime pts_norm, freq_norm;
887 unsigned long flags;
889 pts_norm = pps_normalize_ts(*phase_ts);
891 write_seqlock_irqsave(&xtime_lock, flags);
893 /* clear the error bits, they will be set again if needed */
894 time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR);
896 /* indicate signal presence */
897 time_status |= STA_PPSSIGNAL;
898 pps_valid = PPS_VALID;
900 /* when called for the first time,
901 * just start the frequency interval */
902 if (unlikely(pps_fbase.tv_sec == 0)) {
903 pps_fbase = *raw_ts;
904 write_sequnlock_irqrestore(&xtime_lock, flags);
905 return;
908 /* ok, now we have a base for frequency calculation */
909 freq_norm = pps_normalize_ts(timespec_sub(*raw_ts, pps_fbase));
911 /* check that the signal is in the range
912 * [1s - MAXFREQ us, 1s + MAXFREQ us], otherwise reject it */
913 if ((freq_norm.sec == 0) ||
914 (freq_norm.nsec > MAXFREQ * freq_norm.sec) ||
915 (freq_norm.nsec < -MAXFREQ * freq_norm.sec)) {
916 time_status |= STA_PPSJITTER;
917 /* restart the frequency calibration interval */
918 pps_fbase = *raw_ts;
919 write_sequnlock_irqrestore(&xtime_lock, flags);
920 pr_err("hardpps: PPSJITTER: bad pulse\n");
921 return;
924 /* signal is ok */
926 /* check if the current frequency interval is finished */
927 if (freq_norm.sec >= (1 << pps_shift)) {
928 pps_calcnt++;
929 /* restart the frequency calibration interval */
930 pps_fbase = *raw_ts;
931 hardpps_update_freq(freq_norm);
934 hardpps_update_phase(pts_norm.nsec);
936 write_sequnlock_irqrestore(&xtime_lock, flags);
938 EXPORT_SYMBOL(hardpps);
940 #endif /* CONFIG_NTP_PPS */
942 static int __init ntp_tick_adj_setup(char *str)
944 ntp_tick_adj = simple_strtol(str, NULL, 0);
945 ntp_tick_adj <<= NTP_SCALE_SHIFT;
947 return 1;
950 __setup("ntp_tick_adj=", ntp_tick_adj_setup);
952 void __init ntp_init(void)
954 ntp_clear();
955 hrtimer_init(&leap_timer, CLOCK_REALTIME, HRTIMER_MODE_ABS);
956 leap_timer.function = ntp_leap_second;