2 * NTP state machine interfaces and logic.
4 * This code was mainly moved from kernel/timer.c and kernel/time.c
5 * Please see those files for relevant copyright info and historical
8 #include <linux/capability.h>
9 #include <linux/clocksource.h>
10 #include <linux/workqueue.h>
11 #include <linux/hrtimer.h>
12 #include <linux/jiffies.h>
13 #include <linux/math64.h>
14 #include <linux/timex.h>
15 #include <linux/time.h>
17 #include <linux/module.h>
20 * NTP timekeeping variables:
23 /* USER_HZ period (usecs): */
24 unsigned long tick_usec
= TICK_USEC
;
26 /* ACTHZ period (nsecs): */
27 unsigned long tick_nsec
;
30 static u64 tick_length_base
;
32 static struct hrtimer leap_timer
;
34 #define MAX_TICKADJ 500LL /* usecs */
35 #define MAX_TICKADJ_SCALED \
36 (((MAX_TICKADJ * NSEC_PER_USEC) << NTP_SCALE_SHIFT) / NTP_INTERVAL_FREQ)
39 * phase-lock loop variables
43 * clock synchronization status
45 * (TIME_ERROR prevents overwriting the CMOS clock)
47 static int time_state
= TIME_OK
;
49 /* clock status bits: */
50 int time_status
= STA_UNSYNC
;
52 /* TAI offset (secs): */
55 /* time adjustment (nsecs): */
56 static s64 time_offset
;
58 /* pll time constant: */
59 static long time_constant
= 2;
61 /* maximum error (usecs): */
62 static long time_maxerror
= NTP_PHASE_LIMIT
;
64 /* estimated error (usecs): */
65 static long time_esterror
= NTP_PHASE_LIMIT
;
67 /* frequency offset (scaled nsecs/secs): */
70 /* time at last adjustment (secs): */
71 static long time_reftime
;
73 static long time_adjust
;
75 /* constant (boot-param configurable) NTP tick adjustment (upscaled) */
76 static s64 ntp_tick_adj
;
81 * The following variables are used when a pulse-per-second (PPS) signal
82 * is available. They establish the engineering parameters of the clock
83 * discipline loop when controlled by the PPS signal.
85 #define PPS_VALID 10 /* PPS signal watchdog max (s) */
86 #define PPS_POPCORN 4 /* popcorn spike threshold (shift) */
87 #define PPS_INTMIN 2 /* min freq interval (s) (shift) */
88 #define PPS_INTMAX 8 /* max freq interval (s) (shift) */
89 #define PPS_INTCOUNT 4 /* number of consecutive good intervals to
90 increase pps_shift or consecutive bad
91 intervals to decrease it */
92 #define PPS_MAXWANDER 100000 /* max PPS freq wander (ns/s) */
94 static int pps_valid
; /* signal watchdog counter */
95 static long pps_tf
[3]; /* phase median filter */
96 static long pps_jitter
; /* current jitter (ns) */
97 static struct timespec pps_fbase
; /* beginning of the last freq interval */
98 static int pps_shift
; /* current interval duration (s) (shift) */
99 static int pps_intcnt
; /* interval counter */
100 static s64 pps_freq
; /* frequency offset (scaled ns/s) */
101 static long pps_stabil
; /* current stability (scaled ns/s) */
104 * PPS signal quality monitors
106 static long pps_calcnt
; /* calibration intervals */
107 static long pps_jitcnt
; /* jitter limit exceeded */
108 static long pps_stbcnt
; /* stability limit exceeded */
109 static long pps_errcnt
; /* calibration errors */
112 /* PPS kernel consumer compensates the whole phase error immediately.
113 * Otherwise, reduce the offset by a fixed factor times the time constant.
115 static inline s64
ntp_offset_chunk(s64 offset
)
117 if (time_status
& STA_PPSTIME
&& time_status
& STA_PPSSIGNAL
)
120 return shift_right(offset
, SHIFT_PLL
+ time_constant
);
123 static inline void pps_reset_freq_interval(void)
125 /* the PPS calibration interval may end
126 surprisingly early */
127 pps_shift
= PPS_INTMIN
;
132 * pps_clear - Clears the PPS state variables
134 * Must be called while holding a write on the xtime_lock
136 static inline void pps_clear(void)
138 pps_reset_freq_interval();
142 pps_fbase
.tv_sec
= pps_fbase
.tv_nsec
= 0;
146 /* Decrease pps_valid to indicate that another second has passed since
147 * the last PPS signal. When it reaches 0, indicate that PPS signal is
150 * Must be called while holding a write on the xtime_lock
152 static inline void pps_dec_valid(void)
157 time_status
&= ~(STA_PPSSIGNAL
| STA_PPSJITTER
|
158 STA_PPSWANDER
| STA_PPSERROR
);
163 static inline void pps_set_freq(s64 freq
)
168 static inline int is_error_status(int status
)
170 return (time_status
& (STA_UNSYNC
|STA_CLOCKERR
))
171 /* PPS signal lost when either PPS time or
172 * PPS frequency synchronization requested
174 || ((time_status
& (STA_PPSFREQ
|STA_PPSTIME
))
175 && !(time_status
& STA_PPSSIGNAL
))
176 /* PPS jitter exceeded when
177 * PPS time synchronization requested */
178 || ((time_status
& (STA_PPSTIME
|STA_PPSJITTER
))
179 == (STA_PPSTIME
|STA_PPSJITTER
))
180 /* PPS wander exceeded or calibration error when
181 * PPS frequency synchronization requested
183 || ((time_status
& STA_PPSFREQ
)
184 && (time_status
& (STA_PPSWANDER
|STA_PPSERROR
)));
187 static inline void pps_fill_timex(struct timex
*txc
)
189 txc
->ppsfreq
= shift_right((pps_freq
>> PPM_SCALE_INV_SHIFT
) *
190 PPM_SCALE_INV
, NTP_SCALE_SHIFT
);
191 txc
->jitter
= pps_jitter
;
192 if (!(time_status
& STA_NANO
))
193 txc
->jitter
/= NSEC_PER_USEC
;
194 txc
->shift
= pps_shift
;
195 txc
->stabil
= pps_stabil
;
196 txc
->jitcnt
= pps_jitcnt
;
197 txc
->calcnt
= pps_calcnt
;
198 txc
->errcnt
= pps_errcnt
;
199 txc
->stbcnt
= pps_stbcnt
;
202 #else /* !CONFIG_NTP_PPS */
204 static inline s64
ntp_offset_chunk(s64 offset
)
206 return shift_right(offset
, SHIFT_PLL
+ time_constant
);
209 static inline void pps_reset_freq_interval(void) {}
210 static inline void pps_clear(void) {}
211 static inline void pps_dec_valid(void) {}
212 static inline void pps_set_freq(s64 freq
) {}
214 static inline int is_error_status(int status
)
216 return status
& (STA_UNSYNC
|STA_CLOCKERR
);
219 static inline void pps_fill_timex(struct timex
*txc
)
221 /* PPS is not implemented, so these are zero */
232 #endif /* CONFIG_NTP_PPS */
239 * Update (tick_length, tick_length_base, tick_nsec), based
240 * on (tick_usec, ntp_tick_adj, time_freq):
242 static void ntp_update_frequency(void)
247 second_length
= (u64
)(tick_usec
* NSEC_PER_USEC
* USER_HZ
)
250 second_length
+= ntp_tick_adj
;
251 second_length
+= time_freq
;
253 tick_nsec
= div_u64(second_length
, HZ
) >> NTP_SCALE_SHIFT
;
254 new_base
= div_u64(second_length
, NTP_INTERVAL_FREQ
);
257 * Don't wait for the next second_overflow, apply
258 * the change to the tick length immediately:
260 tick_length
+= new_base
- tick_length_base
;
261 tick_length_base
= new_base
;
264 static inline s64
ntp_update_offset_fll(s64 offset64
, long secs
)
266 time_status
&= ~STA_MODE
;
271 if (!(time_status
& STA_FLL
) && (secs
<= MAXSEC
))
274 time_status
|= STA_MODE
;
276 return div_s64(offset64
<< (NTP_SCALE_SHIFT
- SHIFT_FLL
), secs
);
279 static void ntp_update_offset(long offset
)
285 if (!(time_status
& STA_PLL
))
288 if (!(time_status
& STA_NANO
))
289 offset
*= NSEC_PER_USEC
;
292 * Scale the phase adjustment and
293 * clamp to the operating range.
295 offset
= min(offset
, MAXPHASE
);
296 offset
= max(offset
, -MAXPHASE
);
299 * Select how the frequency is to be controlled
300 * and in which mode (PLL or FLL).
302 secs
= get_seconds() - time_reftime
;
303 if (unlikely(time_status
& STA_FREQHOLD
))
306 time_reftime
= get_seconds();
309 freq_adj
= ntp_update_offset_fll(offset64
, secs
);
312 * Clamp update interval to reduce PLL gain with low
313 * sampling rate (e.g. intermittent network connection)
314 * to avoid instability.
316 if (unlikely(secs
> 1 << (SHIFT_PLL
+ 1 + time_constant
)))
317 secs
= 1 << (SHIFT_PLL
+ 1 + time_constant
);
319 freq_adj
+= (offset64
* secs
) <<
320 (NTP_SCALE_SHIFT
- 2 * (SHIFT_PLL
+ 2 + time_constant
));
322 freq_adj
= min(freq_adj
+ time_freq
, MAXFREQ_SCALED
);
324 time_freq
= max(freq_adj
, -MAXFREQ_SCALED
);
326 time_offset
= div_s64(offset64
<< NTP_SCALE_SHIFT
, NTP_INTERVAL_FREQ
);
330 * ntp_clear - Clears the NTP state variables
332 * Must be called while holding a write on the xtime_lock
336 time_adjust
= 0; /* stop active adjtime() */
337 time_status
|= STA_UNSYNC
;
338 time_maxerror
= NTP_PHASE_LIMIT
;
339 time_esterror
= NTP_PHASE_LIMIT
;
341 ntp_update_frequency();
343 tick_length
= tick_length_base
;
346 /* Clear PPS state variables */
351 * Leap second processing. If in leap-insert state at the end of the
352 * day, the system clock is set back one second; if in leap-delete
353 * state, the system clock is set ahead one second.
355 static enum hrtimer_restart
ntp_leap_second(struct hrtimer
*timer
)
357 enum hrtimer_restart res
= HRTIMER_NORESTART
;
359 write_seqlock(&xtime_lock
);
361 switch (time_state
) {
365 timekeeping_leap_insert(-1);
366 time_state
= TIME_OOP
;
368 "Clock: inserting leap second 23:59:60 UTC\n");
369 hrtimer_add_expires_ns(&leap_timer
, NSEC_PER_SEC
);
370 res
= HRTIMER_RESTART
;
373 timekeeping_leap_insert(1);
375 time_state
= TIME_WAIT
;
377 "Clock: deleting leap second 23:59:59 UTC\n");
381 time_state
= TIME_WAIT
;
384 if (!(time_status
& (STA_INS
| STA_DEL
)))
385 time_state
= TIME_OK
;
389 write_sequnlock(&xtime_lock
);
395 * this routine handles the overflow of the microsecond field
397 * The tricky bits of code to handle the accurate clock support
398 * were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame.
399 * They were originally developed for SUN and DEC kernels.
400 * All the kudos should go to Dave for this stuff.
402 void second_overflow(void)
406 /* Bump the maxerror field */
407 time_maxerror
+= MAXFREQ
/ NSEC_PER_USEC
;
408 if (time_maxerror
> NTP_PHASE_LIMIT
) {
409 time_maxerror
= NTP_PHASE_LIMIT
;
410 time_status
|= STA_UNSYNC
;
413 /* Compute the phase adjustment for the next second */
414 tick_length
= tick_length_base
;
416 delta
= ntp_offset_chunk(time_offset
);
417 time_offset
-= delta
;
418 tick_length
+= delta
;
420 /* Check PPS signal */
426 if (time_adjust
> MAX_TICKADJ
) {
427 time_adjust
-= MAX_TICKADJ
;
428 tick_length
+= MAX_TICKADJ_SCALED
;
432 if (time_adjust
< -MAX_TICKADJ
) {
433 time_adjust
+= MAX_TICKADJ
;
434 tick_length
-= MAX_TICKADJ_SCALED
;
438 tick_length
+= (s64
)(time_adjust
* NSEC_PER_USEC
/ NTP_INTERVAL_FREQ
)
443 #ifdef CONFIG_GENERIC_CMOS_UPDATE
445 /* Disable the cmos update - used by virtualization and embedded */
446 int no_sync_cmos_clock __read_mostly
;
448 static void sync_cmos_clock(struct work_struct
*work
);
450 static DECLARE_DELAYED_WORK(sync_cmos_work
, sync_cmos_clock
);
452 static void sync_cmos_clock(struct work_struct
*work
)
454 struct timespec now
, next
;
458 * If we have an externally synchronized Linux clock, then update
459 * CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be
460 * called as close as possible to 500 ms before the new second starts.
461 * This code is run on a timer. If the clock is set, that timer
462 * may not expire at the correct time. Thus, we adjust...
466 * Not synced, exit, do not restart a timer (if one is
467 * running, let it run out).
472 getnstimeofday(&now
);
473 if (abs(now
.tv_nsec
- (NSEC_PER_SEC
/ 2)) <= tick_nsec
/ 2)
474 fail
= update_persistent_clock(now
);
476 next
.tv_nsec
= (NSEC_PER_SEC
/ 2) - now
.tv_nsec
- (TICK_NSEC
/ 2);
477 if (next
.tv_nsec
<= 0)
478 next
.tv_nsec
+= NSEC_PER_SEC
;
485 if (next
.tv_nsec
>= NSEC_PER_SEC
) {
487 next
.tv_nsec
-= NSEC_PER_SEC
;
489 schedule_delayed_work(&sync_cmos_work
, timespec_to_jiffies(&next
));
492 static void notify_cmos_timer(void)
494 if (!no_sync_cmos_clock
)
495 schedule_delayed_work(&sync_cmos_work
, 0);
499 static inline void notify_cmos_timer(void) { }
503 * Start the leap seconds timer:
505 static inline void ntp_start_leap_timer(struct timespec
*ts
)
507 long now
= ts
->tv_sec
;
509 if (time_status
& STA_INS
) {
510 time_state
= TIME_INS
;
511 now
+= 86400 - now
% 86400;
512 hrtimer_start(&leap_timer
, ktime_set(now
, 0), HRTIMER_MODE_ABS
);
517 if (time_status
& STA_DEL
) {
518 time_state
= TIME_DEL
;
519 now
+= 86400 - (now
+ 1) % 86400;
520 hrtimer_start(&leap_timer
, ktime_set(now
, 0), HRTIMER_MODE_ABS
);
525 * Propagate a new txc->status value into the NTP state:
527 static inline void process_adj_status(struct timex
*txc
, struct timespec
*ts
)
529 if ((time_status
& STA_PLL
) && !(txc
->status
& STA_PLL
)) {
530 time_state
= TIME_OK
;
531 time_status
= STA_UNSYNC
;
532 /* restart PPS frequency calibration */
533 pps_reset_freq_interval();
537 * If we turn on PLL adjustments then reset the
538 * reference time to current time.
540 if (!(time_status
& STA_PLL
) && (txc
->status
& STA_PLL
))
541 time_reftime
= get_seconds();
543 /* only set allowed bits */
544 time_status
&= STA_RONLY
;
545 time_status
|= txc
->status
& ~STA_RONLY
;
547 switch (time_state
) {
549 ntp_start_leap_timer(ts
);
553 time_state
= TIME_OK
;
554 ntp_start_leap_timer(ts
);
556 if (!(time_status
& (STA_INS
| STA_DEL
)))
557 time_state
= TIME_OK
;
560 hrtimer_restart(&leap_timer
);
565 * Called with the xtime lock held, so we can access and modify
566 * all the global NTP state:
568 static inline void process_adjtimex_modes(struct timex
*txc
, struct timespec
*ts
)
570 if (txc
->modes
& ADJ_STATUS
)
571 process_adj_status(txc
, ts
);
573 if (txc
->modes
& ADJ_NANO
)
574 time_status
|= STA_NANO
;
576 if (txc
->modes
& ADJ_MICRO
)
577 time_status
&= ~STA_NANO
;
579 if (txc
->modes
& ADJ_FREQUENCY
) {
580 time_freq
= txc
->freq
* PPM_SCALE
;
581 time_freq
= min(time_freq
, MAXFREQ_SCALED
);
582 time_freq
= max(time_freq
, -MAXFREQ_SCALED
);
583 /* update pps_freq */
584 pps_set_freq(time_freq
);
587 if (txc
->modes
& ADJ_MAXERROR
)
588 time_maxerror
= txc
->maxerror
;
590 if (txc
->modes
& ADJ_ESTERROR
)
591 time_esterror
= txc
->esterror
;
593 if (txc
->modes
& ADJ_TIMECONST
) {
594 time_constant
= txc
->constant
;
595 if (!(time_status
& STA_NANO
))
597 time_constant
= min(time_constant
, (long)MAXTC
);
598 time_constant
= max(time_constant
, 0l);
601 if (txc
->modes
& ADJ_TAI
&& txc
->constant
> 0)
602 time_tai
= txc
->constant
;
604 if (txc
->modes
& ADJ_OFFSET
)
605 ntp_update_offset(txc
->offset
);
607 if (txc
->modes
& ADJ_TICK
)
608 tick_usec
= txc
->tick
;
610 if (txc
->modes
& (ADJ_TICK
|ADJ_FREQUENCY
|ADJ_OFFSET
))
611 ntp_update_frequency();
615 * adjtimex mainly allows reading (and writing, if superuser) of
616 * kernel time-keeping variables. used by xntpd.
618 int do_adjtimex(struct timex
*txc
)
623 /* Validate the data before disabling interrupts */
624 if (txc
->modes
& ADJ_ADJTIME
) {
625 /* singleshot must not be used with any other mode bits */
626 if (!(txc
->modes
& ADJ_OFFSET_SINGLESHOT
))
628 if (!(txc
->modes
& ADJ_OFFSET_READONLY
) &&
629 !capable(CAP_SYS_TIME
))
632 /* In order to modify anything, you gotta be super-user! */
633 if (txc
->modes
&& !capable(CAP_SYS_TIME
))
637 * if the quartz is off by more than 10% then
638 * something is VERY wrong!
640 if (txc
->modes
& ADJ_TICK
&&
641 (txc
->tick
< 900000/USER_HZ
||
642 txc
->tick
> 1100000/USER_HZ
))
645 if (txc
->modes
& ADJ_STATUS
&& time_state
!= TIME_OK
)
646 hrtimer_cancel(&leap_timer
);
651 write_seqlock_irq(&xtime_lock
);
653 if (txc
->modes
& ADJ_ADJTIME
) {
654 long save_adjust
= time_adjust
;
656 if (!(txc
->modes
& ADJ_OFFSET_READONLY
)) {
657 /* adjtime() is independent from ntp_adjtime() */
658 time_adjust
= txc
->offset
;
659 ntp_update_frequency();
661 txc
->offset
= save_adjust
;
664 /* If there are input parameters, then process them: */
666 process_adjtimex_modes(txc
, &ts
);
668 txc
->offset
= shift_right(time_offset
* NTP_INTERVAL_FREQ
,
670 if (!(time_status
& STA_NANO
))
671 txc
->offset
/= NSEC_PER_USEC
;
674 result
= time_state
; /* mostly `TIME_OK' */
675 /* check for errors */
676 if (is_error_status(time_status
))
679 txc
->freq
= shift_right((time_freq
>> PPM_SCALE_INV_SHIFT
) *
680 PPM_SCALE_INV
, NTP_SCALE_SHIFT
);
681 txc
->maxerror
= time_maxerror
;
682 txc
->esterror
= time_esterror
;
683 txc
->status
= time_status
;
684 txc
->constant
= time_constant
;
686 txc
->tolerance
= MAXFREQ_SCALED
/ PPM_SCALE
;
687 txc
->tick
= tick_usec
;
690 /* fill PPS status fields */
693 write_sequnlock_irq(&xtime_lock
);
695 txc
->time
.tv_sec
= ts
.tv_sec
;
696 txc
->time
.tv_usec
= ts
.tv_nsec
;
697 if (!(time_status
& STA_NANO
))
698 txc
->time
.tv_usec
/= NSEC_PER_USEC
;
705 #ifdef CONFIG_NTP_PPS
707 /* actually struct pps_normtime is good old struct timespec, but it is
708 * semantically different (and it is the reason why it was invented):
709 * pps_normtime.nsec has a range of ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ]
710 * while timespec.tv_nsec has a range of [0, NSEC_PER_SEC) */
711 struct pps_normtime
{
712 __kernel_time_t sec
; /* seconds */
713 long nsec
; /* nanoseconds */
716 /* normalize the timestamp so that nsec is in the
717 ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ] interval */
718 static inline struct pps_normtime
pps_normalize_ts(struct timespec ts
)
720 struct pps_normtime norm
= {
725 if (norm
.nsec
> (NSEC_PER_SEC
>> 1)) {
726 norm
.nsec
-= NSEC_PER_SEC
;
733 /* get current phase correction and jitter */
734 static inline long pps_phase_filter_get(long *jitter
)
736 *jitter
= pps_tf
[0] - pps_tf
[1];
740 /* TODO: test various filters */
744 /* add the sample to the phase filter */
745 static inline void pps_phase_filter_add(long err
)
747 pps_tf
[2] = pps_tf
[1];
748 pps_tf
[1] = pps_tf
[0];
752 /* decrease frequency calibration interval length.
753 * It is halved after four consecutive unstable intervals.
755 static inline void pps_dec_freq_interval(void)
757 if (--pps_intcnt
<= -PPS_INTCOUNT
) {
758 pps_intcnt
= -PPS_INTCOUNT
;
759 if (pps_shift
> PPS_INTMIN
) {
766 /* increase frequency calibration interval length.
767 * It is doubled after four consecutive stable intervals.
769 static inline void pps_inc_freq_interval(void)
771 if (++pps_intcnt
>= PPS_INTCOUNT
) {
772 pps_intcnt
= PPS_INTCOUNT
;
773 if (pps_shift
< PPS_INTMAX
) {
780 /* update clock frequency based on MONOTONIC_RAW clock PPS signal
783 * At the end of the calibration interval the difference between the
784 * first and last MONOTONIC_RAW clock timestamps divided by the length
785 * of the interval becomes the frequency update. If the interval was
786 * too long, the data are discarded.
787 * Returns the difference between old and new frequency values.
789 static long hardpps_update_freq(struct pps_normtime freq_norm
)
791 long delta
, delta_mod
;
794 /* check if the frequency interval was too long */
795 if (freq_norm
.sec
> (2 << pps_shift
)) {
796 time_status
|= STA_PPSERROR
;
798 pps_dec_freq_interval();
799 pr_err("hardpps: PPSERROR: interval too long - %ld s\n",
804 /* here the raw frequency offset and wander (stability) is
805 * calculated. If the wander is less than the wander threshold
806 * the interval is increased; otherwise it is decreased.
808 ftemp
= div_s64(((s64
)(-freq_norm
.nsec
)) << NTP_SCALE_SHIFT
,
810 delta
= shift_right(ftemp
- pps_freq
, NTP_SCALE_SHIFT
);
812 if (delta
> PPS_MAXWANDER
|| delta
< -PPS_MAXWANDER
) {
813 pr_warning("hardpps: PPSWANDER: change=%ld\n", delta
);
814 time_status
|= STA_PPSWANDER
;
816 pps_dec_freq_interval();
817 } else { /* good sample */
818 pps_inc_freq_interval();
821 /* the stability metric is calculated as the average of recent
822 * frequency changes, but is used only for performance
827 delta_mod
= -delta_mod
;
828 pps_stabil
+= (div_s64(((s64
)delta_mod
) <<
829 (NTP_SCALE_SHIFT
- SHIFT_USEC
),
830 NSEC_PER_USEC
) - pps_stabil
) >> PPS_INTMIN
;
832 /* if enabled, the system clock frequency is updated */
833 if ((time_status
& STA_PPSFREQ
) != 0 &&
834 (time_status
& STA_FREQHOLD
) == 0) {
835 time_freq
= pps_freq
;
836 ntp_update_frequency();
842 /* correct REALTIME clock phase error against PPS signal */
843 static void hardpps_update_phase(long error
)
845 long correction
= -error
;
848 /* add the sample to the median filter */
849 pps_phase_filter_add(correction
);
850 correction
= pps_phase_filter_get(&jitter
);
852 /* Nominal jitter is due to PPS signal noise. If it exceeds the
853 * threshold, the sample is discarded; otherwise, if so enabled,
854 * the time offset is updated.
856 if (jitter
> (pps_jitter
<< PPS_POPCORN
)) {
857 pr_warning("hardpps: PPSJITTER: jitter=%ld, limit=%ld\n",
858 jitter
, (pps_jitter
<< PPS_POPCORN
));
859 time_status
|= STA_PPSJITTER
;
861 } else if (time_status
& STA_PPSTIME
) {
862 /* correct the time using the phase offset */
863 time_offset
= div_s64(((s64
)correction
) << NTP_SCALE_SHIFT
,
865 /* cancel running adjtime() */
869 pps_jitter
+= (jitter
- pps_jitter
) >> PPS_INTMIN
;
873 * hardpps() - discipline CPU clock oscillator to external PPS signal
875 * This routine is called at each PPS signal arrival in order to
876 * discipline the CPU clock oscillator to the PPS signal. It takes two
877 * parameters: REALTIME and MONOTONIC_RAW clock timestamps. The former
878 * is used to correct clock phase error and the latter is used to
879 * correct the frequency.
881 * This code is based on David Mills's reference nanokernel
882 * implementation. It was mostly rewritten but keeps the same idea.
884 void hardpps(const struct timespec
*phase_ts
, const struct timespec
*raw_ts
)
886 struct pps_normtime pts_norm
, freq_norm
;
889 pts_norm
= pps_normalize_ts(*phase_ts
);
891 write_seqlock_irqsave(&xtime_lock
, flags
);
893 /* clear the error bits, they will be set again if needed */
894 time_status
&= ~(STA_PPSJITTER
| STA_PPSWANDER
| STA_PPSERROR
);
896 /* indicate signal presence */
897 time_status
|= STA_PPSSIGNAL
;
898 pps_valid
= PPS_VALID
;
900 /* when called for the first time,
901 * just start the frequency interval */
902 if (unlikely(pps_fbase
.tv_sec
== 0)) {
904 write_sequnlock_irqrestore(&xtime_lock
, flags
);
908 /* ok, now we have a base for frequency calculation */
909 freq_norm
= pps_normalize_ts(timespec_sub(*raw_ts
, pps_fbase
));
911 /* check that the signal is in the range
912 * [1s - MAXFREQ us, 1s + MAXFREQ us], otherwise reject it */
913 if ((freq_norm
.sec
== 0) ||
914 (freq_norm
.nsec
> MAXFREQ
* freq_norm
.sec
) ||
915 (freq_norm
.nsec
< -MAXFREQ
* freq_norm
.sec
)) {
916 time_status
|= STA_PPSJITTER
;
917 /* restart the frequency calibration interval */
919 write_sequnlock_irqrestore(&xtime_lock
, flags
);
920 pr_err("hardpps: PPSJITTER: bad pulse\n");
926 /* check if the current frequency interval is finished */
927 if (freq_norm
.sec
>= (1 << pps_shift
)) {
929 /* restart the frequency calibration interval */
931 hardpps_update_freq(freq_norm
);
934 hardpps_update_phase(pts_norm
.nsec
);
936 write_sequnlock_irqrestore(&xtime_lock
, flags
);
938 EXPORT_SYMBOL(hardpps
);
940 #endif /* CONFIG_NTP_PPS */
942 static int __init
ntp_tick_adj_setup(char *str
)
944 ntp_tick_adj
= simple_strtol(str
, NULL
, 0);
945 ntp_tick_adj
<<= NTP_SCALE_SHIFT
;
950 __setup("ntp_tick_adj=", ntp_tick_adj_setup
);
952 void __init
ntp_init(void)
955 hrtimer_init(&leap_timer
, CLOCK_REALTIME
, HRTIMER_MODE_ABS
);
956 leap_timer
.function
= ntp_leap_second
;