2 * segment.c - NILFS segment constructor.
4 * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation.
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
20 * Written by Ryusuke Konishi <ryusuke@osrg.net>
24 #include <linux/pagemap.h>
25 #include <linux/buffer_head.h>
26 #include <linux/writeback.h>
27 #include <linux/bio.h>
28 #include <linux/completion.h>
29 #include <linux/blkdev.h>
30 #include <linux/backing-dev.h>
31 #include <linux/freezer.h>
32 #include <linux/kthread.h>
33 #include <linux/crc32.h>
34 #include <linux/pagevec.h>
35 #include <linux/slab.h>
49 #define SC_N_INODEVEC 16 /* Size of locally allocated inode vector */
51 #define SC_MAX_SEGDELTA 64 /* Upper limit of the number of segments
52 appended in collection retry loop */
54 /* Construction mode */
56 SC_LSEG_SR
= 1, /* Make a logical segment having a super root */
57 SC_LSEG_DSYNC
, /* Flush data blocks of a given file and make
58 a logical segment without a super root */
59 SC_FLUSH_FILE
, /* Flush data files, leads to segment writes without
60 creating a checkpoint */
61 SC_FLUSH_DAT
, /* Flush DAT file. This also creates segments without
65 /* Stage numbers of dirty block collection */
68 NILFS_ST_GC
, /* Collecting dirty blocks for GC */
74 NILFS_ST_SR
, /* Super root */
75 NILFS_ST_DSYNC
, /* Data sync blocks */
79 /* State flags of collection */
80 #define NILFS_CF_NODE 0x0001 /* Collecting node blocks */
81 #define NILFS_CF_IFILE_STARTED 0x0002 /* IFILE stage has started */
82 #define NILFS_CF_SUFREED 0x0004 /* segment usages has been freed */
83 #define NILFS_CF_HISTORY_MASK (NILFS_CF_IFILE_STARTED | NILFS_CF_SUFREED)
85 /* Operations depending on the construction mode and file type */
86 struct nilfs_sc_operations
{
87 int (*collect_data
)(struct nilfs_sc_info
*, struct buffer_head
*,
89 int (*collect_node
)(struct nilfs_sc_info
*, struct buffer_head
*,
91 int (*collect_bmap
)(struct nilfs_sc_info
*, struct buffer_head
*,
93 void (*write_data_binfo
)(struct nilfs_sc_info
*,
94 struct nilfs_segsum_pointer
*,
96 void (*write_node_binfo
)(struct nilfs_sc_info
*,
97 struct nilfs_segsum_pointer
*,
104 static void nilfs_segctor_start_timer(struct nilfs_sc_info
*);
105 static void nilfs_segctor_do_flush(struct nilfs_sc_info
*, int);
106 static void nilfs_segctor_do_immediate_flush(struct nilfs_sc_info
*);
107 static void nilfs_dispose_list(struct nilfs_sb_info
*, struct list_head
*,
110 #define nilfs_cnt32_gt(a, b) \
111 (typecheck(__u32, a) && typecheck(__u32, b) && \
112 ((__s32)(b) - (__s32)(a) < 0))
113 #define nilfs_cnt32_ge(a, b) \
114 (typecheck(__u32, a) && typecheck(__u32, b) && \
115 ((__s32)(a) - (__s32)(b) >= 0))
116 #define nilfs_cnt32_lt(a, b) nilfs_cnt32_gt(b, a)
117 #define nilfs_cnt32_le(a, b) nilfs_cnt32_ge(b, a)
122 static struct kmem_cache
*nilfs_transaction_cachep
;
125 * nilfs_init_transaction_cache - create a cache for nilfs_transaction_info
127 * nilfs_init_transaction_cache() creates a slab cache for the struct
128 * nilfs_transaction_info.
130 * Return Value: On success, it returns 0. On error, one of the following
131 * negative error code is returned.
133 * %-ENOMEM - Insufficient memory available.
135 int nilfs_init_transaction_cache(void)
137 nilfs_transaction_cachep
=
138 kmem_cache_create("nilfs2_transaction_cache",
139 sizeof(struct nilfs_transaction_info
),
140 0, SLAB_RECLAIM_ACCOUNT
, NULL
);
141 return (nilfs_transaction_cachep
== NULL
) ? -ENOMEM
: 0;
145 * nilfs_destroy_transaction_cache - destroy the cache for transaction info
147 * nilfs_destroy_transaction_cache() frees the slab cache for the struct
148 * nilfs_transaction_info.
150 void nilfs_destroy_transaction_cache(void)
152 kmem_cache_destroy(nilfs_transaction_cachep
);
155 static int nilfs_prepare_segment_lock(struct nilfs_transaction_info
*ti
)
157 struct nilfs_transaction_info
*cur_ti
= current
->journal_info
;
161 if (cur_ti
->ti_magic
== NILFS_TI_MAGIC
)
162 return ++cur_ti
->ti_count
;
165 * If journal_info field is occupied by other FS,
166 * it is saved and will be restored on
167 * nilfs_transaction_commit().
170 "NILFS warning: journal info from a different "
172 save
= current
->journal_info
;
176 ti
= kmem_cache_alloc(nilfs_transaction_cachep
, GFP_NOFS
);
179 ti
->ti_flags
= NILFS_TI_DYNAMIC_ALLOC
;
185 ti
->ti_magic
= NILFS_TI_MAGIC
;
186 current
->journal_info
= ti
;
191 * nilfs_transaction_begin - start indivisible file operations.
193 * @ti: nilfs_transaction_info
194 * @vacancy_check: flags for vacancy rate checks
196 * nilfs_transaction_begin() acquires a reader/writer semaphore, called
197 * the segment semaphore, to make a segment construction and write tasks
198 * exclusive. The function is used with nilfs_transaction_commit() in pairs.
199 * The region enclosed by these two functions can be nested. To avoid a
200 * deadlock, the semaphore is only acquired or released in the outermost call.
202 * This function allocates a nilfs_transaction_info struct to keep context
203 * information on it. It is initialized and hooked onto the current task in
204 * the outermost call. If a pre-allocated struct is given to @ti, it is used
205 * instead; otherwise a new struct is assigned from a slab.
207 * When @vacancy_check flag is set, this function will check the amount of
208 * free space, and will wait for the GC to reclaim disk space if low capacity.
210 * Return Value: On success, 0 is returned. On error, one of the following
211 * negative error code is returned.
213 * %-ENOMEM - Insufficient memory available.
215 * %-ENOSPC - No space left on device
217 int nilfs_transaction_begin(struct super_block
*sb
,
218 struct nilfs_transaction_info
*ti
,
221 struct nilfs_sb_info
*sbi
;
222 struct the_nilfs
*nilfs
;
223 int ret
= nilfs_prepare_segment_lock(ti
);
225 if (unlikely(ret
< 0))
231 nilfs
= sbi
->s_nilfs
;
232 down_read(&nilfs
->ns_segctor_sem
);
233 if (vacancy_check
&& nilfs_near_disk_full(nilfs
)) {
234 up_read(&nilfs
->ns_segctor_sem
);
241 ti
= current
->journal_info
;
242 current
->journal_info
= ti
->ti_save
;
243 if (ti
->ti_flags
& NILFS_TI_DYNAMIC_ALLOC
)
244 kmem_cache_free(nilfs_transaction_cachep
, ti
);
249 * nilfs_transaction_commit - commit indivisible file operations.
252 * nilfs_transaction_commit() releases the read semaphore which is
253 * acquired by nilfs_transaction_begin(). This is only performed
254 * in outermost call of this function. If a commit flag is set,
255 * nilfs_transaction_commit() sets a timer to start the segment
256 * constructor. If a sync flag is set, it starts construction
259 int nilfs_transaction_commit(struct super_block
*sb
)
261 struct nilfs_transaction_info
*ti
= current
->journal_info
;
262 struct nilfs_sb_info
*sbi
;
263 struct nilfs_sc_info
*sci
;
266 BUG_ON(ti
== NULL
|| ti
->ti_magic
!= NILFS_TI_MAGIC
);
267 ti
->ti_flags
|= NILFS_TI_COMMIT
;
268 if (ti
->ti_count
> 0) {
275 if (ti
->ti_flags
& NILFS_TI_COMMIT
)
276 nilfs_segctor_start_timer(sci
);
277 if (atomic_read(&sbi
->s_nilfs
->ns_ndirtyblks
) >
279 nilfs_segctor_do_flush(sci
, 0);
281 up_read(&sbi
->s_nilfs
->ns_segctor_sem
);
282 current
->journal_info
= ti
->ti_save
;
284 if (ti
->ti_flags
& NILFS_TI_SYNC
)
285 err
= nilfs_construct_segment(sb
);
286 if (ti
->ti_flags
& NILFS_TI_DYNAMIC_ALLOC
)
287 kmem_cache_free(nilfs_transaction_cachep
, ti
);
291 void nilfs_transaction_abort(struct super_block
*sb
)
293 struct nilfs_transaction_info
*ti
= current
->journal_info
;
295 BUG_ON(ti
== NULL
|| ti
->ti_magic
!= NILFS_TI_MAGIC
);
296 if (ti
->ti_count
> 0) {
300 up_read(&NILFS_SB(sb
)->s_nilfs
->ns_segctor_sem
);
302 current
->journal_info
= ti
->ti_save
;
303 if (ti
->ti_flags
& NILFS_TI_DYNAMIC_ALLOC
)
304 kmem_cache_free(nilfs_transaction_cachep
, ti
);
307 void nilfs_relax_pressure_in_lock(struct super_block
*sb
)
309 struct nilfs_sb_info
*sbi
= NILFS_SB(sb
);
310 struct nilfs_sc_info
*sci
= NILFS_SC(sbi
);
311 struct the_nilfs
*nilfs
= sbi
->s_nilfs
;
313 if (!sci
|| !sci
->sc_flush_request
)
316 set_bit(NILFS_SC_PRIOR_FLUSH
, &sci
->sc_flags
);
317 up_read(&nilfs
->ns_segctor_sem
);
319 down_write(&nilfs
->ns_segctor_sem
);
320 if (sci
->sc_flush_request
&&
321 test_bit(NILFS_SC_PRIOR_FLUSH
, &sci
->sc_flags
)) {
322 struct nilfs_transaction_info
*ti
= current
->journal_info
;
324 ti
->ti_flags
|= NILFS_TI_WRITER
;
325 nilfs_segctor_do_immediate_flush(sci
);
326 ti
->ti_flags
&= ~NILFS_TI_WRITER
;
328 downgrade_write(&nilfs
->ns_segctor_sem
);
331 static void nilfs_transaction_lock(struct nilfs_sb_info
*sbi
,
332 struct nilfs_transaction_info
*ti
,
335 struct nilfs_transaction_info
*cur_ti
= current
->journal_info
;
338 ti
->ti_flags
= NILFS_TI_WRITER
;
340 ti
->ti_save
= cur_ti
;
341 ti
->ti_magic
= NILFS_TI_MAGIC
;
342 INIT_LIST_HEAD(&ti
->ti_garbage
);
343 current
->journal_info
= ti
;
346 down_write(&sbi
->s_nilfs
->ns_segctor_sem
);
347 if (!test_bit(NILFS_SC_PRIOR_FLUSH
, &NILFS_SC(sbi
)->sc_flags
))
350 nilfs_segctor_do_immediate_flush(NILFS_SC(sbi
));
352 up_write(&sbi
->s_nilfs
->ns_segctor_sem
);
356 ti
->ti_flags
|= NILFS_TI_GC
;
359 static void nilfs_transaction_unlock(struct nilfs_sb_info
*sbi
)
361 struct nilfs_transaction_info
*ti
= current
->journal_info
;
363 BUG_ON(ti
== NULL
|| ti
->ti_magic
!= NILFS_TI_MAGIC
);
364 BUG_ON(ti
->ti_count
> 0);
366 up_write(&sbi
->s_nilfs
->ns_segctor_sem
);
367 current
->journal_info
= ti
->ti_save
;
368 if (!list_empty(&ti
->ti_garbage
))
369 nilfs_dispose_list(sbi
, &ti
->ti_garbage
, 0);
372 static void *nilfs_segctor_map_segsum_entry(struct nilfs_sc_info
*sci
,
373 struct nilfs_segsum_pointer
*ssp
,
376 struct nilfs_segment_buffer
*segbuf
= sci
->sc_curseg
;
377 unsigned blocksize
= sci
->sc_super
->s_blocksize
;
380 if (unlikely(ssp
->offset
+ bytes
> blocksize
)) {
382 BUG_ON(NILFS_SEGBUF_BH_IS_LAST(ssp
->bh
,
383 &segbuf
->sb_segsum_buffers
));
384 ssp
->bh
= NILFS_SEGBUF_NEXT_BH(ssp
->bh
);
386 p
= ssp
->bh
->b_data
+ ssp
->offset
;
387 ssp
->offset
+= bytes
;
392 * nilfs_segctor_reset_segment_buffer - reset the current segment buffer
393 * @sci: nilfs_sc_info
395 static int nilfs_segctor_reset_segment_buffer(struct nilfs_sc_info
*sci
)
397 struct nilfs_segment_buffer
*segbuf
= sci
->sc_curseg
;
398 struct buffer_head
*sumbh
;
403 if (nilfs_doing_gc())
405 err
= nilfs_segbuf_reset(segbuf
, flags
, sci
->sc_seg_ctime
);
409 sumbh
= NILFS_SEGBUF_FIRST_BH(&segbuf
->sb_segsum_buffers
);
410 sumbytes
= segbuf
->sb_sum
.sumbytes
;
411 sci
->sc_finfo_ptr
.bh
= sumbh
; sci
->sc_finfo_ptr
.offset
= sumbytes
;
412 sci
->sc_binfo_ptr
.bh
= sumbh
; sci
->sc_binfo_ptr
.offset
= sumbytes
;
413 sci
->sc_blk_cnt
= sci
->sc_datablk_cnt
= 0;
417 static int nilfs_segctor_feed_segment(struct nilfs_sc_info
*sci
)
419 sci
->sc_nblk_this_inc
+= sci
->sc_curseg
->sb_sum
.nblocks
;
420 if (NILFS_SEGBUF_IS_LAST(sci
->sc_curseg
, &sci
->sc_segbufs
))
421 return -E2BIG
; /* The current segment is filled up
423 sci
->sc_curseg
= NILFS_NEXT_SEGBUF(sci
->sc_curseg
);
424 return nilfs_segctor_reset_segment_buffer(sci
);
427 static int nilfs_segctor_add_super_root(struct nilfs_sc_info
*sci
)
429 struct nilfs_segment_buffer
*segbuf
= sci
->sc_curseg
;
432 if (segbuf
->sb_sum
.nblocks
>= segbuf
->sb_rest_blocks
) {
433 err
= nilfs_segctor_feed_segment(sci
);
436 segbuf
= sci
->sc_curseg
;
438 err
= nilfs_segbuf_extend_payload(segbuf
, &sci
->sc_super_root
);
440 segbuf
->sb_sum
.flags
|= NILFS_SS_SR
;
445 * Functions for making segment summary and payloads
447 static int nilfs_segctor_segsum_block_required(
448 struct nilfs_sc_info
*sci
, const struct nilfs_segsum_pointer
*ssp
,
451 unsigned blocksize
= sci
->sc_super
->s_blocksize
;
452 /* Size of finfo and binfo is enough small against blocksize */
454 return ssp
->offset
+ binfo_size
+
455 (!sci
->sc_blk_cnt
? sizeof(struct nilfs_finfo
) : 0) >
459 static void nilfs_segctor_begin_finfo(struct nilfs_sc_info
*sci
,
462 sci
->sc_curseg
->sb_sum
.nfinfo
++;
463 sci
->sc_binfo_ptr
= sci
->sc_finfo_ptr
;
464 nilfs_segctor_map_segsum_entry(
465 sci
, &sci
->sc_binfo_ptr
, sizeof(struct nilfs_finfo
));
467 if (inode
->i_sb
&& !test_bit(NILFS_SC_HAVE_DELTA
, &sci
->sc_flags
))
468 set_bit(NILFS_SC_HAVE_DELTA
, &sci
->sc_flags
);
472 static void nilfs_segctor_end_finfo(struct nilfs_sc_info
*sci
,
475 struct nilfs_finfo
*finfo
;
476 struct nilfs_inode_info
*ii
;
477 struct nilfs_segment_buffer
*segbuf
;
479 if (sci
->sc_blk_cnt
== 0)
483 finfo
= nilfs_segctor_map_segsum_entry(sci
, &sci
->sc_finfo_ptr
,
485 finfo
->fi_ino
= cpu_to_le64(inode
->i_ino
);
486 finfo
->fi_nblocks
= cpu_to_le32(sci
->sc_blk_cnt
);
487 finfo
->fi_ndatablk
= cpu_to_le32(sci
->sc_datablk_cnt
);
488 finfo
->fi_cno
= cpu_to_le64(ii
->i_cno
);
490 segbuf
= sci
->sc_curseg
;
491 segbuf
->sb_sum
.sumbytes
= sci
->sc_binfo_ptr
.offset
+
492 sci
->sc_super
->s_blocksize
* (segbuf
->sb_sum
.nsumblk
- 1);
493 sci
->sc_finfo_ptr
= sci
->sc_binfo_ptr
;
494 sci
->sc_blk_cnt
= sci
->sc_datablk_cnt
= 0;
497 static int nilfs_segctor_add_file_block(struct nilfs_sc_info
*sci
,
498 struct buffer_head
*bh
,
502 struct nilfs_segment_buffer
*segbuf
;
503 int required
, err
= 0;
506 segbuf
= sci
->sc_curseg
;
507 required
= nilfs_segctor_segsum_block_required(
508 sci
, &sci
->sc_binfo_ptr
, binfo_size
);
509 if (segbuf
->sb_sum
.nblocks
+ required
+ 1 > segbuf
->sb_rest_blocks
) {
510 nilfs_segctor_end_finfo(sci
, inode
);
511 err
= nilfs_segctor_feed_segment(sci
);
516 if (unlikely(required
)) {
517 err
= nilfs_segbuf_extend_segsum(segbuf
);
521 if (sci
->sc_blk_cnt
== 0)
522 nilfs_segctor_begin_finfo(sci
, inode
);
524 nilfs_segctor_map_segsum_entry(sci
, &sci
->sc_binfo_ptr
, binfo_size
);
525 /* Substitution to vblocknr is delayed until update_blocknr() */
526 nilfs_segbuf_add_file_buffer(segbuf
, bh
);
532 static int nilfs_handle_bmap_error(int err
, const char *fname
,
533 struct inode
*inode
, struct super_block
*sb
)
535 if (err
== -EINVAL
) {
536 nilfs_error(sb
, fname
, "broken bmap (inode=%lu)\n",
544 * Callback functions that enumerate, mark, and collect dirty blocks
546 static int nilfs_collect_file_data(struct nilfs_sc_info
*sci
,
547 struct buffer_head
*bh
, struct inode
*inode
)
551 err
= nilfs_bmap_propagate(NILFS_I(inode
)->i_bmap
, bh
);
552 if (unlikely(err
< 0))
553 return nilfs_handle_bmap_error(err
, __func__
, inode
,
556 err
= nilfs_segctor_add_file_block(sci
, bh
, inode
,
557 sizeof(struct nilfs_binfo_v
));
559 sci
->sc_datablk_cnt
++;
563 static int nilfs_collect_file_node(struct nilfs_sc_info
*sci
,
564 struct buffer_head
*bh
,
569 err
= nilfs_bmap_propagate(NILFS_I(inode
)->i_bmap
, bh
);
570 if (unlikely(err
< 0))
571 return nilfs_handle_bmap_error(err
, __func__
, inode
,
576 static int nilfs_collect_file_bmap(struct nilfs_sc_info
*sci
,
577 struct buffer_head
*bh
,
580 WARN_ON(!buffer_dirty(bh
));
581 return nilfs_segctor_add_file_block(sci
, bh
, inode
, sizeof(__le64
));
584 static void nilfs_write_file_data_binfo(struct nilfs_sc_info
*sci
,
585 struct nilfs_segsum_pointer
*ssp
,
586 union nilfs_binfo
*binfo
)
588 struct nilfs_binfo_v
*binfo_v
= nilfs_segctor_map_segsum_entry(
589 sci
, ssp
, sizeof(*binfo_v
));
590 *binfo_v
= binfo
->bi_v
;
593 static void nilfs_write_file_node_binfo(struct nilfs_sc_info
*sci
,
594 struct nilfs_segsum_pointer
*ssp
,
595 union nilfs_binfo
*binfo
)
597 __le64
*vblocknr
= nilfs_segctor_map_segsum_entry(
598 sci
, ssp
, sizeof(*vblocknr
));
599 *vblocknr
= binfo
->bi_v
.bi_vblocknr
;
602 struct nilfs_sc_operations nilfs_sc_file_ops
= {
603 .collect_data
= nilfs_collect_file_data
,
604 .collect_node
= nilfs_collect_file_node
,
605 .collect_bmap
= nilfs_collect_file_bmap
,
606 .write_data_binfo
= nilfs_write_file_data_binfo
,
607 .write_node_binfo
= nilfs_write_file_node_binfo
,
610 static int nilfs_collect_dat_data(struct nilfs_sc_info
*sci
,
611 struct buffer_head
*bh
, struct inode
*inode
)
615 err
= nilfs_bmap_propagate(NILFS_I(inode
)->i_bmap
, bh
);
616 if (unlikely(err
< 0))
617 return nilfs_handle_bmap_error(err
, __func__
, inode
,
620 err
= nilfs_segctor_add_file_block(sci
, bh
, inode
, sizeof(__le64
));
622 sci
->sc_datablk_cnt
++;
626 static int nilfs_collect_dat_bmap(struct nilfs_sc_info
*sci
,
627 struct buffer_head
*bh
, struct inode
*inode
)
629 WARN_ON(!buffer_dirty(bh
));
630 return nilfs_segctor_add_file_block(sci
, bh
, inode
,
631 sizeof(struct nilfs_binfo_dat
));
634 static void nilfs_write_dat_data_binfo(struct nilfs_sc_info
*sci
,
635 struct nilfs_segsum_pointer
*ssp
,
636 union nilfs_binfo
*binfo
)
638 __le64
*blkoff
= nilfs_segctor_map_segsum_entry(sci
, ssp
,
640 *blkoff
= binfo
->bi_dat
.bi_blkoff
;
643 static void nilfs_write_dat_node_binfo(struct nilfs_sc_info
*sci
,
644 struct nilfs_segsum_pointer
*ssp
,
645 union nilfs_binfo
*binfo
)
647 struct nilfs_binfo_dat
*binfo_dat
=
648 nilfs_segctor_map_segsum_entry(sci
, ssp
, sizeof(*binfo_dat
));
649 *binfo_dat
= binfo
->bi_dat
;
652 struct nilfs_sc_operations nilfs_sc_dat_ops
= {
653 .collect_data
= nilfs_collect_dat_data
,
654 .collect_node
= nilfs_collect_file_node
,
655 .collect_bmap
= nilfs_collect_dat_bmap
,
656 .write_data_binfo
= nilfs_write_dat_data_binfo
,
657 .write_node_binfo
= nilfs_write_dat_node_binfo
,
660 struct nilfs_sc_operations nilfs_sc_dsync_ops
= {
661 .collect_data
= nilfs_collect_file_data
,
662 .collect_node
= NULL
,
663 .collect_bmap
= NULL
,
664 .write_data_binfo
= nilfs_write_file_data_binfo
,
665 .write_node_binfo
= NULL
,
668 static size_t nilfs_lookup_dirty_data_buffers(struct inode
*inode
,
669 struct list_head
*listp
,
671 loff_t start
, loff_t end
)
673 struct address_space
*mapping
= inode
->i_mapping
;
675 pgoff_t index
= 0, last
= ULONG_MAX
;
679 if (unlikely(start
!= 0 || end
!= LLONG_MAX
)) {
681 * A valid range is given for sync-ing data pages. The
682 * range is rounded to per-page; extra dirty buffers
683 * may be included if blocksize < pagesize.
685 index
= start
>> PAGE_SHIFT
;
686 last
= end
>> PAGE_SHIFT
;
688 pagevec_init(&pvec
, 0);
690 if (unlikely(index
> last
) ||
691 !pagevec_lookup_tag(&pvec
, mapping
, &index
, PAGECACHE_TAG_DIRTY
,
692 min_t(pgoff_t
, last
- index
,
693 PAGEVEC_SIZE
- 1) + 1))
696 for (i
= 0; i
< pagevec_count(&pvec
); i
++) {
697 struct buffer_head
*bh
, *head
;
698 struct page
*page
= pvec
.pages
[i
];
700 if (unlikely(page
->index
> last
))
705 if (!page_has_buffers(page
))
706 create_empty_buffers(page
,
707 1 << inode
->i_blkbits
, 0);
711 bh
= head
= page_buffers(page
);
713 if (!buffer_dirty(bh
))
716 list_add_tail(&bh
->b_assoc_buffers
, listp
);
718 if (unlikely(ndirties
>= nlimit
)) {
719 pagevec_release(&pvec
);
723 } while (bh
= bh
->b_this_page
, bh
!= head
);
725 pagevec_release(&pvec
);
730 static void nilfs_lookup_dirty_node_buffers(struct inode
*inode
,
731 struct list_head
*listp
)
733 struct nilfs_inode_info
*ii
= NILFS_I(inode
);
734 struct address_space
*mapping
= &ii
->i_btnode_cache
;
736 struct buffer_head
*bh
, *head
;
740 pagevec_init(&pvec
, 0);
742 while (pagevec_lookup_tag(&pvec
, mapping
, &index
, PAGECACHE_TAG_DIRTY
,
744 for (i
= 0; i
< pagevec_count(&pvec
); i
++) {
745 bh
= head
= page_buffers(pvec
.pages
[i
]);
747 if (buffer_dirty(bh
)) {
749 list_add_tail(&bh
->b_assoc_buffers
,
752 bh
= bh
->b_this_page
;
753 } while (bh
!= head
);
755 pagevec_release(&pvec
);
760 static void nilfs_dispose_list(struct nilfs_sb_info
*sbi
,
761 struct list_head
*head
, int force
)
763 struct nilfs_inode_info
*ii
, *n
;
764 struct nilfs_inode_info
*ivec
[SC_N_INODEVEC
], **pii
;
767 while (!list_empty(head
)) {
768 spin_lock(&sbi
->s_inode_lock
);
769 list_for_each_entry_safe(ii
, n
, head
, i_dirty
) {
770 list_del_init(&ii
->i_dirty
);
772 if (unlikely(ii
->i_bh
)) {
776 } else if (test_bit(NILFS_I_DIRTY
, &ii
->i_state
)) {
777 set_bit(NILFS_I_QUEUED
, &ii
->i_state
);
778 list_add_tail(&ii
->i_dirty
,
779 &sbi
->s_dirty_files
);
783 if (nv
== SC_N_INODEVEC
)
786 spin_unlock(&sbi
->s_inode_lock
);
788 for (pii
= ivec
; nv
> 0; pii
++, nv
--)
789 iput(&(*pii
)->vfs_inode
);
793 static int nilfs_test_metadata_dirty(struct nilfs_sb_info
*sbi
)
795 struct the_nilfs
*nilfs
= sbi
->s_nilfs
;
798 if (nilfs_mdt_fetch_dirty(sbi
->s_ifile
))
800 if (nilfs_mdt_fetch_dirty(nilfs
->ns_cpfile
))
802 if (nilfs_mdt_fetch_dirty(nilfs
->ns_sufile
))
804 if (ret
|| nilfs_doing_gc())
805 if (nilfs_mdt_fetch_dirty(nilfs_dat_inode(nilfs
)))
810 static int nilfs_segctor_clean(struct nilfs_sc_info
*sci
)
812 return list_empty(&sci
->sc_dirty_files
) &&
813 !test_bit(NILFS_SC_DIRTY
, &sci
->sc_flags
) &&
814 sci
->sc_nfreesegs
== 0 &&
815 (!nilfs_doing_gc() || list_empty(&sci
->sc_gc_inodes
));
818 static int nilfs_segctor_confirm(struct nilfs_sc_info
*sci
)
820 struct nilfs_sb_info
*sbi
= sci
->sc_sbi
;
823 if (nilfs_test_metadata_dirty(sbi
))
824 set_bit(NILFS_SC_DIRTY
, &sci
->sc_flags
);
826 spin_lock(&sbi
->s_inode_lock
);
827 if (list_empty(&sbi
->s_dirty_files
) && nilfs_segctor_clean(sci
))
830 spin_unlock(&sbi
->s_inode_lock
);
834 static void nilfs_segctor_clear_metadata_dirty(struct nilfs_sc_info
*sci
)
836 struct nilfs_sb_info
*sbi
= sci
->sc_sbi
;
837 struct the_nilfs
*nilfs
= sbi
->s_nilfs
;
839 nilfs_mdt_clear_dirty(sbi
->s_ifile
);
840 nilfs_mdt_clear_dirty(nilfs
->ns_cpfile
);
841 nilfs_mdt_clear_dirty(nilfs
->ns_sufile
);
842 nilfs_mdt_clear_dirty(nilfs_dat_inode(nilfs
));
845 static int nilfs_segctor_create_checkpoint(struct nilfs_sc_info
*sci
)
847 struct the_nilfs
*nilfs
= sci
->sc_sbi
->s_nilfs
;
848 struct buffer_head
*bh_cp
;
849 struct nilfs_checkpoint
*raw_cp
;
852 /* XXX: this interface will be changed */
853 err
= nilfs_cpfile_get_checkpoint(nilfs
->ns_cpfile
, nilfs
->ns_cno
, 1,
856 /* The following code is duplicated with cpfile. But, it is
857 needed to collect the checkpoint even if it was not newly
859 nilfs_mdt_mark_buffer_dirty(bh_cp
);
860 nilfs_mdt_mark_dirty(nilfs
->ns_cpfile
);
861 nilfs_cpfile_put_checkpoint(
862 nilfs
->ns_cpfile
, nilfs
->ns_cno
, bh_cp
);
864 WARN_ON(err
== -EINVAL
|| err
== -ENOENT
);
869 static int nilfs_segctor_fill_in_checkpoint(struct nilfs_sc_info
*sci
)
871 struct nilfs_sb_info
*sbi
= sci
->sc_sbi
;
872 struct the_nilfs
*nilfs
= sbi
->s_nilfs
;
873 struct buffer_head
*bh_cp
;
874 struct nilfs_checkpoint
*raw_cp
;
877 err
= nilfs_cpfile_get_checkpoint(nilfs
->ns_cpfile
, nilfs
->ns_cno
, 0,
880 WARN_ON(err
== -EINVAL
|| err
== -ENOENT
);
883 raw_cp
->cp_snapshot_list
.ssl_next
= 0;
884 raw_cp
->cp_snapshot_list
.ssl_prev
= 0;
885 raw_cp
->cp_inodes_count
=
886 cpu_to_le64(atomic_read(&sbi
->s_inodes_count
));
887 raw_cp
->cp_blocks_count
=
888 cpu_to_le64(atomic_read(&sbi
->s_blocks_count
));
889 raw_cp
->cp_nblk_inc
=
890 cpu_to_le64(sci
->sc_nblk_inc
+ sci
->sc_nblk_this_inc
);
891 raw_cp
->cp_create
= cpu_to_le64(sci
->sc_seg_ctime
);
892 raw_cp
->cp_cno
= cpu_to_le64(nilfs
->ns_cno
);
894 if (test_bit(NILFS_SC_HAVE_DELTA
, &sci
->sc_flags
))
895 nilfs_checkpoint_clear_minor(raw_cp
);
897 nilfs_checkpoint_set_minor(raw_cp
);
899 nilfs_write_inode_common(sbi
->s_ifile
, &raw_cp
->cp_ifile_inode
, 1);
900 nilfs_cpfile_put_checkpoint(nilfs
->ns_cpfile
, nilfs
->ns_cno
, bh_cp
);
907 static void nilfs_fill_in_file_bmap(struct inode
*ifile
,
908 struct nilfs_inode_info
*ii
)
911 struct buffer_head
*ibh
;
912 struct nilfs_inode
*raw_inode
;
914 if (test_bit(NILFS_I_BMAP
, &ii
->i_state
)) {
917 raw_inode
= nilfs_ifile_map_inode(ifile
, ii
->vfs_inode
.i_ino
,
919 nilfs_bmap_write(ii
->i_bmap
, raw_inode
);
920 nilfs_ifile_unmap_inode(ifile
, ii
->vfs_inode
.i_ino
, ibh
);
924 static void nilfs_segctor_fill_in_file_bmap(struct nilfs_sc_info
*sci
,
927 struct nilfs_inode_info
*ii
;
929 list_for_each_entry(ii
, &sci
->sc_dirty_files
, i_dirty
) {
930 nilfs_fill_in_file_bmap(ifile
, ii
);
931 set_bit(NILFS_I_COLLECTED
, &ii
->i_state
);
936 * CRC calculation routines
938 static void nilfs_fill_in_super_root_crc(struct buffer_head
*bh_sr
, u32 seed
)
940 struct nilfs_super_root
*raw_sr
=
941 (struct nilfs_super_root
*)bh_sr
->b_data
;
945 (unsigned char *)raw_sr
+ sizeof(raw_sr
->sr_sum
),
946 NILFS_SR_BYTES
- sizeof(raw_sr
->sr_sum
));
947 raw_sr
->sr_sum
= cpu_to_le32(crc
);
950 static void nilfs_segctor_fill_in_checksums(struct nilfs_sc_info
*sci
,
953 struct nilfs_segment_buffer
*segbuf
;
955 if (sci
->sc_super_root
)
956 nilfs_fill_in_super_root_crc(sci
->sc_super_root
, seed
);
958 list_for_each_entry(segbuf
, &sci
->sc_segbufs
, sb_list
) {
959 nilfs_segbuf_fill_in_segsum_crc(segbuf
, seed
);
960 nilfs_segbuf_fill_in_data_crc(segbuf
, seed
);
964 static void nilfs_segctor_fill_in_super_root(struct nilfs_sc_info
*sci
,
965 struct the_nilfs
*nilfs
)
967 struct buffer_head
*bh_sr
= sci
->sc_super_root
;
968 struct nilfs_super_root
*raw_sr
=
969 (struct nilfs_super_root
*)bh_sr
->b_data
;
970 unsigned isz
= nilfs
->ns_inode_size
;
972 raw_sr
->sr_bytes
= cpu_to_le16(NILFS_SR_BYTES
);
973 raw_sr
->sr_nongc_ctime
974 = cpu_to_le64(nilfs_doing_gc() ?
975 nilfs
->ns_nongc_ctime
: sci
->sc_seg_ctime
);
976 raw_sr
->sr_flags
= 0;
978 nilfs_write_inode_common(nilfs_dat_inode(nilfs
), (void *)raw_sr
+
979 NILFS_SR_DAT_OFFSET(isz
), 1);
980 nilfs_write_inode_common(nilfs
->ns_cpfile
, (void *)raw_sr
+
981 NILFS_SR_CPFILE_OFFSET(isz
), 1);
982 nilfs_write_inode_common(nilfs
->ns_sufile
, (void *)raw_sr
+
983 NILFS_SR_SUFILE_OFFSET(isz
), 1);
986 static void nilfs_redirty_inodes(struct list_head
*head
)
988 struct nilfs_inode_info
*ii
;
990 list_for_each_entry(ii
, head
, i_dirty
) {
991 if (test_bit(NILFS_I_COLLECTED
, &ii
->i_state
))
992 clear_bit(NILFS_I_COLLECTED
, &ii
->i_state
);
996 static void nilfs_drop_collected_inodes(struct list_head
*head
)
998 struct nilfs_inode_info
*ii
;
1000 list_for_each_entry(ii
, head
, i_dirty
) {
1001 if (!test_and_clear_bit(NILFS_I_COLLECTED
, &ii
->i_state
))
1004 clear_bit(NILFS_I_INODE_DIRTY
, &ii
->i_state
);
1005 set_bit(NILFS_I_UPDATED
, &ii
->i_state
);
1009 static int nilfs_segctor_apply_buffers(struct nilfs_sc_info
*sci
,
1010 struct inode
*inode
,
1011 struct list_head
*listp
,
1012 int (*collect
)(struct nilfs_sc_info
*,
1013 struct buffer_head
*,
1016 struct buffer_head
*bh
, *n
;
1020 list_for_each_entry_safe(bh
, n
, listp
, b_assoc_buffers
) {
1021 list_del_init(&bh
->b_assoc_buffers
);
1022 err
= collect(sci
, bh
, inode
);
1025 goto dispose_buffers
;
1031 while (!list_empty(listp
)) {
1032 bh
= list_entry(listp
->next
, struct buffer_head
,
1034 list_del_init(&bh
->b_assoc_buffers
);
1040 static size_t nilfs_segctor_buffer_rest(struct nilfs_sc_info
*sci
)
1042 /* Remaining number of blocks within segment buffer */
1043 return sci
->sc_segbuf_nblocks
-
1044 (sci
->sc_nblk_this_inc
+ sci
->sc_curseg
->sb_sum
.nblocks
);
1047 static int nilfs_segctor_scan_file(struct nilfs_sc_info
*sci
,
1048 struct inode
*inode
,
1049 struct nilfs_sc_operations
*sc_ops
)
1051 LIST_HEAD(data_buffers
);
1052 LIST_HEAD(node_buffers
);
1055 if (!(sci
->sc_stage
.flags
& NILFS_CF_NODE
)) {
1056 size_t n
, rest
= nilfs_segctor_buffer_rest(sci
);
1058 n
= nilfs_lookup_dirty_data_buffers(
1059 inode
, &data_buffers
, rest
+ 1, 0, LLONG_MAX
);
1061 err
= nilfs_segctor_apply_buffers(
1062 sci
, inode
, &data_buffers
,
1063 sc_ops
->collect_data
);
1064 BUG_ON(!err
); /* always receive -E2BIG or true error */
1068 nilfs_lookup_dirty_node_buffers(inode
, &node_buffers
);
1070 if (!(sci
->sc_stage
.flags
& NILFS_CF_NODE
)) {
1071 err
= nilfs_segctor_apply_buffers(
1072 sci
, inode
, &data_buffers
, sc_ops
->collect_data
);
1073 if (unlikely(err
)) {
1074 /* dispose node list */
1075 nilfs_segctor_apply_buffers(
1076 sci
, inode
, &node_buffers
, NULL
);
1079 sci
->sc_stage
.flags
|= NILFS_CF_NODE
;
1082 err
= nilfs_segctor_apply_buffers(
1083 sci
, inode
, &node_buffers
, sc_ops
->collect_node
);
1087 nilfs_bmap_lookup_dirty_buffers(NILFS_I(inode
)->i_bmap
, &node_buffers
);
1088 err
= nilfs_segctor_apply_buffers(
1089 sci
, inode
, &node_buffers
, sc_ops
->collect_bmap
);
1093 nilfs_segctor_end_finfo(sci
, inode
);
1094 sci
->sc_stage
.flags
&= ~NILFS_CF_NODE
;
1100 static int nilfs_segctor_scan_file_dsync(struct nilfs_sc_info
*sci
,
1101 struct inode
*inode
)
1103 LIST_HEAD(data_buffers
);
1104 size_t n
, rest
= nilfs_segctor_buffer_rest(sci
);
1107 n
= nilfs_lookup_dirty_data_buffers(inode
, &data_buffers
, rest
+ 1,
1108 sci
->sc_dsync_start
,
1111 err
= nilfs_segctor_apply_buffers(sci
, inode
, &data_buffers
,
1112 nilfs_collect_file_data
);
1114 nilfs_segctor_end_finfo(sci
, inode
);
1116 /* always receive -E2BIG or true error if n > rest */
1121 static int nilfs_segctor_collect_blocks(struct nilfs_sc_info
*sci
, int mode
)
1123 struct nilfs_sb_info
*sbi
= sci
->sc_sbi
;
1124 struct the_nilfs
*nilfs
= sbi
->s_nilfs
;
1125 struct list_head
*head
;
1126 struct nilfs_inode_info
*ii
;
1130 switch (sci
->sc_stage
.scnt
) {
1133 sci
->sc_stage
.flags
= 0;
1135 if (!test_bit(NILFS_SC_UNCLOSED
, &sci
->sc_flags
)) {
1136 sci
->sc_nblk_inc
= 0;
1137 sci
->sc_curseg
->sb_sum
.flags
= NILFS_SS_LOGBGN
;
1138 if (mode
== SC_LSEG_DSYNC
) {
1139 sci
->sc_stage
.scnt
= NILFS_ST_DSYNC
;
1144 sci
->sc_stage
.dirty_file_ptr
= NULL
;
1145 sci
->sc_stage
.gc_inode_ptr
= NULL
;
1146 if (mode
== SC_FLUSH_DAT
) {
1147 sci
->sc_stage
.scnt
= NILFS_ST_DAT
;
1150 sci
->sc_stage
.scnt
++; /* Fall through */
1152 if (nilfs_doing_gc()) {
1153 head
= &sci
->sc_gc_inodes
;
1154 ii
= list_prepare_entry(sci
->sc_stage
.gc_inode_ptr
,
1156 list_for_each_entry_continue(ii
, head
, i_dirty
) {
1157 err
= nilfs_segctor_scan_file(
1158 sci
, &ii
->vfs_inode
,
1159 &nilfs_sc_file_ops
);
1160 if (unlikely(err
)) {
1161 sci
->sc_stage
.gc_inode_ptr
= list_entry(
1163 struct nilfs_inode_info
,
1167 set_bit(NILFS_I_COLLECTED
, &ii
->i_state
);
1169 sci
->sc_stage
.gc_inode_ptr
= NULL
;
1171 sci
->sc_stage
.scnt
++; /* Fall through */
1173 head
= &sci
->sc_dirty_files
;
1174 ii
= list_prepare_entry(sci
->sc_stage
.dirty_file_ptr
, head
,
1176 list_for_each_entry_continue(ii
, head
, i_dirty
) {
1177 clear_bit(NILFS_I_DIRTY
, &ii
->i_state
);
1179 err
= nilfs_segctor_scan_file(sci
, &ii
->vfs_inode
,
1180 &nilfs_sc_file_ops
);
1181 if (unlikely(err
)) {
1182 sci
->sc_stage
.dirty_file_ptr
=
1183 list_entry(ii
->i_dirty
.prev
,
1184 struct nilfs_inode_info
,
1188 /* sci->sc_stage.dirty_file_ptr = NILFS_I(inode); */
1189 /* XXX: required ? */
1191 sci
->sc_stage
.dirty_file_ptr
= NULL
;
1192 if (mode
== SC_FLUSH_FILE
) {
1193 sci
->sc_stage
.scnt
= NILFS_ST_DONE
;
1196 sci
->sc_stage
.scnt
++;
1197 sci
->sc_stage
.flags
|= NILFS_CF_IFILE_STARTED
;
1199 case NILFS_ST_IFILE
:
1200 err
= nilfs_segctor_scan_file(sci
, sbi
->s_ifile
,
1201 &nilfs_sc_file_ops
);
1204 sci
->sc_stage
.scnt
++;
1205 /* Creating a checkpoint */
1206 err
= nilfs_segctor_create_checkpoint(sci
);
1210 case NILFS_ST_CPFILE
:
1211 err
= nilfs_segctor_scan_file(sci
, nilfs
->ns_cpfile
,
1212 &nilfs_sc_file_ops
);
1215 sci
->sc_stage
.scnt
++; /* Fall through */
1216 case NILFS_ST_SUFILE
:
1217 err
= nilfs_sufile_freev(nilfs
->ns_sufile
, sci
->sc_freesegs
,
1218 sci
->sc_nfreesegs
, &ndone
);
1219 if (unlikely(err
)) {
1220 nilfs_sufile_cancel_freev(nilfs
->ns_sufile
,
1221 sci
->sc_freesegs
, ndone
,
1225 sci
->sc_stage
.flags
|= NILFS_CF_SUFREED
;
1227 err
= nilfs_segctor_scan_file(sci
, nilfs
->ns_sufile
,
1228 &nilfs_sc_file_ops
);
1231 sci
->sc_stage
.scnt
++; /* Fall through */
1234 err
= nilfs_segctor_scan_file(sci
, nilfs_dat_inode(nilfs
),
1238 if (mode
== SC_FLUSH_DAT
) {
1239 sci
->sc_stage
.scnt
= NILFS_ST_DONE
;
1242 sci
->sc_stage
.scnt
++; /* Fall through */
1244 if (mode
== SC_LSEG_SR
) {
1245 /* Appending a super root */
1246 err
= nilfs_segctor_add_super_root(sci
);
1250 /* End of a logical segment */
1251 sci
->sc_curseg
->sb_sum
.flags
|= NILFS_SS_LOGEND
;
1252 sci
->sc_stage
.scnt
= NILFS_ST_DONE
;
1254 case NILFS_ST_DSYNC
:
1256 sci
->sc_curseg
->sb_sum
.flags
|= NILFS_SS_SYNDT
;
1257 ii
= sci
->sc_dsync_inode
;
1258 if (!test_bit(NILFS_I_BUSY
, &ii
->i_state
))
1261 err
= nilfs_segctor_scan_file_dsync(sci
, &ii
->vfs_inode
);
1264 sci
->sc_curseg
->sb_sum
.flags
|= NILFS_SS_LOGEND
;
1265 sci
->sc_stage
.scnt
= NILFS_ST_DONE
;
1278 * nilfs_segctor_begin_construction - setup segment buffer to make a new log
1279 * @sci: nilfs_sc_info
1280 * @nilfs: nilfs object
1282 static int nilfs_segctor_begin_construction(struct nilfs_sc_info
*sci
,
1283 struct the_nilfs
*nilfs
)
1285 struct nilfs_segment_buffer
*segbuf
, *prev
;
1289 segbuf
= nilfs_segbuf_new(sci
->sc_super
);
1290 if (unlikely(!segbuf
))
1293 if (list_empty(&sci
->sc_write_logs
)) {
1294 nilfs_segbuf_map(segbuf
, nilfs
->ns_segnum
,
1295 nilfs
->ns_pseg_offset
, nilfs
);
1296 if (segbuf
->sb_rest_blocks
< NILFS_PSEG_MIN_BLOCKS
) {
1297 nilfs_shift_to_next_segment(nilfs
);
1298 nilfs_segbuf_map(segbuf
, nilfs
->ns_segnum
, 0, nilfs
);
1301 segbuf
->sb_sum
.seg_seq
= nilfs
->ns_seg_seq
;
1302 nextnum
= nilfs
->ns_nextnum
;
1304 if (nilfs
->ns_segnum
== nilfs
->ns_nextnum
)
1305 /* Start from the head of a new full segment */
1309 prev
= NILFS_LAST_SEGBUF(&sci
->sc_write_logs
);
1310 nilfs_segbuf_map_cont(segbuf
, prev
);
1311 segbuf
->sb_sum
.seg_seq
= prev
->sb_sum
.seg_seq
;
1312 nextnum
= prev
->sb_nextnum
;
1314 if (segbuf
->sb_rest_blocks
< NILFS_PSEG_MIN_BLOCKS
) {
1315 nilfs_segbuf_map(segbuf
, prev
->sb_nextnum
, 0, nilfs
);
1316 segbuf
->sb_sum
.seg_seq
++;
1321 err
= nilfs_sufile_mark_dirty(nilfs
->ns_sufile
, segbuf
->sb_segnum
);
1326 err
= nilfs_sufile_alloc(nilfs
->ns_sufile
, &nextnum
);
1330 nilfs_segbuf_set_next_segnum(segbuf
, nextnum
, nilfs
);
1332 BUG_ON(!list_empty(&sci
->sc_segbufs
));
1333 list_add_tail(&segbuf
->sb_list
, &sci
->sc_segbufs
);
1334 sci
->sc_segbuf_nblocks
= segbuf
->sb_rest_blocks
;
1338 nilfs_segbuf_free(segbuf
);
1342 static int nilfs_segctor_extend_segments(struct nilfs_sc_info
*sci
,
1343 struct the_nilfs
*nilfs
, int nadd
)
1345 struct nilfs_segment_buffer
*segbuf
, *prev
;
1346 struct inode
*sufile
= nilfs
->ns_sufile
;
1351 prev
= NILFS_LAST_SEGBUF(&sci
->sc_segbufs
);
1353 * Since the segment specified with nextnum might be allocated during
1354 * the previous construction, the buffer including its segusage may
1355 * not be dirty. The following call ensures that the buffer is dirty
1356 * and will pin the buffer on memory until the sufile is written.
1358 err
= nilfs_sufile_mark_dirty(sufile
, prev
->sb_nextnum
);
1362 for (i
= 0; i
< nadd
; i
++) {
1363 /* extend segment info */
1365 segbuf
= nilfs_segbuf_new(sci
->sc_super
);
1366 if (unlikely(!segbuf
))
1369 /* map this buffer to region of segment on-disk */
1370 nilfs_segbuf_map(segbuf
, prev
->sb_nextnum
, 0, nilfs
);
1371 sci
->sc_segbuf_nblocks
+= segbuf
->sb_rest_blocks
;
1373 /* allocate the next next full segment */
1374 err
= nilfs_sufile_alloc(sufile
, &nextnextnum
);
1378 segbuf
->sb_sum
.seg_seq
= prev
->sb_sum
.seg_seq
+ 1;
1379 nilfs_segbuf_set_next_segnum(segbuf
, nextnextnum
, nilfs
);
1381 list_add_tail(&segbuf
->sb_list
, &list
);
1384 list_splice_tail(&list
, &sci
->sc_segbufs
);
1388 nilfs_segbuf_free(segbuf
);
1390 list_for_each_entry(segbuf
, &list
, sb_list
) {
1391 ret
= nilfs_sufile_free(sufile
, segbuf
->sb_nextnum
);
1392 WARN_ON(ret
); /* never fails */
1394 nilfs_destroy_logs(&list
);
1398 static void nilfs_free_incomplete_logs(struct list_head
*logs
,
1399 struct the_nilfs
*nilfs
)
1401 struct nilfs_segment_buffer
*segbuf
, *prev
;
1402 struct inode
*sufile
= nilfs
->ns_sufile
;
1405 segbuf
= NILFS_FIRST_SEGBUF(logs
);
1406 if (nilfs
->ns_nextnum
!= segbuf
->sb_nextnum
) {
1407 ret
= nilfs_sufile_free(sufile
, segbuf
->sb_nextnum
);
1408 WARN_ON(ret
); /* never fails */
1410 if (atomic_read(&segbuf
->sb_err
)) {
1411 /* Case 1: The first segment failed */
1412 if (segbuf
->sb_pseg_start
!= segbuf
->sb_fseg_start
)
1413 /* Case 1a: Partial segment appended into an existing
1415 nilfs_terminate_segment(nilfs
, segbuf
->sb_fseg_start
,
1416 segbuf
->sb_fseg_end
);
1417 else /* Case 1b: New full segment */
1418 set_nilfs_discontinued(nilfs
);
1422 list_for_each_entry_continue(segbuf
, logs
, sb_list
) {
1423 if (prev
->sb_nextnum
!= segbuf
->sb_nextnum
) {
1424 ret
= nilfs_sufile_free(sufile
, segbuf
->sb_nextnum
);
1425 WARN_ON(ret
); /* never fails */
1427 if (atomic_read(&segbuf
->sb_err
) &&
1428 segbuf
->sb_segnum
!= nilfs
->ns_nextnum
)
1429 /* Case 2: extended segment (!= next) failed */
1430 nilfs_sufile_set_error(sufile
, segbuf
->sb_segnum
);
1435 static void nilfs_segctor_update_segusage(struct nilfs_sc_info
*sci
,
1436 struct inode
*sufile
)
1438 struct nilfs_segment_buffer
*segbuf
;
1439 unsigned long live_blocks
;
1442 list_for_each_entry(segbuf
, &sci
->sc_segbufs
, sb_list
) {
1443 live_blocks
= segbuf
->sb_sum
.nblocks
+
1444 (segbuf
->sb_pseg_start
- segbuf
->sb_fseg_start
);
1445 ret
= nilfs_sufile_set_segment_usage(sufile
, segbuf
->sb_segnum
,
1448 WARN_ON(ret
); /* always succeed because the segusage is dirty */
1452 static void nilfs_cancel_segusage(struct list_head
*logs
, struct inode
*sufile
)
1454 struct nilfs_segment_buffer
*segbuf
;
1457 segbuf
= NILFS_FIRST_SEGBUF(logs
);
1458 ret
= nilfs_sufile_set_segment_usage(sufile
, segbuf
->sb_segnum
,
1459 segbuf
->sb_pseg_start
-
1460 segbuf
->sb_fseg_start
, 0);
1461 WARN_ON(ret
); /* always succeed because the segusage is dirty */
1463 list_for_each_entry_continue(segbuf
, logs
, sb_list
) {
1464 ret
= nilfs_sufile_set_segment_usage(sufile
, segbuf
->sb_segnum
,
1466 WARN_ON(ret
); /* always succeed */
1470 static void nilfs_segctor_truncate_segments(struct nilfs_sc_info
*sci
,
1471 struct nilfs_segment_buffer
*last
,
1472 struct inode
*sufile
)
1474 struct nilfs_segment_buffer
*segbuf
= last
;
1477 list_for_each_entry_continue(segbuf
, &sci
->sc_segbufs
, sb_list
) {
1478 sci
->sc_segbuf_nblocks
-= segbuf
->sb_rest_blocks
;
1479 ret
= nilfs_sufile_free(sufile
, segbuf
->sb_nextnum
);
1482 nilfs_truncate_logs(&sci
->sc_segbufs
, last
);
1486 static int nilfs_segctor_collect(struct nilfs_sc_info
*sci
,
1487 struct the_nilfs
*nilfs
, int mode
)
1489 struct nilfs_cstage prev_stage
= sci
->sc_stage
;
1492 /* Collection retry loop */
1494 sci
->sc_super_root
= NULL
;
1495 sci
->sc_nblk_this_inc
= 0;
1496 sci
->sc_curseg
= NILFS_FIRST_SEGBUF(&sci
->sc_segbufs
);
1498 err
= nilfs_segctor_reset_segment_buffer(sci
);
1502 err
= nilfs_segctor_collect_blocks(sci
, mode
);
1503 sci
->sc_nblk_this_inc
+= sci
->sc_curseg
->sb_sum
.nblocks
;
1507 if (unlikely(err
!= -E2BIG
))
1510 /* The current segment is filled up */
1511 if (mode
!= SC_LSEG_SR
|| sci
->sc_stage
.scnt
< NILFS_ST_CPFILE
)
1514 nilfs_clear_logs(&sci
->sc_segbufs
);
1516 err
= nilfs_segctor_extend_segments(sci
, nilfs
, nadd
);
1520 if (sci
->sc_stage
.flags
& NILFS_CF_SUFREED
) {
1521 err
= nilfs_sufile_cancel_freev(nilfs
->ns_sufile
,
1525 WARN_ON(err
); /* do not happen */
1527 nadd
= min_t(int, nadd
<< 1, SC_MAX_SEGDELTA
);
1528 sci
->sc_stage
= prev_stage
;
1530 nilfs_segctor_truncate_segments(sci
, sci
->sc_curseg
, nilfs
->ns_sufile
);
1537 static void nilfs_list_replace_buffer(struct buffer_head
*old_bh
,
1538 struct buffer_head
*new_bh
)
1540 BUG_ON(!list_empty(&new_bh
->b_assoc_buffers
));
1542 list_replace_init(&old_bh
->b_assoc_buffers
, &new_bh
->b_assoc_buffers
);
1543 /* The caller must release old_bh */
1547 nilfs_segctor_update_payload_blocknr(struct nilfs_sc_info
*sci
,
1548 struct nilfs_segment_buffer
*segbuf
,
1551 struct inode
*inode
= NULL
;
1553 unsigned long nfinfo
= segbuf
->sb_sum
.nfinfo
;
1554 unsigned long nblocks
= 0, ndatablk
= 0;
1555 struct nilfs_sc_operations
*sc_op
= NULL
;
1556 struct nilfs_segsum_pointer ssp
;
1557 struct nilfs_finfo
*finfo
= NULL
;
1558 union nilfs_binfo binfo
;
1559 struct buffer_head
*bh
, *bh_org
;
1566 blocknr
= segbuf
->sb_pseg_start
+ segbuf
->sb_sum
.nsumblk
;
1567 ssp
.bh
= NILFS_SEGBUF_FIRST_BH(&segbuf
->sb_segsum_buffers
);
1568 ssp
.offset
= sizeof(struct nilfs_segment_summary
);
1570 list_for_each_entry(bh
, &segbuf
->sb_payload_buffers
, b_assoc_buffers
) {
1571 if (bh
== sci
->sc_super_root
)
1574 finfo
= nilfs_segctor_map_segsum_entry(
1575 sci
, &ssp
, sizeof(*finfo
));
1576 ino
= le64_to_cpu(finfo
->fi_ino
);
1577 nblocks
= le32_to_cpu(finfo
->fi_nblocks
);
1578 ndatablk
= le32_to_cpu(finfo
->fi_ndatablk
);
1580 if (buffer_nilfs_node(bh
))
1581 inode
= NILFS_BTNC_I(bh
->b_page
->mapping
);
1583 inode
= NILFS_AS_I(bh
->b_page
->mapping
);
1585 if (mode
== SC_LSEG_DSYNC
)
1586 sc_op
= &nilfs_sc_dsync_ops
;
1587 else if (ino
== NILFS_DAT_INO
)
1588 sc_op
= &nilfs_sc_dat_ops
;
1589 else /* file blocks */
1590 sc_op
= &nilfs_sc_file_ops
;
1594 err
= nilfs_bmap_assign(NILFS_I(inode
)->i_bmap
, &bh
, blocknr
,
1597 nilfs_list_replace_buffer(bh_org
, bh
);
1603 sc_op
->write_data_binfo(sci
, &ssp
, &binfo
);
1605 sc_op
->write_node_binfo(sci
, &ssp
, &binfo
);
1608 if (--nblocks
== 0) {
1612 } else if (ndatablk
> 0)
1619 err
= nilfs_handle_bmap_error(err
, __func__
, inode
, sci
->sc_super
);
1623 static int nilfs_segctor_assign(struct nilfs_sc_info
*sci
, int mode
)
1625 struct nilfs_segment_buffer
*segbuf
;
1628 list_for_each_entry(segbuf
, &sci
->sc_segbufs
, sb_list
) {
1629 err
= nilfs_segctor_update_payload_blocknr(sci
, segbuf
, mode
);
1632 nilfs_segbuf_fill_in_segsum(segbuf
);
1638 nilfs_copy_replace_page_buffers(struct page
*page
, struct list_head
*out
)
1640 struct page
*clone_page
;
1641 struct buffer_head
*bh
, *head
, *bh2
;
1644 bh
= head
= page_buffers(page
);
1646 clone_page
= nilfs_alloc_private_page(bh
->b_bdev
, bh
->b_size
, 0);
1647 if (unlikely(!clone_page
))
1650 bh2
= page_buffers(clone_page
);
1651 kaddr
= kmap_atomic(page
, KM_USER0
);
1653 if (list_empty(&bh
->b_assoc_buffers
))
1656 page_cache_get(clone_page
); /* for each bh */
1657 memcpy(bh2
->b_data
, kaddr
+ bh_offset(bh
), bh2
->b_size
);
1658 bh2
->b_blocknr
= bh
->b_blocknr
;
1659 list_replace(&bh
->b_assoc_buffers
, &bh2
->b_assoc_buffers
);
1660 list_add_tail(&bh
->b_assoc_buffers
, out
);
1661 } while (bh
= bh
->b_this_page
, bh2
= bh2
->b_this_page
, bh
!= head
);
1662 kunmap_atomic(kaddr
, KM_USER0
);
1664 if (!TestSetPageWriteback(clone_page
))
1665 inc_zone_page_state(clone_page
, NR_WRITEBACK
);
1666 unlock_page(clone_page
);
1671 static int nilfs_test_page_to_be_frozen(struct page
*page
)
1673 struct address_space
*mapping
= page
->mapping
;
1675 if (!mapping
|| !mapping
->host
|| S_ISDIR(mapping
->host
->i_mode
))
1678 if (page_mapped(page
)) {
1679 ClearPageChecked(page
);
1682 return PageChecked(page
);
1685 static int nilfs_begin_page_io(struct page
*page
, struct list_head
*out
)
1687 if (!page
|| PageWriteback(page
))
1688 /* For split b-tree node pages, this function may be called
1689 twice. We ignore the 2nd or later calls by this check. */
1693 clear_page_dirty_for_io(page
);
1694 set_page_writeback(page
);
1697 if (nilfs_test_page_to_be_frozen(page
)) {
1698 int err
= nilfs_copy_replace_page_buffers(page
, out
);
1705 static int nilfs_segctor_prepare_write(struct nilfs_sc_info
*sci
,
1706 struct page
**failed_page
)
1708 struct nilfs_segment_buffer
*segbuf
;
1709 struct page
*bd_page
= NULL
, *fs_page
= NULL
;
1710 struct list_head
*list
= &sci
->sc_copied_buffers
;
1713 *failed_page
= NULL
;
1714 list_for_each_entry(segbuf
, &sci
->sc_segbufs
, sb_list
) {
1715 struct buffer_head
*bh
;
1717 list_for_each_entry(bh
, &segbuf
->sb_segsum_buffers
,
1719 if (bh
->b_page
!= bd_page
) {
1722 clear_page_dirty_for_io(bd_page
);
1723 set_page_writeback(bd_page
);
1724 unlock_page(bd_page
);
1726 bd_page
= bh
->b_page
;
1730 list_for_each_entry(bh
, &segbuf
->sb_payload_buffers
,
1732 if (bh
== sci
->sc_super_root
) {
1733 if (bh
->b_page
!= bd_page
) {
1735 clear_page_dirty_for_io(bd_page
);
1736 set_page_writeback(bd_page
);
1737 unlock_page(bd_page
);
1738 bd_page
= bh
->b_page
;
1742 if (bh
->b_page
!= fs_page
) {
1743 err
= nilfs_begin_page_io(fs_page
, list
);
1744 if (unlikely(err
)) {
1745 *failed_page
= fs_page
;
1748 fs_page
= bh
->b_page
;
1754 clear_page_dirty_for_io(bd_page
);
1755 set_page_writeback(bd_page
);
1756 unlock_page(bd_page
);
1758 err
= nilfs_begin_page_io(fs_page
, list
);
1760 *failed_page
= fs_page
;
1765 static int nilfs_segctor_write(struct nilfs_sc_info
*sci
,
1766 struct the_nilfs
*nilfs
)
1770 ret
= nilfs_write_logs(&sci
->sc_segbufs
, nilfs
);
1771 list_splice_tail_init(&sci
->sc_segbufs
, &sci
->sc_write_logs
);
1775 static void __nilfs_end_page_io(struct page
*page
, int err
)
1778 if (!nilfs_page_buffers_clean(page
))
1779 __set_page_dirty_nobuffers(page
);
1780 ClearPageError(page
);
1782 __set_page_dirty_nobuffers(page
);
1786 if (buffer_nilfs_allocated(page_buffers(page
))) {
1787 if (TestClearPageWriteback(page
))
1788 dec_zone_page_state(page
, NR_WRITEBACK
);
1790 end_page_writeback(page
);
1793 static void nilfs_end_page_io(struct page
*page
, int err
)
1798 if (buffer_nilfs_node(page_buffers(page
)) && !PageWriteback(page
)) {
1800 * For b-tree node pages, this function may be called twice
1801 * or more because they might be split in a segment.
1803 if (PageDirty(page
)) {
1805 * For pages holding split b-tree node buffers, dirty
1806 * flag on the buffers may be cleared discretely.
1807 * In that case, the page is once redirtied for
1808 * remaining buffers, and it must be cancelled if
1809 * all the buffers get cleaned later.
1812 if (nilfs_page_buffers_clean(page
))
1813 __nilfs_clear_page_dirty(page
);
1819 __nilfs_end_page_io(page
, err
);
1822 static void nilfs_clear_copied_buffers(struct list_head
*list
, int err
)
1824 struct buffer_head
*bh
, *head
;
1827 while (!list_empty(list
)) {
1828 bh
= list_entry(list
->next
, struct buffer_head
,
1831 page_cache_get(page
);
1832 head
= bh
= page_buffers(page
);
1834 if (!list_empty(&bh
->b_assoc_buffers
)) {
1835 list_del_init(&bh
->b_assoc_buffers
);
1837 set_buffer_uptodate(bh
);
1838 clear_buffer_dirty(bh
);
1839 clear_buffer_nilfs_volatile(bh
);
1841 brelse(bh
); /* for b_assoc_buffers */
1843 } while ((bh
= bh
->b_this_page
) != head
);
1845 __nilfs_end_page_io(page
, err
);
1846 page_cache_release(page
);
1850 static void nilfs_abort_logs(struct list_head
*logs
, struct page
*failed_page
,
1851 struct buffer_head
*bh_sr
, int err
)
1853 struct nilfs_segment_buffer
*segbuf
;
1854 struct page
*bd_page
= NULL
, *fs_page
= NULL
;
1855 struct buffer_head
*bh
;
1857 if (list_empty(logs
))
1860 list_for_each_entry(segbuf
, logs
, sb_list
) {
1861 list_for_each_entry(bh
, &segbuf
->sb_segsum_buffers
,
1863 if (bh
->b_page
!= bd_page
) {
1865 end_page_writeback(bd_page
);
1866 bd_page
= bh
->b_page
;
1870 list_for_each_entry(bh
, &segbuf
->sb_payload_buffers
,
1873 if (bh
->b_page
!= bd_page
) {
1874 end_page_writeback(bd_page
);
1875 bd_page
= bh
->b_page
;
1879 if (bh
->b_page
!= fs_page
) {
1880 nilfs_end_page_io(fs_page
, err
);
1881 if (fs_page
&& fs_page
== failed_page
)
1883 fs_page
= bh
->b_page
;
1888 end_page_writeback(bd_page
);
1890 nilfs_end_page_io(fs_page
, err
);
1893 static void nilfs_segctor_abort_construction(struct nilfs_sc_info
*sci
,
1894 struct the_nilfs
*nilfs
, int err
)
1899 list_splice_tail_init(&sci
->sc_write_logs
, &logs
);
1900 ret
= nilfs_wait_on_logs(&logs
);
1901 nilfs_abort_logs(&logs
, NULL
, sci
->sc_super_root
, ret
? : err
);
1903 list_splice_tail_init(&sci
->sc_segbufs
, &logs
);
1904 nilfs_cancel_segusage(&logs
, nilfs
->ns_sufile
);
1905 nilfs_free_incomplete_logs(&logs
, nilfs
);
1906 nilfs_clear_copied_buffers(&sci
->sc_copied_buffers
, err
);
1908 if (sci
->sc_stage
.flags
& NILFS_CF_SUFREED
) {
1909 ret
= nilfs_sufile_cancel_freev(nilfs
->ns_sufile
,
1913 WARN_ON(ret
); /* do not happen */
1916 nilfs_destroy_logs(&logs
);
1917 sci
->sc_super_root
= NULL
;
1920 static void nilfs_set_next_segment(struct the_nilfs
*nilfs
,
1921 struct nilfs_segment_buffer
*segbuf
)
1923 nilfs
->ns_segnum
= segbuf
->sb_segnum
;
1924 nilfs
->ns_nextnum
= segbuf
->sb_nextnum
;
1925 nilfs
->ns_pseg_offset
= segbuf
->sb_pseg_start
- segbuf
->sb_fseg_start
1926 + segbuf
->sb_sum
.nblocks
;
1927 nilfs
->ns_seg_seq
= segbuf
->sb_sum
.seg_seq
;
1928 nilfs
->ns_ctime
= segbuf
->sb_sum
.ctime
;
1931 static void nilfs_segctor_complete_write(struct nilfs_sc_info
*sci
)
1933 struct nilfs_segment_buffer
*segbuf
;
1934 struct page
*bd_page
= NULL
, *fs_page
= NULL
;
1935 struct the_nilfs
*nilfs
= sci
->sc_sbi
->s_nilfs
;
1936 int update_sr
= (sci
->sc_super_root
!= NULL
);
1938 list_for_each_entry(segbuf
, &sci
->sc_write_logs
, sb_list
) {
1939 struct buffer_head
*bh
;
1941 list_for_each_entry(bh
, &segbuf
->sb_segsum_buffers
,
1943 set_buffer_uptodate(bh
);
1944 clear_buffer_dirty(bh
);
1945 if (bh
->b_page
!= bd_page
) {
1947 end_page_writeback(bd_page
);
1948 bd_page
= bh
->b_page
;
1952 * We assume that the buffers which belong to the same page
1953 * continue over the buffer list.
1954 * Under this assumption, the last BHs of pages is
1955 * identifiable by the discontinuity of bh->b_page
1956 * (page != fs_page).
1958 * For B-tree node blocks, however, this assumption is not
1959 * guaranteed. The cleanup code of B-tree node pages needs
1962 list_for_each_entry(bh
, &segbuf
->sb_payload_buffers
,
1964 set_buffer_uptodate(bh
);
1965 clear_buffer_dirty(bh
);
1966 clear_buffer_nilfs_volatile(bh
);
1967 if (bh
== sci
->sc_super_root
) {
1968 if (bh
->b_page
!= bd_page
) {
1969 end_page_writeback(bd_page
);
1970 bd_page
= bh
->b_page
;
1974 if (bh
->b_page
!= fs_page
) {
1975 nilfs_end_page_io(fs_page
, 0);
1976 fs_page
= bh
->b_page
;
1980 if (!NILFS_SEG_SIMPLEX(&segbuf
->sb_sum
)) {
1981 if (NILFS_SEG_LOGBGN(&segbuf
->sb_sum
)) {
1982 set_bit(NILFS_SC_UNCLOSED
, &sci
->sc_flags
);
1983 sci
->sc_lseg_stime
= jiffies
;
1985 if (NILFS_SEG_LOGEND(&segbuf
->sb_sum
))
1986 clear_bit(NILFS_SC_UNCLOSED
, &sci
->sc_flags
);
1990 * Since pages may continue over multiple segment buffers,
1991 * end of the last page must be checked outside of the loop.
1994 end_page_writeback(bd_page
);
1996 nilfs_end_page_io(fs_page
, 0);
1998 nilfs_clear_copied_buffers(&sci
->sc_copied_buffers
, 0);
2000 nilfs_drop_collected_inodes(&sci
->sc_dirty_files
);
2002 if (nilfs_doing_gc()) {
2003 nilfs_drop_collected_inodes(&sci
->sc_gc_inodes
);
2005 nilfs_commit_gcdat_inode(nilfs
);
2007 nilfs
->ns_nongc_ctime
= sci
->sc_seg_ctime
;
2009 sci
->sc_nblk_inc
+= sci
->sc_nblk_this_inc
;
2011 segbuf
= NILFS_LAST_SEGBUF(&sci
->sc_write_logs
);
2012 nilfs_set_next_segment(nilfs
, segbuf
);
2015 nilfs_set_last_segment(nilfs
, segbuf
->sb_pseg_start
,
2016 segbuf
->sb_sum
.seg_seq
, nilfs
->ns_cno
++);
2017 set_nilfs_sb_dirty(nilfs
);
2019 clear_bit(NILFS_SC_HAVE_DELTA
, &sci
->sc_flags
);
2020 clear_bit(NILFS_SC_DIRTY
, &sci
->sc_flags
);
2021 set_bit(NILFS_SC_SUPER_ROOT
, &sci
->sc_flags
);
2022 nilfs_segctor_clear_metadata_dirty(sci
);
2024 clear_bit(NILFS_SC_SUPER_ROOT
, &sci
->sc_flags
);
2027 static int nilfs_segctor_wait(struct nilfs_sc_info
*sci
)
2031 ret
= nilfs_wait_on_logs(&sci
->sc_write_logs
);
2033 nilfs_segctor_complete_write(sci
);
2034 nilfs_destroy_logs(&sci
->sc_write_logs
);
2039 static int nilfs_segctor_check_in_files(struct nilfs_sc_info
*sci
,
2040 struct nilfs_sb_info
*sbi
)
2042 struct nilfs_inode_info
*ii
, *n
;
2043 __u64 cno
= sbi
->s_nilfs
->ns_cno
;
2045 spin_lock(&sbi
->s_inode_lock
);
2047 list_for_each_entry_safe(ii
, n
, &sbi
->s_dirty_files
, i_dirty
) {
2049 struct buffer_head
*ibh
;
2052 spin_unlock(&sbi
->s_inode_lock
);
2053 err
= nilfs_ifile_get_inode_block(
2054 sbi
->s_ifile
, ii
->vfs_inode
.i_ino
, &ibh
);
2055 if (unlikely(err
)) {
2056 nilfs_warning(sbi
->s_super
, __func__
,
2057 "failed to get inode block.\n");
2060 nilfs_mdt_mark_buffer_dirty(ibh
);
2061 nilfs_mdt_mark_dirty(sbi
->s_ifile
);
2062 spin_lock(&sbi
->s_inode_lock
);
2063 if (likely(!ii
->i_bh
))
2071 clear_bit(NILFS_I_QUEUED
, &ii
->i_state
);
2072 set_bit(NILFS_I_BUSY
, &ii
->i_state
);
2073 list_del(&ii
->i_dirty
);
2074 list_add_tail(&ii
->i_dirty
, &sci
->sc_dirty_files
);
2076 spin_unlock(&sbi
->s_inode_lock
);
2078 NILFS_I(sbi
->s_ifile
)->i_cno
= cno
;
2083 static void nilfs_segctor_check_out_files(struct nilfs_sc_info
*sci
,
2084 struct nilfs_sb_info
*sbi
)
2086 struct nilfs_transaction_info
*ti
= current
->journal_info
;
2087 struct nilfs_inode_info
*ii
, *n
;
2088 __u64 cno
= sbi
->s_nilfs
->ns_cno
;
2090 spin_lock(&sbi
->s_inode_lock
);
2091 list_for_each_entry_safe(ii
, n
, &sci
->sc_dirty_files
, i_dirty
) {
2092 if (!test_and_clear_bit(NILFS_I_UPDATED
, &ii
->i_state
) ||
2093 test_bit(NILFS_I_DIRTY
, &ii
->i_state
)) {
2094 /* The current checkpoint number (=nilfs->ns_cno) is
2095 changed between check-in and check-out only if the
2096 super root is written out. So, we can update i_cno
2097 for the inodes that remain in the dirty list. */
2101 clear_bit(NILFS_I_BUSY
, &ii
->i_state
);
2104 list_del(&ii
->i_dirty
);
2105 list_add_tail(&ii
->i_dirty
, &ti
->ti_garbage
);
2107 spin_unlock(&sbi
->s_inode_lock
);
2111 * Main procedure of segment constructor
2113 static int nilfs_segctor_do_construct(struct nilfs_sc_info
*sci
, int mode
)
2115 struct nilfs_sb_info
*sbi
= sci
->sc_sbi
;
2116 struct the_nilfs
*nilfs
= sbi
->s_nilfs
;
2117 struct page
*failed_page
;
2118 int err
, has_sr
= 0;
2120 sci
->sc_stage
.scnt
= NILFS_ST_INIT
;
2122 err
= nilfs_segctor_check_in_files(sci
, sbi
);
2126 if (nilfs_test_metadata_dirty(sbi
))
2127 set_bit(NILFS_SC_DIRTY
, &sci
->sc_flags
);
2129 if (nilfs_segctor_clean(sci
))
2133 sci
->sc_stage
.flags
&= ~NILFS_CF_HISTORY_MASK
;
2135 err
= nilfs_segctor_begin_construction(sci
, nilfs
);
2139 /* Update time stamp */
2140 sci
->sc_seg_ctime
= get_seconds();
2142 err
= nilfs_segctor_collect(sci
, nilfs
, mode
);
2146 has_sr
= (sci
->sc_super_root
!= NULL
);
2148 /* Avoid empty segment */
2149 if (sci
->sc_stage
.scnt
== NILFS_ST_DONE
&&
2150 NILFS_SEG_EMPTY(&sci
->sc_curseg
->sb_sum
)) {
2151 nilfs_segctor_abort_construction(sci
, nilfs
, 1);
2155 err
= nilfs_segctor_assign(sci
, mode
);
2159 if (sci
->sc_stage
.flags
& NILFS_CF_IFILE_STARTED
)
2160 nilfs_segctor_fill_in_file_bmap(sci
, sbi
->s_ifile
);
2163 err
= nilfs_segctor_fill_in_checkpoint(sci
);
2165 goto failed_to_write
;
2167 nilfs_segctor_fill_in_super_root(sci
, nilfs
);
2169 nilfs_segctor_update_segusage(sci
, nilfs
->ns_sufile
);
2171 /* Write partial segments */
2172 err
= nilfs_segctor_prepare_write(sci
, &failed_page
);
2174 nilfs_abort_logs(&sci
->sc_segbufs
, failed_page
,
2175 sci
->sc_super_root
, err
);
2176 goto failed_to_write
;
2178 nilfs_segctor_fill_in_checksums(sci
, nilfs
->ns_crc_seed
);
2180 err
= nilfs_segctor_write(sci
, nilfs
);
2182 goto failed_to_write
;
2184 if (sci
->sc_stage
.scnt
== NILFS_ST_DONE
||
2185 nilfs
->ns_blocksize_bits
!= PAGE_CACHE_SHIFT
) {
2187 * At this point, we avoid double buffering
2188 * for blocksize < pagesize because page dirty
2189 * flag is turned off during write and dirty
2190 * buffers are not properly collected for
2191 * pages crossing over segments.
2193 err
= nilfs_segctor_wait(sci
);
2195 goto failed_to_write
;
2197 } while (sci
->sc_stage
.scnt
!= NILFS_ST_DONE
);
2199 sci
->sc_super_root
= NULL
;
2202 nilfs_segctor_check_out_files(sci
, sbi
);
2206 if (sci
->sc_stage
.flags
& NILFS_CF_IFILE_STARTED
)
2207 nilfs_redirty_inodes(&sci
->sc_dirty_files
);
2210 if (nilfs_doing_gc())
2211 nilfs_redirty_inodes(&sci
->sc_gc_inodes
);
2212 nilfs_segctor_abort_construction(sci
, nilfs
, err
);
2217 * nilfs_segctor_start_timer - set timer of background write
2218 * @sci: nilfs_sc_info
2220 * If the timer has already been set, it ignores the new request.
2221 * This function MUST be called within a section locking the segment
2224 static void nilfs_segctor_start_timer(struct nilfs_sc_info
*sci
)
2226 spin_lock(&sci
->sc_state_lock
);
2227 if (sci
->sc_timer
&& !(sci
->sc_state
& NILFS_SEGCTOR_COMMIT
)) {
2228 sci
->sc_timer
->expires
= jiffies
+ sci
->sc_interval
;
2229 add_timer(sci
->sc_timer
);
2230 sci
->sc_state
|= NILFS_SEGCTOR_COMMIT
;
2232 spin_unlock(&sci
->sc_state_lock
);
2235 static void nilfs_segctor_do_flush(struct nilfs_sc_info
*sci
, int bn
)
2237 spin_lock(&sci
->sc_state_lock
);
2238 if (!(sci
->sc_flush_request
& (1 << bn
))) {
2239 unsigned long prev_req
= sci
->sc_flush_request
;
2241 sci
->sc_flush_request
|= (1 << bn
);
2243 wake_up(&sci
->sc_wait_daemon
);
2245 spin_unlock(&sci
->sc_state_lock
);
2249 * nilfs_flush_segment - trigger a segment construction for resource control
2251 * @ino: inode number of the file to be flushed out.
2253 void nilfs_flush_segment(struct super_block
*sb
, ino_t ino
)
2255 struct nilfs_sb_info
*sbi
= NILFS_SB(sb
);
2256 struct nilfs_sc_info
*sci
= NILFS_SC(sbi
);
2258 if (!sci
|| nilfs_doing_construction())
2260 nilfs_segctor_do_flush(sci
, NILFS_MDT_INODE(sb
, ino
) ? ino
: 0);
2261 /* assign bit 0 to data files */
2264 struct nilfs_segctor_wait_request
{
2271 static int nilfs_segctor_sync(struct nilfs_sc_info
*sci
)
2273 struct nilfs_segctor_wait_request wait_req
;
2276 spin_lock(&sci
->sc_state_lock
);
2277 init_wait(&wait_req
.wq
);
2279 atomic_set(&wait_req
.done
, 0);
2280 wait_req
.seq
= ++sci
->sc_seq_request
;
2281 spin_unlock(&sci
->sc_state_lock
);
2283 init_waitqueue_entry(&wait_req
.wq
, current
);
2284 add_wait_queue(&sci
->sc_wait_request
, &wait_req
.wq
);
2285 set_current_state(TASK_INTERRUPTIBLE
);
2286 wake_up(&sci
->sc_wait_daemon
);
2289 if (atomic_read(&wait_req
.done
)) {
2293 if (!signal_pending(current
)) {
2300 finish_wait(&sci
->sc_wait_request
, &wait_req
.wq
);
2304 static void nilfs_segctor_wakeup(struct nilfs_sc_info
*sci
, int err
)
2306 struct nilfs_segctor_wait_request
*wrq
, *n
;
2307 unsigned long flags
;
2309 spin_lock_irqsave(&sci
->sc_wait_request
.lock
, flags
);
2310 list_for_each_entry_safe(wrq
, n
, &sci
->sc_wait_request
.task_list
,
2312 if (!atomic_read(&wrq
->done
) &&
2313 nilfs_cnt32_ge(sci
->sc_seq_done
, wrq
->seq
)) {
2315 atomic_set(&wrq
->done
, 1);
2317 if (atomic_read(&wrq
->done
)) {
2318 wrq
->wq
.func(&wrq
->wq
,
2319 TASK_UNINTERRUPTIBLE
| TASK_INTERRUPTIBLE
,
2323 spin_unlock_irqrestore(&sci
->sc_wait_request
.lock
, flags
);
2327 * nilfs_construct_segment - construct a logical segment
2330 * Return Value: On success, 0 is retured. On errors, one of the following
2331 * negative error code is returned.
2333 * %-EROFS - Read only filesystem.
2337 * %-ENOSPC - No space left on device (only in a panic state).
2339 * %-ERESTARTSYS - Interrupted.
2341 * %-ENOMEM - Insufficient memory available.
2343 int nilfs_construct_segment(struct super_block
*sb
)
2345 struct nilfs_sb_info
*sbi
= NILFS_SB(sb
);
2346 struct nilfs_sc_info
*sci
= NILFS_SC(sbi
);
2347 struct nilfs_transaction_info
*ti
;
2353 /* A call inside transactions causes a deadlock. */
2354 BUG_ON((ti
= current
->journal_info
) && ti
->ti_magic
== NILFS_TI_MAGIC
);
2356 err
= nilfs_segctor_sync(sci
);
2361 * nilfs_construct_dsync_segment - construct a data-only logical segment
2363 * @inode: inode whose data blocks should be written out
2364 * @start: start byte offset
2365 * @end: end byte offset (inclusive)
2367 * Return Value: On success, 0 is retured. On errors, one of the following
2368 * negative error code is returned.
2370 * %-EROFS - Read only filesystem.
2374 * %-ENOSPC - No space left on device (only in a panic state).
2376 * %-ERESTARTSYS - Interrupted.
2378 * %-ENOMEM - Insufficient memory available.
2380 int nilfs_construct_dsync_segment(struct super_block
*sb
, struct inode
*inode
,
2381 loff_t start
, loff_t end
)
2383 struct nilfs_sb_info
*sbi
= NILFS_SB(sb
);
2384 struct nilfs_sc_info
*sci
= NILFS_SC(sbi
);
2385 struct nilfs_inode_info
*ii
;
2386 struct nilfs_transaction_info ti
;
2392 nilfs_transaction_lock(sbi
, &ti
, 0);
2394 ii
= NILFS_I(inode
);
2395 if (test_bit(NILFS_I_INODE_DIRTY
, &ii
->i_state
) ||
2396 nilfs_test_opt(sbi
, STRICT_ORDER
) ||
2397 test_bit(NILFS_SC_UNCLOSED
, &sci
->sc_flags
) ||
2398 nilfs_discontinued(sbi
->s_nilfs
)) {
2399 nilfs_transaction_unlock(sbi
);
2400 err
= nilfs_segctor_sync(sci
);
2404 spin_lock(&sbi
->s_inode_lock
);
2405 if (!test_bit(NILFS_I_QUEUED
, &ii
->i_state
) &&
2406 !test_bit(NILFS_I_BUSY
, &ii
->i_state
)) {
2407 spin_unlock(&sbi
->s_inode_lock
);
2408 nilfs_transaction_unlock(sbi
);
2411 spin_unlock(&sbi
->s_inode_lock
);
2412 sci
->sc_dsync_inode
= ii
;
2413 sci
->sc_dsync_start
= start
;
2414 sci
->sc_dsync_end
= end
;
2416 err
= nilfs_segctor_do_construct(sci
, SC_LSEG_DSYNC
);
2418 nilfs_transaction_unlock(sbi
);
2422 #define FLUSH_FILE_BIT (0x1) /* data file only */
2423 #define FLUSH_DAT_BIT (1 << NILFS_DAT_INO) /* DAT only */
2426 * nilfs_segctor_accept - record accepted sequence count of log-write requests
2427 * @sci: segment constructor object
2429 static void nilfs_segctor_accept(struct nilfs_sc_info
*sci
)
2431 spin_lock(&sci
->sc_state_lock
);
2432 sci
->sc_seq_accepted
= sci
->sc_seq_request
;
2433 spin_unlock(&sci
->sc_state_lock
);
2436 del_timer_sync(sci
->sc_timer
);
2440 * nilfs_segctor_notify - notify the result of request to caller threads
2441 * @sci: segment constructor object
2442 * @mode: mode of log forming
2443 * @err: error code to be notified
2445 static void nilfs_segctor_notify(struct nilfs_sc_info
*sci
, int mode
, int err
)
2447 /* Clear requests (even when the construction failed) */
2448 spin_lock(&sci
->sc_state_lock
);
2450 if (mode
== SC_LSEG_SR
) {
2451 sci
->sc_state
&= ~NILFS_SEGCTOR_COMMIT
;
2452 sci
->sc_seq_done
= sci
->sc_seq_accepted
;
2453 nilfs_segctor_wakeup(sci
, err
);
2454 sci
->sc_flush_request
= 0;
2456 if (mode
== SC_FLUSH_FILE
)
2457 sci
->sc_flush_request
&= ~FLUSH_FILE_BIT
;
2458 else if (mode
== SC_FLUSH_DAT
)
2459 sci
->sc_flush_request
&= ~FLUSH_DAT_BIT
;
2461 /* re-enable timer if checkpoint creation was not done */
2462 if (sci
->sc_timer
&& (sci
->sc_state
& NILFS_SEGCTOR_COMMIT
) &&
2463 time_before(jiffies
, sci
->sc_timer
->expires
))
2464 add_timer(sci
->sc_timer
);
2466 spin_unlock(&sci
->sc_state_lock
);
2470 * nilfs_segctor_construct - form logs and write them to disk
2471 * @sci: segment constructor object
2472 * @mode: mode of log forming
2474 static int nilfs_segctor_construct(struct nilfs_sc_info
*sci
, int mode
)
2476 struct nilfs_sb_info
*sbi
= sci
->sc_sbi
;
2477 struct the_nilfs
*nilfs
= sbi
->s_nilfs
;
2480 nilfs_segctor_accept(sci
);
2482 if (nilfs_discontinued(nilfs
))
2484 if (!nilfs_segctor_confirm(sci
))
2485 err
= nilfs_segctor_do_construct(sci
, mode
);
2488 if (mode
!= SC_FLUSH_DAT
)
2489 atomic_set(&nilfs
->ns_ndirtyblks
, 0);
2490 if (test_bit(NILFS_SC_SUPER_ROOT
, &sci
->sc_flags
) &&
2491 nilfs_discontinued(nilfs
)) {
2492 down_write(&nilfs
->ns_sem
);
2493 err
= nilfs_commit_super(
2494 sbi
, nilfs_altsb_need_update(nilfs
));
2495 up_write(&nilfs
->ns_sem
);
2499 nilfs_segctor_notify(sci
, mode
, err
);
2503 static void nilfs_construction_timeout(unsigned long data
)
2505 struct task_struct
*p
= (struct task_struct
*)data
;
2510 nilfs_remove_written_gcinodes(struct the_nilfs
*nilfs
, struct list_head
*head
)
2512 struct nilfs_inode_info
*ii
, *n
;
2514 list_for_each_entry_safe(ii
, n
, head
, i_dirty
) {
2515 if (!test_bit(NILFS_I_UPDATED
, &ii
->i_state
))
2517 hlist_del_init(&ii
->vfs_inode
.i_hash
);
2518 list_del_init(&ii
->i_dirty
);
2519 nilfs_clear_gcinode(&ii
->vfs_inode
);
2523 int nilfs_clean_segments(struct super_block
*sb
, struct nilfs_argv
*argv
,
2526 struct nilfs_sb_info
*sbi
= NILFS_SB(sb
);
2527 struct nilfs_sc_info
*sci
= NILFS_SC(sbi
);
2528 struct the_nilfs
*nilfs
= sbi
->s_nilfs
;
2529 struct nilfs_transaction_info ti
;
2535 nilfs_transaction_lock(sbi
, &ti
, 1);
2537 err
= nilfs_init_gcdat_inode(nilfs
);
2541 err
= nilfs_ioctl_prepare_clean_segments(nilfs
, argv
, kbufs
);
2545 sci
->sc_freesegs
= kbufs
[4];
2546 sci
->sc_nfreesegs
= argv
[4].v_nmembs
;
2547 list_splice_tail_init(&nilfs
->ns_gc_inodes
, &sci
->sc_gc_inodes
);
2550 err
= nilfs_segctor_construct(sci
, SC_LSEG_SR
);
2551 nilfs_remove_written_gcinodes(nilfs
, &sci
->sc_gc_inodes
);
2556 nilfs_warning(sb
, __func__
,
2557 "segment construction failed. (err=%d)", err
);
2558 set_current_state(TASK_INTERRUPTIBLE
);
2559 schedule_timeout(sci
->sc_interval
);
2561 if (nilfs_test_opt(sbi
, DISCARD
)) {
2562 int ret
= nilfs_discard_segments(nilfs
, sci
->sc_freesegs
,
2566 "NILFS warning: error %d on discard request, "
2567 "turning discards off for the device\n", ret
);
2568 nilfs_clear_opt(sbi
, DISCARD
);
2573 sci
->sc_freesegs
= NULL
;
2574 sci
->sc_nfreesegs
= 0;
2575 nilfs_clear_gcdat_inode(nilfs
);
2576 nilfs_transaction_unlock(sbi
);
2580 static void nilfs_segctor_thread_construct(struct nilfs_sc_info
*sci
, int mode
)
2582 struct nilfs_sb_info
*sbi
= sci
->sc_sbi
;
2583 struct nilfs_transaction_info ti
;
2585 nilfs_transaction_lock(sbi
, &ti
, 0);
2586 nilfs_segctor_construct(sci
, mode
);
2589 * Unclosed segment should be retried. We do this using sc_timer.
2590 * Timeout of sc_timer will invoke complete construction which leads
2591 * to close the current logical segment.
2593 if (test_bit(NILFS_SC_UNCLOSED
, &sci
->sc_flags
))
2594 nilfs_segctor_start_timer(sci
);
2596 nilfs_transaction_unlock(sbi
);
2599 static void nilfs_segctor_do_immediate_flush(struct nilfs_sc_info
*sci
)
2604 spin_lock(&sci
->sc_state_lock
);
2605 mode
= (sci
->sc_flush_request
& FLUSH_DAT_BIT
) ?
2606 SC_FLUSH_DAT
: SC_FLUSH_FILE
;
2607 spin_unlock(&sci
->sc_state_lock
);
2610 err
= nilfs_segctor_do_construct(sci
, mode
);
2612 spin_lock(&sci
->sc_state_lock
);
2613 sci
->sc_flush_request
&= (mode
== SC_FLUSH_FILE
) ?
2614 ~FLUSH_FILE_BIT
: ~FLUSH_DAT_BIT
;
2615 spin_unlock(&sci
->sc_state_lock
);
2617 clear_bit(NILFS_SC_PRIOR_FLUSH
, &sci
->sc_flags
);
2620 static int nilfs_segctor_flush_mode(struct nilfs_sc_info
*sci
)
2622 if (!test_bit(NILFS_SC_UNCLOSED
, &sci
->sc_flags
) ||
2623 time_before(jiffies
, sci
->sc_lseg_stime
+ sci
->sc_mjcp_freq
)) {
2624 if (!(sci
->sc_flush_request
& ~FLUSH_FILE_BIT
))
2625 return SC_FLUSH_FILE
;
2626 else if (!(sci
->sc_flush_request
& ~FLUSH_DAT_BIT
))
2627 return SC_FLUSH_DAT
;
2633 * nilfs_segctor_thread - main loop of the segment constructor thread.
2634 * @arg: pointer to a struct nilfs_sc_info.
2636 * nilfs_segctor_thread() initializes a timer and serves as a daemon
2637 * to execute segment constructions.
2639 static int nilfs_segctor_thread(void *arg
)
2641 struct nilfs_sc_info
*sci
= (struct nilfs_sc_info
*)arg
;
2642 struct the_nilfs
*nilfs
= sci
->sc_sbi
->s_nilfs
;
2643 struct timer_list timer
;
2647 timer
.data
= (unsigned long)current
;
2648 timer
.function
= nilfs_construction_timeout
;
2649 sci
->sc_timer
= &timer
;
2652 sci
->sc_task
= current
;
2653 wake_up(&sci
->sc_wait_task
); /* for nilfs_segctor_start_thread() */
2655 "segctord starting. Construction interval = %lu seconds, "
2656 "CP frequency < %lu seconds\n",
2657 sci
->sc_interval
/ HZ
, sci
->sc_mjcp_freq
/ HZ
);
2659 spin_lock(&sci
->sc_state_lock
);
2664 if (sci
->sc_state
& NILFS_SEGCTOR_QUIT
)
2667 if (timeout
|| sci
->sc_seq_request
!= sci
->sc_seq_done
)
2669 else if (!sci
->sc_flush_request
)
2672 mode
= nilfs_segctor_flush_mode(sci
);
2674 spin_unlock(&sci
->sc_state_lock
);
2675 nilfs_segctor_thread_construct(sci
, mode
);
2676 spin_lock(&sci
->sc_state_lock
);
2681 if (freezing(current
)) {
2682 spin_unlock(&sci
->sc_state_lock
);
2684 spin_lock(&sci
->sc_state_lock
);
2687 int should_sleep
= 1;
2689 prepare_to_wait(&sci
->sc_wait_daemon
, &wait
,
2690 TASK_INTERRUPTIBLE
);
2692 if (sci
->sc_seq_request
!= sci
->sc_seq_done
)
2694 else if (sci
->sc_flush_request
)
2696 else if (sci
->sc_state
& NILFS_SEGCTOR_COMMIT
)
2697 should_sleep
= time_before(jiffies
,
2698 sci
->sc_timer
->expires
);
2701 spin_unlock(&sci
->sc_state_lock
);
2703 spin_lock(&sci
->sc_state_lock
);
2705 finish_wait(&sci
->sc_wait_daemon
, &wait
);
2706 timeout
= ((sci
->sc_state
& NILFS_SEGCTOR_COMMIT
) &&
2707 time_after_eq(jiffies
, sci
->sc_timer
->expires
));
2709 if (nilfs_sb_dirty(nilfs
) && nilfs_sb_need_update(nilfs
))
2710 set_nilfs_discontinued(nilfs
);
2715 spin_unlock(&sci
->sc_state_lock
);
2716 del_timer_sync(sci
->sc_timer
);
2717 sci
->sc_timer
= NULL
;
2720 sci
->sc_task
= NULL
;
2721 wake_up(&sci
->sc_wait_task
); /* for nilfs_segctor_kill_thread() */
2725 static int nilfs_segctor_start_thread(struct nilfs_sc_info
*sci
)
2727 struct task_struct
*t
;
2729 t
= kthread_run(nilfs_segctor_thread
, sci
, "segctord");
2731 int err
= PTR_ERR(t
);
2733 printk(KERN_ERR
"NILFS: error %d creating segctord thread\n",
2737 wait_event(sci
->sc_wait_task
, sci
->sc_task
!= NULL
);
2741 static void nilfs_segctor_kill_thread(struct nilfs_sc_info
*sci
)
2743 sci
->sc_state
|= NILFS_SEGCTOR_QUIT
;
2745 while (sci
->sc_task
) {
2746 wake_up(&sci
->sc_wait_daemon
);
2747 spin_unlock(&sci
->sc_state_lock
);
2748 wait_event(sci
->sc_wait_task
, sci
->sc_task
== NULL
);
2749 spin_lock(&sci
->sc_state_lock
);
2753 static int nilfs_segctor_init(struct nilfs_sc_info
*sci
)
2755 sci
->sc_seq_done
= sci
->sc_seq_request
;
2757 return nilfs_segctor_start_thread(sci
);
2761 * Setup & clean-up functions
2763 static struct nilfs_sc_info
*nilfs_segctor_new(struct nilfs_sb_info
*sbi
)
2765 struct nilfs_sc_info
*sci
;
2767 sci
= kzalloc(sizeof(*sci
), GFP_KERNEL
);
2772 sci
->sc_super
= sbi
->s_super
;
2774 init_waitqueue_head(&sci
->sc_wait_request
);
2775 init_waitqueue_head(&sci
->sc_wait_daemon
);
2776 init_waitqueue_head(&sci
->sc_wait_task
);
2777 spin_lock_init(&sci
->sc_state_lock
);
2778 INIT_LIST_HEAD(&sci
->sc_dirty_files
);
2779 INIT_LIST_HEAD(&sci
->sc_segbufs
);
2780 INIT_LIST_HEAD(&sci
->sc_write_logs
);
2781 INIT_LIST_HEAD(&sci
->sc_gc_inodes
);
2782 INIT_LIST_HEAD(&sci
->sc_copied_buffers
);
2784 sci
->sc_interval
= HZ
* NILFS_SC_DEFAULT_TIMEOUT
;
2785 sci
->sc_mjcp_freq
= HZ
* NILFS_SC_DEFAULT_SR_FREQ
;
2786 sci
->sc_watermark
= NILFS_SC_DEFAULT_WATERMARK
;
2788 if (sbi
->s_interval
)
2789 sci
->sc_interval
= sbi
->s_interval
;
2790 if (sbi
->s_watermark
)
2791 sci
->sc_watermark
= sbi
->s_watermark
;
2795 static void nilfs_segctor_write_out(struct nilfs_sc_info
*sci
)
2797 int ret
, retrycount
= NILFS_SC_CLEANUP_RETRY
;
2799 /* The segctord thread was stopped and its timer was removed.
2800 But some tasks remain. */
2802 struct nilfs_sb_info
*sbi
= sci
->sc_sbi
;
2803 struct nilfs_transaction_info ti
;
2805 nilfs_transaction_lock(sbi
, &ti
, 0);
2806 ret
= nilfs_segctor_construct(sci
, SC_LSEG_SR
);
2807 nilfs_transaction_unlock(sbi
);
2809 } while (ret
&& retrycount
-- > 0);
2813 * nilfs_segctor_destroy - destroy the segment constructor.
2814 * @sci: nilfs_sc_info
2816 * nilfs_segctor_destroy() kills the segctord thread and frees
2817 * the nilfs_sc_info struct.
2818 * Caller must hold the segment semaphore.
2820 static void nilfs_segctor_destroy(struct nilfs_sc_info
*sci
)
2822 struct nilfs_sb_info
*sbi
= sci
->sc_sbi
;
2825 up_write(&sbi
->s_nilfs
->ns_segctor_sem
);
2827 spin_lock(&sci
->sc_state_lock
);
2828 nilfs_segctor_kill_thread(sci
);
2829 flag
= ((sci
->sc_state
& NILFS_SEGCTOR_COMMIT
) || sci
->sc_flush_request
2830 || sci
->sc_seq_request
!= sci
->sc_seq_done
);
2831 spin_unlock(&sci
->sc_state_lock
);
2833 if (flag
|| !nilfs_segctor_confirm(sci
))
2834 nilfs_segctor_write_out(sci
);
2836 WARN_ON(!list_empty(&sci
->sc_copied_buffers
));
2838 if (!list_empty(&sci
->sc_dirty_files
)) {
2839 nilfs_warning(sbi
->s_super
, __func__
,
2840 "dirty file(s) after the final construction\n");
2841 nilfs_dispose_list(sbi
, &sci
->sc_dirty_files
, 1);
2844 WARN_ON(!list_empty(&sci
->sc_segbufs
));
2845 WARN_ON(!list_empty(&sci
->sc_write_logs
));
2847 down_write(&sbi
->s_nilfs
->ns_segctor_sem
);
2853 * nilfs_attach_segment_constructor - attach a segment constructor
2854 * @sbi: nilfs_sb_info
2856 * nilfs_attach_segment_constructor() allocates a struct nilfs_sc_info,
2857 * initializes it, and starts the segment constructor.
2859 * Return Value: On success, 0 is returned. On error, one of the following
2860 * negative error code is returned.
2862 * %-ENOMEM - Insufficient memory available.
2864 int nilfs_attach_segment_constructor(struct nilfs_sb_info
*sbi
)
2866 struct the_nilfs
*nilfs
= sbi
->s_nilfs
;
2869 if (NILFS_SC(sbi
)) {
2871 * This happens if the filesystem was remounted
2872 * read/write after nilfs_error degenerated it into a
2875 nilfs_detach_segment_constructor(sbi
);
2878 sbi
->s_sc_info
= nilfs_segctor_new(sbi
);
2879 if (!sbi
->s_sc_info
)
2882 nilfs_attach_writer(nilfs
, sbi
);
2883 err
= nilfs_segctor_init(NILFS_SC(sbi
));
2885 nilfs_detach_writer(nilfs
, sbi
);
2886 kfree(sbi
->s_sc_info
);
2887 sbi
->s_sc_info
= NULL
;
2893 * nilfs_detach_segment_constructor - destroy the segment constructor
2894 * @sbi: nilfs_sb_info
2896 * nilfs_detach_segment_constructor() kills the segment constructor daemon,
2897 * frees the struct nilfs_sc_info, and destroy the dirty file list.
2899 void nilfs_detach_segment_constructor(struct nilfs_sb_info
*sbi
)
2901 struct the_nilfs
*nilfs
= sbi
->s_nilfs
;
2902 LIST_HEAD(garbage_list
);
2904 down_write(&nilfs
->ns_segctor_sem
);
2905 if (NILFS_SC(sbi
)) {
2906 nilfs_segctor_destroy(NILFS_SC(sbi
));
2907 sbi
->s_sc_info
= NULL
;
2910 /* Force to free the list of dirty files */
2911 spin_lock(&sbi
->s_inode_lock
);
2912 if (!list_empty(&sbi
->s_dirty_files
)) {
2913 list_splice_init(&sbi
->s_dirty_files
, &garbage_list
);
2914 nilfs_warning(sbi
->s_super
, __func__
,
2915 "Non empty dirty list after the last "
2916 "segment construction\n");
2918 spin_unlock(&sbi
->s_inode_lock
);
2919 up_write(&nilfs
->ns_segctor_sem
);
2921 nilfs_dispose_list(sbi
, &garbage_list
, 1);
2922 nilfs_detach_writer(nilfs
, sbi
);