x86: cache_info: Kill the atomic allocation in amd_init_l3_cache()
[linux-2.6/linux-mips.git] / drivers / input / keyboard / lm8323.c
blob71f744a8e686232bd85156e4bc8b0f04fe3980ee
1 /*
2 * drivers/i2c/chips/lm8323.c
4 * Copyright (C) 2007-2009 Nokia Corporation
6 * Written by Daniel Stone <daniel.stone@nokia.com>
7 * Timo O. Karjalainen <timo.o.karjalainen@nokia.com>
9 * Updated by Felipe Balbi <felipe.balbi@nokia.com>
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation (version 2 of the License only).
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
25 #include <linux/module.h>
26 #include <linux/i2c.h>
27 #include <linux/interrupt.h>
28 #include <linux/sched.h>
29 #include <linux/mutex.h>
30 #include <linux/delay.h>
31 #include <linux/input.h>
32 #include <linux/leds.h>
33 #include <linux/pm.h>
34 #include <linux/i2c/lm8323.h>
35 #include <linux/slab.h>
37 /* Commands to send to the chip. */
38 #define LM8323_CMD_READ_ID 0x80 /* Read chip ID. */
39 #define LM8323_CMD_WRITE_CFG 0x81 /* Set configuration item. */
40 #define LM8323_CMD_READ_INT 0x82 /* Get interrupt status. */
41 #define LM8323_CMD_RESET 0x83 /* Reset, same as external one */
42 #define LM8323_CMD_WRITE_PORT_SEL 0x85 /* Set GPIO in/out. */
43 #define LM8323_CMD_WRITE_PORT_STATE 0x86 /* Set GPIO pullup. */
44 #define LM8323_CMD_READ_PORT_SEL 0x87 /* Get GPIO in/out. */
45 #define LM8323_CMD_READ_PORT_STATE 0x88 /* Get GPIO pullup. */
46 #define LM8323_CMD_READ_FIFO 0x89 /* Read byte from FIFO. */
47 #define LM8323_CMD_RPT_READ_FIFO 0x8a /* Read FIFO (no increment). */
48 #define LM8323_CMD_SET_ACTIVE 0x8b /* Set active time. */
49 #define LM8323_CMD_READ_ERR 0x8c /* Get error status. */
50 #define LM8323_CMD_READ_ROTATOR 0x8e /* Read rotator status. */
51 #define LM8323_CMD_SET_DEBOUNCE 0x8f /* Set debouncing time. */
52 #define LM8323_CMD_SET_KEY_SIZE 0x90 /* Set keypad size. */
53 #define LM8323_CMD_READ_KEY_SIZE 0x91 /* Get keypad size. */
54 #define LM8323_CMD_READ_CFG 0x92 /* Get configuration item. */
55 #define LM8323_CMD_WRITE_CLOCK 0x93 /* Set clock config. */
56 #define LM8323_CMD_READ_CLOCK 0x94 /* Get clock config. */
57 #define LM8323_CMD_PWM_WRITE 0x95 /* Write PWM script. */
58 #define LM8323_CMD_START_PWM 0x96 /* Start PWM engine. */
59 #define LM8323_CMD_STOP_PWM 0x97 /* Stop PWM engine. */
61 /* Interrupt status. */
62 #define INT_KEYPAD 0x01 /* Key event. */
63 #define INT_ROTATOR 0x02 /* Rotator event. */
64 #define INT_ERROR 0x08 /* Error: use CMD_READ_ERR. */
65 #define INT_NOINIT 0x10 /* Lost configuration. */
66 #define INT_PWM1 0x20 /* PWM1 stopped. */
67 #define INT_PWM2 0x40 /* PWM2 stopped. */
68 #define INT_PWM3 0x80 /* PWM3 stopped. */
70 /* Errors (signalled by INT_ERROR, read with CMD_READ_ERR). */
71 #define ERR_BADPAR 0x01 /* Bad parameter. */
72 #define ERR_CMDUNK 0x02 /* Unknown command. */
73 #define ERR_KEYOVR 0x04 /* Too many keys pressed. */
74 #define ERR_FIFOOVER 0x40 /* FIFO overflow. */
76 /* Configuration keys (CMD_{WRITE,READ}_CFG). */
77 #define CFG_MUX1SEL 0x01 /* Select MUX1_OUT input. */
78 #define CFG_MUX1EN 0x02 /* Enable MUX1_OUT. */
79 #define CFG_MUX2SEL 0x04 /* Select MUX2_OUT input. */
80 #define CFG_MUX2EN 0x08 /* Enable MUX2_OUT. */
81 #define CFG_PSIZE 0x20 /* Package size (must be 0). */
82 #define CFG_ROTEN 0x40 /* Enable rotator. */
84 /* Clock settings (CMD_{WRITE,READ}_CLOCK). */
85 #define CLK_RCPWM_INTERNAL 0x00
86 #define CLK_RCPWM_EXTERNAL 0x03
87 #define CLK_SLOWCLKEN 0x08 /* Enable 32.768kHz clock. */
88 #define CLK_SLOWCLKOUT 0x40 /* Enable slow pulse output. */
90 /* The possible addresses corresponding to CONFIG1 and CONFIG2 pin wirings. */
91 #define LM8323_I2C_ADDR00 (0x84 >> 1) /* 1000 010x */
92 #define LM8323_I2C_ADDR01 (0x86 >> 1) /* 1000 011x */
93 #define LM8323_I2C_ADDR10 (0x88 >> 1) /* 1000 100x */
94 #define LM8323_I2C_ADDR11 (0x8A >> 1) /* 1000 101x */
96 /* Key event fifo length */
97 #define LM8323_FIFO_LEN 15
99 /* Commands for PWM engine; feed in with PWM_WRITE. */
100 /* Load ramp counter from duty cycle field (range 0 - 0xff). */
101 #define PWM_SET(v) (0x4000 | ((v) & 0xff))
102 /* Go to start of script. */
103 #define PWM_GOTOSTART 0x0000
105 * Stop engine (generates interrupt). If reset is 1, clear the program
106 * counter, else leave it.
108 #define PWM_END(reset) (0xc000 | (!!(reset) << 11))
110 * Ramp. If s is 1, divide clock by 512, else divide clock by 16.
111 * Take t clock scales (up to 63) per step, for n steps (up to 126).
112 * If u is set, ramp up, else ramp down.
114 #define PWM_RAMP(s, t, n, u) ((!!(s) << 14) | ((t) & 0x3f) << 8 | \
115 ((n) & 0x7f) | ((u) ? 0 : 0x80))
117 * Loop (i.e. jump back to pos) for a given number of iterations (up to 63).
118 * If cnt is zero, execute until PWM_END is encountered.
120 #define PWM_LOOP(cnt, pos) (0xa000 | (((cnt) & 0x3f) << 7) | \
121 ((pos) & 0x3f))
123 * Wait for trigger. Argument is a mask of channels, shifted by the channel
124 * number, e.g. 0xa for channels 3 and 1. Note that channels are numbered
125 * from 1, not 0.
127 #define PWM_WAIT_TRIG(chans) (0xe000 | (((chans) & 0x7) << 6))
128 /* Send trigger. Argument is same as PWM_WAIT_TRIG. */
129 #define PWM_SEND_TRIG(chans) (0xe000 | ((chans) & 0x7))
131 struct lm8323_pwm {
132 int id;
133 int fade_time;
134 int brightness;
135 int desired_brightness;
136 bool enabled;
137 bool running;
138 /* pwm lock */
139 struct mutex lock;
140 struct work_struct work;
141 struct led_classdev cdev;
142 struct lm8323_chip *chip;
145 struct lm8323_chip {
146 /* device lock */
147 struct mutex lock;
148 struct i2c_client *client;
149 struct work_struct work;
150 struct input_dev *idev;
151 bool kp_enabled;
152 bool pm_suspend;
153 unsigned keys_down;
154 char phys[32];
155 unsigned short keymap[LM8323_KEYMAP_SIZE];
156 int size_x;
157 int size_y;
158 int debounce_time;
159 int active_time;
160 struct lm8323_pwm pwm[LM8323_NUM_PWMS];
163 #define client_to_lm8323(c) container_of(c, struct lm8323_chip, client)
164 #define dev_to_lm8323(d) container_of(d, struct lm8323_chip, client->dev)
165 #define work_to_lm8323(w) container_of(w, struct lm8323_chip, work)
166 #define cdev_to_pwm(c) container_of(c, struct lm8323_pwm, cdev)
167 #define work_to_pwm(w) container_of(w, struct lm8323_pwm, work)
169 #define LM8323_MAX_DATA 8
172 * To write, we just access the chip's address in write mode, and dump the
173 * command and data out on the bus. The command byte and data are taken as
174 * sequential u8s out of varargs, to a maximum of LM8323_MAX_DATA.
176 static int lm8323_write(struct lm8323_chip *lm, int len, ...)
178 int ret, i;
179 va_list ap;
180 u8 data[LM8323_MAX_DATA];
182 va_start(ap, len);
184 if (unlikely(len > LM8323_MAX_DATA)) {
185 dev_err(&lm->client->dev, "tried to send %d bytes\n", len);
186 va_end(ap);
187 return 0;
190 for (i = 0; i < len; i++)
191 data[i] = va_arg(ap, int);
193 va_end(ap);
196 * If the host is asleep while we send the data, we can get a NACK
197 * back while it wakes up, so try again, once.
199 ret = i2c_master_send(lm->client, data, len);
200 if (unlikely(ret == -EREMOTEIO))
201 ret = i2c_master_send(lm->client, data, len);
202 if (unlikely(ret != len))
203 dev_err(&lm->client->dev, "sent %d bytes of %d total\n",
204 len, ret);
206 return ret;
210 * To read, we first send the command byte to the chip and end the transaction,
211 * then access the chip in read mode, at which point it will send the data.
213 static int lm8323_read(struct lm8323_chip *lm, u8 cmd, u8 *buf, int len)
215 int ret;
218 * If the host is asleep while we send the byte, we can get a NACK
219 * back while it wakes up, so try again, once.
221 ret = i2c_master_send(lm->client, &cmd, 1);
222 if (unlikely(ret == -EREMOTEIO))
223 ret = i2c_master_send(lm->client, &cmd, 1);
224 if (unlikely(ret != 1)) {
225 dev_err(&lm->client->dev, "sending read cmd 0x%02x failed\n",
226 cmd);
227 return 0;
230 ret = i2c_master_recv(lm->client, buf, len);
231 if (unlikely(ret != len))
232 dev_err(&lm->client->dev, "wanted %d bytes, got %d\n",
233 len, ret);
235 return ret;
239 * Set the chip active time (idle time before it enters halt).
241 static void lm8323_set_active_time(struct lm8323_chip *lm, int time)
243 lm8323_write(lm, 2, LM8323_CMD_SET_ACTIVE, time >> 2);
247 * The signals are AT-style: the low 7 bits are the keycode, and the top
248 * bit indicates the state (1 for down, 0 for up).
250 static inline u8 lm8323_whichkey(u8 event)
252 return event & 0x7f;
255 static inline int lm8323_ispress(u8 event)
257 return (event & 0x80) ? 1 : 0;
260 static void process_keys(struct lm8323_chip *lm)
262 u8 event;
263 u8 key_fifo[LM8323_FIFO_LEN + 1];
264 int old_keys_down = lm->keys_down;
265 int ret;
266 int i = 0;
269 * Read all key events from the FIFO at once. Next READ_FIFO clears the
270 * FIFO even if we didn't read all events previously.
272 ret = lm8323_read(lm, LM8323_CMD_READ_FIFO, key_fifo, LM8323_FIFO_LEN);
274 if (ret < 0) {
275 dev_err(&lm->client->dev, "Failed reading fifo \n");
276 return;
278 key_fifo[ret] = 0;
280 while ((event = key_fifo[i++])) {
281 u8 key = lm8323_whichkey(event);
282 int isdown = lm8323_ispress(event);
283 unsigned short keycode = lm->keymap[key];
285 dev_vdbg(&lm->client->dev, "key 0x%02x %s\n",
286 key, isdown ? "down" : "up");
288 if (lm->kp_enabled) {
289 input_event(lm->idev, EV_MSC, MSC_SCAN, key);
290 input_report_key(lm->idev, keycode, isdown);
291 input_sync(lm->idev);
294 if (isdown)
295 lm->keys_down++;
296 else
297 lm->keys_down--;
301 * Errata: We need to ensure that the chip never enters halt mode
302 * during a keypress, so set active time to 0. When it's released,
303 * we can enter halt again, so set the active time back to normal.
305 if (!old_keys_down && lm->keys_down)
306 lm8323_set_active_time(lm, 0);
307 if (old_keys_down && !lm->keys_down)
308 lm8323_set_active_time(lm, lm->active_time);
311 static void lm8323_process_error(struct lm8323_chip *lm)
313 u8 error;
315 if (lm8323_read(lm, LM8323_CMD_READ_ERR, &error, 1) == 1) {
316 if (error & ERR_FIFOOVER)
317 dev_vdbg(&lm->client->dev, "fifo overflow!\n");
318 if (error & ERR_KEYOVR)
319 dev_vdbg(&lm->client->dev,
320 "more than two keys pressed\n");
321 if (error & ERR_CMDUNK)
322 dev_vdbg(&lm->client->dev,
323 "unknown command submitted\n");
324 if (error & ERR_BADPAR)
325 dev_vdbg(&lm->client->dev, "bad command parameter\n");
329 static void lm8323_reset(struct lm8323_chip *lm)
331 /* The docs say we must pass 0xAA as the data byte. */
332 lm8323_write(lm, 2, LM8323_CMD_RESET, 0xAA);
335 static int lm8323_configure(struct lm8323_chip *lm)
337 int keysize = (lm->size_x << 4) | lm->size_y;
338 int clock = (CLK_SLOWCLKEN | CLK_RCPWM_EXTERNAL);
339 int debounce = lm->debounce_time >> 2;
340 int active = lm->active_time >> 2;
343 * Active time must be greater than the debounce time: if it's
344 * a close-run thing, give ourselves a 12ms buffer.
346 if (debounce >= active)
347 active = debounce + 3;
349 lm8323_write(lm, 2, LM8323_CMD_WRITE_CFG, 0);
350 lm8323_write(lm, 2, LM8323_CMD_WRITE_CLOCK, clock);
351 lm8323_write(lm, 2, LM8323_CMD_SET_KEY_SIZE, keysize);
352 lm8323_set_active_time(lm, lm->active_time);
353 lm8323_write(lm, 2, LM8323_CMD_SET_DEBOUNCE, debounce);
354 lm8323_write(lm, 3, LM8323_CMD_WRITE_PORT_STATE, 0xff, 0xff);
355 lm8323_write(lm, 3, LM8323_CMD_WRITE_PORT_SEL, 0, 0);
358 * Not much we can do about errors at this point, so just hope
359 * for the best.
362 return 0;
365 static void pwm_done(struct lm8323_pwm *pwm)
367 mutex_lock(&pwm->lock);
368 pwm->running = false;
369 if (pwm->desired_brightness != pwm->brightness)
370 schedule_work(&pwm->work);
371 mutex_unlock(&pwm->lock);
375 * Bottom half: handle the interrupt by posting key events, or dealing with
376 * errors appropriately.
378 static void lm8323_work(struct work_struct *work)
380 struct lm8323_chip *lm = work_to_lm8323(work);
381 u8 ints;
382 int i;
384 mutex_lock(&lm->lock);
386 while ((lm8323_read(lm, LM8323_CMD_READ_INT, &ints, 1) == 1) && ints) {
387 if (likely(ints & INT_KEYPAD))
388 process_keys(lm);
389 if (ints & INT_ROTATOR) {
390 /* We don't currently support the rotator. */
391 dev_vdbg(&lm->client->dev, "rotator fired\n");
393 if (ints & INT_ERROR) {
394 dev_vdbg(&lm->client->dev, "error!\n");
395 lm8323_process_error(lm);
397 if (ints & INT_NOINIT) {
398 dev_err(&lm->client->dev, "chip lost config; "
399 "reinitialising\n");
400 lm8323_configure(lm);
402 for (i = 0; i < LM8323_NUM_PWMS; i++) {
403 if (ints & (1 << (INT_PWM1 + i))) {
404 dev_vdbg(&lm->client->dev,
405 "pwm%d engine completed\n", i);
406 pwm_done(&lm->pwm[i]);
411 mutex_unlock(&lm->lock);
415 * We cannot use I2C in interrupt context, so we just schedule work.
417 static irqreturn_t lm8323_irq(int irq, void *data)
419 struct lm8323_chip *lm = data;
421 schedule_work(&lm->work);
423 return IRQ_HANDLED;
427 * Read the chip ID.
429 static int lm8323_read_id(struct lm8323_chip *lm, u8 *buf)
431 int bytes;
433 bytes = lm8323_read(lm, LM8323_CMD_READ_ID, buf, 2);
434 if (unlikely(bytes != 2))
435 return -EIO;
437 return 0;
440 static void lm8323_write_pwm_one(struct lm8323_pwm *pwm, int pos, u16 cmd)
442 lm8323_write(pwm->chip, 4, LM8323_CMD_PWM_WRITE, (pos << 2) | pwm->id,
443 (cmd & 0xff00) >> 8, cmd & 0x00ff);
447 * Write a script into a given PWM engine, concluding with PWM_END.
448 * If 'kill' is nonzero, the engine will be shut down at the end
449 * of the script, producing a zero output. Otherwise the engine
450 * will be kept running at the final PWM level indefinitely.
452 static void lm8323_write_pwm(struct lm8323_pwm *pwm, int kill,
453 int len, const u16 *cmds)
455 int i;
457 for (i = 0; i < len; i++)
458 lm8323_write_pwm_one(pwm, i, cmds[i]);
460 lm8323_write_pwm_one(pwm, i++, PWM_END(kill));
461 lm8323_write(pwm->chip, 2, LM8323_CMD_START_PWM, pwm->id);
462 pwm->running = true;
465 static void lm8323_pwm_work(struct work_struct *work)
467 struct lm8323_pwm *pwm = work_to_pwm(work);
468 int div512, perstep, steps, hz, up, kill;
469 u16 pwm_cmds[3];
470 int num_cmds = 0;
472 mutex_lock(&pwm->lock);
475 * Do nothing if we're already at the requested level,
476 * or previous setting is not yet complete. In the latter
477 * case we will be called again when the previous PWM script
478 * finishes.
480 if (pwm->running || pwm->desired_brightness == pwm->brightness)
481 goto out;
483 kill = (pwm->desired_brightness == 0);
484 up = (pwm->desired_brightness > pwm->brightness);
485 steps = abs(pwm->desired_brightness - pwm->brightness);
488 * Convert time (in ms) into a divisor (512 or 16 on a refclk of
489 * 32768Hz), and number of ticks per step.
491 if ((pwm->fade_time / steps) > (32768 / 512)) {
492 div512 = 1;
493 hz = 32768 / 512;
494 } else {
495 div512 = 0;
496 hz = 32768 / 16;
499 perstep = (hz * pwm->fade_time) / (steps * 1000);
501 if (perstep == 0)
502 perstep = 1;
503 else if (perstep > 63)
504 perstep = 63;
506 while (steps) {
507 int s;
509 s = min(126, steps);
510 pwm_cmds[num_cmds++] = PWM_RAMP(div512, perstep, s, up);
511 steps -= s;
514 lm8323_write_pwm(pwm, kill, num_cmds, pwm_cmds);
515 pwm->brightness = pwm->desired_brightness;
517 out:
518 mutex_unlock(&pwm->lock);
521 static void lm8323_pwm_set_brightness(struct led_classdev *led_cdev,
522 enum led_brightness brightness)
524 struct lm8323_pwm *pwm = cdev_to_pwm(led_cdev);
525 struct lm8323_chip *lm = pwm->chip;
527 mutex_lock(&pwm->lock);
528 pwm->desired_brightness = brightness;
529 mutex_unlock(&pwm->lock);
531 if (in_interrupt()) {
532 schedule_work(&pwm->work);
533 } else {
535 * Schedule PWM work as usual unless we are going into suspend
537 mutex_lock(&lm->lock);
538 if (likely(!lm->pm_suspend))
539 schedule_work(&pwm->work);
540 else
541 lm8323_pwm_work(&pwm->work);
542 mutex_unlock(&lm->lock);
546 static ssize_t lm8323_pwm_show_time(struct device *dev,
547 struct device_attribute *attr, char *buf)
549 struct led_classdev *led_cdev = dev_get_drvdata(dev);
550 struct lm8323_pwm *pwm = cdev_to_pwm(led_cdev);
552 return sprintf(buf, "%d\n", pwm->fade_time);
555 static ssize_t lm8323_pwm_store_time(struct device *dev,
556 struct device_attribute *attr, const char *buf, size_t len)
558 struct led_classdev *led_cdev = dev_get_drvdata(dev);
559 struct lm8323_pwm *pwm = cdev_to_pwm(led_cdev);
560 int ret;
561 unsigned long time;
563 ret = strict_strtoul(buf, 10, &time);
564 /* Numbers only, please. */
565 if (ret)
566 return -EINVAL;
568 pwm->fade_time = time;
570 return strlen(buf);
572 static DEVICE_ATTR(time, 0644, lm8323_pwm_show_time, lm8323_pwm_store_time);
574 static int init_pwm(struct lm8323_chip *lm, int id, struct device *dev,
575 const char *name)
577 struct lm8323_pwm *pwm;
579 BUG_ON(id > 3);
581 pwm = &lm->pwm[id - 1];
583 pwm->id = id;
584 pwm->fade_time = 0;
585 pwm->brightness = 0;
586 pwm->desired_brightness = 0;
587 pwm->running = false;
588 pwm->enabled = false;
589 INIT_WORK(&pwm->work, lm8323_pwm_work);
590 mutex_init(&pwm->lock);
591 pwm->chip = lm;
593 if (name) {
594 pwm->cdev.name = name;
595 pwm->cdev.brightness_set = lm8323_pwm_set_brightness;
596 if (led_classdev_register(dev, &pwm->cdev) < 0) {
597 dev_err(dev, "couldn't register PWM %d\n", id);
598 return -1;
600 if (device_create_file(pwm->cdev.dev,
601 &dev_attr_time) < 0) {
602 dev_err(dev, "couldn't register time attribute\n");
603 led_classdev_unregister(&pwm->cdev);
604 return -1;
606 pwm->enabled = true;
609 return 0;
612 static struct i2c_driver lm8323_i2c_driver;
614 static ssize_t lm8323_show_disable(struct device *dev,
615 struct device_attribute *attr, char *buf)
617 struct lm8323_chip *lm = dev_get_drvdata(dev);
619 return sprintf(buf, "%u\n", !lm->kp_enabled);
622 static ssize_t lm8323_set_disable(struct device *dev,
623 struct device_attribute *attr,
624 const char *buf, size_t count)
626 struct lm8323_chip *lm = dev_get_drvdata(dev);
627 int ret;
628 unsigned long i;
630 ret = strict_strtoul(buf, 10, &i);
632 mutex_lock(&lm->lock);
633 lm->kp_enabled = !i;
634 mutex_unlock(&lm->lock);
636 return count;
638 static DEVICE_ATTR(disable_kp, 0644, lm8323_show_disable, lm8323_set_disable);
640 static int __devinit lm8323_probe(struct i2c_client *client,
641 const struct i2c_device_id *id)
643 struct lm8323_platform_data *pdata = client->dev.platform_data;
644 struct input_dev *idev;
645 struct lm8323_chip *lm;
646 int pwm;
647 int i, err;
648 unsigned long tmo;
649 u8 data[2];
651 if (!pdata || !pdata->size_x || !pdata->size_y) {
652 dev_err(&client->dev, "missing platform_data\n");
653 return -EINVAL;
656 if (pdata->size_x > 8) {
657 dev_err(&client->dev, "invalid x size %d specified\n",
658 pdata->size_x);
659 return -EINVAL;
662 if (pdata->size_y > 12) {
663 dev_err(&client->dev, "invalid y size %d specified\n",
664 pdata->size_y);
665 return -EINVAL;
668 lm = kzalloc(sizeof *lm, GFP_KERNEL);
669 idev = input_allocate_device();
670 if (!lm || !idev) {
671 err = -ENOMEM;
672 goto fail1;
675 lm->client = client;
676 lm->idev = idev;
677 mutex_init(&lm->lock);
678 INIT_WORK(&lm->work, lm8323_work);
680 lm->size_x = pdata->size_x;
681 lm->size_y = pdata->size_y;
682 dev_vdbg(&client->dev, "Keypad size: %d x %d\n",
683 lm->size_x, lm->size_y);
685 lm->debounce_time = pdata->debounce_time;
686 lm->active_time = pdata->active_time;
688 lm8323_reset(lm);
690 /* Nothing's set up to service the IRQ yet, so just spin for max.
691 * 100ms until we can configure. */
692 tmo = jiffies + msecs_to_jiffies(100);
693 while (lm8323_read(lm, LM8323_CMD_READ_INT, data, 1) == 1) {
694 if (data[0] & INT_NOINIT)
695 break;
697 if (time_after(jiffies, tmo)) {
698 dev_err(&client->dev,
699 "timeout waiting for initialisation\n");
700 break;
703 msleep(1);
706 lm8323_configure(lm);
708 /* If a true probe check the device */
709 if (lm8323_read_id(lm, data) != 0) {
710 dev_err(&client->dev, "device not found\n");
711 err = -ENODEV;
712 goto fail1;
715 for (pwm = 0; pwm < LM8323_NUM_PWMS; pwm++) {
716 err = init_pwm(lm, pwm + 1, &client->dev,
717 pdata->pwm_names[pwm]);
718 if (err < 0)
719 goto fail2;
722 lm->kp_enabled = true;
723 err = device_create_file(&client->dev, &dev_attr_disable_kp);
724 if (err < 0)
725 goto fail2;
727 idev->name = pdata->name ? : "LM8323 keypad";
728 snprintf(lm->phys, sizeof(lm->phys),
729 "%s/input-kp", dev_name(&client->dev));
730 idev->phys = lm->phys;
732 idev->evbit[0] = BIT(EV_KEY) | BIT(EV_MSC);
733 __set_bit(MSC_SCAN, idev->mscbit);
734 for (i = 0; i < LM8323_KEYMAP_SIZE; i++) {
735 __set_bit(pdata->keymap[i], idev->keybit);
736 lm->keymap[i] = pdata->keymap[i];
738 __clear_bit(KEY_RESERVED, idev->keybit);
740 if (pdata->repeat)
741 __set_bit(EV_REP, idev->evbit);
743 err = input_register_device(idev);
744 if (err) {
745 dev_dbg(&client->dev, "error registering input device\n");
746 goto fail3;
749 err = request_irq(client->irq, lm8323_irq,
750 IRQF_TRIGGER_FALLING | IRQF_DISABLED,
751 "lm8323", lm);
752 if (err) {
753 dev_err(&client->dev, "could not get IRQ %d\n", client->irq);
754 goto fail4;
757 i2c_set_clientdata(client, lm);
759 device_init_wakeup(&client->dev, 1);
760 enable_irq_wake(client->irq);
762 return 0;
764 fail4:
765 input_unregister_device(idev);
766 idev = NULL;
767 fail3:
768 device_remove_file(&client->dev, &dev_attr_disable_kp);
769 fail2:
770 while (--pwm >= 0)
771 if (lm->pwm[pwm].enabled)
772 led_classdev_unregister(&lm->pwm[pwm].cdev);
773 fail1:
774 input_free_device(idev);
775 kfree(lm);
776 return err;
779 static int __devexit lm8323_remove(struct i2c_client *client)
781 struct lm8323_chip *lm = i2c_get_clientdata(client);
782 int i;
784 disable_irq_wake(client->irq);
785 free_irq(client->irq, lm);
786 cancel_work_sync(&lm->work);
788 input_unregister_device(lm->idev);
790 device_remove_file(&lm->client->dev, &dev_attr_disable_kp);
792 for (i = 0; i < 3; i++)
793 if (lm->pwm[i].enabled)
794 led_classdev_unregister(&lm->pwm[i].cdev);
796 kfree(lm);
798 return 0;
801 #ifdef CONFIG_PM
803 * We don't need to explicitly suspend the chip, as it already switches off
804 * when there's no activity.
806 static int lm8323_suspend(struct device *dev)
808 struct i2c_client *client = to_i2c_client(dev);
809 struct lm8323_chip *lm = i2c_get_clientdata(client);
810 int i;
812 irq_set_irq_wake(client->irq, 0);
813 disable_irq(client->irq);
815 mutex_lock(&lm->lock);
816 lm->pm_suspend = true;
817 mutex_unlock(&lm->lock);
819 for (i = 0; i < 3; i++)
820 if (lm->pwm[i].enabled)
821 led_classdev_suspend(&lm->pwm[i].cdev);
823 return 0;
826 static int lm8323_resume(struct device *dev)
828 struct i2c_client *client = to_i2c_client(dev);
829 struct lm8323_chip *lm = i2c_get_clientdata(client);
830 int i;
832 mutex_lock(&lm->lock);
833 lm->pm_suspend = false;
834 mutex_unlock(&lm->lock);
836 for (i = 0; i < 3; i++)
837 if (lm->pwm[i].enabled)
838 led_classdev_resume(&lm->pwm[i].cdev);
840 enable_irq(client->irq);
841 irq_set_irq_wake(client->irq, 1);
843 return 0;
845 #endif
847 static SIMPLE_DEV_PM_OPS(lm8323_pm_ops, lm8323_suspend, lm8323_resume);
849 static const struct i2c_device_id lm8323_id[] = {
850 { "lm8323", 0 },
854 static struct i2c_driver lm8323_i2c_driver = {
855 .driver = {
856 .name = "lm8323",
857 .pm = &lm8323_pm_ops,
859 .probe = lm8323_probe,
860 .remove = __devexit_p(lm8323_remove),
861 .id_table = lm8323_id,
863 MODULE_DEVICE_TABLE(i2c, lm8323_id);
865 static int __init lm8323_init(void)
867 return i2c_add_driver(&lm8323_i2c_driver);
869 module_init(lm8323_init);
871 static void __exit lm8323_exit(void)
873 i2c_del_driver(&lm8323_i2c_driver);
875 module_exit(lm8323_exit);
877 MODULE_AUTHOR("Timo O. Karjalainen <timo.o.karjalainen@nokia.com>");
878 MODULE_AUTHOR("Daniel Stone");
879 MODULE_AUTHOR("Felipe Balbi <felipe.balbi@nokia.com>");
880 MODULE_DESCRIPTION("LM8323 keypad driver");
881 MODULE_LICENSE("GPL");