2 * Resizable virtual memory filesystem for Linux.
4 * Copyright (C) 2000 Linus Torvalds.
6 * 2000-2001 Christoph Rohland
9 * Copyright (C) 2002-2005 Hugh Dickins.
10 * Copyright (C) 2002-2005 VERITAS Software Corporation.
11 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 * Extended attribute support for tmpfs:
14 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
15 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
18 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20 * This file is released under the GPL.
24 #include <linux/init.h>
25 #include <linux/vfs.h>
26 #include <linux/mount.h>
27 #include <linux/pagemap.h>
28 #include <linux/file.h>
30 #include <linux/module.h>
31 #include <linux/percpu_counter.h>
32 #include <linux/swap.h>
34 static struct vfsmount
*shm_mnt
;
38 * This virtual memory filesystem is heavily based on the ramfs. It
39 * extends ramfs by the ability to use swap and honor resource limits
40 * which makes it a completely usable filesystem.
43 #include <linux/xattr.h>
44 #include <linux/exportfs.h>
45 #include <linux/posix_acl.h>
46 #include <linux/generic_acl.h>
47 #include <linux/mman.h>
48 #include <linux/string.h>
49 #include <linux/slab.h>
50 #include <linux/backing-dev.h>
51 #include <linux/shmem_fs.h>
52 #include <linux/writeback.h>
53 #include <linux/blkdev.h>
54 #include <linux/security.h>
55 #include <linux/swapops.h>
56 #include <linux/mempolicy.h>
57 #include <linux/namei.h>
58 #include <linux/ctype.h>
59 #include <linux/migrate.h>
60 #include <linux/highmem.h>
61 #include <linux/seq_file.h>
62 #include <linux/magic.h>
64 #include <asm/uaccess.h>
65 #include <asm/div64.h>
66 #include <asm/pgtable.h>
69 * The maximum size of a shmem/tmpfs file is limited by the maximum size of
70 * its triple-indirect swap vector - see illustration at shmem_swp_entry().
72 * With 4kB page size, maximum file size is just over 2TB on a 32-bit kernel,
73 * but one eighth of that on a 64-bit kernel. With 8kB page size, maximum
74 * file size is just over 4TB on a 64-bit kernel, but 16TB on a 32-bit kernel,
75 * MAX_LFS_FILESIZE being then more restrictive than swap vector layout.
77 * We use / and * instead of shifts in the definitions below, so that the swap
78 * vector can be tested with small even values (e.g. 20) for ENTRIES_PER_PAGE.
80 #define ENTRIES_PER_PAGE (PAGE_CACHE_SIZE/sizeof(unsigned long))
81 #define ENTRIES_PER_PAGEPAGE ((unsigned long long)ENTRIES_PER_PAGE*ENTRIES_PER_PAGE)
83 #define SHMSWP_MAX_INDEX (SHMEM_NR_DIRECT + (ENTRIES_PER_PAGEPAGE/2) * (ENTRIES_PER_PAGE+1))
84 #define SHMSWP_MAX_BYTES (SHMSWP_MAX_INDEX << PAGE_CACHE_SHIFT)
86 #define SHMEM_MAX_BYTES min_t(unsigned long long, SHMSWP_MAX_BYTES, MAX_LFS_FILESIZE)
87 #define SHMEM_MAX_INDEX ((unsigned long)((SHMEM_MAX_BYTES+1) >> PAGE_CACHE_SHIFT))
89 #define BLOCKS_PER_PAGE (PAGE_CACHE_SIZE/512)
90 #define VM_ACCT(size) (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
92 /* info->flags needs VM_flags to handle pagein/truncate races efficiently */
93 #define SHMEM_PAGEIN VM_READ
94 #define SHMEM_TRUNCATE VM_WRITE
96 /* Definition to limit shmem_truncate's steps between cond_rescheds */
97 #define LATENCY_LIMIT 64
99 /* Pretend that each entry is of this size in directory's i_size */
100 #define BOGO_DIRENT_SIZE 20
102 /* Flag allocation requirements to shmem_getpage and shmem_swp_alloc */
104 SGP_READ
, /* don't exceed i_size, don't allocate page */
105 SGP_CACHE
, /* don't exceed i_size, may allocate page */
106 SGP_DIRTY
, /* like SGP_CACHE, but set new page dirty */
107 SGP_WRITE
, /* may exceed i_size, may allocate page */
111 static unsigned long shmem_default_max_blocks(void)
113 return totalram_pages
/ 2;
116 static unsigned long shmem_default_max_inodes(void)
118 return min(totalram_pages
- totalhigh_pages
, totalram_pages
/ 2);
122 static int shmem_getpage(struct inode
*inode
, unsigned long idx
,
123 struct page
**pagep
, enum sgp_type sgp
, int *type
);
125 static inline struct page
*shmem_dir_alloc(gfp_t gfp_mask
)
128 * The above definition of ENTRIES_PER_PAGE, and the use of
129 * BLOCKS_PER_PAGE on indirect pages, assume PAGE_CACHE_SIZE:
130 * might be reconsidered if it ever diverges from PAGE_SIZE.
132 * Mobility flags are masked out as swap vectors cannot move
134 return alloc_pages((gfp_mask
& ~GFP_MOVABLE_MASK
) | __GFP_ZERO
,
135 PAGE_CACHE_SHIFT
-PAGE_SHIFT
);
138 static inline void shmem_dir_free(struct page
*page
)
140 __free_pages(page
, PAGE_CACHE_SHIFT
-PAGE_SHIFT
);
143 static struct page
**shmem_dir_map(struct page
*page
)
145 return (struct page
**)kmap_atomic(page
, KM_USER0
);
148 static inline void shmem_dir_unmap(struct page
**dir
)
150 kunmap_atomic(dir
, KM_USER0
);
153 static swp_entry_t
*shmem_swp_map(struct page
*page
)
155 return (swp_entry_t
*)kmap_atomic(page
, KM_USER1
);
158 static inline void shmem_swp_balance_unmap(void)
161 * When passing a pointer to an i_direct entry, to code which
162 * also handles indirect entries and so will shmem_swp_unmap,
163 * we must arrange for the preempt count to remain in balance.
164 * What kmap_atomic of a lowmem page does depends on config
165 * and architecture, so pretend to kmap_atomic some lowmem page.
167 (void) kmap_atomic(ZERO_PAGE(0), KM_USER1
);
170 static inline void shmem_swp_unmap(swp_entry_t
*entry
)
172 kunmap_atomic(entry
, KM_USER1
);
175 static inline struct shmem_sb_info
*SHMEM_SB(struct super_block
*sb
)
177 return sb
->s_fs_info
;
181 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
182 * for shared memory and for shared anonymous (/dev/zero) mappings
183 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
184 * consistent with the pre-accounting of private mappings ...
186 static inline int shmem_acct_size(unsigned long flags
, loff_t size
)
188 return (flags
& VM_NORESERVE
) ?
189 0 : security_vm_enough_memory_kern(VM_ACCT(size
));
192 static inline void shmem_unacct_size(unsigned long flags
, loff_t size
)
194 if (!(flags
& VM_NORESERVE
))
195 vm_unacct_memory(VM_ACCT(size
));
199 * ... whereas tmpfs objects are accounted incrementally as
200 * pages are allocated, in order to allow huge sparse files.
201 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
202 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
204 static inline int shmem_acct_block(unsigned long flags
)
206 return (flags
& VM_NORESERVE
) ?
207 security_vm_enough_memory_kern(VM_ACCT(PAGE_CACHE_SIZE
)) : 0;
210 static inline void shmem_unacct_blocks(unsigned long flags
, long pages
)
212 if (flags
& VM_NORESERVE
)
213 vm_unacct_memory(pages
* VM_ACCT(PAGE_CACHE_SIZE
));
216 static const struct super_operations shmem_ops
;
217 static const struct address_space_operations shmem_aops
;
218 static const struct file_operations shmem_file_operations
;
219 static const struct inode_operations shmem_inode_operations
;
220 static const struct inode_operations shmem_dir_inode_operations
;
221 static const struct inode_operations shmem_special_inode_operations
;
222 static const struct vm_operations_struct shmem_vm_ops
;
224 static struct backing_dev_info shmem_backing_dev_info __read_mostly
= {
225 .ra_pages
= 0, /* No readahead */
226 .capabilities
= BDI_CAP_NO_ACCT_AND_WRITEBACK
| BDI_CAP_SWAP_BACKED
,
227 .unplug_io_fn
= default_unplug_io_fn
,
230 static LIST_HEAD(shmem_swaplist
);
231 static DEFINE_MUTEX(shmem_swaplist_mutex
);
233 static void shmem_free_blocks(struct inode
*inode
, long pages
)
235 struct shmem_sb_info
*sbinfo
= SHMEM_SB(inode
->i_sb
);
236 if (sbinfo
->max_blocks
) {
237 percpu_counter_add(&sbinfo
->used_blocks
, -pages
);
238 spin_lock(&inode
->i_lock
);
239 inode
->i_blocks
-= pages
*BLOCKS_PER_PAGE
;
240 spin_unlock(&inode
->i_lock
);
244 static int shmem_reserve_inode(struct super_block
*sb
)
246 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
247 if (sbinfo
->max_inodes
) {
248 spin_lock(&sbinfo
->stat_lock
);
249 if (!sbinfo
->free_inodes
) {
250 spin_unlock(&sbinfo
->stat_lock
);
253 sbinfo
->free_inodes
--;
254 spin_unlock(&sbinfo
->stat_lock
);
259 static void shmem_free_inode(struct super_block
*sb
)
261 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
262 if (sbinfo
->max_inodes
) {
263 spin_lock(&sbinfo
->stat_lock
);
264 sbinfo
->free_inodes
++;
265 spin_unlock(&sbinfo
->stat_lock
);
270 * shmem_recalc_inode - recalculate the size of an inode
271 * @inode: inode to recalc
273 * We have to calculate the free blocks since the mm can drop
274 * undirtied hole pages behind our back.
276 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
277 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
279 * It has to be called with the spinlock held.
281 static void shmem_recalc_inode(struct inode
*inode
)
283 struct shmem_inode_info
*info
= SHMEM_I(inode
);
286 freed
= info
->alloced
- info
->swapped
- inode
->i_mapping
->nrpages
;
288 info
->alloced
-= freed
;
289 shmem_unacct_blocks(info
->flags
, freed
);
290 shmem_free_blocks(inode
, freed
);
295 * shmem_swp_entry - find the swap vector position in the info structure
296 * @info: info structure for the inode
297 * @index: index of the page to find
298 * @page: optional page to add to the structure. Has to be preset to
301 * If there is no space allocated yet it will return NULL when
302 * page is NULL, else it will use the page for the needed block,
303 * setting it to NULL on return to indicate that it has been used.
305 * The swap vector is organized the following way:
307 * There are SHMEM_NR_DIRECT entries directly stored in the
308 * shmem_inode_info structure. So small files do not need an addional
311 * For pages with index > SHMEM_NR_DIRECT there is the pointer
312 * i_indirect which points to a page which holds in the first half
313 * doubly indirect blocks, in the second half triple indirect blocks:
315 * For an artificial ENTRIES_PER_PAGE = 4 this would lead to the
316 * following layout (for SHMEM_NR_DIRECT == 16):
318 * i_indirect -> dir --> 16-19
331 static swp_entry_t
*shmem_swp_entry(struct shmem_inode_info
*info
, unsigned long index
, struct page
**page
)
333 unsigned long offset
;
337 if (index
< SHMEM_NR_DIRECT
) {
338 shmem_swp_balance_unmap();
339 return info
->i_direct
+index
;
341 if (!info
->i_indirect
) {
343 info
->i_indirect
= *page
;
346 return NULL
; /* need another page */
349 index
-= SHMEM_NR_DIRECT
;
350 offset
= index
% ENTRIES_PER_PAGE
;
351 index
/= ENTRIES_PER_PAGE
;
352 dir
= shmem_dir_map(info
->i_indirect
);
354 if (index
>= ENTRIES_PER_PAGE
/2) {
355 index
-= ENTRIES_PER_PAGE
/2;
356 dir
+= ENTRIES_PER_PAGE
/2 + index
/ENTRIES_PER_PAGE
;
357 index
%= ENTRIES_PER_PAGE
;
364 shmem_dir_unmap(dir
);
365 return NULL
; /* need another page */
367 shmem_dir_unmap(dir
);
368 dir
= shmem_dir_map(subdir
);
374 if (!page
|| !(subdir
= *page
)) {
375 shmem_dir_unmap(dir
);
376 return NULL
; /* need a page */
381 shmem_dir_unmap(dir
);
382 return shmem_swp_map(subdir
) + offset
;
385 static void shmem_swp_set(struct shmem_inode_info
*info
, swp_entry_t
*entry
, unsigned long value
)
387 long incdec
= value
? 1: -1;
390 info
->swapped
+= incdec
;
391 if ((unsigned long)(entry
- info
->i_direct
) >= SHMEM_NR_DIRECT
) {
392 struct page
*page
= kmap_atomic_to_page(entry
);
393 set_page_private(page
, page_private(page
) + incdec
);
398 * shmem_swp_alloc - get the position of the swap entry for the page.
399 * @info: info structure for the inode
400 * @index: index of the page to find
401 * @sgp: check and recheck i_size? skip allocation?
403 * If the entry does not exist, allocate it.
405 static swp_entry_t
*shmem_swp_alloc(struct shmem_inode_info
*info
, unsigned long index
, enum sgp_type sgp
)
407 struct inode
*inode
= &info
->vfs_inode
;
408 struct shmem_sb_info
*sbinfo
= SHMEM_SB(inode
->i_sb
);
409 struct page
*page
= NULL
;
412 if (sgp
!= SGP_WRITE
&&
413 ((loff_t
) index
<< PAGE_CACHE_SHIFT
) >= i_size_read(inode
))
414 return ERR_PTR(-EINVAL
);
416 while (!(entry
= shmem_swp_entry(info
, index
, &page
))) {
418 return shmem_swp_map(ZERO_PAGE(0));
420 * Test used_blocks against 1 less max_blocks, since we have 1 data
421 * page (and perhaps indirect index pages) yet to allocate:
422 * a waste to allocate index if we cannot allocate data.
424 if (sbinfo
->max_blocks
) {
425 if (percpu_counter_compare(&sbinfo
->used_blocks
, (sbinfo
->max_blocks
- 1)) > 0)
426 return ERR_PTR(-ENOSPC
);
427 percpu_counter_inc(&sbinfo
->used_blocks
);
428 spin_lock(&inode
->i_lock
);
429 inode
->i_blocks
+= BLOCKS_PER_PAGE
;
430 spin_unlock(&inode
->i_lock
);
433 spin_unlock(&info
->lock
);
434 page
= shmem_dir_alloc(mapping_gfp_mask(inode
->i_mapping
));
435 spin_lock(&info
->lock
);
438 shmem_free_blocks(inode
, 1);
439 return ERR_PTR(-ENOMEM
);
441 if (sgp
!= SGP_WRITE
&&
442 ((loff_t
) index
<< PAGE_CACHE_SHIFT
) >= i_size_read(inode
)) {
443 entry
= ERR_PTR(-EINVAL
);
446 if (info
->next_index
<= index
)
447 info
->next_index
= index
+ 1;
450 /* another task gave its page, or truncated the file */
451 shmem_free_blocks(inode
, 1);
452 shmem_dir_free(page
);
454 if (info
->next_index
<= index
&& !IS_ERR(entry
))
455 info
->next_index
= index
+ 1;
460 * shmem_free_swp - free some swap entries in a directory
461 * @dir: pointer to the directory
462 * @edir: pointer after last entry of the directory
463 * @punch_lock: pointer to spinlock when needed for the holepunch case
465 static int shmem_free_swp(swp_entry_t
*dir
, swp_entry_t
*edir
,
466 spinlock_t
*punch_lock
)
468 spinlock_t
*punch_unlock
= NULL
;
472 for (ptr
= dir
; ptr
< edir
; ptr
++) {
474 if (unlikely(punch_lock
)) {
475 punch_unlock
= punch_lock
;
477 spin_lock(punch_unlock
);
481 free_swap_and_cache(*ptr
);
482 *ptr
= (swp_entry_t
){0};
487 spin_unlock(punch_unlock
);
491 static int shmem_map_and_free_swp(struct page
*subdir
, int offset
,
492 int limit
, struct page
***dir
, spinlock_t
*punch_lock
)
497 ptr
= shmem_swp_map(subdir
);
498 for (; offset
< limit
; offset
+= LATENCY_LIMIT
) {
499 int size
= limit
- offset
;
500 if (size
> LATENCY_LIMIT
)
501 size
= LATENCY_LIMIT
;
502 freed
+= shmem_free_swp(ptr
+offset
, ptr
+offset
+size
,
504 if (need_resched()) {
505 shmem_swp_unmap(ptr
);
507 shmem_dir_unmap(*dir
);
511 ptr
= shmem_swp_map(subdir
);
514 shmem_swp_unmap(ptr
);
518 static void shmem_free_pages(struct list_head
*next
)
524 page
= container_of(next
, struct page
, lru
);
526 shmem_dir_free(page
);
528 if (freed
>= LATENCY_LIMIT
) {
535 static void shmem_truncate_range(struct inode
*inode
, loff_t start
, loff_t end
)
537 struct shmem_inode_info
*info
= SHMEM_I(inode
);
542 unsigned long diroff
;
548 LIST_HEAD(pages_to_free
);
549 long nr_pages_to_free
= 0;
550 long nr_swaps_freed
= 0;
554 spinlock_t
*needs_lock
;
555 spinlock_t
*punch_lock
;
556 unsigned long upper_limit
;
558 inode
->i_ctime
= inode
->i_mtime
= CURRENT_TIME
;
559 idx
= (start
+ PAGE_CACHE_SIZE
- 1) >> PAGE_CACHE_SHIFT
;
560 if (idx
>= info
->next_index
)
563 spin_lock(&info
->lock
);
564 info
->flags
|= SHMEM_TRUNCATE
;
565 if (likely(end
== (loff_t
) -1)) {
566 limit
= info
->next_index
;
567 upper_limit
= SHMEM_MAX_INDEX
;
568 info
->next_index
= idx
;
572 if (end
+ 1 >= inode
->i_size
) { /* we may free a little more */
573 limit
= (inode
->i_size
+ PAGE_CACHE_SIZE
- 1) >>
575 upper_limit
= SHMEM_MAX_INDEX
;
577 limit
= (end
+ 1) >> PAGE_CACHE_SHIFT
;
580 needs_lock
= &info
->lock
;
584 topdir
= info
->i_indirect
;
585 if (topdir
&& idx
<= SHMEM_NR_DIRECT
&& !punch_hole
) {
586 info
->i_indirect
= NULL
;
588 list_add(&topdir
->lru
, &pages_to_free
);
590 spin_unlock(&info
->lock
);
592 if (info
->swapped
&& idx
< SHMEM_NR_DIRECT
) {
593 ptr
= info
->i_direct
;
595 if (size
> SHMEM_NR_DIRECT
)
596 size
= SHMEM_NR_DIRECT
;
597 nr_swaps_freed
= shmem_free_swp(ptr
+idx
, ptr
+size
, needs_lock
);
601 * If there are no indirect blocks or we are punching a hole
602 * below indirect blocks, nothing to be done.
604 if (!topdir
|| limit
<= SHMEM_NR_DIRECT
)
608 * The truncation case has already dropped info->lock, and we're safe
609 * because i_size and next_index have already been lowered, preventing
610 * access beyond. But in the punch_hole case, we still need to take
611 * the lock when updating the swap directory, because there might be
612 * racing accesses by shmem_getpage(SGP_CACHE), shmem_unuse_inode or
613 * shmem_writepage. However, whenever we find we can remove a whole
614 * directory page (not at the misaligned start or end of the range),
615 * we first NULLify its pointer in the level above, and then have no
616 * need to take the lock when updating its contents: needs_lock and
617 * punch_lock (either pointing to info->lock or NULL) manage this.
620 upper_limit
-= SHMEM_NR_DIRECT
;
621 limit
-= SHMEM_NR_DIRECT
;
622 idx
= (idx
> SHMEM_NR_DIRECT
)? (idx
- SHMEM_NR_DIRECT
): 0;
623 offset
= idx
% ENTRIES_PER_PAGE
;
626 dir
= shmem_dir_map(topdir
);
627 stage
= ENTRIES_PER_PAGEPAGE
/2;
628 if (idx
< ENTRIES_PER_PAGEPAGE
/2) {
630 diroff
= idx
/ENTRIES_PER_PAGE
;
632 dir
+= ENTRIES_PER_PAGE
/2;
633 dir
+= (idx
- ENTRIES_PER_PAGEPAGE
/2)/ENTRIES_PER_PAGEPAGE
;
635 stage
+= ENTRIES_PER_PAGEPAGE
;
638 diroff
= ((idx
- ENTRIES_PER_PAGEPAGE
/2) %
639 ENTRIES_PER_PAGEPAGE
) / ENTRIES_PER_PAGE
;
640 if (!diroff
&& !offset
&& upper_limit
>= stage
) {
642 spin_lock(needs_lock
);
644 spin_unlock(needs_lock
);
649 list_add(&middir
->lru
, &pages_to_free
);
651 shmem_dir_unmap(dir
);
652 dir
= shmem_dir_map(middir
);
660 for (; idx
< limit
; idx
+= ENTRIES_PER_PAGE
, diroff
++) {
661 if (unlikely(idx
== stage
)) {
662 shmem_dir_unmap(dir
);
663 dir
= shmem_dir_map(topdir
) +
664 ENTRIES_PER_PAGE
/2 + idx
/ENTRIES_PER_PAGEPAGE
;
667 idx
+= ENTRIES_PER_PAGEPAGE
;
671 stage
= idx
+ ENTRIES_PER_PAGEPAGE
;
674 needs_lock
= &info
->lock
;
675 if (upper_limit
>= stage
) {
677 spin_lock(needs_lock
);
679 spin_unlock(needs_lock
);
684 list_add(&middir
->lru
, &pages_to_free
);
686 shmem_dir_unmap(dir
);
688 dir
= shmem_dir_map(middir
);
691 punch_lock
= needs_lock
;
692 subdir
= dir
[diroff
];
693 if (subdir
&& !offset
&& upper_limit
-idx
>= ENTRIES_PER_PAGE
) {
695 spin_lock(needs_lock
);
697 spin_unlock(needs_lock
);
702 list_add(&subdir
->lru
, &pages_to_free
);
704 if (subdir
&& page_private(subdir
) /* has swap entries */) {
706 if (size
> ENTRIES_PER_PAGE
)
707 size
= ENTRIES_PER_PAGE
;
708 freed
= shmem_map_and_free_swp(subdir
,
709 offset
, size
, &dir
, punch_lock
);
711 dir
= shmem_dir_map(middir
);
712 nr_swaps_freed
+= freed
;
713 if (offset
|| punch_lock
) {
714 spin_lock(&info
->lock
);
715 set_page_private(subdir
,
716 page_private(subdir
) - freed
);
717 spin_unlock(&info
->lock
);
719 BUG_ON(page_private(subdir
) != freed
);
724 shmem_dir_unmap(dir
);
726 if (inode
->i_mapping
->nrpages
&& (info
->flags
& SHMEM_PAGEIN
)) {
728 * Call truncate_inode_pages again: racing shmem_unuse_inode
729 * may have swizzled a page in from swap since
730 * truncate_pagecache or generic_delete_inode did it, before we
731 * lowered next_index. Also, though shmem_getpage checks
732 * i_size before adding to cache, no recheck after: so fix the
733 * narrow window there too.
735 * Recalling truncate_inode_pages_range and unmap_mapping_range
736 * every time for punch_hole (which never got a chance to clear
737 * SHMEM_PAGEIN at the start of vmtruncate_range) is expensive,
738 * yet hardly ever necessary: try to optimize them out later.
740 truncate_inode_pages_range(inode
->i_mapping
, start
, end
);
742 unmap_mapping_range(inode
->i_mapping
, start
,
746 spin_lock(&info
->lock
);
747 info
->flags
&= ~SHMEM_TRUNCATE
;
748 info
->swapped
-= nr_swaps_freed
;
749 if (nr_pages_to_free
)
750 shmem_free_blocks(inode
, nr_pages_to_free
);
751 shmem_recalc_inode(inode
);
752 spin_unlock(&info
->lock
);
755 * Empty swap vector directory pages to be freed?
757 if (!list_empty(&pages_to_free
)) {
758 pages_to_free
.prev
->next
= NULL
;
759 shmem_free_pages(pages_to_free
.next
);
763 static int shmem_notify_change(struct dentry
*dentry
, struct iattr
*attr
)
765 struct inode
*inode
= dentry
->d_inode
;
766 loff_t newsize
= attr
->ia_size
;
769 error
= inode_change_ok(inode
, attr
);
773 if (S_ISREG(inode
->i_mode
) && (attr
->ia_valid
& ATTR_SIZE
)
774 && newsize
!= inode
->i_size
) {
775 struct page
*page
= NULL
;
777 if (newsize
< inode
->i_size
) {
779 * If truncating down to a partial page, then
780 * if that page is already allocated, hold it
781 * in memory until the truncation is over, so
782 * truncate_partial_page cannot miss it were
783 * it assigned to swap.
785 if (newsize
& (PAGE_CACHE_SIZE
-1)) {
786 (void) shmem_getpage(inode
,
787 newsize
>> PAGE_CACHE_SHIFT
,
788 &page
, SGP_READ
, NULL
);
793 * Reset SHMEM_PAGEIN flag so that shmem_truncate can
794 * detect if any pages might have been added to cache
795 * after truncate_inode_pages. But we needn't bother
796 * if it's being fully truncated to zero-length: the
797 * nrpages check is efficient enough in that case.
800 struct shmem_inode_info
*info
= SHMEM_I(inode
);
801 spin_lock(&info
->lock
);
802 info
->flags
&= ~SHMEM_PAGEIN
;
803 spin_unlock(&info
->lock
);
807 /* XXX(truncate): truncate_setsize should be called last */
808 truncate_setsize(inode
, newsize
);
810 page_cache_release(page
);
811 shmem_truncate_range(inode
, newsize
, (loff_t
)-1);
814 setattr_copy(inode
, attr
);
815 #ifdef CONFIG_TMPFS_POSIX_ACL
816 if (attr
->ia_valid
& ATTR_MODE
)
817 error
= generic_acl_chmod(inode
);
822 static void shmem_evict_inode(struct inode
*inode
)
824 struct shmem_inode_info
*info
= SHMEM_I(inode
);
826 if (inode
->i_mapping
->a_ops
== &shmem_aops
) {
827 truncate_inode_pages(inode
->i_mapping
, 0);
828 shmem_unacct_size(info
->flags
, inode
->i_size
);
830 shmem_truncate_range(inode
, 0, (loff_t
)-1);
831 if (!list_empty(&info
->swaplist
)) {
832 mutex_lock(&shmem_swaplist_mutex
);
833 list_del_init(&info
->swaplist
);
834 mutex_unlock(&shmem_swaplist_mutex
);
837 BUG_ON(inode
->i_blocks
);
838 shmem_free_inode(inode
->i_sb
);
839 end_writeback(inode
);
842 static inline int shmem_find_swp(swp_entry_t entry
, swp_entry_t
*dir
, swp_entry_t
*edir
)
846 for (ptr
= dir
; ptr
< edir
; ptr
++) {
847 if (ptr
->val
== entry
.val
)
853 static int shmem_unuse_inode(struct shmem_inode_info
*info
, swp_entry_t entry
, struct page
*page
)
867 ptr
= info
->i_direct
;
868 spin_lock(&info
->lock
);
869 if (!info
->swapped
) {
870 list_del_init(&info
->swaplist
);
873 limit
= info
->next_index
;
875 if (size
> SHMEM_NR_DIRECT
)
876 size
= SHMEM_NR_DIRECT
;
877 offset
= shmem_find_swp(entry
, ptr
, ptr
+size
);
880 if (!info
->i_indirect
)
883 dir
= shmem_dir_map(info
->i_indirect
);
884 stage
= SHMEM_NR_DIRECT
+ ENTRIES_PER_PAGEPAGE
/2;
886 for (idx
= SHMEM_NR_DIRECT
; idx
< limit
; idx
+= ENTRIES_PER_PAGE
, dir
++) {
887 if (unlikely(idx
== stage
)) {
888 shmem_dir_unmap(dir
-1);
889 if (cond_resched_lock(&info
->lock
)) {
890 /* check it has not been truncated */
891 if (limit
> info
->next_index
) {
892 limit
= info
->next_index
;
897 dir
= shmem_dir_map(info
->i_indirect
) +
898 ENTRIES_PER_PAGE
/2 + idx
/ENTRIES_PER_PAGEPAGE
;
901 idx
+= ENTRIES_PER_PAGEPAGE
;
905 stage
= idx
+ ENTRIES_PER_PAGEPAGE
;
907 shmem_dir_unmap(dir
);
908 dir
= shmem_dir_map(subdir
);
911 if (subdir
&& page_private(subdir
)) {
912 ptr
= shmem_swp_map(subdir
);
914 if (size
> ENTRIES_PER_PAGE
)
915 size
= ENTRIES_PER_PAGE
;
916 offset
= shmem_find_swp(entry
, ptr
, ptr
+size
);
917 shmem_swp_unmap(ptr
);
919 shmem_dir_unmap(dir
);
925 shmem_dir_unmap(dir
-1);
927 spin_unlock(&info
->lock
);
931 inode
= igrab(&info
->vfs_inode
);
932 spin_unlock(&info
->lock
);
935 * Move _head_ to start search for next from here.
936 * But be careful: shmem_evict_inode checks list_empty without taking
937 * mutex, and there's an instant in list_move_tail when info->swaplist
938 * would appear empty, if it were the only one on shmem_swaplist. We
939 * could avoid doing it if inode NULL; or use this minor optimization.
941 if (shmem_swaplist
.next
!= &info
->swaplist
)
942 list_move_tail(&shmem_swaplist
, &info
->swaplist
);
943 mutex_unlock(&shmem_swaplist_mutex
);
949 * Charge page using GFP_KERNEL while we can wait.
950 * Charged back to the user(not to caller) when swap account is used.
951 * add_to_page_cache() will be called with GFP_NOWAIT.
953 error
= mem_cgroup_cache_charge(page
, current
->mm
, GFP_KERNEL
);
956 error
= radix_tree_preload(GFP_KERNEL
);
958 mem_cgroup_uncharge_cache_page(page
);
963 spin_lock(&info
->lock
);
964 ptr
= shmem_swp_entry(info
, idx
, NULL
);
965 if (ptr
&& ptr
->val
== entry
.val
) {
966 error
= add_to_page_cache_locked(page
, inode
->i_mapping
,
968 /* does mem_cgroup_uncharge_cache_page on error */
969 } else /* we must compensate for our precharge above */
970 mem_cgroup_uncharge_cache_page(page
);
972 if (error
== -EEXIST
) {
973 struct page
*filepage
= find_get_page(inode
->i_mapping
, idx
);
977 * There might be a more uptodate page coming down
978 * from a stacked writepage: forget our swappage if so.
980 if (PageUptodate(filepage
))
982 page_cache_release(filepage
);
986 delete_from_swap_cache(page
);
987 set_page_dirty(page
);
988 info
->flags
|= SHMEM_PAGEIN
;
989 shmem_swp_set(info
, ptr
, 0);
991 error
= 1; /* not an error, but entry was found */
994 shmem_swp_unmap(ptr
);
995 spin_unlock(&info
->lock
);
996 radix_tree_preload_end();
999 page_cache_release(page
);
1000 iput(inode
); /* allows for NULL */
1005 * shmem_unuse() search for an eventually swapped out shmem page.
1007 int shmem_unuse(swp_entry_t entry
, struct page
*page
)
1009 struct list_head
*p
, *next
;
1010 struct shmem_inode_info
*info
;
1013 mutex_lock(&shmem_swaplist_mutex
);
1014 list_for_each_safe(p
, next
, &shmem_swaplist
) {
1015 info
= list_entry(p
, struct shmem_inode_info
, swaplist
);
1016 found
= shmem_unuse_inode(info
, entry
, page
);
1021 mutex_unlock(&shmem_swaplist_mutex
);
1023 * Can some race bring us here? We've been holding page lock,
1024 * so I think not; but would rather try again later than BUG()
1027 page_cache_release(page
);
1029 return (found
< 0) ? found
: 0;
1033 * Move the page from the page cache to the swap cache.
1035 static int shmem_writepage(struct page
*page
, struct writeback_control
*wbc
)
1037 struct shmem_inode_info
*info
;
1038 swp_entry_t
*entry
, swap
;
1039 struct address_space
*mapping
;
1040 unsigned long index
;
1041 struct inode
*inode
;
1043 BUG_ON(!PageLocked(page
));
1044 mapping
= page
->mapping
;
1045 index
= page
->index
;
1046 inode
= mapping
->host
;
1047 info
= SHMEM_I(inode
);
1048 if (info
->flags
& VM_LOCKED
)
1050 if (!total_swap_pages
)
1054 * shmem_backing_dev_info's capabilities prevent regular writeback or
1055 * sync from ever calling shmem_writepage; but a stacking filesystem
1056 * may use the ->writepage of its underlying filesystem, in which case
1057 * tmpfs should write out to swap only in response to memory pressure,
1058 * and not for the writeback threads or sync. However, in those cases,
1059 * we do still want to check if there's a redundant swappage to be
1062 if (wbc
->for_reclaim
)
1063 swap
= get_swap_page();
1067 spin_lock(&info
->lock
);
1068 if (index
>= info
->next_index
) {
1069 BUG_ON(!(info
->flags
& SHMEM_TRUNCATE
));
1072 entry
= shmem_swp_entry(info
, index
, NULL
);
1075 * The more uptodate page coming down from a stacked
1076 * writepage should replace our old swappage.
1078 free_swap_and_cache(*entry
);
1079 shmem_swp_set(info
, entry
, 0);
1081 shmem_recalc_inode(inode
);
1083 if (swap
.val
&& add_to_swap_cache(page
, swap
, GFP_ATOMIC
) == 0) {
1084 delete_from_page_cache(page
);
1085 shmem_swp_set(info
, entry
, swap
.val
);
1086 shmem_swp_unmap(entry
);
1087 if (list_empty(&info
->swaplist
))
1088 inode
= igrab(inode
);
1091 spin_unlock(&info
->lock
);
1092 swap_shmem_alloc(swap
);
1093 BUG_ON(page_mapped(page
));
1094 swap_writepage(page
, wbc
);
1096 mutex_lock(&shmem_swaplist_mutex
);
1097 /* move instead of add in case we're racing */
1098 list_move_tail(&info
->swaplist
, &shmem_swaplist
);
1099 mutex_unlock(&shmem_swaplist_mutex
);
1105 shmem_swp_unmap(entry
);
1107 spin_unlock(&info
->lock
);
1109 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
1110 * clear SWAP_HAS_CACHE flag.
1112 swapcache_free(swap
, NULL
);
1114 set_page_dirty(page
);
1115 if (wbc
->for_reclaim
)
1116 return AOP_WRITEPAGE_ACTIVATE
; /* Return with page locked */
1123 static void shmem_show_mpol(struct seq_file
*seq
, struct mempolicy
*mpol
)
1127 if (!mpol
|| mpol
->mode
== MPOL_DEFAULT
)
1128 return; /* show nothing */
1130 mpol_to_str(buffer
, sizeof(buffer
), mpol
, 1);
1132 seq_printf(seq
, ",mpol=%s", buffer
);
1135 static struct mempolicy
*shmem_get_sbmpol(struct shmem_sb_info
*sbinfo
)
1137 struct mempolicy
*mpol
= NULL
;
1139 spin_lock(&sbinfo
->stat_lock
); /* prevent replace/use races */
1140 mpol
= sbinfo
->mpol
;
1142 spin_unlock(&sbinfo
->stat_lock
);
1146 #endif /* CONFIG_TMPFS */
1148 static struct page
*shmem_swapin(swp_entry_t entry
, gfp_t gfp
,
1149 struct shmem_inode_info
*info
, unsigned long idx
)
1151 struct mempolicy mpol
, *spol
;
1152 struct vm_area_struct pvma
;
1155 spol
= mpol_cond_copy(&mpol
,
1156 mpol_shared_policy_lookup(&info
->policy
, idx
));
1158 /* Create a pseudo vma that just contains the policy */
1160 pvma
.vm_pgoff
= idx
;
1162 pvma
.vm_policy
= spol
;
1163 page
= swapin_readahead(entry
, gfp
, &pvma
, 0);
1167 static struct page
*shmem_alloc_page(gfp_t gfp
,
1168 struct shmem_inode_info
*info
, unsigned long idx
)
1170 struct vm_area_struct pvma
;
1172 /* Create a pseudo vma that just contains the policy */
1174 pvma
.vm_pgoff
= idx
;
1176 pvma
.vm_policy
= mpol_shared_policy_lookup(&info
->policy
, idx
);
1179 * alloc_page_vma() will drop the shared policy reference
1181 return alloc_page_vma(gfp
, &pvma
, 0);
1183 #else /* !CONFIG_NUMA */
1185 static inline void shmem_show_mpol(struct seq_file
*seq
, struct mempolicy
*p
)
1188 #endif /* CONFIG_TMPFS */
1190 static inline struct page
*shmem_swapin(swp_entry_t entry
, gfp_t gfp
,
1191 struct shmem_inode_info
*info
, unsigned long idx
)
1193 return swapin_readahead(entry
, gfp
, NULL
, 0);
1196 static inline struct page
*shmem_alloc_page(gfp_t gfp
,
1197 struct shmem_inode_info
*info
, unsigned long idx
)
1199 return alloc_page(gfp
);
1201 #endif /* CONFIG_NUMA */
1203 #if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
1204 static inline struct mempolicy
*shmem_get_sbmpol(struct shmem_sb_info
*sbinfo
)
1211 * shmem_getpage - either get the page from swap or allocate a new one
1213 * If we allocate a new one we do not mark it dirty. That's up to the
1214 * vm. If we swap it in we mark it dirty since we also free the swap
1215 * entry since a page cannot live in both the swap and page cache
1217 static int shmem_getpage(struct inode
*inode
, unsigned long idx
,
1218 struct page
**pagep
, enum sgp_type sgp
, int *type
)
1220 struct address_space
*mapping
= inode
->i_mapping
;
1221 struct shmem_inode_info
*info
= SHMEM_I(inode
);
1222 struct shmem_sb_info
*sbinfo
;
1223 struct page
*filepage
= *pagep
;
1224 struct page
*swappage
;
1225 struct page
*prealloc_page
= NULL
;
1231 if (idx
>= SHMEM_MAX_INDEX
)
1238 * Normally, filepage is NULL on entry, and either found
1239 * uptodate immediately, or allocated and zeroed, or read
1240 * in under swappage, which is then assigned to filepage.
1241 * But shmem_readpage (required for splice) passes in a locked
1242 * filepage, which may be found not uptodate by other callers
1243 * too, and may need to be copied from the swappage read in.
1247 filepage
= find_lock_page(mapping
, idx
);
1248 if (filepage
&& PageUptodate(filepage
))
1250 gfp
= mapping_gfp_mask(mapping
);
1253 * Try to preload while we can wait, to not make a habit of
1254 * draining atomic reserves; but don't latch on to this cpu.
1256 error
= radix_tree_preload(gfp
& ~__GFP_HIGHMEM
);
1259 radix_tree_preload_end();
1260 if (sgp
!= SGP_READ
&& !prealloc_page
) {
1261 /* We don't care if this fails */
1262 prealloc_page
= shmem_alloc_page(gfp
, info
, idx
);
1263 if (prealloc_page
) {
1264 if (mem_cgroup_cache_charge(prealloc_page
,
1265 current
->mm
, GFP_KERNEL
)) {
1266 page_cache_release(prealloc_page
);
1267 prealloc_page
= NULL
;
1274 spin_lock(&info
->lock
);
1275 shmem_recalc_inode(inode
);
1276 entry
= shmem_swp_alloc(info
, idx
, sgp
);
1277 if (IS_ERR(entry
)) {
1278 spin_unlock(&info
->lock
);
1279 error
= PTR_ERR(entry
);
1285 /* Look it up and read it in.. */
1286 swappage
= lookup_swap_cache(swap
);
1288 shmem_swp_unmap(entry
);
1289 /* here we actually do the io */
1290 if (type
&& !(*type
& VM_FAULT_MAJOR
)) {
1291 __count_vm_event(PGMAJFAULT
);
1292 *type
|= VM_FAULT_MAJOR
;
1294 spin_unlock(&info
->lock
);
1295 swappage
= shmem_swapin(swap
, gfp
, info
, idx
);
1297 spin_lock(&info
->lock
);
1298 entry
= shmem_swp_alloc(info
, idx
, sgp
);
1300 error
= PTR_ERR(entry
);
1302 if (entry
->val
== swap
.val
)
1304 shmem_swp_unmap(entry
);
1306 spin_unlock(&info
->lock
);
1311 wait_on_page_locked(swappage
);
1312 page_cache_release(swappage
);
1316 /* We have to do this with page locked to prevent races */
1317 if (!trylock_page(swappage
)) {
1318 shmem_swp_unmap(entry
);
1319 spin_unlock(&info
->lock
);
1320 wait_on_page_locked(swappage
);
1321 page_cache_release(swappage
);
1324 if (PageWriteback(swappage
)) {
1325 shmem_swp_unmap(entry
);
1326 spin_unlock(&info
->lock
);
1327 wait_on_page_writeback(swappage
);
1328 unlock_page(swappage
);
1329 page_cache_release(swappage
);
1332 if (!PageUptodate(swappage
)) {
1333 shmem_swp_unmap(entry
);
1334 spin_unlock(&info
->lock
);
1335 unlock_page(swappage
);
1336 page_cache_release(swappage
);
1342 shmem_swp_set(info
, entry
, 0);
1343 shmem_swp_unmap(entry
);
1344 delete_from_swap_cache(swappage
);
1345 spin_unlock(&info
->lock
);
1346 copy_highpage(filepage
, swappage
);
1347 unlock_page(swappage
);
1348 page_cache_release(swappage
);
1349 flush_dcache_page(filepage
);
1350 SetPageUptodate(filepage
);
1351 set_page_dirty(filepage
);
1353 } else if (!(error
= add_to_page_cache_locked(swappage
, mapping
,
1354 idx
, GFP_NOWAIT
))) {
1355 info
->flags
|= SHMEM_PAGEIN
;
1356 shmem_swp_set(info
, entry
, 0);
1357 shmem_swp_unmap(entry
);
1358 delete_from_swap_cache(swappage
);
1359 spin_unlock(&info
->lock
);
1360 filepage
= swappage
;
1361 set_page_dirty(filepage
);
1364 shmem_swp_unmap(entry
);
1365 spin_unlock(&info
->lock
);
1366 if (error
== -ENOMEM
) {
1368 * reclaim from proper memory cgroup and
1369 * call memcg's OOM if needed.
1371 error
= mem_cgroup_shmem_charge_fallback(
1376 unlock_page(swappage
);
1377 page_cache_release(swappage
);
1381 unlock_page(swappage
);
1382 page_cache_release(swappage
);
1385 } else if (sgp
== SGP_READ
&& !filepage
) {
1386 shmem_swp_unmap(entry
);
1387 filepage
= find_get_page(mapping
, idx
);
1389 (!PageUptodate(filepage
) || !trylock_page(filepage
))) {
1390 spin_unlock(&info
->lock
);
1391 wait_on_page_locked(filepage
);
1392 page_cache_release(filepage
);
1396 spin_unlock(&info
->lock
);
1398 shmem_swp_unmap(entry
);
1399 sbinfo
= SHMEM_SB(inode
->i_sb
);
1400 if (sbinfo
->max_blocks
) {
1401 if ((percpu_counter_compare(&sbinfo
->used_blocks
, sbinfo
->max_blocks
) > 0) ||
1402 shmem_acct_block(info
->flags
)) {
1403 spin_unlock(&info
->lock
);
1407 percpu_counter_inc(&sbinfo
->used_blocks
);
1408 spin_lock(&inode
->i_lock
);
1409 inode
->i_blocks
+= BLOCKS_PER_PAGE
;
1410 spin_unlock(&inode
->i_lock
);
1411 } else if (shmem_acct_block(info
->flags
)) {
1412 spin_unlock(&info
->lock
);
1420 if (!prealloc_page
) {
1421 spin_unlock(&info
->lock
);
1422 filepage
= shmem_alloc_page(gfp
, info
, idx
);
1424 shmem_unacct_blocks(info
->flags
, 1);
1425 shmem_free_blocks(inode
, 1);
1429 SetPageSwapBacked(filepage
);
1432 * Precharge page while we can wait, compensate
1435 error
= mem_cgroup_cache_charge(filepage
,
1436 current
->mm
, GFP_KERNEL
);
1438 page_cache_release(filepage
);
1439 shmem_unacct_blocks(info
->flags
, 1);
1440 shmem_free_blocks(inode
, 1);
1445 spin_lock(&info
->lock
);
1447 filepage
= prealloc_page
;
1448 prealloc_page
= NULL
;
1449 SetPageSwapBacked(filepage
);
1452 entry
= shmem_swp_alloc(info
, idx
, sgp
);
1454 error
= PTR_ERR(entry
);
1457 shmem_swp_unmap(entry
);
1459 ret
= error
|| swap
.val
;
1461 mem_cgroup_uncharge_cache_page(filepage
);
1463 ret
= add_to_page_cache_lru(filepage
, mapping
,
1466 * At add_to_page_cache_lru() failure, uncharge will
1467 * be done automatically.
1470 spin_unlock(&info
->lock
);
1471 page_cache_release(filepage
);
1472 shmem_unacct_blocks(info
->flags
, 1);
1473 shmem_free_blocks(inode
, 1);
1479 info
->flags
|= SHMEM_PAGEIN
;
1483 spin_unlock(&info
->lock
);
1484 clear_highpage(filepage
);
1485 flush_dcache_page(filepage
);
1486 SetPageUptodate(filepage
);
1487 if (sgp
== SGP_DIRTY
)
1488 set_page_dirty(filepage
);
1496 if (*pagep
!= filepage
) {
1497 unlock_page(filepage
);
1498 page_cache_release(filepage
);
1501 if (prealloc_page
) {
1502 mem_cgroup_uncharge_cache_page(prealloc_page
);
1503 page_cache_release(prealloc_page
);
1508 static int shmem_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
1510 struct inode
*inode
= vma
->vm_file
->f_path
.dentry
->d_inode
;
1514 if (((loff_t
)vmf
->pgoff
<< PAGE_CACHE_SHIFT
) >= i_size_read(inode
))
1515 return VM_FAULT_SIGBUS
;
1517 error
= shmem_getpage(inode
, vmf
->pgoff
, &vmf
->page
, SGP_CACHE
, &ret
);
1519 return ((error
== -ENOMEM
) ? VM_FAULT_OOM
: VM_FAULT_SIGBUS
);
1521 return ret
| VM_FAULT_LOCKED
;
1525 static int shmem_set_policy(struct vm_area_struct
*vma
, struct mempolicy
*new)
1527 struct inode
*i
= vma
->vm_file
->f_path
.dentry
->d_inode
;
1528 return mpol_set_shared_policy(&SHMEM_I(i
)->policy
, vma
, new);
1531 static struct mempolicy
*shmem_get_policy(struct vm_area_struct
*vma
,
1534 struct inode
*i
= vma
->vm_file
->f_path
.dentry
->d_inode
;
1537 idx
= ((addr
- vma
->vm_start
) >> PAGE_SHIFT
) + vma
->vm_pgoff
;
1538 return mpol_shared_policy_lookup(&SHMEM_I(i
)->policy
, idx
);
1542 int shmem_lock(struct file
*file
, int lock
, struct user_struct
*user
)
1544 struct inode
*inode
= file
->f_path
.dentry
->d_inode
;
1545 struct shmem_inode_info
*info
= SHMEM_I(inode
);
1546 int retval
= -ENOMEM
;
1548 spin_lock(&info
->lock
);
1549 if (lock
&& !(info
->flags
& VM_LOCKED
)) {
1550 if (!user_shm_lock(inode
->i_size
, user
))
1552 info
->flags
|= VM_LOCKED
;
1553 mapping_set_unevictable(file
->f_mapping
);
1555 if (!lock
&& (info
->flags
& VM_LOCKED
) && user
) {
1556 user_shm_unlock(inode
->i_size
, user
);
1557 info
->flags
&= ~VM_LOCKED
;
1558 mapping_clear_unevictable(file
->f_mapping
);
1559 scan_mapping_unevictable_pages(file
->f_mapping
);
1564 spin_unlock(&info
->lock
);
1568 static int shmem_mmap(struct file
*file
, struct vm_area_struct
*vma
)
1570 file_accessed(file
);
1571 vma
->vm_ops
= &shmem_vm_ops
;
1572 vma
->vm_flags
|= VM_CAN_NONLINEAR
;
1576 static struct inode
*shmem_get_inode(struct super_block
*sb
, const struct inode
*dir
,
1577 int mode
, dev_t dev
, unsigned long flags
)
1579 struct inode
*inode
;
1580 struct shmem_inode_info
*info
;
1581 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
1583 if (shmem_reserve_inode(sb
))
1586 inode
= new_inode(sb
);
1588 inode
->i_ino
= get_next_ino();
1589 inode_init_owner(inode
, dir
, mode
);
1590 inode
->i_blocks
= 0;
1591 inode
->i_mapping
->backing_dev_info
= &shmem_backing_dev_info
;
1592 inode
->i_atime
= inode
->i_mtime
= inode
->i_ctime
= CURRENT_TIME
;
1593 inode
->i_generation
= get_seconds();
1594 info
= SHMEM_I(inode
);
1595 memset(info
, 0, (char *)inode
- (char *)info
);
1596 spin_lock_init(&info
->lock
);
1597 info
->flags
= flags
& VM_NORESERVE
;
1598 INIT_LIST_HEAD(&info
->swaplist
);
1599 cache_no_acl(inode
);
1601 switch (mode
& S_IFMT
) {
1603 inode
->i_op
= &shmem_special_inode_operations
;
1604 init_special_inode(inode
, mode
, dev
);
1607 inode
->i_mapping
->a_ops
= &shmem_aops
;
1608 inode
->i_op
= &shmem_inode_operations
;
1609 inode
->i_fop
= &shmem_file_operations
;
1610 mpol_shared_policy_init(&info
->policy
,
1611 shmem_get_sbmpol(sbinfo
));
1615 /* Some things misbehave if size == 0 on a directory */
1616 inode
->i_size
= 2 * BOGO_DIRENT_SIZE
;
1617 inode
->i_op
= &shmem_dir_inode_operations
;
1618 inode
->i_fop
= &simple_dir_operations
;
1622 * Must not load anything in the rbtree,
1623 * mpol_free_shared_policy will not be called.
1625 mpol_shared_policy_init(&info
->policy
, NULL
);
1629 shmem_free_inode(sb
);
1634 static const struct inode_operations shmem_symlink_inode_operations
;
1635 static const struct inode_operations shmem_symlink_inline_operations
;
1638 * Normally tmpfs avoids the use of shmem_readpage and shmem_write_begin;
1639 * but providing them allows a tmpfs file to be used for splice, sendfile, and
1640 * below the loop driver, in the generic fashion that many filesystems support.
1642 static int shmem_readpage(struct file
*file
, struct page
*page
)
1644 struct inode
*inode
= page
->mapping
->host
;
1645 int error
= shmem_getpage(inode
, page
->index
, &page
, SGP_CACHE
, NULL
);
1651 shmem_write_begin(struct file
*file
, struct address_space
*mapping
,
1652 loff_t pos
, unsigned len
, unsigned flags
,
1653 struct page
**pagep
, void **fsdata
)
1655 struct inode
*inode
= mapping
->host
;
1656 pgoff_t index
= pos
>> PAGE_CACHE_SHIFT
;
1658 return shmem_getpage(inode
, index
, pagep
, SGP_WRITE
, NULL
);
1662 shmem_write_end(struct file
*file
, struct address_space
*mapping
,
1663 loff_t pos
, unsigned len
, unsigned copied
,
1664 struct page
*page
, void *fsdata
)
1666 struct inode
*inode
= mapping
->host
;
1668 if (pos
+ copied
> inode
->i_size
)
1669 i_size_write(inode
, pos
+ copied
);
1671 set_page_dirty(page
);
1673 page_cache_release(page
);
1678 static void do_shmem_file_read(struct file
*filp
, loff_t
*ppos
, read_descriptor_t
*desc
, read_actor_t actor
)
1680 struct inode
*inode
= filp
->f_path
.dentry
->d_inode
;
1681 struct address_space
*mapping
= inode
->i_mapping
;
1682 unsigned long index
, offset
;
1683 enum sgp_type sgp
= SGP_READ
;
1686 * Might this read be for a stacking filesystem? Then when reading
1687 * holes of a sparse file, we actually need to allocate those pages,
1688 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1690 if (segment_eq(get_fs(), KERNEL_DS
))
1693 index
= *ppos
>> PAGE_CACHE_SHIFT
;
1694 offset
= *ppos
& ~PAGE_CACHE_MASK
;
1697 struct page
*page
= NULL
;
1698 unsigned long end_index
, nr
, ret
;
1699 loff_t i_size
= i_size_read(inode
);
1701 end_index
= i_size
>> PAGE_CACHE_SHIFT
;
1702 if (index
> end_index
)
1704 if (index
== end_index
) {
1705 nr
= i_size
& ~PAGE_CACHE_MASK
;
1710 desc
->error
= shmem_getpage(inode
, index
, &page
, sgp
, NULL
);
1712 if (desc
->error
== -EINVAL
)
1720 * We must evaluate after, since reads (unlike writes)
1721 * are called without i_mutex protection against truncate
1723 nr
= PAGE_CACHE_SIZE
;
1724 i_size
= i_size_read(inode
);
1725 end_index
= i_size
>> PAGE_CACHE_SHIFT
;
1726 if (index
== end_index
) {
1727 nr
= i_size
& ~PAGE_CACHE_MASK
;
1730 page_cache_release(page
);
1738 * If users can be writing to this page using arbitrary
1739 * virtual addresses, take care about potential aliasing
1740 * before reading the page on the kernel side.
1742 if (mapping_writably_mapped(mapping
))
1743 flush_dcache_page(page
);
1745 * Mark the page accessed if we read the beginning.
1748 mark_page_accessed(page
);
1750 page
= ZERO_PAGE(0);
1751 page_cache_get(page
);
1755 * Ok, we have the page, and it's up-to-date, so
1756 * now we can copy it to user space...
1758 * The actor routine returns how many bytes were actually used..
1759 * NOTE! This may not be the same as how much of a user buffer
1760 * we filled up (we may be padding etc), so we can only update
1761 * "pos" here (the actor routine has to update the user buffer
1762 * pointers and the remaining count).
1764 ret
= actor(desc
, page
, offset
, nr
);
1766 index
+= offset
>> PAGE_CACHE_SHIFT
;
1767 offset
&= ~PAGE_CACHE_MASK
;
1769 page_cache_release(page
);
1770 if (ret
!= nr
|| !desc
->count
)
1776 *ppos
= ((loff_t
) index
<< PAGE_CACHE_SHIFT
) + offset
;
1777 file_accessed(filp
);
1780 static ssize_t
shmem_file_aio_read(struct kiocb
*iocb
,
1781 const struct iovec
*iov
, unsigned long nr_segs
, loff_t pos
)
1783 struct file
*filp
= iocb
->ki_filp
;
1787 loff_t
*ppos
= &iocb
->ki_pos
;
1789 retval
= generic_segment_checks(iov
, &nr_segs
, &count
, VERIFY_WRITE
);
1793 for (seg
= 0; seg
< nr_segs
; seg
++) {
1794 read_descriptor_t desc
;
1797 desc
.arg
.buf
= iov
[seg
].iov_base
;
1798 desc
.count
= iov
[seg
].iov_len
;
1799 if (desc
.count
== 0)
1802 do_shmem_file_read(filp
, ppos
, &desc
, file_read_actor
);
1803 retval
+= desc
.written
;
1805 retval
= retval
?: desc
.error
;
1814 static int shmem_statfs(struct dentry
*dentry
, struct kstatfs
*buf
)
1816 struct shmem_sb_info
*sbinfo
= SHMEM_SB(dentry
->d_sb
);
1818 buf
->f_type
= TMPFS_MAGIC
;
1819 buf
->f_bsize
= PAGE_CACHE_SIZE
;
1820 buf
->f_namelen
= NAME_MAX
;
1821 if (sbinfo
->max_blocks
) {
1822 buf
->f_blocks
= sbinfo
->max_blocks
;
1823 buf
->f_bavail
= buf
->f_bfree
=
1824 sbinfo
->max_blocks
- percpu_counter_sum(&sbinfo
->used_blocks
);
1826 if (sbinfo
->max_inodes
) {
1827 buf
->f_files
= sbinfo
->max_inodes
;
1828 buf
->f_ffree
= sbinfo
->free_inodes
;
1830 /* else leave those fields 0 like simple_statfs */
1835 * File creation. Allocate an inode, and we're done..
1838 shmem_mknod(struct inode
*dir
, struct dentry
*dentry
, int mode
, dev_t dev
)
1840 struct inode
*inode
;
1841 int error
= -ENOSPC
;
1843 inode
= shmem_get_inode(dir
->i_sb
, dir
, mode
, dev
, VM_NORESERVE
);
1845 error
= security_inode_init_security(inode
, dir
,
1846 &dentry
->d_name
, NULL
,
1849 if (error
!= -EOPNOTSUPP
) {
1854 #ifdef CONFIG_TMPFS_POSIX_ACL
1855 error
= generic_acl_init(inode
, dir
);
1863 dir
->i_size
+= BOGO_DIRENT_SIZE
;
1864 dir
->i_ctime
= dir
->i_mtime
= CURRENT_TIME
;
1865 d_instantiate(dentry
, inode
);
1866 dget(dentry
); /* Extra count - pin the dentry in core */
1871 static int shmem_mkdir(struct inode
*dir
, struct dentry
*dentry
, int mode
)
1875 if ((error
= shmem_mknod(dir
, dentry
, mode
| S_IFDIR
, 0)))
1881 static int shmem_create(struct inode
*dir
, struct dentry
*dentry
, int mode
,
1882 struct nameidata
*nd
)
1884 return shmem_mknod(dir
, dentry
, mode
| S_IFREG
, 0);
1890 static int shmem_link(struct dentry
*old_dentry
, struct inode
*dir
, struct dentry
*dentry
)
1892 struct inode
*inode
= old_dentry
->d_inode
;
1896 * No ordinary (disk based) filesystem counts links as inodes;
1897 * but each new link needs a new dentry, pinning lowmem, and
1898 * tmpfs dentries cannot be pruned until they are unlinked.
1900 ret
= shmem_reserve_inode(inode
->i_sb
);
1904 dir
->i_size
+= BOGO_DIRENT_SIZE
;
1905 inode
->i_ctime
= dir
->i_ctime
= dir
->i_mtime
= CURRENT_TIME
;
1907 ihold(inode
); /* New dentry reference */
1908 dget(dentry
); /* Extra pinning count for the created dentry */
1909 d_instantiate(dentry
, inode
);
1914 static int shmem_unlink(struct inode
*dir
, struct dentry
*dentry
)
1916 struct inode
*inode
= dentry
->d_inode
;
1918 if (inode
->i_nlink
> 1 && !S_ISDIR(inode
->i_mode
))
1919 shmem_free_inode(inode
->i_sb
);
1921 dir
->i_size
-= BOGO_DIRENT_SIZE
;
1922 inode
->i_ctime
= dir
->i_ctime
= dir
->i_mtime
= CURRENT_TIME
;
1924 dput(dentry
); /* Undo the count from "create" - this does all the work */
1928 static int shmem_rmdir(struct inode
*dir
, struct dentry
*dentry
)
1930 if (!simple_empty(dentry
))
1933 drop_nlink(dentry
->d_inode
);
1935 return shmem_unlink(dir
, dentry
);
1939 * The VFS layer already does all the dentry stuff for rename,
1940 * we just have to decrement the usage count for the target if
1941 * it exists so that the VFS layer correctly free's it when it
1944 static int shmem_rename(struct inode
*old_dir
, struct dentry
*old_dentry
, struct inode
*new_dir
, struct dentry
*new_dentry
)
1946 struct inode
*inode
= old_dentry
->d_inode
;
1947 int they_are_dirs
= S_ISDIR(inode
->i_mode
);
1949 if (!simple_empty(new_dentry
))
1952 if (new_dentry
->d_inode
) {
1953 (void) shmem_unlink(new_dir
, new_dentry
);
1955 drop_nlink(old_dir
);
1956 } else if (they_are_dirs
) {
1957 drop_nlink(old_dir
);
1961 old_dir
->i_size
-= BOGO_DIRENT_SIZE
;
1962 new_dir
->i_size
+= BOGO_DIRENT_SIZE
;
1963 old_dir
->i_ctime
= old_dir
->i_mtime
=
1964 new_dir
->i_ctime
= new_dir
->i_mtime
=
1965 inode
->i_ctime
= CURRENT_TIME
;
1969 static int shmem_symlink(struct inode
*dir
, struct dentry
*dentry
, const char *symname
)
1973 struct inode
*inode
;
1974 struct page
*page
= NULL
;
1976 struct shmem_inode_info
*info
;
1978 len
= strlen(symname
) + 1;
1979 if (len
> PAGE_CACHE_SIZE
)
1980 return -ENAMETOOLONG
;
1982 inode
= shmem_get_inode(dir
->i_sb
, dir
, S_IFLNK
|S_IRWXUGO
, 0, VM_NORESERVE
);
1986 error
= security_inode_init_security(inode
, dir
, &dentry
->d_name
, NULL
,
1989 if (error
!= -EOPNOTSUPP
) {
1996 info
= SHMEM_I(inode
);
1997 inode
->i_size
= len
-1;
1998 if (len
<= (char *)inode
- (char *)info
) {
2000 memcpy(info
, symname
, len
);
2001 inode
->i_op
= &shmem_symlink_inline_operations
;
2003 error
= shmem_getpage(inode
, 0, &page
, SGP_WRITE
, NULL
);
2008 inode
->i_mapping
->a_ops
= &shmem_aops
;
2009 inode
->i_op
= &shmem_symlink_inode_operations
;
2010 kaddr
= kmap_atomic(page
, KM_USER0
);
2011 memcpy(kaddr
, symname
, len
);
2012 kunmap_atomic(kaddr
, KM_USER0
);
2013 set_page_dirty(page
);
2015 page_cache_release(page
);
2017 dir
->i_size
+= BOGO_DIRENT_SIZE
;
2018 dir
->i_ctime
= dir
->i_mtime
= CURRENT_TIME
;
2019 d_instantiate(dentry
, inode
);
2024 static void *shmem_follow_link_inline(struct dentry
*dentry
, struct nameidata
*nd
)
2026 nd_set_link(nd
, (char *)SHMEM_I(dentry
->d_inode
));
2030 static void *shmem_follow_link(struct dentry
*dentry
, struct nameidata
*nd
)
2032 struct page
*page
= NULL
;
2033 int res
= shmem_getpage(dentry
->d_inode
, 0, &page
, SGP_READ
, NULL
);
2034 nd_set_link(nd
, res
? ERR_PTR(res
) : kmap(page
));
2040 static void shmem_put_link(struct dentry
*dentry
, struct nameidata
*nd
, void *cookie
)
2042 if (!IS_ERR(nd_get_link(nd
))) {
2043 struct page
*page
= cookie
;
2045 mark_page_accessed(page
);
2046 page_cache_release(page
);
2050 static const struct inode_operations shmem_symlink_inline_operations
= {
2051 .readlink
= generic_readlink
,
2052 .follow_link
= shmem_follow_link_inline
,
2055 static const struct inode_operations shmem_symlink_inode_operations
= {
2056 .readlink
= generic_readlink
,
2057 .follow_link
= shmem_follow_link
,
2058 .put_link
= shmem_put_link
,
2061 #ifdef CONFIG_TMPFS_POSIX_ACL
2063 * Superblocks without xattr inode operations will get security.* xattr
2064 * support from the VFS "for free". As soon as we have any other xattrs
2065 * like ACLs, we also need to implement the security.* handlers at
2066 * filesystem level, though.
2069 static size_t shmem_xattr_security_list(struct dentry
*dentry
, char *list
,
2070 size_t list_len
, const char *name
,
2071 size_t name_len
, int handler_flags
)
2073 return security_inode_listsecurity(dentry
->d_inode
, list
, list_len
);
2076 static int shmem_xattr_security_get(struct dentry
*dentry
, const char *name
,
2077 void *buffer
, size_t size
, int handler_flags
)
2079 if (strcmp(name
, "") == 0)
2081 return xattr_getsecurity(dentry
->d_inode
, name
, buffer
, size
);
2084 static int shmem_xattr_security_set(struct dentry
*dentry
, const char *name
,
2085 const void *value
, size_t size
, int flags
, int handler_flags
)
2087 if (strcmp(name
, "") == 0)
2089 return security_inode_setsecurity(dentry
->d_inode
, name
, value
,
2093 static const struct xattr_handler shmem_xattr_security_handler
= {
2094 .prefix
= XATTR_SECURITY_PREFIX
,
2095 .list
= shmem_xattr_security_list
,
2096 .get
= shmem_xattr_security_get
,
2097 .set
= shmem_xattr_security_set
,
2100 static const struct xattr_handler
*shmem_xattr_handlers
[] = {
2101 &generic_acl_access_handler
,
2102 &generic_acl_default_handler
,
2103 &shmem_xattr_security_handler
,
2108 static struct dentry
*shmem_get_parent(struct dentry
*child
)
2110 return ERR_PTR(-ESTALE
);
2113 static int shmem_match(struct inode
*ino
, void *vfh
)
2117 inum
= (inum
<< 32) | fh
[1];
2118 return ino
->i_ino
== inum
&& fh
[0] == ino
->i_generation
;
2121 static struct dentry
*shmem_fh_to_dentry(struct super_block
*sb
,
2122 struct fid
*fid
, int fh_len
, int fh_type
)
2124 struct inode
*inode
;
2125 struct dentry
*dentry
= NULL
;
2126 u64 inum
= fid
->raw
[2];
2127 inum
= (inum
<< 32) | fid
->raw
[1];
2132 inode
= ilookup5(sb
, (unsigned long)(inum
+ fid
->raw
[0]),
2133 shmem_match
, fid
->raw
);
2135 dentry
= d_find_alias(inode
);
2142 static int shmem_encode_fh(struct dentry
*dentry
, __u32
*fh
, int *len
,
2145 struct inode
*inode
= dentry
->d_inode
;
2152 if (inode_unhashed(inode
)) {
2153 /* Unfortunately insert_inode_hash is not idempotent,
2154 * so as we hash inodes here rather than at creation
2155 * time, we need a lock to ensure we only try
2158 static DEFINE_SPINLOCK(lock
);
2160 if (inode_unhashed(inode
))
2161 __insert_inode_hash(inode
,
2162 inode
->i_ino
+ inode
->i_generation
);
2166 fh
[0] = inode
->i_generation
;
2167 fh
[1] = inode
->i_ino
;
2168 fh
[2] = ((__u64
)inode
->i_ino
) >> 32;
2174 static const struct export_operations shmem_export_ops
= {
2175 .get_parent
= shmem_get_parent
,
2176 .encode_fh
= shmem_encode_fh
,
2177 .fh_to_dentry
= shmem_fh_to_dentry
,
2180 static int shmem_parse_options(char *options
, struct shmem_sb_info
*sbinfo
,
2183 char *this_char
, *value
, *rest
;
2185 while (options
!= NULL
) {
2186 this_char
= options
;
2189 * NUL-terminate this option: unfortunately,
2190 * mount options form a comma-separated list,
2191 * but mpol's nodelist may also contain commas.
2193 options
= strchr(options
, ',');
2194 if (options
== NULL
)
2197 if (!isdigit(*options
)) {
2204 if ((value
= strchr(this_char
,'=')) != NULL
) {
2208 "tmpfs: No value for mount option '%s'\n",
2213 if (!strcmp(this_char
,"size")) {
2214 unsigned long long size
;
2215 size
= memparse(value
,&rest
);
2217 size
<<= PAGE_SHIFT
;
2218 size
*= totalram_pages
;
2224 sbinfo
->max_blocks
=
2225 DIV_ROUND_UP(size
, PAGE_CACHE_SIZE
);
2226 } else if (!strcmp(this_char
,"nr_blocks")) {
2227 sbinfo
->max_blocks
= memparse(value
, &rest
);
2230 } else if (!strcmp(this_char
,"nr_inodes")) {
2231 sbinfo
->max_inodes
= memparse(value
, &rest
);
2234 } else if (!strcmp(this_char
,"mode")) {
2237 sbinfo
->mode
= simple_strtoul(value
, &rest
, 8) & 07777;
2240 } else if (!strcmp(this_char
,"uid")) {
2243 sbinfo
->uid
= simple_strtoul(value
, &rest
, 0);
2246 } else if (!strcmp(this_char
,"gid")) {
2249 sbinfo
->gid
= simple_strtoul(value
, &rest
, 0);
2252 } else if (!strcmp(this_char
,"mpol")) {
2253 if (mpol_parse_str(value
, &sbinfo
->mpol
, 1))
2256 printk(KERN_ERR
"tmpfs: Bad mount option %s\n",
2264 printk(KERN_ERR
"tmpfs: Bad value '%s' for mount option '%s'\n",
2270 static int shmem_remount_fs(struct super_block
*sb
, int *flags
, char *data
)
2272 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
2273 struct shmem_sb_info config
= *sbinfo
;
2274 unsigned long inodes
;
2275 int error
= -EINVAL
;
2277 if (shmem_parse_options(data
, &config
, true))
2280 spin_lock(&sbinfo
->stat_lock
);
2281 inodes
= sbinfo
->max_inodes
- sbinfo
->free_inodes
;
2282 if (percpu_counter_compare(&sbinfo
->used_blocks
, config
.max_blocks
) > 0)
2284 if (config
.max_inodes
< inodes
)
2287 * Those tests also disallow limited->unlimited while any are in
2288 * use, so i_blocks will always be zero when max_blocks is zero;
2289 * but we must separately disallow unlimited->limited, because
2290 * in that case we have no record of how much is already in use.
2292 if (config
.max_blocks
&& !sbinfo
->max_blocks
)
2294 if (config
.max_inodes
&& !sbinfo
->max_inodes
)
2298 sbinfo
->max_blocks
= config
.max_blocks
;
2299 sbinfo
->max_inodes
= config
.max_inodes
;
2300 sbinfo
->free_inodes
= config
.max_inodes
- inodes
;
2302 mpol_put(sbinfo
->mpol
);
2303 sbinfo
->mpol
= config
.mpol
; /* transfers initial ref */
2305 spin_unlock(&sbinfo
->stat_lock
);
2309 static int shmem_show_options(struct seq_file
*seq
, struct vfsmount
*vfs
)
2311 struct shmem_sb_info
*sbinfo
= SHMEM_SB(vfs
->mnt_sb
);
2313 if (sbinfo
->max_blocks
!= shmem_default_max_blocks())
2314 seq_printf(seq
, ",size=%luk",
2315 sbinfo
->max_blocks
<< (PAGE_CACHE_SHIFT
- 10));
2316 if (sbinfo
->max_inodes
!= shmem_default_max_inodes())
2317 seq_printf(seq
, ",nr_inodes=%lu", sbinfo
->max_inodes
);
2318 if (sbinfo
->mode
!= (S_IRWXUGO
| S_ISVTX
))
2319 seq_printf(seq
, ",mode=%03o", sbinfo
->mode
);
2320 if (sbinfo
->uid
!= 0)
2321 seq_printf(seq
, ",uid=%u", sbinfo
->uid
);
2322 if (sbinfo
->gid
!= 0)
2323 seq_printf(seq
, ",gid=%u", sbinfo
->gid
);
2324 shmem_show_mpol(seq
, sbinfo
->mpol
);
2327 #endif /* CONFIG_TMPFS */
2329 static void shmem_put_super(struct super_block
*sb
)
2331 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
2333 percpu_counter_destroy(&sbinfo
->used_blocks
);
2335 sb
->s_fs_info
= NULL
;
2338 int shmem_fill_super(struct super_block
*sb
, void *data
, int silent
)
2340 struct inode
*inode
;
2341 struct dentry
*root
;
2342 struct shmem_sb_info
*sbinfo
;
2345 /* Round up to L1_CACHE_BYTES to resist false sharing */
2346 sbinfo
= kzalloc(max((int)sizeof(struct shmem_sb_info
),
2347 L1_CACHE_BYTES
), GFP_KERNEL
);
2351 sbinfo
->mode
= S_IRWXUGO
| S_ISVTX
;
2352 sbinfo
->uid
= current_fsuid();
2353 sbinfo
->gid
= current_fsgid();
2354 sb
->s_fs_info
= sbinfo
;
2358 * Per default we only allow half of the physical ram per
2359 * tmpfs instance, limiting inodes to one per page of lowmem;
2360 * but the internal instance is left unlimited.
2362 if (!(sb
->s_flags
& MS_NOUSER
)) {
2363 sbinfo
->max_blocks
= shmem_default_max_blocks();
2364 sbinfo
->max_inodes
= shmem_default_max_inodes();
2365 if (shmem_parse_options(data
, sbinfo
, false)) {
2370 sb
->s_export_op
= &shmem_export_ops
;
2372 sb
->s_flags
|= MS_NOUSER
;
2375 spin_lock_init(&sbinfo
->stat_lock
);
2376 if (percpu_counter_init(&sbinfo
->used_blocks
, 0))
2378 sbinfo
->free_inodes
= sbinfo
->max_inodes
;
2380 sb
->s_maxbytes
= SHMEM_MAX_BYTES
;
2381 sb
->s_blocksize
= PAGE_CACHE_SIZE
;
2382 sb
->s_blocksize_bits
= PAGE_CACHE_SHIFT
;
2383 sb
->s_magic
= TMPFS_MAGIC
;
2384 sb
->s_op
= &shmem_ops
;
2385 sb
->s_time_gran
= 1;
2386 #ifdef CONFIG_TMPFS_POSIX_ACL
2387 sb
->s_xattr
= shmem_xattr_handlers
;
2388 sb
->s_flags
|= MS_POSIXACL
;
2391 inode
= shmem_get_inode(sb
, NULL
, S_IFDIR
| sbinfo
->mode
, 0, VM_NORESERVE
);
2394 inode
->i_uid
= sbinfo
->uid
;
2395 inode
->i_gid
= sbinfo
->gid
;
2396 root
= d_alloc_root(inode
);
2405 shmem_put_super(sb
);
2409 static struct kmem_cache
*shmem_inode_cachep
;
2411 static struct inode
*shmem_alloc_inode(struct super_block
*sb
)
2413 struct shmem_inode_info
*p
;
2414 p
= (struct shmem_inode_info
*)kmem_cache_alloc(shmem_inode_cachep
, GFP_KERNEL
);
2417 return &p
->vfs_inode
;
2420 static void shmem_i_callback(struct rcu_head
*head
)
2422 struct inode
*inode
= container_of(head
, struct inode
, i_rcu
);
2423 INIT_LIST_HEAD(&inode
->i_dentry
);
2424 kmem_cache_free(shmem_inode_cachep
, SHMEM_I(inode
));
2427 static void shmem_destroy_inode(struct inode
*inode
)
2429 if ((inode
->i_mode
& S_IFMT
) == S_IFREG
) {
2430 /* only struct inode is valid if it's an inline symlink */
2431 mpol_free_shared_policy(&SHMEM_I(inode
)->policy
);
2433 call_rcu(&inode
->i_rcu
, shmem_i_callback
);
2436 static void init_once(void *foo
)
2438 struct shmem_inode_info
*p
= (struct shmem_inode_info
*) foo
;
2440 inode_init_once(&p
->vfs_inode
);
2443 static int init_inodecache(void)
2445 shmem_inode_cachep
= kmem_cache_create("shmem_inode_cache",
2446 sizeof(struct shmem_inode_info
),
2447 0, SLAB_PANIC
, init_once
);
2451 static void destroy_inodecache(void)
2453 kmem_cache_destroy(shmem_inode_cachep
);
2456 static const struct address_space_operations shmem_aops
= {
2457 .writepage
= shmem_writepage
,
2458 .set_page_dirty
= __set_page_dirty_no_writeback
,
2460 .readpage
= shmem_readpage
,
2461 .write_begin
= shmem_write_begin
,
2462 .write_end
= shmem_write_end
,
2464 .migratepage
= migrate_page
,
2465 .error_remove_page
= generic_error_remove_page
,
2468 static const struct file_operations shmem_file_operations
= {
2471 .llseek
= generic_file_llseek
,
2472 .read
= do_sync_read
,
2473 .write
= do_sync_write
,
2474 .aio_read
= shmem_file_aio_read
,
2475 .aio_write
= generic_file_aio_write
,
2476 .fsync
= noop_fsync
,
2477 .splice_read
= generic_file_splice_read
,
2478 .splice_write
= generic_file_splice_write
,
2482 static const struct inode_operations shmem_inode_operations
= {
2483 .setattr
= shmem_notify_change
,
2484 .truncate_range
= shmem_truncate_range
,
2485 #ifdef CONFIG_TMPFS_POSIX_ACL
2486 .setxattr
= generic_setxattr
,
2487 .getxattr
= generic_getxattr
,
2488 .listxattr
= generic_listxattr
,
2489 .removexattr
= generic_removexattr
,
2490 .check_acl
= generic_check_acl
,
2495 static const struct inode_operations shmem_dir_inode_operations
= {
2497 .create
= shmem_create
,
2498 .lookup
= simple_lookup
,
2500 .unlink
= shmem_unlink
,
2501 .symlink
= shmem_symlink
,
2502 .mkdir
= shmem_mkdir
,
2503 .rmdir
= shmem_rmdir
,
2504 .mknod
= shmem_mknod
,
2505 .rename
= shmem_rename
,
2507 #ifdef CONFIG_TMPFS_POSIX_ACL
2508 .setattr
= shmem_notify_change
,
2509 .setxattr
= generic_setxattr
,
2510 .getxattr
= generic_getxattr
,
2511 .listxattr
= generic_listxattr
,
2512 .removexattr
= generic_removexattr
,
2513 .check_acl
= generic_check_acl
,
2517 static const struct inode_operations shmem_special_inode_operations
= {
2518 #ifdef CONFIG_TMPFS_POSIX_ACL
2519 .setattr
= shmem_notify_change
,
2520 .setxattr
= generic_setxattr
,
2521 .getxattr
= generic_getxattr
,
2522 .listxattr
= generic_listxattr
,
2523 .removexattr
= generic_removexattr
,
2524 .check_acl
= generic_check_acl
,
2528 static const struct super_operations shmem_ops
= {
2529 .alloc_inode
= shmem_alloc_inode
,
2530 .destroy_inode
= shmem_destroy_inode
,
2532 .statfs
= shmem_statfs
,
2533 .remount_fs
= shmem_remount_fs
,
2534 .show_options
= shmem_show_options
,
2536 .evict_inode
= shmem_evict_inode
,
2537 .drop_inode
= generic_delete_inode
,
2538 .put_super
= shmem_put_super
,
2541 static const struct vm_operations_struct shmem_vm_ops
= {
2542 .fault
= shmem_fault
,
2544 .set_policy
= shmem_set_policy
,
2545 .get_policy
= shmem_get_policy
,
2550 static struct dentry
*shmem_mount(struct file_system_type
*fs_type
,
2551 int flags
, const char *dev_name
, void *data
)
2553 return mount_nodev(fs_type
, flags
, data
, shmem_fill_super
);
2556 static struct file_system_type tmpfs_fs_type
= {
2557 .owner
= THIS_MODULE
,
2559 .mount
= shmem_mount
,
2560 .kill_sb
= kill_litter_super
,
2563 int __init
init_tmpfs(void)
2567 error
= bdi_init(&shmem_backing_dev_info
);
2571 error
= init_inodecache();
2575 error
= register_filesystem(&tmpfs_fs_type
);
2577 printk(KERN_ERR
"Could not register tmpfs\n");
2581 shm_mnt
= vfs_kern_mount(&tmpfs_fs_type
, MS_NOUSER
,
2582 tmpfs_fs_type
.name
, NULL
);
2583 if (IS_ERR(shm_mnt
)) {
2584 error
= PTR_ERR(shm_mnt
);
2585 printk(KERN_ERR
"Could not kern_mount tmpfs\n");
2591 unregister_filesystem(&tmpfs_fs_type
);
2593 destroy_inodecache();
2595 bdi_destroy(&shmem_backing_dev_info
);
2597 shm_mnt
= ERR_PTR(error
);
2601 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
2603 * mem_cgroup_get_shmem_target - find a page or entry assigned to the shmem file
2604 * @inode: the inode to be searched
2605 * @pgoff: the offset to be searched
2606 * @pagep: the pointer for the found page to be stored
2607 * @ent: the pointer for the found swap entry to be stored
2609 * If a page is found, refcount of it is incremented. Callers should handle
2612 void mem_cgroup_get_shmem_target(struct inode
*inode
, pgoff_t pgoff
,
2613 struct page
**pagep
, swp_entry_t
*ent
)
2615 swp_entry_t entry
= { .val
= 0 }, *ptr
;
2616 struct page
*page
= NULL
;
2617 struct shmem_inode_info
*info
= SHMEM_I(inode
);
2619 if ((pgoff
<< PAGE_CACHE_SHIFT
) >= i_size_read(inode
))
2622 spin_lock(&info
->lock
);
2623 ptr
= shmem_swp_entry(info
, pgoff
, NULL
);
2625 if (ptr
&& ptr
->val
) {
2626 entry
.val
= ptr
->val
;
2627 page
= find_get_page(&swapper_space
, entry
.val
);
2630 page
= find_get_page(inode
->i_mapping
, pgoff
);
2632 shmem_swp_unmap(ptr
);
2633 spin_unlock(&info
->lock
);
2640 #else /* !CONFIG_SHMEM */
2643 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
2645 * This is intended for small system where the benefits of the full
2646 * shmem code (swap-backed and resource-limited) are outweighed by
2647 * their complexity. On systems without swap this code should be
2648 * effectively equivalent, but much lighter weight.
2651 #include <linux/ramfs.h>
2653 static struct file_system_type tmpfs_fs_type
= {
2655 .mount
= ramfs_mount
,
2656 .kill_sb
= kill_litter_super
,
2659 int __init
init_tmpfs(void)
2661 BUG_ON(register_filesystem(&tmpfs_fs_type
) != 0);
2663 shm_mnt
= kern_mount(&tmpfs_fs_type
);
2664 BUG_ON(IS_ERR(shm_mnt
));
2669 int shmem_unuse(swp_entry_t entry
, struct page
*page
)
2674 int shmem_lock(struct file
*file
, int lock
, struct user_struct
*user
)
2679 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
2681 * mem_cgroup_get_shmem_target - find a page or entry assigned to the shmem file
2682 * @inode: the inode to be searched
2683 * @pgoff: the offset to be searched
2684 * @pagep: the pointer for the found page to be stored
2685 * @ent: the pointer for the found swap entry to be stored
2687 * If a page is found, refcount of it is incremented. Callers should handle
2690 void mem_cgroup_get_shmem_target(struct inode
*inode
, pgoff_t pgoff
,
2691 struct page
**pagep
, swp_entry_t
*ent
)
2693 struct page
*page
= NULL
;
2695 if ((pgoff
<< PAGE_CACHE_SHIFT
) >= i_size_read(inode
))
2697 page
= find_get_page(inode
->i_mapping
, pgoff
);
2700 *ent
= (swp_entry_t
){ .val
= 0 };
2704 #define shmem_vm_ops generic_file_vm_ops
2705 #define shmem_file_operations ramfs_file_operations
2706 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
2707 #define shmem_acct_size(flags, size) 0
2708 #define shmem_unacct_size(flags, size) do {} while (0)
2709 #define SHMEM_MAX_BYTES MAX_LFS_FILESIZE
2711 #endif /* CONFIG_SHMEM */
2716 * shmem_file_setup - get an unlinked file living in tmpfs
2717 * @name: name for dentry (to be seen in /proc/<pid>/maps
2718 * @size: size to be set for the file
2719 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
2721 struct file
*shmem_file_setup(const char *name
, loff_t size
, unsigned long flags
)
2725 struct inode
*inode
;
2727 struct dentry
*root
;
2730 if (IS_ERR(shm_mnt
))
2731 return (void *)shm_mnt
;
2733 if (size
< 0 || size
> SHMEM_MAX_BYTES
)
2734 return ERR_PTR(-EINVAL
);
2736 if (shmem_acct_size(flags
, size
))
2737 return ERR_PTR(-ENOMEM
);
2741 this.len
= strlen(name
);
2742 this.hash
= 0; /* will go */
2743 root
= shm_mnt
->mnt_root
;
2744 path
.dentry
= d_alloc(root
, &this);
2747 path
.mnt
= mntget(shm_mnt
);
2750 inode
= shmem_get_inode(root
->d_sb
, NULL
, S_IFREG
| S_IRWXUGO
, 0, flags
);
2754 d_instantiate(path
.dentry
, inode
);
2755 inode
->i_size
= size
;
2756 inode
->i_nlink
= 0; /* It is unlinked */
2758 error
= ramfs_nommu_expand_for_mapping(inode
, size
);
2764 file
= alloc_file(&path
, FMODE_WRITE
| FMODE_READ
,
2765 &shmem_file_operations
);
2774 shmem_unacct_size(flags
, size
);
2775 return ERR_PTR(error
);
2777 EXPORT_SYMBOL_GPL(shmem_file_setup
);
2780 * shmem_zero_setup - setup a shared anonymous mapping
2781 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
2783 int shmem_zero_setup(struct vm_area_struct
*vma
)
2786 loff_t size
= vma
->vm_end
- vma
->vm_start
;
2788 file
= shmem_file_setup("dev/zero", size
, vma
->vm_flags
);
2790 return PTR_ERR(file
);
2794 vma
->vm_file
= file
;
2795 vma
->vm_ops
= &shmem_vm_ops
;
2796 vma
->vm_flags
|= VM_CAN_NONLINEAR
;