2 * scsi_lib.c Copyright (C) 1999 Eric Youngdale
4 * SCSI queueing library.
5 * Initial versions: Eric Youngdale (eric@andante.org).
6 * Based upon conversations with large numbers
7 * of people at Linux Expo.
10 #include <linux/bio.h>
11 #include <linux/bitops.h>
12 #include <linux/blkdev.h>
13 #include <linux/completion.h>
14 #include <linux/kernel.h>
15 #include <linux/mempool.h>
16 #include <linux/slab.h>
17 #include <linux/init.h>
18 #include <linux/pci.h>
19 #include <linux/delay.h>
20 #include <linux/hardirq.h>
21 #include <linux/scatterlist.h>
23 #include <scsi/scsi.h>
24 #include <scsi/scsi_cmnd.h>
25 #include <scsi/scsi_dbg.h>
26 #include <scsi/scsi_device.h>
27 #include <scsi/scsi_driver.h>
28 #include <scsi/scsi_eh.h>
29 #include <scsi/scsi_host.h>
31 #include "scsi_priv.h"
32 #include "scsi_logging.h"
35 #define SG_MEMPOOL_NR ARRAY_SIZE(scsi_sg_pools)
36 #define SG_MEMPOOL_SIZE 2
38 struct scsi_host_sg_pool
{
41 struct kmem_cache
*slab
;
45 #define SP(x) { x, "sgpool-" __stringify(x) }
46 #if (SCSI_MAX_SG_SEGMENTS < 32)
47 #error SCSI_MAX_SG_SEGMENTS is too small (must be 32 or greater)
49 static struct scsi_host_sg_pool scsi_sg_pools
[] = {
52 #if (SCSI_MAX_SG_SEGMENTS > 32)
54 #if (SCSI_MAX_SG_SEGMENTS > 64)
56 #if (SCSI_MAX_SG_SEGMENTS > 128)
58 #if (SCSI_MAX_SG_SEGMENTS > 256)
59 #error SCSI_MAX_SG_SEGMENTS is too large (256 MAX)
64 SP(SCSI_MAX_SG_SEGMENTS
)
68 struct kmem_cache
*scsi_sdb_cache
;
71 * When to reinvoke queueing after a resource shortage. It's 3 msecs to
72 * not change behaviour from the previous unplug mechanism, experimentation
73 * may prove this needs changing.
75 #define SCSI_QUEUE_DELAY 3
78 * Function: scsi_unprep_request()
80 * Purpose: Remove all preparation done for a request, including its
81 * associated scsi_cmnd, so that it can be requeued.
83 * Arguments: req - request to unprepare
85 * Lock status: Assumed that no locks are held upon entry.
89 static void scsi_unprep_request(struct request
*req
)
91 struct scsi_cmnd
*cmd
= req
->special
;
93 blk_unprep_request(req
);
96 scsi_put_command(cmd
);
100 * __scsi_queue_insert - private queue insertion
101 * @cmd: The SCSI command being requeued
102 * @reason: The reason for the requeue
103 * @unbusy: Whether the queue should be unbusied
105 * This is a private queue insertion. The public interface
106 * scsi_queue_insert() always assumes the queue should be unbusied
107 * because it's always called before the completion. This function is
108 * for a requeue after completion, which should only occur in this
111 static int __scsi_queue_insert(struct scsi_cmnd
*cmd
, int reason
, int unbusy
)
113 struct Scsi_Host
*host
= cmd
->device
->host
;
114 struct scsi_device
*device
= cmd
->device
;
115 struct scsi_target
*starget
= scsi_target(device
);
116 struct request_queue
*q
= device
->request_queue
;
120 printk("Inserting command %p into mlqueue\n", cmd
));
123 * Set the appropriate busy bit for the device/host.
125 * If the host/device isn't busy, assume that something actually
126 * completed, and that we should be able to queue a command now.
128 * Note that the prior mid-layer assumption that any host could
129 * always queue at least one command is now broken. The mid-layer
130 * will implement a user specifiable stall (see
131 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
132 * if a command is requeued with no other commands outstanding
133 * either for the device or for the host.
136 case SCSI_MLQUEUE_HOST_BUSY
:
137 host
->host_blocked
= host
->max_host_blocked
;
139 case SCSI_MLQUEUE_DEVICE_BUSY
:
140 device
->device_blocked
= device
->max_device_blocked
;
142 case SCSI_MLQUEUE_TARGET_BUSY
:
143 starget
->target_blocked
= starget
->max_target_blocked
;
148 * Decrement the counters, since these commands are no longer
149 * active on the host/device.
152 scsi_device_unbusy(device
);
155 * Requeue this command. It will go before all other commands
156 * that are already in the queue.
158 spin_lock_irqsave(q
->queue_lock
, flags
);
159 blk_requeue_request(q
, cmd
->request
);
160 spin_unlock_irqrestore(q
->queue_lock
, flags
);
162 kblockd_schedule_work(q
, &device
->requeue_work
);
168 * Function: scsi_queue_insert()
170 * Purpose: Insert a command in the midlevel queue.
172 * Arguments: cmd - command that we are adding to queue.
173 * reason - why we are inserting command to queue.
175 * Lock status: Assumed that lock is not held upon entry.
179 * Notes: We do this for one of two cases. Either the host is busy
180 * and it cannot accept any more commands for the time being,
181 * or the device returned QUEUE_FULL and can accept no more
183 * Notes: This could be called either from an interrupt context or a
184 * normal process context.
186 int scsi_queue_insert(struct scsi_cmnd
*cmd
, int reason
)
188 return __scsi_queue_insert(cmd
, reason
, 1);
191 * scsi_execute - insert request and wait for the result
194 * @data_direction: data direction
195 * @buffer: data buffer
196 * @bufflen: len of buffer
197 * @sense: optional sense buffer
198 * @timeout: request timeout in seconds
199 * @retries: number of times to retry request
200 * @flags: or into request flags;
201 * @resid: optional residual length
203 * returns the req->errors value which is the scsi_cmnd result
206 int scsi_execute(struct scsi_device
*sdev
, const unsigned char *cmd
,
207 int data_direction
, void *buffer
, unsigned bufflen
,
208 unsigned char *sense
, int timeout
, int retries
, int flags
,
212 int write
= (data_direction
== DMA_TO_DEVICE
);
213 int ret
= DRIVER_ERROR
<< 24;
215 req
= blk_get_request(sdev
->request_queue
, write
, __GFP_WAIT
);
219 if (bufflen
&& blk_rq_map_kern(sdev
->request_queue
, req
,
220 buffer
, bufflen
, __GFP_WAIT
))
223 req
->cmd_len
= COMMAND_SIZE(cmd
[0]);
224 memcpy(req
->cmd
, cmd
, req
->cmd_len
);
227 req
->retries
= retries
;
228 req
->timeout
= timeout
;
229 req
->cmd_type
= REQ_TYPE_BLOCK_PC
;
230 req
->cmd_flags
|= flags
| REQ_QUIET
| REQ_PREEMPT
;
233 * head injection *required* here otherwise quiesce won't work
235 blk_execute_rq(req
->q
, NULL
, req
, 1);
238 * Some devices (USB mass-storage in particular) may transfer
239 * garbage data together with a residue indicating that the data
240 * is invalid. Prevent the garbage from being misinterpreted
241 * and prevent security leaks by zeroing out the excess data.
243 if (unlikely(req
->resid_len
> 0 && req
->resid_len
<= bufflen
))
244 memset(buffer
+ (bufflen
- req
->resid_len
), 0, req
->resid_len
);
247 *resid
= req
->resid_len
;
250 blk_put_request(req
);
254 EXPORT_SYMBOL(scsi_execute
);
257 int scsi_execute_req(struct scsi_device
*sdev
, const unsigned char *cmd
,
258 int data_direction
, void *buffer
, unsigned bufflen
,
259 struct scsi_sense_hdr
*sshdr
, int timeout
, int retries
,
266 sense
= kzalloc(SCSI_SENSE_BUFFERSIZE
, GFP_NOIO
);
268 return DRIVER_ERROR
<< 24;
270 result
= scsi_execute(sdev
, cmd
, data_direction
, buffer
, bufflen
,
271 sense
, timeout
, retries
, 0, resid
);
273 scsi_normalize_sense(sense
, SCSI_SENSE_BUFFERSIZE
, sshdr
);
278 EXPORT_SYMBOL(scsi_execute_req
);
281 * Function: scsi_init_cmd_errh()
283 * Purpose: Initialize cmd fields related to error handling.
285 * Arguments: cmd - command that is ready to be queued.
287 * Notes: This function has the job of initializing a number of
288 * fields related to error handling. Typically this will
289 * be called once for each command, as required.
291 static void scsi_init_cmd_errh(struct scsi_cmnd
*cmd
)
293 cmd
->serial_number
= 0;
294 scsi_set_resid(cmd
, 0);
295 memset(cmd
->sense_buffer
, 0, SCSI_SENSE_BUFFERSIZE
);
296 if (cmd
->cmd_len
== 0)
297 cmd
->cmd_len
= scsi_command_size(cmd
->cmnd
);
300 void scsi_device_unbusy(struct scsi_device
*sdev
)
302 struct Scsi_Host
*shost
= sdev
->host
;
303 struct scsi_target
*starget
= scsi_target(sdev
);
306 spin_lock_irqsave(shost
->host_lock
, flags
);
308 starget
->target_busy
--;
309 if (unlikely(scsi_host_in_recovery(shost
) &&
310 (shost
->host_failed
|| shost
->host_eh_scheduled
)))
311 scsi_eh_wakeup(shost
);
312 spin_unlock(shost
->host_lock
);
313 spin_lock(sdev
->request_queue
->queue_lock
);
315 spin_unlock_irqrestore(sdev
->request_queue
->queue_lock
, flags
);
319 * Called for single_lun devices on IO completion. Clear starget_sdev_user,
320 * and call blk_run_queue for all the scsi_devices on the target -
321 * including current_sdev first.
323 * Called with *no* scsi locks held.
325 static void scsi_single_lun_run(struct scsi_device
*current_sdev
)
327 struct Scsi_Host
*shost
= current_sdev
->host
;
328 struct scsi_device
*sdev
, *tmp
;
329 struct scsi_target
*starget
= scsi_target(current_sdev
);
332 spin_lock_irqsave(shost
->host_lock
, flags
);
333 starget
->starget_sdev_user
= NULL
;
334 spin_unlock_irqrestore(shost
->host_lock
, flags
);
337 * Call blk_run_queue for all LUNs on the target, starting with
338 * current_sdev. We race with others (to set starget_sdev_user),
339 * but in most cases, we will be first. Ideally, each LU on the
340 * target would get some limited time or requests on the target.
342 blk_run_queue(current_sdev
->request_queue
);
344 spin_lock_irqsave(shost
->host_lock
, flags
);
345 if (starget
->starget_sdev_user
)
347 list_for_each_entry_safe(sdev
, tmp
, &starget
->devices
,
348 same_target_siblings
) {
349 if (sdev
== current_sdev
)
351 if (scsi_device_get(sdev
))
354 spin_unlock_irqrestore(shost
->host_lock
, flags
);
355 blk_run_queue(sdev
->request_queue
);
356 spin_lock_irqsave(shost
->host_lock
, flags
);
358 scsi_device_put(sdev
);
361 spin_unlock_irqrestore(shost
->host_lock
, flags
);
364 static inline int scsi_device_is_busy(struct scsi_device
*sdev
)
366 if (sdev
->device_busy
>= sdev
->queue_depth
|| sdev
->device_blocked
)
372 static inline int scsi_target_is_busy(struct scsi_target
*starget
)
374 return ((starget
->can_queue
> 0 &&
375 starget
->target_busy
>= starget
->can_queue
) ||
376 starget
->target_blocked
);
379 static inline int scsi_host_is_busy(struct Scsi_Host
*shost
)
381 if ((shost
->can_queue
> 0 && shost
->host_busy
>= shost
->can_queue
) ||
382 shost
->host_blocked
|| shost
->host_self_blocked
)
389 * Function: scsi_run_queue()
391 * Purpose: Select a proper request queue to serve next
393 * Arguments: q - last request's queue
397 * Notes: The previous command was completely finished, start
398 * a new one if possible.
400 static void scsi_run_queue(struct request_queue
*q
)
402 struct scsi_device
*sdev
= q
->queuedata
;
403 struct Scsi_Host
*shost
;
404 LIST_HEAD(starved_list
);
407 /* if the device is dead, sdev will be NULL, so no queue to run */
412 if (scsi_target(sdev
)->single_lun
)
413 scsi_single_lun_run(sdev
);
415 spin_lock_irqsave(shost
->host_lock
, flags
);
416 list_splice_init(&shost
->starved_list
, &starved_list
);
418 while (!list_empty(&starved_list
)) {
420 * As long as shost is accepting commands and we have
421 * starved queues, call blk_run_queue. scsi_request_fn
422 * drops the queue_lock and can add us back to the
425 * host_lock protects the starved_list and starved_entry.
426 * scsi_request_fn must get the host_lock before checking
427 * or modifying starved_list or starved_entry.
429 if (scsi_host_is_busy(shost
))
432 sdev
= list_entry(starved_list
.next
,
433 struct scsi_device
, starved_entry
);
434 list_del_init(&sdev
->starved_entry
);
435 if (scsi_target_is_busy(scsi_target(sdev
))) {
436 list_move_tail(&sdev
->starved_entry
,
437 &shost
->starved_list
);
441 spin_unlock(shost
->host_lock
);
442 spin_lock(sdev
->request_queue
->queue_lock
);
443 __blk_run_queue(sdev
->request_queue
);
444 spin_unlock(sdev
->request_queue
->queue_lock
);
445 spin_lock(shost
->host_lock
);
447 /* put any unprocessed entries back */
448 list_splice(&starved_list
, &shost
->starved_list
);
449 spin_unlock_irqrestore(shost
->host_lock
, flags
);
454 void scsi_requeue_run_queue(struct work_struct
*work
)
456 struct scsi_device
*sdev
;
457 struct request_queue
*q
;
459 sdev
= container_of(work
, struct scsi_device
, requeue_work
);
460 q
= sdev
->request_queue
;
465 * Function: scsi_requeue_command()
467 * Purpose: Handle post-processing of completed commands.
469 * Arguments: q - queue to operate on
470 * cmd - command that may need to be requeued.
474 * Notes: After command completion, there may be blocks left
475 * over which weren't finished by the previous command
476 * this can be for a number of reasons - the main one is
477 * I/O errors in the middle of the request, in which case
478 * we need to request the blocks that come after the bad
480 * Notes: Upon return, cmd is a stale pointer.
482 static void scsi_requeue_command(struct request_queue
*q
, struct scsi_cmnd
*cmd
)
484 struct request
*req
= cmd
->request
;
487 spin_lock_irqsave(q
->queue_lock
, flags
);
488 scsi_unprep_request(req
);
489 blk_requeue_request(q
, req
);
490 spin_unlock_irqrestore(q
->queue_lock
, flags
);
495 void scsi_next_command(struct scsi_cmnd
*cmd
)
497 struct scsi_device
*sdev
= cmd
->device
;
498 struct request_queue
*q
= sdev
->request_queue
;
500 /* need to hold a reference on the device before we let go of the cmd */
501 get_device(&sdev
->sdev_gendev
);
503 scsi_put_command(cmd
);
506 /* ok to remove device now */
507 put_device(&sdev
->sdev_gendev
);
510 void scsi_run_host_queues(struct Scsi_Host
*shost
)
512 struct scsi_device
*sdev
;
514 shost_for_each_device(sdev
, shost
)
515 scsi_run_queue(sdev
->request_queue
);
518 static void __scsi_release_buffers(struct scsi_cmnd
*, int);
521 * Function: scsi_end_request()
523 * Purpose: Post-processing of completed commands (usually invoked at end
524 * of upper level post-processing and scsi_io_completion).
526 * Arguments: cmd - command that is complete.
527 * error - 0 if I/O indicates success, < 0 for I/O error.
528 * bytes - number of bytes of completed I/O
529 * requeue - indicates whether we should requeue leftovers.
531 * Lock status: Assumed that lock is not held upon entry.
533 * Returns: cmd if requeue required, NULL otherwise.
535 * Notes: This is called for block device requests in order to
536 * mark some number of sectors as complete.
538 * We are guaranteeing that the request queue will be goosed
539 * at some point during this call.
540 * Notes: If cmd was requeued, upon return it will be a stale pointer.
542 static struct scsi_cmnd
*scsi_end_request(struct scsi_cmnd
*cmd
, int error
,
543 int bytes
, int requeue
)
545 struct request_queue
*q
= cmd
->device
->request_queue
;
546 struct request
*req
= cmd
->request
;
549 * If there are blocks left over at the end, set up the command
550 * to queue the remainder of them.
552 if (blk_end_request(req
, error
, bytes
)) {
553 /* kill remainder if no retrys */
554 if (error
&& scsi_noretry_cmd(cmd
))
555 blk_end_request_all(req
, error
);
559 * Bleah. Leftovers again. Stick the
560 * leftovers in the front of the
561 * queue, and goose the queue again.
563 scsi_release_buffers(cmd
);
564 scsi_requeue_command(q
, cmd
);
572 * This will goose the queue request function at the end, so we don't
573 * need to worry about launching another command.
575 __scsi_release_buffers(cmd
, 0);
576 scsi_next_command(cmd
);
580 static inline unsigned int scsi_sgtable_index(unsigned short nents
)
584 BUG_ON(nents
> SCSI_MAX_SG_SEGMENTS
);
589 index
= get_count_order(nents
) - 3;
594 static void scsi_sg_free(struct scatterlist
*sgl
, unsigned int nents
)
596 struct scsi_host_sg_pool
*sgp
;
598 sgp
= scsi_sg_pools
+ scsi_sgtable_index(nents
);
599 mempool_free(sgl
, sgp
->pool
);
602 static struct scatterlist
*scsi_sg_alloc(unsigned int nents
, gfp_t gfp_mask
)
604 struct scsi_host_sg_pool
*sgp
;
606 sgp
= scsi_sg_pools
+ scsi_sgtable_index(nents
);
607 return mempool_alloc(sgp
->pool
, gfp_mask
);
610 static int scsi_alloc_sgtable(struct scsi_data_buffer
*sdb
, int nents
,
617 ret
= __sg_alloc_table(&sdb
->table
, nents
, SCSI_MAX_SG_SEGMENTS
,
618 gfp_mask
, scsi_sg_alloc
);
620 __sg_free_table(&sdb
->table
, SCSI_MAX_SG_SEGMENTS
,
626 static void scsi_free_sgtable(struct scsi_data_buffer
*sdb
)
628 __sg_free_table(&sdb
->table
, SCSI_MAX_SG_SEGMENTS
, scsi_sg_free
);
631 static void __scsi_release_buffers(struct scsi_cmnd
*cmd
, int do_bidi_check
)
634 if (cmd
->sdb
.table
.nents
)
635 scsi_free_sgtable(&cmd
->sdb
);
637 memset(&cmd
->sdb
, 0, sizeof(cmd
->sdb
));
639 if (do_bidi_check
&& scsi_bidi_cmnd(cmd
)) {
640 struct scsi_data_buffer
*bidi_sdb
=
641 cmd
->request
->next_rq
->special
;
642 scsi_free_sgtable(bidi_sdb
);
643 kmem_cache_free(scsi_sdb_cache
, bidi_sdb
);
644 cmd
->request
->next_rq
->special
= NULL
;
647 if (scsi_prot_sg_count(cmd
))
648 scsi_free_sgtable(cmd
->prot_sdb
);
652 * Function: scsi_release_buffers()
654 * Purpose: Completion processing for block device I/O requests.
656 * Arguments: cmd - command that we are bailing.
658 * Lock status: Assumed that no lock is held upon entry.
662 * Notes: In the event that an upper level driver rejects a
663 * command, we must release resources allocated during
664 * the __init_io() function. Primarily this would involve
665 * the scatter-gather table, and potentially any bounce
668 void scsi_release_buffers(struct scsi_cmnd
*cmd
)
670 __scsi_release_buffers(cmd
, 1);
672 EXPORT_SYMBOL(scsi_release_buffers
);
674 static int __scsi_error_from_host_byte(struct scsi_cmnd
*cmd
, int result
)
678 switch(host_byte(result
)) {
679 case DID_TRANSPORT_FAILFAST
:
682 case DID_TARGET_FAILURE
:
683 cmd
->result
|= (DID_OK
<< 16);
686 case DID_NEXUS_FAILURE
:
687 cmd
->result
|= (DID_OK
<< 16);
699 * Function: scsi_io_completion()
701 * Purpose: Completion processing for block device I/O requests.
703 * Arguments: cmd - command that is finished.
705 * Lock status: Assumed that no lock is held upon entry.
709 * Notes: This function is matched in terms of capabilities to
710 * the function that created the scatter-gather list.
711 * In other words, if there are no bounce buffers
712 * (the normal case for most drivers), we don't need
713 * the logic to deal with cleaning up afterwards.
715 * We must call scsi_end_request(). This will finish off
716 * the specified number of sectors. If we are done, the
717 * command block will be released and the queue function
718 * will be goosed. If we are not done then we have to
719 * figure out what to do next:
721 * a) We can call scsi_requeue_command(). The request
722 * will be unprepared and put back on the queue. Then
723 * a new command will be created for it. This should
724 * be used if we made forward progress, or if we want
725 * to switch from READ(10) to READ(6) for example.
727 * b) We can call scsi_queue_insert(). The request will
728 * be put back on the queue and retried using the same
729 * command as before, possibly after a delay.
731 * c) We can call blk_end_request() with -EIO to fail
732 * the remainder of the request.
734 void scsi_io_completion(struct scsi_cmnd
*cmd
, unsigned int good_bytes
)
736 int result
= cmd
->result
;
737 struct request_queue
*q
= cmd
->device
->request_queue
;
738 struct request
*req
= cmd
->request
;
740 struct scsi_sense_hdr sshdr
;
742 int sense_deferred
= 0;
743 enum {ACTION_FAIL
, ACTION_REPREP
, ACTION_RETRY
,
744 ACTION_DELAYED_RETRY
} action
;
745 char *description
= NULL
;
748 sense_valid
= scsi_command_normalize_sense(cmd
, &sshdr
);
750 sense_deferred
= scsi_sense_is_deferred(&sshdr
);
753 if (req
->cmd_type
== REQ_TYPE_BLOCK_PC
) { /* SG_IO ioctl from block level */
754 req
->errors
= result
;
756 if (sense_valid
&& req
->sense
) {
758 * SG_IO wants current and deferred errors
760 int len
= 8 + cmd
->sense_buffer
[7];
762 if (len
> SCSI_SENSE_BUFFERSIZE
)
763 len
= SCSI_SENSE_BUFFERSIZE
;
764 memcpy(req
->sense
, cmd
->sense_buffer
, len
);
765 req
->sense_len
= len
;
768 error
= __scsi_error_from_host_byte(cmd
, result
);
771 req
->resid_len
= scsi_get_resid(cmd
);
773 if (scsi_bidi_cmnd(cmd
)) {
775 * Bidi commands Must be complete as a whole,
776 * both sides at once.
778 req
->next_rq
->resid_len
= scsi_in(cmd
)->resid
;
780 scsi_release_buffers(cmd
);
781 blk_end_request_all(req
, 0);
783 scsi_next_command(cmd
);
788 /* no bidi support for !REQ_TYPE_BLOCK_PC yet */
789 BUG_ON(blk_bidi_rq(req
));
792 * Next deal with any sectors which we were able to correctly
795 SCSI_LOG_HLCOMPLETE(1, printk("%u sectors total, "
797 blk_rq_sectors(req
), good_bytes
));
800 * Recovered errors need reporting, but they're always treated
801 * as success, so fiddle the result code here. For BLOCK_PC
802 * we already took a copy of the original into rq->errors which
803 * is what gets returned to the user
805 if (sense_valid
&& (sshdr
.sense_key
== RECOVERED_ERROR
)) {
806 /* if ATA PASS-THROUGH INFORMATION AVAILABLE skip
807 * print since caller wants ATA registers. Only occurs on
808 * SCSI ATA PASS_THROUGH commands when CK_COND=1
810 if ((sshdr
.asc
== 0x0) && (sshdr
.ascq
== 0x1d))
812 else if (!(req
->cmd_flags
& REQ_QUIET
))
813 scsi_print_sense("", cmd
);
815 /* BLOCK_PC may have set error */
820 * A number of bytes were successfully read. If there
821 * are leftovers and there is some kind of error
822 * (result != 0), retry the rest.
824 if (scsi_end_request(cmd
, error
, good_bytes
, result
== 0) == NULL
)
827 error
= __scsi_error_from_host_byte(cmd
, result
);
829 if (host_byte(result
) == DID_RESET
) {
830 /* Third party bus reset or reset for error recovery
831 * reasons. Just retry the command and see what
834 action
= ACTION_RETRY
;
835 } else if (sense_valid
&& !sense_deferred
) {
836 switch (sshdr
.sense_key
) {
838 if (cmd
->device
->removable
) {
839 /* Detected disc change. Set a bit
840 * and quietly refuse further access.
842 cmd
->device
->changed
= 1;
843 description
= "Media Changed";
844 action
= ACTION_FAIL
;
846 /* Must have been a power glitch, or a
847 * bus reset. Could not have been a
848 * media change, so we just retry the
849 * command and see what happens.
851 action
= ACTION_RETRY
;
854 case ILLEGAL_REQUEST
:
855 /* If we had an ILLEGAL REQUEST returned, then
856 * we may have performed an unsupported
857 * command. The only thing this should be
858 * would be a ten byte read where only a six
859 * byte read was supported. Also, on a system
860 * where READ CAPACITY failed, we may have
861 * read past the end of the disk.
863 if ((cmd
->device
->use_10_for_rw
&&
864 sshdr
.asc
== 0x20 && sshdr
.ascq
== 0x00) &&
865 (cmd
->cmnd
[0] == READ_10
||
866 cmd
->cmnd
[0] == WRITE_10
)) {
867 /* This will issue a new 6-byte command. */
868 cmd
->device
->use_10_for_rw
= 0;
869 action
= ACTION_REPREP
;
870 } else if (sshdr
.asc
== 0x10) /* DIX */ {
871 description
= "Host Data Integrity Failure";
872 action
= ACTION_FAIL
;
874 /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
875 } else if ((sshdr
.asc
== 0x20 || sshdr
.asc
== 0x24) &&
876 (cmd
->cmnd
[0] == UNMAP
||
877 cmd
->cmnd
[0] == WRITE_SAME_16
||
878 cmd
->cmnd
[0] == WRITE_SAME
)) {
879 description
= "Discard failure";
880 action
= ACTION_FAIL
;
882 action
= ACTION_FAIL
;
884 case ABORTED_COMMAND
:
885 action
= ACTION_FAIL
;
886 if (sshdr
.asc
== 0x10) { /* DIF */
887 description
= "Target Data Integrity Failure";
892 /* If the device is in the process of becoming
893 * ready, or has a temporary blockage, retry.
895 if (sshdr
.asc
== 0x04) {
896 switch (sshdr
.ascq
) {
897 case 0x01: /* becoming ready */
898 case 0x04: /* format in progress */
899 case 0x05: /* rebuild in progress */
900 case 0x06: /* recalculation in progress */
901 case 0x07: /* operation in progress */
902 case 0x08: /* Long write in progress */
903 case 0x09: /* self test in progress */
904 case 0x14: /* space allocation in progress */
905 action
= ACTION_DELAYED_RETRY
;
908 description
= "Device not ready";
909 action
= ACTION_FAIL
;
913 description
= "Device not ready";
914 action
= ACTION_FAIL
;
917 case VOLUME_OVERFLOW
:
918 /* See SSC3rXX or current. */
919 action
= ACTION_FAIL
;
922 description
= "Unhandled sense code";
923 action
= ACTION_FAIL
;
927 description
= "Unhandled error code";
928 action
= ACTION_FAIL
;
933 /* Give up and fail the remainder of the request */
934 scsi_release_buffers(cmd
);
935 if (!(req
->cmd_flags
& REQ_QUIET
)) {
937 scmd_printk(KERN_INFO
, cmd
, "%s\n",
939 scsi_print_result(cmd
);
940 if (driver_byte(result
) & DRIVER_SENSE
)
941 scsi_print_sense("", cmd
);
942 scsi_print_command(cmd
);
944 if (blk_end_request_err(req
, error
))
945 scsi_requeue_command(q
, cmd
);
947 scsi_next_command(cmd
);
950 /* Unprep the request and put it back at the head of the queue.
951 * A new command will be prepared and issued.
953 scsi_release_buffers(cmd
);
954 scsi_requeue_command(q
, cmd
);
957 /* Retry the same command immediately */
958 __scsi_queue_insert(cmd
, SCSI_MLQUEUE_EH_RETRY
, 0);
960 case ACTION_DELAYED_RETRY
:
961 /* Retry the same command after a delay */
962 __scsi_queue_insert(cmd
, SCSI_MLQUEUE_DEVICE_BUSY
, 0);
967 static int scsi_init_sgtable(struct request
*req
, struct scsi_data_buffer
*sdb
,
973 * If sg table allocation fails, requeue request later.
975 if (unlikely(scsi_alloc_sgtable(sdb
, req
->nr_phys_segments
,
977 return BLKPREP_DEFER
;
983 * Next, walk the list, and fill in the addresses and sizes of
986 count
= blk_rq_map_sg(req
->q
, req
, sdb
->table
.sgl
);
987 BUG_ON(count
> sdb
->table
.nents
);
988 sdb
->table
.nents
= count
;
989 sdb
->length
= blk_rq_bytes(req
);
994 * Function: scsi_init_io()
996 * Purpose: SCSI I/O initialize function.
998 * Arguments: cmd - Command descriptor we wish to initialize
1000 * Returns: 0 on success
1001 * BLKPREP_DEFER if the failure is retryable
1002 * BLKPREP_KILL if the failure is fatal
1004 int scsi_init_io(struct scsi_cmnd
*cmd
, gfp_t gfp_mask
)
1006 struct request
*rq
= cmd
->request
;
1008 int error
= scsi_init_sgtable(rq
, &cmd
->sdb
, gfp_mask
);
1012 if (blk_bidi_rq(rq
)) {
1013 struct scsi_data_buffer
*bidi_sdb
= kmem_cache_zalloc(
1014 scsi_sdb_cache
, GFP_ATOMIC
);
1016 error
= BLKPREP_DEFER
;
1020 rq
->next_rq
->special
= bidi_sdb
;
1021 error
= scsi_init_sgtable(rq
->next_rq
, bidi_sdb
, GFP_ATOMIC
);
1026 if (blk_integrity_rq(rq
)) {
1027 struct scsi_data_buffer
*prot_sdb
= cmd
->prot_sdb
;
1030 BUG_ON(prot_sdb
== NULL
);
1031 ivecs
= blk_rq_count_integrity_sg(rq
->q
, rq
->bio
);
1033 if (scsi_alloc_sgtable(prot_sdb
, ivecs
, gfp_mask
)) {
1034 error
= BLKPREP_DEFER
;
1038 count
= blk_rq_map_integrity_sg(rq
->q
, rq
->bio
,
1039 prot_sdb
->table
.sgl
);
1040 BUG_ON(unlikely(count
> ivecs
));
1041 BUG_ON(unlikely(count
> queue_max_integrity_segments(rq
->q
)));
1043 cmd
->prot_sdb
= prot_sdb
;
1044 cmd
->prot_sdb
->table
.nents
= count
;
1050 scsi_release_buffers(cmd
);
1051 cmd
->request
->special
= NULL
;
1052 scsi_put_command(cmd
);
1055 EXPORT_SYMBOL(scsi_init_io
);
1057 static struct scsi_cmnd
*scsi_get_cmd_from_req(struct scsi_device
*sdev
,
1058 struct request
*req
)
1060 struct scsi_cmnd
*cmd
;
1062 if (!req
->special
) {
1063 cmd
= scsi_get_command(sdev
, GFP_ATOMIC
);
1071 /* pull a tag out of the request if we have one */
1072 cmd
->tag
= req
->tag
;
1075 cmd
->cmnd
= req
->cmd
;
1076 cmd
->prot_op
= SCSI_PROT_NORMAL
;
1081 int scsi_setup_blk_pc_cmnd(struct scsi_device
*sdev
, struct request
*req
)
1083 struct scsi_cmnd
*cmd
;
1084 int ret
= scsi_prep_state_check(sdev
, req
);
1086 if (ret
!= BLKPREP_OK
)
1089 cmd
= scsi_get_cmd_from_req(sdev
, req
);
1091 return BLKPREP_DEFER
;
1094 * BLOCK_PC requests may transfer data, in which case they must
1095 * a bio attached to them. Or they might contain a SCSI command
1096 * that does not transfer data, in which case they may optionally
1097 * submit a request without an attached bio.
1102 BUG_ON(!req
->nr_phys_segments
);
1104 ret
= scsi_init_io(cmd
, GFP_ATOMIC
);
1108 BUG_ON(blk_rq_bytes(req
));
1110 memset(&cmd
->sdb
, 0, sizeof(cmd
->sdb
));
1114 cmd
->cmd_len
= req
->cmd_len
;
1115 if (!blk_rq_bytes(req
))
1116 cmd
->sc_data_direction
= DMA_NONE
;
1117 else if (rq_data_dir(req
) == WRITE
)
1118 cmd
->sc_data_direction
= DMA_TO_DEVICE
;
1120 cmd
->sc_data_direction
= DMA_FROM_DEVICE
;
1122 cmd
->transfersize
= blk_rq_bytes(req
);
1123 cmd
->allowed
= req
->retries
;
1126 EXPORT_SYMBOL(scsi_setup_blk_pc_cmnd
);
1129 * Setup a REQ_TYPE_FS command. These are simple read/write request
1130 * from filesystems that still need to be translated to SCSI CDBs from
1133 int scsi_setup_fs_cmnd(struct scsi_device
*sdev
, struct request
*req
)
1135 struct scsi_cmnd
*cmd
;
1136 int ret
= scsi_prep_state_check(sdev
, req
);
1138 if (ret
!= BLKPREP_OK
)
1141 if (unlikely(sdev
->scsi_dh_data
&& sdev
->scsi_dh_data
->scsi_dh
1142 && sdev
->scsi_dh_data
->scsi_dh
->prep_fn
)) {
1143 ret
= sdev
->scsi_dh_data
->scsi_dh
->prep_fn(sdev
, req
);
1144 if (ret
!= BLKPREP_OK
)
1149 * Filesystem requests must transfer data.
1151 BUG_ON(!req
->nr_phys_segments
);
1153 cmd
= scsi_get_cmd_from_req(sdev
, req
);
1155 return BLKPREP_DEFER
;
1157 memset(cmd
->cmnd
, 0, BLK_MAX_CDB
);
1158 return scsi_init_io(cmd
, GFP_ATOMIC
);
1160 EXPORT_SYMBOL(scsi_setup_fs_cmnd
);
1162 int scsi_prep_state_check(struct scsi_device
*sdev
, struct request
*req
)
1164 int ret
= BLKPREP_OK
;
1167 * If the device is not in running state we will reject some
1170 if (unlikely(sdev
->sdev_state
!= SDEV_RUNNING
)) {
1171 switch (sdev
->sdev_state
) {
1174 * If the device is offline we refuse to process any
1175 * commands. The device must be brought online
1176 * before trying any recovery commands.
1178 sdev_printk(KERN_ERR
, sdev
,
1179 "rejecting I/O to offline device\n");
1184 * If the device is fully deleted, we refuse to
1185 * process any commands as well.
1187 sdev_printk(KERN_ERR
, sdev
,
1188 "rejecting I/O to dead device\n");
1193 case SDEV_CREATED_BLOCK
:
1195 * If the devices is blocked we defer normal commands.
1197 if (!(req
->cmd_flags
& REQ_PREEMPT
))
1198 ret
= BLKPREP_DEFER
;
1202 * For any other not fully online state we only allow
1203 * special commands. In particular any user initiated
1204 * command is not allowed.
1206 if (!(req
->cmd_flags
& REQ_PREEMPT
))
1213 EXPORT_SYMBOL(scsi_prep_state_check
);
1215 int scsi_prep_return(struct request_queue
*q
, struct request
*req
, int ret
)
1217 struct scsi_device
*sdev
= q
->queuedata
;
1221 req
->errors
= DID_NO_CONNECT
<< 16;
1222 /* release the command and kill it */
1224 struct scsi_cmnd
*cmd
= req
->special
;
1225 scsi_release_buffers(cmd
);
1226 scsi_put_command(cmd
);
1227 req
->special
= NULL
;
1232 * If we defer, the blk_peek_request() returns NULL, but the
1233 * queue must be restarted, so we schedule a callback to happen
1236 if (sdev
->device_busy
== 0)
1237 blk_delay_queue(q
, SCSI_QUEUE_DELAY
);
1240 req
->cmd_flags
|= REQ_DONTPREP
;
1245 EXPORT_SYMBOL(scsi_prep_return
);
1247 int scsi_prep_fn(struct request_queue
*q
, struct request
*req
)
1249 struct scsi_device
*sdev
= q
->queuedata
;
1250 int ret
= BLKPREP_KILL
;
1252 if (req
->cmd_type
== REQ_TYPE_BLOCK_PC
)
1253 ret
= scsi_setup_blk_pc_cmnd(sdev
, req
);
1254 return scsi_prep_return(q
, req
, ret
);
1256 EXPORT_SYMBOL(scsi_prep_fn
);
1259 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1262 * Called with the queue_lock held.
1264 static inline int scsi_dev_queue_ready(struct request_queue
*q
,
1265 struct scsi_device
*sdev
)
1267 if (sdev
->device_busy
== 0 && sdev
->device_blocked
) {
1269 * unblock after device_blocked iterates to zero
1271 if (--sdev
->device_blocked
== 0) {
1273 sdev_printk(KERN_INFO
, sdev
,
1274 "unblocking device at zero depth\n"));
1276 blk_delay_queue(q
, SCSI_QUEUE_DELAY
);
1280 if (scsi_device_is_busy(sdev
))
1288 * scsi_target_queue_ready: checks if there we can send commands to target
1289 * @sdev: scsi device on starget to check.
1291 * Called with the host lock held.
1293 static inline int scsi_target_queue_ready(struct Scsi_Host
*shost
,
1294 struct scsi_device
*sdev
)
1296 struct scsi_target
*starget
= scsi_target(sdev
);
1298 if (starget
->single_lun
) {
1299 if (starget
->starget_sdev_user
&&
1300 starget
->starget_sdev_user
!= sdev
)
1302 starget
->starget_sdev_user
= sdev
;
1305 if (starget
->target_busy
== 0 && starget
->target_blocked
) {
1307 * unblock after target_blocked iterates to zero
1309 if (--starget
->target_blocked
== 0) {
1310 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO
, starget
,
1311 "unblocking target at zero depth\n"));
1316 if (scsi_target_is_busy(starget
)) {
1317 if (list_empty(&sdev
->starved_entry
))
1318 list_add_tail(&sdev
->starved_entry
,
1319 &shost
->starved_list
);
1323 /* We're OK to process the command, so we can't be starved */
1324 if (!list_empty(&sdev
->starved_entry
))
1325 list_del_init(&sdev
->starved_entry
);
1330 * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1331 * return 0. We must end up running the queue again whenever 0 is
1332 * returned, else IO can hang.
1334 * Called with host_lock held.
1336 static inline int scsi_host_queue_ready(struct request_queue
*q
,
1337 struct Scsi_Host
*shost
,
1338 struct scsi_device
*sdev
)
1340 if (scsi_host_in_recovery(shost
))
1342 if (shost
->host_busy
== 0 && shost
->host_blocked
) {
1344 * unblock after host_blocked iterates to zero
1346 if (--shost
->host_blocked
== 0) {
1348 printk("scsi%d unblocking host at zero depth\n",
1354 if (scsi_host_is_busy(shost
)) {
1355 if (list_empty(&sdev
->starved_entry
))
1356 list_add_tail(&sdev
->starved_entry
, &shost
->starved_list
);
1360 /* We're OK to process the command, so we can't be starved */
1361 if (!list_empty(&sdev
->starved_entry
))
1362 list_del_init(&sdev
->starved_entry
);
1368 * Busy state exporting function for request stacking drivers.
1370 * For efficiency, no lock is taken to check the busy state of
1371 * shost/starget/sdev, since the returned value is not guaranteed and
1372 * may be changed after request stacking drivers call the function,
1373 * regardless of taking lock or not.
1375 * When scsi can't dispatch I/Os anymore and needs to kill I/Os
1376 * (e.g. !sdev), scsi needs to return 'not busy'.
1377 * Otherwise, request stacking drivers may hold requests forever.
1379 static int scsi_lld_busy(struct request_queue
*q
)
1381 struct scsi_device
*sdev
= q
->queuedata
;
1382 struct Scsi_Host
*shost
;
1383 struct scsi_target
*starget
;
1389 starget
= scsi_target(sdev
);
1391 if (scsi_host_in_recovery(shost
) || scsi_host_is_busy(shost
) ||
1392 scsi_target_is_busy(starget
) || scsi_device_is_busy(sdev
))
1399 * Kill a request for a dead device
1401 static void scsi_kill_request(struct request
*req
, struct request_queue
*q
)
1403 struct scsi_cmnd
*cmd
= req
->special
;
1404 struct scsi_device
*sdev
;
1405 struct scsi_target
*starget
;
1406 struct Scsi_Host
*shost
;
1408 blk_start_request(req
);
1411 starget
= scsi_target(sdev
);
1413 scsi_init_cmd_errh(cmd
);
1414 cmd
->result
= DID_NO_CONNECT
<< 16;
1415 atomic_inc(&cmd
->device
->iorequest_cnt
);
1418 * SCSI request completion path will do scsi_device_unbusy(),
1419 * bump busy counts. To bump the counters, we need to dance
1420 * with the locks as normal issue path does.
1422 sdev
->device_busy
++;
1423 spin_unlock(sdev
->request_queue
->queue_lock
);
1424 spin_lock(shost
->host_lock
);
1426 starget
->target_busy
++;
1427 spin_unlock(shost
->host_lock
);
1428 spin_lock(sdev
->request_queue
->queue_lock
);
1430 blk_complete_request(req
);
1433 static void scsi_softirq_done(struct request
*rq
)
1435 struct scsi_cmnd
*cmd
= rq
->special
;
1436 unsigned long wait_for
= (cmd
->allowed
+ 1) * rq
->timeout
;
1439 INIT_LIST_HEAD(&cmd
->eh_entry
);
1441 atomic_inc(&cmd
->device
->iodone_cnt
);
1443 atomic_inc(&cmd
->device
->ioerr_cnt
);
1445 disposition
= scsi_decide_disposition(cmd
);
1446 if (disposition
!= SUCCESS
&&
1447 time_before(cmd
->jiffies_at_alloc
+ wait_for
, jiffies
)) {
1448 sdev_printk(KERN_ERR
, cmd
->device
,
1449 "timing out command, waited %lus\n",
1451 disposition
= SUCCESS
;
1454 scsi_log_completion(cmd
, disposition
);
1456 switch (disposition
) {
1458 scsi_finish_command(cmd
);
1461 scsi_queue_insert(cmd
, SCSI_MLQUEUE_EH_RETRY
);
1463 case ADD_TO_MLQUEUE
:
1464 scsi_queue_insert(cmd
, SCSI_MLQUEUE_DEVICE_BUSY
);
1467 if (!scsi_eh_scmd_add(cmd
, 0))
1468 scsi_finish_command(cmd
);
1473 * Function: scsi_request_fn()
1475 * Purpose: Main strategy routine for SCSI.
1477 * Arguments: q - Pointer to actual queue.
1481 * Lock status: IO request lock assumed to be held when called.
1483 static void scsi_request_fn(struct request_queue
*q
)
1485 struct scsi_device
*sdev
= q
->queuedata
;
1486 struct Scsi_Host
*shost
;
1487 struct scsi_cmnd
*cmd
;
1488 struct request
*req
;
1491 printk("scsi: killing requests for dead queue\n");
1492 while ((req
= blk_peek_request(q
)) != NULL
)
1493 scsi_kill_request(req
, q
);
1497 if(!get_device(&sdev
->sdev_gendev
))
1498 /* We must be tearing the block queue down already */
1502 * To start with, we keep looping until the queue is empty, or until
1503 * the host is no longer able to accept any more requests.
1509 * get next queueable request. We do this early to make sure
1510 * that the request is fully prepared even if we cannot
1513 req
= blk_peek_request(q
);
1514 if (!req
|| !scsi_dev_queue_ready(q
, sdev
))
1517 if (unlikely(!scsi_device_online(sdev
))) {
1518 sdev_printk(KERN_ERR
, sdev
,
1519 "rejecting I/O to offline device\n");
1520 scsi_kill_request(req
, q
);
1526 * Remove the request from the request list.
1528 if (!(blk_queue_tagged(q
) && !blk_queue_start_tag(q
, req
)))
1529 blk_start_request(req
);
1530 sdev
->device_busy
++;
1532 spin_unlock(q
->queue_lock
);
1534 if (unlikely(cmd
== NULL
)) {
1535 printk(KERN_CRIT
"impossible request in %s.\n"
1536 "please mail a stack trace to "
1537 "linux-scsi@vger.kernel.org\n",
1539 blk_dump_rq_flags(req
, "foo");
1542 spin_lock(shost
->host_lock
);
1545 * We hit this when the driver is using a host wide
1546 * tag map. For device level tag maps the queue_depth check
1547 * in the device ready fn would prevent us from trying
1548 * to allocate a tag. Since the map is a shared host resource
1549 * we add the dev to the starved list so it eventually gets
1550 * a run when a tag is freed.
1552 if (blk_queue_tagged(q
) && !blk_rq_tagged(req
)) {
1553 if (list_empty(&sdev
->starved_entry
))
1554 list_add_tail(&sdev
->starved_entry
,
1555 &shost
->starved_list
);
1559 if (!scsi_target_queue_ready(shost
, sdev
))
1562 if (!scsi_host_queue_ready(q
, shost
, sdev
))
1565 scsi_target(sdev
)->target_busy
++;
1569 * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will
1570 * take the lock again.
1572 spin_unlock_irq(shost
->host_lock
);
1575 * Finally, initialize any error handling parameters, and set up
1576 * the timers for timeouts.
1578 scsi_init_cmd_errh(cmd
);
1581 * Dispatch the command to the low-level driver.
1583 rtn
= scsi_dispatch_cmd(cmd
);
1584 spin_lock_irq(q
->queue_lock
);
1592 spin_unlock_irq(shost
->host_lock
);
1595 * lock q, handle tag, requeue req, and decrement device_busy. We
1596 * must return with queue_lock held.
1598 * Decrementing device_busy without checking it is OK, as all such
1599 * cases (host limits or settings) should run the queue at some
1602 spin_lock_irq(q
->queue_lock
);
1603 blk_requeue_request(q
, req
);
1604 sdev
->device_busy
--;
1606 if (sdev
->device_busy
== 0)
1607 blk_delay_queue(q
, SCSI_QUEUE_DELAY
);
1609 /* must be careful here...if we trigger the ->remove() function
1610 * we cannot be holding the q lock */
1611 spin_unlock_irq(q
->queue_lock
);
1612 put_device(&sdev
->sdev_gendev
);
1613 spin_lock_irq(q
->queue_lock
);
1616 u64
scsi_calculate_bounce_limit(struct Scsi_Host
*shost
)
1618 struct device
*host_dev
;
1619 u64 bounce_limit
= 0xffffffff;
1621 if (shost
->unchecked_isa_dma
)
1622 return BLK_BOUNCE_ISA
;
1624 * Platforms with virtual-DMA translation
1625 * hardware have no practical limit.
1627 if (!PCI_DMA_BUS_IS_PHYS
)
1628 return BLK_BOUNCE_ANY
;
1630 host_dev
= scsi_get_device(shost
);
1631 if (host_dev
&& host_dev
->dma_mask
)
1632 bounce_limit
= *host_dev
->dma_mask
;
1634 return bounce_limit
;
1636 EXPORT_SYMBOL(scsi_calculate_bounce_limit
);
1638 struct request_queue
*__scsi_alloc_queue(struct Scsi_Host
*shost
,
1639 request_fn_proc
*request_fn
)
1641 struct request_queue
*q
;
1642 struct device
*dev
= shost
->shost_gendev
.parent
;
1644 q
= blk_init_queue(request_fn
, NULL
);
1649 * this limit is imposed by hardware restrictions
1651 blk_queue_max_segments(q
, min_t(unsigned short, shost
->sg_tablesize
,
1652 SCSI_MAX_SG_CHAIN_SEGMENTS
));
1654 if (scsi_host_prot_dma(shost
)) {
1655 shost
->sg_prot_tablesize
=
1656 min_not_zero(shost
->sg_prot_tablesize
,
1657 (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS
);
1658 BUG_ON(shost
->sg_prot_tablesize
< shost
->sg_tablesize
);
1659 blk_queue_max_integrity_segments(q
, shost
->sg_prot_tablesize
);
1662 blk_queue_max_hw_sectors(q
, shost
->max_sectors
);
1663 blk_queue_bounce_limit(q
, scsi_calculate_bounce_limit(shost
));
1664 blk_queue_segment_boundary(q
, shost
->dma_boundary
);
1665 dma_set_seg_boundary(dev
, shost
->dma_boundary
);
1667 blk_queue_max_segment_size(q
, dma_get_max_seg_size(dev
));
1669 if (!shost
->use_clustering
)
1670 q
->limits
.cluster
= 0;
1673 * set a reasonable default alignment on word boundaries: the
1674 * host and device may alter it using
1675 * blk_queue_update_dma_alignment() later.
1677 blk_queue_dma_alignment(q
, 0x03);
1681 EXPORT_SYMBOL(__scsi_alloc_queue
);
1683 struct request_queue
*scsi_alloc_queue(struct scsi_device
*sdev
)
1685 struct request_queue
*q
;
1687 q
= __scsi_alloc_queue(sdev
->host
, scsi_request_fn
);
1691 blk_queue_prep_rq(q
, scsi_prep_fn
);
1692 blk_queue_softirq_done(q
, scsi_softirq_done
);
1693 blk_queue_rq_timed_out(q
, scsi_times_out
);
1694 blk_queue_lld_busy(q
, scsi_lld_busy
);
1698 void scsi_free_queue(struct request_queue
*q
)
1700 blk_cleanup_queue(q
);
1704 * Function: scsi_block_requests()
1706 * Purpose: Utility function used by low-level drivers to prevent further
1707 * commands from being queued to the device.
1709 * Arguments: shost - Host in question
1713 * Lock status: No locks are assumed held.
1715 * Notes: There is no timer nor any other means by which the requests
1716 * get unblocked other than the low-level driver calling
1717 * scsi_unblock_requests().
1719 void scsi_block_requests(struct Scsi_Host
*shost
)
1721 shost
->host_self_blocked
= 1;
1723 EXPORT_SYMBOL(scsi_block_requests
);
1726 * Function: scsi_unblock_requests()
1728 * Purpose: Utility function used by low-level drivers to allow further
1729 * commands from being queued to the device.
1731 * Arguments: shost - Host in question
1735 * Lock status: No locks are assumed held.
1737 * Notes: There is no timer nor any other means by which the requests
1738 * get unblocked other than the low-level driver calling
1739 * scsi_unblock_requests().
1741 * This is done as an API function so that changes to the
1742 * internals of the scsi mid-layer won't require wholesale
1743 * changes to drivers that use this feature.
1745 void scsi_unblock_requests(struct Scsi_Host
*shost
)
1747 shost
->host_self_blocked
= 0;
1748 scsi_run_host_queues(shost
);
1750 EXPORT_SYMBOL(scsi_unblock_requests
);
1752 int __init
scsi_init_queue(void)
1756 scsi_sdb_cache
= kmem_cache_create("scsi_data_buffer",
1757 sizeof(struct scsi_data_buffer
),
1759 if (!scsi_sdb_cache
) {
1760 printk(KERN_ERR
"SCSI: can't init scsi sdb cache\n");
1764 for (i
= 0; i
< SG_MEMPOOL_NR
; i
++) {
1765 struct scsi_host_sg_pool
*sgp
= scsi_sg_pools
+ i
;
1766 int size
= sgp
->size
* sizeof(struct scatterlist
);
1768 sgp
->slab
= kmem_cache_create(sgp
->name
, size
, 0,
1769 SLAB_HWCACHE_ALIGN
, NULL
);
1771 printk(KERN_ERR
"SCSI: can't init sg slab %s\n",
1776 sgp
->pool
= mempool_create_slab_pool(SG_MEMPOOL_SIZE
,
1779 printk(KERN_ERR
"SCSI: can't init sg mempool %s\n",
1788 for (i
= 0; i
< SG_MEMPOOL_NR
; i
++) {
1789 struct scsi_host_sg_pool
*sgp
= scsi_sg_pools
+ i
;
1791 mempool_destroy(sgp
->pool
);
1793 kmem_cache_destroy(sgp
->slab
);
1795 kmem_cache_destroy(scsi_sdb_cache
);
1800 void scsi_exit_queue(void)
1804 kmem_cache_destroy(scsi_sdb_cache
);
1806 for (i
= 0; i
< SG_MEMPOOL_NR
; i
++) {
1807 struct scsi_host_sg_pool
*sgp
= scsi_sg_pools
+ i
;
1808 mempool_destroy(sgp
->pool
);
1809 kmem_cache_destroy(sgp
->slab
);
1814 * scsi_mode_select - issue a mode select
1815 * @sdev: SCSI device to be queried
1816 * @pf: Page format bit (1 == standard, 0 == vendor specific)
1817 * @sp: Save page bit (0 == don't save, 1 == save)
1818 * @modepage: mode page being requested
1819 * @buffer: request buffer (may not be smaller than eight bytes)
1820 * @len: length of request buffer.
1821 * @timeout: command timeout
1822 * @retries: number of retries before failing
1823 * @data: returns a structure abstracting the mode header data
1824 * @sshdr: place to put sense data (or NULL if no sense to be collected).
1825 * must be SCSI_SENSE_BUFFERSIZE big.
1827 * Returns zero if successful; negative error number or scsi
1832 scsi_mode_select(struct scsi_device
*sdev
, int pf
, int sp
, int modepage
,
1833 unsigned char *buffer
, int len
, int timeout
, int retries
,
1834 struct scsi_mode_data
*data
, struct scsi_sense_hdr
*sshdr
)
1836 unsigned char cmd
[10];
1837 unsigned char *real_buffer
;
1840 memset(cmd
, 0, sizeof(cmd
));
1841 cmd
[1] = (pf
? 0x10 : 0) | (sp
? 0x01 : 0);
1843 if (sdev
->use_10_for_ms
) {
1846 real_buffer
= kmalloc(8 + len
, GFP_KERNEL
);
1849 memcpy(real_buffer
+ 8, buffer
, len
);
1853 real_buffer
[2] = data
->medium_type
;
1854 real_buffer
[3] = data
->device_specific
;
1855 real_buffer
[4] = data
->longlba
? 0x01 : 0;
1857 real_buffer
[6] = data
->block_descriptor_length
>> 8;
1858 real_buffer
[7] = data
->block_descriptor_length
;
1860 cmd
[0] = MODE_SELECT_10
;
1864 if (len
> 255 || data
->block_descriptor_length
> 255 ||
1868 real_buffer
= kmalloc(4 + len
, GFP_KERNEL
);
1871 memcpy(real_buffer
+ 4, buffer
, len
);
1874 real_buffer
[1] = data
->medium_type
;
1875 real_buffer
[2] = data
->device_specific
;
1876 real_buffer
[3] = data
->block_descriptor_length
;
1879 cmd
[0] = MODE_SELECT
;
1883 ret
= scsi_execute_req(sdev
, cmd
, DMA_TO_DEVICE
, real_buffer
, len
,
1884 sshdr
, timeout
, retries
, NULL
);
1888 EXPORT_SYMBOL_GPL(scsi_mode_select
);
1891 * scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
1892 * @sdev: SCSI device to be queried
1893 * @dbd: set if mode sense will allow block descriptors to be returned
1894 * @modepage: mode page being requested
1895 * @buffer: request buffer (may not be smaller than eight bytes)
1896 * @len: length of request buffer.
1897 * @timeout: command timeout
1898 * @retries: number of retries before failing
1899 * @data: returns a structure abstracting the mode header data
1900 * @sshdr: place to put sense data (or NULL if no sense to be collected).
1901 * must be SCSI_SENSE_BUFFERSIZE big.
1903 * Returns zero if unsuccessful, or the header offset (either 4
1904 * or 8 depending on whether a six or ten byte command was
1905 * issued) if successful.
1908 scsi_mode_sense(struct scsi_device
*sdev
, int dbd
, int modepage
,
1909 unsigned char *buffer
, int len
, int timeout
, int retries
,
1910 struct scsi_mode_data
*data
, struct scsi_sense_hdr
*sshdr
)
1912 unsigned char cmd
[12];
1916 struct scsi_sense_hdr my_sshdr
;
1918 memset(data
, 0, sizeof(*data
));
1919 memset(&cmd
[0], 0, 12);
1920 cmd
[1] = dbd
& 0x18; /* allows DBD and LLBA bits */
1923 /* caller might not be interested in sense, but we need it */
1928 use_10_for_ms
= sdev
->use_10_for_ms
;
1930 if (use_10_for_ms
) {
1934 cmd
[0] = MODE_SENSE_10
;
1941 cmd
[0] = MODE_SENSE
;
1946 memset(buffer
, 0, len
);
1948 result
= scsi_execute_req(sdev
, cmd
, DMA_FROM_DEVICE
, buffer
, len
,
1949 sshdr
, timeout
, retries
, NULL
);
1951 /* This code looks awful: what it's doing is making sure an
1952 * ILLEGAL REQUEST sense return identifies the actual command
1953 * byte as the problem. MODE_SENSE commands can return
1954 * ILLEGAL REQUEST if the code page isn't supported */
1956 if (use_10_for_ms
&& !scsi_status_is_good(result
) &&
1957 (driver_byte(result
) & DRIVER_SENSE
)) {
1958 if (scsi_sense_valid(sshdr
)) {
1959 if ((sshdr
->sense_key
== ILLEGAL_REQUEST
) &&
1960 (sshdr
->asc
== 0x20) && (sshdr
->ascq
== 0)) {
1962 * Invalid command operation code
1964 sdev
->use_10_for_ms
= 0;
1970 if(scsi_status_is_good(result
)) {
1971 if (unlikely(buffer
[0] == 0x86 && buffer
[1] == 0x0b &&
1972 (modepage
== 6 || modepage
== 8))) {
1973 /* Initio breakage? */
1976 data
->medium_type
= 0;
1977 data
->device_specific
= 0;
1979 data
->block_descriptor_length
= 0;
1980 } else if(use_10_for_ms
) {
1981 data
->length
= buffer
[0]*256 + buffer
[1] + 2;
1982 data
->medium_type
= buffer
[2];
1983 data
->device_specific
= buffer
[3];
1984 data
->longlba
= buffer
[4] & 0x01;
1985 data
->block_descriptor_length
= buffer
[6]*256
1988 data
->length
= buffer
[0] + 1;
1989 data
->medium_type
= buffer
[1];
1990 data
->device_specific
= buffer
[2];
1991 data
->block_descriptor_length
= buffer
[3];
1993 data
->header_length
= header_length
;
1998 EXPORT_SYMBOL(scsi_mode_sense
);
2001 * scsi_test_unit_ready - test if unit is ready
2002 * @sdev: scsi device to change the state of.
2003 * @timeout: command timeout
2004 * @retries: number of retries before failing
2005 * @sshdr_external: Optional pointer to struct scsi_sense_hdr for
2006 * returning sense. Make sure that this is cleared before passing
2009 * Returns zero if unsuccessful or an error if TUR failed. For
2010 * removable media, UNIT_ATTENTION sets ->changed flag.
2013 scsi_test_unit_ready(struct scsi_device
*sdev
, int timeout
, int retries
,
2014 struct scsi_sense_hdr
*sshdr_external
)
2017 TEST_UNIT_READY
, 0, 0, 0, 0, 0,
2019 struct scsi_sense_hdr
*sshdr
;
2022 if (!sshdr_external
)
2023 sshdr
= kzalloc(sizeof(*sshdr
), GFP_KERNEL
);
2025 sshdr
= sshdr_external
;
2027 /* try to eat the UNIT_ATTENTION if there are enough retries */
2029 result
= scsi_execute_req(sdev
, cmd
, DMA_NONE
, NULL
, 0, sshdr
,
2030 timeout
, retries
, NULL
);
2031 if (sdev
->removable
&& scsi_sense_valid(sshdr
) &&
2032 sshdr
->sense_key
== UNIT_ATTENTION
)
2034 } while (scsi_sense_valid(sshdr
) &&
2035 sshdr
->sense_key
== UNIT_ATTENTION
&& --retries
);
2037 if (!sshdr_external
)
2041 EXPORT_SYMBOL(scsi_test_unit_ready
);
2044 * scsi_device_set_state - Take the given device through the device state model.
2045 * @sdev: scsi device to change the state of.
2046 * @state: state to change to.
2048 * Returns zero if unsuccessful or an error if the requested
2049 * transition is illegal.
2052 scsi_device_set_state(struct scsi_device
*sdev
, enum scsi_device_state state
)
2054 enum scsi_device_state oldstate
= sdev
->sdev_state
;
2056 if (state
== oldstate
)
2062 case SDEV_CREATED_BLOCK
:
2106 case SDEV_CREATED_BLOCK
:
2113 case SDEV_CREATED_BLOCK
:
2148 sdev
->sdev_state
= state
;
2152 SCSI_LOG_ERROR_RECOVERY(1,
2153 sdev_printk(KERN_ERR
, sdev
,
2154 "Illegal state transition %s->%s\n",
2155 scsi_device_state_name(oldstate
),
2156 scsi_device_state_name(state
))
2160 EXPORT_SYMBOL(scsi_device_set_state
);
2163 * sdev_evt_emit - emit a single SCSI device uevent
2164 * @sdev: associated SCSI device
2165 * @evt: event to emit
2167 * Send a single uevent (scsi_event) to the associated scsi_device.
2169 static void scsi_evt_emit(struct scsi_device
*sdev
, struct scsi_event
*evt
)
2174 switch (evt
->evt_type
) {
2175 case SDEV_EVT_MEDIA_CHANGE
:
2176 envp
[idx
++] = "SDEV_MEDIA_CHANGE=1";
2186 kobject_uevent_env(&sdev
->sdev_gendev
.kobj
, KOBJ_CHANGE
, envp
);
2190 * sdev_evt_thread - send a uevent for each scsi event
2191 * @work: work struct for scsi_device
2193 * Dispatch queued events to their associated scsi_device kobjects
2196 void scsi_evt_thread(struct work_struct
*work
)
2198 struct scsi_device
*sdev
;
2199 LIST_HEAD(event_list
);
2201 sdev
= container_of(work
, struct scsi_device
, event_work
);
2204 struct scsi_event
*evt
;
2205 struct list_head
*this, *tmp
;
2206 unsigned long flags
;
2208 spin_lock_irqsave(&sdev
->list_lock
, flags
);
2209 list_splice_init(&sdev
->event_list
, &event_list
);
2210 spin_unlock_irqrestore(&sdev
->list_lock
, flags
);
2212 if (list_empty(&event_list
))
2215 list_for_each_safe(this, tmp
, &event_list
) {
2216 evt
= list_entry(this, struct scsi_event
, node
);
2217 list_del(&evt
->node
);
2218 scsi_evt_emit(sdev
, evt
);
2225 * sdev_evt_send - send asserted event to uevent thread
2226 * @sdev: scsi_device event occurred on
2227 * @evt: event to send
2229 * Assert scsi device event asynchronously.
2231 void sdev_evt_send(struct scsi_device
*sdev
, struct scsi_event
*evt
)
2233 unsigned long flags
;
2236 /* FIXME: currently this check eliminates all media change events
2237 * for polled devices. Need to update to discriminate between AN
2238 * and polled events */
2239 if (!test_bit(evt
->evt_type
, sdev
->supported_events
)) {
2245 spin_lock_irqsave(&sdev
->list_lock
, flags
);
2246 list_add_tail(&evt
->node
, &sdev
->event_list
);
2247 schedule_work(&sdev
->event_work
);
2248 spin_unlock_irqrestore(&sdev
->list_lock
, flags
);
2250 EXPORT_SYMBOL_GPL(sdev_evt_send
);
2253 * sdev_evt_alloc - allocate a new scsi event
2254 * @evt_type: type of event to allocate
2255 * @gfpflags: GFP flags for allocation
2257 * Allocates and returns a new scsi_event.
2259 struct scsi_event
*sdev_evt_alloc(enum scsi_device_event evt_type
,
2262 struct scsi_event
*evt
= kzalloc(sizeof(struct scsi_event
), gfpflags
);
2266 evt
->evt_type
= evt_type
;
2267 INIT_LIST_HEAD(&evt
->node
);
2269 /* evt_type-specific initialization, if any */
2271 case SDEV_EVT_MEDIA_CHANGE
:
2279 EXPORT_SYMBOL_GPL(sdev_evt_alloc
);
2282 * sdev_evt_send_simple - send asserted event to uevent thread
2283 * @sdev: scsi_device event occurred on
2284 * @evt_type: type of event to send
2285 * @gfpflags: GFP flags for allocation
2287 * Assert scsi device event asynchronously, given an event type.
2289 void sdev_evt_send_simple(struct scsi_device
*sdev
,
2290 enum scsi_device_event evt_type
, gfp_t gfpflags
)
2292 struct scsi_event
*evt
= sdev_evt_alloc(evt_type
, gfpflags
);
2294 sdev_printk(KERN_ERR
, sdev
, "event %d eaten due to OOM\n",
2299 sdev_evt_send(sdev
, evt
);
2301 EXPORT_SYMBOL_GPL(sdev_evt_send_simple
);
2304 * scsi_device_quiesce - Block user issued commands.
2305 * @sdev: scsi device to quiesce.
2307 * This works by trying to transition to the SDEV_QUIESCE state
2308 * (which must be a legal transition). When the device is in this
2309 * state, only special requests will be accepted, all others will
2310 * be deferred. Since special requests may also be requeued requests,
2311 * a successful return doesn't guarantee the device will be
2312 * totally quiescent.
2314 * Must be called with user context, may sleep.
2316 * Returns zero if unsuccessful or an error if not.
2319 scsi_device_quiesce(struct scsi_device
*sdev
)
2321 int err
= scsi_device_set_state(sdev
, SDEV_QUIESCE
);
2325 scsi_run_queue(sdev
->request_queue
);
2326 while (sdev
->device_busy
) {
2327 msleep_interruptible(200);
2328 scsi_run_queue(sdev
->request_queue
);
2332 EXPORT_SYMBOL(scsi_device_quiesce
);
2335 * scsi_device_resume - Restart user issued commands to a quiesced device.
2336 * @sdev: scsi device to resume.
2338 * Moves the device from quiesced back to running and restarts the
2341 * Must be called with user context, may sleep.
2344 scsi_device_resume(struct scsi_device
*sdev
)
2346 if(scsi_device_set_state(sdev
, SDEV_RUNNING
))
2348 scsi_run_queue(sdev
->request_queue
);
2350 EXPORT_SYMBOL(scsi_device_resume
);
2353 device_quiesce_fn(struct scsi_device
*sdev
, void *data
)
2355 scsi_device_quiesce(sdev
);
2359 scsi_target_quiesce(struct scsi_target
*starget
)
2361 starget_for_each_device(starget
, NULL
, device_quiesce_fn
);
2363 EXPORT_SYMBOL(scsi_target_quiesce
);
2366 device_resume_fn(struct scsi_device
*sdev
, void *data
)
2368 scsi_device_resume(sdev
);
2372 scsi_target_resume(struct scsi_target
*starget
)
2374 starget_for_each_device(starget
, NULL
, device_resume_fn
);
2376 EXPORT_SYMBOL(scsi_target_resume
);
2379 * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state
2380 * @sdev: device to block
2382 * Block request made by scsi lld's to temporarily stop all
2383 * scsi commands on the specified device. Called from interrupt
2384 * or normal process context.
2386 * Returns zero if successful or error if not
2389 * This routine transitions the device to the SDEV_BLOCK state
2390 * (which must be a legal transition). When the device is in this
2391 * state, all commands are deferred until the scsi lld reenables
2392 * the device with scsi_device_unblock or device_block_tmo fires.
2393 * This routine assumes the host_lock is held on entry.
2396 scsi_internal_device_block(struct scsi_device
*sdev
)
2398 struct request_queue
*q
= sdev
->request_queue
;
2399 unsigned long flags
;
2402 err
= scsi_device_set_state(sdev
, SDEV_BLOCK
);
2404 err
= scsi_device_set_state(sdev
, SDEV_CREATED_BLOCK
);
2411 * The device has transitioned to SDEV_BLOCK. Stop the
2412 * block layer from calling the midlayer with this device's
2415 spin_lock_irqsave(q
->queue_lock
, flags
);
2417 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2421 EXPORT_SYMBOL_GPL(scsi_internal_device_block
);
2424 * scsi_internal_device_unblock - resume a device after a block request
2425 * @sdev: device to resume
2427 * Called by scsi lld's or the midlayer to restart the device queue
2428 * for the previously suspended scsi device. Called from interrupt or
2429 * normal process context.
2431 * Returns zero if successful or error if not.
2434 * This routine transitions the device to the SDEV_RUNNING state
2435 * (which must be a legal transition) allowing the midlayer to
2436 * goose the queue for this device. This routine assumes the
2437 * host_lock is held upon entry.
2440 scsi_internal_device_unblock(struct scsi_device
*sdev
)
2442 struct request_queue
*q
= sdev
->request_queue
;
2443 unsigned long flags
;
2446 * Try to transition the scsi device to SDEV_RUNNING
2447 * and goose the device queue if successful.
2449 if (sdev
->sdev_state
== SDEV_BLOCK
)
2450 sdev
->sdev_state
= SDEV_RUNNING
;
2451 else if (sdev
->sdev_state
== SDEV_CREATED_BLOCK
)
2452 sdev
->sdev_state
= SDEV_CREATED
;
2453 else if (sdev
->sdev_state
!= SDEV_CANCEL
&&
2454 sdev
->sdev_state
!= SDEV_OFFLINE
)
2457 spin_lock_irqsave(q
->queue_lock
, flags
);
2459 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2463 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock
);
2466 device_block(struct scsi_device
*sdev
, void *data
)
2468 scsi_internal_device_block(sdev
);
2472 target_block(struct device
*dev
, void *data
)
2474 if (scsi_is_target_device(dev
))
2475 starget_for_each_device(to_scsi_target(dev
), NULL
,
2481 scsi_target_block(struct device
*dev
)
2483 if (scsi_is_target_device(dev
))
2484 starget_for_each_device(to_scsi_target(dev
), NULL
,
2487 device_for_each_child(dev
, NULL
, target_block
);
2489 EXPORT_SYMBOL_GPL(scsi_target_block
);
2492 device_unblock(struct scsi_device
*sdev
, void *data
)
2494 scsi_internal_device_unblock(sdev
);
2498 target_unblock(struct device
*dev
, void *data
)
2500 if (scsi_is_target_device(dev
))
2501 starget_for_each_device(to_scsi_target(dev
), NULL
,
2507 scsi_target_unblock(struct device
*dev
)
2509 if (scsi_is_target_device(dev
))
2510 starget_for_each_device(to_scsi_target(dev
), NULL
,
2513 device_for_each_child(dev
, NULL
, target_unblock
);
2515 EXPORT_SYMBOL_GPL(scsi_target_unblock
);
2518 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2519 * @sgl: scatter-gather list
2520 * @sg_count: number of segments in sg
2521 * @offset: offset in bytes into sg, on return offset into the mapped area
2522 * @len: bytes to map, on return number of bytes mapped
2524 * Returns virtual address of the start of the mapped page
2526 void *scsi_kmap_atomic_sg(struct scatterlist
*sgl
, int sg_count
,
2527 size_t *offset
, size_t *len
)
2530 size_t sg_len
= 0, len_complete
= 0;
2531 struct scatterlist
*sg
;
2534 WARN_ON(!irqs_disabled());
2536 for_each_sg(sgl
, sg
, sg_count
, i
) {
2537 len_complete
= sg_len
; /* Complete sg-entries */
2538 sg_len
+= sg
->length
;
2539 if (sg_len
> *offset
)
2543 if (unlikely(i
== sg_count
)) {
2544 printk(KERN_ERR
"%s: Bytes in sg: %zu, requested offset %zu, "
2546 __func__
, sg_len
, *offset
, sg_count
);
2551 /* Offset starting from the beginning of first page in this sg-entry */
2552 *offset
= *offset
- len_complete
+ sg
->offset
;
2554 /* Assumption: contiguous pages can be accessed as "page + i" */
2555 page
= nth_page(sg_page(sg
), (*offset
>> PAGE_SHIFT
));
2556 *offset
&= ~PAGE_MASK
;
2558 /* Bytes in this sg-entry from *offset to the end of the page */
2559 sg_len
= PAGE_SIZE
- *offset
;
2563 return kmap_atomic(page
, KM_BIO_SRC_IRQ
);
2565 EXPORT_SYMBOL(scsi_kmap_atomic_sg
);
2568 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
2569 * @virt: virtual address to be unmapped
2571 void scsi_kunmap_atomic_sg(void *virt
)
2573 kunmap_atomic(virt
, KM_BIO_SRC_IRQ
);
2575 EXPORT_SYMBOL(scsi_kunmap_atomic_sg
);