[SCSI] mvsas: update comments
[linux-2.6/linux-mips.git] / drivers / scsi / scsi_lib.c
blob28d9c9d6b4b401f926eb62709efe9027e0d4cfaf
1 /*
2 * scsi_lib.c Copyright (C) 1999 Eric Youngdale
4 * SCSI queueing library.
5 * Initial versions: Eric Youngdale (eric@andante.org).
6 * Based upon conversations with large numbers
7 * of people at Linux Expo.
8 */
10 #include <linux/bio.h>
11 #include <linux/bitops.h>
12 #include <linux/blkdev.h>
13 #include <linux/completion.h>
14 #include <linux/kernel.h>
15 #include <linux/mempool.h>
16 #include <linux/slab.h>
17 #include <linux/init.h>
18 #include <linux/pci.h>
19 #include <linux/delay.h>
20 #include <linux/hardirq.h>
21 #include <linux/scatterlist.h>
23 #include <scsi/scsi.h>
24 #include <scsi/scsi_cmnd.h>
25 #include <scsi/scsi_dbg.h>
26 #include <scsi/scsi_device.h>
27 #include <scsi/scsi_driver.h>
28 #include <scsi/scsi_eh.h>
29 #include <scsi/scsi_host.h>
31 #include "scsi_priv.h"
32 #include "scsi_logging.h"
35 #define SG_MEMPOOL_NR ARRAY_SIZE(scsi_sg_pools)
36 #define SG_MEMPOOL_SIZE 2
38 struct scsi_host_sg_pool {
39 size_t size;
40 char *name;
41 struct kmem_cache *slab;
42 mempool_t *pool;
45 #define SP(x) { x, "sgpool-" __stringify(x) }
46 #if (SCSI_MAX_SG_SEGMENTS < 32)
47 #error SCSI_MAX_SG_SEGMENTS is too small (must be 32 or greater)
48 #endif
49 static struct scsi_host_sg_pool scsi_sg_pools[] = {
50 SP(8),
51 SP(16),
52 #if (SCSI_MAX_SG_SEGMENTS > 32)
53 SP(32),
54 #if (SCSI_MAX_SG_SEGMENTS > 64)
55 SP(64),
56 #if (SCSI_MAX_SG_SEGMENTS > 128)
57 SP(128),
58 #if (SCSI_MAX_SG_SEGMENTS > 256)
59 #error SCSI_MAX_SG_SEGMENTS is too large (256 MAX)
60 #endif
61 #endif
62 #endif
63 #endif
64 SP(SCSI_MAX_SG_SEGMENTS)
66 #undef SP
68 struct kmem_cache *scsi_sdb_cache;
71 * When to reinvoke queueing after a resource shortage. It's 3 msecs to
72 * not change behaviour from the previous unplug mechanism, experimentation
73 * may prove this needs changing.
75 #define SCSI_QUEUE_DELAY 3
78 * Function: scsi_unprep_request()
80 * Purpose: Remove all preparation done for a request, including its
81 * associated scsi_cmnd, so that it can be requeued.
83 * Arguments: req - request to unprepare
85 * Lock status: Assumed that no locks are held upon entry.
87 * Returns: Nothing.
89 static void scsi_unprep_request(struct request *req)
91 struct scsi_cmnd *cmd = req->special;
93 blk_unprep_request(req);
94 req->special = NULL;
96 scsi_put_command(cmd);
99 /**
100 * __scsi_queue_insert - private queue insertion
101 * @cmd: The SCSI command being requeued
102 * @reason: The reason for the requeue
103 * @unbusy: Whether the queue should be unbusied
105 * This is a private queue insertion. The public interface
106 * scsi_queue_insert() always assumes the queue should be unbusied
107 * because it's always called before the completion. This function is
108 * for a requeue after completion, which should only occur in this
109 * file.
111 static int __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, int unbusy)
113 struct Scsi_Host *host = cmd->device->host;
114 struct scsi_device *device = cmd->device;
115 struct scsi_target *starget = scsi_target(device);
116 struct request_queue *q = device->request_queue;
117 unsigned long flags;
119 SCSI_LOG_MLQUEUE(1,
120 printk("Inserting command %p into mlqueue\n", cmd));
123 * Set the appropriate busy bit for the device/host.
125 * If the host/device isn't busy, assume that something actually
126 * completed, and that we should be able to queue a command now.
128 * Note that the prior mid-layer assumption that any host could
129 * always queue at least one command is now broken. The mid-layer
130 * will implement a user specifiable stall (see
131 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
132 * if a command is requeued with no other commands outstanding
133 * either for the device or for the host.
135 switch (reason) {
136 case SCSI_MLQUEUE_HOST_BUSY:
137 host->host_blocked = host->max_host_blocked;
138 break;
139 case SCSI_MLQUEUE_DEVICE_BUSY:
140 device->device_blocked = device->max_device_blocked;
141 break;
142 case SCSI_MLQUEUE_TARGET_BUSY:
143 starget->target_blocked = starget->max_target_blocked;
144 break;
148 * Decrement the counters, since these commands are no longer
149 * active on the host/device.
151 if (unbusy)
152 scsi_device_unbusy(device);
155 * Requeue this command. It will go before all other commands
156 * that are already in the queue.
158 spin_lock_irqsave(q->queue_lock, flags);
159 blk_requeue_request(q, cmd->request);
160 spin_unlock_irqrestore(q->queue_lock, flags);
162 kblockd_schedule_work(q, &device->requeue_work);
164 return 0;
168 * Function: scsi_queue_insert()
170 * Purpose: Insert a command in the midlevel queue.
172 * Arguments: cmd - command that we are adding to queue.
173 * reason - why we are inserting command to queue.
175 * Lock status: Assumed that lock is not held upon entry.
177 * Returns: Nothing.
179 * Notes: We do this for one of two cases. Either the host is busy
180 * and it cannot accept any more commands for the time being,
181 * or the device returned QUEUE_FULL and can accept no more
182 * commands.
183 * Notes: This could be called either from an interrupt context or a
184 * normal process context.
186 int scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
188 return __scsi_queue_insert(cmd, reason, 1);
191 * scsi_execute - insert request and wait for the result
192 * @sdev: scsi device
193 * @cmd: scsi command
194 * @data_direction: data direction
195 * @buffer: data buffer
196 * @bufflen: len of buffer
197 * @sense: optional sense buffer
198 * @timeout: request timeout in seconds
199 * @retries: number of times to retry request
200 * @flags: or into request flags;
201 * @resid: optional residual length
203 * returns the req->errors value which is the scsi_cmnd result
204 * field.
206 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
207 int data_direction, void *buffer, unsigned bufflen,
208 unsigned char *sense, int timeout, int retries, int flags,
209 int *resid)
211 struct request *req;
212 int write = (data_direction == DMA_TO_DEVICE);
213 int ret = DRIVER_ERROR << 24;
215 req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
216 if (!req)
217 return ret;
219 if (bufflen && blk_rq_map_kern(sdev->request_queue, req,
220 buffer, bufflen, __GFP_WAIT))
221 goto out;
223 req->cmd_len = COMMAND_SIZE(cmd[0]);
224 memcpy(req->cmd, cmd, req->cmd_len);
225 req->sense = sense;
226 req->sense_len = 0;
227 req->retries = retries;
228 req->timeout = timeout;
229 req->cmd_type = REQ_TYPE_BLOCK_PC;
230 req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT;
233 * head injection *required* here otherwise quiesce won't work
235 blk_execute_rq(req->q, NULL, req, 1);
238 * Some devices (USB mass-storage in particular) may transfer
239 * garbage data together with a residue indicating that the data
240 * is invalid. Prevent the garbage from being misinterpreted
241 * and prevent security leaks by zeroing out the excess data.
243 if (unlikely(req->resid_len > 0 && req->resid_len <= bufflen))
244 memset(buffer + (bufflen - req->resid_len), 0, req->resid_len);
246 if (resid)
247 *resid = req->resid_len;
248 ret = req->errors;
249 out:
250 blk_put_request(req);
252 return ret;
254 EXPORT_SYMBOL(scsi_execute);
257 int scsi_execute_req(struct scsi_device *sdev, const unsigned char *cmd,
258 int data_direction, void *buffer, unsigned bufflen,
259 struct scsi_sense_hdr *sshdr, int timeout, int retries,
260 int *resid)
262 char *sense = NULL;
263 int result;
265 if (sshdr) {
266 sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
267 if (!sense)
268 return DRIVER_ERROR << 24;
270 result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
271 sense, timeout, retries, 0, resid);
272 if (sshdr)
273 scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
275 kfree(sense);
276 return result;
278 EXPORT_SYMBOL(scsi_execute_req);
281 * Function: scsi_init_cmd_errh()
283 * Purpose: Initialize cmd fields related to error handling.
285 * Arguments: cmd - command that is ready to be queued.
287 * Notes: This function has the job of initializing a number of
288 * fields related to error handling. Typically this will
289 * be called once for each command, as required.
291 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
293 cmd->serial_number = 0;
294 scsi_set_resid(cmd, 0);
295 memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
296 if (cmd->cmd_len == 0)
297 cmd->cmd_len = scsi_command_size(cmd->cmnd);
300 void scsi_device_unbusy(struct scsi_device *sdev)
302 struct Scsi_Host *shost = sdev->host;
303 struct scsi_target *starget = scsi_target(sdev);
304 unsigned long flags;
306 spin_lock_irqsave(shost->host_lock, flags);
307 shost->host_busy--;
308 starget->target_busy--;
309 if (unlikely(scsi_host_in_recovery(shost) &&
310 (shost->host_failed || shost->host_eh_scheduled)))
311 scsi_eh_wakeup(shost);
312 spin_unlock(shost->host_lock);
313 spin_lock(sdev->request_queue->queue_lock);
314 sdev->device_busy--;
315 spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags);
319 * Called for single_lun devices on IO completion. Clear starget_sdev_user,
320 * and call blk_run_queue for all the scsi_devices on the target -
321 * including current_sdev first.
323 * Called with *no* scsi locks held.
325 static void scsi_single_lun_run(struct scsi_device *current_sdev)
327 struct Scsi_Host *shost = current_sdev->host;
328 struct scsi_device *sdev, *tmp;
329 struct scsi_target *starget = scsi_target(current_sdev);
330 unsigned long flags;
332 spin_lock_irqsave(shost->host_lock, flags);
333 starget->starget_sdev_user = NULL;
334 spin_unlock_irqrestore(shost->host_lock, flags);
337 * Call blk_run_queue for all LUNs on the target, starting with
338 * current_sdev. We race with others (to set starget_sdev_user),
339 * but in most cases, we will be first. Ideally, each LU on the
340 * target would get some limited time or requests on the target.
342 blk_run_queue(current_sdev->request_queue);
344 spin_lock_irqsave(shost->host_lock, flags);
345 if (starget->starget_sdev_user)
346 goto out;
347 list_for_each_entry_safe(sdev, tmp, &starget->devices,
348 same_target_siblings) {
349 if (sdev == current_sdev)
350 continue;
351 if (scsi_device_get(sdev))
352 continue;
354 spin_unlock_irqrestore(shost->host_lock, flags);
355 blk_run_queue(sdev->request_queue);
356 spin_lock_irqsave(shost->host_lock, flags);
358 scsi_device_put(sdev);
360 out:
361 spin_unlock_irqrestore(shost->host_lock, flags);
364 static inline int scsi_device_is_busy(struct scsi_device *sdev)
366 if (sdev->device_busy >= sdev->queue_depth || sdev->device_blocked)
367 return 1;
369 return 0;
372 static inline int scsi_target_is_busy(struct scsi_target *starget)
374 return ((starget->can_queue > 0 &&
375 starget->target_busy >= starget->can_queue) ||
376 starget->target_blocked);
379 static inline int scsi_host_is_busy(struct Scsi_Host *shost)
381 if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) ||
382 shost->host_blocked || shost->host_self_blocked)
383 return 1;
385 return 0;
389 * Function: scsi_run_queue()
391 * Purpose: Select a proper request queue to serve next
393 * Arguments: q - last request's queue
395 * Returns: Nothing
397 * Notes: The previous command was completely finished, start
398 * a new one if possible.
400 static void scsi_run_queue(struct request_queue *q)
402 struct scsi_device *sdev = q->queuedata;
403 struct Scsi_Host *shost;
404 LIST_HEAD(starved_list);
405 unsigned long flags;
407 /* if the device is dead, sdev will be NULL, so no queue to run */
408 if (!sdev)
409 return;
411 shost = sdev->host;
412 if (scsi_target(sdev)->single_lun)
413 scsi_single_lun_run(sdev);
415 spin_lock_irqsave(shost->host_lock, flags);
416 list_splice_init(&shost->starved_list, &starved_list);
418 while (!list_empty(&starved_list)) {
420 * As long as shost is accepting commands and we have
421 * starved queues, call blk_run_queue. scsi_request_fn
422 * drops the queue_lock and can add us back to the
423 * starved_list.
425 * host_lock protects the starved_list and starved_entry.
426 * scsi_request_fn must get the host_lock before checking
427 * or modifying starved_list or starved_entry.
429 if (scsi_host_is_busy(shost))
430 break;
432 sdev = list_entry(starved_list.next,
433 struct scsi_device, starved_entry);
434 list_del_init(&sdev->starved_entry);
435 if (scsi_target_is_busy(scsi_target(sdev))) {
436 list_move_tail(&sdev->starved_entry,
437 &shost->starved_list);
438 continue;
441 spin_unlock(shost->host_lock);
442 spin_lock(sdev->request_queue->queue_lock);
443 __blk_run_queue(sdev->request_queue);
444 spin_unlock(sdev->request_queue->queue_lock);
445 spin_lock(shost->host_lock);
447 /* put any unprocessed entries back */
448 list_splice(&starved_list, &shost->starved_list);
449 spin_unlock_irqrestore(shost->host_lock, flags);
451 blk_run_queue(q);
454 void scsi_requeue_run_queue(struct work_struct *work)
456 struct scsi_device *sdev;
457 struct request_queue *q;
459 sdev = container_of(work, struct scsi_device, requeue_work);
460 q = sdev->request_queue;
461 scsi_run_queue(q);
465 * Function: scsi_requeue_command()
467 * Purpose: Handle post-processing of completed commands.
469 * Arguments: q - queue to operate on
470 * cmd - command that may need to be requeued.
472 * Returns: Nothing
474 * Notes: After command completion, there may be blocks left
475 * over which weren't finished by the previous command
476 * this can be for a number of reasons - the main one is
477 * I/O errors in the middle of the request, in which case
478 * we need to request the blocks that come after the bad
479 * sector.
480 * Notes: Upon return, cmd is a stale pointer.
482 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
484 struct request *req = cmd->request;
485 unsigned long flags;
487 spin_lock_irqsave(q->queue_lock, flags);
488 scsi_unprep_request(req);
489 blk_requeue_request(q, req);
490 spin_unlock_irqrestore(q->queue_lock, flags);
492 scsi_run_queue(q);
495 void scsi_next_command(struct scsi_cmnd *cmd)
497 struct scsi_device *sdev = cmd->device;
498 struct request_queue *q = sdev->request_queue;
500 /* need to hold a reference on the device before we let go of the cmd */
501 get_device(&sdev->sdev_gendev);
503 scsi_put_command(cmd);
504 scsi_run_queue(q);
506 /* ok to remove device now */
507 put_device(&sdev->sdev_gendev);
510 void scsi_run_host_queues(struct Scsi_Host *shost)
512 struct scsi_device *sdev;
514 shost_for_each_device(sdev, shost)
515 scsi_run_queue(sdev->request_queue);
518 static void __scsi_release_buffers(struct scsi_cmnd *, int);
521 * Function: scsi_end_request()
523 * Purpose: Post-processing of completed commands (usually invoked at end
524 * of upper level post-processing and scsi_io_completion).
526 * Arguments: cmd - command that is complete.
527 * error - 0 if I/O indicates success, < 0 for I/O error.
528 * bytes - number of bytes of completed I/O
529 * requeue - indicates whether we should requeue leftovers.
531 * Lock status: Assumed that lock is not held upon entry.
533 * Returns: cmd if requeue required, NULL otherwise.
535 * Notes: This is called for block device requests in order to
536 * mark some number of sectors as complete.
538 * We are guaranteeing that the request queue will be goosed
539 * at some point during this call.
540 * Notes: If cmd was requeued, upon return it will be a stale pointer.
542 static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int error,
543 int bytes, int requeue)
545 struct request_queue *q = cmd->device->request_queue;
546 struct request *req = cmd->request;
549 * If there are blocks left over at the end, set up the command
550 * to queue the remainder of them.
552 if (blk_end_request(req, error, bytes)) {
553 /* kill remainder if no retrys */
554 if (error && scsi_noretry_cmd(cmd))
555 blk_end_request_all(req, error);
556 else {
557 if (requeue) {
559 * Bleah. Leftovers again. Stick the
560 * leftovers in the front of the
561 * queue, and goose the queue again.
563 scsi_release_buffers(cmd);
564 scsi_requeue_command(q, cmd);
565 cmd = NULL;
567 return cmd;
572 * This will goose the queue request function at the end, so we don't
573 * need to worry about launching another command.
575 __scsi_release_buffers(cmd, 0);
576 scsi_next_command(cmd);
577 return NULL;
580 static inline unsigned int scsi_sgtable_index(unsigned short nents)
582 unsigned int index;
584 BUG_ON(nents > SCSI_MAX_SG_SEGMENTS);
586 if (nents <= 8)
587 index = 0;
588 else
589 index = get_count_order(nents) - 3;
591 return index;
594 static void scsi_sg_free(struct scatterlist *sgl, unsigned int nents)
596 struct scsi_host_sg_pool *sgp;
598 sgp = scsi_sg_pools + scsi_sgtable_index(nents);
599 mempool_free(sgl, sgp->pool);
602 static struct scatterlist *scsi_sg_alloc(unsigned int nents, gfp_t gfp_mask)
604 struct scsi_host_sg_pool *sgp;
606 sgp = scsi_sg_pools + scsi_sgtable_index(nents);
607 return mempool_alloc(sgp->pool, gfp_mask);
610 static int scsi_alloc_sgtable(struct scsi_data_buffer *sdb, int nents,
611 gfp_t gfp_mask)
613 int ret;
615 BUG_ON(!nents);
617 ret = __sg_alloc_table(&sdb->table, nents, SCSI_MAX_SG_SEGMENTS,
618 gfp_mask, scsi_sg_alloc);
619 if (unlikely(ret))
620 __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS,
621 scsi_sg_free);
623 return ret;
626 static void scsi_free_sgtable(struct scsi_data_buffer *sdb)
628 __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS, scsi_sg_free);
631 static void __scsi_release_buffers(struct scsi_cmnd *cmd, int do_bidi_check)
634 if (cmd->sdb.table.nents)
635 scsi_free_sgtable(&cmd->sdb);
637 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
639 if (do_bidi_check && scsi_bidi_cmnd(cmd)) {
640 struct scsi_data_buffer *bidi_sdb =
641 cmd->request->next_rq->special;
642 scsi_free_sgtable(bidi_sdb);
643 kmem_cache_free(scsi_sdb_cache, bidi_sdb);
644 cmd->request->next_rq->special = NULL;
647 if (scsi_prot_sg_count(cmd))
648 scsi_free_sgtable(cmd->prot_sdb);
652 * Function: scsi_release_buffers()
654 * Purpose: Completion processing for block device I/O requests.
656 * Arguments: cmd - command that we are bailing.
658 * Lock status: Assumed that no lock is held upon entry.
660 * Returns: Nothing
662 * Notes: In the event that an upper level driver rejects a
663 * command, we must release resources allocated during
664 * the __init_io() function. Primarily this would involve
665 * the scatter-gather table, and potentially any bounce
666 * buffers.
668 void scsi_release_buffers(struct scsi_cmnd *cmd)
670 __scsi_release_buffers(cmd, 1);
672 EXPORT_SYMBOL(scsi_release_buffers);
674 static int __scsi_error_from_host_byte(struct scsi_cmnd *cmd, int result)
676 int error = 0;
678 switch(host_byte(result)) {
679 case DID_TRANSPORT_FAILFAST:
680 error = -ENOLINK;
681 break;
682 case DID_TARGET_FAILURE:
683 cmd->result |= (DID_OK << 16);
684 error = -EREMOTEIO;
685 break;
686 case DID_NEXUS_FAILURE:
687 cmd->result |= (DID_OK << 16);
688 error = -EBADE;
689 break;
690 default:
691 error = -EIO;
692 break;
695 return error;
699 * Function: scsi_io_completion()
701 * Purpose: Completion processing for block device I/O requests.
703 * Arguments: cmd - command that is finished.
705 * Lock status: Assumed that no lock is held upon entry.
707 * Returns: Nothing
709 * Notes: This function is matched in terms of capabilities to
710 * the function that created the scatter-gather list.
711 * In other words, if there are no bounce buffers
712 * (the normal case for most drivers), we don't need
713 * the logic to deal with cleaning up afterwards.
715 * We must call scsi_end_request(). This will finish off
716 * the specified number of sectors. If we are done, the
717 * command block will be released and the queue function
718 * will be goosed. If we are not done then we have to
719 * figure out what to do next:
721 * a) We can call scsi_requeue_command(). The request
722 * will be unprepared and put back on the queue. Then
723 * a new command will be created for it. This should
724 * be used if we made forward progress, or if we want
725 * to switch from READ(10) to READ(6) for example.
727 * b) We can call scsi_queue_insert(). The request will
728 * be put back on the queue and retried using the same
729 * command as before, possibly after a delay.
731 * c) We can call blk_end_request() with -EIO to fail
732 * the remainder of the request.
734 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
736 int result = cmd->result;
737 struct request_queue *q = cmd->device->request_queue;
738 struct request *req = cmd->request;
739 int error = 0;
740 struct scsi_sense_hdr sshdr;
741 int sense_valid = 0;
742 int sense_deferred = 0;
743 enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
744 ACTION_DELAYED_RETRY} action;
745 char *description = NULL;
747 if (result) {
748 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
749 if (sense_valid)
750 sense_deferred = scsi_sense_is_deferred(&sshdr);
753 if (req->cmd_type == REQ_TYPE_BLOCK_PC) { /* SG_IO ioctl from block level */
754 req->errors = result;
755 if (result) {
756 if (sense_valid && req->sense) {
758 * SG_IO wants current and deferred errors
760 int len = 8 + cmd->sense_buffer[7];
762 if (len > SCSI_SENSE_BUFFERSIZE)
763 len = SCSI_SENSE_BUFFERSIZE;
764 memcpy(req->sense, cmd->sense_buffer, len);
765 req->sense_len = len;
767 if (!sense_deferred)
768 error = __scsi_error_from_host_byte(cmd, result);
771 req->resid_len = scsi_get_resid(cmd);
773 if (scsi_bidi_cmnd(cmd)) {
775 * Bidi commands Must be complete as a whole,
776 * both sides at once.
778 req->next_rq->resid_len = scsi_in(cmd)->resid;
780 scsi_release_buffers(cmd);
781 blk_end_request_all(req, 0);
783 scsi_next_command(cmd);
784 return;
788 /* no bidi support for !REQ_TYPE_BLOCK_PC yet */
789 BUG_ON(blk_bidi_rq(req));
792 * Next deal with any sectors which we were able to correctly
793 * handle.
795 SCSI_LOG_HLCOMPLETE(1, printk("%u sectors total, "
796 "%d bytes done.\n",
797 blk_rq_sectors(req), good_bytes));
800 * Recovered errors need reporting, but they're always treated
801 * as success, so fiddle the result code here. For BLOCK_PC
802 * we already took a copy of the original into rq->errors which
803 * is what gets returned to the user
805 if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
806 /* if ATA PASS-THROUGH INFORMATION AVAILABLE skip
807 * print since caller wants ATA registers. Only occurs on
808 * SCSI ATA PASS_THROUGH commands when CK_COND=1
810 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
812 else if (!(req->cmd_flags & REQ_QUIET))
813 scsi_print_sense("", cmd);
814 result = 0;
815 /* BLOCK_PC may have set error */
816 error = 0;
820 * A number of bytes were successfully read. If there
821 * are leftovers and there is some kind of error
822 * (result != 0), retry the rest.
824 if (scsi_end_request(cmd, error, good_bytes, result == 0) == NULL)
825 return;
827 error = __scsi_error_from_host_byte(cmd, result);
829 if (host_byte(result) == DID_RESET) {
830 /* Third party bus reset or reset for error recovery
831 * reasons. Just retry the command and see what
832 * happens.
834 action = ACTION_RETRY;
835 } else if (sense_valid && !sense_deferred) {
836 switch (sshdr.sense_key) {
837 case UNIT_ATTENTION:
838 if (cmd->device->removable) {
839 /* Detected disc change. Set a bit
840 * and quietly refuse further access.
842 cmd->device->changed = 1;
843 description = "Media Changed";
844 action = ACTION_FAIL;
845 } else {
846 /* Must have been a power glitch, or a
847 * bus reset. Could not have been a
848 * media change, so we just retry the
849 * command and see what happens.
851 action = ACTION_RETRY;
853 break;
854 case ILLEGAL_REQUEST:
855 /* If we had an ILLEGAL REQUEST returned, then
856 * we may have performed an unsupported
857 * command. The only thing this should be
858 * would be a ten byte read where only a six
859 * byte read was supported. Also, on a system
860 * where READ CAPACITY failed, we may have
861 * read past the end of the disk.
863 if ((cmd->device->use_10_for_rw &&
864 sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
865 (cmd->cmnd[0] == READ_10 ||
866 cmd->cmnd[0] == WRITE_10)) {
867 /* This will issue a new 6-byte command. */
868 cmd->device->use_10_for_rw = 0;
869 action = ACTION_REPREP;
870 } else if (sshdr.asc == 0x10) /* DIX */ {
871 description = "Host Data Integrity Failure";
872 action = ACTION_FAIL;
873 error = -EILSEQ;
874 /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
875 } else if ((sshdr.asc == 0x20 || sshdr.asc == 0x24) &&
876 (cmd->cmnd[0] == UNMAP ||
877 cmd->cmnd[0] == WRITE_SAME_16 ||
878 cmd->cmnd[0] == WRITE_SAME)) {
879 description = "Discard failure";
880 action = ACTION_FAIL;
881 } else
882 action = ACTION_FAIL;
883 break;
884 case ABORTED_COMMAND:
885 action = ACTION_FAIL;
886 if (sshdr.asc == 0x10) { /* DIF */
887 description = "Target Data Integrity Failure";
888 error = -EILSEQ;
890 break;
891 case NOT_READY:
892 /* If the device is in the process of becoming
893 * ready, or has a temporary blockage, retry.
895 if (sshdr.asc == 0x04) {
896 switch (sshdr.ascq) {
897 case 0x01: /* becoming ready */
898 case 0x04: /* format in progress */
899 case 0x05: /* rebuild in progress */
900 case 0x06: /* recalculation in progress */
901 case 0x07: /* operation in progress */
902 case 0x08: /* Long write in progress */
903 case 0x09: /* self test in progress */
904 case 0x14: /* space allocation in progress */
905 action = ACTION_DELAYED_RETRY;
906 break;
907 default:
908 description = "Device not ready";
909 action = ACTION_FAIL;
910 break;
912 } else {
913 description = "Device not ready";
914 action = ACTION_FAIL;
916 break;
917 case VOLUME_OVERFLOW:
918 /* See SSC3rXX or current. */
919 action = ACTION_FAIL;
920 break;
921 default:
922 description = "Unhandled sense code";
923 action = ACTION_FAIL;
924 break;
926 } else {
927 description = "Unhandled error code";
928 action = ACTION_FAIL;
931 switch (action) {
932 case ACTION_FAIL:
933 /* Give up and fail the remainder of the request */
934 scsi_release_buffers(cmd);
935 if (!(req->cmd_flags & REQ_QUIET)) {
936 if (description)
937 scmd_printk(KERN_INFO, cmd, "%s\n",
938 description);
939 scsi_print_result(cmd);
940 if (driver_byte(result) & DRIVER_SENSE)
941 scsi_print_sense("", cmd);
942 scsi_print_command(cmd);
944 if (blk_end_request_err(req, error))
945 scsi_requeue_command(q, cmd);
946 else
947 scsi_next_command(cmd);
948 break;
949 case ACTION_REPREP:
950 /* Unprep the request and put it back at the head of the queue.
951 * A new command will be prepared and issued.
953 scsi_release_buffers(cmd);
954 scsi_requeue_command(q, cmd);
955 break;
956 case ACTION_RETRY:
957 /* Retry the same command immediately */
958 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, 0);
959 break;
960 case ACTION_DELAYED_RETRY:
961 /* Retry the same command after a delay */
962 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, 0);
963 break;
967 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb,
968 gfp_t gfp_mask)
970 int count;
973 * If sg table allocation fails, requeue request later.
975 if (unlikely(scsi_alloc_sgtable(sdb, req->nr_phys_segments,
976 gfp_mask))) {
977 return BLKPREP_DEFER;
980 req->buffer = NULL;
983 * Next, walk the list, and fill in the addresses and sizes of
984 * each segment.
986 count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
987 BUG_ON(count > sdb->table.nents);
988 sdb->table.nents = count;
989 sdb->length = blk_rq_bytes(req);
990 return BLKPREP_OK;
994 * Function: scsi_init_io()
996 * Purpose: SCSI I/O initialize function.
998 * Arguments: cmd - Command descriptor we wish to initialize
1000 * Returns: 0 on success
1001 * BLKPREP_DEFER if the failure is retryable
1002 * BLKPREP_KILL if the failure is fatal
1004 int scsi_init_io(struct scsi_cmnd *cmd, gfp_t gfp_mask)
1006 struct request *rq = cmd->request;
1008 int error = scsi_init_sgtable(rq, &cmd->sdb, gfp_mask);
1009 if (error)
1010 goto err_exit;
1012 if (blk_bidi_rq(rq)) {
1013 struct scsi_data_buffer *bidi_sdb = kmem_cache_zalloc(
1014 scsi_sdb_cache, GFP_ATOMIC);
1015 if (!bidi_sdb) {
1016 error = BLKPREP_DEFER;
1017 goto err_exit;
1020 rq->next_rq->special = bidi_sdb;
1021 error = scsi_init_sgtable(rq->next_rq, bidi_sdb, GFP_ATOMIC);
1022 if (error)
1023 goto err_exit;
1026 if (blk_integrity_rq(rq)) {
1027 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1028 int ivecs, count;
1030 BUG_ON(prot_sdb == NULL);
1031 ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1033 if (scsi_alloc_sgtable(prot_sdb, ivecs, gfp_mask)) {
1034 error = BLKPREP_DEFER;
1035 goto err_exit;
1038 count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1039 prot_sdb->table.sgl);
1040 BUG_ON(unlikely(count > ivecs));
1041 BUG_ON(unlikely(count > queue_max_integrity_segments(rq->q)));
1043 cmd->prot_sdb = prot_sdb;
1044 cmd->prot_sdb->table.nents = count;
1047 return BLKPREP_OK ;
1049 err_exit:
1050 scsi_release_buffers(cmd);
1051 cmd->request->special = NULL;
1052 scsi_put_command(cmd);
1053 return error;
1055 EXPORT_SYMBOL(scsi_init_io);
1057 static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev,
1058 struct request *req)
1060 struct scsi_cmnd *cmd;
1062 if (!req->special) {
1063 cmd = scsi_get_command(sdev, GFP_ATOMIC);
1064 if (unlikely(!cmd))
1065 return NULL;
1066 req->special = cmd;
1067 } else {
1068 cmd = req->special;
1071 /* pull a tag out of the request if we have one */
1072 cmd->tag = req->tag;
1073 cmd->request = req;
1075 cmd->cmnd = req->cmd;
1076 cmd->prot_op = SCSI_PROT_NORMAL;
1078 return cmd;
1081 int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req)
1083 struct scsi_cmnd *cmd;
1084 int ret = scsi_prep_state_check(sdev, req);
1086 if (ret != BLKPREP_OK)
1087 return ret;
1089 cmd = scsi_get_cmd_from_req(sdev, req);
1090 if (unlikely(!cmd))
1091 return BLKPREP_DEFER;
1094 * BLOCK_PC requests may transfer data, in which case they must
1095 * a bio attached to them. Or they might contain a SCSI command
1096 * that does not transfer data, in which case they may optionally
1097 * submit a request without an attached bio.
1099 if (req->bio) {
1100 int ret;
1102 BUG_ON(!req->nr_phys_segments);
1104 ret = scsi_init_io(cmd, GFP_ATOMIC);
1105 if (unlikely(ret))
1106 return ret;
1107 } else {
1108 BUG_ON(blk_rq_bytes(req));
1110 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1111 req->buffer = NULL;
1114 cmd->cmd_len = req->cmd_len;
1115 if (!blk_rq_bytes(req))
1116 cmd->sc_data_direction = DMA_NONE;
1117 else if (rq_data_dir(req) == WRITE)
1118 cmd->sc_data_direction = DMA_TO_DEVICE;
1119 else
1120 cmd->sc_data_direction = DMA_FROM_DEVICE;
1122 cmd->transfersize = blk_rq_bytes(req);
1123 cmd->allowed = req->retries;
1124 return BLKPREP_OK;
1126 EXPORT_SYMBOL(scsi_setup_blk_pc_cmnd);
1129 * Setup a REQ_TYPE_FS command. These are simple read/write request
1130 * from filesystems that still need to be translated to SCSI CDBs from
1131 * the ULD.
1133 int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1135 struct scsi_cmnd *cmd;
1136 int ret = scsi_prep_state_check(sdev, req);
1138 if (ret != BLKPREP_OK)
1139 return ret;
1141 if (unlikely(sdev->scsi_dh_data && sdev->scsi_dh_data->scsi_dh
1142 && sdev->scsi_dh_data->scsi_dh->prep_fn)) {
1143 ret = sdev->scsi_dh_data->scsi_dh->prep_fn(sdev, req);
1144 if (ret != BLKPREP_OK)
1145 return ret;
1149 * Filesystem requests must transfer data.
1151 BUG_ON(!req->nr_phys_segments);
1153 cmd = scsi_get_cmd_from_req(sdev, req);
1154 if (unlikely(!cmd))
1155 return BLKPREP_DEFER;
1157 memset(cmd->cmnd, 0, BLK_MAX_CDB);
1158 return scsi_init_io(cmd, GFP_ATOMIC);
1160 EXPORT_SYMBOL(scsi_setup_fs_cmnd);
1162 int scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1164 int ret = BLKPREP_OK;
1167 * If the device is not in running state we will reject some
1168 * or all commands.
1170 if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1171 switch (sdev->sdev_state) {
1172 case SDEV_OFFLINE:
1174 * If the device is offline we refuse to process any
1175 * commands. The device must be brought online
1176 * before trying any recovery commands.
1178 sdev_printk(KERN_ERR, sdev,
1179 "rejecting I/O to offline device\n");
1180 ret = BLKPREP_KILL;
1181 break;
1182 case SDEV_DEL:
1184 * If the device is fully deleted, we refuse to
1185 * process any commands as well.
1187 sdev_printk(KERN_ERR, sdev,
1188 "rejecting I/O to dead device\n");
1189 ret = BLKPREP_KILL;
1190 break;
1191 case SDEV_QUIESCE:
1192 case SDEV_BLOCK:
1193 case SDEV_CREATED_BLOCK:
1195 * If the devices is blocked we defer normal commands.
1197 if (!(req->cmd_flags & REQ_PREEMPT))
1198 ret = BLKPREP_DEFER;
1199 break;
1200 default:
1202 * For any other not fully online state we only allow
1203 * special commands. In particular any user initiated
1204 * command is not allowed.
1206 if (!(req->cmd_flags & REQ_PREEMPT))
1207 ret = BLKPREP_KILL;
1208 break;
1211 return ret;
1213 EXPORT_SYMBOL(scsi_prep_state_check);
1215 int scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1217 struct scsi_device *sdev = q->queuedata;
1219 switch (ret) {
1220 case BLKPREP_KILL:
1221 req->errors = DID_NO_CONNECT << 16;
1222 /* release the command and kill it */
1223 if (req->special) {
1224 struct scsi_cmnd *cmd = req->special;
1225 scsi_release_buffers(cmd);
1226 scsi_put_command(cmd);
1227 req->special = NULL;
1229 break;
1230 case BLKPREP_DEFER:
1232 * If we defer, the blk_peek_request() returns NULL, but the
1233 * queue must be restarted, so we schedule a callback to happen
1234 * shortly.
1236 if (sdev->device_busy == 0)
1237 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1238 break;
1239 default:
1240 req->cmd_flags |= REQ_DONTPREP;
1243 return ret;
1245 EXPORT_SYMBOL(scsi_prep_return);
1247 int scsi_prep_fn(struct request_queue *q, struct request *req)
1249 struct scsi_device *sdev = q->queuedata;
1250 int ret = BLKPREP_KILL;
1252 if (req->cmd_type == REQ_TYPE_BLOCK_PC)
1253 ret = scsi_setup_blk_pc_cmnd(sdev, req);
1254 return scsi_prep_return(q, req, ret);
1256 EXPORT_SYMBOL(scsi_prep_fn);
1259 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1260 * return 0.
1262 * Called with the queue_lock held.
1264 static inline int scsi_dev_queue_ready(struct request_queue *q,
1265 struct scsi_device *sdev)
1267 if (sdev->device_busy == 0 && sdev->device_blocked) {
1269 * unblock after device_blocked iterates to zero
1271 if (--sdev->device_blocked == 0) {
1272 SCSI_LOG_MLQUEUE(3,
1273 sdev_printk(KERN_INFO, sdev,
1274 "unblocking device at zero depth\n"));
1275 } else {
1276 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1277 return 0;
1280 if (scsi_device_is_busy(sdev))
1281 return 0;
1283 return 1;
1288 * scsi_target_queue_ready: checks if there we can send commands to target
1289 * @sdev: scsi device on starget to check.
1291 * Called with the host lock held.
1293 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1294 struct scsi_device *sdev)
1296 struct scsi_target *starget = scsi_target(sdev);
1298 if (starget->single_lun) {
1299 if (starget->starget_sdev_user &&
1300 starget->starget_sdev_user != sdev)
1301 return 0;
1302 starget->starget_sdev_user = sdev;
1305 if (starget->target_busy == 0 && starget->target_blocked) {
1307 * unblock after target_blocked iterates to zero
1309 if (--starget->target_blocked == 0) {
1310 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1311 "unblocking target at zero depth\n"));
1312 } else
1313 return 0;
1316 if (scsi_target_is_busy(starget)) {
1317 if (list_empty(&sdev->starved_entry))
1318 list_add_tail(&sdev->starved_entry,
1319 &shost->starved_list);
1320 return 0;
1323 /* We're OK to process the command, so we can't be starved */
1324 if (!list_empty(&sdev->starved_entry))
1325 list_del_init(&sdev->starved_entry);
1326 return 1;
1330 * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1331 * return 0. We must end up running the queue again whenever 0 is
1332 * returned, else IO can hang.
1334 * Called with host_lock held.
1336 static inline int scsi_host_queue_ready(struct request_queue *q,
1337 struct Scsi_Host *shost,
1338 struct scsi_device *sdev)
1340 if (scsi_host_in_recovery(shost))
1341 return 0;
1342 if (shost->host_busy == 0 && shost->host_blocked) {
1344 * unblock after host_blocked iterates to zero
1346 if (--shost->host_blocked == 0) {
1347 SCSI_LOG_MLQUEUE(3,
1348 printk("scsi%d unblocking host at zero depth\n",
1349 shost->host_no));
1350 } else {
1351 return 0;
1354 if (scsi_host_is_busy(shost)) {
1355 if (list_empty(&sdev->starved_entry))
1356 list_add_tail(&sdev->starved_entry, &shost->starved_list);
1357 return 0;
1360 /* We're OK to process the command, so we can't be starved */
1361 if (!list_empty(&sdev->starved_entry))
1362 list_del_init(&sdev->starved_entry);
1364 return 1;
1368 * Busy state exporting function for request stacking drivers.
1370 * For efficiency, no lock is taken to check the busy state of
1371 * shost/starget/sdev, since the returned value is not guaranteed and
1372 * may be changed after request stacking drivers call the function,
1373 * regardless of taking lock or not.
1375 * When scsi can't dispatch I/Os anymore and needs to kill I/Os
1376 * (e.g. !sdev), scsi needs to return 'not busy'.
1377 * Otherwise, request stacking drivers may hold requests forever.
1379 static int scsi_lld_busy(struct request_queue *q)
1381 struct scsi_device *sdev = q->queuedata;
1382 struct Scsi_Host *shost;
1383 struct scsi_target *starget;
1385 if (!sdev)
1386 return 0;
1388 shost = sdev->host;
1389 starget = scsi_target(sdev);
1391 if (scsi_host_in_recovery(shost) || scsi_host_is_busy(shost) ||
1392 scsi_target_is_busy(starget) || scsi_device_is_busy(sdev))
1393 return 1;
1395 return 0;
1399 * Kill a request for a dead device
1401 static void scsi_kill_request(struct request *req, struct request_queue *q)
1403 struct scsi_cmnd *cmd = req->special;
1404 struct scsi_device *sdev;
1405 struct scsi_target *starget;
1406 struct Scsi_Host *shost;
1408 blk_start_request(req);
1410 sdev = cmd->device;
1411 starget = scsi_target(sdev);
1412 shost = sdev->host;
1413 scsi_init_cmd_errh(cmd);
1414 cmd->result = DID_NO_CONNECT << 16;
1415 atomic_inc(&cmd->device->iorequest_cnt);
1418 * SCSI request completion path will do scsi_device_unbusy(),
1419 * bump busy counts. To bump the counters, we need to dance
1420 * with the locks as normal issue path does.
1422 sdev->device_busy++;
1423 spin_unlock(sdev->request_queue->queue_lock);
1424 spin_lock(shost->host_lock);
1425 shost->host_busy++;
1426 starget->target_busy++;
1427 spin_unlock(shost->host_lock);
1428 spin_lock(sdev->request_queue->queue_lock);
1430 blk_complete_request(req);
1433 static void scsi_softirq_done(struct request *rq)
1435 struct scsi_cmnd *cmd = rq->special;
1436 unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1437 int disposition;
1439 INIT_LIST_HEAD(&cmd->eh_entry);
1441 atomic_inc(&cmd->device->iodone_cnt);
1442 if (cmd->result)
1443 atomic_inc(&cmd->device->ioerr_cnt);
1445 disposition = scsi_decide_disposition(cmd);
1446 if (disposition != SUCCESS &&
1447 time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1448 sdev_printk(KERN_ERR, cmd->device,
1449 "timing out command, waited %lus\n",
1450 wait_for/HZ);
1451 disposition = SUCCESS;
1454 scsi_log_completion(cmd, disposition);
1456 switch (disposition) {
1457 case SUCCESS:
1458 scsi_finish_command(cmd);
1459 break;
1460 case NEEDS_RETRY:
1461 scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1462 break;
1463 case ADD_TO_MLQUEUE:
1464 scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1465 break;
1466 default:
1467 if (!scsi_eh_scmd_add(cmd, 0))
1468 scsi_finish_command(cmd);
1473 * Function: scsi_request_fn()
1475 * Purpose: Main strategy routine for SCSI.
1477 * Arguments: q - Pointer to actual queue.
1479 * Returns: Nothing
1481 * Lock status: IO request lock assumed to be held when called.
1483 static void scsi_request_fn(struct request_queue *q)
1485 struct scsi_device *sdev = q->queuedata;
1486 struct Scsi_Host *shost;
1487 struct scsi_cmnd *cmd;
1488 struct request *req;
1490 if (!sdev) {
1491 printk("scsi: killing requests for dead queue\n");
1492 while ((req = blk_peek_request(q)) != NULL)
1493 scsi_kill_request(req, q);
1494 return;
1497 if(!get_device(&sdev->sdev_gendev))
1498 /* We must be tearing the block queue down already */
1499 return;
1502 * To start with, we keep looping until the queue is empty, or until
1503 * the host is no longer able to accept any more requests.
1505 shost = sdev->host;
1506 for (;;) {
1507 int rtn;
1509 * get next queueable request. We do this early to make sure
1510 * that the request is fully prepared even if we cannot
1511 * accept it.
1513 req = blk_peek_request(q);
1514 if (!req || !scsi_dev_queue_ready(q, sdev))
1515 break;
1517 if (unlikely(!scsi_device_online(sdev))) {
1518 sdev_printk(KERN_ERR, sdev,
1519 "rejecting I/O to offline device\n");
1520 scsi_kill_request(req, q);
1521 continue;
1526 * Remove the request from the request list.
1528 if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1529 blk_start_request(req);
1530 sdev->device_busy++;
1532 spin_unlock(q->queue_lock);
1533 cmd = req->special;
1534 if (unlikely(cmd == NULL)) {
1535 printk(KERN_CRIT "impossible request in %s.\n"
1536 "please mail a stack trace to "
1537 "linux-scsi@vger.kernel.org\n",
1538 __func__);
1539 blk_dump_rq_flags(req, "foo");
1540 BUG();
1542 spin_lock(shost->host_lock);
1545 * We hit this when the driver is using a host wide
1546 * tag map. For device level tag maps the queue_depth check
1547 * in the device ready fn would prevent us from trying
1548 * to allocate a tag. Since the map is a shared host resource
1549 * we add the dev to the starved list so it eventually gets
1550 * a run when a tag is freed.
1552 if (blk_queue_tagged(q) && !blk_rq_tagged(req)) {
1553 if (list_empty(&sdev->starved_entry))
1554 list_add_tail(&sdev->starved_entry,
1555 &shost->starved_list);
1556 goto not_ready;
1559 if (!scsi_target_queue_ready(shost, sdev))
1560 goto not_ready;
1562 if (!scsi_host_queue_ready(q, shost, sdev))
1563 goto not_ready;
1565 scsi_target(sdev)->target_busy++;
1566 shost->host_busy++;
1569 * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will
1570 * take the lock again.
1572 spin_unlock_irq(shost->host_lock);
1575 * Finally, initialize any error handling parameters, and set up
1576 * the timers for timeouts.
1578 scsi_init_cmd_errh(cmd);
1581 * Dispatch the command to the low-level driver.
1583 rtn = scsi_dispatch_cmd(cmd);
1584 spin_lock_irq(q->queue_lock);
1585 if (rtn)
1586 goto out_delay;
1589 goto out;
1591 not_ready:
1592 spin_unlock_irq(shost->host_lock);
1595 * lock q, handle tag, requeue req, and decrement device_busy. We
1596 * must return with queue_lock held.
1598 * Decrementing device_busy without checking it is OK, as all such
1599 * cases (host limits or settings) should run the queue at some
1600 * later time.
1602 spin_lock_irq(q->queue_lock);
1603 blk_requeue_request(q, req);
1604 sdev->device_busy--;
1605 out_delay:
1606 if (sdev->device_busy == 0)
1607 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1608 out:
1609 /* must be careful here...if we trigger the ->remove() function
1610 * we cannot be holding the q lock */
1611 spin_unlock_irq(q->queue_lock);
1612 put_device(&sdev->sdev_gendev);
1613 spin_lock_irq(q->queue_lock);
1616 u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1618 struct device *host_dev;
1619 u64 bounce_limit = 0xffffffff;
1621 if (shost->unchecked_isa_dma)
1622 return BLK_BOUNCE_ISA;
1624 * Platforms with virtual-DMA translation
1625 * hardware have no practical limit.
1627 if (!PCI_DMA_BUS_IS_PHYS)
1628 return BLK_BOUNCE_ANY;
1630 host_dev = scsi_get_device(shost);
1631 if (host_dev && host_dev->dma_mask)
1632 bounce_limit = *host_dev->dma_mask;
1634 return bounce_limit;
1636 EXPORT_SYMBOL(scsi_calculate_bounce_limit);
1638 struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost,
1639 request_fn_proc *request_fn)
1641 struct request_queue *q;
1642 struct device *dev = shost->shost_gendev.parent;
1644 q = blk_init_queue(request_fn, NULL);
1645 if (!q)
1646 return NULL;
1649 * this limit is imposed by hardware restrictions
1651 blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
1652 SCSI_MAX_SG_CHAIN_SEGMENTS));
1654 if (scsi_host_prot_dma(shost)) {
1655 shost->sg_prot_tablesize =
1656 min_not_zero(shost->sg_prot_tablesize,
1657 (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
1658 BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
1659 blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
1662 blk_queue_max_hw_sectors(q, shost->max_sectors);
1663 blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
1664 blk_queue_segment_boundary(q, shost->dma_boundary);
1665 dma_set_seg_boundary(dev, shost->dma_boundary);
1667 blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
1669 if (!shost->use_clustering)
1670 q->limits.cluster = 0;
1673 * set a reasonable default alignment on word boundaries: the
1674 * host and device may alter it using
1675 * blk_queue_update_dma_alignment() later.
1677 blk_queue_dma_alignment(q, 0x03);
1679 return q;
1681 EXPORT_SYMBOL(__scsi_alloc_queue);
1683 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
1685 struct request_queue *q;
1687 q = __scsi_alloc_queue(sdev->host, scsi_request_fn);
1688 if (!q)
1689 return NULL;
1691 blk_queue_prep_rq(q, scsi_prep_fn);
1692 blk_queue_softirq_done(q, scsi_softirq_done);
1693 blk_queue_rq_timed_out(q, scsi_times_out);
1694 blk_queue_lld_busy(q, scsi_lld_busy);
1695 return q;
1698 void scsi_free_queue(struct request_queue *q)
1700 blk_cleanup_queue(q);
1704 * Function: scsi_block_requests()
1706 * Purpose: Utility function used by low-level drivers to prevent further
1707 * commands from being queued to the device.
1709 * Arguments: shost - Host in question
1711 * Returns: Nothing
1713 * Lock status: No locks are assumed held.
1715 * Notes: There is no timer nor any other means by which the requests
1716 * get unblocked other than the low-level driver calling
1717 * scsi_unblock_requests().
1719 void scsi_block_requests(struct Scsi_Host *shost)
1721 shost->host_self_blocked = 1;
1723 EXPORT_SYMBOL(scsi_block_requests);
1726 * Function: scsi_unblock_requests()
1728 * Purpose: Utility function used by low-level drivers to allow further
1729 * commands from being queued to the device.
1731 * Arguments: shost - Host in question
1733 * Returns: Nothing
1735 * Lock status: No locks are assumed held.
1737 * Notes: There is no timer nor any other means by which the requests
1738 * get unblocked other than the low-level driver calling
1739 * scsi_unblock_requests().
1741 * This is done as an API function so that changes to the
1742 * internals of the scsi mid-layer won't require wholesale
1743 * changes to drivers that use this feature.
1745 void scsi_unblock_requests(struct Scsi_Host *shost)
1747 shost->host_self_blocked = 0;
1748 scsi_run_host_queues(shost);
1750 EXPORT_SYMBOL(scsi_unblock_requests);
1752 int __init scsi_init_queue(void)
1754 int i;
1756 scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
1757 sizeof(struct scsi_data_buffer),
1758 0, 0, NULL);
1759 if (!scsi_sdb_cache) {
1760 printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
1761 return -ENOMEM;
1764 for (i = 0; i < SG_MEMPOOL_NR; i++) {
1765 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1766 int size = sgp->size * sizeof(struct scatterlist);
1768 sgp->slab = kmem_cache_create(sgp->name, size, 0,
1769 SLAB_HWCACHE_ALIGN, NULL);
1770 if (!sgp->slab) {
1771 printk(KERN_ERR "SCSI: can't init sg slab %s\n",
1772 sgp->name);
1773 goto cleanup_sdb;
1776 sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE,
1777 sgp->slab);
1778 if (!sgp->pool) {
1779 printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
1780 sgp->name);
1781 goto cleanup_sdb;
1785 return 0;
1787 cleanup_sdb:
1788 for (i = 0; i < SG_MEMPOOL_NR; i++) {
1789 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1790 if (sgp->pool)
1791 mempool_destroy(sgp->pool);
1792 if (sgp->slab)
1793 kmem_cache_destroy(sgp->slab);
1795 kmem_cache_destroy(scsi_sdb_cache);
1797 return -ENOMEM;
1800 void scsi_exit_queue(void)
1802 int i;
1804 kmem_cache_destroy(scsi_sdb_cache);
1806 for (i = 0; i < SG_MEMPOOL_NR; i++) {
1807 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1808 mempool_destroy(sgp->pool);
1809 kmem_cache_destroy(sgp->slab);
1814 * scsi_mode_select - issue a mode select
1815 * @sdev: SCSI device to be queried
1816 * @pf: Page format bit (1 == standard, 0 == vendor specific)
1817 * @sp: Save page bit (0 == don't save, 1 == save)
1818 * @modepage: mode page being requested
1819 * @buffer: request buffer (may not be smaller than eight bytes)
1820 * @len: length of request buffer.
1821 * @timeout: command timeout
1822 * @retries: number of retries before failing
1823 * @data: returns a structure abstracting the mode header data
1824 * @sshdr: place to put sense data (or NULL if no sense to be collected).
1825 * must be SCSI_SENSE_BUFFERSIZE big.
1827 * Returns zero if successful; negative error number or scsi
1828 * status on error
1832 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
1833 unsigned char *buffer, int len, int timeout, int retries,
1834 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1836 unsigned char cmd[10];
1837 unsigned char *real_buffer;
1838 int ret;
1840 memset(cmd, 0, sizeof(cmd));
1841 cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
1843 if (sdev->use_10_for_ms) {
1844 if (len > 65535)
1845 return -EINVAL;
1846 real_buffer = kmalloc(8 + len, GFP_KERNEL);
1847 if (!real_buffer)
1848 return -ENOMEM;
1849 memcpy(real_buffer + 8, buffer, len);
1850 len += 8;
1851 real_buffer[0] = 0;
1852 real_buffer[1] = 0;
1853 real_buffer[2] = data->medium_type;
1854 real_buffer[3] = data->device_specific;
1855 real_buffer[4] = data->longlba ? 0x01 : 0;
1856 real_buffer[5] = 0;
1857 real_buffer[6] = data->block_descriptor_length >> 8;
1858 real_buffer[7] = data->block_descriptor_length;
1860 cmd[0] = MODE_SELECT_10;
1861 cmd[7] = len >> 8;
1862 cmd[8] = len;
1863 } else {
1864 if (len > 255 || data->block_descriptor_length > 255 ||
1865 data->longlba)
1866 return -EINVAL;
1868 real_buffer = kmalloc(4 + len, GFP_KERNEL);
1869 if (!real_buffer)
1870 return -ENOMEM;
1871 memcpy(real_buffer + 4, buffer, len);
1872 len += 4;
1873 real_buffer[0] = 0;
1874 real_buffer[1] = data->medium_type;
1875 real_buffer[2] = data->device_specific;
1876 real_buffer[3] = data->block_descriptor_length;
1879 cmd[0] = MODE_SELECT;
1880 cmd[4] = len;
1883 ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
1884 sshdr, timeout, retries, NULL);
1885 kfree(real_buffer);
1886 return ret;
1888 EXPORT_SYMBOL_GPL(scsi_mode_select);
1891 * scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
1892 * @sdev: SCSI device to be queried
1893 * @dbd: set if mode sense will allow block descriptors to be returned
1894 * @modepage: mode page being requested
1895 * @buffer: request buffer (may not be smaller than eight bytes)
1896 * @len: length of request buffer.
1897 * @timeout: command timeout
1898 * @retries: number of retries before failing
1899 * @data: returns a structure abstracting the mode header data
1900 * @sshdr: place to put sense data (or NULL if no sense to be collected).
1901 * must be SCSI_SENSE_BUFFERSIZE big.
1903 * Returns zero if unsuccessful, or the header offset (either 4
1904 * or 8 depending on whether a six or ten byte command was
1905 * issued) if successful.
1908 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
1909 unsigned char *buffer, int len, int timeout, int retries,
1910 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1912 unsigned char cmd[12];
1913 int use_10_for_ms;
1914 int header_length;
1915 int result;
1916 struct scsi_sense_hdr my_sshdr;
1918 memset(data, 0, sizeof(*data));
1919 memset(&cmd[0], 0, 12);
1920 cmd[1] = dbd & 0x18; /* allows DBD and LLBA bits */
1921 cmd[2] = modepage;
1923 /* caller might not be interested in sense, but we need it */
1924 if (!sshdr)
1925 sshdr = &my_sshdr;
1927 retry:
1928 use_10_for_ms = sdev->use_10_for_ms;
1930 if (use_10_for_ms) {
1931 if (len < 8)
1932 len = 8;
1934 cmd[0] = MODE_SENSE_10;
1935 cmd[8] = len;
1936 header_length = 8;
1937 } else {
1938 if (len < 4)
1939 len = 4;
1941 cmd[0] = MODE_SENSE;
1942 cmd[4] = len;
1943 header_length = 4;
1946 memset(buffer, 0, len);
1948 result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
1949 sshdr, timeout, retries, NULL);
1951 /* This code looks awful: what it's doing is making sure an
1952 * ILLEGAL REQUEST sense return identifies the actual command
1953 * byte as the problem. MODE_SENSE commands can return
1954 * ILLEGAL REQUEST if the code page isn't supported */
1956 if (use_10_for_ms && !scsi_status_is_good(result) &&
1957 (driver_byte(result) & DRIVER_SENSE)) {
1958 if (scsi_sense_valid(sshdr)) {
1959 if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
1960 (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
1962 * Invalid command operation code
1964 sdev->use_10_for_ms = 0;
1965 goto retry;
1970 if(scsi_status_is_good(result)) {
1971 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
1972 (modepage == 6 || modepage == 8))) {
1973 /* Initio breakage? */
1974 header_length = 0;
1975 data->length = 13;
1976 data->medium_type = 0;
1977 data->device_specific = 0;
1978 data->longlba = 0;
1979 data->block_descriptor_length = 0;
1980 } else if(use_10_for_ms) {
1981 data->length = buffer[0]*256 + buffer[1] + 2;
1982 data->medium_type = buffer[2];
1983 data->device_specific = buffer[3];
1984 data->longlba = buffer[4] & 0x01;
1985 data->block_descriptor_length = buffer[6]*256
1986 + buffer[7];
1987 } else {
1988 data->length = buffer[0] + 1;
1989 data->medium_type = buffer[1];
1990 data->device_specific = buffer[2];
1991 data->block_descriptor_length = buffer[3];
1993 data->header_length = header_length;
1996 return result;
1998 EXPORT_SYMBOL(scsi_mode_sense);
2001 * scsi_test_unit_ready - test if unit is ready
2002 * @sdev: scsi device to change the state of.
2003 * @timeout: command timeout
2004 * @retries: number of retries before failing
2005 * @sshdr_external: Optional pointer to struct scsi_sense_hdr for
2006 * returning sense. Make sure that this is cleared before passing
2007 * in.
2009 * Returns zero if unsuccessful or an error if TUR failed. For
2010 * removable media, UNIT_ATTENTION sets ->changed flag.
2013 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2014 struct scsi_sense_hdr *sshdr_external)
2016 char cmd[] = {
2017 TEST_UNIT_READY, 0, 0, 0, 0, 0,
2019 struct scsi_sense_hdr *sshdr;
2020 int result;
2022 if (!sshdr_external)
2023 sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL);
2024 else
2025 sshdr = sshdr_external;
2027 /* try to eat the UNIT_ATTENTION if there are enough retries */
2028 do {
2029 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2030 timeout, retries, NULL);
2031 if (sdev->removable && scsi_sense_valid(sshdr) &&
2032 sshdr->sense_key == UNIT_ATTENTION)
2033 sdev->changed = 1;
2034 } while (scsi_sense_valid(sshdr) &&
2035 sshdr->sense_key == UNIT_ATTENTION && --retries);
2037 if (!sshdr_external)
2038 kfree(sshdr);
2039 return result;
2041 EXPORT_SYMBOL(scsi_test_unit_ready);
2044 * scsi_device_set_state - Take the given device through the device state model.
2045 * @sdev: scsi device to change the state of.
2046 * @state: state to change to.
2048 * Returns zero if unsuccessful or an error if the requested
2049 * transition is illegal.
2052 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2054 enum scsi_device_state oldstate = sdev->sdev_state;
2056 if (state == oldstate)
2057 return 0;
2059 switch (state) {
2060 case SDEV_CREATED:
2061 switch (oldstate) {
2062 case SDEV_CREATED_BLOCK:
2063 break;
2064 default:
2065 goto illegal;
2067 break;
2069 case SDEV_RUNNING:
2070 switch (oldstate) {
2071 case SDEV_CREATED:
2072 case SDEV_OFFLINE:
2073 case SDEV_QUIESCE:
2074 case SDEV_BLOCK:
2075 break;
2076 default:
2077 goto illegal;
2079 break;
2081 case SDEV_QUIESCE:
2082 switch (oldstate) {
2083 case SDEV_RUNNING:
2084 case SDEV_OFFLINE:
2085 break;
2086 default:
2087 goto illegal;
2089 break;
2091 case SDEV_OFFLINE:
2092 switch (oldstate) {
2093 case SDEV_CREATED:
2094 case SDEV_RUNNING:
2095 case SDEV_QUIESCE:
2096 case SDEV_BLOCK:
2097 break;
2098 default:
2099 goto illegal;
2101 break;
2103 case SDEV_BLOCK:
2104 switch (oldstate) {
2105 case SDEV_RUNNING:
2106 case SDEV_CREATED_BLOCK:
2107 break;
2108 default:
2109 goto illegal;
2111 break;
2113 case SDEV_CREATED_BLOCK:
2114 switch (oldstate) {
2115 case SDEV_CREATED:
2116 break;
2117 default:
2118 goto illegal;
2120 break;
2122 case SDEV_CANCEL:
2123 switch (oldstate) {
2124 case SDEV_CREATED:
2125 case SDEV_RUNNING:
2126 case SDEV_QUIESCE:
2127 case SDEV_OFFLINE:
2128 case SDEV_BLOCK:
2129 break;
2130 default:
2131 goto illegal;
2133 break;
2135 case SDEV_DEL:
2136 switch (oldstate) {
2137 case SDEV_CREATED:
2138 case SDEV_RUNNING:
2139 case SDEV_OFFLINE:
2140 case SDEV_CANCEL:
2141 break;
2142 default:
2143 goto illegal;
2145 break;
2148 sdev->sdev_state = state;
2149 return 0;
2151 illegal:
2152 SCSI_LOG_ERROR_RECOVERY(1,
2153 sdev_printk(KERN_ERR, sdev,
2154 "Illegal state transition %s->%s\n",
2155 scsi_device_state_name(oldstate),
2156 scsi_device_state_name(state))
2158 return -EINVAL;
2160 EXPORT_SYMBOL(scsi_device_set_state);
2163 * sdev_evt_emit - emit a single SCSI device uevent
2164 * @sdev: associated SCSI device
2165 * @evt: event to emit
2167 * Send a single uevent (scsi_event) to the associated scsi_device.
2169 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2171 int idx = 0;
2172 char *envp[3];
2174 switch (evt->evt_type) {
2175 case SDEV_EVT_MEDIA_CHANGE:
2176 envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2177 break;
2179 default:
2180 /* do nothing */
2181 break;
2184 envp[idx++] = NULL;
2186 kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2190 * sdev_evt_thread - send a uevent for each scsi event
2191 * @work: work struct for scsi_device
2193 * Dispatch queued events to their associated scsi_device kobjects
2194 * as uevents.
2196 void scsi_evt_thread(struct work_struct *work)
2198 struct scsi_device *sdev;
2199 LIST_HEAD(event_list);
2201 sdev = container_of(work, struct scsi_device, event_work);
2203 while (1) {
2204 struct scsi_event *evt;
2205 struct list_head *this, *tmp;
2206 unsigned long flags;
2208 spin_lock_irqsave(&sdev->list_lock, flags);
2209 list_splice_init(&sdev->event_list, &event_list);
2210 spin_unlock_irqrestore(&sdev->list_lock, flags);
2212 if (list_empty(&event_list))
2213 break;
2215 list_for_each_safe(this, tmp, &event_list) {
2216 evt = list_entry(this, struct scsi_event, node);
2217 list_del(&evt->node);
2218 scsi_evt_emit(sdev, evt);
2219 kfree(evt);
2225 * sdev_evt_send - send asserted event to uevent thread
2226 * @sdev: scsi_device event occurred on
2227 * @evt: event to send
2229 * Assert scsi device event asynchronously.
2231 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2233 unsigned long flags;
2235 #if 0
2236 /* FIXME: currently this check eliminates all media change events
2237 * for polled devices. Need to update to discriminate between AN
2238 * and polled events */
2239 if (!test_bit(evt->evt_type, sdev->supported_events)) {
2240 kfree(evt);
2241 return;
2243 #endif
2245 spin_lock_irqsave(&sdev->list_lock, flags);
2246 list_add_tail(&evt->node, &sdev->event_list);
2247 schedule_work(&sdev->event_work);
2248 spin_unlock_irqrestore(&sdev->list_lock, flags);
2250 EXPORT_SYMBOL_GPL(sdev_evt_send);
2253 * sdev_evt_alloc - allocate a new scsi event
2254 * @evt_type: type of event to allocate
2255 * @gfpflags: GFP flags for allocation
2257 * Allocates and returns a new scsi_event.
2259 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2260 gfp_t gfpflags)
2262 struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2263 if (!evt)
2264 return NULL;
2266 evt->evt_type = evt_type;
2267 INIT_LIST_HEAD(&evt->node);
2269 /* evt_type-specific initialization, if any */
2270 switch (evt_type) {
2271 case SDEV_EVT_MEDIA_CHANGE:
2272 default:
2273 /* do nothing */
2274 break;
2277 return evt;
2279 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2282 * sdev_evt_send_simple - send asserted event to uevent thread
2283 * @sdev: scsi_device event occurred on
2284 * @evt_type: type of event to send
2285 * @gfpflags: GFP flags for allocation
2287 * Assert scsi device event asynchronously, given an event type.
2289 void sdev_evt_send_simple(struct scsi_device *sdev,
2290 enum scsi_device_event evt_type, gfp_t gfpflags)
2292 struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2293 if (!evt) {
2294 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2295 evt_type);
2296 return;
2299 sdev_evt_send(sdev, evt);
2301 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2304 * scsi_device_quiesce - Block user issued commands.
2305 * @sdev: scsi device to quiesce.
2307 * This works by trying to transition to the SDEV_QUIESCE state
2308 * (which must be a legal transition). When the device is in this
2309 * state, only special requests will be accepted, all others will
2310 * be deferred. Since special requests may also be requeued requests,
2311 * a successful return doesn't guarantee the device will be
2312 * totally quiescent.
2314 * Must be called with user context, may sleep.
2316 * Returns zero if unsuccessful or an error if not.
2319 scsi_device_quiesce(struct scsi_device *sdev)
2321 int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2322 if (err)
2323 return err;
2325 scsi_run_queue(sdev->request_queue);
2326 while (sdev->device_busy) {
2327 msleep_interruptible(200);
2328 scsi_run_queue(sdev->request_queue);
2330 return 0;
2332 EXPORT_SYMBOL(scsi_device_quiesce);
2335 * scsi_device_resume - Restart user issued commands to a quiesced device.
2336 * @sdev: scsi device to resume.
2338 * Moves the device from quiesced back to running and restarts the
2339 * queues.
2341 * Must be called with user context, may sleep.
2343 void
2344 scsi_device_resume(struct scsi_device *sdev)
2346 if(scsi_device_set_state(sdev, SDEV_RUNNING))
2347 return;
2348 scsi_run_queue(sdev->request_queue);
2350 EXPORT_SYMBOL(scsi_device_resume);
2352 static void
2353 device_quiesce_fn(struct scsi_device *sdev, void *data)
2355 scsi_device_quiesce(sdev);
2358 void
2359 scsi_target_quiesce(struct scsi_target *starget)
2361 starget_for_each_device(starget, NULL, device_quiesce_fn);
2363 EXPORT_SYMBOL(scsi_target_quiesce);
2365 static void
2366 device_resume_fn(struct scsi_device *sdev, void *data)
2368 scsi_device_resume(sdev);
2371 void
2372 scsi_target_resume(struct scsi_target *starget)
2374 starget_for_each_device(starget, NULL, device_resume_fn);
2376 EXPORT_SYMBOL(scsi_target_resume);
2379 * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state
2380 * @sdev: device to block
2382 * Block request made by scsi lld's to temporarily stop all
2383 * scsi commands on the specified device. Called from interrupt
2384 * or normal process context.
2386 * Returns zero if successful or error if not
2388 * Notes:
2389 * This routine transitions the device to the SDEV_BLOCK state
2390 * (which must be a legal transition). When the device is in this
2391 * state, all commands are deferred until the scsi lld reenables
2392 * the device with scsi_device_unblock or device_block_tmo fires.
2393 * This routine assumes the host_lock is held on entry.
2396 scsi_internal_device_block(struct scsi_device *sdev)
2398 struct request_queue *q = sdev->request_queue;
2399 unsigned long flags;
2400 int err = 0;
2402 err = scsi_device_set_state(sdev, SDEV_BLOCK);
2403 if (err) {
2404 err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2406 if (err)
2407 return err;
2411 * The device has transitioned to SDEV_BLOCK. Stop the
2412 * block layer from calling the midlayer with this device's
2413 * request queue.
2415 spin_lock_irqsave(q->queue_lock, flags);
2416 blk_stop_queue(q);
2417 spin_unlock_irqrestore(q->queue_lock, flags);
2419 return 0;
2421 EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2424 * scsi_internal_device_unblock - resume a device after a block request
2425 * @sdev: device to resume
2427 * Called by scsi lld's or the midlayer to restart the device queue
2428 * for the previously suspended scsi device. Called from interrupt or
2429 * normal process context.
2431 * Returns zero if successful or error if not.
2433 * Notes:
2434 * This routine transitions the device to the SDEV_RUNNING state
2435 * (which must be a legal transition) allowing the midlayer to
2436 * goose the queue for this device. This routine assumes the
2437 * host_lock is held upon entry.
2440 scsi_internal_device_unblock(struct scsi_device *sdev)
2442 struct request_queue *q = sdev->request_queue;
2443 unsigned long flags;
2446 * Try to transition the scsi device to SDEV_RUNNING
2447 * and goose the device queue if successful.
2449 if (sdev->sdev_state == SDEV_BLOCK)
2450 sdev->sdev_state = SDEV_RUNNING;
2451 else if (sdev->sdev_state == SDEV_CREATED_BLOCK)
2452 sdev->sdev_state = SDEV_CREATED;
2453 else if (sdev->sdev_state != SDEV_CANCEL &&
2454 sdev->sdev_state != SDEV_OFFLINE)
2455 return -EINVAL;
2457 spin_lock_irqsave(q->queue_lock, flags);
2458 blk_start_queue(q);
2459 spin_unlock_irqrestore(q->queue_lock, flags);
2461 return 0;
2463 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
2465 static void
2466 device_block(struct scsi_device *sdev, void *data)
2468 scsi_internal_device_block(sdev);
2471 static int
2472 target_block(struct device *dev, void *data)
2474 if (scsi_is_target_device(dev))
2475 starget_for_each_device(to_scsi_target(dev), NULL,
2476 device_block);
2477 return 0;
2480 void
2481 scsi_target_block(struct device *dev)
2483 if (scsi_is_target_device(dev))
2484 starget_for_each_device(to_scsi_target(dev), NULL,
2485 device_block);
2486 else
2487 device_for_each_child(dev, NULL, target_block);
2489 EXPORT_SYMBOL_GPL(scsi_target_block);
2491 static void
2492 device_unblock(struct scsi_device *sdev, void *data)
2494 scsi_internal_device_unblock(sdev);
2497 static int
2498 target_unblock(struct device *dev, void *data)
2500 if (scsi_is_target_device(dev))
2501 starget_for_each_device(to_scsi_target(dev), NULL,
2502 device_unblock);
2503 return 0;
2506 void
2507 scsi_target_unblock(struct device *dev)
2509 if (scsi_is_target_device(dev))
2510 starget_for_each_device(to_scsi_target(dev), NULL,
2511 device_unblock);
2512 else
2513 device_for_each_child(dev, NULL, target_unblock);
2515 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2518 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2519 * @sgl: scatter-gather list
2520 * @sg_count: number of segments in sg
2521 * @offset: offset in bytes into sg, on return offset into the mapped area
2522 * @len: bytes to map, on return number of bytes mapped
2524 * Returns virtual address of the start of the mapped page
2526 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2527 size_t *offset, size_t *len)
2529 int i;
2530 size_t sg_len = 0, len_complete = 0;
2531 struct scatterlist *sg;
2532 struct page *page;
2534 WARN_ON(!irqs_disabled());
2536 for_each_sg(sgl, sg, sg_count, i) {
2537 len_complete = sg_len; /* Complete sg-entries */
2538 sg_len += sg->length;
2539 if (sg_len > *offset)
2540 break;
2543 if (unlikely(i == sg_count)) {
2544 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2545 "elements %d\n",
2546 __func__, sg_len, *offset, sg_count);
2547 WARN_ON(1);
2548 return NULL;
2551 /* Offset starting from the beginning of first page in this sg-entry */
2552 *offset = *offset - len_complete + sg->offset;
2554 /* Assumption: contiguous pages can be accessed as "page + i" */
2555 page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
2556 *offset &= ~PAGE_MASK;
2558 /* Bytes in this sg-entry from *offset to the end of the page */
2559 sg_len = PAGE_SIZE - *offset;
2560 if (*len > sg_len)
2561 *len = sg_len;
2563 return kmap_atomic(page, KM_BIO_SRC_IRQ);
2565 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2568 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
2569 * @virt: virtual address to be unmapped
2571 void scsi_kunmap_atomic_sg(void *virt)
2573 kunmap_atomic(virt, KM_BIO_SRC_IRQ);
2575 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);