[SCSI] mvsas: update comments
[linux-2.6/linux-mips.git] / mm / filemap.c
blob10a17111327362f9b0d5f30dc5f8519983e8f1e8
1 /*
2 * linux/mm/filemap.c
4 * Copyright (C) 1994-1999 Linus Torvalds
5 */
7 /*
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
12 #include <linux/module.h>
13 #include <linux/compiler.h>
14 #include <linux/fs.h>
15 #include <linux/uaccess.h>
16 #include <linux/aio.h>
17 #include <linux/capability.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/gfp.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/syscalls.h>
33 #include <linux/cpuset.h>
34 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
35 #include <linux/memcontrol.h>
36 #include <linux/mm_inline.h> /* for page_is_file_cache() */
37 #include <linux/cleancache.h>
38 #include "internal.h"
41 * FIXME: remove all knowledge of the buffer layer from the core VM
43 #include <linux/buffer_head.h> /* for try_to_free_buffers */
45 #include <asm/mman.h>
48 * Shared mappings implemented 30.11.1994. It's not fully working yet,
49 * though.
51 * Shared mappings now work. 15.8.1995 Bruno.
53 * finished 'unifying' the page and buffer cache and SMP-threaded the
54 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
56 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
60 * Lock ordering:
62 * ->i_mmap_mutex (truncate_pagecache)
63 * ->private_lock (__free_pte->__set_page_dirty_buffers)
64 * ->swap_lock (exclusive_swap_page, others)
65 * ->mapping->tree_lock
67 * ->i_mutex
68 * ->i_mmap_mutex (truncate->unmap_mapping_range)
70 * ->mmap_sem
71 * ->i_mmap_mutex
72 * ->page_table_lock or pte_lock (various, mainly in memory.c)
73 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
75 * ->mmap_sem
76 * ->lock_page (access_process_vm)
78 * ->i_mutex (generic_file_buffered_write)
79 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
81 * inode_wb_list_lock
82 * sb_lock (fs/fs-writeback.c)
83 * ->mapping->tree_lock (__sync_single_inode)
85 * ->i_mmap_mutex
86 * ->anon_vma.lock (vma_adjust)
88 * ->anon_vma.lock
89 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
91 * ->page_table_lock or pte_lock
92 * ->swap_lock (try_to_unmap_one)
93 * ->private_lock (try_to_unmap_one)
94 * ->tree_lock (try_to_unmap_one)
95 * ->zone.lru_lock (follow_page->mark_page_accessed)
96 * ->zone.lru_lock (check_pte_range->isolate_lru_page)
97 * ->private_lock (page_remove_rmap->set_page_dirty)
98 * ->tree_lock (page_remove_rmap->set_page_dirty)
99 * inode_wb_list_lock (page_remove_rmap->set_page_dirty)
100 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
101 * inode_wb_list_lock (zap_pte_range->set_page_dirty)
102 * ->inode->i_lock (zap_pte_range->set_page_dirty)
103 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
105 * (code doesn't rely on that order, so you could switch it around)
106 * ->tasklist_lock (memory_failure, collect_procs_ao)
107 * ->i_mmap_mutex
111 * Delete a page from the page cache and free it. Caller has to make
112 * sure the page is locked and that nobody else uses it - or that usage
113 * is safe. The caller must hold the mapping's tree_lock.
115 void __delete_from_page_cache(struct page *page)
117 struct address_space *mapping = page->mapping;
120 * if we're uptodate, flush out into the cleancache, otherwise
121 * invalidate any existing cleancache entries. We can't leave
122 * stale data around in the cleancache once our page is gone
124 if (PageUptodate(page) && PageMappedToDisk(page))
125 cleancache_put_page(page);
126 else
127 cleancache_flush_page(mapping, page);
129 radix_tree_delete(&mapping->page_tree, page->index);
130 page->mapping = NULL;
131 /* Leave page->index set: truncation lookup relies upon it */
132 mapping->nrpages--;
133 __dec_zone_page_state(page, NR_FILE_PAGES);
134 if (PageSwapBacked(page))
135 __dec_zone_page_state(page, NR_SHMEM);
136 BUG_ON(page_mapped(page));
139 * Some filesystems seem to re-dirty the page even after
140 * the VM has canceled the dirty bit (eg ext3 journaling).
142 * Fix it up by doing a final dirty accounting check after
143 * having removed the page entirely.
145 if (PageDirty(page) && mapping_cap_account_dirty(mapping)) {
146 dec_zone_page_state(page, NR_FILE_DIRTY);
147 dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
152 * delete_from_page_cache - delete page from page cache
153 * @page: the page which the kernel is trying to remove from page cache
155 * This must be called only on pages that have been verified to be in the page
156 * cache and locked. It will never put the page into the free list, the caller
157 * has a reference on the page.
159 void delete_from_page_cache(struct page *page)
161 struct address_space *mapping = page->mapping;
162 void (*freepage)(struct page *);
164 BUG_ON(!PageLocked(page));
166 freepage = mapping->a_ops->freepage;
167 spin_lock_irq(&mapping->tree_lock);
168 __delete_from_page_cache(page);
169 spin_unlock_irq(&mapping->tree_lock);
170 mem_cgroup_uncharge_cache_page(page);
172 if (freepage)
173 freepage(page);
174 page_cache_release(page);
176 EXPORT_SYMBOL(delete_from_page_cache);
178 static int sleep_on_page(void *word)
180 io_schedule();
181 return 0;
184 static int sleep_on_page_killable(void *word)
186 sleep_on_page(word);
187 return fatal_signal_pending(current) ? -EINTR : 0;
191 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
192 * @mapping: address space structure to write
193 * @start: offset in bytes where the range starts
194 * @end: offset in bytes where the range ends (inclusive)
195 * @sync_mode: enable synchronous operation
197 * Start writeback against all of a mapping's dirty pages that lie
198 * within the byte offsets <start, end> inclusive.
200 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
201 * opposed to a regular memory cleansing writeback. The difference between
202 * these two operations is that if a dirty page/buffer is encountered, it must
203 * be waited upon, and not just skipped over.
205 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
206 loff_t end, int sync_mode)
208 int ret;
209 struct writeback_control wbc = {
210 .sync_mode = sync_mode,
211 .nr_to_write = LONG_MAX,
212 .range_start = start,
213 .range_end = end,
216 if (!mapping_cap_writeback_dirty(mapping))
217 return 0;
219 ret = do_writepages(mapping, &wbc);
220 return ret;
223 static inline int __filemap_fdatawrite(struct address_space *mapping,
224 int sync_mode)
226 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
229 int filemap_fdatawrite(struct address_space *mapping)
231 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
233 EXPORT_SYMBOL(filemap_fdatawrite);
235 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
236 loff_t end)
238 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
240 EXPORT_SYMBOL(filemap_fdatawrite_range);
243 * filemap_flush - mostly a non-blocking flush
244 * @mapping: target address_space
246 * This is a mostly non-blocking flush. Not suitable for data-integrity
247 * purposes - I/O may not be started against all dirty pages.
249 int filemap_flush(struct address_space *mapping)
251 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
253 EXPORT_SYMBOL(filemap_flush);
256 * filemap_fdatawait_range - wait for writeback to complete
257 * @mapping: address space structure to wait for
258 * @start_byte: offset in bytes where the range starts
259 * @end_byte: offset in bytes where the range ends (inclusive)
261 * Walk the list of under-writeback pages of the given address space
262 * in the given range and wait for all of them.
264 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
265 loff_t end_byte)
267 pgoff_t index = start_byte >> PAGE_CACHE_SHIFT;
268 pgoff_t end = end_byte >> PAGE_CACHE_SHIFT;
269 struct pagevec pvec;
270 int nr_pages;
271 int ret = 0;
273 if (end_byte < start_byte)
274 return 0;
276 pagevec_init(&pvec, 0);
277 while ((index <= end) &&
278 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
279 PAGECACHE_TAG_WRITEBACK,
280 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
281 unsigned i;
283 for (i = 0; i < nr_pages; i++) {
284 struct page *page = pvec.pages[i];
286 /* until radix tree lookup accepts end_index */
287 if (page->index > end)
288 continue;
290 wait_on_page_writeback(page);
291 if (TestClearPageError(page))
292 ret = -EIO;
294 pagevec_release(&pvec);
295 cond_resched();
298 /* Check for outstanding write errors */
299 if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
300 ret = -ENOSPC;
301 if (test_and_clear_bit(AS_EIO, &mapping->flags))
302 ret = -EIO;
304 return ret;
306 EXPORT_SYMBOL(filemap_fdatawait_range);
309 * filemap_fdatawait - wait for all under-writeback pages to complete
310 * @mapping: address space structure to wait for
312 * Walk the list of under-writeback pages of the given address space
313 * and wait for all of them.
315 int filemap_fdatawait(struct address_space *mapping)
317 loff_t i_size = i_size_read(mapping->host);
319 if (i_size == 0)
320 return 0;
322 return filemap_fdatawait_range(mapping, 0, i_size - 1);
324 EXPORT_SYMBOL(filemap_fdatawait);
326 int filemap_write_and_wait(struct address_space *mapping)
328 int err = 0;
330 if (mapping->nrpages) {
331 err = filemap_fdatawrite(mapping);
333 * Even if the above returned error, the pages may be
334 * written partially (e.g. -ENOSPC), so we wait for it.
335 * But the -EIO is special case, it may indicate the worst
336 * thing (e.g. bug) happened, so we avoid waiting for it.
338 if (err != -EIO) {
339 int err2 = filemap_fdatawait(mapping);
340 if (!err)
341 err = err2;
344 return err;
346 EXPORT_SYMBOL(filemap_write_and_wait);
349 * filemap_write_and_wait_range - write out & wait on a file range
350 * @mapping: the address_space for the pages
351 * @lstart: offset in bytes where the range starts
352 * @lend: offset in bytes where the range ends (inclusive)
354 * Write out and wait upon file offsets lstart->lend, inclusive.
356 * Note that `lend' is inclusive (describes the last byte to be written) so
357 * that this function can be used to write to the very end-of-file (end = -1).
359 int filemap_write_and_wait_range(struct address_space *mapping,
360 loff_t lstart, loff_t lend)
362 int err = 0;
364 if (mapping->nrpages) {
365 err = __filemap_fdatawrite_range(mapping, lstart, lend,
366 WB_SYNC_ALL);
367 /* See comment of filemap_write_and_wait() */
368 if (err != -EIO) {
369 int err2 = filemap_fdatawait_range(mapping,
370 lstart, lend);
371 if (!err)
372 err = err2;
375 return err;
377 EXPORT_SYMBOL(filemap_write_and_wait_range);
380 * replace_page_cache_page - replace a pagecache page with a new one
381 * @old: page to be replaced
382 * @new: page to replace with
383 * @gfp_mask: allocation mode
385 * This function replaces a page in the pagecache with a new one. On
386 * success it acquires the pagecache reference for the new page and
387 * drops it for the old page. Both the old and new pages must be
388 * locked. This function does not add the new page to the LRU, the
389 * caller must do that.
391 * The remove + add is atomic. The only way this function can fail is
392 * memory allocation failure.
394 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
396 int error;
397 struct mem_cgroup *memcg = NULL;
399 VM_BUG_ON(!PageLocked(old));
400 VM_BUG_ON(!PageLocked(new));
401 VM_BUG_ON(new->mapping);
404 * This is not page migration, but prepare_migration and
405 * end_migration does enough work for charge replacement.
407 * In the longer term we probably want a specialized function
408 * for moving the charge from old to new in a more efficient
409 * manner.
411 error = mem_cgroup_prepare_migration(old, new, &memcg, gfp_mask);
412 if (error)
413 return error;
415 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
416 if (!error) {
417 struct address_space *mapping = old->mapping;
418 void (*freepage)(struct page *);
420 pgoff_t offset = old->index;
421 freepage = mapping->a_ops->freepage;
423 page_cache_get(new);
424 new->mapping = mapping;
425 new->index = offset;
427 spin_lock_irq(&mapping->tree_lock);
428 __delete_from_page_cache(old);
429 error = radix_tree_insert(&mapping->page_tree, offset, new);
430 BUG_ON(error);
431 mapping->nrpages++;
432 __inc_zone_page_state(new, NR_FILE_PAGES);
433 if (PageSwapBacked(new))
434 __inc_zone_page_state(new, NR_SHMEM);
435 spin_unlock_irq(&mapping->tree_lock);
436 radix_tree_preload_end();
437 if (freepage)
438 freepage(old);
439 page_cache_release(old);
440 mem_cgroup_end_migration(memcg, old, new, true);
441 } else {
442 mem_cgroup_end_migration(memcg, old, new, false);
445 return error;
447 EXPORT_SYMBOL_GPL(replace_page_cache_page);
450 * add_to_page_cache_locked - add a locked page to the pagecache
451 * @page: page to add
452 * @mapping: the page's address_space
453 * @offset: page index
454 * @gfp_mask: page allocation mode
456 * This function is used to add a page to the pagecache. It must be locked.
457 * This function does not add the page to the LRU. The caller must do that.
459 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
460 pgoff_t offset, gfp_t gfp_mask)
462 int error;
464 VM_BUG_ON(!PageLocked(page));
466 error = mem_cgroup_cache_charge(page, current->mm,
467 gfp_mask & GFP_RECLAIM_MASK);
468 if (error)
469 goto out;
471 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
472 if (error == 0) {
473 page_cache_get(page);
474 page->mapping = mapping;
475 page->index = offset;
477 spin_lock_irq(&mapping->tree_lock);
478 error = radix_tree_insert(&mapping->page_tree, offset, page);
479 if (likely(!error)) {
480 mapping->nrpages++;
481 __inc_zone_page_state(page, NR_FILE_PAGES);
482 if (PageSwapBacked(page))
483 __inc_zone_page_state(page, NR_SHMEM);
484 spin_unlock_irq(&mapping->tree_lock);
485 } else {
486 page->mapping = NULL;
487 /* Leave page->index set: truncation relies upon it */
488 spin_unlock_irq(&mapping->tree_lock);
489 mem_cgroup_uncharge_cache_page(page);
490 page_cache_release(page);
492 radix_tree_preload_end();
493 } else
494 mem_cgroup_uncharge_cache_page(page);
495 out:
496 return error;
498 EXPORT_SYMBOL(add_to_page_cache_locked);
500 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
501 pgoff_t offset, gfp_t gfp_mask)
503 int ret;
506 * Splice_read and readahead add shmem/tmpfs pages into the page cache
507 * before shmem_readpage has a chance to mark them as SwapBacked: they
508 * need to go on the anon lru below, and mem_cgroup_cache_charge
509 * (called in add_to_page_cache) needs to know where they're going too.
511 if (mapping_cap_swap_backed(mapping))
512 SetPageSwapBacked(page);
514 ret = add_to_page_cache(page, mapping, offset, gfp_mask);
515 if (ret == 0) {
516 if (page_is_file_cache(page))
517 lru_cache_add_file(page);
518 else
519 lru_cache_add_anon(page);
521 return ret;
523 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
525 #ifdef CONFIG_NUMA
526 struct page *__page_cache_alloc(gfp_t gfp)
528 int n;
529 struct page *page;
531 if (cpuset_do_page_mem_spread()) {
532 get_mems_allowed();
533 n = cpuset_mem_spread_node();
534 page = alloc_pages_exact_node(n, gfp, 0);
535 put_mems_allowed();
536 return page;
538 return alloc_pages(gfp, 0);
540 EXPORT_SYMBOL(__page_cache_alloc);
541 #endif
544 * In order to wait for pages to become available there must be
545 * waitqueues associated with pages. By using a hash table of
546 * waitqueues where the bucket discipline is to maintain all
547 * waiters on the same queue and wake all when any of the pages
548 * become available, and for the woken contexts to check to be
549 * sure the appropriate page became available, this saves space
550 * at a cost of "thundering herd" phenomena during rare hash
551 * collisions.
553 static wait_queue_head_t *page_waitqueue(struct page *page)
555 const struct zone *zone = page_zone(page);
557 return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
560 static inline void wake_up_page(struct page *page, int bit)
562 __wake_up_bit(page_waitqueue(page), &page->flags, bit);
565 void wait_on_page_bit(struct page *page, int bit_nr)
567 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
569 if (test_bit(bit_nr, &page->flags))
570 __wait_on_bit(page_waitqueue(page), &wait, sleep_on_page,
571 TASK_UNINTERRUPTIBLE);
573 EXPORT_SYMBOL(wait_on_page_bit);
575 int wait_on_page_bit_killable(struct page *page, int bit_nr)
577 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
579 if (!test_bit(bit_nr, &page->flags))
580 return 0;
582 return __wait_on_bit(page_waitqueue(page), &wait,
583 sleep_on_page_killable, TASK_KILLABLE);
587 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
588 * @page: Page defining the wait queue of interest
589 * @waiter: Waiter to add to the queue
591 * Add an arbitrary @waiter to the wait queue for the nominated @page.
593 void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
595 wait_queue_head_t *q = page_waitqueue(page);
596 unsigned long flags;
598 spin_lock_irqsave(&q->lock, flags);
599 __add_wait_queue(q, waiter);
600 spin_unlock_irqrestore(&q->lock, flags);
602 EXPORT_SYMBOL_GPL(add_page_wait_queue);
605 * unlock_page - unlock a locked page
606 * @page: the page
608 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
609 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
610 * mechananism between PageLocked pages and PageWriteback pages is shared.
611 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
613 * The mb is necessary to enforce ordering between the clear_bit and the read
614 * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
616 void unlock_page(struct page *page)
618 VM_BUG_ON(!PageLocked(page));
619 clear_bit_unlock(PG_locked, &page->flags);
620 smp_mb__after_clear_bit();
621 wake_up_page(page, PG_locked);
623 EXPORT_SYMBOL(unlock_page);
626 * end_page_writeback - end writeback against a page
627 * @page: the page
629 void end_page_writeback(struct page *page)
631 if (TestClearPageReclaim(page))
632 rotate_reclaimable_page(page);
634 if (!test_clear_page_writeback(page))
635 BUG();
637 smp_mb__after_clear_bit();
638 wake_up_page(page, PG_writeback);
640 EXPORT_SYMBOL(end_page_writeback);
643 * __lock_page - get a lock on the page, assuming we need to sleep to get it
644 * @page: the page to lock
646 void __lock_page(struct page *page)
648 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
650 __wait_on_bit_lock(page_waitqueue(page), &wait, sleep_on_page,
651 TASK_UNINTERRUPTIBLE);
653 EXPORT_SYMBOL(__lock_page);
655 int __lock_page_killable(struct page *page)
657 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
659 return __wait_on_bit_lock(page_waitqueue(page), &wait,
660 sleep_on_page_killable, TASK_KILLABLE);
662 EXPORT_SYMBOL_GPL(__lock_page_killable);
664 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
665 unsigned int flags)
667 if (flags & FAULT_FLAG_ALLOW_RETRY) {
669 * CAUTION! In this case, mmap_sem is not released
670 * even though return 0.
672 if (flags & FAULT_FLAG_RETRY_NOWAIT)
673 return 0;
675 up_read(&mm->mmap_sem);
676 if (flags & FAULT_FLAG_KILLABLE)
677 wait_on_page_locked_killable(page);
678 else
679 wait_on_page_locked(page);
680 return 0;
681 } else {
682 if (flags & FAULT_FLAG_KILLABLE) {
683 int ret;
685 ret = __lock_page_killable(page);
686 if (ret) {
687 up_read(&mm->mmap_sem);
688 return 0;
690 } else
691 __lock_page(page);
692 return 1;
697 * find_get_page - find and get a page reference
698 * @mapping: the address_space to search
699 * @offset: the page index
701 * Is there a pagecache struct page at the given (mapping, offset) tuple?
702 * If yes, increment its refcount and return it; if no, return NULL.
704 struct page *find_get_page(struct address_space *mapping, pgoff_t offset)
706 void **pagep;
707 struct page *page;
709 rcu_read_lock();
710 repeat:
711 page = NULL;
712 pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
713 if (pagep) {
714 page = radix_tree_deref_slot(pagep);
715 if (unlikely(!page))
716 goto out;
717 if (radix_tree_deref_retry(page))
718 goto repeat;
720 if (!page_cache_get_speculative(page))
721 goto repeat;
724 * Has the page moved?
725 * This is part of the lockless pagecache protocol. See
726 * include/linux/pagemap.h for details.
728 if (unlikely(page != *pagep)) {
729 page_cache_release(page);
730 goto repeat;
733 out:
734 rcu_read_unlock();
736 return page;
738 EXPORT_SYMBOL(find_get_page);
741 * find_lock_page - locate, pin and lock a pagecache page
742 * @mapping: the address_space to search
743 * @offset: the page index
745 * Locates the desired pagecache page, locks it, increments its reference
746 * count and returns its address.
748 * Returns zero if the page was not present. find_lock_page() may sleep.
750 struct page *find_lock_page(struct address_space *mapping, pgoff_t offset)
752 struct page *page;
754 repeat:
755 page = find_get_page(mapping, offset);
756 if (page) {
757 lock_page(page);
758 /* Has the page been truncated? */
759 if (unlikely(page->mapping != mapping)) {
760 unlock_page(page);
761 page_cache_release(page);
762 goto repeat;
764 VM_BUG_ON(page->index != offset);
766 return page;
768 EXPORT_SYMBOL(find_lock_page);
771 * find_or_create_page - locate or add a pagecache page
772 * @mapping: the page's address_space
773 * @index: the page's index into the mapping
774 * @gfp_mask: page allocation mode
776 * Locates a page in the pagecache. If the page is not present, a new page
777 * is allocated using @gfp_mask and is added to the pagecache and to the VM's
778 * LRU list. The returned page is locked and has its reference count
779 * incremented.
781 * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
782 * allocation!
784 * find_or_create_page() returns the desired page's address, or zero on
785 * memory exhaustion.
787 struct page *find_or_create_page(struct address_space *mapping,
788 pgoff_t index, gfp_t gfp_mask)
790 struct page *page;
791 int err;
792 repeat:
793 page = find_lock_page(mapping, index);
794 if (!page) {
795 page = __page_cache_alloc(gfp_mask);
796 if (!page)
797 return NULL;
799 * We want a regular kernel memory (not highmem or DMA etc)
800 * allocation for the radix tree nodes, but we need to honour
801 * the context-specific requirements the caller has asked for.
802 * GFP_RECLAIM_MASK collects those requirements.
804 err = add_to_page_cache_lru(page, mapping, index,
805 (gfp_mask & GFP_RECLAIM_MASK));
806 if (unlikely(err)) {
807 page_cache_release(page);
808 page = NULL;
809 if (err == -EEXIST)
810 goto repeat;
813 return page;
815 EXPORT_SYMBOL(find_or_create_page);
818 * find_get_pages - gang pagecache lookup
819 * @mapping: The address_space to search
820 * @start: The starting page index
821 * @nr_pages: The maximum number of pages
822 * @pages: Where the resulting pages are placed
824 * find_get_pages() will search for and return a group of up to
825 * @nr_pages pages in the mapping. The pages are placed at @pages.
826 * find_get_pages() takes a reference against the returned pages.
828 * The search returns a group of mapping-contiguous pages with ascending
829 * indexes. There may be holes in the indices due to not-present pages.
831 * find_get_pages() returns the number of pages which were found.
833 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
834 unsigned int nr_pages, struct page **pages)
836 unsigned int i;
837 unsigned int ret;
838 unsigned int nr_found;
840 rcu_read_lock();
841 restart:
842 nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
843 (void ***)pages, start, nr_pages);
844 ret = 0;
845 for (i = 0; i < nr_found; i++) {
846 struct page *page;
847 repeat:
848 page = radix_tree_deref_slot((void **)pages[i]);
849 if (unlikely(!page))
850 continue;
853 * This can only trigger when the entry at index 0 moves out
854 * of or back to the root: none yet gotten, safe to restart.
856 if (radix_tree_deref_retry(page)) {
857 WARN_ON(start | i);
858 goto restart;
861 if (!page_cache_get_speculative(page))
862 goto repeat;
864 /* Has the page moved? */
865 if (unlikely(page != *((void **)pages[i]))) {
866 page_cache_release(page);
867 goto repeat;
870 pages[ret] = page;
871 ret++;
875 * If all entries were removed before we could secure them,
876 * try again, because callers stop trying once 0 is returned.
878 if (unlikely(!ret && nr_found))
879 goto restart;
880 rcu_read_unlock();
881 return ret;
885 * find_get_pages_contig - gang contiguous pagecache lookup
886 * @mapping: The address_space to search
887 * @index: The starting page index
888 * @nr_pages: The maximum number of pages
889 * @pages: Where the resulting pages are placed
891 * find_get_pages_contig() works exactly like find_get_pages(), except
892 * that the returned number of pages are guaranteed to be contiguous.
894 * find_get_pages_contig() returns the number of pages which were found.
896 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
897 unsigned int nr_pages, struct page **pages)
899 unsigned int i;
900 unsigned int ret;
901 unsigned int nr_found;
903 rcu_read_lock();
904 restart:
905 nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
906 (void ***)pages, index, nr_pages);
907 ret = 0;
908 for (i = 0; i < nr_found; i++) {
909 struct page *page;
910 repeat:
911 page = radix_tree_deref_slot((void **)pages[i]);
912 if (unlikely(!page))
913 continue;
916 * This can only trigger when the entry at index 0 moves out
917 * of or back to the root: none yet gotten, safe to restart.
919 if (radix_tree_deref_retry(page))
920 goto restart;
922 if (!page_cache_get_speculative(page))
923 goto repeat;
925 /* Has the page moved? */
926 if (unlikely(page != *((void **)pages[i]))) {
927 page_cache_release(page);
928 goto repeat;
932 * must check mapping and index after taking the ref.
933 * otherwise we can get both false positives and false
934 * negatives, which is just confusing to the caller.
936 if (page->mapping == NULL || page->index != index) {
937 page_cache_release(page);
938 break;
941 pages[ret] = page;
942 ret++;
943 index++;
945 rcu_read_unlock();
946 return ret;
948 EXPORT_SYMBOL(find_get_pages_contig);
951 * find_get_pages_tag - find and return pages that match @tag
952 * @mapping: the address_space to search
953 * @index: the starting page index
954 * @tag: the tag index
955 * @nr_pages: the maximum number of pages
956 * @pages: where the resulting pages are placed
958 * Like find_get_pages, except we only return pages which are tagged with
959 * @tag. We update @index to index the next page for the traversal.
961 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
962 int tag, unsigned int nr_pages, struct page **pages)
964 unsigned int i;
965 unsigned int ret;
966 unsigned int nr_found;
968 rcu_read_lock();
969 restart:
970 nr_found = radix_tree_gang_lookup_tag_slot(&mapping->page_tree,
971 (void ***)pages, *index, nr_pages, tag);
972 ret = 0;
973 for (i = 0; i < nr_found; i++) {
974 struct page *page;
975 repeat:
976 page = radix_tree_deref_slot((void **)pages[i]);
977 if (unlikely(!page))
978 continue;
981 * This can only trigger when the entry at index 0 moves out
982 * of or back to the root: none yet gotten, safe to restart.
984 if (radix_tree_deref_retry(page))
985 goto restart;
987 if (!page_cache_get_speculative(page))
988 goto repeat;
990 /* Has the page moved? */
991 if (unlikely(page != *((void **)pages[i]))) {
992 page_cache_release(page);
993 goto repeat;
996 pages[ret] = page;
997 ret++;
1001 * If all entries were removed before we could secure them,
1002 * try again, because callers stop trying once 0 is returned.
1004 if (unlikely(!ret && nr_found))
1005 goto restart;
1006 rcu_read_unlock();
1008 if (ret)
1009 *index = pages[ret - 1]->index + 1;
1011 return ret;
1013 EXPORT_SYMBOL(find_get_pages_tag);
1016 * grab_cache_page_nowait - returns locked page at given index in given cache
1017 * @mapping: target address_space
1018 * @index: the page index
1020 * Same as grab_cache_page(), but do not wait if the page is unavailable.
1021 * This is intended for speculative data generators, where the data can
1022 * be regenerated if the page couldn't be grabbed. This routine should
1023 * be safe to call while holding the lock for another page.
1025 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
1026 * and deadlock against the caller's locked page.
1028 struct page *
1029 grab_cache_page_nowait(struct address_space *mapping, pgoff_t index)
1031 struct page *page = find_get_page(mapping, index);
1033 if (page) {
1034 if (trylock_page(page))
1035 return page;
1036 page_cache_release(page);
1037 return NULL;
1039 page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS);
1040 if (page && add_to_page_cache_lru(page, mapping, index, GFP_NOFS)) {
1041 page_cache_release(page);
1042 page = NULL;
1044 return page;
1046 EXPORT_SYMBOL(grab_cache_page_nowait);
1049 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1050 * a _large_ part of the i/o request. Imagine the worst scenario:
1052 * ---R__________________________________________B__________
1053 * ^ reading here ^ bad block(assume 4k)
1055 * read(R) => miss => readahead(R...B) => media error => frustrating retries
1056 * => failing the whole request => read(R) => read(R+1) =>
1057 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1058 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1059 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1061 * It is going insane. Fix it by quickly scaling down the readahead size.
1063 static void shrink_readahead_size_eio(struct file *filp,
1064 struct file_ra_state *ra)
1066 ra->ra_pages /= 4;
1070 * do_generic_file_read - generic file read routine
1071 * @filp: the file to read
1072 * @ppos: current file position
1073 * @desc: read_descriptor
1074 * @actor: read method
1076 * This is a generic file read routine, and uses the
1077 * mapping->a_ops->readpage() function for the actual low-level stuff.
1079 * This is really ugly. But the goto's actually try to clarify some
1080 * of the logic when it comes to error handling etc.
1082 static void do_generic_file_read(struct file *filp, loff_t *ppos,
1083 read_descriptor_t *desc, read_actor_t actor)
1085 struct address_space *mapping = filp->f_mapping;
1086 struct inode *inode = mapping->host;
1087 struct file_ra_state *ra = &filp->f_ra;
1088 pgoff_t index;
1089 pgoff_t last_index;
1090 pgoff_t prev_index;
1091 unsigned long offset; /* offset into pagecache page */
1092 unsigned int prev_offset;
1093 int error;
1095 index = *ppos >> PAGE_CACHE_SHIFT;
1096 prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
1097 prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
1098 last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
1099 offset = *ppos & ~PAGE_CACHE_MASK;
1101 for (;;) {
1102 struct page *page;
1103 pgoff_t end_index;
1104 loff_t isize;
1105 unsigned long nr, ret;
1107 cond_resched();
1108 find_page:
1109 page = find_get_page(mapping, index);
1110 if (!page) {
1111 page_cache_sync_readahead(mapping,
1112 ra, filp,
1113 index, last_index - index);
1114 page = find_get_page(mapping, index);
1115 if (unlikely(page == NULL))
1116 goto no_cached_page;
1118 if (PageReadahead(page)) {
1119 page_cache_async_readahead(mapping,
1120 ra, filp, page,
1121 index, last_index - index);
1123 if (!PageUptodate(page)) {
1124 if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
1125 !mapping->a_ops->is_partially_uptodate)
1126 goto page_not_up_to_date;
1127 if (!trylock_page(page))
1128 goto page_not_up_to_date;
1129 /* Did it get truncated before we got the lock? */
1130 if (!page->mapping)
1131 goto page_not_up_to_date_locked;
1132 if (!mapping->a_ops->is_partially_uptodate(page,
1133 desc, offset))
1134 goto page_not_up_to_date_locked;
1135 unlock_page(page);
1137 page_ok:
1139 * i_size must be checked after we know the page is Uptodate.
1141 * Checking i_size after the check allows us to calculate
1142 * the correct value for "nr", which means the zero-filled
1143 * part of the page is not copied back to userspace (unless
1144 * another truncate extends the file - this is desired though).
1147 isize = i_size_read(inode);
1148 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1149 if (unlikely(!isize || index > end_index)) {
1150 page_cache_release(page);
1151 goto out;
1154 /* nr is the maximum number of bytes to copy from this page */
1155 nr = PAGE_CACHE_SIZE;
1156 if (index == end_index) {
1157 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1158 if (nr <= offset) {
1159 page_cache_release(page);
1160 goto out;
1163 nr = nr - offset;
1165 /* If users can be writing to this page using arbitrary
1166 * virtual addresses, take care about potential aliasing
1167 * before reading the page on the kernel side.
1169 if (mapping_writably_mapped(mapping))
1170 flush_dcache_page(page);
1173 * When a sequential read accesses a page several times,
1174 * only mark it as accessed the first time.
1176 if (prev_index != index || offset != prev_offset)
1177 mark_page_accessed(page);
1178 prev_index = index;
1181 * Ok, we have the page, and it's up-to-date, so
1182 * now we can copy it to user space...
1184 * The actor routine returns how many bytes were actually used..
1185 * NOTE! This may not be the same as how much of a user buffer
1186 * we filled up (we may be padding etc), so we can only update
1187 * "pos" here (the actor routine has to update the user buffer
1188 * pointers and the remaining count).
1190 ret = actor(desc, page, offset, nr);
1191 offset += ret;
1192 index += offset >> PAGE_CACHE_SHIFT;
1193 offset &= ~PAGE_CACHE_MASK;
1194 prev_offset = offset;
1196 page_cache_release(page);
1197 if (ret == nr && desc->count)
1198 continue;
1199 goto out;
1201 page_not_up_to_date:
1202 /* Get exclusive access to the page ... */
1203 error = lock_page_killable(page);
1204 if (unlikely(error))
1205 goto readpage_error;
1207 page_not_up_to_date_locked:
1208 /* Did it get truncated before we got the lock? */
1209 if (!page->mapping) {
1210 unlock_page(page);
1211 page_cache_release(page);
1212 continue;
1215 /* Did somebody else fill it already? */
1216 if (PageUptodate(page)) {
1217 unlock_page(page);
1218 goto page_ok;
1221 readpage:
1223 * A previous I/O error may have been due to temporary
1224 * failures, eg. multipath errors.
1225 * PG_error will be set again if readpage fails.
1227 ClearPageError(page);
1228 /* Start the actual read. The read will unlock the page. */
1229 error = mapping->a_ops->readpage(filp, page);
1231 if (unlikely(error)) {
1232 if (error == AOP_TRUNCATED_PAGE) {
1233 page_cache_release(page);
1234 goto find_page;
1236 goto readpage_error;
1239 if (!PageUptodate(page)) {
1240 error = lock_page_killable(page);
1241 if (unlikely(error))
1242 goto readpage_error;
1243 if (!PageUptodate(page)) {
1244 if (page->mapping == NULL) {
1246 * invalidate_mapping_pages got it
1248 unlock_page(page);
1249 page_cache_release(page);
1250 goto find_page;
1252 unlock_page(page);
1253 shrink_readahead_size_eio(filp, ra);
1254 error = -EIO;
1255 goto readpage_error;
1257 unlock_page(page);
1260 goto page_ok;
1262 readpage_error:
1263 /* UHHUH! A synchronous read error occurred. Report it */
1264 desc->error = error;
1265 page_cache_release(page);
1266 goto out;
1268 no_cached_page:
1270 * Ok, it wasn't cached, so we need to create a new
1271 * page..
1273 page = page_cache_alloc_cold(mapping);
1274 if (!page) {
1275 desc->error = -ENOMEM;
1276 goto out;
1278 error = add_to_page_cache_lru(page, mapping,
1279 index, GFP_KERNEL);
1280 if (error) {
1281 page_cache_release(page);
1282 if (error == -EEXIST)
1283 goto find_page;
1284 desc->error = error;
1285 goto out;
1287 goto readpage;
1290 out:
1291 ra->prev_pos = prev_index;
1292 ra->prev_pos <<= PAGE_CACHE_SHIFT;
1293 ra->prev_pos |= prev_offset;
1295 *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
1296 file_accessed(filp);
1299 int file_read_actor(read_descriptor_t *desc, struct page *page,
1300 unsigned long offset, unsigned long size)
1302 char *kaddr;
1303 unsigned long left, count = desc->count;
1305 if (size > count)
1306 size = count;
1309 * Faults on the destination of a read are common, so do it before
1310 * taking the kmap.
1312 if (!fault_in_pages_writeable(desc->arg.buf, size)) {
1313 kaddr = kmap_atomic(page, KM_USER0);
1314 left = __copy_to_user_inatomic(desc->arg.buf,
1315 kaddr + offset, size);
1316 kunmap_atomic(kaddr, KM_USER0);
1317 if (left == 0)
1318 goto success;
1321 /* Do it the slow way */
1322 kaddr = kmap(page);
1323 left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
1324 kunmap(page);
1326 if (left) {
1327 size -= left;
1328 desc->error = -EFAULT;
1330 success:
1331 desc->count = count - size;
1332 desc->written += size;
1333 desc->arg.buf += size;
1334 return size;
1338 * Performs necessary checks before doing a write
1339 * @iov: io vector request
1340 * @nr_segs: number of segments in the iovec
1341 * @count: number of bytes to write
1342 * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1344 * Adjust number of segments and amount of bytes to write (nr_segs should be
1345 * properly initialized first). Returns appropriate error code that caller
1346 * should return or zero in case that write should be allowed.
1348 int generic_segment_checks(const struct iovec *iov,
1349 unsigned long *nr_segs, size_t *count, int access_flags)
1351 unsigned long seg;
1352 size_t cnt = 0;
1353 for (seg = 0; seg < *nr_segs; seg++) {
1354 const struct iovec *iv = &iov[seg];
1357 * If any segment has a negative length, or the cumulative
1358 * length ever wraps negative then return -EINVAL.
1360 cnt += iv->iov_len;
1361 if (unlikely((ssize_t)(cnt|iv->iov_len) < 0))
1362 return -EINVAL;
1363 if (access_ok(access_flags, iv->iov_base, iv->iov_len))
1364 continue;
1365 if (seg == 0)
1366 return -EFAULT;
1367 *nr_segs = seg;
1368 cnt -= iv->iov_len; /* This segment is no good */
1369 break;
1371 *count = cnt;
1372 return 0;
1374 EXPORT_SYMBOL(generic_segment_checks);
1377 * generic_file_aio_read - generic filesystem read routine
1378 * @iocb: kernel I/O control block
1379 * @iov: io vector request
1380 * @nr_segs: number of segments in the iovec
1381 * @pos: current file position
1383 * This is the "read()" routine for all filesystems
1384 * that can use the page cache directly.
1386 ssize_t
1387 generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1388 unsigned long nr_segs, loff_t pos)
1390 struct file *filp = iocb->ki_filp;
1391 ssize_t retval;
1392 unsigned long seg = 0;
1393 size_t count;
1394 loff_t *ppos = &iocb->ki_pos;
1395 struct blk_plug plug;
1397 count = 0;
1398 retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1399 if (retval)
1400 return retval;
1402 blk_start_plug(&plug);
1404 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1405 if (filp->f_flags & O_DIRECT) {
1406 loff_t size;
1407 struct address_space *mapping;
1408 struct inode *inode;
1410 mapping = filp->f_mapping;
1411 inode = mapping->host;
1412 if (!count)
1413 goto out; /* skip atime */
1414 size = i_size_read(inode);
1415 if (pos < size) {
1416 retval = filemap_write_and_wait_range(mapping, pos,
1417 pos + iov_length(iov, nr_segs) - 1);
1418 if (!retval) {
1419 retval = mapping->a_ops->direct_IO(READ, iocb,
1420 iov, pos, nr_segs);
1422 if (retval > 0) {
1423 *ppos = pos + retval;
1424 count -= retval;
1428 * Btrfs can have a short DIO read if we encounter
1429 * compressed extents, so if there was an error, or if
1430 * we've already read everything we wanted to, or if
1431 * there was a short read because we hit EOF, go ahead
1432 * and return. Otherwise fallthrough to buffered io for
1433 * the rest of the read.
1435 if (retval < 0 || !count || *ppos >= size) {
1436 file_accessed(filp);
1437 goto out;
1442 count = retval;
1443 for (seg = 0; seg < nr_segs; seg++) {
1444 read_descriptor_t desc;
1445 loff_t offset = 0;
1448 * If we did a short DIO read we need to skip the section of the
1449 * iov that we've already read data into.
1451 if (count) {
1452 if (count > iov[seg].iov_len) {
1453 count -= iov[seg].iov_len;
1454 continue;
1456 offset = count;
1457 count = 0;
1460 desc.written = 0;
1461 desc.arg.buf = iov[seg].iov_base + offset;
1462 desc.count = iov[seg].iov_len - offset;
1463 if (desc.count == 0)
1464 continue;
1465 desc.error = 0;
1466 do_generic_file_read(filp, ppos, &desc, file_read_actor);
1467 retval += desc.written;
1468 if (desc.error) {
1469 retval = retval ?: desc.error;
1470 break;
1472 if (desc.count > 0)
1473 break;
1475 out:
1476 blk_finish_plug(&plug);
1477 return retval;
1479 EXPORT_SYMBOL(generic_file_aio_read);
1481 static ssize_t
1482 do_readahead(struct address_space *mapping, struct file *filp,
1483 pgoff_t index, unsigned long nr)
1485 if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
1486 return -EINVAL;
1488 force_page_cache_readahead(mapping, filp, index, nr);
1489 return 0;
1492 SYSCALL_DEFINE(readahead)(int fd, loff_t offset, size_t count)
1494 ssize_t ret;
1495 struct file *file;
1497 ret = -EBADF;
1498 file = fget(fd);
1499 if (file) {
1500 if (file->f_mode & FMODE_READ) {
1501 struct address_space *mapping = file->f_mapping;
1502 pgoff_t start = offset >> PAGE_CACHE_SHIFT;
1503 pgoff_t end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
1504 unsigned long len = end - start + 1;
1505 ret = do_readahead(mapping, file, start, len);
1507 fput(file);
1509 return ret;
1511 #ifdef CONFIG_HAVE_SYSCALL_WRAPPERS
1512 asmlinkage long SyS_readahead(long fd, loff_t offset, long count)
1514 return SYSC_readahead((int) fd, offset, (size_t) count);
1516 SYSCALL_ALIAS(sys_readahead, SyS_readahead);
1517 #endif
1519 #ifdef CONFIG_MMU
1521 * page_cache_read - adds requested page to the page cache if not already there
1522 * @file: file to read
1523 * @offset: page index
1525 * This adds the requested page to the page cache if it isn't already there,
1526 * and schedules an I/O to read in its contents from disk.
1528 static int page_cache_read(struct file *file, pgoff_t offset)
1530 struct address_space *mapping = file->f_mapping;
1531 struct page *page;
1532 int ret;
1534 do {
1535 page = page_cache_alloc_cold(mapping);
1536 if (!page)
1537 return -ENOMEM;
1539 ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1540 if (ret == 0)
1541 ret = mapping->a_ops->readpage(file, page);
1542 else if (ret == -EEXIST)
1543 ret = 0; /* losing race to add is OK */
1545 page_cache_release(page);
1547 } while (ret == AOP_TRUNCATED_PAGE);
1549 return ret;
1552 #define MMAP_LOTSAMISS (100)
1555 * Synchronous readahead happens when we don't even find
1556 * a page in the page cache at all.
1558 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1559 struct file_ra_state *ra,
1560 struct file *file,
1561 pgoff_t offset)
1563 unsigned long ra_pages;
1564 struct address_space *mapping = file->f_mapping;
1566 /* If we don't want any read-ahead, don't bother */
1567 if (VM_RandomReadHint(vma))
1568 return;
1569 if (!ra->ra_pages)
1570 return;
1572 if (VM_SequentialReadHint(vma)) {
1573 page_cache_sync_readahead(mapping, ra, file, offset,
1574 ra->ra_pages);
1575 return;
1578 /* Avoid banging the cache line if not needed */
1579 if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
1580 ra->mmap_miss++;
1583 * Do we miss much more than hit in this file? If so,
1584 * stop bothering with read-ahead. It will only hurt.
1586 if (ra->mmap_miss > MMAP_LOTSAMISS)
1587 return;
1590 * mmap read-around
1592 ra_pages = max_sane_readahead(ra->ra_pages);
1593 ra->start = max_t(long, 0, offset - ra_pages / 2);
1594 ra->size = ra_pages;
1595 ra->async_size = ra_pages / 4;
1596 ra_submit(ra, mapping, file);
1600 * Asynchronous readahead happens when we find the page and PG_readahead,
1601 * so we want to possibly extend the readahead further..
1603 static void do_async_mmap_readahead(struct vm_area_struct *vma,
1604 struct file_ra_state *ra,
1605 struct file *file,
1606 struct page *page,
1607 pgoff_t offset)
1609 struct address_space *mapping = file->f_mapping;
1611 /* If we don't want any read-ahead, don't bother */
1612 if (VM_RandomReadHint(vma))
1613 return;
1614 if (ra->mmap_miss > 0)
1615 ra->mmap_miss--;
1616 if (PageReadahead(page))
1617 page_cache_async_readahead(mapping, ra, file,
1618 page, offset, ra->ra_pages);
1622 * filemap_fault - read in file data for page fault handling
1623 * @vma: vma in which the fault was taken
1624 * @vmf: struct vm_fault containing details of the fault
1626 * filemap_fault() is invoked via the vma operations vector for a
1627 * mapped memory region to read in file data during a page fault.
1629 * The goto's are kind of ugly, but this streamlines the normal case of having
1630 * it in the page cache, and handles the special cases reasonably without
1631 * having a lot of duplicated code.
1633 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1635 int error;
1636 struct file *file = vma->vm_file;
1637 struct address_space *mapping = file->f_mapping;
1638 struct file_ra_state *ra = &file->f_ra;
1639 struct inode *inode = mapping->host;
1640 pgoff_t offset = vmf->pgoff;
1641 struct page *page;
1642 pgoff_t size;
1643 int ret = 0;
1645 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1646 if (offset >= size)
1647 return VM_FAULT_SIGBUS;
1650 * Do we have something in the page cache already?
1652 page = find_get_page(mapping, offset);
1653 if (likely(page)) {
1655 * We found the page, so try async readahead before
1656 * waiting for the lock.
1658 do_async_mmap_readahead(vma, ra, file, page, offset);
1659 } else {
1660 /* No page in the page cache at all */
1661 do_sync_mmap_readahead(vma, ra, file, offset);
1662 count_vm_event(PGMAJFAULT);
1663 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1664 ret = VM_FAULT_MAJOR;
1665 retry_find:
1666 page = find_get_page(mapping, offset);
1667 if (!page)
1668 goto no_cached_page;
1671 if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
1672 page_cache_release(page);
1673 return ret | VM_FAULT_RETRY;
1676 /* Did it get truncated? */
1677 if (unlikely(page->mapping != mapping)) {
1678 unlock_page(page);
1679 put_page(page);
1680 goto retry_find;
1682 VM_BUG_ON(page->index != offset);
1685 * We have a locked page in the page cache, now we need to check
1686 * that it's up-to-date. If not, it is going to be due to an error.
1688 if (unlikely(!PageUptodate(page)))
1689 goto page_not_uptodate;
1692 * Found the page and have a reference on it.
1693 * We must recheck i_size under page lock.
1695 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1696 if (unlikely(offset >= size)) {
1697 unlock_page(page);
1698 page_cache_release(page);
1699 return VM_FAULT_SIGBUS;
1702 vmf->page = page;
1703 return ret | VM_FAULT_LOCKED;
1705 no_cached_page:
1707 * We're only likely to ever get here if MADV_RANDOM is in
1708 * effect.
1710 error = page_cache_read(file, offset);
1713 * The page we want has now been added to the page cache.
1714 * In the unlikely event that someone removed it in the
1715 * meantime, we'll just come back here and read it again.
1717 if (error >= 0)
1718 goto retry_find;
1721 * An error return from page_cache_read can result if the
1722 * system is low on memory, or a problem occurs while trying
1723 * to schedule I/O.
1725 if (error == -ENOMEM)
1726 return VM_FAULT_OOM;
1727 return VM_FAULT_SIGBUS;
1729 page_not_uptodate:
1731 * Umm, take care of errors if the page isn't up-to-date.
1732 * Try to re-read it _once_. We do this synchronously,
1733 * because there really aren't any performance issues here
1734 * and we need to check for errors.
1736 ClearPageError(page);
1737 error = mapping->a_ops->readpage(file, page);
1738 if (!error) {
1739 wait_on_page_locked(page);
1740 if (!PageUptodate(page))
1741 error = -EIO;
1743 page_cache_release(page);
1745 if (!error || error == AOP_TRUNCATED_PAGE)
1746 goto retry_find;
1748 /* Things didn't work out. Return zero to tell the mm layer so. */
1749 shrink_readahead_size_eio(file, ra);
1750 return VM_FAULT_SIGBUS;
1752 EXPORT_SYMBOL(filemap_fault);
1754 const struct vm_operations_struct generic_file_vm_ops = {
1755 .fault = filemap_fault,
1758 /* This is used for a general mmap of a disk file */
1760 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1762 struct address_space *mapping = file->f_mapping;
1764 if (!mapping->a_ops->readpage)
1765 return -ENOEXEC;
1766 file_accessed(file);
1767 vma->vm_ops = &generic_file_vm_ops;
1768 vma->vm_flags |= VM_CAN_NONLINEAR;
1769 return 0;
1773 * This is for filesystems which do not implement ->writepage.
1775 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1777 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1778 return -EINVAL;
1779 return generic_file_mmap(file, vma);
1781 #else
1782 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1784 return -ENOSYS;
1786 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1788 return -ENOSYS;
1790 #endif /* CONFIG_MMU */
1792 EXPORT_SYMBOL(generic_file_mmap);
1793 EXPORT_SYMBOL(generic_file_readonly_mmap);
1795 static struct page *__read_cache_page(struct address_space *mapping,
1796 pgoff_t index,
1797 int (*filler)(void *, struct page *),
1798 void *data,
1799 gfp_t gfp)
1801 struct page *page;
1802 int err;
1803 repeat:
1804 page = find_get_page(mapping, index);
1805 if (!page) {
1806 page = __page_cache_alloc(gfp | __GFP_COLD);
1807 if (!page)
1808 return ERR_PTR(-ENOMEM);
1809 err = add_to_page_cache_lru(page, mapping, index, GFP_KERNEL);
1810 if (unlikely(err)) {
1811 page_cache_release(page);
1812 if (err == -EEXIST)
1813 goto repeat;
1814 /* Presumably ENOMEM for radix tree node */
1815 return ERR_PTR(err);
1817 err = filler(data, page);
1818 if (err < 0) {
1819 page_cache_release(page);
1820 page = ERR_PTR(err);
1823 return page;
1826 static struct page *do_read_cache_page(struct address_space *mapping,
1827 pgoff_t index,
1828 int (*filler)(void *, struct page *),
1829 void *data,
1830 gfp_t gfp)
1833 struct page *page;
1834 int err;
1836 retry:
1837 page = __read_cache_page(mapping, index, filler, data, gfp);
1838 if (IS_ERR(page))
1839 return page;
1840 if (PageUptodate(page))
1841 goto out;
1843 lock_page(page);
1844 if (!page->mapping) {
1845 unlock_page(page);
1846 page_cache_release(page);
1847 goto retry;
1849 if (PageUptodate(page)) {
1850 unlock_page(page);
1851 goto out;
1853 err = filler(data, page);
1854 if (err < 0) {
1855 page_cache_release(page);
1856 return ERR_PTR(err);
1858 out:
1859 mark_page_accessed(page);
1860 return page;
1864 * read_cache_page_async - read into page cache, fill it if needed
1865 * @mapping: the page's address_space
1866 * @index: the page index
1867 * @filler: function to perform the read
1868 * @data: first arg to filler(data, page) function, often left as NULL
1870 * Same as read_cache_page, but don't wait for page to become unlocked
1871 * after submitting it to the filler.
1873 * Read into the page cache. If a page already exists, and PageUptodate() is
1874 * not set, try to fill the page but don't wait for it to become unlocked.
1876 * If the page does not get brought uptodate, return -EIO.
1878 struct page *read_cache_page_async(struct address_space *mapping,
1879 pgoff_t index,
1880 int (*filler)(void *, struct page *),
1881 void *data)
1883 return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
1885 EXPORT_SYMBOL(read_cache_page_async);
1887 static struct page *wait_on_page_read(struct page *page)
1889 if (!IS_ERR(page)) {
1890 wait_on_page_locked(page);
1891 if (!PageUptodate(page)) {
1892 page_cache_release(page);
1893 page = ERR_PTR(-EIO);
1896 return page;
1900 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
1901 * @mapping: the page's address_space
1902 * @index: the page index
1903 * @gfp: the page allocator flags to use if allocating
1905 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
1906 * any new page allocations done using the specified allocation flags. Note
1907 * that the Radix tree operations will still use GFP_KERNEL, so you can't
1908 * expect to do this atomically or anything like that - but you can pass in
1909 * other page requirements.
1911 * If the page does not get brought uptodate, return -EIO.
1913 struct page *read_cache_page_gfp(struct address_space *mapping,
1914 pgoff_t index,
1915 gfp_t gfp)
1917 filler_t *filler = (filler_t *)mapping->a_ops->readpage;
1919 return wait_on_page_read(do_read_cache_page(mapping, index, filler, NULL, gfp));
1921 EXPORT_SYMBOL(read_cache_page_gfp);
1924 * read_cache_page - read into page cache, fill it if needed
1925 * @mapping: the page's address_space
1926 * @index: the page index
1927 * @filler: function to perform the read
1928 * @data: first arg to filler(data, page) function, often left as NULL
1930 * Read into the page cache. If a page already exists, and PageUptodate() is
1931 * not set, try to fill the page then wait for it to become unlocked.
1933 * If the page does not get brought uptodate, return -EIO.
1935 struct page *read_cache_page(struct address_space *mapping,
1936 pgoff_t index,
1937 int (*filler)(void *, struct page *),
1938 void *data)
1940 return wait_on_page_read(read_cache_page_async(mapping, index, filler, data));
1942 EXPORT_SYMBOL(read_cache_page);
1945 * The logic we want is
1947 * if suid or (sgid and xgrp)
1948 * remove privs
1950 int should_remove_suid(struct dentry *dentry)
1952 mode_t mode = dentry->d_inode->i_mode;
1953 int kill = 0;
1955 /* suid always must be killed */
1956 if (unlikely(mode & S_ISUID))
1957 kill = ATTR_KILL_SUID;
1960 * sgid without any exec bits is just a mandatory locking mark; leave
1961 * it alone. If some exec bits are set, it's a real sgid; kill it.
1963 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1964 kill |= ATTR_KILL_SGID;
1966 if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1967 return kill;
1969 return 0;
1971 EXPORT_SYMBOL(should_remove_suid);
1973 static int __remove_suid(struct dentry *dentry, int kill)
1975 struct iattr newattrs;
1977 newattrs.ia_valid = ATTR_FORCE | kill;
1978 return notify_change(dentry, &newattrs);
1981 int file_remove_suid(struct file *file)
1983 struct dentry *dentry = file->f_path.dentry;
1984 struct inode *inode = dentry->d_inode;
1985 int killsuid;
1986 int killpriv;
1987 int error = 0;
1989 /* Fast path for nothing security related */
1990 if (IS_NOSEC(inode))
1991 return 0;
1993 killsuid = should_remove_suid(dentry);
1994 killpriv = security_inode_need_killpriv(dentry);
1996 if (killpriv < 0)
1997 return killpriv;
1998 if (killpriv)
1999 error = security_inode_killpriv(dentry);
2000 if (!error && killsuid)
2001 error = __remove_suid(dentry, killsuid);
2002 if (!error && (inode->i_sb->s_flags & MS_NOSEC))
2003 inode->i_flags |= S_NOSEC;
2005 return error;
2007 EXPORT_SYMBOL(file_remove_suid);
2009 static size_t __iovec_copy_from_user_inatomic(char *vaddr,
2010 const struct iovec *iov, size_t base, size_t bytes)
2012 size_t copied = 0, left = 0;
2014 while (bytes) {
2015 char __user *buf = iov->iov_base + base;
2016 int copy = min(bytes, iov->iov_len - base);
2018 base = 0;
2019 left = __copy_from_user_inatomic(vaddr, buf, copy);
2020 copied += copy;
2021 bytes -= copy;
2022 vaddr += copy;
2023 iov++;
2025 if (unlikely(left))
2026 break;
2028 return copied - left;
2032 * Copy as much as we can into the page and return the number of bytes which
2033 * were successfully copied. If a fault is encountered then return the number of
2034 * bytes which were copied.
2036 size_t iov_iter_copy_from_user_atomic(struct page *page,
2037 struct iov_iter *i, unsigned long offset, size_t bytes)
2039 char *kaddr;
2040 size_t copied;
2042 BUG_ON(!in_atomic());
2043 kaddr = kmap_atomic(page, KM_USER0);
2044 if (likely(i->nr_segs == 1)) {
2045 int left;
2046 char __user *buf = i->iov->iov_base + i->iov_offset;
2047 left = __copy_from_user_inatomic(kaddr + offset, buf, bytes);
2048 copied = bytes - left;
2049 } else {
2050 copied = __iovec_copy_from_user_inatomic(kaddr + offset,
2051 i->iov, i->iov_offset, bytes);
2053 kunmap_atomic(kaddr, KM_USER0);
2055 return copied;
2057 EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);
2060 * This has the same sideeffects and return value as
2061 * iov_iter_copy_from_user_atomic().
2062 * The difference is that it attempts to resolve faults.
2063 * Page must not be locked.
2065 size_t iov_iter_copy_from_user(struct page *page,
2066 struct iov_iter *i, unsigned long offset, size_t bytes)
2068 char *kaddr;
2069 size_t copied;
2071 kaddr = kmap(page);
2072 if (likely(i->nr_segs == 1)) {
2073 int left;
2074 char __user *buf = i->iov->iov_base + i->iov_offset;
2075 left = __copy_from_user(kaddr + offset, buf, bytes);
2076 copied = bytes - left;
2077 } else {
2078 copied = __iovec_copy_from_user_inatomic(kaddr + offset,
2079 i->iov, i->iov_offset, bytes);
2081 kunmap(page);
2082 return copied;
2084 EXPORT_SYMBOL(iov_iter_copy_from_user);
2086 void iov_iter_advance(struct iov_iter *i, size_t bytes)
2088 BUG_ON(i->count < bytes);
2090 if (likely(i->nr_segs == 1)) {
2091 i->iov_offset += bytes;
2092 i->count -= bytes;
2093 } else {
2094 const struct iovec *iov = i->iov;
2095 size_t base = i->iov_offset;
2098 * The !iov->iov_len check ensures we skip over unlikely
2099 * zero-length segments (without overruning the iovec).
2101 while (bytes || unlikely(i->count && !iov->iov_len)) {
2102 int copy;
2104 copy = min(bytes, iov->iov_len - base);
2105 BUG_ON(!i->count || i->count < copy);
2106 i->count -= copy;
2107 bytes -= copy;
2108 base += copy;
2109 if (iov->iov_len == base) {
2110 iov++;
2111 base = 0;
2114 i->iov = iov;
2115 i->iov_offset = base;
2118 EXPORT_SYMBOL(iov_iter_advance);
2121 * Fault in the first iovec of the given iov_iter, to a maximum length
2122 * of bytes. Returns 0 on success, or non-zero if the memory could not be
2123 * accessed (ie. because it is an invalid address).
2125 * writev-intensive code may want this to prefault several iovecs -- that
2126 * would be possible (callers must not rely on the fact that _only_ the
2127 * first iovec will be faulted with the current implementation).
2129 int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
2131 char __user *buf = i->iov->iov_base + i->iov_offset;
2132 bytes = min(bytes, i->iov->iov_len - i->iov_offset);
2133 return fault_in_pages_readable(buf, bytes);
2135 EXPORT_SYMBOL(iov_iter_fault_in_readable);
2138 * Return the count of just the current iov_iter segment.
2140 size_t iov_iter_single_seg_count(struct iov_iter *i)
2142 const struct iovec *iov = i->iov;
2143 if (i->nr_segs == 1)
2144 return i->count;
2145 else
2146 return min(i->count, iov->iov_len - i->iov_offset);
2148 EXPORT_SYMBOL(iov_iter_single_seg_count);
2151 * Performs necessary checks before doing a write
2153 * Can adjust writing position or amount of bytes to write.
2154 * Returns appropriate error code that caller should return or
2155 * zero in case that write should be allowed.
2157 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
2159 struct inode *inode = file->f_mapping->host;
2160 unsigned long limit = rlimit(RLIMIT_FSIZE);
2162 if (unlikely(*pos < 0))
2163 return -EINVAL;
2165 if (!isblk) {
2166 /* FIXME: this is for backwards compatibility with 2.4 */
2167 if (file->f_flags & O_APPEND)
2168 *pos = i_size_read(inode);
2170 if (limit != RLIM_INFINITY) {
2171 if (*pos >= limit) {
2172 send_sig(SIGXFSZ, current, 0);
2173 return -EFBIG;
2175 if (*count > limit - (typeof(limit))*pos) {
2176 *count = limit - (typeof(limit))*pos;
2182 * LFS rule
2184 if (unlikely(*pos + *count > MAX_NON_LFS &&
2185 !(file->f_flags & O_LARGEFILE))) {
2186 if (*pos >= MAX_NON_LFS) {
2187 return -EFBIG;
2189 if (*count > MAX_NON_LFS - (unsigned long)*pos) {
2190 *count = MAX_NON_LFS - (unsigned long)*pos;
2195 * Are we about to exceed the fs block limit ?
2197 * If we have written data it becomes a short write. If we have
2198 * exceeded without writing data we send a signal and return EFBIG.
2199 * Linus frestrict idea will clean these up nicely..
2201 if (likely(!isblk)) {
2202 if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
2203 if (*count || *pos > inode->i_sb->s_maxbytes) {
2204 return -EFBIG;
2206 /* zero-length writes at ->s_maxbytes are OK */
2209 if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
2210 *count = inode->i_sb->s_maxbytes - *pos;
2211 } else {
2212 #ifdef CONFIG_BLOCK
2213 loff_t isize;
2214 if (bdev_read_only(I_BDEV(inode)))
2215 return -EPERM;
2216 isize = i_size_read(inode);
2217 if (*pos >= isize) {
2218 if (*count || *pos > isize)
2219 return -ENOSPC;
2222 if (*pos + *count > isize)
2223 *count = isize - *pos;
2224 #else
2225 return -EPERM;
2226 #endif
2228 return 0;
2230 EXPORT_SYMBOL(generic_write_checks);
2232 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2233 loff_t pos, unsigned len, unsigned flags,
2234 struct page **pagep, void **fsdata)
2236 const struct address_space_operations *aops = mapping->a_ops;
2238 return aops->write_begin(file, mapping, pos, len, flags,
2239 pagep, fsdata);
2241 EXPORT_SYMBOL(pagecache_write_begin);
2243 int pagecache_write_end(struct file *file, struct address_space *mapping,
2244 loff_t pos, unsigned len, unsigned copied,
2245 struct page *page, void *fsdata)
2247 const struct address_space_operations *aops = mapping->a_ops;
2249 mark_page_accessed(page);
2250 return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2252 EXPORT_SYMBOL(pagecache_write_end);
2254 ssize_t
2255 generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
2256 unsigned long *nr_segs, loff_t pos, loff_t *ppos,
2257 size_t count, size_t ocount)
2259 struct file *file = iocb->ki_filp;
2260 struct address_space *mapping = file->f_mapping;
2261 struct inode *inode = mapping->host;
2262 ssize_t written;
2263 size_t write_len;
2264 pgoff_t end;
2266 if (count != ocount)
2267 *nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
2269 write_len = iov_length(iov, *nr_segs);
2270 end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
2272 written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2273 if (written)
2274 goto out;
2277 * After a write we want buffered reads to be sure to go to disk to get
2278 * the new data. We invalidate clean cached page from the region we're
2279 * about to write. We do this *before* the write so that we can return
2280 * without clobbering -EIOCBQUEUED from ->direct_IO().
2282 if (mapping->nrpages) {
2283 written = invalidate_inode_pages2_range(mapping,
2284 pos >> PAGE_CACHE_SHIFT, end);
2286 * If a page can not be invalidated, return 0 to fall back
2287 * to buffered write.
2289 if (written) {
2290 if (written == -EBUSY)
2291 return 0;
2292 goto out;
2296 written = mapping->a_ops->direct_IO(WRITE, iocb, iov, pos, *nr_segs);
2299 * Finally, try again to invalidate clean pages which might have been
2300 * cached by non-direct readahead, or faulted in by get_user_pages()
2301 * if the source of the write was an mmap'ed region of the file
2302 * we're writing. Either one is a pretty crazy thing to do,
2303 * so we don't support it 100%. If this invalidation
2304 * fails, tough, the write still worked...
2306 if (mapping->nrpages) {
2307 invalidate_inode_pages2_range(mapping,
2308 pos >> PAGE_CACHE_SHIFT, end);
2311 if (written > 0) {
2312 pos += written;
2313 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2314 i_size_write(inode, pos);
2315 mark_inode_dirty(inode);
2317 *ppos = pos;
2319 out:
2320 return written;
2322 EXPORT_SYMBOL(generic_file_direct_write);
2325 * Find or create a page at the given pagecache position. Return the locked
2326 * page. This function is specifically for buffered writes.
2328 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2329 pgoff_t index, unsigned flags)
2331 int status;
2332 struct page *page;
2333 gfp_t gfp_notmask = 0;
2334 if (flags & AOP_FLAG_NOFS)
2335 gfp_notmask = __GFP_FS;
2336 repeat:
2337 page = find_lock_page(mapping, index);
2338 if (page)
2339 goto found;
2341 page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~gfp_notmask);
2342 if (!page)
2343 return NULL;
2344 status = add_to_page_cache_lru(page, mapping, index,
2345 GFP_KERNEL & ~gfp_notmask);
2346 if (unlikely(status)) {
2347 page_cache_release(page);
2348 if (status == -EEXIST)
2349 goto repeat;
2350 return NULL;
2352 found:
2353 wait_on_page_writeback(page);
2354 return page;
2356 EXPORT_SYMBOL(grab_cache_page_write_begin);
2358 static ssize_t generic_perform_write(struct file *file,
2359 struct iov_iter *i, loff_t pos)
2361 struct address_space *mapping = file->f_mapping;
2362 const struct address_space_operations *a_ops = mapping->a_ops;
2363 long status = 0;
2364 ssize_t written = 0;
2365 unsigned int flags = 0;
2368 * Copies from kernel address space cannot fail (NFSD is a big user).
2370 if (segment_eq(get_fs(), KERNEL_DS))
2371 flags |= AOP_FLAG_UNINTERRUPTIBLE;
2373 do {
2374 struct page *page;
2375 unsigned long offset; /* Offset into pagecache page */
2376 unsigned long bytes; /* Bytes to write to page */
2377 size_t copied; /* Bytes copied from user */
2378 void *fsdata;
2380 offset = (pos & (PAGE_CACHE_SIZE - 1));
2381 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2382 iov_iter_count(i));
2384 again:
2387 * Bring in the user page that we will copy from _first_.
2388 * Otherwise there's a nasty deadlock on copying from the
2389 * same page as we're writing to, without it being marked
2390 * up-to-date.
2392 * Not only is this an optimisation, but it is also required
2393 * to check that the address is actually valid, when atomic
2394 * usercopies are used, below.
2396 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2397 status = -EFAULT;
2398 break;
2401 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2402 &page, &fsdata);
2403 if (unlikely(status))
2404 break;
2406 if (mapping_writably_mapped(mapping))
2407 flush_dcache_page(page);
2409 pagefault_disable();
2410 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2411 pagefault_enable();
2412 flush_dcache_page(page);
2414 mark_page_accessed(page);
2415 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2416 page, fsdata);
2417 if (unlikely(status < 0))
2418 break;
2419 copied = status;
2421 cond_resched();
2423 iov_iter_advance(i, copied);
2424 if (unlikely(copied == 0)) {
2426 * If we were unable to copy any data at all, we must
2427 * fall back to a single segment length write.
2429 * If we didn't fallback here, we could livelock
2430 * because not all segments in the iov can be copied at
2431 * once without a pagefault.
2433 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2434 iov_iter_single_seg_count(i));
2435 goto again;
2437 pos += copied;
2438 written += copied;
2440 balance_dirty_pages_ratelimited(mapping);
2442 } while (iov_iter_count(i));
2444 return written ? written : status;
2447 ssize_t
2448 generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
2449 unsigned long nr_segs, loff_t pos, loff_t *ppos,
2450 size_t count, ssize_t written)
2452 struct file *file = iocb->ki_filp;
2453 ssize_t status;
2454 struct iov_iter i;
2456 iov_iter_init(&i, iov, nr_segs, count, written);
2457 status = generic_perform_write(file, &i, pos);
2459 if (likely(status >= 0)) {
2460 written += status;
2461 *ppos = pos + status;
2464 return written ? written : status;
2466 EXPORT_SYMBOL(generic_file_buffered_write);
2469 * __generic_file_aio_write - write data to a file
2470 * @iocb: IO state structure (file, offset, etc.)
2471 * @iov: vector with data to write
2472 * @nr_segs: number of segments in the vector
2473 * @ppos: position where to write
2475 * This function does all the work needed for actually writing data to a
2476 * file. It does all basic checks, removes SUID from the file, updates
2477 * modification times and calls proper subroutines depending on whether we
2478 * do direct IO or a standard buffered write.
2480 * It expects i_mutex to be grabbed unless we work on a block device or similar
2481 * object which does not need locking at all.
2483 * This function does *not* take care of syncing data in case of O_SYNC write.
2484 * A caller has to handle it. This is mainly due to the fact that we want to
2485 * avoid syncing under i_mutex.
2487 ssize_t __generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2488 unsigned long nr_segs, loff_t *ppos)
2490 struct file *file = iocb->ki_filp;
2491 struct address_space * mapping = file->f_mapping;
2492 size_t ocount; /* original count */
2493 size_t count; /* after file limit checks */
2494 struct inode *inode = mapping->host;
2495 loff_t pos;
2496 ssize_t written;
2497 ssize_t err;
2499 ocount = 0;
2500 err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
2501 if (err)
2502 return err;
2504 count = ocount;
2505 pos = *ppos;
2507 vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
2509 /* We can write back this queue in page reclaim */
2510 current->backing_dev_info = mapping->backing_dev_info;
2511 written = 0;
2513 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2514 if (err)
2515 goto out;
2517 if (count == 0)
2518 goto out;
2520 err = file_remove_suid(file);
2521 if (err)
2522 goto out;
2524 file_update_time(file);
2526 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2527 if (unlikely(file->f_flags & O_DIRECT)) {
2528 loff_t endbyte;
2529 ssize_t written_buffered;
2531 written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
2532 ppos, count, ocount);
2533 if (written < 0 || written == count)
2534 goto out;
2536 * direct-io write to a hole: fall through to buffered I/O
2537 * for completing the rest of the request.
2539 pos += written;
2540 count -= written;
2541 written_buffered = generic_file_buffered_write(iocb, iov,
2542 nr_segs, pos, ppos, count,
2543 written);
2545 * If generic_file_buffered_write() retuned a synchronous error
2546 * then we want to return the number of bytes which were
2547 * direct-written, or the error code if that was zero. Note
2548 * that this differs from normal direct-io semantics, which
2549 * will return -EFOO even if some bytes were written.
2551 if (written_buffered < 0) {
2552 err = written_buffered;
2553 goto out;
2557 * We need to ensure that the page cache pages are written to
2558 * disk and invalidated to preserve the expected O_DIRECT
2559 * semantics.
2561 endbyte = pos + written_buffered - written - 1;
2562 err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
2563 if (err == 0) {
2564 written = written_buffered;
2565 invalidate_mapping_pages(mapping,
2566 pos >> PAGE_CACHE_SHIFT,
2567 endbyte >> PAGE_CACHE_SHIFT);
2568 } else {
2570 * We don't know how much we wrote, so just return
2571 * the number of bytes which were direct-written
2574 } else {
2575 written = generic_file_buffered_write(iocb, iov, nr_segs,
2576 pos, ppos, count, written);
2578 out:
2579 current->backing_dev_info = NULL;
2580 return written ? written : err;
2582 EXPORT_SYMBOL(__generic_file_aio_write);
2585 * generic_file_aio_write - write data to a file
2586 * @iocb: IO state structure
2587 * @iov: vector with data to write
2588 * @nr_segs: number of segments in the vector
2589 * @pos: position in file where to write
2591 * This is a wrapper around __generic_file_aio_write() to be used by most
2592 * filesystems. It takes care of syncing the file in case of O_SYNC file
2593 * and acquires i_mutex as needed.
2595 ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2596 unsigned long nr_segs, loff_t pos)
2598 struct file *file = iocb->ki_filp;
2599 struct inode *inode = file->f_mapping->host;
2600 struct blk_plug plug;
2601 ssize_t ret;
2603 BUG_ON(iocb->ki_pos != pos);
2605 mutex_lock(&inode->i_mutex);
2606 blk_start_plug(&plug);
2607 ret = __generic_file_aio_write(iocb, iov, nr_segs, &iocb->ki_pos);
2608 mutex_unlock(&inode->i_mutex);
2610 if (ret > 0 || ret == -EIOCBQUEUED) {
2611 ssize_t err;
2613 err = generic_write_sync(file, pos, ret);
2614 if (err < 0 && ret > 0)
2615 ret = err;
2617 blk_finish_plug(&plug);
2618 return ret;
2620 EXPORT_SYMBOL(generic_file_aio_write);
2623 * try_to_release_page() - release old fs-specific metadata on a page
2625 * @page: the page which the kernel is trying to free
2626 * @gfp_mask: memory allocation flags (and I/O mode)
2628 * The address_space is to try to release any data against the page
2629 * (presumably at page->private). If the release was successful, return `1'.
2630 * Otherwise return zero.
2632 * This may also be called if PG_fscache is set on a page, indicating that the
2633 * page is known to the local caching routines.
2635 * The @gfp_mask argument specifies whether I/O may be performed to release
2636 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
2639 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2641 struct address_space * const mapping = page->mapping;
2643 BUG_ON(!PageLocked(page));
2644 if (PageWriteback(page))
2645 return 0;
2647 if (mapping && mapping->a_ops->releasepage)
2648 return mapping->a_ops->releasepage(page, gfp_mask);
2649 return try_to_free_buffers(page);
2652 EXPORT_SYMBOL(try_to_release_page);