MIPS: Octeon: Add octeon_get_io_clock_rate() for cn63xx
[linux-2.6/linux-mips.git] / fs / ocfs2 / alloc.c
blob592fae5007d1245baade87453ce731121aa6efe5
1 /* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
4 * alloc.c
6 * Extent allocs and frees
8 * Copyright (C) 2002, 2004 Oracle. All rights reserved.
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public
12 * License as published by the Free Software Foundation; either
13 * version 2 of the License, or (at your option) any later version.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
20 * You should have received a copy of the GNU General Public
21 * License along with this program; if not, write to the
22 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23 * Boston, MA 021110-1307, USA.
26 #include <linux/fs.h>
27 #include <linux/types.h>
28 #include <linux/slab.h>
29 #include <linux/highmem.h>
30 #include <linux/swap.h>
31 #include <linux/quotaops.h>
33 #define MLOG_MASK_PREFIX ML_DISK_ALLOC
34 #include <cluster/masklog.h>
36 #include "ocfs2.h"
38 #include "alloc.h"
39 #include "aops.h"
40 #include "blockcheck.h"
41 #include "dlmglue.h"
42 #include "extent_map.h"
43 #include "inode.h"
44 #include "journal.h"
45 #include "localalloc.h"
46 #include "suballoc.h"
47 #include "sysfile.h"
48 #include "file.h"
49 #include "super.h"
50 #include "uptodate.h"
51 #include "xattr.h"
52 #include "refcounttree.h"
54 #include "buffer_head_io.h"
56 enum ocfs2_contig_type {
57 CONTIG_NONE = 0,
58 CONTIG_LEFT,
59 CONTIG_RIGHT,
60 CONTIG_LEFTRIGHT,
63 static enum ocfs2_contig_type
64 ocfs2_extent_rec_contig(struct super_block *sb,
65 struct ocfs2_extent_rec *ext,
66 struct ocfs2_extent_rec *insert_rec);
68 * Operations for a specific extent tree type.
70 * To implement an on-disk btree (extent tree) type in ocfs2, add
71 * an ocfs2_extent_tree_operations structure and the matching
72 * ocfs2_init_<thingy>_extent_tree() function. That's pretty much it
73 * for the allocation portion of the extent tree.
75 struct ocfs2_extent_tree_operations {
77 * last_eb_blk is the block number of the right most leaf extent
78 * block. Most on-disk structures containing an extent tree store
79 * this value for fast access. The ->eo_set_last_eb_blk() and
80 * ->eo_get_last_eb_blk() operations access this value. They are
81 * both required.
83 void (*eo_set_last_eb_blk)(struct ocfs2_extent_tree *et,
84 u64 blkno);
85 u64 (*eo_get_last_eb_blk)(struct ocfs2_extent_tree *et);
88 * The on-disk structure usually keeps track of how many total
89 * clusters are stored in this extent tree. This function updates
90 * that value. new_clusters is the delta, and must be
91 * added to the total. Required.
93 void (*eo_update_clusters)(struct ocfs2_extent_tree *et,
94 u32 new_clusters);
97 * If this extent tree is supported by an extent map, insert
98 * a record into the map.
100 void (*eo_extent_map_insert)(struct ocfs2_extent_tree *et,
101 struct ocfs2_extent_rec *rec);
104 * If this extent tree is supported by an extent map, truncate the
105 * map to clusters,
107 void (*eo_extent_map_truncate)(struct ocfs2_extent_tree *et,
108 u32 clusters);
111 * If ->eo_insert_check() exists, it is called before rec is
112 * inserted into the extent tree. It is optional.
114 int (*eo_insert_check)(struct ocfs2_extent_tree *et,
115 struct ocfs2_extent_rec *rec);
116 int (*eo_sanity_check)(struct ocfs2_extent_tree *et);
119 * --------------------------------------------------------------
120 * The remaining are internal to ocfs2_extent_tree and don't have
121 * accessor functions
125 * ->eo_fill_root_el() takes et->et_object and sets et->et_root_el.
126 * It is required.
128 void (*eo_fill_root_el)(struct ocfs2_extent_tree *et);
131 * ->eo_fill_max_leaf_clusters sets et->et_max_leaf_clusters if
132 * it exists. If it does not, et->et_max_leaf_clusters is set
133 * to 0 (unlimited). Optional.
135 void (*eo_fill_max_leaf_clusters)(struct ocfs2_extent_tree *et);
138 * ->eo_extent_contig test whether the 2 ocfs2_extent_rec
139 * are contiguous or not. Optional. Don't need to set it if use
140 * ocfs2_extent_rec as the tree leaf.
142 enum ocfs2_contig_type
143 (*eo_extent_contig)(struct ocfs2_extent_tree *et,
144 struct ocfs2_extent_rec *ext,
145 struct ocfs2_extent_rec *insert_rec);
150 * Pre-declare ocfs2_dinode_et_ops so we can use it as a sanity check
151 * in the methods.
153 static u64 ocfs2_dinode_get_last_eb_blk(struct ocfs2_extent_tree *et);
154 static void ocfs2_dinode_set_last_eb_blk(struct ocfs2_extent_tree *et,
155 u64 blkno);
156 static void ocfs2_dinode_update_clusters(struct ocfs2_extent_tree *et,
157 u32 clusters);
158 static void ocfs2_dinode_extent_map_insert(struct ocfs2_extent_tree *et,
159 struct ocfs2_extent_rec *rec);
160 static void ocfs2_dinode_extent_map_truncate(struct ocfs2_extent_tree *et,
161 u32 clusters);
162 static int ocfs2_dinode_insert_check(struct ocfs2_extent_tree *et,
163 struct ocfs2_extent_rec *rec);
164 static int ocfs2_dinode_sanity_check(struct ocfs2_extent_tree *et);
165 static void ocfs2_dinode_fill_root_el(struct ocfs2_extent_tree *et);
166 static struct ocfs2_extent_tree_operations ocfs2_dinode_et_ops = {
167 .eo_set_last_eb_blk = ocfs2_dinode_set_last_eb_blk,
168 .eo_get_last_eb_blk = ocfs2_dinode_get_last_eb_blk,
169 .eo_update_clusters = ocfs2_dinode_update_clusters,
170 .eo_extent_map_insert = ocfs2_dinode_extent_map_insert,
171 .eo_extent_map_truncate = ocfs2_dinode_extent_map_truncate,
172 .eo_insert_check = ocfs2_dinode_insert_check,
173 .eo_sanity_check = ocfs2_dinode_sanity_check,
174 .eo_fill_root_el = ocfs2_dinode_fill_root_el,
177 static void ocfs2_dinode_set_last_eb_blk(struct ocfs2_extent_tree *et,
178 u64 blkno)
180 struct ocfs2_dinode *di = et->et_object;
182 BUG_ON(et->et_ops != &ocfs2_dinode_et_ops);
183 di->i_last_eb_blk = cpu_to_le64(blkno);
186 static u64 ocfs2_dinode_get_last_eb_blk(struct ocfs2_extent_tree *et)
188 struct ocfs2_dinode *di = et->et_object;
190 BUG_ON(et->et_ops != &ocfs2_dinode_et_ops);
191 return le64_to_cpu(di->i_last_eb_blk);
194 static void ocfs2_dinode_update_clusters(struct ocfs2_extent_tree *et,
195 u32 clusters)
197 struct ocfs2_inode_info *oi = cache_info_to_inode(et->et_ci);
198 struct ocfs2_dinode *di = et->et_object;
200 le32_add_cpu(&di->i_clusters, clusters);
201 spin_lock(&oi->ip_lock);
202 oi->ip_clusters = le32_to_cpu(di->i_clusters);
203 spin_unlock(&oi->ip_lock);
206 static void ocfs2_dinode_extent_map_insert(struct ocfs2_extent_tree *et,
207 struct ocfs2_extent_rec *rec)
209 struct inode *inode = &cache_info_to_inode(et->et_ci)->vfs_inode;
211 ocfs2_extent_map_insert_rec(inode, rec);
214 static void ocfs2_dinode_extent_map_truncate(struct ocfs2_extent_tree *et,
215 u32 clusters)
217 struct inode *inode = &cache_info_to_inode(et->et_ci)->vfs_inode;
219 ocfs2_extent_map_trunc(inode, clusters);
222 static int ocfs2_dinode_insert_check(struct ocfs2_extent_tree *et,
223 struct ocfs2_extent_rec *rec)
225 struct ocfs2_inode_info *oi = cache_info_to_inode(et->et_ci);
226 struct ocfs2_super *osb = OCFS2_SB(oi->vfs_inode.i_sb);
228 BUG_ON(oi->ip_dyn_features & OCFS2_INLINE_DATA_FL);
229 mlog_bug_on_msg(!ocfs2_sparse_alloc(osb) &&
230 (oi->ip_clusters != le32_to_cpu(rec->e_cpos)),
231 "Device %s, asking for sparse allocation: inode %llu, "
232 "cpos %u, clusters %u\n",
233 osb->dev_str,
234 (unsigned long long)oi->ip_blkno,
235 rec->e_cpos, oi->ip_clusters);
237 return 0;
240 static int ocfs2_dinode_sanity_check(struct ocfs2_extent_tree *et)
242 struct ocfs2_dinode *di = et->et_object;
244 BUG_ON(et->et_ops != &ocfs2_dinode_et_ops);
245 BUG_ON(!OCFS2_IS_VALID_DINODE(di));
247 return 0;
250 static void ocfs2_dinode_fill_root_el(struct ocfs2_extent_tree *et)
252 struct ocfs2_dinode *di = et->et_object;
254 et->et_root_el = &di->id2.i_list;
258 static void ocfs2_xattr_value_fill_root_el(struct ocfs2_extent_tree *et)
260 struct ocfs2_xattr_value_buf *vb = et->et_object;
262 et->et_root_el = &vb->vb_xv->xr_list;
265 static void ocfs2_xattr_value_set_last_eb_blk(struct ocfs2_extent_tree *et,
266 u64 blkno)
268 struct ocfs2_xattr_value_buf *vb = et->et_object;
270 vb->vb_xv->xr_last_eb_blk = cpu_to_le64(blkno);
273 static u64 ocfs2_xattr_value_get_last_eb_blk(struct ocfs2_extent_tree *et)
275 struct ocfs2_xattr_value_buf *vb = et->et_object;
277 return le64_to_cpu(vb->vb_xv->xr_last_eb_blk);
280 static void ocfs2_xattr_value_update_clusters(struct ocfs2_extent_tree *et,
281 u32 clusters)
283 struct ocfs2_xattr_value_buf *vb = et->et_object;
285 le32_add_cpu(&vb->vb_xv->xr_clusters, clusters);
288 static struct ocfs2_extent_tree_operations ocfs2_xattr_value_et_ops = {
289 .eo_set_last_eb_blk = ocfs2_xattr_value_set_last_eb_blk,
290 .eo_get_last_eb_blk = ocfs2_xattr_value_get_last_eb_blk,
291 .eo_update_clusters = ocfs2_xattr_value_update_clusters,
292 .eo_fill_root_el = ocfs2_xattr_value_fill_root_el,
295 static void ocfs2_xattr_tree_fill_root_el(struct ocfs2_extent_tree *et)
297 struct ocfs2_xattr_block *xb = et->et_object;
299 et->et_root_el = &xb->xb_attrs.xb_root.xt_list;
302 static void ocfs2_xattr_tree_fill_max_leaf_clusters(struct ocfs2_extent_tree *et)
304 struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci);
305 et->et_max_leaf_clusters =
306 ocfs2_clusters_for_bytes(sb, OCFS2_MAX_XATTR_TREE_LEAF_SIZE);
309 static void ocfs2_xattr_tree_set_last_eb_blk(struct ocfs2_extent_tree *et,
310 u64 blkno)
312 struct ocfs2_xattr_block *xb = et->et_object;
313 struct ocfs2_xattr_tree_root *xt = &xb->xb_attrs.xb_root;
315 xt->xt_last_eb_blk = cpu_to_le64(blkno);
318 static u64 ocfs2_xattr_tree_get_last_eb_blk(struct ocfs2_extent_tree *et)
320 struct ocfs2_xattr_block *xb = et->et_object;
321 struct ocfs2_xattr_tree_root *xt = &xb->xb_attrs.xb_root;
323 return le64_to_cpu(xt->xt_last_eb_blk);
326 static void ocfs2_xattr_tree_update_clusters(struct ocfs2_extent_tree *et,
327 u32 clusters)
329 struct ocfs2_xattr_block *xb = et->et_object;
331 le32_add_cpu(&xb->xb_attrs.xb_root.xt_clusters, clusters);
334 static struct ocfs2_extent_tree_operations ocfs2_xattr_tree_et_ops = {
335 .eo_set_last_eb_blk = ocfs2_xattr_tree_set_last_eb_blk,
336 .eo_get_last_eb_blk = ocfs2_xattr_tree_get_last_eb_blk,
337 .eo_update_clusters = ocfs2_xattr_tree_update_clusters,
338 .eo_fill_root_el = ocfs2_xattr_tree_fill_root_el,
339 .eo_fill_max_leaf_clusters = ocfs2_xattr_tree_fill_max_leaf_clusters,
342 static void ocfs2_dx_root_set_last_eb_blk(struct ocfs2_extent_tree *et,
343 u64 blkno)
345 struct ocfs2_dx_root_block *dx_root = et->et_object;
347 dx_root->dr_last_eb_blk = cpu_to_le64(blkno);
350 static u64 ocfs2_dx_root_get_last_eb_blk(struct ocfs2_extent_tree *et)
352 struct ocfs2_dx_root_block *dx_root = et->et_object;
354 return le64_to_cpu(dx_root->dr_last_eb_blk);
357 static void ocfs2_dx_root_update_clusters(struct ocfs2_extent_tree *et,
358 u32 clusters)
360 struct ocfs2_dx_root_block *dx_root = et->et_object;
362 le32_add_cpu(&dx_root->dr_clusters, clusters);
365 static int ocfs2_dx_root_sanity_check(struct ocfs2_extent_tree *et)
367 struct ocfs2_dx_root_block *dx_root = et->et_object;
369 BUG_ON(!OCFS2_IS_VALID_DX_ROOT(dx_root));
371 return 0;
374 static void ocfs2_dx_root_fill_root_el(struct ocfs2_extent_tree *et)
376 struct ocfs2_dx_root_block *dx_root = et->et_object;
378 et->et_root_el = &dx_root->dr_list;
381 static struct ocfs2_extent_tree_operations ocfs2_dx_root_et_ops = {
382 .eo_set_last_eb_blk = ocfs2_dx_root_set_last_eb_blk,
383 .eo_get_last_eb_blk = ocfs2_dx_root_get_last_eb_blk,
384 .eo_update_clusters = ocfs2_dx_root_update_clusters,
385 .eo_sanity_check = ocfs2_dx_root_sanity_check,
386 .eo_fill_root_el = ocfs2_dx_root_fill_root_el,
389 static void ocfs2_refcount_tree_fill_root_el(struct ocfs2_extent_tree *et)
391 struct ocfs2_refcount_block *rb = et->et_object;
393 et->et_root_el = &rb->rf_list;
396 static void ocfs2_refcount_tree_set_last_eb_blk(struct ocfs2_extent_tree *et,
397 u64 blkno)
399 struct ocfs2_refcount_block *rb = et->et_object;
401 rb->rf_last_eb_blk = cpu_to_le64(blkno);
404 static u64 ocfs2_refcount_tree_get_last_eb_blk(struct ocfs2_extent_tree *et)
406 struct ocfs2_refcount_block *rb = et->et_object;
408 return le64_to_cpu(rb->rf_last_eb_blk);
411 static void ocfs2_refcount_tree_update_clusters(struct ocfs2_extent_tree *et,
412 u32 clusters)
414 struct ocfs2_refcount_block *rb = et->et_object;
416 le32_add_cpu(&rb->rf_clusters, clusters);
419 static enum ocfs2_contig_type
420 ocfs2_refcount_tree_extent_contig(struct ocfs2_extent_tree *et,
421 struct ocfs2_extent_rec *ext,
422 struct ocfs2_extent_rec *insert_rec)
424 return CONTIG_NONE;
427 static struct ocfs2_extent_tree_operations ocfs2_refcount_tree_et_ops = {
428 .eo_set_last_eb_blk = ocfs2_refcount_tree_set_last_eb_blk,
429 .eo_get_last_eb_blk = ocfs2_refcount_tree_get_last_eb_blk,
430 .eo_update_clusters = ocfs2_refcount_tree_update_clusters,
431 .eo_fill_root_el = ocfs2_refcount_tree_fill_root_el,
432 .eo_extent_contig = ocfs2_refcount_tree_extent_contig,
435 static void __ocfs2_init_extent_tree(struct ocfs2_extent_tree *et,
436 struct ocfs2_caching_info *ci,
437 struct buffer_head *bh,
438 ocfs2_journal_access_func access,
439 void *obj,
440 struct ocfs2_extent_tree_operations *ops)
442 et->et_ops = ops;
443 et->et_root_bh = bh;
444 et->et_ci = ci;
445 et->et_root_journal_access = access;
446 if (!obj)
447 obj = (void *)bh->b_data;
448 et->et_object = obj;
450 et->et_ops->eo_fill_root_el(et);
451 if (!et->et_ops->eo_fill_max_leaf_clusters)
452 et->et_max_leaf_clusters = 0;
453 else
454 et->et_ops->eo_fill_max_leaf_clusters(et);
457 void ocfs2_init_dinode_extent_tree(struct ocfs2_extent_tree *et,
458 struct ocfs2_caching_info *ci,
459 struct buffer_head *bh)
461 __ocfs2_init_extent_tree(et, ci, bh, ocfs2_journal_access_di,
462 NULL, &ocfs2_dinode_et_ops);
465 void ocfs2_init_xattr_tree_extent_tree(struct ocfs2_extent_tree *et,
466 struct ocfs2_caching_info *ci,
467 struct buffer_head *bh)
469 __ocfs2_init_extent_tree(et, ci, bh, ocfs2_journal_access_xb,
470 NULL, &ocfs2_xattr_tree_et_ops);
473 void ocfs2_init_xattr_value_extent_tree(struct ocfs2_extent_tree *et,
474 struct ocfs2_caching_info *ci,
475 struct ocfs2_xattr_value_buf *vb)
477 __ocfs2_init_extent_tree(et, ci, vb->vb_bh, vb->vb_access, vb,
478 &ocfs2_xattr_value_et_ops);
481 void ocfs2_init_dx_root_extent_tree(struct ocfs2_extent_tree *et,
482 struct ocfs2_caching_info *ci,
483 struct buffer_head *bh)
485 __ocfs2_init_extent_tree(et, ci, bh, ocfs2_journal_access_dr,
486 NULL, &ocfs2_dx_root_et_ops);
489 void ocfs2_init_refcount_extent_tree(struct ocfs2_extent_tree *et,
490 struct ocfs2_caching_info *ci,
491 struct buffer_head *bh)
493 __ocfs2_init_extent_tree(et, ci, bh, ocfs2_journal_access_rb,
494 NULL, &ocfs2_refcount_tree_et_ops);
497 static inline void ocfs2_et_set_last_eb_blk(struct ocfs2_extent_tree *et,
498 u64 new_last_eb_blk)
500 et->et_ops->eo_set_last_eb_blk(et, new_last_eb_blk);
503 static inline u64 ocfs2_et_get_last_eb_blk(struct ocfs2_extent_tree *et)
505 return et->et_ops->eo_get_last_eb_blk(et);
508 static inline void ocfs2_et_update_clusters(struct ocfs2_extent_tree *et,
509 u32 clusters)
511 et->et_ops->eo_update_clusters(et, clusters);
514 static inline void ocfs2_et_extent_map_insert(struct ocfs2_extent_tree *et,
515 struct ocfs2_extent_rec *rec)
517 if (et->et_ops->eo_extent_map_insert)
518 et->et_ops->eo_extent_map_insert(et, rec);
521 static inline void ocfs2_et_extent_map_truncate(struct ocfs2_extent_tree *et,
522 u32 clusters)
524 if (et->et_ops->eo_extent_map_truncate)
525 et->et_ops->eo_extent_map_truncate(et, clusters);
528 static inline int ocfs2_et_root_journal_access(handle_t *handle,
529 struct ocfs2_extent_tree *et,
530 int type)
532 return et->et_root_journal_access(handle, et->et_ci, et->et_root_bh,
533 type);
536 static inline enum ocfs2_contig_type
537 ocfs2_et_extent_contig(struct ocfs2_extent_tree *et,
538 struct ocfs2_extent_rec *rec,
539 struct ocfs2_extent_rec *insert_rec)
541 if (et->et_ops->eo_extent_contig)
542 return et->et_ops->eo_extent_contig(et, rec, insert_rec);
544 return ocfs2_extent_rec_contig(
545 ocfs2_metadata_cache_get_super(et->et_ci),
546 rec, insert_rec);
549 static inline int ocfs2_et_insert_check(struct ocfs2_extent_tree *et,
550 struct ocfs2_extent_rec *rec)
552 int ret = 0;
554 if (et->et_ops->eo_insert_check)
555 ret = et->et_ops->eo_insert_check(et, rec);
556 return ret;
559 static inline int ocfs2_et_sanity_check(struct ocfs2_extent_tree *et)
561 int ret = 0;
563 if (et->et_ops->eo_sanity_check)
564 ret = et->et_ops->eo_sanity_check(et);
565 return ret;
568 static void ocfs2_free_truncate_context(struct ocfs2_truncate_context *tc);
569 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt,
570 struct ocfs2_extent_block *eb);
571 static void ocfs2_adjust_rightmost_records(handle_t *handle,
572 struct ocfs2_extent_tree *et,
573 struct ocfs2_path *path,
574 struct ocfs2_extent_rec *insert_rec);
576 * Reset the actual path elements so that we can re-use the structure
577 * to build another path. Generally, this involves freeing the buffer
578 * heads.
580 void ocfs2_reinit_path(struct ocfs2_path *path, int keep_root)
582 int i, start = 0, depth = 0;
583 struct ocfs2_path_item *node;
585 if (keep_root)
586 start = 1;
588 for(i = start; i < path_num_items(path); i++) {
589 node = &path->p_node[i];
591 brelse(node->bh);
592 node->bh = NULL;
593 node->el = NULL;
597 * Tree depth may change during truncate, or insert. If we're
598 * keeping the root extent list, then make sure that our path
599 * structure reflects the proper depth.
601 if (keep_root)
602 depth = le16_to_cpu(path_root_el(path)->l_tree_depth);
603 else
604 path_root_access(path) = NULL;
606 path->p_tree_depth = depth;
609 void ocfs2_free_path(struct ocfs2_path *path)
611 if (path) {
612 ocfs2_reinit_path(path, 0);
613 kfree(path);
618 * All the elements of src into dest. After this call, src could be freed
619 * without affecting dest.
621 * Both paths should have the same root. Any non-root elements of dest
622 * will be freed.
624 static void ocfs2_cp_path(struct ocfs2_path *dest, struct ocfs2_path *src)
626 int i;
628 BUG_ON(path_root_bh(dest) != path_root_bh(src));
629 BUG_ON(path_root_el(dest) != path_root_el(src));
630 BUG_ON(path_root_access(dest) != path_root_access(src));
632 ocfs2_reinit_path(dest, 1);
634 for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) {
635 dest->p_node[i].bh = src->p_node[i].bh;
636 dest->p_node[i].el = src->p_node[i].el;
638 if (dest->p_node[i].bh)
639 get_bh(dest->p_node[i].bh);
644 * Make the *dest path the same as src and re-initialize src path to
645 * have a root only.
647 static void ocfs2_mv_path(struct ocfs2_path *dest, struct ocfs2_path *src)
649 int i;
651 BUG_ON(path_root_bh(dest) != path_root_bh(src));
652 BUG_ON(path_root_access(dest) != path_root_access(src));
654 for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) {
655 brelse(dest->p_node[i].bh);
657 dest->p_node[i].bh = src->p_node[i].bh;
658 dest->p_node[i].el = src->p_node[i].el;
660 src->p_node[i].bh = NULL;
661 src->p_node[i].el = NULL;
666 * Insert an extent block at given index.
668 * This will not take an additional reference on eb_bh.
670 static inline void ocfs2_path_insert_eb(struct ocfs2_path *path, int index,
671 struct buffer_head *eb_bh)
673 struct ocfs2_extent_block *eb = (struct ocfs2_extent_block *)eb_bh->b_data;
676 * Right now, no root bh is an extent block, so this helps
677 * catch code errors with dinode trees. The assertion can be
678 * safely removed if we ever need to insert extent block
679 * structures at the root.
681 BUG_ON(index == 0);
683 path->p_node[index].bh = eb_bh;
684 path->p_node[index].el = &eb->h_list;
687 static struct ocfs2_path *ocfs2_new_path(struct buffer_head *root_bh,
688 struct ocfs2_extent_list *root_el,
689 ocfs2_journal_access_func access)
691 struct ocfs2_path *path;
693 BUG_ON(le16_to_cpu(root_el->l_tree_depth) >= OCFS2_MAX_PATH_DEPTH);
695 path = kzalloc(sizeof(*path), GFP_NOFS);
696 if (path) {
697 path->p_tree_depth = le16_to_cpu(root_el->l_tree_depth);
698 get_bh(root_bh);
699 path_root_bh(path) = root_bh;
700 path_root_el(path) = root_el;
701 path_root_access(path) = access;
704 return path;
707 struct ocfs2_path *ocfs2_new_path_from_path(struct ocfs2_path *path)
709 return ocfs2_new_path(path_root_bh(path), path_root_el(path),
710 path_root_access(path));
713 struct ocfs2_path *ocfs2_new_path_from_et(struct ocfs2_extent_tree *et)
715 return ocfs2_new_path(et->et_root_bh, et->et_root_el,
716 et->et_root_journal_access);
720 * Journal the buffer at depth idx. All idx>0 are extent_blocks,
721 * otherwise it's the root_access function.
723 * I don't like the way this function's name looks next to
724 * ocfs2_journal_access_path(), but I don't have a better one.
726 int ocfs2_path_bh_journal_access(handle_t *handle,
727 struct ocfs2_caching_info *ci,
728 struct ocfs2_path *path,
729 int idx)
731 ocfs2_journal_access_func access = path_root_access(path);
733 if (!access)
734 access = ocfs2_journal_access;
736 if (idx)
737 access = ocfs2_journal_access_eb;
739 return access(handle, ci, path->p_node[idx].bh,
740 OCFS2_JOURNAL_ACCESS_WRITE);
744 * Convenience function to journal all components in a path.
746 int ocfs2_journal_access_path(struct ocfs2_caching_info *ci,
747 handle_t *handle,
748 struct ocfs2_path *path)
750 int i, ret = 0;
752 if (!path)
753 goto out;
755 for(i = 0; i < path_num_items(path); i++) {
756 ret = ocfs2_path_bh_journal_access(handle, ci, path, i);
757 if (ret < 0) {
758 mlog_errno(ret);
759 goto out;
763 out:
764 return ret;
768 * Return the index of the extent record which contains cluster #v_cluster.
769 * -1 is returned if it was not found.
771 * Should work fine on interior and exterior nodes.
773 int ocfs2_search_extent_list(struct ocfs2_extent_list *el, u32 v_cluster)
775 int ret = -1;
776 int i;
777 struct ocfs2_extent_rec *rec;
778 u32 rec_end, rec_start, clusters;
780 for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) {
781 rec = &el->l_recs[i];
783 rec_start = le32_to_cpu(rec->e_cpos);
784 clusters = ocfs2_rec_clusters(el, rec);
786 rec_end = rec_start + clusters;
788 if (v_cluster >= rec_start && v_cluster < rec_end) {
789 ret = i;
790 break;
794 return ret;
798 * NOTE: ocfs2_block_extent_contig(), ocfs2_extents_adjacent() and
799 * ocfs2_extent_rec_contig only work properly against leaf nodes!
801 static int ocfs2_block_extent_contig(struct super_block *sb,
802 struct ocfs2_extent_rec *ext,
803 u64 blkno)
805 u64 blk_end = le64_to_cpu(ext->e_blkno);
807 blk_end += ocfs2_clusters_to_blocks(sb,
808 le16_to_cpu(ext->e_leaf_clusters));
810 return blkno == blk_end;
813 static int ocfs2_extents_adjacent(struct ocfs2_extent_rec *left,
814 struct ocfs2_extent_rec *right)
816 u32 left_range;
818 left_range = le32_to_cpu(left->e_cpos) +
819 le16_to_cpu(left->e_leaf_clusters);
821 return (left_range == le32_to_cpu(right->e_cpos));
824 static enum ocfs2_contig_type
825 ocfs2_extent_rec_contig(struct super_block *sb,
826 struct ocfs2_extent_rec *ext,
827 struct ocfs2_extent_rec *insert_rec)
829 u64 blkno = le64_to_cpu(insert_rec->e_blkno);
832 * Refuse to coalesce extent records with different flag
833 * fields - we don't want to mix unwritten extents with user
834 * data.
836 if (ext->e_flags != insert_rec->e_flags)
837 return CONTIG_NONE;
839 if (ocfs2_extents_adjacent(ext, insert_rec) &&
840 ocfs2_block_extent_contig(sb, ext, blkno))
841 return CONTIG_RIGHT;
843 blkno = le64_to_cpu(ext->e_blkno);
844 if (ocfs2_extents_adjacent(insert_rec, ext) &&
845 ocfs2_block_extent_contig(sb, insert_rec, blkno))
846 return CONTIG_LEFT;
848 return CONTIG_NONE;
852 * NOTE: We can have pretty much any combination of contiguousness and
853 * appending.
855 * The usefulness of APPEND_TAIL is more in that it lets us know that
856 * we'll have to update the path to that leaf.
858 enum ocfs2_append_type {
859 APPEND_NONE = 0,
860 APPEND_TAIL,
863 enum ocfs2_split_type {
864 SPLIT_NONE = 0,
865 SPLIT_LEFT,
866 SPLIT_RIGHT,
869 struct ocfs2_insert_type {
870 enum ocfs2_split_type ins_split;
871 enum ocfs2_append_type ins_appending;
872 enum ocfs2_contig_type ins_contig;
873 int ins_contig_index;
874 int ins_tree_depth;
877 struct ocfs2_merge_ctxt {
878 enum ocfs2_contig_type c_contig_type;
879 int c_has_empty_extent;
880 int c_split_covers_rec;
883 static int ocfs2_validate_extent_block(struct super_block *sb,
884 struct buffer_head *bh)
886 int rc;
887 struct ocfs2_extent_block *eb =
888 (struct ocfs2_extent_block *)bh->b_data;
890 mlog(0, "Validating extent block %llu\n",
891 (unsigned long long)bh->b_blocknr);
893 BUG_ON(!buffer_uptodate(bh));
896 * If the ecc fails, we return the error but otherwise
897 * leave the filesystem running. We know any error is
898 * local to this block.
900 rc = ocfs2_validate_meta_ecc(sb, bh->b_data, &eb->h_check);
901 if (rc) {
902 mlog(ML_ERROR, "Checksum failed for extent block %llu\n",
903 (unsigned long long)bh->b_blocknr);
904 return rc;
908 * Errors after here are fatal.
911 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
912 ocfs2_error(sb,
913 "Extent block #%llu has bad signature %.*s",
914 (unsigned long long)bh->b_blocknr, 7,
915 eb->h_signature);
916 return -EINVAL;
919 if (le64_to_cpu(eb->h_blkno) != bh->b_blocknr) {
920 ocfs2_error(sb,
921 "Extent block #%llu has an invalid h_blkno "
922 "of %llu",
923 (unsigned long long)bh->b_blocknr,
924 (unsigned long long)le64_to_cpu(eb->h_blkno));
925 return -EINVAL;
928 if (le32_to_cpu(eb->h_fs_generation) != OCFS2_SB(sb)->fs_generation) {
929 ocfs2_error(sb,
930 "Extent block #%llu has an invalid "
931 "h_fs_generation of #%u",
932 (unsigned long long)bh->b_blocknr,
933 le32_to_cpu(eb->h_fs_generation));
934 return -EINVAL;
937 return 0;
940 int ocfs2_read_extent_block(struct ocfs2_caching_info *ci, u64 eb_blkno,
941 struct buffer_head **bh)
943 int rc;
944 struct buffer_head *tmp = *bh;
946 rc = ocfs2_read_block(ci, eb_blkno, &tmp,
947 ocfs2_validate_extent_block);
949 /* If ocfs2_read_block() got us a new bh, pass it up. */
950 if (!rc && !*bh)
951 *bh = tmp;
953 return rc;
958 * How many free extents have we got before we need more meta data?
960 int ocfs2_num_free_extents(struct ocfs2_super *osb,
961 struct ocfs2_extent_tree *et)
963 int retval;
964 struct ocfs2_extent_list *el = NULL;
965 struct ocfs2_extent_block *eb;
966 struct buffer_head *eb_bh = NULL;
967 u64 last_eb_blk = 0;
969 mlog_entry_void();
971 el = et->et_root_el;
972 last_eb_blk = ocfs2_et_get_last_eb_blk(et);
974 if (last_eb_blk) {
975 retval = ocfs2_read_extent_block(et->et_ci, last_eb_blk,
976 &eb_bh);
977 if (retval < 0) {
978 mlog_errno(retval);
979 goto bail;
981 eb = (struct ocfs2_extent_block *) eb_bh->b_data;
982 el = &eb->h_list;
985 BUG_ON(el->l_tree_depth != 0);
987 retval = le16_to_cpu(el->l_count) - le16_to_cpu(el->l_next_free_rec);
988 bail:
989 brelse(eb_bh);
991 mlog_exit(retval);
992 return retval;
995 /* expects array to already be allocated
997 * sets h_signature, h_blkno, h_suballoc_bit, h_suballoc_slot, and
998 * l_count for you
1000 static int ocfs2_create_new_meta_bhs(handle_t *handle,
1001 struct ocfs2_extent_tree *et,
1002 int wanted,
1003 struct ocfs2_alloc_context *meta_ac,
1004 struct buffer_head *bhs[])
1006 int count, status, i;
1007 u16 suballoc_bit_start;
1008 u32 num_got;
1009 u64 suballoc_loc, first_blkno;
1010 struct ocfs2_super *osb =
1011 OCFS2_SB(ocfs2_metadata_cache_get_super(et->et_ci));
1012 struct ocfs2_extent_block *eb;
1014 mlog_entry_void();
1016 count = 0;
1017 while (count < wanted) {
1018 status = ocfs2_claim_metadata(handle,
1019 meta_ac,
1020 wanted - count,
1021 &suballoc_loc,
1022 &suballoc_bit_start,
1023 &num_got,
1024 &first_blkno);
1025 if (status < 0) {
1026 mlog_errno(status);
1027 goto bail;
1030 for(i = count; i < (num_got + count); i++) {
1031 bhs[i] = sb_getblk(osb->sb, first_blkno);
1032 if (bhs[i] == NULL) {
1033 status = -EIO;
1034 mlog_errno(status);
1035 goto bail;
1037 ocfs2_set_new_buffer_uptodate(et->et_ci, bhs[i]);
1039 status = ocfs2_journal_access_eb(handle, et->et_ci,
1040 bhs[i],
1041 OCFS2_JOURNAL_ACCESS_CREATE);
1042 if (status < 0) {
1043 mlog_errno(status);
1044 goto bail;
1047 memset(bhs[i]->b_data, 0, osb->sb->s_blocksize);
1048 eb = (struct ocfs2_extent_block *) bhs[i]->b_data;
1049 /* Ok, setup the minimal stuff here. */
1050 strcpy(eb->h_signature, OCFS2_EXTENT_BLOCK_SIGNATURE);
1051 eb->h_blkno = cpu_to_le64(first_blkno);
1052 eb->h_fs_generation = cpu_to_le32(osb->fs_generation);
1053 eb->h_suballoc_slot =
1054 cpu_to_le16(meta_ac->ac_alloc_slot);
1055 eb->h_suballoc_loc = cpu_to_le64(suballoc_loc);
1056 eb->h_suballoc_bit = cpu_to_le16(suballoc_bit_start);
1057 eb->h_list.l_count =
1058 cpu_to_le16(ocfs2_extent_recs_per_eb(osb->sb));
1060 suballoc_bit_start++;
1061 first_blkno++;
1063 /* We'll also be dirtied by the caller, so
1064 * this isn't absolutely necessary. */
1065 ocfs2_journal_dirty(handle, bhs[i]);
1068 count += num_got;
1071 status = 0;
1072 bail:
1073 if (status < 0) {
1074 for(i = 0; i < wanted; i++) {
1075 brelse(bhs[i]);
1076 bhs[i] = NULL;
1079 mlog_exit(status);
1080 return status;
1084 * Helper function for ocfs2_add_branch() and ocfs2_shift_tree_depth().
1086 * Returns the sum of the rightmost extent rec logical offset and
1087 * cluster count.
1089 * ocfs2_add_branch() uses this to determine what logical cluster
1090 * value should be populated into the leftmost new branch records.
1092 * ocfs2_shift_tree_depth() uses this to determine the # clusters
1093 * value for the new topmost tree record.
1095 static inline u32 ocfs2_sum_rightmost_rec(struct ocfs2_extent_list *el)
1097 int i;
1099 i = le16_to_cpu(el->l_next_free_rec) - 1;
1101 return le32_to_cpu(el->l_recs[i].e_cpos) +
1102 ocfs2_rec_clusters(el, &el->l_recs[i]);
1106 * Change range of the branches in the right most path according to the leaf
1107 * extent block's rightmost record.
1109 static int ocfs2_adjust_rightmost_branch(handle_t *handle,
1110 struct ocfs2_extent_tree *et)
1112 int status;
1113 struct ocfs2_path *path = NULL;
1114 struct ocfs2_extent_list *el;
1115 struct ocfs2_extent_rec *rec;
1117 path = ocfs2_new_path_from_et(et);
1118 if (!path) {
1119 status = -ENOMEM;
1120 return status;
1123 status = ocfs2_find_path(et->et_ci, path, UINT_MAX);
1124 if (status < 0) {
1125 mlog_errno(status);
1126 goto out;
1129 status = ocfs2_extend_trans(handle, path_num_items(path));
1130 if (status < 0) {
1131 mlog_errno(status);
1132 goto out;
1135 status = ocfs2_journal_access_path(et->et_ci, handle, path);
1136 if (status < 0) {
1137 mlog_errno(status);
1138 goto out;
1141 el = path_leaf_el(path);
1142 rec = &el->l_recs[le32_to_cpu(el->l_next_free_rec) - 1];
1144 ocfs2_adjust_rightmost_records(handle, et, path, rec);
1146 out:
1147 ocfs2_free_path(path);
1148 return status;
1152 * Add an entire tree branch to our inode. eb_bh is the extent block
1153 * to start at, if we don't want to start the branch at the root
1154 * structure.
1156 * last_eb_bh is required as we have to update it's next_leaf pointer
1157 * for the new last extent block.
1159 * the new branch will be 'empty' in the sense that every block will
1160 * contain a single record with cluster count == 0.
1162 static int ocfs2_add_branch(handle_t *handle,
1163 struct ocfs2_extent_tree *et,
1164 struct buffer_head *eb_bh,
1165 struct buffer_head **last_eb_bh,
1166 struct ocfs2_alloc_context *meta_ac)
1168 int status, new_blocks, i;
1169 u64 next_blkno, new_last_eb_blk;
1170 struct buffer_head *bh;
1171 struct buffer_head **new_eb_bhs = NULL;
1172 struct ocfs2_extent_block *eb;
1173 struct ocfs2_extent_list *eb_el;
1174 struct ocfs2_extent_list *el;
1175 u32 new_cpos, root_end;
1177 mlog_entry_void();
1179 BUG_ON(!last_eb_bh || !*last_eb_bh);
1181 if (eb_bh) {
1182 eb = (struct ocfs2_extent_block *) eb_bh->b_data;
1183 el = &eb->h_list;
1184 } else
1185 el = et->et_root_el;
1187 /* we never add a branch to a leaf. */
1188 BUG_ON(!el->l_tree_depth);
1190 new_blocks = le16_to_cpu(el->l_tree_depth);
1192 eb = (struct ocfs2_extent_block *)(*last_eb_bh)->b_data;
1193 new_cpos = ocfs2_sum_rightmost_rec(&eb->h_list);
1194 root_end = ocfs2_sum_rightmost_rec(et->et_root_el);
1197 * If there is a gap before the root end and the real end
1198 * of the righmost leaf block, we need to remove the gap
1199 * between new_cpos and root_end first so that the tree
1200 * is consistent after we add a new branch(it will start
1201 * from new_cpos).
1203 if (root_end > new_cpos) {
1204 mlog(0, "adjust the cluster end from %u to %u\n",
1205 root_end, new_cpos);
1206 status = ocfs2_adjust_rightmost_branch(handle, et);
1207 if (status) {
1208 mlog_errno(status);
1209 goto bail;
1213 /* allocate the number of new eb blocks we need */
1214 new_eb_bhs = kcalloc(new_blocks, sizeof(struct buffer_head *),
1215 GFP_KERNEL);
1216 if (!new_eb_bhs) {
1217 status = -ENOMEM;
1218 mlog_errno(status);
1219 goto bail;
1222 status = ocfs2_create_new_meta_bhs(handle, et, new_blocks,
1223 meta_ac, new_eb_bhs);
1224 if (status < 0) {
1225 mlog_errno(status);
1226 goto bail;
1229 /* Note: new_eb_bhs[new_blocks - 1] is the guy which will be
1230 * linked with the rest of the tree.
1231 * conversly, new_eb_bhs[0] is the new bottommost leaf.
1233 * when we leave the loop, new_last_eb_blk will point to the
1234 * newest leaf, and next_blkno will point to the topmost extent
1235 * block. */
1236 next_blkno = new_last_eb_blk = 0;
1237 for(i = 0; i < new_blocks; i++) {
1238 bh = new_eb_bhs[i];
1239 eb = (struct ocfs2_extent_block *) bh->b_data;
1240 /* ocfs2_create_new_meta_bhs() should create it right! */
1241 BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb));
1242 eb_el = &eb->h_list;
1244 status = ocfs2_journal_access_eb(handle, et->et_ci, bh,
1245 OCFS2_JOURNAL_ACCESS_CREATE);
1246 if (status < 0) {
1247 mlog_errno(status);
1248 goto bail;
1251 eb->h_next_leaf_blk = 0;
1252 eb_el->l_tree_depth = cpu_to_le16(i);
1253 eb_el->l_next_free_rec = cpu_to_le16(1);
1255 * This actually counts as an empty extent as
1256 * c_clusters == 0
1258 eb_el->l_recs[0].e_cpos = cpu_to_le32(new_cpos);
1259 eb_el->l_recs[0].e_blkno = cpu_to_le64(next_blkno);
1261 * eb_el isn't always an interior node, but even leaf
1262 * nodes want a zero'd flags and reserved field so
1263 * this gets the whole 32 bits regardless of use.
1265 eb_el->l_recs[0].e_int_clusters = cpu_to_le32(0);
1266 if (!eb_el->l_tree_depth)
1267 new_last_eb_blk = le64_to_cpu(eb->h_blkno);
1269 ocfs2_journal_dirty(handle, bh);
1270 next_blkno = le64_to_cpu(eb->h_blkno);
1273 /* This is a bit hairy. We want to update up to three blocks
1274 * here without leaving any of them in an inconsistent state
1275 * in case of error. We don't have to worry about
1276 * journal_dirty erroring as it won't unless we've aborted the
1277 * handle (in which case we would never be here) so reserving
1278 * the write with journal_access is all we need to do. */
1279 status = ocfs2_journal_access_eb(handle, et->et_ci, *last_eb_bh,
1280 OCFS2_JOURNAL_ACCESS_WRITE);
1281 if (status < 0) {
1282 mlog_errno(status);
1283 goto bail;
1285 status = ocfs2_et_root_journal_access(handle, et,
1286 OCFS2_JOURNAL_ACCESS_WRITE);
1287 if (status < 0) {
1288 mlog_errno(status);
1289 goto bail;
1291 if (eb_bh) {
1292 status = ocfs2_journal_access_eb(handle, et->et_ci, eb_bh,
1293 OCFS2_JOURNAL_ACCESS_WRITE);
1294 if (status < 0) {
1295 mlog_errno(status);
1296 goto bail;
1300 /* Link the new branch into the rest of the tree (el will
1301 * either be on the root_bh, or the extent block passed in. */
1302 i = le16_to_cpu(el->l_next_free_rec);
1303 el->l_recs[i].e_blkno = cpu_to_le64(next_blkno);
1304 el->l_recs[i].e_cpos = cpu_to_le32(new_cpos);
1305 el->l_recs[i].e_int_clusters = 0;
1306 le16_add_cpu(&el->l_next_free_rec, 1);
1308 /* fe needs a new last extent block pointer, as does the
1309 * next_leaf on the previously last-extent-block. */
1310 ocfs2_et_set_last_eb_blk(et, new_last_eb_blk);
1312 eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data;
1313 eb->h_next_leaf_blk = cpu_to_le64(new_last_eb_blk);
1315 ocfs2_journal_dirty(handle, *last_eb_bh);
1316 ocfs2_journal_dirty(handle, et->et_root_bh);
1317 if (eb_bh)
1318 ocfs2_journal_dirty(handle, eb_bh);
1321 * Some callers want to track the rightmost leaf so pass it
1322 * back here.
1324 brelse(*last_eb_bh);
1325 get_bh(new_eb_bhs[0]);
1326 *last_eb_bh = new_eb_bhs[0];
1328 status = 0;
1329 bail:
1330 if (new_eb_bhs) {
1331 for (i = 0; i < new_blocks; i++)
1332 brelse(new_eb_bhs[i]);
1333 kfree(new_eb_bhs);
1336 mlog_exit(status);
1337 return status;
1341 * adds another level to the allocation tree.
1342 * returns back the new extent block so you can add a branch to it
1343 * after this call.
1345 static int ocfs2_shift_tree_depth(handle_t *handle,
1346 struct ocfs2_extent_tree *et,
1347 struct ocfs2_alloc_context *meta_ac,
1348 struct buffer_head **ret_new_eb_bh)
1350 int status, i;
1351 u32 new_clusters;
1352 struct buffer_head *new_eb_bh = NULL;
1353 struct ocfs2_extent_block *eb;
1354 struct ocfs2_extent_list *root_el;
1355 struct ocfs2_extent_list *eb_el;
1357 mlog_entry_void();
1359 status = ocfs2_create_new_meta_bhs(handle, et, 1, meta_ac,
1360 &new_eb_bh);
1361 if (status < 0) {
1362 mlog_errno(status);
1363 goto bail;
1366 eb = (struct ocfs2_extent_block *) new_eb_bh->b_data;
1367 /* ocfs2_create_new_meta_bhs() should create it right! */
1368 BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb));
1370 eb_el = &eb->h_list;
1371 root_el = et->et_root_el;
1373 status = ocfs2_journal_access_eb(handle, et->et_ci, new_eb_bh,
1374 OCFS2_JOURNAL_ACCESS_CREATE);
1375 if (status < 0) {
1376 mlog_errno(status);
1377 goto bail;
1380 /* copy the root extent list data into the new extent block */
1381 eb_el->l_tree_depth = root_el->l_tree_depth;
1382 eb_el->l_next_free_rec = root_el->l_next_free_rec;
1383 for (i = 0; i < le16_to_cpu(root_el->l_next_free_rec); i++)
1384 eb_el->l_recs[i] = root_el->l_recs[i];
1386 ocfs2_journal_dirty(handle, new_eb_bh);
1388 status = ocfs2_et_root_journal_access(handle, et,
1389 OCFS2_JOURNAL_ACCESS_WRITE);
1390 if (status < 0) {
1391 mlog_errno(status);
1392 goto bail;
1395 new_clusters = ocfs2_sum_rightmost_rec(eb_el);
1397 /* update root_bh now */
1398 le16_add_cpu(&root_el->l_tree_depth, 1);
1399 root_el->l_recs[0].e_cpos = 0;
1400 root_el->l_recs[0].e_blkno = eb->h_blkno;
1401 root_el->l_recs[0].e_int_clusters = cpu_to_le32(new_clusters);
1402 for (i = 1; i < le16_to_cpu(root_el->l_next_free_rec); i++)
1403 memset(&root_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec));
1404 root_el->l_next_free_rec = cpu_to_le16(1);
1406 /* If this is our 1st tree depth shift, then last_eb_blk
1407 * becomes the allocated extent block */
1408 if (root_el->l_tree_depth == cpu_to_le16(1))
1409 ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno));
1411 ocfs2_journal_dirty(handle, et->et_root_bh);
1413 *ret_new_eb_bh = new_eb_bh;
1414 new_eb_bh = NULL;
1415 status = 0;
1416 bail:
1417 brelse(new_eb_bh);
1419 mlog_exit(status);
1420 return status;
1424 * Should only be called when there is no space left in any of the
1425 * leaf nodes. What we want to do is find the lowest tree depth
1426 * non-leaf extent block with room for new records. There are three
1427 * valid results of this search:
1429 * 1) a lowest extent block is found, then we pass it back in
1430 * *lowest_eb_bh and return '0'
1432 * 2) the search fails to find anything, but the root_el has room. We
1433 * pass NULL back in *lowest_eb_bh, but still return '0'
1435 * 3) the search fails to find anything AND the root_el is full, in
1436 * which case we return > 0
1438 * return status < 0 indicates an error.
1440 static int ocfs2_find_branch_target(struct ocfs2_extent_tree *et,
1441 struct buffer_head **target_bh)
1443 int status = 0, i;
1444 u64 blkno;
1445 struct ocfs2_extent_block *eb;
1446 struct ocfs2_extent_list *el;
1447 struct buffer_head *bh = NULL;
1448 struct buffer_head *lowest_bh = NULL;
1450 mlog_entry_void();
1452 *target_bh = NULL;
1454 el = et->et_root_el;
1456 while(le16_to_cpu(el->l_tree_depth) > 1) {
1457 if (le16_to_cpu(el->l_next_free_rec) == 0) {
1458 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
1459 "Owner %llu has empty "
1460 "extent list (next_free_rec == 0)",
1461 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci));
1462 status = -EIO;
1463 goto bail;
1465 i = le16_to_cpu(el->l_next_free_rec) - 1;
1466 blkno = le64_to_cpu(el->l_recs[i].e_blkno);
1467 if (!blkno) {
1468 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
1469 "Owner %llu has extent "
1470 "list where extent # %d has no physical "
1471 "block start",
1472 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), i);
1473 status = -EIO;
1474 goto bail;
1477 brelse(bh);
1478 bh = NULL;
1480 status = ocfs2_read_extent_block(et->et_ci, blkno, &bh);
1481 if (status < 0) {
1482 mlog_errno(status);
1483 goto bail;
1486 eb = (struct ocfs2_extent_block *) bh->b_data;
1487 el = &eb->h_list;
1489 if (le16_to_cpu(el->l_next_free_rec) <
1490 le16_to_cpu(el->l_count)) {
1491 brelse(lowest_bh);
1492 lowest_bh = bh;
1493 get_bh(lowest_bh);
1497 /* If we didn't find one and the fe doesn't have any room,
1498 * then return '1' */
1499 el = et->et_root_el;
1500 if (!lowest_bh && (el->l_next_free_rec == el->l_count))
1501 status = 1;
1503 *target_bh = lowest_bh;
1504 bail:
1505 brelse(bh);
1507 mlog_exit(status);
1508 return status;
1512 * Grow a b-tree so that it has more records.
1514 * We might shift the tree depth in which case existing paths should
1515 * be considered invalid.
1517 * Tree depth after the grow is returned via *final_depth.
1519 * *last_eb_bh will be updated by ocfs2_add_branch().
1521 static int ocfs2_grow_tree(handle_t *handle, struct ocfs2_extent_tree *et,
1522 int *final_depth, struct buffer_head **last_eb_bh,
1523 struct ocfs2_alloc_context *meta_ac)
1525 int ret, shift;
1526 struct ocfs2_extent_list *el = et->et_root_el;
1527 int depth = le16_to_cpu(el->l_tree_depth);
1528 struct buffer_head *bh = NULL;
1530 BUG_ON(meta_ac == NULL);
1532 shift = ocfs2_find_branch_target(et, &bh);
1533 if (shift < 0) {
1534 ret = shift;
1535 mlog_errno(ret);
1536 goto out;
1539 /* We traveled all the way to the bottom of the allocation tree
1540 * and didn't find room for any more extents - we need to add
1541 * another tree level */
1542 if (shift) {
1543 BUG_ON(bh);
1544 mlog(0, "need to shift tree depth (current = %d)\n", depth);
1546 /* ocfs2_shift_tree_depth will return us a buffer with
1547 * the new extent block (so we can pass that to
1548 * ocfs2_add_branch). */
1549 ret = ocfs2_shift_tree_depth(handle, et, meta_ac, &bh);
1550 if (ret < 0) {
1551 mlog_errno(ret);
1552 goto out;
1554 depth++;
1555 if (depth == 1) {
1557 * Special case: we have room now if we shifted from
1558 * tree_depth 0, so no more work needs to be done.
1560 * We won't be calling add_branch, so pass
1561 * back *last_eb_bh as the new leaf. At depth
1562 * zero, it should always be null so there's
1563 * no reason to brelse.
1565 BUG_ON(*last_eb_bh);
1566 get_bh(bh);
1567 *last_eb_bh = bh;
1568 goto out;
1572 /* call ocfs2_add_branch to add the final part of the tree with
1573 * the new data. */
1574 mlog(0, "add branch. bh = %p\n", bh);
1575 ret = ocfs2_add_branch(handle, et, bh, last_eb_bh,
1576 meta_ac);
1577 if (ret < 0) {
1578 mlog_errno(ret);
1579 goto out;
1582 out:
1583 if (final_depth)
1584 *final_depth = depth;
1585 brelse(bh);
1586 return ret;
1590 * This function will discard the rightmost extent record.
1592 static void ocfs2_shift_records_right(struct ocfs2_extent_list *el)
1594 int next_free = le16_to_cpu(el->l_next_free_rec);
1595 int count = le16_to_cpu(el->l_count);
1596 unsigned int num_bytes;
1598 BUG_ON(!next_free);
1599 /* This will cause us to go off the end of our extent list. */
1600 BUG_ON(next_free >= count);
1602 num_bytes = sizeof(struct ocfs2_extent_rec) * next_free;
1604 memmove(&el->l_recs[1], &el->l_recs[0], num_bytes);
1607 static void ocfs2_rotate_leaf(struct ocfs2_extent_list *el,
1608 struct ocfs2_extent_rec *insert_rec)
1610 int i, insert_index, next_free, has_empty, num_bytes;
1611 u32 insert_cpos = le32_to_cpu(insert_rec->e_cpos);
1612 struct ocfs2_extent_rec *rec;
1614 next_free = le16_to_cpu(el->l_next_free_rec);
1615 has_empty = ocfs2_is_empty_extent(&el->l_recs[0]);
1617 BUG_ON(!next_free);
1619 /* The tree code before us didn't allow enough room in the leaf. */
1620 BUG_ON(el->l_next_free_rec == el->l_count && !has_empty);
1623 * The easiest way to approach this is to just remove the
1624 * empty extent and temporarily decrement next_free.
1626 if (has_empty) {
1628 * If next_free was 1 (only an empty extent), this
1629 * loop won't execute, which is fine. We still want
1630 * the decrement above to happen.
1632 for(i = 0; i < (next_free - 1); i++)
1633 el->l_recs[i] = el->l_recs[i+1];
1635 next_free--;
1639 * Figure out what the new record index should be.
1641 for(i = 0; i < next_free; i++) {
1642 rec = &el->l_recs[i];
1644 if (insert_cpos < le32_to_cpu(rec->e_cpos))
1645 break;
1647 insert_index = i;
1649 mlog(0, "ins %u: index %d, has_empty %d, next_free %d, count %d\n",
1650 insert_cpos, insert_index, has_empty, next_free, le16_to_cpu(el->l_count));
1652 BUG_ON(insert_index < 0);
1653 BUG_ON(insert_index >= le16_to_cpu(el->l_count));
1654 BUG_ON(insert_index > next_free);
1657 * No need to memmove if we're just adding to the tail.
1659 if (insert_index != next_free) {
1660 BUG_ON(next_free >= le16_to_cpu(el->l_count));
1662 num_bytes = next_free - insert_index;
1663 num_bytes *= sizeof(struct ocfs2_extent_rec);
1664 memmove(&el->l_recs[insert_index + 1],
1665 &el->l_recs[insert_index],
1666 num_bytes);
1670 * Either we had an empty extent, and need to re-increment or
1671 * there was no empty extent on a non full rightmost leaf node,
1672 * in which case we still need to increment.
1674 next_free++;
1675 el->l_next_free_rec = cpu_to_le16(next_free);
1677 * Make sure none of the math above just messed up our tree.
1679 BUG_ON(le16_to_cpu(el->l_next_free_rec) > le16_to_cpu(el->l_count));
1681 el->l_recs[insert_index] = *insert_rec;
1685 static void ocfs2_remove_empty_extent(struct ocfs2_extent_list *el)
1687 int size, num_recs = le16_to_cpu(el->l_next_free_rec);
1689 BUG_ON(num_recs == 0);
1691 if (ocfs2_is_empty_extent(&el->l_recs[0])) {
1692 num_recs--;
1693 size = num_recs * sizeof(struct ocfs2_extent_rec);
1694 memmove(&el->l_recs[0], &el->l_recs[1], size);
1695 memset(&el->l_recs[num_recs], 0,
1696 sizeof(struct ocfs2_extent_rec));
1697 el->l_next_free_rec = cpu_to_le16(num_recs);
1702 * Create an empty extent record .
1704 * l_next_free_rec may be updated.
1706 * If an empty extent already exists do nothing.
1708 static void ocfs2_create_empty_extent(struct ocfs2_extent_list *el)
1710 int next_free = le16_to_cpu(el->l_next_free_rec);
1712 BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
1714 if (next_free == 0)
1715 goto set_and_inc;
1717 if (ocfs2_is_empty_extent(&el->l_recs[0]))
1718 return;
1720 mlog_bug_on_msg(el->l_count == el->l_next_free_rec,
1721 "Asked to create an empty extent in a full list:\n"
1722 "count = %u, tree depth = %u",
1723 le16_to_cpu(el->l_count),
1724 le16_to_cpu(el->l_tree_depth));
1726 ocfs2_shift_records_right(el);
1728 set_and_inc:
1729 le16_add_cpu(&el->l_next_free_rec, 1);
1730 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
1734 * For a rotation which involves two leaf nodes, the "root node" is
1735 * the lowest level tree node which contains a path to both leafs. This
1736 * resulting set of information can be used to form a complete "subtree"
1738 * This function is passed two full paths from the dinode down to a
1739 * pair of adjacent leaves. It's task is to figure out which path
1740 * index contains the subtree root - this can be the root index itself
1741 * in a worst-case rotation.
1743 * The array index of the subtree root is passed back.
1745 int ocfs2_find_subtree_root(struct ocfs2_extent_tree *et,
1746 struct ocfs2_path *left,
1747 struct ocfs2_path *right)
1749 int i = 0;
1752 * Check that the caller passed in two paths from the same tree.
1754 BUG_ON(path_root_bh(left) != path_root_bh(right));
1756 do {
1757 i++;
1760 * The caller didn't pass two adjacent paths.
1762 mlog_bug_on_msg(i > left->p_tree_depth,
1763 "Owner %llu, left depth %u, right depth %u\n"
1764 "left leaf blk %llu, right leaf blk %llu\n",
1765 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
1766 left->p_tree_depth, right->p_tree_depth,
1767 (unsigned long long)path_leaf_bh(left)->b_blocknr,
1768 (unsigned long long)path_leaf_bh(right)->b_blocknr);
1769 } while (left->p_node[i].bh->b_blocknr ==
1770 right->p_node[i].bh->b_blocknr);
1772 return i - 1;
1775 typedef void (path_insert_t)(void *, struct buffer_head *);
1778 * Traverse a btree path in search of cpos, starting at root_el.
1780 * This code can be called with a cpos larger than the tree, in which
1781 * case it will return the rightmost path.
1783 static int __ocfs2_find_path(struct ocfs2_caching_info *ci,
1784 struct ocfs2_extent_list *root_el, u32 cpos,
1785 path_insert_t *func, void *data)
1787 int i, ret = 0;
1788 u32 range;
1789 u64 blkno;
1790 struct buffer_head *bh = NULL;
1791 struct ocfs2_extent_block *eb;
1792 struct ocfs2_extent_list *el;
1793 struct ocfs2_extent_rec *rec;
1795 el = root_el;
1796 while (el->l_tree_depth) {
1797 if (le16_to_cpu(el->l_next_free_rec) == 0) {
1798 ocfs2_error(ocfs2_metadata_cache_get_super(ci),
1799 "Owner %llu has empty extent list at "
1800 "depth %u\n",
1801 (unsigned long long)ocfs2_metadata_cache_owner(ci),
1802 le16_to_cpu(el->l_tree_depth));
1803 ret = -EROFS;
1804 goto out;
1808 for(i = 0; i < le16_to_cpu(el->l_next_free_rec) - 1; i++) {
1809 rec = &el->l_recs[i];
1812 * In the case that cpos is off the allocation
1813 * tree, this should just wind up returning the
1814 * rightmost record.
1816 range = le32_to_cpu(rec->e_cpos) +
1817 ocfs2_rec_clusters(el, rec);
1818 if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range)
1819 break;
1822 blkno = le64_to_cpu(el->l_recs[i].e_blkno);
1823 if (blkno == 0) {
1824 ocfs2_error(ocfs2_metadata_cache_get_super(ci),
1825 "Owner %llu has bad blkno in extent list "
1826 "at depth %u (index %d)\n",
1827 (unsigned long long)ocfs2_metadata_cache_owner(ci),
1828 le16_to_cpu(el->l_tree_depth), i);
1829 ret = -EROFS;
1830 goto out;
1833 brelse(bh);
1834 bh = NULL;
1835 ret = ocfs2_read_extent_block(ci, blkno, &bh);
1836 if (ret) {
1837 mlog_errno(ret);
1838 goto out;
1841 eb = (struct ocfs2_extent_block *) bh->b_data;
1842 el = &eb->h_list;
1844 if (le16_to_cpu(el->l_next_free_rec) >
1845 le16_to_cpu(el->l_count)) {
1846 ocfs2_error(ocfs2_metadata_cache_get_super(ci),
1847 "Owner %llu has bad count in extent list "
1848 "at block %llu (next free=%u, count=%u)\n",
1849 (unsigned long long)ocfs2_metadata_cache_owner(ci),
1850 (unsigned long long)bh->b_blocknr,
1851 le16_to_cpu(el->l_next_free_rec),
1852 le16_to_cpu(el->l_count));
1853 ret = -EROFS;
1854 goto out;
1857 if (func)
1858 func(data, bh);
1861 out:
1863 * Catch any trailing bh that the loop didn't handle.
1865 brelse(bh);
1867 return ret;
1871 * Given an initialized path (that is, it has a valid root extent
1872 * list), this function will traverse the btree in search of the path
1873 * which would contain cpos.
1875 * The path traveled is recorded in the path structure.
1877 * Note that this will not do any comparisons on leaf node extent
1878 * records, so it will work fine in the case that we just added a tree
1879 * branch.
1881 struct find_path_data {
1882 int index;
1883 struct ocfs2_path *path;
1885 static void find_path_ins(void *data, struct buffer_head *bh)
1887 struct find_path_data *fp = data;
1889 get_bh(bh);
1890 ocfs2_path_insert_eb(fp->path, fp->index, bh);
1891 fp->index++;
1893 int ocfs2_find_path(struct ocfs2_caching_info *ci,
1894 struct ocfs2_path *path, u32 cpos)
1896 struct find_path_data data;
1898 data.index = 1;
1899 data.path = path;
1900 return __ocfs2_find_path(ci, path_root_el(path), cpos,
1901 find_path_ins, &data);
1904 static void find_leaf_ins(void *data, struct buffer_head *bh)
1906 struct ocfs2_extent_block *eb =(struct ocfs2_extent_block *)bh->b_data;
1907 struct ocfs2_extent_list *el = &eb->h_list;
1908 struct buffer_head **ret = data;
1910 /* We want to retain only the leaf block. */
1911 if (le16_to_cpu(el->l_tree_depth) == 0) {
1912 get_bh(bh);
1913 *ret = bh;
1917 * Find the leaf block in the tree which would contain cpos. No
1918 * checking of the actual leaf is done.
1920 * Some paths want to call this instead of allocating a path structure
1921 * and calling ocfs2_find_path().
1923 * This function doesn't handle non btree extent lists.
1925 int ocfs2_find_leaf(struct ocfs2_caching_info *ci,
1926 struct ocfs2_extent_list *root_el, u32 cpos,
1927 struct buffer_head **leaf_bh)
1929 int ret;
1930 struct buffer_head *bh = NULL;
1932 ret = __ocfs2_find_path(ci, root_el, cpos, find_leaf_ins, &bh);
1933 if (ret) {
1934 mlog_errno(ret);
1935 goto out;
1938 *leaf_bh = bh;
1939 out:
1940 return ret;
1944 * Adjust the adjacent records (left_rec, right_rec) involved in a rotation.
1946 * Basically, we've moved stuff around at the bottom of the tree and
1947 * we need to fix up the extent records above the changes to reflect
1948 * the new changes.
1950 * left_rec: the record on the left.
1951 * left_child_el: is the child list pointed to by left_rec
1952 * right_rec: the record to the right of left_rec
1953 * right_child_el: is the child list pointed to by right_rec
1955 * By definition, this only works on interior nodes.
1957 static void ocfs2_adjust_adjacent_records(struct ocfs2_extent_rec *left_rec,
1958 struct ocfs2_extent_list *left_child_el,
1959 struct ocfs2_extent_rec *right_rec,
1960 struct ocfs2_extent_list *right_child_el)
1962 u32 left_clusters, right_end;
1965 * Interior nodes never have holes. Their cpos is the cpos of
1966 * the leftmost record in their child list. Their cluster
1967 * count covers the full theoretical range of their child list
1968 * - the range between their cpos and the cpos of the record
1969 * immediately to their right.
1971 left_clusters = le32_to_cpu(right_child_el->l_recs[0].e_cpos);
1972 if (!ocfs2_rec_clusters(right_child_el, &right_child_el->l_recs[0])) {
1973 BUG_ON(right_child_el->l_tree_depth);
1974 BUG_ON(le16_to_cpu(right_child_el->l_next_free_rec) <= 1);
1975 left_clusters = le32_to_cpu(right_child_el->l_recs[1].e_cpos);
1977 left_clusters -= le32_to_cpu(left_rec->e_cpos);
1978 left_rec->e_int_clusters = cpu_to_le32(left_clusters);
1981 * Calculate the rightmost cluster count boundary before
1982 * moving cpos - we will need to adjust clusters after
1983 * updating e_cpos to keep the same highest cluster count.
1985 right_end = le32_to_cpu(right_rec->e_cpos);
1986 right_end += le32_to_cpu(right_rec->e_int_clusters);
1988 right_rec->e_cpos = left_rec->e_cpos;
1989 le32_add_cpu(&right_rec->e_cpos, left_clusters);
1991 right_end -= le32_to_cpu(right_rec->e_cpos);
1992 right_rec->e_int_clusters = cpu_to_le32(right_end);
1996 * Adjust the adjacent root node records involved in a
1997 * rotation. left_el_blkno is passed in as a key so that we can easily
1998 * find it's index in the root list.
2000 static void ocfs2_adjust_root_records(struct ocfs2_extent_list *root_el,
2001 struct ocfs2_extent_list *left_el,
2002 struct ocfs2_extent_list *right_el,
2003 u64 left_el_blkno)
2005 int i;
2007 BUG_ON(le16_to_cpu(root_el->l_tree_depth) <=
2008 le16_to_cpu(left_el->l_tree_depth));
2010 for(i = 0; i < le16_to_cpu(root_el->l_next_free_rec) - 1; i++) {
2011 if (le64_to_cpu(root_el->l_recs[i].e_blkno) == left_el_blkno)
2012 break;
2016 * The path walking code should have never returned a root and
2017 * two paths which are not adjacent.
2019 BUG_ON(i >= (le16_to_cpu(root_el->l_next_free_rec) - 1));
2021 ocfs2_adjust_adjacent_records(&root_el->l_recs[i], left_el,
2022 &root_el->l_recs[i + 1], right_el);
2026 * We've changed a leaf block (in right_path) and need to reflect that
2027 * change back up the subtree.
2029 * This happens in multiple places:
2030 * - When we've moved an extent record from the left path leaf to the right
2031 * path leaf to make room for an empty extent in the left path leaf.
2032 * - When our insert into the right path leaf is at the leftmost edge
2033 * and requires an update of the path immediately to it's left. This
2034 * can occur at the end of some types of rotation and appending inserts.
2035 * - When we've adjusted the last extent record in the left path leaf and the
2036 * 1st extent record in the right path leaf during cross extent block merge.
2038 static void ocfs2_complete_edge_insert(handle_t *handle,
2039 struct ocfs2_path *left_path,
2040 struct ocfs2_path *right_path,
2041 int subtree_index)
2043 int i, idx;
2044 struct ocfs2_extent_list *el, *left_el, *right_el;
2045 struct ocfs2_extent_rec *left_rec, *right_rec;
2046 struct buffer_head *root_bh = left_path->p_node[subtree_index].bh;
2049 * Update the counts and position values within all the
2050 * interior nodes to reflect the leaf rotation we just did.
2052 * The root node is handled below the loop.
2054 * We begin the loop with right_el and left_el pointing to the
2055 * leaf lists and work our way up.
2057 * NOTE: within this loop, left_el and right_el always refer
2058 * to the *child* lists.
2060 left_el = path_leaf_el(left_path);
2061 right_el = path_leaf_el(right_path);
2062 for(i = left_path->p_tree_depth - 1; i > subtree_index; i--) {
2063 mlog(0, "Adjust records at index %u\n", i);
2066 * One nice property of knowing that all of these
2067 * nodes are below the root is that we only deal with
2068 * the leftmost right node record and the rightmost
2069 * left node record.
2071 el = left_path->p_node[i].el;
2072 idx = le16_to_cpu(left_el->l_next_free_rec) - 1;
2073 left_rec = &el->l_recs[idx];
2075 el = right_path->p_node[i].el;
2076 right_rec = &el->l_recs[0];
2078 ocfs2_adjust_adjacent_records(left_rec, left_el, right_rec,
2079 right_el);
2081 ocfs2_journal_dirty(handle, left_path->p_node[i].bh);
2082 ocfs2_journal_dirty(handle, right_path->p_node[i].bh);
2085 * Setup our list pointers now so that the current
2086 * parents become children in the next iteration.
2088 left_el = left_path->p_node[i].el;
2089 right_el = right_path->p_node[i].el;
2093 * At the root node, adjust the two adjacent records which
2094 * begin our path to the leaves.
2097 el = left_path->p_node[subtree_index].el;
2098 left_el = left_path->p_node[subtree_index + 1].el;
2099 right_el = right_path->p_node[subtree_index + 1].el;
2101 ocfs2_adjust_root_records(el, left_el, right_el,
2102 left_path->p_node[subtree_index + 1].bh->b_blocknr);
2104 root_bh = left_path->p_node[subtree_index].bh;
2106 ocfs2_journal_dirty(handle, root_bh);
2109 static int ocfs2_rotate_subtree_right(handle_t *handle,
2110 struct ocfs2_extent_tree *et,
2111 struct ocfs2_path *left_path,
2112 struct ocfs2_path *right_path,
2113 int subtree_index)
2115 int ret, i;
2116 struct buffer_head *right_leaf_bh;
2117 struct buffer_head *left_leaf_bh = NULL;
2118 struct buffer_head *root_bh;
2119 struct ocfs2_extent_list *right_el, *left_el;
2120 struct ocfs2_extent_rec move_rec;
2122 left_leaf_bh = path_leaf_bh(left_path);
2123 left_el = path_leaf_el(left_path);
2125 if (left_el->l_next_free_rec != left_el->l_count) {
2126 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
2127 "Inode %llu has non-full interior leaf node %llu"
2128 "(next free = %u)",
2129 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
2130 (unsigned long long)left_leaf_bh->b_blocknr,
2131 le16_to_cpu(left_el->l_next_free_rec));
2132 return -EROFS;
2136 * This extent block may already have an empty record, so we
2137 * return early if so.
2139 if (ocfs2_is_empty_extent(&left_el->l_recs[0]))
2140 return 0;
2142 root_bh = left_path->p_node[subtree_index].bh;
2143 BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
2145 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path,
2146 subtree_index);
2147 if (ret) {
2148 mlog_errno(ret);
2149 goto out;
2152 for(i = subtree_index + 1; i < path_num_items(right_path); i++) {
2153 ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
2154 right_path, i);
2155 if (ret) {
2156 mlog_errno(ret);
2157 goto out;
2160 ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
2161 left_path, i);
2162 if (ret) {
2163 mlog_errno(ret);
2164 goto out;
2168 right_leaf_bh = path_leaf_bh(right_path);
2169 right_el = path_leaf_el(right_path);
2171 /* This is a code error, not a disk corruption. */
2172 mlog_bug_on_msg(!right_el->l_next_free_rec, "Inode %llu: Rotate fails "
2173 "because rightmost leaf block %llu is empty\n",
2174 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
2175 (unsigned long long)right_leaf_bh->b_blocknr);
2177 ocfs2_create_empty_extent(right_el);
2179 ocfs2_journal_dirty(handle, right_leaf_bh);
2181 /* Do the copy now. */
2182 i = le16_to_cpu(left_el->l_next_free_rec) - 1;
2183 move_rec = left_el->l_recs[i];
2184 right_el->l_recs[0] = move_rec;
2187 * Clear out the record we just copied and shift everything
2188 * over, leaving an empty extent in the left leaf.
2190 * We temporarily subtract from next_free_rec so that the
2191 * shift will lose the tail record (which is now defunct).
2193 le16_add_cpu(&left_el->l_next_free_rec, -1);
2194 ocfs2_shift_records_right(left_el);
2195 memset(&left_el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
2196 le16_add_cpu(&left_el->l_next_free_rec, 1);
2198 ocfs2_journal_dirty(handle, left_leaf_bh);
2200 ocfs2_complete_edge_insert(handle, left_path, right_path,
2201 subtree_index);
2203 out:
2204 return ret;
2208 * Given a full path, determine what cpos value would return us a path
2209 * containing the leaf immediately to the left of the current one.
2211 * Will return zero if the path passed in is already the leftmost path.
2213 int ocfs2_find_cpos_for_left_leaf(struct super_block *sb,
2214 struct ocfs2_path *path, u32 *cpos)
2216 int i, j, ret = 0;
2217 u64 blkno;
2218 struct ocfs2_extent_list *el;
2220 BUG_ON(path->p_tree_depth == 0);
2222 *cpos = 0;
2224 blkno = path_leaf_bh(path)->b_blocknr;
2226 /* Start at the tree node just above the leaf and work our way up. */
2227 i = path->p_tree_depth - 1;
2228 while (i >= 0) {
2229 el = path->p_node[i].el;
2232 * Find the extent record just before the one in our
2233 * path.
2235 for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) {
2236 if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) {
2237 if (j == 0) {
2238 if (i == 0) {
2240 * We've determined that the
2241 * path specified is already
2242 * the leftmost one - return a
2243 * cpos of zero.
2245 goto out;
2248 * The leftmost record points to our
2249 * leaf - we need to travel up the
2250 * tree one level.
2252 goto next_node;
2255 *cpos = le32_to_cpu(el->l_recs[j - 1].e_cpos);
2256 *cpos = *cpos + ocfs2_rec_clusters(el,
2257 &el->l_recs[j - 1]);
2258 *cpos = *cpos - 1;
2259 goto out;
2264 * If we got here, we never found a valid node where
2265 * the tree indicated one should be.
2267 ocfs2_error(sb,
2268 "Invalid extent tree at extent block %llu\n",
2269 (unsigned long long)blkno);
2270 ret = -EROFS;
2271 goto out;
2273 next_node:
2274 blkno = path->p_node[i].bh->b_blocknr;
2275 i--;
2278 out:
2279 return ret;
2283 * Extend the transaction by enough credits to complete the rotation,
2284 * and still leave at least the original number of credits allocated
2285 * to this transaction.
2287 static int ocfs2_extend_rotate_transaction(handle_t *handle, int subtree_depth,
2288 int op_credits,
2289 struct ocfs2_path *path)
2291 int ret = 0;
2292 int credits = (path->p_tree_depth - subtree_depth) * 2 + 1 + op_credits;
2294 if (handle->h_buffer_credits < credits)
2295 ret = ocfs2_extend_trans(handle,
2296 credits - handle->h_buffer_credits);
2298 return ret;
2302 * Trap the case where we're inserting into the theoretical range past
2303 * the _actual_ left leaf range. Otherwise, we'll rotate a record
2304 * whose cpos is less than ours into the right leaf.
2306 * It's only necessary to look at the rightmost record of the left
2307 * leaf because the logic that calls us should ensure that the
2308 * theoretical ranges in the path components above the leaves are
2309 * correct.
2311 static int ocfs2_rotate_requires_path_adjustment(struct ocfs2_path *left_path,
2312 u32 insert_cpos)
2314 struct ocfs2_extent_list *left_el;
2315 struct ocfs2_extent_rec *rec;
2316 int next_free;
2318 left_el = path_leaf_el(left_path);
2319 next_free = le16_to_cpu(left_el->l_next_free_rec);
2320 rec = &left_el->l_recs[next_free - 1];
2322 if (insert_cpos > le32_to_cpu(rec->e_cpos))
2323 return 1;
2324 return 0;
2327 static int ocfs2_leftmost_rec_contains(struct ocfs2_extent_list *el, u32 cpos)
2329 int next_free = le16_to_cpu(el->l_next_free_rec);
2330 unsigned int range;
2331 struct ocfs2_extent_rec *rec;
2333 if (next_free == 0)
2334 return 0;
2336 rec = &el->l_recs[0];
2337 if (ocfs2_is_empty_extent(rec)) {
2338 /* Empty list. */
2339 if (next_free == 1)
2340 return 0;
2341 rec = &el->l_recs[1];
2344 range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
2345 if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range)
2346 return 1;
2347 return 0;
2351 * Rotate all the records in a btree right one record, starting at insert_cpos.
2353 * The path to the rightmost leaf should be passed in.
2355 * The array is assumed to be large enough to hold an entire path (tree depth).
2357 * Upon successful return from this function:
2359 * - The 'right_path' array will contain a path to the leaf block
2360 * whose range contains e_cpos.
2361 * - That leaf block will have a single empty extent in list index 0.
2362 * - In the case that the rotation requires a post-insert update,
2363 * *ret_left_path will contain a valid path which can be passed to
2364 * ocfs2_insert_path().
2366 static int ocfs2_rotate_tree_right(handle_t *handle,
2367 struct ocfs2_extent_tree *et,
2368 enum ocfs2_split_type split,
2369 u32 insert_cpos,
2370 struct ocfs2_path *right_path,
2371 struct ocfs2_path **ret_left_path)
2373 int ret, start, orig_credits = handle->h_buffer_credits;
2374 u32 cpos;
2375 struct ocfs2_path *left_path = NULL;
2376 struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci);
2378 *ret_left_path = NULL;
2380 left_path = ocfs2_new_path_from_path(right_path);
2381 if (!left_path) {
2382 ret = -ENOMEM;
2383 mlog_errno(ret);
2384 goto out;
2387 ret = ocfs2_find_cpos_for_left_leaf(sb, right_path, &cpos);
2388 if (ret) {
2389 mlog_errno(ret);
2390 goto out;
2393 mlog(0, "Insert: %u, first left path cpos: %u\n", insert_cpos, cpos);
2396 * What we want to do here is:
2398 * 1) Start with the rightmost path.
2400 * 2) Determine a path to the leaf block directly to the left
2401 * of that leaf.
2403 * 3) Determine the 'subtree root' - the lowest level tree node
2404 * which contains a path to both leaves.
2406 * 4) Rotate the subtree.
2408 * 5) Find the next subtree by considering the left path to be
2409 * the new right path.
2411 * The check at the top of this while loop also accepts
2412 * insert_cpos == cpos because cpos is only a _theoretical_
2413 * value to get us the left path - insert_cpos might very well
2414 * be filling that hole.
2416 * Stop at a cpos of '0' because we either started at the
2417 * leftmost branch (i.e., a tree with one branch and a
2418 * rotation inside of it), or we've gone as far as we can in
2419 * rotating subtrees.
2421 while (cpos && insert_cpos <= cpos) {
2422 mlog(0, "Rotating a tree: ins. cpos: %u, left path cpos: %u\n",
2423 insert_cpos, cpos);
2425 ret = ocfs2_find_path(et->et_ci, left_path, cpos);
2426 if (ret) {
2427 mlog_errno(ret);
2428 goto out;
2431 mlog_bug_on_msg(path_leaf_bh(left_path) ==
2432 path_leaf_bh(right_path),
2433 "Owner %llu: error during insert of %u "
2434 "(left path cpos %u) results in two identical "
2435 "paths ending at %llu\n",
2436 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
2437 insert_cpos, cpos,
2438 (unsigned long long)
2439 path_leaf_bh(left_path)->b_blocknr);
2441 if (split == SPLIT_NONE &&
2442 ocfs2_rotate_requires_path_adjustment(left_path,
2443 insert_cpos)) {
2446 * We've rotated the tree as much as we
2447 * should. The rest is up to
2448 * ocfs2_insert_path() to complete, after the
2449 * record insertion. We indicate this
2450 * situation by returning the left path.
2452 * The reason we don't adjust the records here
2453 * before the record insert is that an error
2454 * later might break the rule where a parent
2455 * record e_cpos will reflect the actual
2456 * e_cpos of the 1st nonempty record of the
2457 * child list.
2459 *ret_left_path = left_path;
2460 goto out_ret_path;
2463 start = ocfs2_find_subtree_root(et, left_path, right_path);
2465 mlog(0, "Subtree root at index %d (blk %llu, depth %d)\n",
2466 start,
2467 (unsigned long long) right_path->p_node[start].bh->b_blocknr,
2468 right_path->p_tree_depth);
2470 ret = ocfs2_extend_rotate_transaction(handle, start,
2471 orig_credits, right_path);
2472 if (ret) {
2473 mlog_errno(ret);
2474 goto out;
2477 ret = ocfs2_rotate_subtree_right(handle, et, left_path,
2478 right_path, start);
2479 if (ret) {
2480 mlog_errno(ret);
2481 goto out;
2484 if (split != SPLIT_NONE &&
2485 ocfs2_leftmost_rec_contains(path_leaf_el(right_path),
2486 insert_cpos)) {
2488 * A rotate moves the rightmost left leaf
2489 * record over to the leftmost right leaf
2490 * slot. If we're doing an extent split
2491 * instead of a real insert, then we have to
2492 * check that the extent to be split wasn't
2493 * just moved over. If it was, then we can
2494 * exit here, passing left_path back -
2495 * ocfs2_split_extent() is smart enough to
2496 * search both leaves.
2498 *ret_left_path = left_path;
2499 goto out_ret_path;
2503 * There is no need to re-read the next right path
2504 * as we know that it'll be our current left
2505 * path. Optimize by copying values instead.
2507 ocfs2_mv_path(right_path, left_path);
2509 ret = ocfs2_find_cpos_for_left_leaf(sb, right_path, &cpos);
2510 if (ret) {
2511 mlog_errno(ret);
2512 goto out;
2516 out:
2517 ocfs2_free_path(left_path);
2519 out_ret_path:
2520 return ret;
2523 static int ocfs2_update_edge_lengths(handle_t *handle,
2524 struct ocfs2_extent_tree *et,
2525 int subtree_index, struct ocfs2_path *path)
2527 int i, idx, ret;
2528 struct ocfs2_extent_rec *rec;
2529 struct ocfs2_extent_list *el;
2530 struct ocfs2_extent_block *eb;
2531 u32 range;
2534 * In normal tree rotation process, we will never touch the
2535 * tree branch above subtree_index and ocfs2_extend_rotate_transaction
2536 * doesn't reserve the credits for them either.
2538 * But we do have a special case here which will update the rightmost
2539 * records for all the bh in the path.
2540 * So we have to allocate extra credits and access them.
2542 ret = ocfs2_extend_trans(handle, subtree_index);
2543 if (ret) {
2544 mlog_errno(ret);
2545 goto out;
2548 ret = ocfs2_journal_access_path(et->et_ci, handle, path);
2549 if (ret) {
2550 mlog_errno(ret);
2551 goto out;
2554 /* Path should always be rightmost. */
2555 eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
2556 BUG_ON(eb->h_next_leaf_blk != 0ULL);
2558 el = &eb->h_list;
2559 BUG_ON(le16_to_cpu(el->l_next_free_rec) == 0);
2560 idx = le16_to_cpu(el->l_next_free_rec) - 1;
2561 rec = &el->l_recs[idx];
2562 range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
2564 for (i = 0; i < path->p_tree_depth; i++) {
2565 el = path->p_node[i].el;
2566 idx = le16_to_cpu(el->l_next_free_rec) - 1;
2567 rec = &el->l_recs[idx];
2569 rec->e_int_clusters = cpu_to_le32(range);
2570 le32_add_cpu(&rec->e_int_clusters, -le32_to_cpu(rec->e_cpos));
2572 ocfs2_journal_dirty(handle, path->p_node[i].bh);
2574 out:
2575 return ret;
2578 static void ocfs2_unlink_path(handle_t *handle,
2579 struct ocfs2_extent_tree *et,
2580 struct ocfs2_cached_dealloc_ctxt *dealloc,
2581 struct ocfs2_path *path, int unlink_start)
2583 int ret, i;
2584 struct ocfs2_extent_block *eb;
2585 struct ocfs2_extent_list *el;
2586 struct buffer_head *bh;
2588 for(i = unlink_start; i < path_num_items(path); i++) {
2589 bh = path->p_node[i].bh;
2591 eb = (struct ocfs2_extent_block *)bh->b_data;
2593 * Not all nodes might have had their final count
2594 * decremented by the caller - handle this here.
2596 el = &eb->h_list;
2597 if (le16_to_cpu(el->l_next_free_rec) > 1) {
2598 mlog(ML_ERROR,
2599 "Inode %llu, attempted to remove extent block "
2600 "%llu with %u records\n",
2601 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
2602 (unsigned long long)le64_to_cpu(eb->h_blkno),
2603 le16_to_cpu(el->l_next_free_rec));
2605 ocfs2_journal_dirty(handle, bh);
2606 ocfs2_remove_from_cache(et->et_ci, bh);
2607 continue;
2610 el->l_next_free_rec = 0;
2611 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
2613 ocfs2_journal_dirty(handle, bh);
2615 ret = ocfs2_cache_extent_block_free(dealloc, eb);
2616 if (ret)
2617 mlog_errno(ret);
2619 ocfs2_remove_from_cache(et->et_ci, bh);
2623 static void ocfs2_unlink_subtree(handle_t *handle,
2624 struct ocfs2_extent_tree *et,
2625 struct ocfs2_path *left_path,
2626 struct ocfs2_path *right_path,
2627 int subtree_index,
2628 struct ocfs2_cached_dealloc_ctxt *dealloc)
2630 int i;
2631 struct buffer_head *root_bh = left_path->p_node[subtree_index].bh;
2632 struct ocfs2_extent_list *root_el = left_path->p_node[subtree_index].el;
2633 struct ocfs2_extent_list *el;
2634 struct ocfs2_extent_block *eb;
2636 el = path_leaf_el(left_path);
2638 eb = (struct ocfs2_extent_block *)right_path->p_node[subtree_index + 1].bh->b_data;
2640 for(i = 1; i < le16_to_cpu(root_el->l_next_free_rec); i++)
2641 if (root_el->l_recs[i].e_blkno == eb->h_blkno)
2642 break;
2644 BUG_ON(i >= le16_to_cpu(root_el->l_next_free_rec));
2646 memset(&root_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec));
2647 le16_add_cpu(&root_el->l_next_free_rec, -1);
2649 eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
2650 eb->h_next_leaf_blk = 0;
2652 ocfs2_journal_dirty(handle, root_bh);
2653 ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
2655 ocfs2_unlink_path(handle, et, dealloc, right_path,
2656 subtree_index + 1);
2659 static int ocfs2_rotate_subtree_left(handle_t *handle,
2660 struct ocfs2_extent_tree *et,
2661 struct ocfs2_path *left_path,
2662 struct ocfs2_path *right_path,
2663 int subtree_index,
2664 struct ocfs2_cached_dealloc_ctxt *dealloc,
2665 int *deleted)
2667 int ret, i, del_right_subtree = 0, right_has_empty = 0;
2668 struct buffer_head *root_bh, *et_root_bh = path_root_bh(right_path);
2669 struct ocfs2_extent_list *right_leaf_el, *left_leaf_el;
2670 struct ocfs2_extent_block *eb;
2672 *deleted = 0;
2674 right_leaf_el = path_leaf_el(right_path);
2675 left_leaf_el = path_leaf_el(left_path);
2676 root_bh = left_path->p_node[subtree_index].bh;
2677 BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
2679 if (!ocfs2_is_empty_extent(&left_leaf_el->l_recs[0]))
2680 return 0;
2682 eb = (struct ocfs2_extent_block *)path_leaf_bh(right_path)->b_data;
2683 if (ocfs2_is_empty_extent(&right_leaf_el->l_recs[0])) {
2685 * It's legal for us to proceed if the right leaf is
2686 * the rightmost one and it has an empty extent. There
2687 * are two cases to handle - whether the leaf will be
2688 * empty after removal or not. If the leaf isn't empty
2689 * then just remove the empty extent up front. The
2690 * next block will handle empty leaves by flagging
2691 * them for unlink.
2693 * Non rightmost leaves will throw -EAGAIN and the
2694 * caller can manually move the subtree and retry.
2697 if (eb->h_next_leaf_blk != 0ULL)
2698 return -EAGAIN;
2700 if (le16_to_cpu(right_leaf_el->l_next_free_rec) > 1) {
2701 ret = ocfs2_journal_access_eb(handle, et->et_ci,
2702 path_leaf_bh(right_path),
2703 OCFS2_JOURNAL_ACCESS_WRITE);
2704 if (ret) {
2705 mlog_errno(ret);
2706 goto out;
2709 ocfs2_remove_empty_extent(right_leaf_el);
2710 } else
2711 right_has_empty = 1;
2714 if (eb->h_next_leaf_blk == 0ULL &&
2715 le16_to_cpu(right_leaf_el->l_next_free_rec) == 1) {
2717 * We have to update i_last_eb_blk during the meta
2718 * data delete.
2720 ret = ocfs2_et_root_journal_access(handle, et,
2721 OCFS2_JOURNAL_ACCESS_WRITE);
2722 if (ret) {
2723 mlog_errno(ret);
2724 goto out;
2727 del_right_subtree = 1;
2731 * Getting here with an empty extent in the right path implies
2732 * that it's the rightmost path and will be deleted.
2734 BUG_ON(right_has_empty && !del_right_subtree);
2736 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path,
2737 subtree_index);
2738 if (ret) {
2739 mlog_errno(ret);
2740 goto out;
2743 for(i = subtree_index + 1; i < path_num_items(right_path); i++) {
2744 ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
2745 right_path, i);
2746 if (ret) {
2747 mlog_errno(ret);
2748 goto out;
2751 ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
2752 left_path, i);
2753 if (ret) {
2754 mlog_errno(ret);
2755 goto out;
2759 if (!right_has_empty) {
2761 * Only do this if we're moving a real
2762 * record. Otherwise, the action is delayed until
2763 * after removal of the right path in which case we
2764 * can do a simple shift to remove the empty extent.
2766 ocfs2_rotate_leaf(left_leaf_el, &right_leaf_el->l_recs[0]);
2767 memset(&right_leaf_el->l_recs[0], 0,
2768 sizeof(struct ocfs2_extent_rec));
2770 if (eb->h_next_leaf_blk == 0ULL) {
2772 * Move recs over to get rid of empty extent, decrease
2773 * next_free. This is allowed to remove the last
2774 * extent in our leaf (setting l_next_free_rec to
2775 * zero) - the delete code below won't care.
2777 ocfs2_remove_empty_extent(right_leaf_el);
2780 ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
2781 ocfs2_journal_dirty(handle, path_leaf_bh(right_path));
2783 if (del_right_subtree) {
2784 ocfs2_unlink_subtree(handle, et, left_path, right_path,
2785 subtree_index, dealloc);
2786 ret = ocfs2_update_edge_lengths(handle, et, subtree_index,
2787 left_path);
2788 if (ret) {
2789 mlog_errno(ret);
2790 goto out;
2793 eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
2794 ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno));
2797 * Removal of the extent in the left leaf was skipped
2798 * above so we could delete the right path
2799 * 1st.
2801 if (right_has_empty)
2802 ocfs2_remove_empty_extent(left_leaf_el);
2804 ocfs2_journal_dirty(handle, et_root_bh);
2806 *deleted = 1;
2807 } else
2808 ocfs2_complete_edge_insert(handle, left_path, right_path,
2809 subtree_index);
2811 out:
2812 return ret;
2816 * Given a full path, determine what cpos value would return us a path
2817 * containing the leaf immediately to the right of the current one.
2819 * Will return zero if the path passed in is already the rightmost path.
2821 * This looks similar, but is subtly different to
2822 * ocfs2_find_cpos_for_left_leaf().
2824 int ocfs2_find_cpos_for_right_leaf(struct super_block *sb,
2825 struct ocfs2_path *path, u32 *cpos)
2827 int i, j, ret = 0;
2828 u64 blkno;
2829 struct ocfs2_extent_list *el;
2831 *cpos = 0;
2833 if (path->p_tree_depth == 0)
2834 return 0;
2836 blkno = path_leaf_bh(path)->b_blocknr;
2838 /* Start at the tree node just above the leaf and work our way up. */
2839 i = path->p_tree_depth - 1;
2840 while (i >= 0) {
2841 int next_free;
2843 el = path->p_node[i].el;
2846 * Find the extent record just after the one in our
2847 * path.
2849 next_free = le16_to_cpu(el->l_next_free_rec);
2850 for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) {
2851 if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) {
2852 if (j == (next_free - 1)) {
2853 if (i == 0) {
2855 * We've determined that the
2856 * path specified is already
2857 * the rightmost one - return a
2858 * cpos of zero.
2860 goto out;
2863 * The rightmost record points to our
2864 * leaf - we need to travel up the
2865 * tree one level.
2867 goto next_node;
2870 *cpos = le32_to_cpu(el->l_recs[j + 1].e_cpos);
2871 goto out;
2876 * If we got here, we never found a valid node where
2877 * the tree indicated one should be.
2879 ocfs2_error(sb,
2880 "Invalid extent tree at extent block %llu\n",
2881 (unsigned long long)blkno);
2882 ret = -EROFS;
2883 goto out;
2885 next_node:
2886 blkno = path->p_node[i].bh->b_blocknr;
2887 i--;
2890 out:
2891 return ret;
2894 static int ocfs2_rotate_rightmost_leaf_left(handle_t *handle,
2895 struct ocfs2_extent_tree *et,
2896 struct ocfs2_path *path)
2898 int ret;
2899 struct buffer_head *bh = path_leaf_bh(path);
2900 struct ocfs2_extent_list *el = path_leaf_el(path);
2902 if (!ocfs2_is_empty_extent(&el->l_recs[0]))
2903 return 0;
2905 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, path,
2906 path_num_items(path) - 1);
2907 if (ret) {
2908 mlog_errno(ret);
2909 goto out;
2912 ocfs2_remove_empty_extent(el);
2913 ocfs2_journal_dirty(handle, bh);
2915 out:
2916 return ret;
2919 static int __ocfs2_rotate_tree_left(handle_t *handle,
2920 struct ocfs2_extent_tree *et,
2921 int orig_credits,
2922 struct ocfs2_path *path,
2923 struct ocfs2_cached_dealloc_ctxt *dealloc,
2924 struct ocfs2_path **empty_extent_path)
2926 int ret, subtree_root, deleted;
2927 u32 right_cpos;
2928 struct ocfs2_path *left_path = NULL;
2929 struct ocfs2_path *right_path = NULL;
2930 struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci);
2932 BUG_ON(!ocfs2_is_empty_extent(&(path_leaf_el(path)->l_recs[0])));
2934 *empty_extent_path = NULL;
2936 ret = ocfs2_find_cpos_for_right_leaf(sb, path, &right_cpos);
2937 if (ret) {
2938 mlog_errno(ret);
2939 goto out;
2942 left_path = ocfs2_new_path_from_path(path);
2943 if (!left_path) {
2944 ret = -ENOMEM;
2945 mlog_errno(ret);
2946 goto out;
2949 ocfs2_cp_path(left_path, path);
2951 right_path = ocfs2_new_path_from_path(path);
2952 if (!right_path) {
2953 ret = -ENOMEM;
2954 mlog_errno(ret);
2955 goto out;
2958 while (right_cpos) {
2959 ret = ocfs2_find_path(et->et_ci, right_path, right_cpos);
2960 if (ret) {
2961 mlog_errno(ret);
2962 goto out;
2965 subtree_root = ocfs2_find_subtree_root(et, left_path,
2966 right_path);
2968 mlog(0, "Subtree root at index %d (blk %llu, depth %d)\n",
2969 subtree_root,
2970 (unsigned long long)
2971 right_path->p_node[subtree_root].bh->b_blocknr,
2972 right_path->p_tree_depth);
2974 ret = ocfs2_extend_rotate_transaction(handle, subtree_root,
2975 orig_credits, left_path);
2976 if (ret) {
2977 mlog_errno(ret);
2978 goto out;
2982 * Caller might still want to make changes to the
2983 * tree root, so re-add it to the journal here.
2985 ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
2986 left_path, 0);
2987 if (ret) {
2988 mlog_errno(ret);
2989 goto out;
2992 ret = ocfs2_rotate_subtree_left(handle, et, left_path,
2993 right_path, subtree_root,
2994 dealloc, &deleted);
2995 if (ret == -EAGAIN) {
2997 * The rotation has to temporarily stop due to
2998 * the right subtree having an empty
2999 * extent. Pass it back to the caller for a
3000 * fixup.
3002 *empty_extent_path = right_path;
3003 right_path = NULL;
3004 goto out;
3006 if (ret) {
3007 mlog_errno(ret);
3008 goto out;
3012 * The subtree rotate might have removed records on
3013 * the rightmost edge. If so, then rotation is
3014 * complete.
3016 if (deleted)
3017 break;
3019 ocfs2_mv_path(left_path, right_path);
3021 ret = ocfs2_find_cpos_for_right_leaf(sb, left_path,
3022 &right_cpos);
3023 if (ret) {
3024 mlog_errno(ret);
3025 goto out;
3029 out:
3030 ocfs2_free_path(right_path);
3031 ocfs2_free_path(left_path);
3033 return ret;
3036 static int ocfs2_remove_rightmost_path(handle_t *handle,
3037 struct ocfs2_extent_tree *et,
3038 struct ocfs2_path *path,
3039 struct ocfs2_cached_dealloc_ctxt *dealloc)
3041 int ret, subtree_index;
3042 u32 cpos;
3043 struct ocfs2_path *left_path = NULL;
3044 struct ocfs2_extent_block *eb;
3045 struct ocfs2_extent_list *el;
3048 ret = ocfs2_et_sanity_check(et);
3049 if (ret)
3050 goto out;
3052 * There's two ways we handle this depending on
3053 * whether path is the only existing one.
3055 ret = ocfs2_extend_rotate_transaction(handle, 0,
3056 handle->h_buffer_credits,
3057 path);
3058 if (ret) {
3059 mlog_errno(ret);
3060 goto out;
3063 ret = ocfs2_journal_access_path(et->et_ci, handle, path);
3064 if (ret) {
3065 mlog_errno(ret);
3066 goto out;
3069 ret = ocfs2_find_cpos_for_left_leaf(ocfs2_metadata_cache_get_super(et->et_ci),
3070 path, &cpos);
3071 if (ret) {
3072 mlog_errno(ret);
3073 goto out;
3076 if (cpos) {
3078 * We have a path to the left of this one - it needs
3079 * an update too.
3081 left_path = ocfs2_new_path_from_path(path);
3082 if (!left_path) {
3083 ret = -ENOMEM;
3084 mlog_errno(ret);
3085 goto out;
3088 ret = ocfs2_find_path(et->et_ci, left_path, cpos);
3089 if (ret) {
3090 mlog_errno(ret);
3091 goto out;
3094 ret = ocfs2_journal_access_path(et->et_ci, handle, left_path);
3095 if (ret) {
3096 mlog_errno(ret);
3097 goto out;
3100 subtree_index = ocfs2_find_subtree_root(et, left_path, path);
3102 ocfs2_unlink_subtree(handle, et, left_path, path,
3103 subtree_index, dealloc);
3104 ret = ocfs2_update_edge_lengths(handle, et, subtree_index,
3105 left_path);
3106 if (ret) {
3107 mlog_errno(ret);
3108 goto out;
3111 eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
3112 ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno));
3113 } else {
3115 * 'path' is also the leftmost path which
3116 * means it must be the only one. This gets
3117 * handled differently because we want to
3118 * revert the root back to having extents
3119 * in-line.
3121 ocfs2_unlink_path(handle, et, dealloc, path, 1);
3123 el = et->et_root_el;
3124 el->l_tree_depth = 0;
3125 el->l_next_free_rec = 0;
3126 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
3128 ocfs2_et_set_last_eb_blk(et, 0);
3131 ocfs2_journal_dirty(handle, path_root_bh(path));
3133 out:
3134 ocfs2_free_path(left_path);
3135 return ret;
3139 * Left rotation of btree records.
3141 * In many ways, this is (unsurprisingly) the opposite of right
3142 * rotation. We start at some non-rightmost path containing an empty
3143 * extent in the leaf block. The code works its way to the rightmost
3144 * path by rotating records to the left in every subtree.
3146 * This is used by any code which reduces the number of extent records
3147 * in a leaf. After removal, an empty record should be placed in the
3148 * leftmost list position.
3150 * This won't handle a length update of the rightmost path records if
3151 * the rightmost tree leaf record is removed so the caller is
3152 * responsible for detecting and correcting that.
3154 static int ocfs2_rotate_tree_left(handle_t *handle,
3155 struct ocfs2_extent_tree *et,
3156 struct ocfs2_path *path,
3157 struct ocfs2_cached_dealloc_ctxt *dealloc)
3159 int ret, orig_credits = handle->h_buffer_credits;
3160 struct ocfs2_path *tmp_path = NULL, *restart_path = NULL;
3161 struct ocfs2_extent_block *eb;
3162 struct ocfs2_extent_list *el;
3164 el = path_leaf_el(path);
3165 if (!ocfs2_is_empty_extent(&el->l_recs[0]))
3166 return 0;
3168 if (path->p_tree_depth == 0) {
3169 rightmost_no_delete:
3171 * Inline extents. This is trivially handled, so do
3172 * it up front.
3174 ret = ocfs2_rotate_rightmost_leaf_left(handle, et, path);
3175 if (ret)
3176 mlog_errno(ret);
3177 goto out;
3181 * Handle rightmost branch now. There's several cases:
3182 * 1) simple rotation leaving records in there. That's trivial.
3183 * 2) rotation requiring a branch delete - there's no more
3184 * records left. Two cases of this:
3185 * a) There are branches to the left.
3186 * b) This is also the leftmost (the only) branch.
3188 * 1) is handled via ocfs2_rotate_rightmost_leaf_left()
3189 * 2a) we need the left branch so that we can update it with the unlink
3190 * 2b) we need to bring the root back to inline extents.
3193 eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
3194 el = &eb->h_list;
3195 if (eb->h_next_leaf_blk == 0) {
3197 * This gets a bit tricky if we're going to delete the
3198 * rightmost path. Get the other cases out of the way
3199 * 1st.
3201 if (le16_to_cpu(el->l_next_free_rec) > 1)
3202 goto rightmost_no_delete;
3204 if (le16_to_cpu(el->l_next_free_rec) == 0) {
3205 ret = -EIO;
3206 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
3207 "Owner %llu has empty extent block at %llu",
3208 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
3209 (unsigned long long)le64_to_cpu(eb->h_blkno));
3210 goto out;
3214 * XXX: The caller can not trust "path" any more after
3215 * this as it will have been deleted. What do we do?
3217 * In theory the rotate-for-merge code will never get
3218 * here because it'll always ask for a rotate in a
3219 * nonempty list.
3222 ret = ocfs2_remove_rightmost_path(handle, et, path,
3223 dealloc);
3224 if (ret)
3225 mlog_errno(ret);
3226 goto out;
3230 * Now we can loop, remembering the path we get from -EAGAIN
3231 * and restarting from there.
3233 try_rotate:
3234 ret = __ocfs2_rotate_tree_left(handle, et, orig_credits, path,
3235 dealloc, &restart_path);
3236 if (ret && ret != -EAGAIN) {
3237 mlog_errno(ret);
3238 goto out;
3241 while (ret == -EAGAIN) {
3242 tmp_path = restart_path;
3243 restart_path = NULL;
3245 ret = __ocfs2_rotate_tree_left(handle, et, orig_credits,
3246 tmp_path, dealloc,
3247 &restart_path);
3248 if (ret && ret != -EAGAIN) {
3249 mlog_errno(ret);
3250 goto out;
3253 ocfs2_free_path(tmp_path);
3254 tmp_path = NULL;
3256 if (ret == 0)
3257 goto try_rotate;
3260 out:
3261 ocfs2_free_path(tmp_path);
3262 ocfs2_free_path(restart_path);
3263 return ret;
3266 static void ocfs2_cleanup_merge(struct ocfs2_extent_list *el,
3267 int index)
3269 struct ocfs2_extent_rec *rec = &el->l_recs[index];
3270 unsigned int size;
3272 if (rec->e_leaf_clusters == 0) {
3274 * We consumed all of the merged-from record. An empty
3275 * extent cannot exist anywhere but the 1st array
3276 * position, so move things over if the merged-from
3277 * record doesn't occupy that position.
3279 * This creates a new empty extent so the caller
3280 * should be smart enough to have removed any existing
3281 * ones.
3283 if (index > 0) {
3284 BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0]));
3285 size = index * sizeof(struct ocfs2_extent_rec);
3286 memmove(&el->l_recs[1], &el->l_recs[0], size);
3290 * Always memset - the caller doesn't check whether it
3291 * created an empty extent, so there could be junk in
3292 * the other fields.
3294 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
3298 static int ocfs2_get_right_path(struct ocfs2_extent_tree *et,
3299 struct ocfs2_path *left_path,
3300 struct ocfs2_path **ret_right_path)
3302 int ret;
3303 u32 right_cpos;
3304 struct ocfs2_path *right_path = NULL;
3305 struct ocfs2_extent_list *left_el;
3307 *ret_right_path = NULL;
3309 /* This function shouldn't be called for non-trees. */
3310 BUG_ON(left_path->p_tree_depth == 0);
3312 left_el = path_leaf_el(left_path);
3313 BUG_ON(left_el->l_next_free_rec != left_el->l_count);
3315 ret = ocfs2_find_cpos_for_right_leaf(ocfs2_metadata_cache_get_super(et->et_ci),
3316 left_path, &right_cpos);
3317 if (ret) {
3318 mlog_errno(ret);
3319 goto out;
3322 /* This function shouldn't be called for the rightmost leaf. */
3323 BUG_ON(right_cpos == 0);
3325 right_path = ocfs2_new_path_from_path(left_path);
3326 if (!right_path) {
3327 ret = -ENOMEM;
3328 mlog_errno(ret);
3329 goto out;
3332 ret = ocfs2_find_path(et->et_ci, right_path, right_cpos);
3333 if (ret) {
3334 mlog_errno(ret);
3335 goto out;
3338 *ret_right_path = right_path;
3339 out:
3340 if (ret)
3341 ocfs2_free_path(right_path);
3342 return ret;
3346 * Remove split_rec clusters from the record at index and merge them
3347 * onto the beginning of the record "next" to it.
3348 * For index < l_count - 1, the next means the extent rec at index + 1.
3349 * For index == l_count - 1, the "next" means the 1st extent rec of the
3350 * next extent block.
3352 static int ocfs2_merge_rec_right(struct ocfs2_path *left_path,
3353 handle_t *handle,
3354 struct ocfs2_extent_tree *et,
3355 struct ocfs2_extent_rec *split_rec,
3356 int index)
3358 int ret, next_free, i;
3359 unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters);
3360 struct ocfs2_extent_rec *left_rec;
3361 struct ocfs2_extent_rec *right_rec;
3362 struct ocfs2_extent_list *right_el;
3363 struct ocfs2_path *right_path = NULL;
3364 int subtree_index = 0;
3365 struct ocfs2_extent_list *el = path_leaf_el(left_path);
3366 struct buffer_head *bh = path_leaf_bh(left_path);
3367 struct buffer_head *root_bh = NULL;
3369 BUG_ON(index >= le16_to_cpu(el->l_next_free_rec));
3370 left_rec = &el->l_recs[index];
3372 if (index == le16_to_cpu(el->l_next_free_rec) - 1 &&
3373 le16_to_cpu(el->l_next_free_rec) == le16_to_cpu(el->l_count)) {
3374 /* we meet with a cross extent block merge. */
3375 ret = ocfs2_get_right_path(et, left_path, &right_path);
3376 if (ret) {
3377 mlog_errno(ret);
3378 goto out;
3381 right_el = path_leaf_el(right_path);
3382 next_free = le16_to_cpu(right_el->l_next_free_rec);
3383 BUG_ON(next_free <= 0);
3384 right_rec = &right_el->l_recs[0];
3385 if (ocfs2_is_empty_extent(right_rec)) {
3386 BUG_ON(next_free <= 1);
3387 right_rec = &right_el->l_recs[1];
3390 BUG_ON(le32_to_cpu(left_rec->e_cpos) +
3391 le16_to_cpu(left_rec->e_leaf_clusters) !=
3392 le32_to_cpu(right_rec->e_cpos));
3394 subtree_index = ocfs2_find_subtree_root(et, left_path,
3395 right_path);
3397 ret = ocfs2_extend_rotate_transaction(handle, subtree_index,
3398 handle->h_buffer_credits,
3399 right_path);
3400 if (ret) {
3401 mlog_errno(ret);
3402 goto out;
3405 root_bh = left_path->p_node[subtree_index].bh;
3406 BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
3408 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path,
3409 subtree_index);
3410 if (ret) {
3411 mlog_errno(ret);
3412 goto out;
3415 for (i = subtree_index + 1;
3416 i < path_num_items(right_path); i++) {
3417 ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
3418 right_path, i);
3419 if (ret) {
3420 mlog_errno(ret);
3421 goto out;
3424 ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
3425 left_path, i);
3426 if (ret) {
3427 mlog_errno(ret);
3428 goto out;
3432 } else {
3433 BUG_ON(index == le16_to_cpu(el->l_next_free_rec) - 1);
3434 right_rec = &el->l_recs[index + 1];
3437 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, left_path,
3438 path_num_items(left_path) - 1);
3439 if (ret) {
3440 mlog_errno(ret);
3441 goto out;
3444 le16_add_cpu(&left_rec->e_leaf_clusters, -split_clusters);
3446 le32_add_cpu(&right_rec->e_cpos, -split_clusters);
3447 le64_add_cpu(&right_rec->e_blkno,
3448 -ocfs2_clusters_to_blocks(ocfs2_metadata_cache_get_super(et->et_ci),
3449 split_clusters));
3450 le16_add_cpu(&right_rec->e_leaf_clusters, split_clusters);
3452 ocfs2_cleanup_merge(el, index);
3454 ocfs2_journal_dirty(handle, bh);
3455 if (right_path) {
3456 ocfs2_journal_dirty(handle, path_leaf_bh(right_path));
3457 ocfs2_complete_edge_insert(handle, left_path, right_path,
3458 subtree_index);
3460 out:
3461 if (right_path)
3462 ocfs2_free_path(right_path);
3463 return ret;
3466 static int ocfs2_get_left_path(struct ocfs2_extent_tree *et,
3467 struct ocfs2_path *right_path,
3468 struct ocfs2_path **ret_left_path)
3470 int ret;
3471 u32 left_cpos;
3472 struct ocfs2_path *left_path = NULL;
3474 *ret_left_path = NULL;
3476 /* This function shouldn't be called for non-trees. */
3477 BUG_ON(right_path->p_tree_depth == 0);
3479 ret = ocfs2_find_cpos_for_left_leaf(ocfs2_metadata_cache_get_super(et->et_ci),
3480 right_path, &left_cpos);
3481 if (ret) {
3482 mlog_errno(ret);
3483 goto out;
3486 /* This function shouldn't be called for the leftmost leaf. */
3487 BUG_ON(left_cpos == 0);
3489 left_path = ocfs2_new_path_from_path(right_path);
3490 if (!left_path) {
3491 ret = -ENOMEM;
3492 mlog_errno(ret);
3493 goto out;
3496 ret = ocfs2_find_path(et->et_ci, left_path, left_cpos);
3497 if (ret) {
3498 mlog_errno(ret);
3499 goto out;
3502 *ret_left_path = left_path;
3503 out:
3504 if (ret)
3505 ocfs2_free_path(left_path);
3506 return ret;
3510 * Remove split_rec clusters from the record at index and merge them
3511 * onto the tail of the record "before" it.
3512 * For index > 0, the "before" means the extent rec at index - 1.
3514 * For index == 0, the "before" means the last record of the previous
3515 * extent block. And there is also a situation that we may need to
3516 * remove the rightmost leaf extent block in the right_path and change
3517 * the right path to indicate the new rightmost path.
3519 static int ocfs2_merge_rec_left(struct ocfs2_path *right_path,
3520 handle_t *handle,
3521 struct ocfs2_extent_tree *et,
3522 struct ocfs2_extent_rec *split_rec,
3523 struct ocfs2_cached_dealloc_ctxt *dealloc,
3524 int index)
3526 int ret, i, subtree_index = 0, has_empty_extent = 0;
3527 unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters);
3528 struct ocfs2_extent_rec *left_rec;
3529 struct ocfs2_extent_rec *right_rec;
3530 struct ocfs2_extent_list *el = path_leaf_el(right_path);
3531 struct buffer_head *bh = path_leaf_bh(right_path);
3532 struct buffer_head *root_bh = NULL;
3533 struct ocfs2_path *left_path = NULL;
3534 struct ocfs2_extent_list *left_el;
3536 BUG_ON(index < 0);
3538 right_rec = &el->l_recs[index];
3539 if (index == 0) {
3540 /* we meet with a cross extent block merge. */
3541 ret = ocfs2_get_left_path(et, right_path, &left_path);
3542 if (ret) {
3543 mlog_errno(ret);
3544 goto out;
3547 left_el = path_leaf_el(left_path);
3548 BUG_ON(le16_to_cpu(left_el->l_next_free_rec) !=
3549 le16_to_cpu(left_el->l_count));
3551 left_rec = &left_el->l_recs[
3552 le16_to_cpu(left_el->l_next_free_rec) - 1];
3553 BUG_ON(le32_to_cpu(left_rec->e_cpos) +
3554 le16_to_cpu(left_rec->e_leaf_clusters) !=
3555 le32_to_cpu(split_rec->e_cpos));
3557 subtree_index = ocfs2_find_subtree_root(et, left_path,
3558 right_path);
3560 ret = ocfs2_extend_rotate_transaction(handle, subtree_index,
3561 handle->h_buffer_credits,
3562 left_path);
3563 if (ret) {
3564 mlog_errno(ret);
3565 goto out;
3568 root_bh = left_path->p_node[subtree_index].bh;
3569 BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
3571 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path,
3572 subtree_index);
3573 if (ret) {
3574 mlog_errno(ret);
3575 goto out;
3578 for (i = subtree_index + 1;
3579 i < path_num_items(right_path); i++) {
3580 ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
3581 right_path, i);
3582 if (ret) {
3583 mlog_errno(ret);
3584 goto out;
3587 ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
3588 left_path, i);
3589 if (ret) {
3590 mlog_errno(ret);
3591 goto out;
3594 } else {
3595 left_rec = &el->l_recs[index - 1];
3596 if (ocfs2_is_empty_extent(&el->l_recs[0]))
3597 has_empty_extent = 1;
3600 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path,
3601 path_num_items(right_path) - 1);
3602 if (ret) {
3603 mlog_errno(ret);
3604 goto out;
3607 if (has_empty_extent && index == 1) {
3609 * The easy case - we can just plop the record right in.
3611 *left_rec = *split_rec;
3613 has_empty_extent = 0;
3614 } else
3615 le16_add_cpu(&left_rec->e_leaf_clusters, split_clusters);
3617 le32_add_cpu(&right_rec->e_cpos, split_clusters);
3618 le64_add_cpu(&right_rec->e_blkno,
3619 ocfs2_clusters_to_blocks(ocfs2_metadata_cache_get_super(et->et_ci),
3620 split_clusters));
3621 le16_add_cpu(&right_rec->e_leaf_clusters, -split_clusters);
3623 ocfs2_cleanup_merge(el, index);
3625 ocfs2_journal_dirty(handle, bh);
3626 if (left_path) {
3627 ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
3630 * In the situation that the right_rec is empty and the extent
3631 * block is empty also, ocfs2_complete_edge_insert can't handle
3632 * it and we need to delete the right extent block.
3634 if (le16_to_cpu(right_rec->e_leaf_clusters) == 0 &&
3635 le16_to_cpu(el->l_next_free_rec) == 1) {
3637 ret = ocfs2_remove_rightmost_path(handle, et,
3638 right_path,
3639 dealloc);
3640 if (ret) {
3641 mlog_errno(ret);
3642 goto out;
3645 /* Now the rightmost extent block has been deleted.
3646 * So we use the new rightmost path.
3648 ocfs2_mv_path(right_path, left_path);
3649 left_path = NULL;
3650 } else
3651 ocfs2_complete_edge_insert(handle, left_path,
3652 right_path, subtree_index);
3654 out:
3655 if (left_path)
3656 ocfs2_free_path(left_path);
3657 return ret;
3660 static int ocfs2_try_to_merge_extent(handle_t *handle,
3661 struct ocfs2_extent_tree *et,
3662 struct ocfs2_path *path,
3663 int split_index,
3664 struct ocfs2_extent_rec *split_rec,
3665 struct ocfs2_cached_dealloc_ctxt *dealloc,
3666 struct ocfs2_merge_ctxt *ctxt)
3668 int ret = 0;
3669 struct ocfs2_extent_list *el = path_leaf_el(path);
3670 struct ocfs2_extent_rec *rec = &el->l_recs[split_index];
3672 BUG_ON(ctxt->c_contig_type == CONTIG_NONE);
3674 if (ctxt->c_split_covers_rec && ctxt->c_has_empty_extent) {
3676 * The merge code will need to create an empty
3677 * extent to take the place of the newly
3678 * emptied slot. Remove any pre-existing empty
3679 * extents - having more than one in a leaf is
3680 * illegal.
3682 ret = ocfs2_rotate_tree_left(handle, et, path, dealloc);
3683 if (ret) {
3684 mlog_errno(ret);
3685 goto out;
3687 split_index--;
3688 rec = &el->l_recs[split_index];
3691 if (ctxt->c_contig_type == CONTIG_LEFTRIGHT) {
3693 * Left-right contig implies this.
3695 BUG_ON(!ctxt->c_split_covers_rec);
3698 * Since the leftright insert always covers the entire
3699 * extent, this call will delete the insert record
3700 * entirely, resulting in an empty extent record added to
3701 * the extent block.
3703 * Since the adding of an empty extent shifts
3704 * everything back to the right, there's no need to
3705 * update split_index here.
3707 * When the split_index is zero, we need to merge it to the
3708 * prevoius extent block. It is more efficient and easier
3709 * if we do merge_right first and merge_left later.
3711 ret = ocfs2_merge_rec_right(path, handle, et, split_rec,
3712 split_index);
3713 if (ret) {
3714 mlog_errno(ret);
3715 goto out;
3719 * We can only get this from logic error above.
3721 BUG_ON(!ocfs2_is_empty_extent(&el->l_recs[0]));
3723 /* The merge left us with an empty extent, remove it. */
3724 ret = ocfs2_rotate_tree_left(handle, et, path, dealloc);
3725 if (ret) {
3726 mlog_errno(ret);
3727 goto out;
3730 rec = &el->l_recs[split_index];
3733 * Note that we don't pass split_rec here on purpose -
3734 * we've merged it into the rec already.
3736 ret = ocfs2_merge_rec_left(path, handle, et, rec,
3737 dealloc, split_index);
3739 if (ret) {
3740 mlog_errno(ret);
3741 goto out;
3744 ret = ocfs2_rotate_tree_left(handle, et, path, dealloc);
3746 * Error from this last rotate is not critical, so
3747 * print but don't bubble it up.
3749 if (ret)
3750 mlog_errno(ret);
3751 ret = 0;
3752 } else {
3754 * Merge a record to the left or right.
3756 * 'contig_type' is relative to the existing record,
3757 * so for example, if we're "right contig", it's to
3758 * the record on the left (hence the left merge).
3760 if (ctxt->c_contig_type == CONTIG_RIGHT) {
3761 ret = ocfs2_merge_rec_left(path, handle, et,
3762 split_rec, dealloc,
3763 split_index);
3764 if (ret) {
3765 mlog_errno(ret);
3766 goto out;
3768 } else {
3769 ret = ocfs2_merge_rec_right(path, handle,
3770 et, split_rec,
3771 split_index);
3772 if (ret) {
3773 mlog_errno(ret);
3774 goto out;
3778 if (ctxt->c_split_covers_rec) {
3780 * The merge may have left an empty extent in
3781 * our leaf. Try to rotate it away.
3783 ret = ocfs2_rotate_tree_left(handle, et, path,
3784 dealloc);
3785 if (ret)
3786 mlog_errno(ret);
3787 ret = 0;
3791 out:
3792 return ret;
3795 static void ocfs2_subtract_from_rec(struct super_block *sb,
3796 enum ocfs2_split_type split,
3797 struct ocfs2_extent_rec *rec,
3798 struct ocfs2_extent_rec *split_rec)
3800 u64 len_blocks;
3802 len_blocks = ocfs2_clusters_to_blocks(sb,
3803 le16_to_cpu(split_rec->e_leaf_clusters));
3805 if (split == SPLIT_LEFT) {
3807 * Region is on the left edge of the existing
3808 * record.
3810 le32_add_cpu(&rec->e_cpos,
3811 le16_to_cpu(split_rec->e_leaf_clusters));
3812 le64_add_cpu(&rec->e_blkno, len_blocks);
3813 le16_add_cpu(&rec->e_leaf_clusters,
3814 -le16_to_cpu(split_rec->e_leaf_clusters));
3815 } else {
3817 * Region is on the right edge of the existing
3818 * record.
3820 le16_add_cpu(&rec->e_leaf_clusters,
3821 -le16_to_cpu(split_rec->e_leaf_clusters));
3826 * Do the final bits of extent record insertion at the target leaf
3827 * list. If this leaf is part of an allocation tree, it is assumed
3828 * that the tree above has been prepared.
3830 static void ocfs2_insert_at_leaf(struct ocfs2_extent_tree *et,
3831 struct ocfs2_extent_rec *insert_rec,
3832 struct ocfs2_extent_list *el,
3833 struct ocfs2_insert_type *insert)
3835 int i = insert->ins_contig_index;
3836 unsigned int range;
3837 struct ocfs2_extent_rec *rec;
3839 BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
3841 if (insert->ins_split != SPLIT_NONE) {
3842 i = ocfs2_search_extent_list(el, le32_to_cpu(insert_rec->e_cpos));
3843 BUG_ON(i == -1);
3844 rec = &el->l_recs[i];
3845 ocfs2_subtract_from_rec(ocfs2_metadata_cache_get_super(et->et_ci),
3846 insert->ins_split, rec,
3847 insert_rec);
3848 goto rotate;
3852 * Contiguous insert - either left or right.
3854 if (insert->ins_contig != CONTIG_NONE) {
3855 rec = &el->l_recs[i];
3856 if (insert->ins_contig == CONTIG_LEFT) {
3857 rec->e_blkno = insert_rec->e_blkno;
3858 rec->e_cpos = insert_rec->e_cpos;
3860 le16_add_cpu(&rec->e_leaf_clusters,
3861 le16_to_cpu(insert_rec->e_leaf_clusters));
3862 return;
3866 * Handle insert into an empty leaf.
3868 if (le16_to_cpu(el->l_next_free_rec) == 0 ||
3869 ((le16_to_cpu(el->l_next_free_rec) == 1) &&
3870 ocfs2_is_empty_extent(&el->l_recs[0]))) {
3871 el->l_recs[0] = *insert_rec;
3872 el->l_next_free_rec = cpu_to_le16(1);
3873 return;
3877 * Appending insert.
3879 if (insert->ins_appending == APPEND_TAIL) {
3880 i = le16_to_cpu(el->l_next_free_rec) - 1;
3881 rec = &el->l_recs[i];
3882 range = le32_to_cpu(rec->e_cpos)
3883 + le16_to_cpu(rec->e_leaf_clusters);
3884 BUG_ON(le32_to_cpu(insert_rec->e_cpos) < range);
3886 mlog_bug_on_msg(le16_to_cpu(el->l_next_free_rec) >=
3887 le16_to_cpu(el->l_count),
3888 "owner %llu, depth %u, count %u, next free %u, "
3889 "rec.cpos %u, rec.clusters %u, "
3890 "insert.cpos %u, insert.clusters %u\n",
3891 ocfs2_metadata_cache_owner(et->et_ci),
3892 le16_to_cpu(el->l_tree_depth),
3893 le16_to_cpu(el->l_count),
3894 le16_to_cpu(el->l_next_free_rec),
3895 le32_to_cpu(el->l_recs[i].e_cpos),
3896 le16_to_cpu(el->l_recs[i].e_leaf_clusters),
3897 le32_to_cpu(insert_rec->e_cpos),
3898 le16_to_cpu(insert_rec->e_leaf_clusters));
3899 i++;
3900 el->l_recs[i] = *insert_rec;
3901 le16_add_cpu(&el->l_next_free_rec, 1);
3902 return;
3905 rotate:
3907 * Ok, we have to rotate.
3909 * At this point, it is safe to assume that inserting into an
3910 * empty leaf and appending to a leaf have both been handled
3911 * above.
3913 * This leaf needs to have space, either by the empty 1st
3914 * extent record, or by virtue of an l_next_rec < l_count.
3916 ocfs2_rotate_leaf(el, insert_rec);
3919 static void ocfs2_adjust_rightmost_records(handle_t *handle,
3920 struct ocfs2_extent_tree *et,
3921 struct ocfs2_path *path,
3922 struct ocfs2_extent_rec *insert_rec)
3924 int ret, i, next_free;
3925 struct buffer_head *bh;
3926 struct ocfs2_extent_list *el;
3927 struct ocfs2_extent_rec *rec;
3930 * Update everything except the leaf block.
3932 for (i = 0; i < path->p_tree_depth; i++) {
3933 bh = path->p_node[i].bh;
3934 el = path->p_node[i].el;
3936 next_free = le16_to_cpu(el->l_next_free_rec);
3937 if (next_free == 0) {
3938 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
3939 "Owner %llu has a bad extent list",
3940 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci));
3941 ret = -EIO;
3942 return;
3945 rec = &el->l_recs[next_free - 1];
3947 rec->e_int_clusters = insert_rec->e_cpos;
3948 le32_add_cpu(&rec->e_int_clusters,
3949 le16_to_cpu(insert_rec->e_leaf_clusters));
3950 le32_add_cpu(&rec->e_int_clusters,
3951 -le32_to_cpu(rec->e_cpos));
3953 ocfs2_journal_dirty(handle, bh);
3957 static int ocfs2_append_rec_to_path(handle_t *handle,
3958 struct ocfs2_extent_tree *et,
3959 struct ocfs2_extent_rec *insert_rec,
3960 struct ocfs2_path *right_path,
3961 struct ocfs2_path **ret_left_path)
3963 int ret, next_free;
3964 struct ocfs2_extent_list *el;
3965 struct ocfs2_path *left_path = NULL;
3967 *ret_left_path = NULL;
3970 * This shouldn't happen for non-trees. The extent rec cluster
3971 * count manipulation below only works for interior nodes.
3973 BUG_ON(right_path->p_tree_depth == 0);
3976 * If our appending insert is at the leftmost edge of a leaf,
3977 * then we might need to update the rightmost records of the
3978 * neighboring path.
3980 el = path_leaf_el(right_path);
3981 next_free = le16_to_cpu(el->l_next_free_rec);
3982 if (next_free == 0 ||
3983 (next_free == 1 && ocfs2_is_empty_extent(&el->l_recs[0]))) {
3984 u32 left_cpos;
3986 ret = ocfs2_find_cpos_for_left_leaf(ocfs2_metadata_cache_get_super(et->et_ci),
3987 right_path, &left_cpos);
3988 if (ret) {
3989 mlog_errno(ret);
3990 goto out;
3993 mlog(0, "Append may need a left path update. cpos: %u, "
3994 "left_cpos: %u\n", le32_to_cpu(insert_rec->e_cpos),
3995 left_cpos);
3998 * No need to worry if the append is already in the
3999 * leftmost leaf.
4001 if (left_cpos) {
4002 left_path = ocfs2_new_path_from_path(right_path);
4003 if (!left_path) {
4004 ret = -ENOMEM;
4005 mlog_errno(ret);
4006 goto out;
4009 ret = ocfs2_find_path(et->et_ci, left_path,
4010 left_cpos);
4011 if (ret) {
4012 mlog_errno(ret);
4013 goto out;
4017 * ocfs2_insert_path() will pass the left_path to the
4018 * journal for us.
4023 ret = ocfs2_journal_access_path(et->et_ci, handle, right_path);
4024 if (ret) {
4025 mlog_errno(ret);
4026 goto out;
4029 ocfs2_adjust_rightmost_records(handle, et, right_path, insert_rec);
4031 *ret_left_path = left_path;
4032 ret = 0;
4033 out:
4034 if (ret != 0)
4035 ocfs2_free_path(left_path);
4037 return ret;
4040 static void ocfs2_split_record(struct ocfs2_extent_tree *et,
4041 struct ocfs2_path *left_path,
4042 struct ocfs2_path *right_path,
4043 struct ocfs2_extent_rec *split_rec,
4044 enum ocfs2_split_type split)
4046 int index;
4047 u32 cpos = le32_to_cpu(split_rec->e_cpos);
4048 struct ocfs2_extent_list *left_el = NULL, *right_el, *insert_el, *el;
4049 struct ocfs2_extent_rec *rec, *tmprec;
4051 right_el = path_leaf_el(right_path);
4052 if (left_path)
4053 left_el = path_leaf_el(left_path);
4055 el = right_el;
4056 insert_el = right_el;
4057 index = ocfs2_search_extent_list(el, cpos);
4058 if (index != -1) {
4059 if (index == 0 && left_path) {
4060 BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0]));
4063 * This typically means that the record
4064 * started in the left path but moved to the
4065 * right as a result of rotation. We either
4066 * move the existing record to the left, or we
4067 * do the later insert there.
4069 * In this case, the left path should always
4070 * exist as the rotate code will have passed
4071 * it back for a post-insert update.
4074 if (split == SPLIT_LEFT) {
4076 * It's a left split. Since we know
4077 * that the rotate code gave us an
4078 * empty extent in the left path, we
4079 * can just do the insert there.
4081 insert_el = left_el;
4082 } else {
4084 * Right split - we have to move the
4085 * existing record over to the left
4086 * leaf. The insert will be into the
4087 * newly created empty extent in the
4088 * right leaf.
4090 tmprec = &right_el->l_recs[index];
4091 ocfs2_rotate_leaf(left_el, tmprec);
4092 el = left_el;
4094 memset(tmprec, 0, sizeof(*tmprec));
4095 index = ocfs2_search_extent_list(left_el, cpos);
4096 BUG_ON(index == -1);
4099 } else {
4100 BUG_ON(!left_path);
4101 BUG_ON(!ocfs2_is_empty_extent(&left_el->l_recs[0]));
4103 * Left path is easy - we can just allow the insert to
4104 * happen.
4106 el = left_el;
4107 insert_el = left_el;
4108 index = ocfs2_search_extent_list(el, cpos);
4109 BUG_ON(index == -1);
4112 rec = &el->l_recs[index];
4113 ocfs2_subtract_from_rec(ocfs2_metadata_cache_get_super(et->et_ci),
4114 split, rec, split_rec);
4115 ocfs2_rotate_leaf(insert_el, split_rec);
4119 * This function only does inserts on an allocation b-tree. For tree
4120 * depth = 0, ocfs2_insert_at_leaf() is called directly.
4122 * right_path is the path we want to do the actual insert
4123 * in. left_path should only be passed in if we need to update that
4124 * portion of the tree after an edge insert.
4126 static int ocfs2_insert_path(handle_t *handle,
4127 struct ocfs2_extent_tree *et,
4128 struct ocfs2_path *left_path,
4129 struct ocfs2_path *right_path,
4130 struct ocfs2_extent_rec *insert_rec,
4131 struct ocfs2_insert_type *insert)
4133 int ret, subtree_index;
4134 struct buffer_head *leaf_bh = path_leaf_bh(right_path);
4136 if (left_path) {
4138 * There's a chance that left_path got passed back to
4139 * us without being accounted for in the
4140 * journal. Extend our transaction here to be sure we
4141 * can change those blocks.
4143 ret = ocfs2_extend_trans(handle, left_path->p_tree_depth);
4144 if (ret < 0) {
4145 mlog_errno(ret);
4146 goto out;
4149 ret = ocfs2_journal_access_path(et->et_ci, handle, left_path);
4150 if (ret < 0) {
4151 mlog_errno(ret);
4152 goto out;
4157 * Pass both paths to the journal. The majority of inserts
4158 * will be touching all components anyway.
4160 ret = ocfs2_journal_access_path(et->et_ci, handle, right_path);
4161 if (ret < 0) {
4162 mlog_errno(ret);
4163 goto out;
4166 if (insert->ins_split != SPLIT_NONE) {
4168 * We could call ocfs2_insert_at_leaf() for some types
4169 * of splits, but it's easier to just let one separate
4170 * function sort it all out.
4172 ocfs2_split_record(et, left_path, right_path,
4173 insert_rec, insert->ins_split);
4176 * Split might have modified either leaf and we don't
4177 * have a guarantee that the later edge insert will
4178 * dirty this for us.
4180 if (left_path)
4181 ocfs2_journal_dirty(handle,
4182 path_leaf_bh(left_path));
4183 } else
4184 ocfs2_insert_at_leaf(et, insert_rec, path_leaf_el(right_path),
4185 insert);
4187 ocfs2_journal_dirty(handle, leaf_bh);
4189 if (left_path) {
4191 * The rotate code has indicated that we need to fix
4192 * up portions of the tree after the insert.
4194 * XXX: Should we extend the transaction here?
4196 subtree_index = ocfs2_find_subtree_root(et, left_path,
4197 right_path);
4198 ocfs2_complete_edge_insert(handle, left_path, right_path,
4199 subtree_index);
4202 ret = 0;
4203 out:
4204 return ret;
4207 static int ocfs2_do_insert_extent(handle_t *handle,
4208 struct ocfs2_extent_tree *et,
4209 struct ocfs2_extent_rec *insert_rec,
4210 struct ocfs2_insert_type *type)
4212 int ret, rotate = 0;
4213 u32 cpos;
4214 struct ocfs2_path *right_path = NULL;
4215 struct ocfs2_path *left_path = NULL;
4216 struct ocfs2_extent_list *el;
4218 el = et->et_root_el;
4220 ret = ocfs2_et_root_journal_access(handle, et,
4221 OCFS2_JOURNAL_ACCESS_WRITE);
4222 if (ret) {
4223 mlog_errno(ret);
4224 goto out;
4227 if (le16_to_cpu(el->l_tree_depth) == 0) {
4228 ocfs2_insert_at_leaf(et, insert_rec, el, type);
4229 goto out_update_clusters;
4232 right_path = ocfs2_new_path_from_et(et);
4233 if (!right_path) {
4234 ret = -ENOMEM;
4235 mlog_errno(ret);
4236 goto out;
4240 * Determine the path to start with. Rotations need the
4241 * rightmost path, everything else can go directly to the
4242 * target leaf.
4244 cpos = le32_to_cpu(insert_rec->e_cpos);
4245 if (type->ins_appending == APPEND_NONE &&
4246 type->ins_contig == CONTIG_NONE) {
4247 rotate = 1;
4248 cpos = UINT_MAX;
4251 ret = ocfs2_find_path(et->et_ci, right_path, cpos);
4252 if (ret) {
4253 mlog_errno(ret);
4254 goto out;
4258 * Rotations and appends need special treatment - they modify
4259 * parts of the tree's above them.
4261 * Both might pass back a path immediate to the left of the
4262 * one being inserted to. This will be cause
4263 * ocfs2_insert_path() to modify the rightmost records of
4264 * left_path to account for an edge insert.
4266 * XXX: When modifying this code, keep in mind that an insert
4267 * can wind up skipping both of these two special cases...
4269 if (rotate) {
4270 ret = ocfs2_rotate_tree_right(handle, et, type->ins_split,
4271 le32_to_cpu(insert_rec->e_cpos),
4272 right_path, &left_path);
4273 if (ret) {
4274 mlog_errno(ret);
4275 goto out;
4279 * ocfs2_rotate_tree_right() might have extended the
4280 * transaction without re-journaling our tree root.
4282 ret = ocfs2_et_root_journal_access(handle, et,
4283 OCFS2_JOURNAL_ACCESS_WRITE);
4284 if (ret) {
4285 mlog_errno(ret);
4286 goto out;
4288 } else if (type->ins_appending == APPEND_TAIL
4289 && type->ins_contig != CONTIG_LEFT) {
4290 ret = ocfs2_append_rec_to_path(handle, et, insert_rec,
4291 right_path, &left_path);
4292 if (ret) {
4293 mlog_errno(ret);
4294 goto out;
4298 ret = ocfs2_insert_path(handle, et, left_path, right_path,
4299 insert_rec, type);
4300 if (ret) {
4301 mlog_errno(ret);
4302 goto out;
4305 out_update_clusters:
4306 if (type->ins_split == SPLIT_NONE)
4307 ocfs2_et_update_clusters(et,
4308 le16_to_cpu(insert_rec->e_leaf_clusters));
4310 ocfs2_journal_dirty(handle, et->et_root_bh);
4312 out:
4313 ocfs2_free_path(left_path);
4314 ocfs2_free_path(right_path);
4316 return ret;
4319 static enum ocfs2_contig_type
4320 ocfs2_figure_merge_contig_type(struct ocfs2_extent_tree *et,
4321 struct ocfs2_path *path,
4322 struct ocfs2_extent_list *el, int index,
4323 struct ocfs2_extent_rec *split_rec)
4325 int status;
4326 enum ocfs2_contig_type ret = CONTIG_NONE;
4327 u32 left_cpos, right_cpos;
4328 struct ocfs2_extent_rec *rec = NULL;
4329 struct ocfs2_extent_list *new_el;
4330 struct ocfs2_path *left_path = NULL, *right_path = NULL;
4331 struct buffer_head *bh;
4332 struct ocfs2_extent_block *eb;
4333 struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci);
4335 if (index > 0) {
4336 rec = &el->l_recs[index - 1];
4337 } else if (path->p_tree_depth > 0) {
4338 status = ocfs2_find_cpos_for_left_leaf(sb, path, &left_cpos);
4339 if (status)
4340 goto out;
4342 if (left_cpos != 0) {
4343 left_path = ocfs2_new_path_from_path(path);
4344 if (!left_path)
4345 goto out;
4347 status = ocfs2_find_path(et->et_ci, left_path,
4348 left_cpos);
4349 if (status)
4350 goto out;
4352 new_el = path_leaf_el(left_path);
4354 if (le16_to_cpu(new_el->l_next_free_rec) !=
4355 le16_to_cpu(new_el->l_count)) {
4356 bh = path_leaf_bh(left_path);
4357 eb = (struct ocfs2_extent_block *)bh->b_data;
4358 ocfs2_error(sb,
4359 "Extent block #%llu has an "
4360 "invalid l_next_free_rec of "
4361 "%d. It should have "
4362 "matched the l_count of %d",
4363 (unsigned long long)le64_to_cpu(eb->h_blkno),
4364 le16_to_cpu(new_el->l_next_free_rec),
4365 le16_to_cpu(new_el->l_count));
4366 status = -EINVAL;
4367 goto out;
4369 rec = &new_el->l_recs[
4370 le16_to_cpu(new_el->l_next_free_rec) - 1];
4375 * We're careful to check for an empty extent record here -
4376 * the merge code will know what to do if it sees one.
4378 if (rec) {
4379 if (index == 1 && ocfs2_is_empty_extent(rec)) {
4380 if (split_rec->e_cpos == el->l_recs[index].e_cpos)
4381 ret = CONTIG_RIGHT;
4382 } else {
4383 ret = ocfs2_et_extent_contig(et, rec, split_rec);
4387 rec = NULL;
4388 if (index < (le16_to_cpu(el->l_next_free_rec) - 1))
4389 rec = &el->l_recs[index + 1];
4390 else if (le16_to_cpu(el->l_next_free_rec) == le16_to_cpu(el->l_count) &&
4391 path->p_tree_depth > 0) {
4392 status = ocfs2_find_cpos_for_right_leaf(sb, path, &right_cpos);
4393 if (status)
4394 goto out;
4396 if (right_cpos == 0)
4397 goto out;
4399 right_path = ocfs2_new_path_from_path(path);
4400 if (!right_path)
4401 goto out;
4403 status = ocfs2_find_path(et->et_ci, right_path, right_cpos);
4404 if (status)
4405 goto out;
4407 new_el = path_leaf_el(right_path);
4408 rec = &new_el->l_recs[0];
4409 if (ocfs2_is_empty_extent(rec)) {
4410 if (le16_to_cpu(new_el->l_next_free_rec) <= 1) {
4411 bh = path_leaf_bh(right_path);
4412 eb = (struct ocfs2_extent_block *)bh->b_data;
4413 ocfs2_error(sb,
4414 "Extent block #%llu has an "
4415 "invalid l_next_free_rec of %d",
4416 (unsigned long long)le64_to_cpu(eb->h_blkno),
4417 le16_to_cpu(new_el->l_next_free_rec));
4418 status = -EINVAL;
4419 goto out;
4421 rec = &new_el->l_recs[1];
4425 if (rec) {
4426 enum ocfs2_contig_type contig_type;
4428 contig_type = ocfs2_et_extent_contig(et, rec, split_rec);
4430 if (contig_type == CONTIG_LEFT && ret == CONTIG_RIGHT)
4431 ret = CONTIG_LEFTRIGHT;
4432 else if (ret == CONTIG_NONE)
4433 ret = contig_type;
4436 out:
4437 if (left_path)
4438 ocfs2_free_path(left_path);
4439 if (right_path)
4440 ocfs2_free_path(right_path);
4442 return ret;
4445 static void ocfs2_figure_contig_type(struct ocfs2_extent_tree *et,
4446 struct ocfs2_insert_type *insert,
4447 struct ocfs2_extent_list *el,
4448 struct ocfs2_extent_rec *insert_rec)
4450 int i;
4451 enum ocfs2_contig_type contig_type = CONTIG_NONE;
4453 BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
4455 for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) {
4456 contig_type = ocfs2_et_extent_contig(et, &el->l_recs[i],
4457 insert_rec);
4458 if (contig_type != CONTIG_NONE) {
4459 insert->ins_contig_index = i;
4460 break;
4463 insert->ins_contig = contig_type;
4465 if (insert->ins_contig != CONTIG_NONE) {
4466 struct ocfs2_extent_rec *rec =
4467 &el->l_recs[insert->ins_contig_index];
4468 unsigned int len = le16_to_cpu(rec->e_leaf_clusters) +
4469 le16_to_cpu(insert_rec->e_leaf_clusters);
4472 * Caller might want us to limit the size of extents, don't
4473 * calculate contiguousness if we might exceed that limit.
4475 if (et->et_max_leaf_clusters &&
4476 (len > et->et_max_leaf_clusters))
4477 insert->ins_contig = CONTIG_NONE;
4482 * This should only be called against the righmost leaf extent list.
4484 * ocfs2_figure_appending_type() will figure out whether we'll have to
4485 * insert at the tail of the rightmost leaf.
4487 * This should also work against the root extent list for tree's with 0
4488 * depth. If we consider the root extent list to be the rightmost leaf node
4489 * then the logic here makes sense.
4491 static void ocfs2_figure_appending_type(struct ocfs2_insert_type *insert,
4492 struct ocfs2_extent_list *el,
4493 struct ocfs2_extent_rec *insert_rec)
4495 int i;
4496 u32 cpos = le32_to_cpu(insert_rec->e_cpos);
4497 struct ocfs2_extent_rec *rec;
4499 insert->ins_appending = APPEND_NONE;
4501 BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
4503 if (!el->l_next_free_rec)
4504 goto set_tail_append;
4506 if (ocfs2_is_empty_extent(&el->l_recs[0])) {
4507 /* Were all records empty? */
4508 if (le16_to_cpu(el->l_next_free_rec) == 1)
4509 goto set_tail_append;
4512 i = le16_to_cpu(el->l_next_free_rec) - 1;
4513 rec = &el->l_recs[i];
4515 if (cpos >=
4516 (le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters)))
4517 goto set_tail_append;
4519 return;
4521 set_tail_append:
4522 insert->ins_appending = APPEND_TAIL;
4526 * Helper function called at the begining of an insert.
4528 * This computes a few things that are commonly used in the process of
4529 * inserting into the btree:
4530 * - Whether the new extent is contiguous with an existing one.
4531 * - The current tree depth.
4532 * - Whether the insert is an appending one.
4533 * - The total # of free records in the tree.
4535 * All of the information is stored on the ocfs2_insert_type
4536 * structure.
4538 static int ocfs2_figure_insert_type(struct ocfs2_extent_tree *et,
4539 struct buffer_head **last_eb_bh,
4540 struct ocfs2_extent_rec *insert_rec,
4541 int *free_records,
4542 struct ocfs2_insert_type *insert)
4544 int ret;
4545 struct ocfs2_extent_block *eb;
4546 struct ocfs2_extent_list *el;
4547 struct ocfs2_path *path = NULL;
4548 struct buffer_head *bh = NULL;
4550 insert->ins_split = SPLIT_NONE;
4552 el = et->et_root_el;
4553 insert->ins_tree_depth = le16_to_cpu(el->l_tree_depth);
4555 if (el->l_tree_depth) {
4557 * If we have tree depth, we read in the
4558 * rightmost extent block ahead of time as
4559 * ocfs2_figure_insert_type() and ocfs2_add_branch()
4560 * may want it later.
4562 ret = ocfs2_read_extent_block(et->et_ci,
4563 ocfs2_et_get_last_eb_blk(et),
4564 &bh);
4565 if (ret) {
4566 mlog_exit(ret);
4567 goto out;
4569 eb = (struct ocfs2_extent_block *) bh->b_data;
4570 el = &eb->h_list;
4574 * Unless we have a contiguous insert, we'll need to know if
4575 * there is room left in our allocation tree for another
4576 * extent record.
4578 * XXX: This test is simplistic, we can search for empty
4579 * extent records too.
4581 *free_records = le16_to_cpu(el->l_count) -
4582 le16_to_cpu(el->l_next_free_rec);
4584 if (!insert->ins_tree_depth) {
4585 ocfs2_figure_contig_type(et, insert, el, insert_rec);
4586 ocfs2_figure_appending_type(insert, el, insert_rec);
4587 return 0;
4590 path = ocfs2_new_path_from_et(et);
4591 if (!path) {
4592 ret = -ENOMEM;
4593 mlog_errno(ret);
4594 goto out;
4598 * In the case that we're inserting past what the tree
4599 * currently accounts for, ocfs2_find_path() will return for
4600 * us the rightmost tree path. This is accounted for below in
4601 * the appending code.
4603 ret = ocfs2_find_path(et->et_ci, path, le32_to_cpu(insert_rec->e_cpos));
4604 if (ret) {
4605 mlog_errno(ret);
4606 goto out;
4609 el = path_leaf_el(path);
4612 * Now that we have the path, there's two things we want to determine:
4613 * 1) Contiguousness (also set contig_index if this is so)
4615 * 2) Are we doing an append? We can trivially break this up
4616 * into two types of appends: simple record append, or a
4617 * rotate inside the tail leaf.
4619 ocfs2_figure_contig_type(et, insert, el, insert_rec);
4622 * The insert code isn't quite ready to deal with all cases of
4623 * left contiguousness. Specifically, if it's an insert into
4624 * the 1st record in a leaf, it will require the adjustment of
4625 * cluster count on the last record of the path directly to it's
4626 * left. For now, just catch that case and fool the layers
4627 * above us. This works just fine for tree_depth == 0, which
4628 * is why we allow that above.
4630 if (insert->ins_contig == CONTIG_LEFT &&
4631 insert->ins_contig_index == 0)
4632 insert->ins_contig = CONTIG_NONE;
4635 * Ok, so we can simply compare against last_eb to figure out
4636 * whether the path doesn't exist. This will only happen in
4637 * the case that we're doing a tail append, so maybe we can
4638 * take advantage of that information somehow.
4640 if (ocfs2_et_get_last_eb_blk(et) ==
4641 path_leaf_bh(path)->b_blocknr) {
4643 * Ok, ocfs2_find_path() returned us the rightmost
4644 * tree path. This might be an appending insert. There are
4645 * two cases:
4646 * 1) We're doing a true append at the tail:
4647 * -This might even be off the end of the leaf
4648 * 2) We're "appending" by rotating in the tail
4650 ocfs2_figure_appending_type(insert, el, insert_rec);
4653 out:
4654 ocfs2_free_path(path);
4656 if (ret == 0)
4657 *last_eb_bh = bh;
4658 else
4659 brelse(bh);
4660 return ret;
4664 * Insert an extent into a btree.
4666 * The caller needs to update the owning btree's cluster count.
4668 int ocfs2_insert_extent(handle_t *handle,
4669 struct ocfs2_extent_tree *et,
4670 u32 cpos,
4671 u64 start_blk,
4672 u32 new_clusters,
4673 u8 flags,
4674 struct ocfs2_alloc_context *meta_ac)
4676 int status;
4677 int uninitialized_var(free_records);
4678 struct buffer_head *last_eb_bh = NULL;
4679 struct ocfs2_insert_type insert = {0, };
4680 struct ocfs2_extent_rec rec;
4682 mlog(0, "add %u clusters at position %u to owner %llu\n",
4683 new_clusters, cpos,
4684 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci));
4686 memset(&rec, 0, sizeof(rec));
4687 rec.e_cpos = cpu_to_le32(cpos);
4688 rec.e_blkno = cpu_to_le64(start_blk);
4689 rec.e_leaf_clusters = cpu_to_le16(new_clusters);
4690 rec.e_flags = flags;
4691 status = ocfs2_et_insert_check(et, &rec);
4692 if (status) {
4693 mlog_errno(status);
4694 goto bail;
4697 status = ocfs2_figure_insert_type(et, &last_eb_bh, &rec,
4698 &free_records, &insert);
4699 if (status < 0) {
4700 mlog_errno(status);
4701 goto bail;
4704 mlog(0, "Insert.appending: %u, Insert.Contig: %u, "
4705 "Insert.contig_index: %d, Insert.free_records: %d, "
4706 "Insert.tree_depth: %d\n",
4707 insert.ins_appending, insert.ins_contig, insert.ins_contig_index,
4708 free_records, insert.ins_tree_depth);
4710 if (insert.ins_contig == CONTIG_NONE && free_records == 0) {
4711 status = ocfs2_grow_tree(handle, et,
4712 &insert.ins_tree_depth, &last_eb_bh,
4713 meta_ac);
4714 if (status) {
4715 mlog_errno(status);
4716 goto bail;
4720 /* Finally, we can add clusters. This might rotate the tree for us. */
4721 status = ocfs2_do_insert_extent(handle, et, &rec, &insert);
4722 if (status < 0)
4723 mlog_errno(status);
4724 else
4725 ocfs2_et_extent_map_insert(et, &rec);
4727 bail:
4728 brelse(last_eb_bh);
4730 mlog_exit(status);
4731 return status;
4735 * Allcate and add clusters into the extent b-tree.
4736 * The new clusters(clusters_to_add) will be inserted at logical_offset.
4737 * The extent b-tree's root is specified by et, and
4738 * it is not limited to the file storage. Any extent tree can use this
4739 * function if it implements the proper ocfs2_extent_tree.
4741 int ocfs2_add_clusters_in_btree(handle_t *handle,
4742 struct ocfs2_extent_tree *et,
4743 u32 *logical_offset,
4744 u32 clusters_to_add,
4745 int mark_unwritten,
4746 struct ocfs2_alloc_context *data_ac,
4747 struct ocfs2_alloc_context *meta_ac,
4748 enum ocfs2_alloc_restarted *reason_ret)
4750 int status = 0;
4751 int free_extents;
4752 enum ocfs2_alloc_restarted reason = RESTART_NONE;
4753 u32 bit_off, num_bits;
4754 u64 block;
4755 u8 flags = 0;
4756 struct ocfs2_super *osb =
4757 OCFS2_SB(ocfs2_metadata_cache_get_super(et->et_ci));
4759 BUG_ON(!clusters_to_add);
4761 if (mark_unwritten)
4762 flags = OCFS2_EXT_UNWRITTEN;
4764 free_extents = ocfs2_num_free_extents(osb, et);
4765 if (free_extents < 0) {
4766 status = free_extents;
4767 mlog_errno(status);
4768 goto leave;
4771 /* there are two cases which could cause us to EAGAIN in the
4772 * we-need-more-metadata case:
4773 * 1) we haven't reserved *any*
4774 * 2) we are so fragmented, we've needed to add metadata too
4775 * many times. */
4776 if (!free_extents && !meta_ac) {
4777 mlog(0, "we haven't reserved any metadata!\n");
4778 status = -EAGAIN;
4779 reason = RESTART_META;
4780 goto leave;
4781 } else if ((!free_extents)
4782 && (ocfs2_alloc_context_bits_left(meta_ac)
4783 < ocfs2_extend_meta_needed(et->et_root_el))) {
4784 mlog(0, "filesystem is really fragmented...\n");
4785 status = -EAGAIN;
4786 reason = RESTART_META;
4787 goto leave;
4790 status = __ocfs2_claim_clusters(handle, data_ac, 1,
4791 clusters_to_add, &bit_off, &num_bits);
4792 if (status < 0) {
4793 if (status != -ENOSPC)
4794 mlog_errno(status);
4795 goto leave;
4798 BUG_ON(num_bits > clusters_to_add);
4800 /* reserve our write early -- insert_extent may update the tree root */
4801 status = ocfs2_et_root_journal_access(handle, et,
4802 OCFS2_JOURNAL_ACCESS_WRITE);
4803 if (status < 0) {
4804 mlog_errno(status);
4805 goto leave;
4808 block = ocfs2_clusters_to_blocks(osb->sb, bit_off);
4809 mlog(0, "Allocating %u clusters at block %u for owner %llu\n",
4810 num_bits, bit_off,
4811 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci));
4812 status = ocfs2_insert_extent(handle, et, *logical_offset, block,
4813 num_bits, flags, meta_ac);
4814 if (status < 0) {
4815 mlog_errno(status);
4816 goto leave;
4819 ocfs2_journal_dirty(handle, et->et_root_bh);
4821 clusters_to_add -= num_bits;
4822 *logical_offset += num_bits;
4824 if (clusters_to_add) {
4825 mlog(0, "need to alloc once more, wanted = %u\n",
4826 clusters_to_add);
4827 status = -EAGAIN;
4828 reason = RESTART_TRANS;
4831 leave:
4832 mlog_exit(status);
4833 if (reason_ret)
4834 *reason_ret = reason;
4835 return status;
4838 static void ocfs2_make_right_split_rec(struct super_block *sb,
4839 struct ocfs2_extent_rec *split_rec,
4840 u32 cpos,
4841 struct ocfs2_extent_rec *rec)
4843 u32 rec_cpos = le32_to_cpu(rec->e_cpos);
4844 u32 rec_range = rec_cpos + le16_to_cpu(rec->e_leaf_clusters);
4846 memset(split_rec, 0, sizeof(struct ocfs2_extent_rec));
4848 split_rec->e_cpos = cpu_to_le32(cpos);
4849 split_rec->e_leaf_clusters = cpu_to_le16(rec_range - cpos);
4851 split_rec->e_blkno = rec->e_blkno;
4852 le64_add_cpu(&split_rec->e_blkno,
4853 ocfs2_clusters_to_blocks(sb, cpos - rec_cpos));
4855 split_rec->e_flags = rec->e_flags;
4858 static int ocfs2_split_and_insert(handle_t *handle,
4859 struct ocfs2_extent_tree *et,
4860 struct ocfs2_path *path,
4861 struct buffer_head **last_eb_bh,
4862 int split_index,
4863 struct ocfs2_extent_rec *orig_split_rec,
4864 struct ocfs2_alloc_context *meta_ac)
4866 int ret = 0, depth;
4867 unsigned int insert_range, rec_range, do_leftright = 0;
4868 struct ocfs2_extent_rec tmprec;
4869 struct ocfs2_extent_list *rightmost_el;
4870 struct ocfs2_extent_rec rec;
4871 struct ocfs2_extent_rec split_rec = *orig_split_rec;
4872 struct ocfs2_insert_type insert;
4873 struct ocfs2_extent_block *eb;
4875 leftright:
4877 * Store a copy of the record on the stack - it might move
4878 * around as the tree is manipulated below.
4880 rec = path_leaf_el(path)->l_recs[split_index];
4882 rightmost_el = et->et_root_el;
4884 depth = le16_to_cpu(rightmost_el->l_tree_depth);
4885 if (depth) {
4886 BUG_ON(!(*last_eb_bh));
4887 eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data;
4888 rightmost_el = &eb->h_list;
4891 if (le16_to_cpu(rightmost_el->l_next_free_rec) ==
4892 le16_to_cpu(rightmost_el->l_count)) {
4893 ret = ocfs2_grow_tree(handle, et,
4894 &depth, last_eb_bh, meta_ac);
4895 if (ret) {
4896 mlog_errno(ret);
4897 goto out;
4901 memset(&insert, 0, sizeof(struct ocfs2_insert_type));
4902 insert.ins_appending = APPEND_NONE;
4903 insert.ins_contig = CONTIG_NONE;
4904 insert.ins_tree_depth = depth;
4906 insert_range = le32_to_cpu(split_rec.e_cpos) +
4907 le16_to_cpu(split_rec.e_leaf_clusters);
4908 rec_range = le32_to_cpu(rec.e_cpos) +
4909 le16_to_cpu(rec.e_leaf_clusters);
4911 if (split_rec.e_cpos == rec.e_cpos) {
4912 insert.ins_split = SPLIT_LEFT;
4913 } else if (insert_range == rec_range) {
4914 insert.ins_split = SPLIT_RIGHT;
4915 } else {
4917 * Left/right split. We fake this as a right split
4918 * first and then make a second pass as a left split.
4920 insert.ins_split = SPLIT_RIGHT;
4922 ocfs2_make_right_split_rec(ocfs2_metadata_cache_get_super(et->et_ci),
4923 &tmprec, insert_range, &rec);
4925 split_rec = tmprec;
4927 BUG_ON(do_leftright);
4928 do_leftright = 1;
4931 ret = ocfs2_do_insert_extent(handle, et, &split_rec, &insert);
4932 if (ret) {
4933 mlog_errno(ret);
4934 goto out;
4937 if (do_leftright == 1) {
4938 u32 cpos;
4939 struct ocfs2_extent_list *el;
4941 do_leftright++;
4942 split_rec = *orig_split_rec;
4944 ocfs2_reinit_path(path, 1);
4946 cpos = le32_to_cpu(split_rec.e_cpos);
4947 ret = ocfs2_find_path(et->et_ci, path, cpos);
4948 if (ret) {
4949 mlog_errno(ret);
4950 goto out;
4953 el = path_leaf_el(path);
4954 split_index = ocfs2_search_extent_list(el, cpos);
4955 goto leftright;
4957 out:
4959 return ret;
4962 static int ocfs2_replace_extent_rec(handle_t *handle,
4963 struct ocfs2_extent_tree *et,
4964 struct ocfs2_path *path,
4965 struct ocfs2_extent_list *el,
4966 int split_index,
4967 struct ocfs2_extent_rec *split_rec)
4969 int ret;
4971 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, path,
4972 path_num_items(path) - 1);
4973 if (ret) {
4974 mlog_errno(ret);
4975 goto out;
4978 el->l_recs[split_index] = *split_rec;
4980 ocfs2_journal_dirty(handle, path_leaf_bh(path));
4981 out:
4982 return ret;
4986 * Split part or all of the extent record at split_index in the leaf
4987 * pointed to by path. Merge with the contiguous extent record if needed.
4989 * Care is taken to handle contiguousness so as to not grow the tree.
4991 * meta_ac is not strictly necessary - we only truly need it if growth
4992 * of the tree is required. All other cases will degrade into a less
4993 * optimal tree layout.
4995 * last_eb_bh should be the rightmost leaf block for any extent
4996 * btree. Since a split may grow the tree or a merge might shrink it,
4997 * the caller cannot trust the contents of that buffer after this call.
4999 * This code is optimized for readability - several passes might be
5000 * made over certain portions of the tree. All of those blocks will
5001 * have been brought into cache (and pinned via the journal), so the
5002 * extra overhead is not expressed in terms of disk reads.
5004 int ocfs2_split_extent(handle_t *handle,
5005 struct ocfs2_extent_tree *et,
5006 struct ocfs2_path *path,
5007 int split_index,
5008 struct ocfs2_extent_rec *split_rec,
5009 struct ocfs2_alloc_context *meta_ac,
5010 struct ocfs2_cached_dealloc_ctxt *dealloc)
5012 int ret = 0;
5013 struct ocfs2_extent_list *el = path_leaf_el(path);
5014 struct buffer_head *last_eb_bh = NULL;
5015 struct ocfs2_extent_rec *rec = &el->l_recs[split_index];
5016 struct ocfs2_merge_ctxt ctxt;
5017 struct ocfs2_extent_list *rightmost_el;
5019 if (le32_to_cpu(rec->e_cpos) > le32_to_cpu(split_rec->e_cpos) ||
5020 ((le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters)) <
5021 (le32_to_cpu(split_rec->e_cpos) + le16_to_cpu(split_rec->e_leaf_clusters)))) {
5022 ret = -EIO;
5023 mlog_errno(ret);
5024 goto out;
5027 ctxt.c_contig_type = ocfs2_figure_merge_contig_type(et, path, el,
5028 split_index,
5029 split_rec);
5032 * The core merge / split code wants to know how much room is
5033 * left in this allocation tree, so we pass the
5034 * rightmost extent list.
5036 if (path->p_tree_depth) {
5037 struct ocfs2_extent_block *eb;
5039 ret = ocfs2_read_extent_block(et->et_ci,
5040 ocfs2_et_get_last_eb_blk(et),
5041 &last_eb_bh);
5042 if (ret) {
5043 mlog_exit(ret);
5044 goto out;
5047 eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
5048 rightmost_el = &eb->h_list;
5049 } else
5050 rightmost_el = path_root_el(path);
5052 if (rec->e_cpos == split_rec->e_cpos &&
5053 rec->e_leaf_clusters == split_rec->e_leaf_clusters)
5054 ctxt.c_split_covers_rec = 1;
5055 else
5056 ctxt.c_split_covers_rec = 0;
5058 ctxt.c_has_empty_extent = ocfs2_is_empty_extent(&el->l_recs[0]);
5060 mlog(0, "index: %d, contig: %u, has_empty: %u, split_covers: %u\n",
5061 split_index, ctxt.c_contig_type, ctxt.c_has_empty_extent,
5062 ctxt.c_split_covers_rec);
5064 if (ctxt.c_contig_type == CONTIG_NONE) {
5065 if (ctxt.c_split_covers_rec)
5066 ret = ocfs2_replace_extent_rec(handle, et, path, el,
5067 split_index, split_rec);
5068 else
5069 ret = ocfs2_split_and_insert(handle, et, path,
5070 &last_eb_bh, split_index,
5071 split_rec, meta_ac);
5072 if (ret)
5073 mlog_errno(ret);
5074 } else {
5075 ret = ocfs2_try_to_merge_extent(handle, et, path,
5076 split_index, split_rec,
5077 dealloc, &ctxt);
5078 if (ret)
5079 mlog_errno(ret);
5082 out:
5083 brelse(last_eb_bh);
5084 return ret;
5088 * Change the flags of the already-existing extent at cpos for len clusters.
5090 * new_flags: the flags we want to set.
5091 * clear_flags: the flags we want to clear.
5092 * phys: the new physical offset we want this new extent starts from.
5094 * If the existing extent is larger than the request, initiate a
5095 * split. An attempt will be made at merging with adjacent extents.
5097 * The caller is responsible for passing down meta_ac if we'll need it.
5099 int ocfs2_change_extent_flag(handle_t *handle,
5100 struct ocfs2_extent_tree *et,
5101 u32 cpos, u32 len, u32 phys,
5102 struct ocfs2_alloc_context *meta_ac,
5103 struct ocfs2_cached_dealloc_ctxt *dealloc,
5104 int new_flags, int clear_flags)
5106 int ret, index;
5107 struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci);
5108 u64 start_blkno = ocfs2_clusters_to_blocks(sb, phys);
5109 struct ocfs2_extent_rec split_rec;
5110 struct ocfs2_path *left_path = NULL;
5111 struct ocfs2_extent_list *el;
5112 struct ocfs2_extent_rec *rec;
5114 left_path = ocfs2_new_path_from_et(et);
5115 if (!left_path) {
5116 ret = -ENOMEM;
5117 mlog_errno(ret);
5118 goto out;
5121 ret = ocfs2_find_path(et->et_ci, left_path, cpos);
5122 if (ret) {
5123 mlog_errno(ret);
5124 goto out;
5126 el = path_leaf_el(left_path);
5128 index = ocfs2_search_extent_list(el, cpos);
5129 if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) {
5130 ocfs2_error(sb,
5131 "Owner %llu has an extent at cpos %u which can no "
5132 "longer be found.\n",
5133 (unsigned long long)
5134 ocfs2_metadata_cache_owner(et->et_ci), cpos);
5135 ret = -EROFS;
5136 goto out;
5139 ret = -EIO;
5140 rec = &el->l_recs[index];
5141 if (new_flags && (rec->e_flags & new_flags)) {
5142 mlog(ML_ERROR, "Owner %llu tried to set %d flags on an "
5143 "extent that already had them",
5144 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5145 new_flags);
5146 goto out;
5149 if (clear_flags && !(rec->e_flags & clear_flags)) {
5150 mlog(ML_ERROR, "Owner %llu tried to clear %d flags on an "
5151 "extent that didn't have them",
5152 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5153 clear_flags);
5154 goto out;
5157 memset(&split_rec, 0, sizeof(struct ocfs2_extent_rec));
5158 split_rec.e_cpos = cpu_to_le32(cpos);
5159 split_rec.e_leaf_clusters = cpu_to_le16(len);
5160 split_rec.e_blkno = cpu_to_le64(start_blkno);
5161 split_rec.e_flags = rec->e_flags;
5162 if (new_flags)
5163 split_rec.e_flags |= new_flags;
5164 if (clear_flags)
5165 split_rec.e_flags &= ~clear_flags;
5167 ret = ocfs2_split_extent(handle, et, left_path,
5168 index, &split_rec, meta_ac,
5169 dealloc);
5170 if (ret)
5171 mlog_errno(ret);
5173 out:
5174 ocfs2_free_path(left_path);
5175 return ret;
5180 * Mark the already-existing extent at cpos as written for len clusters.
5181 * This removes the unwritten extent flag.
5183 * If the existing extent is larger than the request, initiate a
5184 * split. An attempt will be made at merging with adjacent extents.
5186 * The caller is responsible for passing down meta_ac if we'll need it.
5188 int ocfs2_mark_extent_written(struct inode *inode,
5189 struct ocfs2_extent_tree *et,
5190 handle_t *handle, u32 cpos, u32 len, u32 phys,
5191 struct ocfs2_alloc_context *meta_ac,
5192 struct ocfs2_cached_dealloc_ctxt *dealloc)
5194 int ret;
5196 mlog(0, "Inode %lu cpos %u, len %u, phys clusters %u\n",
5197 inode->i_ino, cpos, len, phys);
5199 if (!ocfs2_writes_unwritten_extents(OCFS2_SB(inode->i_sb))) {
5200 ocfs2_error(inode->i_sb, "Inode %llu has unwritten extents "
5201 "that are being written to, but the feature bit "
5202 "is not set in the super block.",
5203 (unsigned long long)OCFS2_I(inode)->ip_blkno);
5204 ret = -EROFS;
5205 goto out;
5209 * XXX: This should be fixed up so that we just re-insert the
5210 * next extent records.
5212 ocfs2_et_extent_map_truncate(et, 0);
5214 ret = ocfs2_change_extent_flag(handle, et, cpos,
5215 len, phys, meta_ac, dealloc,
5216 0, OCFS2_EXT_UNWRITTEN);
5217 if (ret)
5218 mlog_errno(ret);
5220 out:
5221 return ret;
5224 static int ocfs2_split_tree(handle_t *handle, struct ocfs2_extent_tree *et,
5225 struct ocfs2_path *path,
5226 int index, u32 new_range,
5227 struct ocfs2_alloc_context *meta_ac)
5229 int ret, depth, credits;
5230 struct buffer_head *last_eb_bh = NULL;
5231 struct ocfs2_extent_block *eb;
5232 struct ocfs2_extent_list *rightmost_el, *el;
5233 struct ocfs2_extent_rec split_rec;
5234 struct ocfs2_extent_rec *rec;
5235 struct ocfs2_insert_type insert;
5238 * Setup the record to split before we grow the tree.
5240 el = path_leaf_el(path);
5241 rec = &el->l_recs[index];
5242 ocfs2_make_right_split_rec(ocfs2_metadata_cache_get_super(et->et_ci),
5243 &split_rec, new_range, rec);
5245 depth = path->p_tree_depth;
5246 if (depth > 0) {
5247 ret = ocfs2_read_extent_block(et->et_ci,
5248 ocfs2_et_get_last_eb_blk(et),
5249 &last_eb_bh);
5250 if (ret < 0) {
5251 mlog_errno(ret);
5252 goto out;
5255 eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
5256 rightmost_el = &eb->h_list;
5257 } else
5258 rightmost_el = path_leaf_el(path);
5260 credits = path->p_tree_depth +
5261 ocfs2_extend_meta_needed(et->et_root_el);
5262 ret = ocfs2_extend_trans(handle, credits);
5263 if (ret) {
5264 mlog_errno(ret);
5265 goto out;
5268 if (le16_to_cpu(rightmost_el->l_next_free_rec) ==
5269 le16_to_cpu(rightmost_el->l_count)) {
5270 ret = ocfs2_grow_tree(handle, et, &depth, &last_eb_bh,
5271 meta_ac);
5272 if (ret) {
5273 mlog_errno(ret);
5274 goto out;
5278 memset(&insert, 0, sizeof(struct ocfs2_insert_type));
5279 insert.ins_appending = APPEND_NONE;
5280 insert.ins_contig = CONTIG_NONE;
5281 insert.ins_split = SPLIT_RIGHT;
5282 insert.ins_tree_depth = depth;
5284 ret = ocfs2_do_insert_extent(handle, et, &split_rec, &insert);
5285 if (ret)
5286 mlog_errno(ret);
5288 out:
5289 brelse(last_eb_bh);
5290 return ret;
5293 static int ocfs2_truncate_rec(handle_t *handle,
5294 struct ocfs2_extent_tree *et,
5295 struct ocfs2_path *path, int index,
5296 struct ocfs2_cached_dealloc_ctxt *dealloc,
5297 u32 cpos, u32 len)
5299 int ret;
5300 u32 left_cpos, rec_range, trunc_range;
5301 int wants_rotate = 0, is_rightmost_tree_rec = 0;
5302 struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci);
5303 struct ocfs2_path *left_path = NULL;
5304 struct ocfs2_extent_list *el = path_leaf_el(path);
5305 struct ocfs2_extent_rec *rec;
5306 struct ocfs2_extent_block *eb;
5308 if (ocfs2_is_empty_extent(&el->l_recs[0]) && index > 0) {
5309 ret = ocfs2_rotate_tree_left(handle, et, path, dealloc);
5310 if (ret) {
5311 mlog_errno(ret);
5312 goto out;
5315 index--;
5318 if (index == (le16_to_cpu(el->l_next_free_rec) - 1) &&
5319 path->p_tree_depth) {
5321 * Check whether this is the rightmost tree record. If
5322 * we remove all of this record or part of its right
5323 * edge then an update of the record lengths above it
5324 * will be required.
5326 eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
5327 if (eb->h_next_leaf_blk == 0)
5328 is_rightmost_tree_rec = 1;
5331 rec = &el->l_recs[index];
5332 if (index == 0 && path->p_tree_depth &&
5333 le32_to_cpu(rec->e_cpos) == cpos) {
5335 * Changing the leftmost offset (via partial or whole
5336 * record truncate) of an interior (or rightmost) path
5337 * means we have to update the subtree that is formed
5338 * by this leaf and the one to it's left.
5340 * There are two cases we can skip:
5341 * 1) Path is the leftmost one in our btree.
5342 * 2) The leaf is rightmost and will be empty after
5343 * we remove the extent record - the rotate code
5344 * knows how to update the newly formed edge.
5347 ret = ocfs2_find_cpos_for_left_leaf(sb, path, &left_cpos);
5348 if (ret) {
5349 mlog_errno(ret);
5350 goto out;
5353 if (left_cpos && le16_to_cpu(el->l_next_free_rec) > 1) {
5354 left_path = ocfs2_new_path_from_path(path);
5355 if (!left_path) {
5356 ret = -ENOMEM;
5357 mlog_errno(ret);
5358 goto out;
5361 ret = ocfs2_find_path(et->et_ci, left_path,
5362 left_cpos);
5363 if (ret) {
5364 mlog_errno(ret);
5365 goto out;
5370 ret = ocfs2_extend_rotate_transaction(handle, 0,
5371 handle->h_buffer_credits,
5372 path);
5373 if (ret) {
5374 mlog_errno(ret);
5375 goto out;
5378 ret = ocfs2_journal_access_path(et->et_ci, handle, path);
5379 if (ret) {
5380 mlog_errno(ret);
5381 goto out;
5384 ret = ocfs2_journal_access_path(et->et_ci, handle, left_path);
5385 if (ret) {
5386 mlog_errno(ret);
5387 goto out;
5390 rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
5391 trunc_range = cpos + len;
5393 if (le32_to_cpu(rec->e_cpos) == cpos && rec_range == trunc_range) {
5394 int next_free;
5396 memset(rec, 0, sizeof(*rec));
5397 ocfs2_cleanup_merge(el, index);
5398 wants_rotate = 1;
5400 next_free = le16_to_cpu(el->l_next_free_rec);
5401 if (is_rightmost_tree_rec && next_free > 1) {
5403 * We skip the edge update if this path will
5404 * be deleted by the rotate code.
5406 rec = &el->l_recs[next_free - 1];
5407 ocfs2_adjust_rightmost_records(handle, et, path,
5408 rec);
5410 } else if (le32_to_cpu(rec->e_cpos) == cpos) {
5411 /* Remove leftmost portion of the record. */
5412 le32_add_cpu(&rec->e_cpos, len);
5413 le64_add_cpu(&rec->e_blkno, ocfs2_clusters_to_blocks(sb, len));
5414 le16_add_cpu(&rec->e_leaf_clusters, -len);
5415 } else if (rec_range == trunc_range) {
5416 /* Remove rightmost portion of the record */
5417 le16_add_cpu(&rec->e_leaf_clusters, -len);
5418 if (is_rightmost_tree_rec)
5419 ocfs2_adjust_rightmost_records(handle, et, path, rec);
5420 } else {
5421 /* Caller should have trapped this. */
5422 mlog(ML_ERROR, "Owner %llu: Invalid record truncate: (%u, %u) "
5423 "(%u, %u)\n",
5424 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5425 le32_to_cpu(rec->e_cpos),
5426 le16_to_cpu(rec->e_leaf_clusters), cpos, len);
5427 BUG();
5430 if (left_path) {
5431 int subtree_index;
5433 subtree_index = ocfs2_find_subtree_root(et, left_path, path);
5434 ocfs2_complete_edge_insert(handle, left_path, path,
5435 subtree_index);
5438 ocfs2_journal_dirty(handle, path_leaf_bh(path));
5440 ret = ocfs2_rotate_tree_left(handle, et, path, dealloc);
5441 if (ret) {
5442 mlog_errno(ret);
5443 goto out;
5446 out:
5447 ocfs2_free_path(left_path);
5448 return ret;
5451 int ocfs2_remove_extent(handle_t *handle,
5452 struct ocfs2_extent_tree *et,
5453 u32 cpos, u32 len,
5454 struct ocfs2_alloc_context *meta_ac,
5455 struct ocfs2_cached_dealloc_ctxt *dealloc)
5457 int ret, index;
5458 u32 rec_range, trunc_range;
5459 struct ocfs2_extent_rec *rec;
5460 struct ocfs2_extent_list *el;
5461 struct ocfs2_path *path = NULL;
5464 * XXX: Why are we truncating to 0 instead of wherever this
5465 * affects us?
5467 ocfs2_et_extent_map_truncate(et, 0);
5469 path = ocfs2_new_path_from_et(et);
5470 if (!path) {
5471 ret = -ENOMEM;
5472 mlog_errno(ret);
5473 goto out;
5476 ret = ocfs2_find_path(et->et_ci, path, cpos);
5477 if (ret) {
5478 mlog_errno(ret);
5479 goto out;
5482 el = path_leaf_el(path);
5483 index = ocfs2_search_extent_list(el, cpos);
5484 if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) {
5485 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
5486 "Owner %llu has an extent at cpos %u which can no "
5487 "longer be found.\n",
5488 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5489 cpos);
5490 ret = -EROFS;
5491 goto out;
5495 * We have 3 cases of extent removal:
5496 * 1) Range covers the entire extent rec
5497 * 2) Range begins or ends on one edge of the extent rec
5498 * 3) Range is in the middle of the extent rec (no shared edges)
5500 * For case 1 we remove the extent rec and left rotate to
5501 * fill the hole.
5503 * For case 2 we just shrink the existing extent rec, with a
5504 * tree update if the shrinking edge is also the edge of an
5505 * extent block.
5507 * For case 3 we do a right split to turn the extent rec into
5508 * something case 2 can handle.
5510 rec = &el->l_recs[index];
5511 rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
5512 trunc_range = cpos + len;
5514 BUG_ON(cpos < le32_to_cpu(rec->e_cpos) || trunc_range > rec_range);
5516 mlog(0, "Owner %llu, remove (cpos %u, len %u). Existing index %d "
5517 "(cpos %u, len %u)\n",
5518 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5519 cpos, len, index,
5520 le32_to_cpu(rec->e_cpos), ocfs2_rec_clusters(el, rec));
5522 if (le32_to_cpu(rec->e_cpos) == cpos || rec_range == trunc_range) {
5523 ret = ocfs2_truncate_rec(handle, et, path, index, dealloc,
5524 cpos, len);
5525 if (ret) {
5526 mlog_errno(ret);
5527 goto out;
5529 } else {
5530 ret = ocfs2_split_tree(handle, et, path, index,
5531 trunc_range, meta_ac);
5532 if (ret) {
5533 mlog_errno(ret);
5534 goto out;
5538 * The split could have manipulated the tree enough to
5539 * move the record location, so we have to look for it again.
5541 ocfs2_reinit_path(path, 1);
5543 ret = ocfs2_find_path(et->et_ci, path, cpos);
5544 if (ret) {
5545 mlog_errno(ret);
5546 goto out;
5549 el = path_leaf_el(path);
5550 index = ocfs2_search_extent_list(el, cpos);
5551 if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) {
5552 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
5553 "Owner %llu: split at cpos %u lost record.",
5554 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5555 cpos);
5556 ret = -EROFS;
5557 goto out;
5561 * Double check our values here. If anything is fishy,
5562 * it's easier to catch it at the top level.
5564 rec = &el->l_recs[index];
5565 rec_range = le32_to_cpu(rec->e_cpos) +
5566 ocfs2_rec_clusters(el, rec);
5567 if (rec_range != trunc_range) {
5568 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
5569 "Owner %llu: error after split at cpos %u"
5570 "trunc len %u, existing record is (%u,%u)",
5571 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5572 cpos, len, le32_to_cpu(rec->e_cpos),
5573 ocfs2_rec_clusters(el, rec));
5574 ret = -EROFS;
5575 goto out;
5578 ret = ocfs2_truncate_rec(handle, et, path, index, dealloc,
5579 cpos, len);
5580 if (ret) {
5581 mlog_errno(ret);
5582 goto out;
5586 out:
5587 ocfs2_free_path(path);
5588 return ret;
5592 * ocfs2_reserve_blocks_for_rec_trunc() would look basically the
5593 * same as ocfs2_lock_alloctors(), except for it accepts a blocks
5594 * number to reserve some extra blocks, and it only handles meta
5595 * data allocations.
5597 * Currently, only ocfs2_remove_btree_range() uses it for truncating
5598 * and punching holes.
5600 static int ocfs2_reserve_blocks_for_rec_trunc(struct inode *inode,
5601 struct ocfs2_extent_tree *et,
5602 u32 extents_to_split,
5603 struct ocfs2_alloc_context **ac,
5604 int extra_blocks)
5606 int ret = 0, num_free_extents;
5607 unsigned int max_recs_needed = 2 * extents_to_split;
5608 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
5610 *ac = NULL;
5612 num_free_extents = ocfs2_num_free_extents(osb, et);
5613 if (num_free_extents < 0) {
5614 ret = num_free_extents;
5615 mlog_errno(ret);
5616 goto out;
5619 if (!num_free_extents ||
5620 (ocfs2_sparse_alloc(osb) && num_free_extents < max_recs_needed))
5621 extra_blocks += ocfs2_extend_meta_needed(et->et_root_el);
5623 if (extra_blocks) {
5624 ret = ocfs2_reserve_new_metadata_blocks(osb, extra_blocks, ac);
5625 if (ret < 0) {
5626 if (ret != -ENOSPC)
5627 mlog_errno(ret);
5628 goto out;
5632 out:
5633 if (ret) {
5634 if (*ac) {
5635 ocfs2_free_alloc_context(*ac);
5636 *ac = NULL;
5640 return ret;
5643 int ocfs2_remove_btree_range(struct inode *inode,
5644 struct ocfs2_extent_tree *et,
5645 u32 cpos, u32 phys_cpos, u32 len, int flags,
5646 struct ocfs2_cached_dealloc_ctxt *dealloc,
5647 u64 refcount_loc)
5649 int ret, credits = 0, extra_blocks = 0;
5650 u64 phys_blkno = ocfs2_clusters_to_blocks(inode->i_sb, phys_cpos);
5651 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
5652 struct inode *tl_inode = osb->osb_tl_inode;
5653 handle_t *handle;
5654 struct ocfs2_alloc_context *meta_ac = NULL;
5655 struct ocfs2_refcount_tree *ref_tree = NULL;
5657 if ((flags & OCFS2_EXT_REFCOUNTED) && len) {
5658 BUG_ON(!(OCFS2_I(inode)->ip_dyn_features &
5659 OCFS2_HAS_REFCOUNT_FL));
5661 ret = ocfs2_lock_refcount_tree(osb, refcount_loc, 1,
5662 &ref_tree, NULL);
5663 if (ret) {
5664 mlog_errno(ret);
5665 goto out;
5668 ret = ocfs2_prepare_refcount_change_for_del(inode,
5669 refcount_loc,
5670 phys_blkno,
5671 len,
5672 &credits,
5673 &extra_blocks);
5674 if (ret < 0) {
5675 mlog_errno(ret);
5676 goto out;
5680 ret = ocfs2_reserve_blocks_for_rec_trunc(inode, et, 1, &meta_ac,
5681 extra_blocks);
5682 if (ret) {
5683 mlog_errno(ret);
5684 return ret;
5687 mutex_lock(&tl_inode->i_mutex);
5689 if (ocfs2_truncate_log_needs_flush(osb)) {
5690 ret = __ocfs2_flush_truncate_log(osb);
5691 if (ret < 0) {
5692 mlog_errno(ret);
5693 goto out;
5697 handle = ocfs2_start_trans(osb,
5698 ocfs2_remove_extent_credits(osb->sb) + credits);
5699 if (IS_ERR(handle)) {
5700 ret = PTR_ERR(handle);
5701 mlog_errno(ret);
5702 goto out;
5705 ret = ocfs2_et_root_journal_access(handle, et,
5706 OCFS2_JOURNAL_ACCESS_WRITE);
5707 if (ret) {
5708 mlog_errno(ret);
5709 goto out;
5712 dquot_free_space_nodirty(inode,
5713 ocfs2_clusters_to_bytes(inode->i_sb, len));
5715 ret = ocfs2_remove_extent(handle, et, cpos, len, meta_ac, dealloc);
5716 if (ret) {
5717 mlog_errno(ret);
5718 goto out_commit;
5721 ocfs2_et_update_clusters(et, -len);
5723 ocfs2_journal_dirty(handle, et->et_root_bh);
5725 if (phys_blkno) {
5726 if (flags & OCFS2_EXT_REFCOUNTED)
5727 ret = ocfs2_decrease_refcount(inode, handle,
5728 ocfs2_blocks_to_clusters(osb->sb,
5729 phys_blkno),
5730 len, meta_ac,
5731 dealloc, 1);
5732 else
5733 ret = ocfs2_truncate_log_append(osb, handle,
5734 phys_blkno, len);
5735 if (ret)
5736 mlog_errno(ret);
5740 out_commit:
5741 ocfs2_commit_trans(osb, handle);
5742 out:
5743 mutex_unlock(&tl_inode->i_mutex);
5745 if (meta_ac)
5746 ocfs2_free_alloc_context(meta_ac);
5748 if (ref_tree)
5749 ocfs2_unlock_refcount_tree(osb, ref_tree, 1);
5751 return ret;
5754 int ocfs2_truncate_log_needs_flush(struct ocfs2_super *osb)
5756 struct buffer_head *tl_bh = osb->osb_tl_bh;
5757 struct ocfs2_dinode *di;
5758 struct ocfs2_truncate_log *tl;
5760 di = (struct ocfs2_dinode *) tl_bh->b_data;
5761 tl = &di->id2.i_dealloc;
5763 mlog_bug_on_msg(le16_to_cpu(tl->tl_used) > le16_to_cpu(tl->tl_count),
5764 "slot %d, invalid truncate log parameters: used = "
5765 "%u, count = %u\n", osb->slot_num,
5766 le16_to_cpu(tl->tl_used), le16_to_cpu(tl->tl_count));
5767 return le16_to_cpu(tl->tl_used) == le16_to_cpu(tl->tl_count);
5770 static int ocfs2_truncate_log_can_coalesce(struct ocfs2_truncate_log *tl,
5771 unsigned int new_start)
5773 unsigned int tail_index;
5774 unsigned int current_tail;
5776 /* No records, nothing to coalesce */
5777 if (!le16_to_cpu(tl->tl_used))
5778 return 0;
5780 tail_index = le16_to_cpu(tl->tl_used) - 1;
5781 current_tail = le32_to_cpu(tl->tl_recs[tail_index].t_start);
5782 current_tail += le32_to_cpu(tl->tl_recs[tail_index].t_clusters);
5784 return current_tail == new_start;
5787 int ocfs2_truncate_log_append(struct ocfs2_super *osb,
5788 handle_t *handle,
5789 u64 start_blk,
5790 unsigned int num_clusters)
5792 int status, index;
5793 unsigned int start_cluster, tl_count;
5794 struct inode *tl_inode = osb->osb_tl_inode;
5795 struct buffer_head *tl_bh = osb->osb_tl_bh;
5796 struct ocfs2_dinode *di;
5797 struct ocfs2_truncate_log *tl;
5799 mlog_entry("start_blk = %llu, num_clusters = %u\n",
5800 (unsigned long long)start_blk, num_clusters);
5802 BUG_ON(mutex_trylock(&tl_inode->i_mutex));
5804 start_cluster = ocfs2_blocks_to_clusters(osb->sb, start_blk);
5806 di = (struct ocfs2_dinode *) tl_bh->b_data;
5808 /* tl_bh is loaded from ocfs2_truncate_log_init(). It's validated
5809 * by the underlying call to ocfs2_read_inode_block(), so any
5810 * corruption is a code bug */
5811 BUG_ON(!OCFS2_IS_VALID_DINODE(di));
5813 tl = &di->id2.i_dealloc;
5814 tl_count = le16_to_cpu(tl->tl_count);
5815 mlog_bug_on_msg(tl_count > ocfs2_truncate_recs_per_inode(osb->sb) ||
5816 tl_count == 0,
5817 "Truncate record count on #%llu invalid "
5818 "wanted %u, actual %u\n",
5819 (unsigned long long)OCFS2_I(tl_inode)->ip_blkno,
5820 ocfs2_truncate_recs_per_inode(osb->sb),
5821 le16_to_cpu(tl->tl_count));
5823 /* Caller should have known to flush before calling us. */
5824 index = le16_to_cpu(tl->tl_used);
5825 if (index >= tl_count) {
5826 status = -ENOSPC;
5827 mlog_errno(status);
5828 goto bail;
5831 status = ocfs2_journal_access_di(handle, INODE_CACHE(tl_inode), tl_bh,
5832 OCFS2_JOURNAL_ACCESS_WRITE);
5833 if (status < 0) {
5834 mlog_errno(status);
5835 goto bail;
5838 mlog(0, "Log truncate of %u clusters starting at cluster %u to "
5839 "%llu (index = %d)\n", num_clusters, start_cluster,
5840 (unsigned long long)OCFS2_I(tl_inode)->ip_blkno, index);
5842 if (ocfs2_truncate_log_can_coalesce(tl, start_cluster)) {
5844 * Move index back to the record we are coalescing with.
5845 * ocfs2_truncate_log_can_coalesce() guarantees nonzero
5847 index--;
5849 num_clusters += le32_to_cpu(tl->tl_recs[index].t_clusters);
5850 mlog(0, "Coalesce with index %u (start = %u, clusters = %u)\n",
5851 index, le32_to_cpu(tl->tl_recs[index].t_start),
5852 num_clusters);
5853 } else {
5854 tl->tl_recs[index].t_start = cpu_to_le32(start_cluster);
5855 tl->tl_used = cpu_to_le16(index + 1);
5857 tl->tl_recs[index].t_clusters = cpu_to_le32(num_clusters);
5859 ocfs2_journal_dirty(handle, tl_bh);
5861 bail:
5862 mlog_exit(status);
5863 return status;
5866 static int ocfs2_replay_truncate_records(struct ocfs2_super *osb,
5867 handle_t *handle,
5868 struct inode *data_alloc_inode,
5869 struct buffer_head *data_alloc_bh)
5871 int status = 0;
5872 int i;
5873 unsigned int num_clusters;
5874 u64 start_blk;
5875 struct ocfs2_truncate_rec rec;
5876 struct ocfs2_dinode *di;
5877 struct ocfs2_truncate_log *tl;
5878 struct inode *tl_inode = osb->osb_tl_inode;
5879 struct buffer_head *tl_bh = osb->osb_tl_bh;
5881 mlog_entry_void();
5883 di = (struct ocfs2_dinode *) tl_bh->b_data;
5884 tl = &di->id2.i_dealloc;
5885 i = le16_to_cpu(tl->tl_used) - 1;
5886 while (i >= 0) {
5887 /* Caller has given us at least enough credits to
5888 * update the truncate log dinode */
5889 status = ocfs2_journal_access_di(handle, INODE_CACHE(tl_inode), tl_bh,
5890 OCFS2_JOURNAL_ACCESS_WRITE);
5891 if (status < 0) {
5892 mlog_errno(status);
5893 goto bail;
5896 tl->tl_used = cpu_to_le16(i);
5898 ocfs2_journal_dirty(handle, tl_bh);
5900 /* TODO: Perhaps we can calculate the bulk of the
5901 * credits up front rather than extending like
5902 * this. */
5903 status = ocfs2_extend_trans(handle,
5904 OCFS2_TRUNCATE_LOG_FLUSH_ONE_REC);
5905 if (status < 0) {
5906 mlog_errno(status);
5907 goto bail;
5910 rec = tl->tl_recs[i];
5911 start_blk = ocfs2_clusters_to_blocks(data_alloc_inode->i_sb,
5912 le32_to_cpu(rec.t_start));
5913 num_clusters = le32_to_cpu(rec.t_clusters);
5915 /* if start_blk is not set, we ignore the record as
5916 * invalid. */
5917 if (start_blk) {
5918 mlog(0, "free record %d, start = %u, clusters = %u\n",
5919 i, le32_to_cpu(rec.t_start), num_clusters);
5921 status = ocfs2_free_clusters(handle, data_alloc_inode,
5922 data_alloc_bh, start_blk,
5923 num_clusters);
5924 if (status < 0) {
5925 mlog_errno(status);
5926 goto bail;
5929 i--;
5932 bail:
5933 mlog_exit(status);
5934 return status;
5937 /* Expects you to already be holding tl_inode->i_mutex */
5938 int __ocfs2_flush_truncate_log(struct ocfs2_super *osb)
5940 int status;
5941 unsigned int num_to_flush;
5942 handle_t *handle;
5943 struct inode *tl_inode = osb->osb_tl_inode;
5944 struct inode *data_alloc_inode = NULL;
5945 struct buffer_head *tl_bh = osb->osb_tl_bh;
5946 struct buffer_head *data_alloc_bh = NULL;
5947 struct ocfs2_dinode *di;
5948 struct ocfs2_truncate_log *tl;
5950 mlog_entry_void();
5952 BUG_ON(mutex_trylock(&tl_inode->i_mutex));
5954 di = (struct ocfs2_dinode *) tl_bh->b_data;
5956 /* tl_bh is loaded from ocfs2_truncate_log_init(). It's validated
5957 * by the underlying call to ocfs2_read_inode_block(), so any
5958 * corruption is a code bug */
5959 BUG_ON(!OCFS2_IS_VALID_DINODE(di));
5961 tl = &di->id2.i_dealloc;
5962 num_to_flush = le16_to_cpu(tl->tl_used);
5963 mlog(0, "Flush %u records from truncate log #%llu\n",
5964 num_to_flush, (unsigned long long)OCFS2_I(tl_inode)->ip_blkno);
5965 if (!num_to_flush) {
5966 status = 0;
5967 goto out;
5970 data_alloc_inode = ocfs2_get_system_file_inode(osb,
5971 GLOBAL_BITMAP_SYSTEM_INODE,
5972 OCFS2_INVALID_SLOT);
5973 if (!data_alloc_inode) {
5974 status = -EINVAL;
5975 mlog(ML_ERROR, "Could not get bitmap inode!\n");
5976 goto out;
5979 mutex_lock(&data_alloc_inode->i_mutex);
5981 status = ocfs2_inode_lock(data_alloc_inode, &data_alloc_bh, 1);
5982 if (status < 0) {
5983 mlog_errno(status);
5984 goto out_mutex;
5987 handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE);
5988 if (IS_ERR(handle)) {
5989 status = PTR_ERR(handle);
5990 mlog_errno(status);
5991 goto out_unlock;
5994 status = ocfs2_replay_truncate_records(osb, handle, data_alloc_inode,
5995 data_alloc_bh);
5996 if (status < 0)
5997 mlog_errno(status);
5999 ocfs2_commit_trans(osb, handle);
6001 out_unlock:
6002 brelse(data_alloc_bh);
6003 ocfs2_inode_unlock(data_alloc_inode, 1);
6005 out_mutex:
6006 mutex_unlock(&data_alloc_inode->i_mutex);
6007 iput(data_alloc_inode);
6009 out:
6010 mlog_exit(status);
6011 return status;
6014 int ocfs2_flush_truncate_log(struct ocfs2_super *osb)
6016 int status;
6017 struct inode *tl_inode = osb->osb_tl_inode;
6019 mutex_lock(&tl_inode->i_mutex);
6020 status = __ocfs2_flush_truncate_log(osb);
6021 mutex_unlock(&tl_inode->i_mutex);
6023 return status;
6026 static void ocfs2_truncate_log_worker(struct work_struct *work)
6028 int status;
6029 struct ocfs2_super *osb =
6030 container_of(work, struct ocfs2_super,
6031 osb_truncate_log_wq.work);
6033 mlog_entry_void();
6035 status = ocfs2_flush_truncate_log(osb);
6036 if (status < 0)
6037 mlog_errno(status);
6038 else
6039 ocfs2_init_steal_slots(osb);
6041 mlog_exit(status);
6044 #define OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL (2 * HZ)
6045 void ocfs2_schedule_truncate_log_flush(struct ocfs2_super *osb,
6046 int cancel)
6048 if (osb->osb_tl_inode) {
6049 /* We want to push off log flushes while truncates are
6050 * still running. */
6051 if (cancel)
6052 cancel_delayed_work(&osb->osb_truncate_log_wq);
6054 queue_delayed_work(ocfs2_wq, &osb->osb_truncate_log_wq,
6055 OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL);
6059 static int ocfs2_get_truncate_log_info(struct ocfs2_super *osb,
6060 int slot_num,
6061 struct inode **tl_inode,
6062 struct buffer_head **tl_bh)
6064 int status;
6065 struct inode *inode = NULL;
6066 struct buffer_head *bh = NULL;
6068 inode = ocfs2_get_system_file_inode(osb,
6069 TRUNCATE_LOG_SYSTEM_INODE,
6070 slot_num);
6071 if (!inode) {
6072 status = -EINVAL;
6073 mlog(ML_ERROR, "Could not get load truncate log inode!\n");
6074 goto bail;
6077 status = ocfs2_read_inode_block(inode, &bh);
6078 if (status < 0) {
6079 iput(inode);
6080 mlog_errno(status);
6081 goto bail;
6084 *tl_inode = inode;
6085 *tl_bh = bh;
6086 bail:
6087 mlog_exit(status);
6088 return status;
6091 /* called during the 1st stage of node recovery. we stamp a clean
6092 * truncate log and pass back a copy for processing later. if the
6093 * truncate log does not require processing, a *tl_copy is set to
6094 * NULL. */
6095 int ocfs2_begin_truncate_log_recovery(struct ocfs2_super *osb,
6096 int slot_num,
6097 struct ocfs2_dinode **tl_copy)
6099 int status;
6100 struct inode *tl_inode = NULL;
6101 struct buffer_head *tl_bh = NULL;
6102 struct ocfs2_dinode *di;
6103 struct ocfs2_truncate_log *tl;
6105 *tl_copy = NULL;
6107 mlog(0, "recover truncate log from slot %d\n", slot_num);
6109 status = ocfs2_get_truncate_log_info(osb, slot_num, &tl_inode, &tl_bh);
6110 if (status < 0) {
6111 mlog_errno(status);
6112 goto bail;
6115 di = (struct ocfs2_dinode *) tl_bh->b_data;
6117 /* tl_bh is loaded from ocfs2_get_truncate_log_info(). It's
6118 * validated by the underlying call to ocfs2_read_inode_block(),
6119 * so any corruption is a code bug */
6120 BUG_ON(!OCFS2_IS_VALID_DINODE(di));
6122 tl = &di->id2.i_dealloc;
6123 if (le16_to_cpu(tl->tl_used)) {
6124 mlog(0, "We'll have %u logs to recover\n",
6125 le16_to_cpu(tl->tl_used));
6127 *tl_copy = kmalloc(tl_bh->b_size, GFP_KERNEL);
6128 if (!(*tl_copy)) {
6129 status = -ENOMEM;
6130 mlog_errno(status);
6131 goto bail;
6134 /* Assuming the write-out below goes well, this copy
6135 * will be passed back to recovery for processing. */
6136 memcpy(*tl_copy, tl_bh->b_data, tl_bh->b_size);
6138 /* All we need to do to clear the truncate log is set
6139 * tl_used. */
6140 tl->tl_used = 0;
6142 ocfs2_compute_meta_ecc(osb->sb, tl_bh->b_data, &di->i_check);
6143 status = ocfs2_write_block(osb, tl_bh, INODE_CACHE(tl_inode));
6144 if (status < 0) {
6145 mlog_errno(status);
6146 goto bail;
6150 bail:
6151 if (tl_inode)
6152 iput(tl_inode);
6153 brelse(tl_bh);
6155 if (status < 0 && (*tl_copy)) {
6156 kfree(*tl_copy);
6157 *tl_copy = NULL;
6160 mlog_exit(status);
6161 return status;
6164 int ocfs2_complete_truncate_log_recovery(struct ocfs2_super *osb,
6165 struct ocfs2_dinode *tl_copy)
6167 int status = 0;
6168 int i;
6169 unsigned int clusters, num_recs, start_cluster;
6170 u64 start_blk;
6171 handle_t *handle;
6172 struct inode *tl_inode = osb->osb_tl_inode;
6173 struct ocfs2_truncate_log *tl;
6175 mlog_entry_void();
6177 if (OCFS2_I(tl_inode)->ip_blkno == le64_to_cpu(tl_copy->i_blkno)) {
6178 mlog(ML_ERROR, "Asked to recover my own truncate log!\n");
6179 return -EINVAL;
6182 tl = &tl_copy->id2.i_dealloc;
6183 num_recs = le16_to_cpu(tl->tl_used);
6184 mlog(0, "cleanup %u records from %llu\n", num_recs,
6185 (unsigned long long)le64_to_cpu(tl_copy->i_blkno));
6187 mutex_lock(&tl_inode->i_mutex);
6188 for(i = 0; i < num_recs; i++) {
6189 if (ocfs2_truncate_log_needs_flush(osb)) {
6190 status = __ocfs2_flush_truncate_log(osb);
6191 if (status < 0) {
6192 mlog_errno(status);
6193 goto bail_up;
6197 handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE);
6198 if (IS_ERR(handle)) {
6199 status = PTR_ERR(handle);
6200 mlog_errno(status);
6201 goto bail_up;
6204 clusters = le32_to_cpu(tl->tl_recs[i].t_clusters);
6205 start_cluster = le32_to_cpu(tl->tl_recs[i].t_start);
6206 start_blk = ocfs2_clusters_to_blocks(osb->sb, start_cluster);
6208 status = ocfs2_truncate_log_append(osb, handle,
6209 start_blk, clusters);
6210 ocfs2_commit_trans(osb, handle);
6211 if (status < 0) {
6212 mlog_errno(status);
6213 goto bail_up;
6217 bail_up:
6218 mutex_unlock(&tl_inode->i_mutex);
6220 mlog_exit(status);
6221 return status;
6224 void ocfs2_truncate_log_shutdown(struct ocfs2_super *osb)
6226 int status;
6227 struct inode *tl_inode = osb->osb_tl_inode;
6229 mlog_entry_void();
6231 if (tl_inode) {
6232 cancel_delayed_work(&osb->osb_truncate_log_wq);
6233 flush_workqueue(ocfs2_wq);
6235 status = ocfs2_flush_truncate_log(osb);
6236 if (status < 0)
6237 mlog_errno(status);
6239 brelse(osb->osb_tl_bh);
6240 iput(osb->osb_tl_inode);
6243 mlog_exit_void();
6246 int ocfs2_truncate_log_init(struct ocfs2_super *osb)
6248 int status;
6249 struct inode *tl_inode = NULL;
6250 struct buffer_head *tl_bh = NULL;
6252 mlog_entry_void();
6254 status = ocfs2_get_truncate_log_info(osb,
6255 osb->slot_num,
6256 &tl_inode,
6257 &tl_bh);
6258 if (status < 0)
6259 mlog_errno(status);
6261 /* ocfs2_truncate_log_shutdown keys on the existence of
6262 * osb->osb_tl_inode so we don't set any of the osb variables
6263 * until we're sure all is well. */
6264 INIT_DELAYED_WORK(&osb->osb_truncate_log_wq,
6265 ocfs2_truncate_log_worker);
6266 osb->osb_tl_bh = tl_bh;
6267 osb->osb_tl_inode = tl_inode;
6269 mlog_exit(status);
6270 return status;
6274 * Delayed de-allocation of suballocator blocks.
6276 * Some sets of block de-allocations might involve multiple suballocator inodes.
6278 * The locking for this can get extremely complicated, especially when
6279 * the suballocator inodes to delete from aren't known until deep
6280 * within an unrelated codepath.
6282 * ocfs2_extent_block structures are a good example of this - an inode
6283 * btree could have been grown by any number of nodes each allocating
6284 * out of their own suballoc inode.
6286 * These structures allow the delay of block de-allocation until a
6287 * later time, when locking of multiple cluster inodes won't cause
6288 * deadlock.
6292 * Describe a single bit freed from a suballocator. For the block
6293 * suballocators, it represents one block. For the global cluster
6294 * allocator, it represents some clusters and free_bit indicates
6295 * clusters number.
6297 struct ocfs2_cached_block_free {
6298 struct ocfs2_cached_block_free *free_next;
6299 u64 free_bg;
6300 u64 free_blk;
6301 unsigned int free_bit;
6304 struct ocfs2_per_slot_free_list {
6305 struct ocfs2_per_slot_free_list *f_next_suballocator;
6306 int f_inode_type;
6307 int f_slot;
6308 struct ocfs2_cached_block_free *f_first;
6311 static int ocfs2_free_cached_blocks(struct ocfs2_super *osb,
6312 int sysfile_type,
6313 int slot,
6314 struct ocfs2_cached_block_free *head)
6316 int ret;
6317 u64 bg_blkno;
6318 handle_t *handle;
6319 struct inode *inode;
6320 struct buffer_head *di_bh = NULL;
6321 struct ocfs2_cached_block_free *tmp;
6323 inode = ocfs2_get_system_file_inode(osb, sysfile_type, slot);
6324 if (!inode) {
6325 ret = -EINVAL;
6326 mlog_errno(ret);
6327 goto out;
6330 mutex_lock(&inode->i_mutex);
6332 ret = ocfs2_inode_lock(inode, &di_bh, 1);
6333 if (ret) {
6334 mlog_errno(ret);
6335 goto out_mutex;
6338 handle = ocfs2_start_trans(osb, OCFS2_SUBALLOC_FREE);
6339 if (IS_ERR(handle)) {
6340 ret = PTR_ERR(handle);
6341 mlog_errno(ret);
6342 goto out_unlock;
6345 while (head) {
6346 if (head->free_bg)
6347 bg_blkno = head->free_bg;
6348 else
6349 bg_blkno = ocfs2_which_suballoc_group(head->free_blk,
6350 head->free_bit);
6351 mlog(0, "Free bit: (bit %u, blkno %llu)\n",
6352 head->free_bit, (unsigned long long)head->free_blk);
6354 ret = ocfs2_free_suballoc_bits(handle, inode, di_bh,
6355 head->free_bit, bg_blkno, 1);
6356 if (ret) {
6357 mlog_errno(ret);
6358 goto out_journal;
6361 ret = ocfs2_extend_trans(handle, OCFS2_SUBALLOC_FREE);
6362 if (ret) {
6363 mlog_errno(ret);
6364 goto out_journal;
6367 tmp = head;
6368 head = head->free_next;
6369 kfree(tmp);
6372 out_journal:
6373 ocfs2_commit_trans(osb, handle);
6375 out_unlock:
6376 ocfs2_inode_unlock(inode, 1);
6377 brelse(di_bh);
6378 out_mutex:
6379 mutex_unlock(&inode->i_mutex);
6380 iput(inode);
6381 out:
6382 while(head) {
6383 /* Premature exit may have left some dangling items. */
6384 tmp = head;
6385 head = head->free_next;
6386 kfree(tmp);
6389 return ret;
6392 int ocfs2_cache_cluster_dealloc(struct ocfs2_cached_dealloc_ctxt *ctxt,
6393 u64 blkno, unsigned int bit)
6395 int ret = 0;
6396 struct ocfs2_cached_block_free *item;
6398 item = kzalloc(sizeof(*item), GFP_NOFS);
6399 if (item == NULL) {
6400 ret = -ENOMEM;
6401 mlog_errno(ret);
6402 return ret;
6405 mlog(0, "Insert clusters: (bit %u, blk %llu)\n",
6406 bit, (unsigned long long)blkno);
6408 item->free_blk = blkno;
6409 item->free_bit = bit;
6410 item->free_next = ctxt->c_global_allocator;
6412 ctxt->c_global_allocator = item;
6413 return ret;
6416 static int ocfs2_free_cached_clusters(struct ocfs2_super *osb,
6417 struct ocfs2_cached_block_free *head)
6419 struct ocfs2_cached_block_free *tmp;
6420 struct inode *tl_inode = osb->osb_tl_inode;
6421 handle_t *handle;
6422 int ret = 0;
6424 mutex_lock(&tl_inode->i_mutex);
6426 while (head) {
6427 if (ocfs2_truncate_log_needs_flush(osb)) {
6428 ret = __ocfs2_flush_truncate_log(osb);
6429 if (ret < 0) {
6430 mlog_errno(ret);
6431 break;
6435 handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE);
6436 if (IS_ERR(handle)) {
6437 ret = PTR_ERR(handle);
6438 mlog_errno(ret);
6439 break;
6442 ret = ocfs2_truncate_log_append(osb, handle, head->free_blk,
6443 head->free_bit);
6445 ocfs2_commit_trans(osb, handle);
6446 tmp = head;
6447 head = head->free_next;
6448 kfree(tmp);
6450 if (ret < 0) {
6451 mlog_errno(ret);
6452 break;
6456 mutex_unlock(&tl_inode->i_mutex);
6458 while (head) {
6459 /* Premature exit may have left some dangling items. */
6460 tmp = head;
6461 head = head->free_next;
6462 kfree(tmp);
6465 return ret;
6468 int ocfs2_run_deallocs(struct ocfs2_super *osb,
6469 struct ocfs2_cached_dealloc_ctxt *ctxt)
6471 int ret = 0, ret2;
6472 struct ocfs2_per_slot_free_list *fl;
6474 if (!ctxt)
6475 return 0;
6477 while (ctxt->c_first_suballocator) {
6478 fl = ctxt->c_first_suballocator;
6480 if (fl->f_first) {
6481 mlog(0, "Free items: (type %u, slot %d)\n",
6482 fl->f_inode_type, fl->f_slot);
6483 ret2 = ocfs2_free_cached_blocks(osb,
6484 fl->f_inode_type,
6485 fl->f_slot,
6486 fl->f_first);
6487 if (ret2)
6488 mlog_errno(ret2);
6489 if (!ret)
6490 ret = ret2;
6493 ctxt->c_first_suballocator = fl->f_next_suballocator;
6494 kfree(fl);
6497 if (ctxt->c_global_allocator) {
6498 ret2 = ocfs2_free_cached_clusters(osb,
6499 ctxt->c_global_allocator);
6500 if (ret2)
6501 mlog_errno(ret2);
6502 if (!ret)
6503 ret = ret2;
6505 ctxt->c_global_allocator = NULL;
6508 return ret;
6511 static struct ocfs2_per_slot_free_list *
6512 ocfs2_find_per_slot_free_list(int type,
6513 int slot,
6514 struct ocfs2_cached_dealloc_ctxt *ctxt)
6516 struct ocfs2_per_slot_free_list *fl = ctxt->c_first_suballocator;
6518 while (fl) {
6519 if (fl->f_inode_type == type && fl->f_slot == slot)
6520 return fl;
6522 fl = fl->f_next_suballocator;
6525 fl = kmalloc(sizeof(*fl), GFP_NOFS);
6526 if (fl) {
6527 fl->f_inode_type = type;
6528 fl->f_slot = slot;
6529 fl->f_first = NULL;
6530 fl->f_next_suballocator = ctxt->c_first_suballocator;
6532 ctxt->c_first_suballocator = fl;
6534 return fl;
6537 int ocfs2_cache_block_dealloc(struct ocfs2_cached_dealloc_ctxt *ctxt,
6538 int type, int slot, u64 suballoc,
6539 u64 blkno, unsigned int bit)
6541 int ret;
6542 struct ocfs2_per_slot_free_list *fl;
6543 struct ocfs2_cached_block_free *item;
6545 fl = ocfs2_find_per_slot_free_list(type, slot, ctxt);
6546 if (fl == NULL) {
6547 ret = -ENOMEM;
6548 mlog_errno(ret);
6549 goto out;
6552 item = kzalloc(sizeof(*item), GFP_NOFS);
6553 if (item == NULL) {
6554 ret = -ENOMEM;
6555 mlog_errno(ret);
6556 goto out;
6559 mlog(0, "Insert: (type %d, slot %u, bit %u, blk %llu)\n",
6560 type, slot, bit, (unsigned long long)blkno);
6562 item->free_bg = suballoc;
6563 item->free_blk = blkno;
6564 item->free_bit = bit;
6565 item->free_next = fl->f_first;
6567 fl->f_first = item;
6569 ret = 0;
6570 out:
6571 return ret;
6574 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt,
6575 struct ocfs2_extent_block *eb)
6577 return ocfs2_cache_block_dealloc(ctxt, EXTENT_ALLOC_SYSTEM_INODE,
6578 le16_to_cpu(eb->h_suballoc_slot),
6579 le64_to_cpu(eb->h_suballoc_loc),
6580 le64_to_cpu(eb->h_blkno),
6581 le16_to_cpu(eb->h_suballoc_bit));
6584 static int ocfs2_zero_func(handle_t *handle, struct buffer_head *bh)
6586 set_buffer_uptodate(bh);
6587 mark_buffer_dirty(bh);
6588 return 0;
6591 void ocfs2_map_and_dirty_page(struct inode *inode, handle_t *handle,
6592 unsigned int from, unsigned int to,
6593 struct page *page, int zero, u64 *phys)
6595 int ret, partial = 0;
6597 ret = ocfs2_map_page_blocks(page, phys, inode, from, to, 0);
6598 if (ret)
6599 mlog_errno(ret);
6601 if (zero)
6602 zero_user_segment(page, from, to);
6605 * Need to set the buffers we zero'd into uptodate
6606 * here if they aren't - ocfs2_map_page_blocks()
6607 * might've skipped some
6609 ret = walk_page_buffers(handle, page_buffers(page),
6610 from, to, &partial,
6611 ocfs2_zero_func);
6612 if (ret < 0)
6613 mlog_errno(ret);
6614 else if (ocfs2_should_order_data(inode)) {
6615 ret = ocfs2_jbd2_file_inode(handle, inode);
6616 if (ret < 0)
6617 mlog_errno(ret);
6620 if (!partial)
6621 SetPageUptodate(page);
6623 flush_dcache_page(page);
6626 static void ocfs2_zero_cluster_pages(struct inode *inode, loff_t start,
6627 loff_t end, struct page **pages,
6628 int numpages, u64 phys, handle_t *handle)
6630 int i;
6631 struct page *page;
6632 unsigned int from, to = PAGE_CACHE_SIZE;
6633 struct super_block *sb = inode->i_sb;
6635 BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(sb)));
6637 if (numpages == 0)
6638 goto out;
6640 to = PAGE_CACHE_SIZE;
6641 for(i = 0; i < numpages; i++) {
6642 page = pages[i];
6644 from = start & (PAGE_CACHE_SIZE - 1);
6645 if ((end >> PAGE_CACHE_SHIFT) == page->index)
6646 to = end & (PAGE_CACHE_SIZE - 1);
6648 BUG_ON(from > PAGE_CACHE_SIZE);
6649 BUG_ON(to > PAGE_CACHE_SIZE);
6651 ocfs2_map_and_dirty_page(inode, handle, from, to, page, 1,
6652 &phys);
6654 start = (page->index + 1) << PAGE_CACHE_SHIFT;
6656 out:
6657 if (pages)
6658 ocfs2_unlock_and_free_pages(pages, numpages);
6661 int ocfs2_grab_pages(struct inode *inode, loff_t start, loff_t end,
6662 struct page **pages, int *num)
6664 int numpages, ret = 0;
6665 struct address_space *mapping = inode->i_mapping;
6666 unsigned long index;
6667 loff_t last_page_bytes;
6669 BUG_ON(start > end);
6671 numpages = 0;
6672 last_page_bytes = PAGE_ALIGN(end);
6673 index = start >> PAGE_CACHE_SHIFT;
6674 do {
6675 pages[numpages] = find_or_create_page(mapping, index, GFP_NOFS);
6676 if (!pages[numpages]) {
6677 ret = -ENOMEM;
6678 mlog_errno(ret);
6679 goto out;
6682 numpages++;
6683 index++;
6684 } while (index < (last_page_bytes >> PAGE_CACHE_SHIFT));
6686 out:
6687 if (ret != 0) {
6688 if (pages)
6689 ocfs2_unlock_and_free_pages(pages, numpages);
6690 numpages = 0;
6693 *num = numpages;
6695 return ret;
6698 static int ocfs2_grab_eof_pages(struct inode *inode, loff_t start, loff_t end,
6699 struct page **pages, int *num)
6701 struct super_block *sb = inode->i_sb;
6703 BUG_ON(start >> OCFS2_SB(sb)->s_clustersize_bits !=
6704 (end - 1) >> OCFS2_SB(sb)->s_clustersize_bits);
6706 return ocfs2_grab_pages(inode, start, end, pages, num);
6710 * Zero the area past i_size but still within an allocated
6711 * cluster. This avoids exposing nonzero data on subsequent file
6712 * extends.
6714 * We need to call this before i_size is updated on the inode because
6715 * otherwise block_write_full_page() will skip writeout of pages past
6716 * i_size. The new_i_size parameter is passed for this reason.
6718 int ocfs2_zero_range_for_truncate(struct inode *inode, handle_t *handle,
6719 u64 range_start, u64 range_end)
6721 int ret = 0, numpages;
6722 struct page **pages = NULL;
6723 u64 phys;
6724 unsigned int ext_flags;
6725 struct super_block *sb = inode->i_sb;
6728 * File systems which don't support sparse files zero on every
6729 * extend.
6731 if (!ocfs2_sparse_alloc(OCFS2_SB(sb)))
6732 return 0;
6734 pages = kcalloc(ocfs2_pages_per_cluster(sb),
6735 sizeof(struct page *), GFP_NOFS);
6736 if (pages == NULL) {
6737 ret = -ENOMEM;
6738 mlog_errno(ret);
6739 goto out;
6742 if (range_start == range_end)
6743 goto out;
6745 ret = ocfs2_extent_map_get_blocks(inode,
6746 range_start >> sb->s_blocksize_bits,
6747 &phys, NULL, &ext_flags);
6748 if (ret) {
6749 mlog_errno(ret);
6750 goto out;
6754 * Tail is a hole, or is marked unwritten. In either case, we
6755 * can count on read and write to return/push zero's.
6757 if (phys == 0 || ext_flags & OCFS2_EXT_UNWRITTEN)
6758 goto out;
6760 ret = ocfs2_grab_eof_pages(inode, range_start, range_end, pages,
6761 &numpages);
6762 if (ret) {
6763 mlog_errno(ret);
6764 goto out;
6767 ocfs2_zero_cluster_pages(inode, range_start, range_end, pages,
6768 numpages, phys, handle);
6771 * Initiate writeout of the pages we zero'd here. We don't
6772 * wait on them - the truncate_inode_pages() call later will
6773 * do that for us.
6775 ret = filemap_fdatawrite_range(inode->i_mapping, range_start,
6776 range_end - 1);
6777 if (ret)
6778 mlog_errno(ret);
6780 out:
6781 if (pages)
6782 kfree(pages);
6784 return ret;
6787 static void ocfs2_zero_dinode_id2_with_xattr(struct inode *inode,
6788 struct ocfs2_dinode *di)
6790 unsigned int blocksize = 1 << inode->i_sb->s_blocksize_bits;
6791 unsigned int xattrsize = le16_to_cpu(di->i_xattr_inline_size);
6793 if (le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_XATTR_FL)
6794 memset(&di->id2, 0, blocksize -
6795 offsetof(struct ocfs2_dinode, id2) -
6796 xattrsize);
6797 else
6798 memset(&di->id2, 0, blocksize -
6799 offsetof(struct ocfs2_dinode, id2));
6802 void ocfs2_dinode_new_extent_list(struct inode *inode,
6803 struct ocfs2_dinode *di)
6805 ocfs2_zero_dinode_id2_with_xattr(inode, di);
6806 di->id2.i_list.l_tree_depth = 0;
6807 di->id2.i_list.l_next_free_rec = 0;
6808 di->id2.i_list.l_count = cpu_to_le16(
6809 ocfs2_extent_recs_per_inode_with_xattr(inode->i_sb, di));
6812 void ocfs2_set_inode_data_inline(struct inode *inode, struct ocfs2_dinode *di)
6814 struct ocfs2_inode_info *oi = OCFS2_I(inode);
6815 struct ocfs2_inline_data *idata = &di->id2.i_data;
6817 spin_lock(&oi->ip_lock);
6818 oi->ip_dyn_features |= OCFS2_INLINE_DATA_FL;
6819 di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features);
6820 spin_unlock(&oi->ip_lock);
6823 * We clear the entire i_data structure here so that all
6824 * fields can be properly initialized.
6826 ocfs2_zero_dinode_id2_with_xattr(inode, di);
6828 idata->id_count = cpu_to_le16(
6829 ocfs2_max_inline_data_with_xattr(inode->i_sb, di));
6832 int ocfs2_convert_inline_data_to_extents(struct inode *inode,
6833 struct buffer_head *di_bh)
6835 int ret, i, has_data, num_pages = 0;
6836 handle_t *handle;
6837 u64 uninitialized_var(block);
6838 struct ocfs2_inode_info *oi = OCFS2_I(inode);
6839 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
6840 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
6841 struct ocfs2_alloc_context *data_ac = NULL;
6842 struct page **pages = NULL;
6843 loff_t end = osb->s_clustersize;
6844 struct ocfs2_extent_tree et;
6845 int did_quota = 0;
6847 has_data = i_size_read(inode) ? 1 : 0;
6849 if (has_data) {
6850 pages = kcalloc(ocfs2_pages_per_cluster(osb->sb),
6851 sizeof(struct page *), GFP_NOFS);
6852 if (pages == NULL) {
6853 ret = -ENOMEM;
6854 mlog_errno(ret);
6855 goto out;
6858 ret = ocfs2_reserve_clusters(osb, 1, &data_ac);
6859 if (ret) {
6860 mlog_errno(ret);
6861 goto out;
6865 handle = ocfs2_start_trans(osb,
6866 ocfs2_inline_to_extents_credits(osb->sb));
6867 if (IS_ERR(handle)) {
6868 ret = PTR_ERR(handle);
6869 mlog_errno(ret);
6870 goto out_unlock;
6873 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh,
6874 OCFS2_JOURNAL_ACCESS_WRITE);
6875 if (ret) {
6876 mlog_errno(ret);
6877 goto out_commit;
6880 if (has_data) {
6881 u32 bit_off, num;
6882 unsigned int page_end;
6883 u64 phys;
6885 ret = dquot_alloc_space_nodirty(inode,
6886 ocfs2_clusters_to_bytes(osb->sb, 1));
6887 if (ret)
6888 goto out_commit;
6889 did_quota = 1;
6891 data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv;
6893 ret = ocfs2_claim_clusters(handle, data_ac, 1, &bit_off,
6894 &num);
6895 if (ret) {
6896 mlog_errno(ret);
6897 goto out_commit;
6901 * Save two copies, one for insert, and one that can
6902 * be changed by ocfs2_map_and_dirty_page() below.
6904 block = phys = ocfs2_clusters_to_blocks(inode->i_sb, bit_off);
6907 * Non sparse file systems zero on extend, so no need
6908 * to do that now.
6910 if (!ocfs2_sparse_alloc(osb) &&
6911 PAGE_CACHE_SIZE < osb->s_clustersize)
6912 end = PAGE_CACHE_SIZE;
6914 ret = ocfs2_grab_eof_pages(inode, 0, end, pages, &num_pages);
6915 if (ret) {
6916 mlog_errno(ret);
6917 goto out_commit;
6921 * This should populate the 1st page for us and mark
6922 * it up to date.
6924 ret = ocfs2_read_inline_data(inode, pages[0], di_bh);
6925 if (ret) {
6926 mlog_errno(ret);
6927 goto out_commit;
6930 page_end = PAGE_CACHE_SIZE;
6931 if (PAGE_CACHE_SIZE > osb->s_clustersize)
6932 page_end = osb->s_clustersize;
6934 for (i = 0; i < num_pages; i++)
6935 ocfs2_map_and_dirty_page(inode, handle, 0, page_end,
6936 pages[i], i > 0, &phys);
6939 spin_lock(&oi->ip_lock);
6940 oi->ip_dyn_features &= ~OCFS2_INLINE_DATA_FL;
6941 di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features);
6942 spin_unlock(&oi->ip_lock);
6944 ocfs2_dinode_new_extent_list(inode, di);
6946 ocfs2_journal_dirty(handle, di_bh);
6948 if (has_data) {
6950 * An error at this point should be extremely rare. If
6951 * this proves to be false, we could always re-build
6952 * the in-inode data from our pages.
6954 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh);
6955 ret = ocfs2_insert_extent(handle, &et, 0, block, 1, 0, NULL);
6956 if (ret) {
6957 mlog_errno(ret);
6958 goto out_commit;
6961 inode->i_blocks = ocfs2_inode_sector_count(inode);
6964 out_commit:
6965 if (ret < 0 && did_quota)
6966 dquot_free_space_nodirty(inode,
6967 ocfs2_clusters_to_bytes(osb->sb, 1));
6969 ocfs2_commit_trans(osb, handle);
6971 out_unlock:
6972 if (data_ac)
6973 ocfs2_free_alloc_context(data_ac);
6975 out:
6976 if (pages) {
6977 ocfs2_unlock_and_free_pages(pages, num_pages);
6978 kfree(pages);
6981 return ret;
6985 * It is expected, that by the time you call this function,
6986 * inode->i_size and fe->i_size have been adjusted.
6988 * WARNING: This will kfree the truncate context
6990 int ocfs2_commit_truncate(struct ocfs2_super *osb,
6991 struct inode *inode,
6992 struct buffer_head *di_bh)
6994 int status = 0, i, flags = 0;
6995 u32 new_highest_cpos, range, trunc_cpos, trunc_len, phys_cpos, coff;
6996 u64 blkno = 0;
6997 struct ocfs2_extent_list *el;
6998 struct ocfs2_extent_rec *rec;
6999 struct ocfs2_path *path = NULL;
7000 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
7001 struct ocfs2_extent_list *root_el = &(di->id2.i_list);
7002 u64 refcount_loc = le64_to_cpu(di->i_refcount_loc);
7003 struct ocfs2_extent_tree et;
7004 struct ocfs2_cached_dealloc_ctxt dealloc;
7006 mlog_entry_void();
7008 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh);
7009 ocfs2_init_dealloc_ctxt(&dealloc);
7011 new_highest_cpos = ocfs2_clusters_for_bytes(osb->sb,
7012 i_size_read(inode));
7014 path = ocfs2_new_path(di_bh, &di->id2.i_list,
7015 ocfs2_journal_access_di);
7016 if (!path) {
7017 status = -ENOMEM;
7018 mlog_errno(status);
7019 goto bail;
7022 ocfs2_extent_map_trunc(inode, new_highest_cpos);
7024 start:
7026 * Check that we still have allocation to delete.
7028 if (OCFS2_I(inode)->ip_clusters == 0) {
7029 status = 0;
7030 goto bail;
7034 * Truncate always works against the rightmost tree branch.
7036 status = ocfs2_find_path(INODE_CACHE(inode), path, UINT_MAX);
7037 if (status) {
7038 mlog_errno(status);
7039 goto bail;
7042 mlog(0, "inode->ip_clusters = %u, tree_depth = %u\n",
7043 OCFS2_I(inode)->ip_clusters, path->p_tree_depth);
7046 * By now, el will point to the extent list on the bottom most
7047 * portion of this tree. Only the tail record is considered in
7048 * each pass.
7050 * We handle the following cases, in order:
7051 * - empty extent: delete the remaining branch
7052 * - remove the entire record
7053 * - remove a partial record
7054 * - no record needs to be removed (truncate has completed)
7056 el = path_leaf_el(path);
7057 if (le16_to_cpu(el->l_next_free_rec) == 0) {
7058 ocfs2_error(inode->i_sb,
7059 "Inode %llu has empty extent block at %llu\n",
7060 (unsigned long long)OCFS2_I(inode)->ip_blkno,
7061 (unsigned long long)path_leaf_bh(path)->b_blocknr);
7062 status = -EROFS;
7063 goto bail;
7066 i = le16_to_cpu(el->l_next_free_rec) - 1;
7067 rec = &el->l_recs[i];
7068 flags = rec->e_flags;
7069 range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
7071 if (i == 0 && ocfs2_is_empty_extent(rec)) {
7073 * Lower levels depend on this never happening, but it's best
7074 * to check it up here before changing the tree.
7076 if (root_el->l_tree_depth && rec->e_int_clusters == 0) {
7077 ocfs2_error(inode->i_sb, "Inode %lu has an empty "
7078 "extent record, depth %u\n", inode->i_ino,
7079 le16_to_cpu(root_el->l_tree_depth));
7080 status = -EROFS;
7081 goto bail;
7083 trunc_cpos = le32_to_cpu(rec->e_cpos);
7084 trunc_len = 0;
7085 blkno = 0;
7086 } else if (le32_to_cpu(rec->e_cpos) >= new_highest_cpos) {
7088 * Truncate entire record.
7090 trunc_cpos = le32_to_cpu(rec->e_cpos);
7091 trunc_len = ocfs2_rec_clusters(el, rec);
7092 blkno = le64_to_cpu(rec->e_blkno);
7093 } else if (range > new_highest_cpos) {
7095 * Partial truncate. it also should be
7096 * the last truncate we're doing.
7098 trunc_cpos = new_highest_cpos;
7099 trunc_len = range - new_highest_cpos;
7100 coff = new_highest_cpos - le32_to_cpu(rec->e_cpos);
7101 blkno = le64_to_cpu(rec->e_blkno) +
7102 ocfs2_clusters_to_blocks(inode->i_sb, coff);
7103 } else {
7105 * Truncate completed, leave happily.
7107 status = 0;
7108 goto bail;
7111 phys_cpos = ocfs2_blocks_to_clusters(inode->i_sb, blkno);
7113 status = ocfs2_remove_btree_range(inode, &et, trunc_cpos,
7114 phys_cpos, trunc_len, flags, &dealloc,
7115 refcount_loc);
7116 if (status < 0) {
7117 mlog_errno(status);
7118 goto bail;
7121 ocfs2_reinit_path(path, 1);
7124 * The check above will catch the case where we've truncated
7125 * away all allocation.
7127 goto start;
7129 bail:
7131 ocfs2_schedule_truncate_log_flush(osb, 1);
7133 ocfs2_run_deallocs(osb, &dealloc);
7135 ocfs2_free_path(path);
7137 mlog_exit(status);
7138 return status;
7142 * Expects the inode to already be locked.
7144 int ocfs2_prepare_truncate(struct ocfs2_super *osb,
7145 struct inode *inode,
7146 struct buffer_head *fe_bh,
7147 struct ocfs2_truncate_context **tc)
7149 int status;
7150 unsigned int new_i_clusters;
7151 struct ocfs2_dinode *fe;
7152 struct ocfs2_extent_block *eb;
7153 struct buffer_head *last_eb_bh = NULL;
7155 mlog_entry_void();
7157 *tc = NULL;
7159 new_i_clusters = ocfs2_clusters_for_bytes(osb->sb,
7160 i_size_read(inode));
7161 fe = (struct ocfs2_dinode *) fe_bh->b_data;
7163 mlog(0, "fe->i_clusters = %u, new_i_clusters = %u, fe->i_size ="
7164 "%llu\n", le32_to_cpu(fe->i_clusters), new_i_clusters,
7165 (unsigned long long)le64_to_cpu(fe->i_size));
7167 *tc = kzalloc(sizeof(struct ocfs2_truncate_context), GFP_KERNEL);
7168 if (!(*tc)) {
7169 status = -ENOMEM;
7170 mlog_errno(status);
7171 goto bail;
7173 ocfs2_init_dealloc_ctxt(&(*tc)->tc_dealloc);
7175 if (fe->id2.i_list.l_tree_depth) {
7176 status = ocfs2_read_extent_block(INODE_CACHE(inode),
7177 le64_to_cpu(fe->i_last_eb_blk),
7178 &last_eb_bh);
7179 if (status < 0) {
7180 mlog_errno(status);
7181 goto bail;
7183 eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
7186 (*tc)->tc_last_eb_bh = last_eb_bh;
7188 status = 0;
7189 bail:
7190 if (status < 0) {
7191 if (*tc)
7192 ocfs2_free_truncate_context(*tc);
7193 *tc = NULL;
7195 mlog_exit_void();
7196 return status;
7200 * 'start' is inclusive, 'end' is not.
7202 int ocfs2_truncate_inline(struct inode *inode, struct buffer_head *di_bh,
7203 unsigned int start, unsigned int end, int trunc)
7205 int ret;
7206 unsigned int numbytes;
7207 handle_t *handle;
7208 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
7209 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
7210 struct ocfs2_inline_data *idata = &di->id2.i_data;
7212 if (end > i_size_read(inode))
7213 end = i_size_read(inode);
7215 BUG_ON(start >= end);
7217 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) ||
7218 !(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL) ||
7219 !ocfs2_supports_inline_data(osb)) {
7220 ocfs2_error(inode->i_sb,
7221 "Inline data flags for inode %llu don't agree! "
7222 "Disk: 0x%x, Memory: 0x%x, Superblock: 0x%x\n",
7223 (unsigned long long)OCFS2_I(inode)->ip_blkno,
7224 le16_to_cpu(di->i_dyn_features),
7225 OCFS2_I(inode)->ip_dyn_features,
7226 osb->s_feature_incompat);
7227 ret = -EROFS;
7228 goto out;
7231 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
7232 if (IS_ERR(handle)) {
7233 ret = PTR_ERR(handle);
7234 mlog_errno(ret);
7235 goto out;
7238 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh,
7239 OCFS2_JOURNAL_ACCESS_WRITE);
7240 if (ret) {
7241 mlog_errno(ret);
7242 goto out_commit;
7245 numbytes = end - start;
7246 memset(idata->id_data + start, 0, numbytes);
7249 * No need to worry about the data page here - it's been
7250 * truncated already and inline data doesn't need it for
7251 * pushing zero's to disk, so we'll let readpage pick it up
7252 * later.
7254 if (trunc) {
7255 i_size_write(inode, start);
7256 di->i_size = cpu_to_le64(start);
7259 inode->i_blocks = ocfs2_inode_sector_count(inode);
7260 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
7262 di->i_ctime = di->i_mtime = cpu_to_le64(inode->i_ctime.tv_sec);
7263 di->i_ctime_nsec = di->i_mtime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec);
7265 ocfs2_journal_dirty(handle, di_bh);
7267 out_commit:
7268 ocfs2_commit_trans(osb, handle);
7270 out:
7271 return ret;
7274 static void ocfs2_free_truncate_context(struct ocfs2_truncate_context *tc)
7277 * The caller is responsible for completing deallocation
7278 * before freeing the context.
7280 if (tc->tc_dealloc.c_first_suballocator != NULL)
7281 mlog(ML_NOTICE,
7282 "Truncate completion has non-empty dealloc context\n");
7284 brelse(tc->tc_last_eb_bh);
7286 kfree(tc);