4 * Copyright (C) 1992 Rick Sladkey
6 * nfs directory handling functions
8 * 10 Apr 1996 Added silly rename for unlink --okir
9 * 28 Sep 1996 Improved directory cache --okir
10 * 23 Aug 1997 Claus Heine claus@momo.math.rwth-aachen.de
11 * Re-implemented silly rename for unlink, newly implemented
12 * silly rename for nfs_rename() following the suggestions
13 * of Olaf Kirch (okir) found in this file.
14 * Following Linus comments on my original hack, this version
15 * depends only on the dcache stuff and doesn't touch the inode
16 * layer (iput() and friends).
17 * 6 Jun 1999 Cache readdir lookups in the page cache. -DaveM
20 #include <linux/time.h>
21 #include <linux/errno.h>
22 #include <linux/stat.h>
23 #include <linux/fcntl.h>
24 #include <linux/string.h>
25 #include <linux/kernel.h>
26 #include <linux/slab.h>
28 #include <linux/sunrpc/clnt.h>
29 #include <linux/nfs_fs.h>
30 #include <linux/nfs_mount.h>
31 #include <linux/pagemap.h>
32 #include <linux/smp_lock.h>
33 #include <linux/pagevec.h>
34 #include <linux/namei.h>
35 #include <linux/mount.h>
36 #include <linux/sched.h>
39 #include "delegation.h"
43 /* #define NFS_DEBUG_VERBOSE 1 */
45 static int nfs_opendir(struct inode
*, struct file
*);
46 static int nfs_readdir(struct file
*, void *, filldir_t
);
47 static struct dentry
*nfs_lookup(struct inode
*, struct dentry
*, struct nameidata
*);
48 static int nfs_create(struct inode
*, struct dentry
*, int, struct nameidata
*);
49 static int nfs_mkdir(struct inode
*, struct dentry
*, int);
50 static int nfs_rmdir(struct inode
*, struct dentry
*);
51 static int nfs_unlink(struct inode
*, struct dentry
*);
52 static int nfs_symlink(struct inode
*, struct dentry
*, const char *);
53 static int nfs_link(struct dentry
*, struct inode
*, struct dentry
*);
54 static int nfs_mknod(struct inode
*, struct dentry
*, int, dev_t
);
55 static int nfs_rename(struct inode
*, struct dentry
*,
56 struct inode
*, struct dentry
*);
57 static int nfs_fsync_dir(struct file
*, struct dentry
*, int);
58 static loff_t
nfs_llseek_dir(struct file
*, loff_t
, int);
60 const struct file_operations nfs_dir_operations
= {
61 .llseek
= nfs_llseek_dir
,
62 .read
= generic_read_dir
,
63 .readdir
= nfs_readdir
,
65 .release
= nfs_release
,
66 .fsync
= nfs_fsync_dir
,
69 const struct inode_operations nfs_dir_inode_operations
= {
74 .symlink
= nfs_symlink
,
79 .permission
= nfs_permission
,
80 .getattr
= nfs_getattr
,
81 .setattr
= nfs_setattr
,
85 const struct inode_operations nfs3_dir_inode_operations
= {
90 .symlink
= nfs_symlink
,
95 .permission
= nfs_permission
,
96 .getattr
= nfs_getattr
,
97 .setattr
= nfs_setattr
,
98 .listxattr
= nfs3_listxattr
,
99 .getxattr
= nfs3_getxattr
,
100 .setxattr
= nfs3_setxattr
,
101 .removexattr
= nfs3_removexattr
,
103 #endif /* CONFIG_NFS_V3 */
107 static struct dentry
*nfs_atomic_lookup(struct inode
*, struct dentry
*, struct nameidata
*);
108 const struct inode_operations nfs4_dir_inode_operations
= {
109 .create
= nfs_create
,
110 .lookup
= nfs_atomic_lookup
,
112 .unlink
= nfs_unlink
,
113 .symlink
= nfs_symlink
,
117 .rename
= nfs_rename
,
118 .permission
= nfs_permission
,
119 .getattr
= nfs_getattr
,
120 .setattr
= nfs_setattr
,
121 .getxattr
= nfs4_getxattr
,
122 .setxattr
= nfs4_setxattr
,
123 .listxattr
= nfs4_listxattr
,
126 #endif /* CONFIG_NFS_V4 */
132 nfs_opendir(struct inode
*inode
, struct file
*filp
)
136 dfprintk(VFS
, "NFS: opendir(%s/%ld)\n",
137 inode
->i_sb
->s_id
, inode
->i_ino
);
140 /* Call generic open code in order to cache credentials */
141 res
= nfs_open(inode
, filp
);
146 typedef __be32
* (*decode_dirent_t
)(__be32
*, struct nfs_entry
*, int);
150 unsigned long page_index
;
153 loff_t current_index
;
154 struct nfs_entry
*entry
;
155 decode_dirent_t decode
;
157 unsigned long timestamp
;
159 } nfs_readdir_descriptor_t
;
161 /* Now we cache directories properly, by stuffing the dirent
162 * data directly in the page cache.
164 * Inode invalidation due to refresh etc. takes care of
165 * _everything_, no sloppy entry flushing logic, no extraneous
166 * copying, network direct to page cache, the way it was meant
169 * NOTE: Dirent information verification is done always by the
170 * page-in of the RPC reply, nowhere else, this simplies
171 * things substantially.
174 int nfs_readdir_filler(nfs_readdir_descriptor_t
*desc
, struct page
*page
)
176 struct file
*file
= desc
->file
;
177 struct inode
*inode
= file
->f_path
.dentry
->d_inode
;
178 struct rpc_cred
*cred
= nfs_file_cred(file
);
179 unsigned long timestamp
;
182 dfprintk(DIRCACHE
, "NFS: %s: reading cookie %Lu into page %lu\n",
183 __FUNCTION__
, (long long)desc
->entry
->cookie
,
188 error
= NFS_PROTO(inode
)->readdir(file
->f_path
.dentry
, cred
, desc
->entry
->cookie
, page
,
189 NFS_SERVER(inode
)->dtsize
, desc
->plus
);
191 /* We requested READDIRPLUS, but the server doesn't grok it */
192 if (error
== -ENOTSUPP
&& desc
->plus
) {
193 NFS_SERVER(inode
)->caps
&= ~NFS_CAP_READDIRPLUS
;
194 clear_bit(NFS_INO_ADVISE_RDPLUS
, &NFS_I(inode
)->flags
);
200 desc
->timestamp
= timestamp
;
201 desc
->timestamp_valid
= 1;
202 SetPageUptodate(page
);
203 /* Ensure consistent page alignment of the data.
204 * Note: assumes we have exclusive access to this mapping either
205 * through inode->i_mutex or some other mechanism.
207 if (page
->index
== 0 && invalidate_inode_pages2_range(inode
->i_mapping
, PAGE_CACHE_SIZE
, -1) < 0) {
208 /* Should never happen */
209 nfs_zap_mapping(inode
, inode
->i_mapping
);
219 int dir_decode(nfs_readdir_descriptor_t
*desc
)
221 __be32
*p
= desc
->ptr
;
222 p
= desc
->decode(p
, desc
->entry
, desc
->plus
);
226 if (desc
->timestamp_valid
)
227 desc
->entry
->fattr
->time_start
= desc
->timestamp
;
229 desc
->entry
->fattr
->valid
&= ~NFS_ATTR_FATTR
;
234 void dir_page_release(nfs_readdir_descriptor_t
*desc
)
237 page_cache_release(desc
->page
);
243 * Given a pointer to a buffer that has already been filled by a call
244 * to readdir, find the next entry with cookie '*desc->dir_cookie'.
246 * If the end of the buffer has been reached, return -EAGAIN, if not,
247 * return the offset within the buffer of the next entry to be
251 int find_dirent(nfs_readdir_descriptor_t
*desc
)
253 struct nfs_entry
*entry
= desc
->entry
;
257 while((status
= dir_decode(desc
)) == 0) {
258 dfprintk(DIRCACHE
, "NFS: %s: examining cookie %Lu\n",
259 __FUNCTION__
, (unsigned long long)entry
->cookie
);
260 if (entry
->prev_cookie
== *desc
->dir_cookie
)
262 if (loop_count
++ > 200) {
271 * Given a pointer to a buffer that has already been filled by a call
272 * to readdir, find the entry at offset 'desc->file->f_pos'.
274 * If the end of the buffer has been reached, return -EAGAIN, if not,
275 * return the offset within the buffer of the next entry to be
279 int find_dirent_index(nfs_readdir_descriptor_t
*desc
)
281 struct nfs_entry
*entry
= desc
->entry
;
286 status
= dir_decode(desc
);
290 dfprintk(DIRCACHE
, "NFS: found cookie %Lu at index %Ld\n",
291 (unsigned long long)entry
->cookie
, desc
->current_index
);
293 if (desc
->file
->f_pos
== desc
->current_index
) {
294 *desc
->dir_cookie
= entry
->cookie
;
297 desc
->current_index
++;
298 if (loop_count
++ > 200) {
307 * Find the given page, and call find_dirent() or find_dirent_index in
308 * order to try to return the next entry.
311 int find_dirent_page(nfs_readdir_descriptor_t
*desc
)
313 struct inode
*inode
= desc
->file
->f_path
.dentry
->d_inode
;
317 dfprintk(DIRCACHE
, "NFS: %s: searching page %ld for target %Lu\n",
318 __FUNCTION__
, desc
->page_index
,
319 (long long) *desc
->dir_cookie
);
321 /* If we find the page in the page_cache, we cannot be sure
322 * how fresh the data is, so we will ignore readdir_plus attributes.
324 desc
->timestamp_valid
= 0;
325 page
= read_cache_page(inode
->i_mapping
, desc
->page_index
,
326 (filler_t
*)nfs_readdir_filler
, desc
);
328 status
= PTR_ERR(page
);
332 /* NOTE: Someone else may have changed the READDIRPLUS flag */
334 desc
->ptr
= kmap(page
); /* matching kunmap in nfs_do_filldir */
335 if (*desc
->dir_cookie
!= 0)
336 status
= find_dirent(desc
);
338 status
= find_dirent_index(desc
);
340 dir_page_release(desc
);
342 dfprintk(DIRCACHE
, "NFS: %s: returns %d\n", __FUNCTION__
, status
);
347 * Recurse through the page cache pages, and return a
348 * filled nfs_entry structure of the next directory entry if possible.
350 * The target for the search is '*desc->dir_cookie' if non-0,
351 * 'desc->file->f_pos' otherwise
354 int readdir_search_pagecache(nfs_readdir_descriptor_t
*desc
)
359 /* Always search-by-index from the beginning of the cache */
360 if (*desc
->dir_cookie
== 0) {
361 dfprintk(DIRCACHE
, "NFS: readdir_search_pagecache() searching for offset %Ld\n",
362 (long long)desc
->file
->f_pos
);
363 desc
->page_index
= 0;
364 desc
->entry
->cookie
= desc
->entry
->prev_cookie
= 0;
365 desc
->entry
->eof
= 0;
366 desc
->current_index
= 0;
368 dfprintk(DIRCACHE
, "NFS: readdir_search_pagecache() searching for cookie %Lu\n",
369 (unsigned long long)*desc
->dir_cookie
);
372 res
= find_dirent_page(desc
);
375 /* Align to beginning of next page */
377 if (loop_count
++ > 200) {
383 dfprintk(DIRCACHE
, "NFS: %s: returns %d\n", __FUNCTION__
, res
);
387 static inline unsigned int dt_type(struct inode
*inode
)
389 return (inode
->i_mode
>> 12) & 15;
392 static struct dentry
*nfs_readdir_lookup(nfs_readdir_descriptor_t
*desc
);
395 * Once we've found the start of the dirent within a page: fill 'er up...
398 int nfs_do_filldir(nfs_readdir_descriptor_t
*desc
, void *dirent
,
401 struct file
*file
= desc
->file
;
402 struct nfs_entry
*entry
= desc
->entry
;
403 struct dentry
*dentry
= NULL
;
408 dfprintk(DIRCACHE
, "NFS: nfs_do_filldir() filling starting @ cookie %Lu\n",
409 (unsigned long long)entry
->cookie
);
412 unsigned d_type
= DT_UNKNOWN
;
413 /* Note: entry->prev_cookie contains the cookie for
414 * retrieving the current dirent on the server */
417 /* Get a dentry if we have one */
420 dentry
= nfs_readdir_lookup(desc
);
422 /* Use readdirplus info */
423 if (dentry
!= NULL
&& dentry
->d_inode
!= NULL
) {
424 d_type
= dt_type(dentry
->d_inode
);
425 fileid
= NFS_FILEID(dentry
->d_inode
);
428 res
= filldir(dirent
, entry
->name
, entry
->len
,
429 file
->f_pos
, nfs_compat_user_ino64(fileid
),
434 *desc
->dir_cookie
= entry
->cookie
;
435 if (dir_decode(desc
) != 0) {
439 if (loop_count
++ > 200) {
444 dir_page_release(desc
);
447 dfprintk(DIRCACHE
, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n",
448 (unsigned long long)*desc
->dir_cookie
, res
);
453 * If we cannot find a cookie in our cache, we suspect that this is
454 * because it points to a deleted file, so we ask the server to return
455 * whatever it thinks is the next entry. We then feed this to filldir.
456 * If all goes well, we should then be able to find our way round the
457 * cache on the next call to readdir_search_pagecache();
459 * NOTE: we cannot add the anonymous page to the pagecache because
460 * the data it contains might not be page aligned. Besides,
461 * we should already have a complete representation of the
462 * directory in the page cache by the time we get here.
465 int uncached_readdir(nfs_readdir_descriptor_t
*desc
, void *dirent
,
468 struct file
*file
= desc
->file
;
469 struct inode
*inode
= file
->f_path
.dentry
->d_inode
;
470 struct rpc_cred
*cred
= nfs_file_cred(file
);
471 struct page
*page
= NULL
;
473 unsigned long timestamp
;
475 dfprintk(DIRCACHE
, "NFS: uncached_readdir() searching for cookie %Lu\n",
476 (unsigned long long)*desc
->dir_cookie
);
478 page
= alloc_page(GFP_HIGHUSER
);
484 status
= NFS_PROTO(inode
)->readdir(file
->f_path
.dentry
, cred
,
485 *desc
->dir_cookie
, page
,
486 NFS_SERVER(inode
)->dtsize
,
489 desc
->ptr
= kmap(page
); /* matching kunmap in nfs_do_filldir */
491 desc
->timestamp
= timestamp
;
492 desc
->timestamp_valid
= 1;
493 if ((status
= dir_decode(desc
)) == 0)
494 desc
->entry
->prev_cookie
= *desc
->dir_cookie
;
500 status
= nfs_do_filldir(desc
, dirent
, filldir
);
502 /* Reset read descriptor so it searches the page cache from
503 * the start upon the next call to readdir_search_pagecache() */
504 desc
->page_index
= 0;
505 desc
->entry
->cookie
= desc
->entry
->prev_cookie
= 0;
506 desc
->entry
->eof
= 0;
508 dfprintk(DIRCACHE
, "NFS: %s: returns %d\n",
509 __FUNCTION__
, status
);
512 dir_page_release(desc
);
516 /* The file offset position represents the dirent entry number. A
517 last cookie cache takes care of the common case of reading the
520 static int nfs_readdir(struct file
*filp
, void *dirent
, filldir_t filldir
)
522 struct dentry
*dentry
= filp
->f_path
.dentry
;
523 struct inode
*inode
= dentry
->d_inode
;
524 nfs_readdir_descriptor_t my_desc
,
526 struct nfs_entry my_entry
;
528 struct nfs_fattr fattr
;
531 dfprintk(VFS
, "NFS: readdir(%s/%s) starting at cookie %Lu\n",
532 dentry
->d_parent
->d_name
.name
, dentry
->d_name
.name
,
533 (long long)filp
->f_pos
);
534 nfs_inc_stats(inode
, NFSIOS_VFSGETDENTS
);
539 * filp->f_pos points to the dirent entry number.
540 * *desc->dir_cookie has the cookie for the next entry. We have
541 * to either find the entry with the appropriate number or
542 * revalidate the cookie.
544 memset(desc
, 0, sizeof(*desc
));
547 desc
->dir_cookie
= &nfs_file_open_context(filp
)->dir_cookie
;
548 desc
->decode
= NFS_PROTO(inode
)->decode_dirent
;
549 desc
->plus
= NFS_USE_READDIRPLUS(inode
);
551 my_entry
.cookie
= my_entry
.prev_cookie
= 0;
554 my_entry
.fattr
= &fattr
;
555 nfs_fattr_init(&fattr
);
556 desc
->entry
= &my_entry
;
558 nfs_block_sillyrename(dentry
);
559 res
= nfs_revalidate_mapping_nolock(inode
, filp
->f_mapping
);
563 while(!desc
->entry
->eof
) {
564 res
= readdir_search_pagecache(desc
);
566 if (res
== -EBADCOOKIE
) {
567 /* This means either end of directory */
568 if (*desc
->dir_cookie
&& desc
->entry
->cookie
!= *desc
->dir_cookie
) {
569 /* Or that the server has 'lost' a cookie */
570 res
= uncached_readdir(desc
, dirent
, filldir
);
577 if (res
== -ETOOSMALL
&& desc
->plus
) {
578 clear_bit(NFS_INO_ADVISE_RDPLUS
, &NFS_I(inode
)->flags
);
579 nfs_zap_caches(inode
);
581 desc
->entry
->eof
= 0;
587 res
= nfs_do_filldir(desc
, dirent
, filldir
);
594 nfs_unblock_sillyrename(dentry
);
598 dfprintk(VFS
, "NFS: readdir(%s/%s) returns %ld\n",
599 dentry
->d_parent
->d_name
.name
, dentry
->d_name
.name
,
604 static loff_t
nfs_llseek_dir(struct file
*filp
, loff_t offset
, int origin
)
606 mutex_lock(&filp
->f_path
.dentry
->d_inode
->i_mutex
);
609 offset
+= filp
->f_pos
;
617 if (offset
!= filp
->f_pos
) {
618 filp
->f_pos
= offset
;
619 nfs_file_open_context(filp
)->dir_cookie
= 0;
622 mutex_unlock(&filp
->f_path
.dentry
->d_inode
->i_mutex
);
627 * All directory operations under NFS are synchronous, so fsync()
628 * is a dummy operation.
630 static int nfs_fsync_dir(struct file
*filp
, struct dentry
*dentry
, int datasync
)
632 dfprintk(VFS
, "NFS: fsync_dir(%s/%s) datasync %d\n",
633 dentry
->d_parent
->d_name
.name
, dentry
->d_name
.name
,
640 * nfs_force_lookup_revalidate - Mark the directory as having changed
641 * @dir - pointer to directory inode
643 * This forces the revalidation code in nfs_lookup_revalidate() to do a
644 * full lookup on all child dentries of 'dir' whenever a change occurs
645 * on the server that might have invalidated our dcache.
647 * The caller should be holding dir->i_lock
649 void nfs_force_lookup_revalidate(struct inode
*dir
)
651 NFS_I(dir
)->cache_change_attribute
= jiffies
;
655 * A check for whether or not the parent directory has changed.
656 * In the case it has, we assume that the dentries are untrustworthy
657 * and may need to be looked up again.
659 static int nfs_check_verifier(struct inode
*dir
, struct dentry
*dentry
)
663 if (!nfs_verify_change_attribute(dir
, dentry
->d_time
))
665 /* Revalidate nfsi->cache_change_attribute before we declare a match */
666 if (nfs_revalidate_inode(NFS_SERVER(dir
), dir
) < 0)
668 if (!nfs_verify_change_attribute(dir
, dentry
->d_time
))
674 * Return the intent data that applies to this particular path component
676 * Note that the current set of intents only apply to the very last
677 * component of the path.
678 * We check for this using LOOKUP_CONTINUE and LOOKUP_PARENT.
680 static inline unsigned int nfs_lookup_check_intent(struct nameidata
*nd
, unsigned int mask
)
682 if (nd
->flags
& (LOOKUP_CONTINUE
|LOOKUP_PARENT
))
684 return nd
->flags
& mask
;
688 * Use intent information to check whether or not we're going to do
689 * an O_EXCL create using this path component.
691 static int nfs_is_exclusive_create(struct inode
*dir
, struct nameidata
*nd
)
693 if (NFS_PROTO(dir
)->version
== 2)
695 if (nd
== NULL
|| nfs_lookup_check_intent(nd
, LOOKUP_CREATE
) == 0)
697 return (nd
->intent
.open
.flags
& O_EXCL
) != 0;
701 * Inode and filehandle revalidation for lookups.
703 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
704 * or if the intent information indicates that we're about to open this
705 * particular file and the "nocto" mount flag is not set.
709 int nfs_lookup_verify_inode(struct inode
*inode
, struct nameidata
*nd
)
711 struct nfs_server
*server
= NFS_SERVER(inode
);
713 if (test_bit(NFS_INO_MOUNTPOINT
, &NFS_I(inode
)->flags
))
716 /* VFS wants an on-the-wire revalidation */
717 if (nd
->flags
& LOOKUP_REVAL
)
719 /* This is an open(2) */
720 if (nfs_lookup_check_intent(nd
, LOOKUP_OPEN
) != 0 &&
721 !(server
->flags
& NFS_MOUNT_NOCTO
) &&
722 (S_ISREG(inode
->i_mode
) ||
723 S_ISDIR(inode
->i_mode
)))
727 return nfs_revalidate_inode(server
, inode
);
729 return __nfs_revalidate_inode(server
, inode
);
733 * We judge how long we want to trust negative
734 * dentries by looking at the parent inode mtime.
736 * If parent mtime has changed, we revalidate, else we wait for a
737 * period corresponding to the parent's attribute cache timeout value.
740 int nfs_neg_need_reval(struct inode
*dir
, struct dentry
*dentry
,
741 struct nameidata
*nd
)
743 /* Don't revalidate a negative dentry if we're creating a new file */
744 if (nd
!= NULL
&& nfs_lookup_check_intent(nd
, LOOKUP_CREATE
) != 0)
746 return !nfs_check_verifier(dir
, dentry
);
750 * This is called every time the dcache has a lookup hit,
751 * and we should check whether we can really trust that
754 * NOTE! The hit can be a negative hit too, don't assume
757 * If the parent directory is seen to have changed, we throw out the
758 * cached dentry and do a new lookup.
760 static int nfs_lookup_revalidate(struct dentry
* dentry
, struct nameidata
*nd
)
764 struct dentry
*parent
;
766 struct nfs_fh fhandle
;
767 struct nfs_fattr fattr
;
769 parent
= dget_parent(dentry
);
771 dir
= parent
->d_inode
;
772 nfs_inc_stats(dir
, NFSIOS_DENTRYREVALIDATE
);
773 inode
= dentry
->d_inode
;
776 if (nfs_neg_need_reval(dir
, dentry
, nd
))
781 if (is_bad_inode(inode
)) {
782 dfprintk(LOOKUPCACHE
, "%s: %s/%s has dud inode\n",
783 __FUNCTION__
, dentry
->d_parent
->d_name
.name
,
784 dentry
->d_name
.name
);
788 /* Force a full look up iff the parent directory has changed */
789 if (!nfs_is_exclusive_create(dir
, nd
) && nfs_check_verifier(dir
, dentry
)) {
790 if (nfs_lookup_verify_inode(inode
, nd
))
795 if (NFS_STALE(inode
))
798 error
= NFS_PROTO(dir
)->lookup(dir
, &dentry
->d_name
, &fhandle
, &fattr
);
801 if (nfs_compare_fh(NFS_FH(inode
), &fhandle
))
803 if ((error
= nfs_refresh_inode(inode
, &fattr
)) != 0)
806 nfs_set_verifier(dentry
, nfs_save_change_attribute(dir
));
810 dfprintk(LOOKUPCACHE
, "NFS: %s(%s/%s) is valid\n",
811 __FUNCTION__
, dentry
->d_parent
->d_name
.name
,
812 dentry
->d_name
.name
);
817 nfs_mark_for_revalidate(dir
);
818 if (inode
&& S_ISDIR(inode
->i_mode
)) {
819 /* Purge readdir caches. */
820 nfs_zap_caches(inode
);
821 /* If we have submounts, don't unhash ! */
822 if (have_submounts(dentry
))
824 shrink_dcache_parent(dentry
);
829 dfprintk(LOOKUPCACHE
, "NFS: %s(%s/%s) is invalid\n",
830 __FUNCTION__
, dentry
->d_parent
->d_name
.name
,
831 dentry
->d_name
.name
);
836 * This is called from dput() when d_count is going to 0.
838 static int nfs_dentry_delete(struct dentry
*dentry
)
840 dfprintk(VFS
, "NFS: dentry_delete(%s/%s, %x)\n",
841 dentry
->d_parent
->d_name
.name
, dentry
->d_name
.name
,
844 /* Unhash any dentry with a stale inode */
845 if (dentry
->d_inode
!= NULL
&& NFS_STALE(dentry
->d_inode
))
848 if (dentry
->d_flags
& DCACHE_NFSFS_RENAMED
) {
849 /* Unhash it, so that ->d_iput() would be called */
852 if (!(dentry
->d_sb
->s_flags
& MS_ACTIVE
)) {
853 /* Unhash it, so that ancestors of killed async unlink
854 * files will be cleaned up during umount */
862 * Called when the dentry loses inode.
863 * We use it to clean up silly-renamed files.
865 static void nfs_dentry_iput(struct dentry
*dentry
, struct inode
*inode
)
867 if (S_ISDIR(inode
->i_mode
))
868 /* drop any readdir cache as it could easily be old */
869 NFS_I(inode
)->cache_validity
|= NFS_INO_INVALID_DATA
;
871 if (dentry
->d_flags
& DCACHE_NFSFS_RENAMED
) {
874 nfs_complete_unlink(dentry
, inode
);
880 struct dentry_operations nfs_dentry_operations
= {
881 .d_revalidate
= nfs_lookup_revalidate
,
882 .d_delete
= nfs_dentry_delete
,
883 .d_iput
= nfs_dentry_iput
,
886 static struct dentry
*nfs_lookup(struct inode
*dir
, struct dentry
* dentry
, struct nameidata
*nd
)
889 struct dentry
*parent
;
890 struct inode
*inode
= NULL
;
892 struct nfs_fh fhandle
;
893 struct nfs_fattr fattr
;
895 dfprintk(VFS
, "NFS: lookup(%s/%s)\n",
896 dentry
->d_parent
->d_name
.name
, dentry
->d_name
.name
);
897 nfs_inc_stats(dir
, NFSIOS_VFSLOOKUP
);
899 res
= ERR_PTR(-ENAMETOOLONG
);
900 if (dentry
->d_name
.len
> NFS_SERVER(dir
)->namelen
)
903 res
= ERR_PTR(-ENOMEM
);
904 dentry
->d_op
= NFS_PROTO(dir
)->dentry_ops
;
909 * If we're doing an exclusive create, optimize away the lookup
910 * but don't hash the dentry.
912 if (nfs_is_exclusive_create(dir
, nd
)) {
913 d_instantiate(dentry
, NULL
);
918 parent
= dentry
->d_parent
;
919 /* Protect against concurrent sillydeletes */
920 nfs_block_sillyrename(parent
);
921 error
= NFS_PROTO(dir
)->lookup(dir
, &dentry
->d_name
, &fhandle
, &fattr
);
922 if (error
== -ENOENT
)
925 res
= ERR_PTR(error
);
926 goto out_unblock_sillyrename
;
928 inode
= nfs_fhget(dentry
->d_sb
, &fhandle
, &fattr
);
929 res
= (struct dentry
*)inode
;
931 goto out_unblock_sillyrename
;
934 res
= d_materialise_unique(dentry
, inode
);
937 goto out_unblock_sillyrename
;
940 nfs_set_verifier(dentry
, nfs_save_change_attribute(dir
));
941 out_unblock_sillyrename
:
942 nfs_unblock_sillyrename(parent
);
950 static int nfs_open_revalidate(struct dentry
*, struct nameidata
*);
952 struct dentry_operations nfs4_dentry_operations
= {
953 .d_revalidate
= nfs_open_revalidate
,
954 .d_delete
= nfs_dentry_delete
,
955 .d_iput
= nfs_dentry_iput
,
959 * Use intent information to determine whether we need to substitute
960 * the NFSv4-style stateful OPEN for the LOOKUP call
962 static int is_atomic_open(struct inode
*dir
, struct nameidata
*nd
)
964 if (nd
== NULL
|| nfs_lookup_check_intent(nd
, LOOKUP_OPEN
) == 0)
966 /* NFS does not (yet) have a stateful open for directories */
967 if (nd
->flags
& LOOKUP_DIRECTORY
)
969 /* Are we trying to write to a read only partition? */
970 if (IS_RDONLY(dir
) && (nd
->intent
.open
.flags
& (O_CREAT
|O_TRUNC
|FMODE_WRITE
)))
975 static struct dentry
*nfs_atomic_lookup(struct inode
*dir
, struct dentry
*dentry
, struct nameidata
*nd
)
977 struct dentry
*res
= NULL
;
980 dfprintk(VFS
, "NFS: atomic_lookup(%s/%ld), %s\n",
981 dir
->i_sb
->s_id
, dir
->i_ino
, dentry
->d_name
.name
);
983 /* Check that we are indeed trying to open this file */
984 if (!is_atomic_open(dir
, nd
))
987 if (dentry
->d_name
.len
> NFS_SERVER(dir
)->namelen
) {
988 res
= ERR_PTR(-ENAMETOOLONG
);
991 dentry
->d_op
= NFS_PROTO(dir
)->dentry_ops
;
993 /* Let vfs_create() deal with O_EXCL. Instantiate, but don't hash
995 if (nd
->intent
.open
.flags
& O_EXCL
) {
996 d_instantiate(dentry
, NULL
);
1000 /* Open the file on the server */
1002 res
= nfs4_atomic_open(dir
, dentry
, nd
);
1005 error
= PTR_ERR(res
);
1007 /* Make a negative dentry */
1011 /* This turned out not to be a regular file */
1016 if (!(nd
->intent
.open
.flags
& O_NOFOLLOW
))
1022 } else if (res
!= NULL
)
1027 return nfs_lookup(dir
, dentry
, nd
);
1030 static int nfs_open_revalidate(struct dentry
*dentry
, struct nameidata
*nd
)
1032 struct dentry
*parent
= NULL
;
1033 struct inode
*inode
= dentry
->d_inode
;
1035 int openflags
, ret
= 0;
1037 parent
= dget_parent(dentry
);
1038 dir
= parent
->d_inode
;
1039 if (!is_atomic_open(dir
, nd
))
1041 /* We can't create new files in nfs_open_revalidate(), so we
1042 * optimize away revalidation of negative dentries.
1044 if (inode
== NULL
) {
1045 if (!nfs_neg_need_reval(dir
, dentry
, nd
))
1050 /* NFS only supports OPEN on regular files */
1051 if (!S_ISREG(inode
->i_mode
))
1053 openflags
= nd
->intent
.open
.flags
;
1054 /* We cannot do exclusive creation on a positive dentry */
1055 if ((openflags
& (O_CREAT
|O_EXCL
)) == (O_CREAT
|O_EXCL
))
1057 /* We can't create new files, or truncate existing ones here */
1058 openflags
&= ~(O_CREAT
|O_TRUNC
);
1061 * Note: we're not holding inode->i_mutex and so may be racing with
1062 * operations that change the directory. We therefore save the
1063 * change attribute *before* we do the RPC call.
1066 ret
= nfs4_open_revalidate(dir
, dentry
, openflags
, nd
);
1075 if (inode
!= NULL
&& nfs_have_delegation(inode
, FMODE_READ
))
1077 return nfs_lookup_revalidate(dentry
, nd
);
1079 #endif /* CONFIG_NFSV4 */
1081 static struct dentry
*nfs_readdir_lookup(nfs_readdir_descriptor_t
*desc
)
1083 struct dentry
*parent
= desc
->file
->f_path
.dentry
;
1084 struct inode
*dir
= parent
->d_inode
;
1085 struct nfs_entry
*entry
= desc
->entry
;
1086 struct dentry
*dentry
, *alias
;
1087 struct qstr name
= {
1088 .name
= entry
->name
,
1091 struct inode
*inode
;
1092 unsigned long verf
= nfs_save_change_attribute(dir
);
1096 if (name
.name
[0] == '.' && name
.name
[1] == '.')
1097 return dget_parent(parent
);
1100 if (name
.name
[0] == '.')
1101 return dget(parent
);
1104 spin_lock(&dir
->i_lock
);
1105 if (NFS_I(dir
)->cache_validity
& NFS_INO_INVALID_DATA
) {
1106 spin_unlock(&dir
->i_lock
);
1109 spin_unlock(&dir
->i_lock
);
1111 name
.hash
= full_name_hash(name
.name
, name
.len
);
1112 dentry
= d_lookup(parent
, &name
);
1113 if (dentry
!= NULL
) {
1114 /* Is this a positive dentry that matches the readdir info? */
1115 if (dentry
->d_inode
!= NULL
&&
1116 (NFS_FILEID(dentry
->d_inode
) == entry
->ino
||
1117 d_mountpoint(dentry
))) {
1118 if (!desc
->plus
|| entry
->fh
->size
== 0)
1120 if (nfs_compare_fh(NFS_FH(dentry
->d_inode
),
1124 /* No, so d_drop to allow one to be created */
1128 if (!desc
->plus
|| !(entry
->fattr
->valid
& NFS_ATTR_FATTR
))
1130 if (name
.len
> NFS_SERVER(dir
)->namelen
)
1132 /* Note: caller is already holding the dir->i_mutex! */
1133 dentry
= d_alloc(parent
, &name
);
1136 dentry
->d_op
= NFS_PROTO(dir
)->dentry_ops
;
1137 inode
= nfs_fhget(dentry
->d_sb
, entry
->fh
, entry
->fattr
);
1138 if (IS_ERR(inode
)) {
1143 alias
= d_materialise_unique(dentry
, inode
);
1144 if (alias
!= NULL
) {
1152 nfs_set_verifier(dentry
, verf
);
1157 * Code common to create, mkdir, and mknod.
1159 int nfs_instantiate(struct dentry
*dentry
, struct nfs_fh
*fhandle
,
1160 struct nfs_fattr
*fattr
)
1162 struct dentry
*parent
= dget_parent(dentry
);
1163 struct inode
*dir
= parent
->d_inode
;
1164 struct inode
*inode
;
1165 int error
= -EACCES
;
1169 /* We may have been initialized further down */
1170 if (dentry
->d_inode
)
1172 if (fhandle
->size
== 0) {
1173 error
= NFS_PROTO(dir
)->lookup(dir
, &dentry
->d_name
, fhandle
, fattr
);
1177 nfs_set_verifier(dentry
, nfs_save_change_attribute(dir
));
1178 if (!(fattr
->valid
& NFS_ATTR_FATTR
)) {
1179 struct nfs_server
*server
= NFS_SB(dentry
->d_sb
);
1180 error
= server
->nfs_client
->rpc_ops
->getattr(server
, fhandle
, fattr
);
1184 inode
= nfs_fhget(dentry
->d_sb
, fhandle
, fattr
);
1185 error
= PTR_ERR(inode
);
1188 d_add(dentry
, inode
);
1193 nfs_mark_for_revalidate(dir
);
1199 * Following a failed create operation, we drop the dentry rather
1200 * than retain a negative dentry. This avoids a problem in the event
1201 * that the operation succeeded on the server, but an error in the
1202 * reply path made it appear to have failed.
1204 static int nfs_create(struct inode
*dir
, struct dentry
*dentry
, int mode
,
1205 struct nameidata
*nd
)
1211 dfprintk(VFS
, "NFS: create(%s/%ld), %s\n",
1212 dir
->i_sb
->s_id
, dir
->i_ino
, dentry
->d_name
.name
);
1214 attr
.ia_mode
= mode
;
1215 attr
.ia_valid
= ATTR_MODE
;
1217 if ((nd
->flags
& LOOKUP_CREATE
) != 0)
1218 open_flags
= nd
->intent
.open
.flags
;
1221 error
= NFS_PROTO(dir
)->create(dir
, dentry
, &attr
, open_flags
, nd
);
1233 * See comments for nfs_proc_create regarding failed operations.
1236 nfs_mknod(struct inode
*dir
, struct dentry
*dentry
, int mode
, dev_t rdev
)
1241 dfprintk(VFS
, "NFS: mknod(%s/%ld), %s\n",
1242 dir
->i_sb
->s_id
, dir
->i_ino
, dentry
->d_name
.name
);
1244 if (!new_valid_dev(rdev
))
1247 attr
.ia_mode
= mode
;
1248 attr
.ia_valid
= ATTR_MODE
;
1251 status
= NFS_PROTO(dir
)->mknod(dir
, dentry
, &attr
, rdev
);
1263 * See comments for nfs_proc_create regarding failed operations.
1265 static int nfs_mkdir(struct inode
*dir
, struct dentry
*dentry
, int mode
)
1270 dfprintk(VFS
, "NFS: mkdir(%s/%ld), %s\n",
1271 dir
->i_sb
->s_id
, dir
->i_ino
, dentry
->d_name
.name
);
1273 attr
.ia_valid
= ATTR_MODE
;
1274 attr
.ia_mode
= mode
| S_IFDIR
;
1277 error
= NFS_PROTO(dir
)->mkdir(dir
, dentry
, &attr
);
1288 static void nfs_dentry_handle_enoent(struct dentry
*dentry
)
1290 if (dentry
->d_inode
!= NULL
&& !d_unhashed(dentry
))
1294 static int nfs_rmdir(struct inode
*dir
, struct dentry
*dentry
)
1298 dfprintk(VFS
, "NFS: rmdir(%s/%ld), %s\n",
1299 dir
->i_sb
->s_id
, dir
->i_ino
, dentry
->d_name
.name
);
1302 error
= NFS_PROTO(dir
)->rmdir(dir
, &dentry
->d_name
);
1303 /* Ensure the VFS deletes this inode */
1304 if (error
== 0 && dentry
->d_inode
!= NULL
)
1305 clear_nlink(dentry
->d_inode
);
1306 else if (error
== -ENOENT
)
1307 nfs_dentry_handle_enoent(dentry
);
1313 static int nfs_sillyrename(struct inode
*dir
, struct dentry
*dentry
)
1315 static unsigned int sillycounter
;
1316 const int fileidsize
= sizeof(NFS_FILEID(dentry
->d_inode
))*2;
1317 const int countersize
= sizeof(sillycounter
)*2;
1318 const int slen
= sizeof(".nfs")+fileidsize
+countersize
-1;
1321 struct dentry
*sdentry
;
1324 dfprintk(VFS
, "NFS: silly-rename(%s/%s, ct=%d)\n",
1325 dentry
->d_parent
->d_name
.name
, dentry
->d_name
.name
,
1326 atomic_read(&dentry
->d_count
));
1327 nfs_inc_stats(dir
, NFSIOS_SILLYRENAME
);
1330 * We don't allow a dentry to be silly-renamed twice.
1333 if (dentry
->d_flags
& DCACHE_NFSFS_RENAMED
)
1336 sprintf(silly
, ".nfs%*.*Lx",
1337 fileidsize
, fileidsize
,
1338 (unsigned long long)NFS_FILEID(dentry
->d_inode
));
1340 /* Return delegation in anticipation of the rename */
1341 nfs_inode_return_delegation(dentry
->d_inode
);
1345 char *suffix
= silly
+ slen
- countersize
;
1349 sprintf(suffix
, "%*.*x", countersize
, countersize
, sillycounter
);
1351 dfprintk(VFS
, "NFS: trying to rename %s to %s\n",
1352 dentry
->d_name
.name
, silly
);
1354 sdentry
= lookup_one_len(silly
, dentry
->d_parent
, slen
);
1356 * N.B. Better to return EBUSY here ... it could be
1357 * dangerous to delete the file while it's in use.
1359 if (IS_ERR(sdentry
))
1361 } while(sdentry
->d_inode
!= NULL
); /* need negative lookup */
1363 qsilly
.name
= silly
;
1364 qsilly
.len
= strlen(silly
);
1365 if (dentry
->d_inode
) {
1366 error
= NFS_PROTO(dir
)->rename(dir
, &dentry
->d_name
,
1368 nfs_mark_for_revalidate(dentry
->d_inode
);
1370 error
= NFS_PROTO(dir
)->rename(dir
, &dentry
->d_name
,
1373 nfs_set_verifier(dentry
, nfs_save_change_attribute(dir
));
1374 d_move(dentry
, sdentry
);
1375 error
= nfs_async_unlink(dir
, dentry
);
1376 /* If we return 0 we don't unlink */
1384 * Remove a file after making sure there are no pending writes,
1385 * and after checking that the file has only one user.
1387 * We invalidate the attribute cache and free the inode prior to the operation
1388 * to avoid possible races if the server reuses the inode.
1390 static int nfs_safe_remove(struct dentry
*dentry
)
1392 struct inode
*dir
= dentry
->d_parent
->d_inode
;
1393 struct inode
*inode
= dentry
->d_inode
;
1396 dfprintk(VFS
, "NFS: safe_remove(%s/%s)\n",
1397 dentry
->d_parent
->d_name
.name
, dentry
->d_name
.name
);
1399 /* If the dentry was sillyrenamed, we simply call d_delete() */
1400 if (dentry
->d_flags
& DCACHE_NFSFS_RENAMED
) {
1405 if (inode
!= NULL
) {
1406 nfs_inode_return_delegation(inode
);
1407 error
= NFS_PROTO(dir
)->remove(dir
, &dentry
->d_name
);
1408 /* The VFS may want to delete this inode */
1411 nfs_mark_for_revalidate(inode
);
1413 error
= NFS_PROTO(dir
)->remove(dir
, &dentry
->d_name
);
1414 if (error
== -ENOENT
)
1415 nfs_dentry_handle_enoent(dentry
);
1420 /* We do silly rename. In case sillyrename() returns -EBUSY, the inode
1421 * belongs to an active ".nfs..." file and we return -EBUSY.
1423 * If sillyrename() returns 0, we do nothing, otherwise we unlink.
1425 static int nfs_unlink(struct inode
*dir
, struct dentry
*dentry
)
1428 int need_rehash
= 0;
1430 dfprintk(VFS
, "NFS: unlink(%s/%ld, %s)\n", dir
->i_sb
->s_id
,
1431 dir
->i_ino
, dentry
->d_name
.name
);
1434 spin_lock(&dcache_lock
);
1435 spin_lock(&dentry
->d_lock
);
1436 if (atomic_read(&dentry
->d_count
) > 1) {
1437 spin_unlock(&dentry
->d_lock
);
1438 spin_unlock(&dcache_lock
);
1439 /* Start asynchronous writeout of the inode */
1440 write_inode_now(dentry
->d_inode
, 0);
1441 error
= nfs_sillyrename(dir
, dentry
);
1445 if (!d_unhashed(dentry
)) {
1449 spin_unlock(&dentry
->d_lock
);
1450 spin_unlock(&dcache_lock
);
1451 error
= nfs_safe_remove(dentry
);
1452 if (!error
|| error
== -ENOENT
) {
1453 nfs_set_verifier(dentry
, nfs_save_change_attribute(dir
));
1454 } else if (need_rehash
)
1461 * To create a symbolic link, most file systems instantiate a new inode,
1462 * add a page to it containing the path, then write it out to the disk
1463 * using prepare_write/commit_write.
1465 * Unfortunately the NFS client can't create the in-core inode first
1466 * because it needs a file handle to create an in-core inode (see
1467 * fs/nfs/inode.c:nfs_fhget). We only have a file handle *after* the
1468 * symlink request has completed on the server.
1470 * So instead we allocate a raw page, copy the symname into it, then do
1471 * the SYMLINK request with the page as the buffer. If it succeeds, we
1472 * now have a new file handle and can instantiate an in-core NFS inode
1473 * and move the raw page into its mapping.
1475 static int nfs_symlink(struct inode
*dir
, struct dentry
*dentry
, const char *symname
)
1477 struct pagevec lru_pvec
;
1481 unsigned int pathlen
= strlen(symname
);
1484 dfprintk(VFS
, "NFS: symlink(%s/%ld, %s, %s)\n", dir
->i_sb
->s_id
,
1485 dir
->i_ino
, dentry
->d_name
.name
, symname
);
1487 if (pathlen
> PAGE_SIZE
)
1488 return -ENAMETOOLONG
;
1490 attr
.ia_mode
= S_IFLNK
| S_IRWXUGO
;
1491 attr
.ia_valid
= ATTR_MODE
;
1495 page
= alloc_page(GFP_HIGHUSER
);
1501 kaddr
= kmap_atomic(page
, KM_USER0
);
1502 memcpy(kaddr
, symname
, pathlen
);
1503 if (pathlen
< PAGE_SIZE
)
1504 memset(kaddr
+ pathlen
, 0, PAGE_SIZE
- pathlen
);
1505 kunmap_atomic(kaddr
, KM_USER0
);
1507 error
= NFS_PROTO(dir
)->symlink(dir
, dentry
, page
, pathlen
, &attr
);
1509 dfprintk(VFS
, "NFS: symlink(%s/%ld, %s, %s) error %d\n",
1510 dir
->i_sb
->s_id
, dir
->i_ino
,
1511 dentry
->d_name
.name
, symname
, error
);
1519 * No big deal if we can't add this page to the page cache here.
1520 * READLINK will get the missing page from the server if needed.
1522 pagevec_init(&lru_pvec
, 0);
1523 if (!add_to_page_cache(page
, dentry
->d_inode
->i_mapping
, 0,
1525 pagevec_add(&lru_pvec
, page
);
1526 pagevec_lru_add(&lru_pvec
);
1527 SetPageUptodate(page
);
1537 nfs_link(struct dentry
*old_dentry
, struct inode
*dir
, struct dentry
*dentry
)
1539 struct inode
*inode
= old_dentry
->d_inode
;
1542 dfprintk(VFS
, "NFS: link(%s/%s -> %s/%s)\n",
1543 old_dentry
->d_parent
->d_name
.name
, old_dentry
->d_name
.name
,
1544 dentry
->d_parent
->d_name
.name
, dentry
->d_name
.name
);
1548 error
= NFS_PROTO(dir
)->link(inode
, dir
, &dentry
->d_name
);
1550 atomic_inc(&inode
->i_count
);
1551 d_add(dentry
, inode
);
1559 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
1560 * different file handle for the same inode after a rename (e.g. when
1561 * moving to a different directory). A fail-safe method to do so would
1562 * be to look up old_dir/old_name, create a link to new_dir/new_name and
1563 * rename the old file using the sillyrename stuff. This way, the original
1564 * file in old_dir will go away when the last process iput()s the inode.
1568 * It actually works quite well. One needs to have the possibility for
1569 * at least one ".nfs..." file in each directory the file ever gets
1570 * moved or linked to which happens automagically with the new
1571 * implementation that only depends on the dcache stuff instead of
1572 * using the inode layer
1574 * Unfortunately, things are a little more complicated than indicated
1575 * above. For a cross-directory move, we want to make sure we can get
1576 * rid of the old inode after the operation. This means there must be
1577 * no pending writes (if it's a file), and the use count must be 1.
1578 * If these conditions are met, we can drop the dentries before doing
1581 static int nfs_rename(struct inode
*old_dir
, struct dentry
*old_dentry
,
1582 struct inode
*new_dir
, struct dentry
*new_dentry
)
1584 struct inode
*old_inode
= old_dentry
->d_inode
;
1585 struct inode
*new_inode
= new_dentry
->d_inode
;
1586 struct dentry
*dentry
= NULL
, *rehash
= NULL
;
1590 * To prevent any new references to the target during the rename,
1591 * we unhash the dentry and free the inode in advance.
1594 if (!d_unhashed(new_dentry
)) {
1596 rehash
= new_dentry
;
1599 dfprintk(VFS
, "NFS: rename(%s/%s -> %s/%s, ct=%d)\n",
1600 old_dentry
->d_parent
->d_name
.name
, old_dentry
->d_name
.name
,
1601 new_dentry
->d_parent
->d_name
.name
, new_dentry
->d_name
.name
,
1602 atomic_read(&new_dentry
->d_count
));
1605 * First check whether the target is busy ... we can't
1606 * safely do _any_ rename if the target is in use.
1608 * For files, make a copy of the dentry and then do a
1609 * silly-rename. If the silly-rename succeeds, the
1610 * copied dentry is hashed and becomes the new target.
1614 if (S_ISDIR(new_inode
->i_mode
)) {
1616 if (!S_ISDIR(old_inode
->i_mode
))
1618 } else if (atomic_read(&new_dentry
->d_count
) > 2) {
1620 /* copy the target dentry's name */
1621 dentry
= d_alloc(new_dentry
->d_parent
,
1622 &new_dentry
->d_name
);
1626 /* silly-rename the existing target ... */
1627 err
= nfs_sillyrename(new_dir
, new_dentry
);
1629 new_dentry
= rehash
= dentry
;
1631 /* instantiate the replacement target */
1632 d_instantiate(new_dentry
, NULL
);
1633 } else if (atomic_read(&new_dentry
->d_count
) > 1)
1634 /* dentry still busy? */
1637 drop_nlink(new_inode
);
1641 * ... prune child dentries and writebacks if needed.
1643 if (atomic_read(&old_dentry
->d_count
) > 1) {
1644 if (S_ISREG(old_inode
->i_mode
))
1645 nfs_wb_all(old_inode
);
1646 shrink_dcache_parent(old_dentry
);
1648 nfs_inode_return_delegation(old_inode
);
1650 if (new_inode
!= NULL
) {
1651 nfs_inode_return_delegation(new_inode
);
1652 d_delete(new_dentry
);
1655 error
= NFS_PROTO(old_dir
)->rename(old_dir
, &old_dentry
->d_name
,
1656 new_dir
, &new_dentry
->d_name
);
1657 nfs_mark_for_revalidate(old_inode
);
1662 d_move(old_dentry
, new_dentry
);
1663 nfs_set_verifier(new_dentry
,
1664 nfs_save_change_attribute(new_dir
));
1665 } else if (error
== -ENOENT
)
1666 nfs_dentry_handle_enoent(old_dentry
);
1668 /* new dentry created? */
1675 static DEFINE_SPINLOCK(nfs_access_lru_lock
);
1676 static LIST_HEAD(nfs_access_lru_list
);
1677 static atomic_long_t nfs_access_nr_entries
;
1679 static void nfs_access_free_entry(struct nfs_access_entry
*entry
)
1681 put_rpccred(entry
->cred
);
1683 smp_mb__before_atomic_dec();
1684 atomic_long_dec(&nfs_access_nr_entries
);
1685 smp_mb__after_atomic_dec();
1688 int nfs_access_cache_shrinker(int nr_to_scan
, gfp_t gfp_mask
)
1691 struct nfs_inode
*nfsi
;
1692 struct nfs_access_entry
*cache
;
1695 spin_lock(&nfs_access_lru_lock
);
1696 list_for_each_entry(nfsi
, &nfs_access_lru_list
, access_cache_inode_lru
) {
1697 struct rw_semaphore
*s_umount
;
1698 struct inode
*inode
;
1700 if (nr_to_scan
-- == 0)
1702 s_umount
= &nfsi
->vfs_inode
.i_sb
->s_umount
;
1703 if (!down_read_trylock(s_umount
))
1705 inode
= igrab(&nfsi
->vfs_inode
);
1706 if (inode
== NULL
) {
1710 spin_lock(&inode
->i_lock
);
1711 if (list_empty(&nfsi
->access_cache_entry_lru
))
1712 goto remove_lru_entry
;
1713 cache
= list_entry(nfsi
->access_cache_entry_lru
.next
,
1714 struct nfs_access_entry
, lru
);
1715 list_move(&cache
->lru
, &head
);
1716 rb_erase(&cache
->rb_node
, &nfsi
->access_cache
);
1717 if (!list_empty(&nfsi
->access_cache_entry_lru
))
1718 list_move_tail(&nfsi
->access_cache_inode_lru
,
1719 &nfs_access_lru_list
);
1722 list_del_init(&nfsi
->access_cache_inode_lru
);
1723 clear_bit(NFS_INO_ACL_LRU_SET
, &nfsi
->flags
);
1725 spin_unlock(&inode
->i_lock
);
1726 spin_unlock(&nfs_access_lru_lock
);
1731 spin_unlock(&nfs_access_lru_lock
);
1732 while (!list_empty(&head
)) {
1733 cache
= list_entry(head
.next
, struct nfs_access_entry
, lru
);
1734 list_del(&cache
->lru
);
1735 nfs_access_free_entry(cache
);
1737 return (atomic_long_read(&nfs_access_nr_entries
) / 100) * sysctl_vfs_cache_pressure
;
1740 static void __nfs_access_zap_cache(struct inode
*inode
)
1742 struct nfs_inode
*nfsi
= NFS_I(inode
);
1743 struct rb_root
*root_node
= &nfsi
->access_cache
;
1744 struct rb_node
*n
, *dispose
= NULL
;
1745 struct nfs_access_entry
*entry
;
1747 /* Unhook entries from the cache */
1748 while ((n
= rb_first(root_node
)) != NULL
) {
1749 entry
= rb_entry(n
, struct nfs_access_entry
, rb_node
);
1750 rb_erase(n
, root_node
);
1751 list_del(&entry
->lru
);
1752 n
->rb_left
= dispose
;
1755 nfsi
->cache_validity
&= ~NFS_INO_INVALID_ACCESS
;
1756 spin_unlock(&inode
->i_lock
);
1758 /* Now kill them all! */
1759 while (dispose
!= NULL
) {
1761 dispose
= n
->rb_left
;
1762 nfs_access_free_entry(rb_entry(n
, struct nfs_access_entry
, rb_node
));
1766 void nfs_access_zap_cache(struct inode
*inode
)
1768 /* Remove from global LRU init */
1769 if (test_and_clear_bit(NFS_INO_ACL_LRU_SET
, &NFS_I(inode
)->flags
)) {
1770 spin_lock(&nfs_access_lru_lock
);
1771 list_del_init(&NFS_I(inode
)->access_cache_inode_lru
);
1772 spin_unlock(&nfs_access_lru_lock
);
1775 spin_lock(&inode
->i_lock
);
1776 /* This will release the spinlock */
1777 __nfs_access_zap_cache(inode
);
1780 static struct nfs_access_entry
*nfs_access_search_rbtree(struct inode
*inode
, struct rpc_cred
*cred
)
1782 struct rb_node
*n
= NFS_I(inode
)->access_cache
.rb_node
;
1783 struct nfs_access_entry
*entry
;
1786 entry
= rb_entry(n
, struct nfs_access_entry
, rb_node
);
1788 if (cred
< entry
->cred
)
1790 else if (cred
> entry
->cred
)
1798 static int nfs_access_get_cached(struct inode
*inode
, struct rpc_cred
*cred
, struct nfs_access_entry
*res
)
1800 struct nfs_inode
*nfsi
= NFS_I(inode
);
1801 struct nfs_access_entry
*cache
;
1804 spin_lock(&inode
->i_lock
);
1805 if (nfsi
->cache_validity
& NFS_INO_INVALID_ACCESS
)
1807 cache
= nfs_access_search_rbtree(inode
, cred
);
1810 if (!time_in_range(jiffies
, cache
->jiffies
, cache
->jiffies
+ nfsi
->attrtimeo
))
1812 res
->jiffies
= cache
->jiffies
;
1813 res
->cred
= cache
->cred
;
1814 res
->mask
= cache
->mask
;
1815 list_move_tail(&cache
->lru
, &nfsi
->access_cache_entry_lru
);
1818 spin_unlock(&inode
->i_lock
);
1821 rb_erase(&cache
->rb_node
, &nfsi
->access_cache
);
1822 list_del(&cache
->lru
);
1823 spin_unlock(&inode
->i_lock
);
1824 nfs_access_free_entry(cache
);
1827 /* This will release the spinlock */
1828 __nfs_access_zap_cache(inode
);
1832 static void nfs_access_add_rbtree(struct inode
*inode
, struct nfs_access_entry
*set
)
1834 struct nfs_inode
*nfsi
= NFS_I(inode
);
1835 struct rb_root
*root_node
= &nfsi
->access_cache
;
1836 struct rb_node
**p
= &root_node
->rb_node
;
1837 struct rb_node
*parent
= NULL
;
1838 struct nfs_access_entry
*entry
;
1840 spin_lock(&inode
->i_lock
);
1841 while (*p
!= NULL
) {
1843 entry
= rb_entry(parent
, struct nfs_access_entry
, rb_node
);
1845 if (set
->cred
< entry
->cred
)
1846 p
= &parent
->rb_left
;
1847 else if (set
->cred
> entry
->cred
)
1848 p
= &parent
->rb_right
;
1852 rb_link_node(&set
->rb_node
, parent
, p
);
1853 rb_insert_color(&set
->rb_node
, root_node
);
1854 list_add_tail(&set
->lru
, &nfsi
->access_cache_entry_lru
);
1855 spin_unlock(&inode
->i_lock
);
1858 rb_replace_node(parent
, &set
->rb_node
, root_node
);
1859 list_add_tail(&set
->lru
, &nfsi
->access_cache_entry_lru
);
1860 list_del(&entry
->lru
);
1861 spin_unlock(&inode
->i_lock
);
1862 nfs_access_free_entry(entry
);
1865 static void nfs_access_add_cache(struct inode
*inode
, struct nfs_access_entry
*set
)
1867 struct nfs_access_entry
*cache
= kmalloc(sizeof(*cache
), GFP_KERNEL
);
1870 RB_CLEAR_NODE(&cache
->rb_node
);
1871 cache
->jiffies
= set
->jiffies
;
1872 cache
->cred
= get_rpccred(set
->cred
);
1873 cache
->mask
= set
->mask
;
1875 nfs_access_add_rbtree(inode
, cache
);
1877 /* Update accounting */
1878 smp_mb__before_atomic_inc();
1879 atomic_long_inc(&nfs_access_nr_entries
);
1880 smp_mb__after_atomic_inc();
1882 /* Add inode to global LRU list */
1883 if (!test_and_set_bit(NFS_INO_ACL_LRU_SET
, &NFS_I(inode
)->flags
)) {
1884 spin_lock(&nfs_access_lru_lock
);
1885 list_add_tail(&NFS_I(inode
)->access_cache_inode_lru
, &nfs_access_lru_list
);
1886 spin_unlock(&nfs_access_lru_lock
);
1890 static int nfs_do_access(struct inode
*inode
, struct rpc_cred
*cred
, int mask
)
1892 struct nfs_access_entry cache
;
1895 status
= nfs_access_get_cached(inode
, cred
, &cache
);
1899 /* Be clever: ask server to check for all possible rights */
1900 cache
.mask
= MAY_EXEC
| MAY_WRITE
| MAY_READ
;
1902 cache
.jiffies
= jiffies
;
1903 status
= NFS_PROTO(inode
)->access(inode
, &cache
);
1906 nfs_access_add_cache(inode
, &cache
);
1908 if ((cache
.mask
& mask
) == mask
)
1913 static int nfs_open_permission_mask(int openflags
)
1917 if (openflags
& FMODE_READ
)
1919 if (openflags
& FMODE_WRITE
)
1921 if (openflags
& FMODE_EXEC
)
1926 int nfs_may_open(struct inode
*inode
, struct rpc_cred
*cred
, int openflags
)
1928 return nfs_do_access(inode
, cred
, nfs_open_permission_mask(openflags
));
1931 int nfs_permission(struct inode
*inode
, int mask
, struct nameidata
*nd
)
1933 struct rpc_cred
*cred
;
1936 nfs_inc_stats(inode
, NFSIOS_VFSACCESS
);
1940 /* Is this sys_access() ? */
1941 if (nd
!= NULL
&& (nd
->flags
& LOOKUP_ACCESS
))
1944 switch (inode
->i_mode
& S_IFMT
) {
1948 /* NFSv4 has atomic_open... */
1949 if (nfs_server_capable(inode
, NFS_CAP_ATOMIC_OPEN
)
1951 && (nd
->flags
& LOOKUP_OPEN
))
1956 * Optimize away all write operations, since the server
1957 * will check permissions when we perform the op.
1959 if ((mask
& MAY_WRITE
) && !(mask
& MAY_READ
))
1966 if (!NFS_PROTO(inode
)->access
)
1969 cred
= rpcauth_lookupcred(NFS_CLIENT(inode
)->cl_auth
, 0);
1970 if (!IS_ERR(cred
)) {
1971 res
= nfs_do_access(inode
, cred
, mask
);
1974 res
= PTR_ERR(cred
);
1977 dfprintk(VFS
, "NFS: permission(%s/%ld), mask=0x%x, res=%d\n",
1978 inode
->i_sb
->s_id
, inode
->i_ino
, mask
, res
);
1981 res
= nfs_revalidate_inode(NFS_SERVER(inode
), inode
);
1983 res
= generic_permission(inode
, mask
, NULL
);
1990 * version-control: t
1991 * kept-new-versions: 5