2 * libata-core.c - helper library for ATA
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
33 * Standards documents from:
34 * http://www.t13.org (ATA standards, PCI DMA IDE spec)
35 * http://www.t10.org (SCSI MMC - for ATAPI MMC)
36 * http://www.sata-io.org (SATA)
37 * http://www.compactflash.org (CF)
38 * http://www.qic.org (QIC157 - Tape and DSC)
39 * http://www.ce-ata.org (CE-ATA: not supported)
43 #include <linux/kernel.h>
44 #include <linux/module.h>
45 #include <linux/pci.h>
46 #include <linux/init.h>
47 #include <linux/list.h>
49 #include <linux/spinlock.h>
50 #include <linux/blkdev.h>
51 #include <linux/delay.h>
52 #include <linux/timer.h>
53 #include <linux/interrupt.h>
54 #include <linux/completion.h>
55 #include <linux/suspend.h>
56 #include <linux/workqueue.h>
57 #include <linux/jiffies.h>
58 #include <linux/scatterlist.h>
60 #include <scsi/scsi.h>
61 #include <scsi/scsi_cmnd.h>
62 #include <scsi/scsi_host.h>
63 #include <linux/libata.h>
64 #include <asm/semaphore.h>
65 #include <asm/byteorder.h>
66 #include <linux/cdrom.h>
71 /* debounce timing parameters in msecs { interval, duration, timeout } */
72 const unsigned long sata_deb_timing_normal
[] = { 5, 100, 2000 };
73 const unsigned long sata_deb_timing_hotplug
[] = { 25, 500, 2000 };
74 const unsigned long sata_deb_timing_long
[] = { 100, 2000, 5000 };
76 const struct ata_port_operations ata_base_port_ops
= {
77 .prereset
= ata_std_prereset
,
78 .postreset
= ata_std_postreset
,
79 .error_handler
= ata_std_error_handler
,
82 const struct ata_port_operations sata_port_ops
= {
83 .inherits
= &ata_base_port_ops
,
85 .qc_defer
= ata_std_qc_defer
,
86 .hardreset
= sata_std_hardreset
,
89 static unsigned int ata_dev_init_params(struct ata_device
*dev
,
90 u16 heads
, u16 sectors
);
91 static unsigned int ata_dev_set_xfermode(struct ata_device
*dev
);
92 static unsigned int ata_dev_set_feature(struct ata_device
*dev
,
93 u8 enable
, u8 feature
);
94 static void ata_dev_xfermask(struct ata_device
*dev
);
95 static unsigned long ata_dev_blacklisted(const struct ata_device
*dev
);
97 unsigned int ata_print_id
= 1;
98 static struct workqueue_struct
*ata_wq
;
100 struct workqueue_struct
*ata_aux_wq
;
102 struct ata_force_param
{
106 unsigned long xfer_mask
;
107 unsigned int horkage_on
;
108 unsigned int horkage_off
;
111 struct ata_force_ent
{
114 struct ata_force_param param
;
117 static struct ata_force_ent
*ata_force_tbl
;
118 static int ata_force_tbl_size
;
120 static char ata_force_param_buf
[PAGE_SIZE
] __initdata
;
121 /* param_buf is thrown away after initialization, disallow read */
122 module_param_string(force
, ata_force_param_buf
, sizeof(ata_force_param_buf
), 0);
123 MODULE_PARM_DESC(force
, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/kernel-parameters.txt for details)");
125 int atapi_enabled
= 1;
126 module_param(atapi_enabled
, int, 0444);
127 MODULE_PARM_DESC(atapi_enabled
, "Enable discovery of ATAPI devices (0=off, 1=on)");
129 static int atapi_dmadir
= 0;
130 module_param(atapi_dmadir
, int, 0444);
131 MODULE_PARM_DESC(atapi_dmadir
, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
133 int atapi_passthru16
= 1;
134 module_param(atapi_passthru16
, int, 0444);
135 MODULE_PARM_DESC(atapi_passthru16
, "Enable ATA_16 passthru for ATAPI devices; on by default (0=off, 1=on)");
138 module_param_named(fua
, libata_fua
, int, 0444);
139 MODULE_PARM_DESC(fua
, "FUA support (0=off, 1=on)");
141 static int ata_ignore_hpa
;
142 module_param_named(ignore_hpa
, ata_ignore_hpa
, int, 0644);
143 MODULE_PARM_DESC(ignore_hpa
, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
145 static int libata_dma_mask
= ATA_DMA_MASK_ATA
|ATA_DMA_MASK_ATAPI
|ATA_DMA_MASK_CFA
;
146 module_param_named(dma
, libata_dma_mask
, int, 0444);
147 MODULE_PARM_DESC(dma
, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
149 static int ata_probe_timeout
= ATA_TMOUT_INTERNAL
/ HZ
;
150 module_param(ata_probe_timeout
, int, 0444);
151 MODULE_PARM_DESC(ata_probe_timeout
, "Set ATA probing timeout (seconds)");
153 int libata_noacpi
= 0;
154 module_param_named(noacpi
, libata_noacpi
, int, 0444);
155 MODULE_PARM_DESC(noacpi
, "Disables the use of ACPI in probe/suspend/resume when set");
157 int libata_allow_tpm
= 0;
158 module_param_named(allow_tpm
, libata_allow_tpm
, int, 0444);
159 MODULE_PARM_DESC(allow_tpm
, "Permit the use of TPM commands");
161 MODULE_AUTHOR("Jeff Garzik");
162 MODULE_DESCRIPTION("Library module for ATA devices");
163 MODULE_LICENSE("GPL");
164 MODULE_VERSION(DRV_VERSION
);
168 * ata_force_cbl - force cable type according to libata.force
169 * @ap: ATA port of interest
171 * Force cable type according to libata.force and whine about it.
172 * The last entry which has matching port number is used, so it
173 * can be specified as part of device force parameters. For
174 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
180 void ata_force_cbl(struct ata_port
*ap
)
184 for (i
= ata_force_tbl_size
- 1; i
>= 0; i
--) {
185 const struct ata_force_ent
*fe
= &ata_force_tbl
[i
];
187 if (fe
->port
!= -1 && fe
->port
!= ap
->print_id
)
190 if (fe
->param
.cbl
== ATA_CBL_NONE
)
193 ap
->cbl
= fe
->param
.cbl
;
194 ata_port_printk(ap
, KERN_NOTICE
,
195 "FORCE: cable set to %s\n", fe
->param
.name
);
201 * ata_force_spd_limit - force SATA spd limit according to libata.force
202 * @link: ATA link of interest
204 * Force SATA spd limit according to libata.force and whine about
205 * it. When only the port part is specified (e.g. 1:), the limit
206 * applies to all links connected to both the host link and all
207 * fan-out ports connected via PMP. If the device part is
208 * specified as 0 (e.g. 1.00:), it specifies the first fan-out
209 * link not the host link. Device number 15 always points to the
210 * host link whether PMP is attached or not.
215 static void ata_force_spd_limit(struct ata_link
*link
)
219 if (ata_is_host_link(link
))
224 for (i
= ata_force_tbl_size
- 1; i
>= 0; i
--) {
225 const struct ata_force_ent
*fe
= &ata_force_tbl
[i
];
227 if (fe
->port
!= -1 && fe
->port
!= link
->ap
->print_id
)
230 if (fe
->device
!= -1 && fe
->device
!= linkno
)
233 if (!fe
->param
.spd_limit
)
236 link
->hw_sata_spd_limit
= (1 << fe
->param
.spd_limit
) - 1;
237 ata_link_printk(link
, KERN_NOTICE
,
238 "FORCE: PHY spd limit set to %s\n", fe
->param
.name
);
244 * ata_force_xfermask - force xfermask according to libata.force
245 * @dev: ATA device of interest
247 * Force xfer_mask according to libata.force and whine about it.
248 * For consistency with link selection, device number 15 selects
249 * the first device connected to the host link.
254 static void ata_force_xfermask(struct ata_device
*dev
)
256 int devno
= dev
->link
->pmp
+ dev
->devno
;
257 int alt_devno
= devno
;
260 /* allow n.15 for the first device attached to host port */
261 if (ata_is_host_link(dev
->link
) && devno
== 0)
264 for (i
= ata_force_tbl_size
- 1; i
>= 0; i
--) {
265 const struct ata_force_ent
*fe
= &ata_force_tbl
[i
];
266 unsigned long pio_mask
, mwdma_mask
, udma_mask
;
268 if (fe
->port
!= -1 && fe
->port
!= dev
->link
->ap
->print_id
)
271 if (fe
->device
!= -1 && fe
->device
!= devno
&&
272 fe
->device
!= alt_devno
)
275 if (!fe
->param
.xfer_mask
)
278 ata_unpack_xfermask(fe
->param
.xfer_mask
,
279 &pio_mask
, &mwdma_mask
, &udma_mask
);
281 dev
->udma_mask
= udma_mask
;
282 else if (mwdma_mask
) {
284 dev
->mwdma_mask
= mwdma_mask
;
288 dev
->pio_mask
= pio_mask
;
291 ata_dev_printk(dev
, KERN_NOTICE
,
292 "FORCE: xfer_mask set to %s\n", fe
->param
.name
);
298 * ata_force_horkage - force horkage according to libata.force
299 * @dev: ATA device of interest
301 * Force horkage according to libata.force and whine about it.
302 * For consistency with link selection, device number 15 selects
303 * the first device connected to the host link.
308 static void ata_force_horkage(struct ata_device
*dev
)
310 int devno
= dev
->link
->pmp
+ dev
->devno
;
311 int alt_devno
= devno
;
314 /* allow n.15 for the first device attached to host port */
315 if (ata_is_host_link(dev
->link
) && devno
== 0)
318 for (i
= 0; i
< ata_force_tbl_size
; i
++) {
319 const struct ata_force_ent
*fe
= &ata_force_tbl
[i
];
321 if (fe
->port
!= -1 && fe
->port
!= dev
->link
->ap
->print_id
)
324 if (fe
->device
!= -1 && fe
->device
!= devno
&&
325 fe
->device
!= alt_devno
)
328 if (!(~dev
->horkage
& fe
->param
.horkage_on
) &&
329 !(dev
->horkage
& fe
->param
.horkage_off
))
332 dev
->horkage
|= fe
->param
.horkage_on
;
333 dev
->horkage
&= ~fe
->param
.horkage_off
;
335 ata_dev_printk(dev
, KERN_NOTICE
,
336 "FORCE: horkage modified (%s)\n", fe
->param
.name
);
341 * atapi_cmd_type - Determine ATAPI command type from SCSI opcode
342 * @opcode: SCSI opcode
344 * Determine ATAPI command type from @opcode.
350 * ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
352 int atapi_cmd_type(u8 opcode
)
361 case GPCMD_WRITE_AND_VERIFY_10
:
365 case GPCMD_READ_CD_MSF
:
366 return ATAPI_READ_CD
;
370 if (atapi_passthru16
)
371 return ATAPI_PASS_THRU
;
379 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
380 * @tf: Taskfile to convert
381 * @pmp: Port multiplier port
382 * @is_cmd: This FIS is for command
383 * @fis: Buffer into which data will output
385 * Converts a standard ATA taskfile to a Serial ATA
386 * FIS structure (Register - Host to Device).
389 * Inherited from caller.
391 void ata_tf_to_fis(const struct ata_taskfile
*tf
, u8 pmp
, int is_cmd
, u8
*fis
)
393 fis
[0] = 0x27; /* Register - Host to Device FIS */
394 fis
[1] = pmp
& 0xf; /* Port multiplier number*/
396 fis
[1] |= (1 << 7); /* bit 7 indicates Command FIS */
398 fis
[2] = tf
->command
;
399 fis
[3] = tf
->feature
;
406 fis
[8] = tf
->hob_lbal
;
407 fis
[9] = tf
->hob_lbam
;
408 fis
[10] = tf
->hob_lbah
;
409 fis
[11] = tf
->hob_feature
;
412 fis
[13] = tf
->hob_nsect
;
423 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
424 * @fis: Buffer from which data will be input
425 * @tf: Taskfile to output
427 * Converts a serial ATA FIS structure to a standard ATA taskfile.
430 * Inherited from caller.
433 void ata_tf_from_fis(const u8
*fis
, struct ata_taskfile
*tf
)
435 tf
->command
= fis
[2]; /* status */
436 tf
->feature
= fis
[3]; /* error */
443 tf
->hob_lbal
= fis
[8];
444 tf
->hob_lbam
= fis
[9];
445 tf
->hob_lbah
= fis
[10];
448 tf
->hob_nsect
= fis
[13];
451 static const u8 ata_rw_cmds
[] = {
455 ATA_CMD_READ_MULTI_EXT
,
456 ATA_CMD_WRITE_MULTI_EXT
,
460 ATA_CMD_WRITE_MULTI_FUA_EXT
,
464 ATA_CMD_PIO_READ_EXT
,
465 ATA_CMD_PIO_WRITE_EXT
,
478 ATA_CMD_WRITE_FUA_EXT
482 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
483 * @tf: command to examine and configure
484 * @dev: device tf belongs to
486 * Examine the device configuration and tf->flags to calculate
487 * the proper read/write commands and protocol to use.
492 static int ata_rwcmd_protocol(struct ata_taskfile
*tf
, struct ata_device
*dev
)
496 int index
, fua
, lba48
, write
;
498 fua
= (tf
->flags
& ATA_TFLAG_FUA
) ? 4 : 0;
499 lba48
= (tf
->flags
& ATA_TFLAG_LBA48
) ? 2 : 0;
500 write
= (tf
->flags
& ATA_TFLAG_WRITE
) ? 1 : 0;
502 if (dev
->flags
& ATA_DFLAG_PIO
) {
503 tf
->protocol
= ATA_PROT_PIO
;
504 index
= dev
->multi_count
? 0 : 8;
505 } else if (lba48
&& (dev
->link
->ap
->flags
& ATA_FLAG_PIO_LBA48
)) {
506 /* Unable to use DMA due to host limitation */
507 tf
->protocol
= ATA_PROT_PIO
;
508 index
= dev
->multi_count
? 0 : 8;
510 tf
->protocol
= ATA_PROT_DMA
;
514 cmd
= ata_rw_cmds
[index
+ fua
+ lba48
+ write
];
523 * ata_tf_read_block - Read block address from ATA taskfile
524 * @tf: ATA taskfile of interest
525 * @dev: ATA device @tf belongs to
530 * Read block address from @tf. This function can handle all
531 * three address formats - LBA, LBA48 and CHS. tf->protocol and
532 * flags select the address format to use.
535 * Block address read from @tf.
537 u64
ata_tf_read_block(struct ata_taskfile
*tf
, struct ata_device
*dev
)
541 if (tf
->flags
& ATA_TFLAG_LBA
) {
542 if (tf
->flags
& ATA_TFLAG_LBA48
) {
543 block
|= (u64
)tf
->hob_lbah
<< 40;
544 block
|= (u64
)tf
->hob_lbam
<< 32;
545 block
|= tf
->hob_lbal
<< 24;
547 block
|= (tf
->device
& 0xf) << 24;
549 block
|= tf
->lbah
<< 16;
550 block
|= tf
->lbam
<< 8;
555 cyl
= tf
->lbam
| (tf
->lbah
<< 8);
556 head
= tf
->device
& 0xf;
559 block
= (cyl
* dev
->heads
+ head
) * dev
->sectors
+ sect
;
566 * ata_build_rw_tf - Build ATA taskfile for given read/write request
567 * @tf: Target ATA taskfile
568 * @dev: ATA device @tf belongs to
569 * @block: Block address
570 * @n_block: Number of blocks
571 * @tf_flags: RW/FUA etc...
577 * Build ATA taskfile @tf for read/write request described by
578 * @block, @n_block, @tf_flags and @tag on @dev.
582 * 0 on success, -ERANGE if the request is too large for @dev,
583 * -EINVAL if the request is invalid.
585 int ata_build_rw_tf(struct ata_taskfile
*tf
, struct ata_device
*dev
,
586 u64 block
, u32 n_block
, unsigned int tf_flags
,
589 tf
->flags
|= ATA_TFLAG_ISADDR
| ATA_TFLAG_DEVICE
;
590 tf
->flags
|= tf_flags
;
592 if (ata_ncq_enabled(dev
) && likely(tag
!= ATA_TAG_INTERNAL
)) {
594 if (!lba_48_ok(block
, n_block
))
597 tf
->protocol
= ATA_PROT_NCQ
;
598 tf
->flags
|= ATA_TFLAG_LBA
| ATA_TFLAG_LBA48
;
600 if (tf
->flags
& ATA_TFLAG_WRITE
)
601 tf
->command
= ATA_CMD_FPDMA_WRITE
;
603 tf
->command
= ATA_CMD_FPDMA_READ
;
605 tf
->nsect
= tag
<< 3;
606 tf
->hob_feature
= (n_block
>> 8) & 0xff;
607 tf
->feature
= n_block
& 0xff;
609 tf
->hob_lbah
= (block
>> 40) & 0xff;
610 tf
->hob_lbam
= (block
>> 32) & 0xff;
611 tf
->hob_lbal
= (block
>> 24) & 0xff;
612 tf
->lbah
= (block
>> 16) & 0xff;
613 tf
->lbam
= (block
>> 8) & 0xff;
614 tf
->lbal
= block
& 0xff;
617 if (tf
->flags
& ATA_TFLAG_FUA
)
618 tf
->device
|= 1 << 7;
619 } else if (dev
->flags
& ATA_DFLAG_LBA
) {
620 tf
->flags
|= ATA_TFLAG_LBA
;
622 if (lba_28_ok(block
, n_block
)) {
624 tf
->device
|= (block
>> 24) & 0xf;
625 } else if (lba_48_ok(block
, n_block
)) {
626 if (!(dev
->flags
& ATA_DFLAG_LBA48
))
630 tf
->flags
|= ATA_TFLAG_LBA48
;
632 tf
->hob_nsect
= (n_block
>> 8) & 0xff;
634 tf
->hob_lbah
= (block
>> 40) & 0xff;
635 tf
->hob_lbam
= (block
>> 32) & 0xff;
636 tf
->hob_lbal
= (block
>> 24) & 0xff;
638 /* request too large even for LBA48 */
641 if (unlikely(ata_rwcmd_protocol(tf
, dev
) < 0))
644 tf
->nsect
= n_block
& 0xff;
646 tf
->lbah
= (block
>> 16) & 0xff;
647 tf
->lbam
= (block
>> 8) & 0xff;
648 tf
->lbal
= block
& 0xff;
650 tf
->device
|= ATA_LBA
;
653 u32 sect
, head
, cyl
, track
;
655 /* The request -may- be too large for CHS addressing. */
656 if (!lba_28_ok(block
, n_block
))
659 if (unlikely(ata_rwcmd_protocol(tf
, dev
) < 0))
662 /* Convert LBA to CHS */
663 track
= (u32
)block
/ dev
->sectors
;
664 cyl
= track
/ dev
->heads
;
665 head
= track
% dev
->heads
;
666 sect
= (u32
)block
% dev
->sectors
+ 1;
668 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
669 (u32
)block
, track
, cyl
, head
, sect
);
671 /* Check whether the converted CHS can fit.
675 if ((cyl
>> 16) || (head
>> 4) || (sect
>> 8) || (!sect
))
678 tf
->nsect
= n_block
& 0xff; /* Sector count 0 means 256 sectors */
689 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
690 * @pio_mask: pio_mask
691 * @mwdma_mask: mwdma_mask
692 * @udma_mask: udma_mask
694 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
695 * unsigned int xfer_mask.
703 unsigned long ata_pack_xfermask(unsigned long pio_mask
,
704 unsigned long mwdma_mask
,
705 unsigned long udma_mask
)
707 return ((pio_mask
<< ATA_SHIFT_PIO
) & ATA_MASK_PIO
) |
708 ((mwdma_mask
<< ATA_SHIFT_MWDMA
) & ATA_MASK_MWDMA
) |
709 ((udma_mask
<< ATA_SHIFT_UDMA
) & ATA_MASK_UDMA
);
713 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
714 * @xfer_mask: xfer_mask to unpack
715 * @pio_mask: resulting pio_mask
716 * @mwdma_mask: resulting mwdma_mask
717 * @udma_mask: resulting udma_mask
719 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
720 * Any NULL distination masks will be ignored.
722 void ata_unpack_xfermask(unsigned long xfer_mask
, unsigned long *pio_mask
,
723 unsigned long *mwdma_mask
, unsigned long *udma_mask
)
726 *pio_mask
= (xfer_mask
& ATA_MASK_PIO
) >> ATA_SHIFT_PIO
;
728 *mwdma_mask
= (xfer_mask
& ATA_MASK_MWDMA
) >> ATA_SHIFT_MWDMA
;
730 *udma_mask
= (xfer_mask
& ATA_MASK_UDMA
) >> ATA_SHIFT_UDMA
;
733 static const struct ata_xfer_ent
{
737 { ATA_SHIFT_PIO
, ATA_NR_PIO_MODES
, XFER_PIO_0
},
738 { ATA_SHIFT_MWDMA
, ATA_NR_MWDMA_MODES
, XFER_MW_DMA_0
},
739 { ATA_SHIFT_UDMA
, ATA_NR_UDMA_MODES
, XFER_UDMA_0
},
744 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
745 * @xfer_mask: xfer_mask of interest
747 * Return matching XFER_* value for @xfer_mask. Only the highest
748 * bit of @xfer_mask is considered.
754 * Matching XFER_* value, 0xff if no match found.
756 u8
ata_xfer_mask2mode(unsigned long xfer_mask
)
758 int highbit
= fls(xfer_mask
) - 1;
759 const struct ata_xfer_ent
*ent
;
761 for (ent
= ata_xfer_tbl
; ent
->shift
>= 0; ent
++)
762 if (highbit
>= ent
->shift
&& highbit
< ent
->shift
+ ent
->bits
)
763 return ent
->base
+ highbit
- ent
->shift
;
768 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
769 * @xfer_mode: XFER_* of interest
771 * Return matching xfer_mask for @xfer_mode.
777 * Matching xfer_mask, 0 if no match found.
779 unsigned long ata_xfer_mode2mask(u8 xfer_mode
)
781 const struct ata_xfer_ent
*ent
;
783 for (ent
= ata_xfer_tbl
; ent
->shift
>= 0; ent
++)
784 if (xfer_mode
>= ent
->base
&& xfer_mode
< ent
->base
+ ent
->bits
)
785 return ((2 << (ent
->shift
+ xfer_mode
- ent
->base
)) - 1)
786 & ~((1 << ent
->shift
) - 1);
791 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
792 * @xfer_mode: XFER_* of interest
794 * Return matching xfer_shift for @xfer_mode.
800 * Matching xfer_shift, -1 if no match found.
802 int ata_xfer_mode2shift(unsigned long xfer_mode
)
804 const struct ata_xfer_ent
*ent
;
806 for (ent
= ata_xfer_tbl
; ent
->shift
>= 0; ent
++)
807 if (xfer_mode
>= ent
->base
&& xfer_mode
< ent
->base
+ ent
->bits
)
813 * ata_mode_string - convert xfer_mask to string
814 * @xfer_mask: mask of bits supported; only highest bit counts.
816 * Determine string which represents the highest speed
817 * (highest bit in @modemask).
823 * Constant C string representing highest speed listed in
824 * @mode_mask, or the constant C string "<n/a>".
826 const char *ata_mode_string(unsigned long xfer_mask
)
828 static const char * const xfer_mode_str
[] = {
852 highbit
= fls(xfer_mask
) - 1;
853 if (highbit
>= 0 && highbit
< ARRAY_SIZE(xfer_mode_str
))
854 return xfer_mode_str
[highbit
];
858 static const char *sata_spd_string(unsigned int spd
)
860 static const char * const spd_str
[] = {
865 if (spd
== 0 || (spd
- 1) >= ARRAY_SIZE(spd_str
))
867 return spd_str
[spd
- 1];
870 void ata_dev_disable(struct ata_device
*dev
)
872 if (ata_dev_enabled(dev
)) {
873 if (ata_msg_drv(dev
->link
->ap
))
874 ata_dev_printk(dev
, KERN_WARNING
, "disabled\n");
875 ata_acpi_on_disable(dev
);
876 ata_down_xfermask_limit(dev
, ATA_DNXFER_FORCE_PIO0
|
882 static int ata_dev_set_dipm(struct ata_device
*dev
, enum link_pm policy
)
884 struct ata_link
*link
= dev
->link
;
885 struct ata_port
*ap
= link
->ap
;
887 unsigned int err_mask
;
891 * disallow DIPM for drivers which haven't set
892 * ATA_FLAG_IPM. This is because when DIPM is enabled,
893 * phy ready will be set in the interrupt status on
894 * state changes, which will cause some drivers to
895 * think there are errors - additionally drivers will
896 * need to disable hot plug.
898 if (!(ap
->flags
& ATA_FLAG_IPM
) || !ata_dev_enabled(dev
)) {
899 ap
->pm_policy
= NOT_AVAILABLE
;
904 * For DIPM, we will only enable it for the
907 * Why? Because Disks are too stupid to know that
908 * If the host rejects a request to go to SLUMBER
909 * they should retry at PARTIAL, and instead it
910 * just would give up. So, for medium_power to
911 * work at all, we need to only allow HIPM.
913 rc
= sata_scr_read(link
, SCR_CONTROL
, &scontrol
);
919 /* no restrictions on IPM transitions */
920 scontrol
&= ~(0x3 << 8);
921 rc
= sata_scr_write(link
, SCR_CONTROL
, scontrol
);
926 if (dev
->flags
& ATA_DFLAG_DIPM
)
927 err_mask
= ata_dev_set_feature(dev
,
928 SETFEATURES_SATA_ENABLE
, SATA_DIPM
);
931 /* allow IPM to PARTIAL */
932 scontrol
&= ~(0x1 << 8);
933 scontrol
|= (0x2 << 8);
934 rc
= sata_scr_write(link
, SCR_CONTROL
, scontrol
);
939 * we don't have to disable DIPM since IPM flags
940 * disallow transitions to SLUMBER, which effectively
941 * disable DIPM if it does not support PARTIAL
945 case MAX_PERFORMANCE
:
946 /* disable all IPM transitions */
947 scontrol
|= (0x3 << 8);
948 rc
= sata_scr_write(link
, SCR_CONTROL
, scontrol
);
953 * we don't have to disable DIPM since IPM flags
954 * disallow all transitions which effectively
955 * disable DIPM anyway.
960 /* FIXME: handle SET FEATURES failure */
967 * ata_dev_enable_pm - enable SATA interface power management
968 * @dev: device to enable power management
969 * @policy: the link power management policy
971 * Enable SATA Interface power management. This will enable
972 * Device Interface Power Management (DIPM) for min_power
973 * policy, and then call driver specific callbacks for
974 * enabling Host Initiated Power management.
977 * Returns: -EINVAL if IPM is not supported, 0 otherwise.
979 void ata_dev_enable_pm(struct ata_device
*dev
, enum link_pm policy
)
982 struct ata_port
*ap
= dev
->link
->ap
;
984 /* set HIPM first, then DIPM */
985 if (ap
->ops
->enable_pm
)
986 rc
= ap
->ops
->enable_pm(ap
, policy
);
989 rc
= ata_dev_set_dipm(dev
, policy
);
993 ap
->pm_policy
= MAX_PERFORMANCE
;
995 ap
->pm_policy
= policy
;
996 return /* rc */; /* hopefully we can use 'rc' eventually */
1001 * ata_dev_disable_pm - disable SATA interface power management
1002 * @dev: device to disable power management
1004 * Disable SATA Interface power management. This will disable
1005 * Device Interface Power Management (DIPM) without changing
1006 * policy, call driver specific callbacks for disabling Host
1007 * Initiated Power management.
1012 static void ata_dev_disable_pm(struct ata_device
*dev
)
1014 struct ata_port
*ap
= dev
->link
->ap
;
1016 ata_dev_set_dipm(dev
, MAX_PERFORMANCE
);
1017 if (ap
->ops
->disable_pm
)
1018 ap
->ops
->disable_pm(ap
);
1020 #endif /* CONFIG_PM */
1022 void ata_lpm_schedule(struct ata_port
*ap
, enum link_pm policy
)
1024 ap
->pm_policy
= policy
;
1025 ap
->link
.eh_info
.action
|= ATA_EH_LPM
;
1026 ap
->link
.eh_info
.flags
|= ATA_EHI_NO_AUTOPSY
;
1027 ata_port_schedule_eh(ap
);
1031 static void ata_lpm_enable(struct ata_host
*host
)
1033 struct ata_link
*link
;
1034 struct ata_port
*ap
;
1035 struct ata_device
*dev
;
1038 for (i
= 0; i
< host
->n_ports
; i
++) {
1039 ap
= host
->ports
[i
];
1040 ata_port_for_each_link(link
, ap
) {
1041 ata_link_for_each_dev(dev
, link
)
1042 ata_dev_disable_pm(dev
);
1047 static void ata_lpm_disable(struct ata_host
*host
)
1051 for (i
= 0; i
< host
->n_ports
; i
++) {
1052 struct ata_port
*ap
= host
->ports
[i
];
1053 ata_lpm_schedule(ap
, ap
->pm_policy
);
1056 #endif /* CONFIG_PM */
1059 * ata_dev_classify - determine device type based on ATA-spec signature
1060 * @tf: ATA taskfile register set for device to be identified
1062 * Determine from taskfile register contents whether a device is
1063 * ATA or ATAPI, as per "Signature and persistence" section
1064 * of ATA/PI spec (volume 1, sect 5.14).
1070 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP or
1071 * %ATA_DEV_UNKNOWN the event of failure.
1073 unsigned int ata_dev_classify(const struct ata_taskfile
*tf
)
1075 /* Apple's open source Darwin code hints that some devices only
1076 * put a proper signature into the LBA mid/high registers,
1077 * So, we only check those. It's sufficient for uniqueness.
1079 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1080 * signatures for ATA and ATAPI devices attached on SerialATA,
1081 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA
1082 * spec has never mentioned about using different signatures
1083 * for ATA/ATAPI devices. Then, Serial ATA II: Port
1084 * Multiplier specification began to use 0x69/0x96 to identify
1085 * port multpliers and 0x3c/0xc3 to identify SEMB device.
1086 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1087 * 0x69/0x96 shortly and described them as reserved for
1090 * We follow the current spec and consider that 0x69/0x96
1091 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1093 if ((tf
->lbam
== 0) && (tf
->lbah
== 0)) {
1094 DPRINTK("found ATA device by sig\n");
1098 if ((tf
->lbam
== 0x14) && (tf
->lbah
== 0xeb)) {
1099 DPRINTK("found ATAPI device by sig\n");
1100 return ATA_DEV_ATAPI
;
1103 if ((tf
->lbam
== 0x69) && (tf
->lbah
== 0x96)) {
1104 DPRINTK("found PMP device by sig\n");
1108 if ((tf
->lbam
== 0x3c) && (tf
->lbah
== 0xc3)) {
1109 printk(KERN_INFO
"ata: SEMB device ignored\n");
1110 return ATA_DEV_SEMB_UNSUP
; /* not yet */
1113 DPRINTK("unknown device\n");
1114 return ATA_DEV_UNKNOWN
;
1118 * ata_id_string - Convert IDENTIFY DEVICE page into string
1119 * @id: IDENTIFY DEVICE results we will examine
1120 * @s: string into which data is output
1121 * @ofs: offset into identify device page
1122 * @len: length of string to return. must be an even number.
1124 * The strings in the IDENTIFY DEVICE page are broken up into
1125 * 16-bit chunks. Run through the string, and output each
1126 * 8-bit chunk linearly, regardless of platform.
1132 void ata_id_string(const u16
*id
, unsigned char *s
,
1133 unsigned int ofs
, unsigned int len
)
1152 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1153 * @id: IDENTIFY DEVICE results we will examine
1154 * @s: string into which data is output
1155 * @ofs: offset into identify device page
1156 * @len: length of string to return. must be an odd number.
1158 * This function is identical to ata_id_string except that it
1159 * trims trailing spaces and terminates the resulting string with
1160 * null. @len must be actual maximum length (even number) + 1.
1165 void ata_id_c_string(const u16
*id
, unsigned char *s
,
1166 unsigned int ofs
, unsigned int len
)
1170 WARN_ON(!(len
& 1));
1172 ata_id_string(id
, s
, ofs
, len
- 1);
1174 p
= s
+ strnlen(s
, len
- 1);
1175 while (p
> s
&& p
[-1] == ' ')
1180 static u64
ata_id_n_sectors(const u16
*id
)
1182 if (ata_id_has_lba(id
)) {
1183 if (ata_id_has_lba48(id
))
1184 return ata_id_u64(id
, 100);
1186 return ata_id_u32(id
, 60);
1188 if (ata_id_current_chs_valid(id
))
1189 return ata_id_u32(id
, 57);
1191 return id
[1] * id
[3] * id
[6];
1195 u64
ata_tf_to_lba48(const struct ata_taskfile
*tf
)
1199 sectors
|= ((u64
)(tf
->hob_lbah
& 0xff)) << 40;
1200 sectors
|= ((u64
)(tf
->hob_lbam
& 0xff)) << 32;
1201 sectors
|= (tf
->hob_lbal
& 0xff) << 24;
1202 sectors
|= (tf
->lbah
& 0xff) << 16;
1203 sectors
|= (tf
->lbam
& 0xff) << 8;
1204 sectors
|= (tf
->lbal
& 0xff);
1209 u64
ata_tf_to_lba(const struct ata_taskfile
*tf
)
1213 sectors
|= (tf
->device
& 0x0f) << 24;
1214 sectors
|= (tf
->lbah
& 0xff) << 16;
1215 sectors
|= (tf
->lbam
& 0xff) << 8;
1216 sectors
|= (tf
->lbal
& 0xff);
1222 * ata_read_native_max_address - Read native max address
1223 * @dev: target device
1224 * @max_sectors: out parameter for the result native max address
1226 * Perform an LBA48 or LBA28 native size query upon the device in
1230 * 0 on success, -EACCES if command is aborted by the drive.
1231 * -EIO on other errors.
1233 static int ata_read_native_max_address(struct ata_device
*dev
, u64
*max_sectors
)
1235 unsigned int err_mask
;
1236 struct ata_taskfile tf
;
1237 int lba48
= ata_id_has_lba48(dev
->id
);
1239 ata_tf_init(dev
, &tf
);
1241 /* always clear all address registers */
1242 tf
.flags
|= ATA_TFLAG_DEVICE
| ATA_TFLAG_ISADDR
;
1245 tf
.command
= ATA_CMD_READ_NATIVE_MAX_EXT
;
1246 tf
.flags
|= ATA_TFLAG_LBA48
;
1248 tf
.command
= ATA_CMD_READ_NATIVE_MAX
;
1250 tf
.protocol
|= ATA_PROT_NODATA
;
1251 tf
.device
|= ATA_LBA
;
1253 err_mask
= ata_exec_internal(dev
, &tf
, NULL
, DMA_NONE
, NULL
, 0, 0);
1255 ata_dev_printk(dev
, KERN_WARNING
, "failed to read native "
1256 "max address (err_mask=0x%x)\n", err_mask
);
1257 if (err_mask
== AC_ERR_DEV
&& (tf
.feature
& ATA_ABORTED
))
1263 *max_sectors
= ata_tf_to_lba48(&tf
) + 1;
1265 *max_sectors
= ata_tf_to_lba(&tf
) + 1;
1266 if (dev
->horkage
& ATA_HORKAGE_HPA_SIZE
)
1272 * ata_set_max_sectors - Set max sectors
1273 * @dev: target device
1274 * @new_sectors: new max sectors value to set for the device
1276 * Set max sectors of @dev to @new_sectors.
1279 * 0 on success, -EACCES if command is aborted or denied (due to
1280 * previous non-volatile SET_MAX) by the drive. -EIO on other
1283 static int ata_set_max_sectors(struct ata_device
*dev
, u64 new_sectors
)
1285 unsigned int err_mask
;
1286 struct ata_taskfile tf
;
1287 int lba48
= ata_id_has_lba48(dev
->id
);
1291 ata_tf_init(dev
, &tf
);
1293 tf
.flags
|= ATA_TFLAG_DEVICE
| ATA_TFLAG_ISADDR
;
1296 tf
.command
= ATA_CMD_SET_MAX_EXT
;
1297 tf
.flags
|= ATA_TFLAG_LBA48
;
1299 tf
.hob_lbal
= (new_sectors
>> 24) & 0xff;
1300 tf
.hob_lbam
= (new_sectors
>> 32) & 0xff;
1301 tf
.hob_lbah
= (new_sectors
>> 40) & 0xff;
1303 tf
.command
= ATA_CMD_SET_MAX
;
1305 tf
.device
|= (new_sectors
>> 24) & 0xf;
1308 tf
.protocol
|= ATA_PROT_NODATA
;
1309 tf
.device
|= ATA_LBA
;
1311 tf
.lbal
= (new_sectors
>> 0) & 0xff;
1312 tf
.lbam
= (new_sectors
>> 8) & 0xff;
1313 tf
.lbah
= (new_sectors
>> 16) & 0xff;
1315 err_mask
= ata_exec_internal(dev
, &tf
, NULL
, DMA_NONE
, NULL
, 0, 0);
1317 ata_dev_printk(dev
, KERN_WARNING
, "failed to set "
1318 "max address (err_mask=0x%x)\n", err_mask
);
1319 if (err_mask
== AC_ERR_DEV
&&
1320 (tf
.feature
& (ATA_ABORTED
| ATA_IDNF
)))
1329 * ata_hpa_resize - Resize a device with an HPA set
1330 * @dev: Device to resize
1332 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
1333 * it if required to the full size of the media. The caller must check
1334 * the drive has the HPA feature set enabled.
1337 * 0 on success, -errno on failure.
1339 static int ata_hpa_resize(struct ata_device
*dev
)
1341 struct ata_eh_context
*ehc
= &dev
->link
->eh_context
;
1342 int print_info
= ehc
->i
.flags
& ATA_EHI_PRINTINFO
;
1343 u64 sectors
= ata_id_n_sectors(dev
->id
);
1347 /* do we need to do it? */
1348 if (dev
->class != ATA_DEV_ATA
||
1349 !ata_id_has_lba(dev
->id
) || !ata_id_hpa_enabled(dev
->id
) ||
1350 (dev
->horkage
& ATA_HORKAGE_BROKEN_HPA
))
1353 /* read native max address */
1354 rc
= ata_read_native_max_address(dev
, &native_sectors
);
1356 /* If device aborted the command or HPA isn't going to
1357 * be unlocked, skip HPA resizing.
1359 if (rc
== -EACCES
|| !ata_ignore_hpa
) {
1360 ata_dev_printk(dev
, KERN_WARNING
, "HPA support seems "
1361 "broken, skipping HPA handling\n");
1362 dev
->horkage
|= ATA_HORKAGE_BROKEN_HPA
;
1364 /* we can continue if device aborted the command */
1372 /* nothing to do? */
1373 if (native_sectors
<= sectors
|| !ata_ignore_hpa
) {
1374 if (!print_info
|| native_sectors
== sectors
)
1377 if (native_sectors
> sectors
)
1378 ata_dev_printk(dev
, KERN_INFO
,
1379 "HPA detected: current %llu, native %llu\n",
1380 (unsigned long long)sectors
,
1381 (unsigned long long)native_sectors
);
1382 else if (native_sectors
< sectors
)
1383 ata_dev_printk(dev
, KERN_WARNING
,
1384 "native sectors (%llu) is smaller than "
1386 (unsigned long long)native_sectors
,
1387 (unsigned long long)sectors
);
1391 /* let's unlock HPA */
1392 rc
= ata_set_max_sectors(dev
, native_sectors
);
1393 if (rc
== -EACCES
) {
1394 /* if device aborted the command, skip HPA resizing */
1395 ata_dev_printk(dev
, KERN_WARNING
, "device aborted resize "
1396 "(%llu -> %llu), skipping HPA handling\n",
1397 (unsigned long long)sectors
,
1398 (unsigned long long)native_sectors
);
1399 dev
->horkage
|= ATA_HORKAGE_BROKEN_HPA
;
1404 /* re-read IDENTIFY data */
1405 rc
= ata_dev_reread_id(dev
, 0);
1407 ata_dev_printk(dev
, KERN_ERR
, "failed to re-read IDENTIFY "
1408 "data after HPA resizing\n");
1413 u64 new_sectors
= ata_id_n_sectors(dev
->id
);
1414 ata_dev_printk(dev
, KERN_INFO
,
1415 "HPA unlocked: %llu -> %llu, native %llu\n",
1416 (unsigned long long)sectors
,
1417 (unsigned long long)new_sectors
,
1418 (unsigned long long)native_sectors
);
1425 * ata_dump_id - IDENTIFY DEVICE info debugging output
1426 * @id: IDENTIFY DEVICE page to dump
1428 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1435 static inline void ata_dump_id(const u16
*id
)
1437 DPRINTK("49==0x%04x "
1447 DPRINTK("80==0x%04x "
1457 DPRINTK("88==0x%04x "
1464 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1465 * @id: IDENTIFY data to compute xfer mask from
1467 * Compute the xfermask for this device. This is not as trivial
1468 * as it seems if we must consider early devices correctly.
1470 * FIXME: pre IDE drive timing (do we care ?).
1478 unsigned long ata_id_xfermask(const u16
*id
)
1480 unsigned long pio_mask
, mwdma_mask
, udma_mask
;
1482 /* Usual case. Word 53 indicates word 64 is valid */
1483 if (id
[ATA_ID_FIELD_VALID
] & (1 << 1)) {
1484 pio_mask
= id
[ATA_ID_PIO_MODES
] & 0x03;
1488 /* If word 64 isn't valid then Word 51 high byte holds
1489 * the PIO timing number for the maximum. Turn it into
1492 u8 mode
= (id
[ATA_ID_OLD_PIO_MODES
] >> 8) & 0xFF;
1493 if (mode
< 5) /* Valid PIO range */
1494 pio_mask
= (2 << mode
) - 1;
1498 /* But wait.. there's more. Design your standards by
1499 * committee and you too can get a free iordy field to
1500 * process. However its the speeds not the modes that
1501 * are supported... Note drivers using the timing API
1502 * will get this right anyway
1506 mwdma_mask
= id
[ATA_ID_MWDMA_MODES
] & 0x07;
1508 if (ata_id_is_cfa(id
)) {
1510 * Process compact flash extended modes
1512 int pio
= id
[163] & 0x7;
1513 int dma
= (id
[163] >> 3) & 7;
1516 pio_mask
|= (1 << 5);
1518 pio_mask
|= (1 << 6);
1520 mwdma_mask
|= (1 << 3);
1522 mwdma_mask
|= (1 << 4);
1526 if (id
[ATA_ID_FIELD_VALID
] & (1 << 2))
1527 udma_mask
= id
[ATA_ID_UDMA_MODES
] & 0xff;
1529 return ata_pack_xfermask(pio_mask
, mwdma_mask
, udma_mask
);
1533 * ata_pio_queue_task - Queue port_task
1534 * @ap: The ata_port to queue port_task for
1535 * @fn: workqueue function to be scheduled
1536 * @data: data for @fn to use
1537 * @delay: delay time for workqueue function
1539 * Schedule @fn(@data) for execution after @delay jiffies using
1540 * port_task. There is one port_task per port and it's the
1541 * user(low level driver)'s responsibility to make sure that only
1542 * one task is active at any given time.
1544 * libata core layer takes care of synchronization between
1545 * port_task and EH. ata_pio_queue_task() may be ignored for EH
1549 * Inherited from caller.
1551 void ata_pio_queue_task(struct ata_port
*ap
, void *data
, unsigned long delay
)
1553 ap
->port_task_data
= data
;
1555 /* may fail if ata_port_flush_task() in progress */
1556 queue_delayed_work(ata_wq
, &ap
->port_task
, delay
);
1560 * ata_port_flush_task - Flush port_task
1561 * @ap: The ata_port to flush port_task for
1563 * After this function completes, port_task is guranteed not to
1564 * be running or scheduled.
1567 * Kernel thread context (may sleep)
1569 void ata_port_flush_task(struct ata_port
*ap
)
1573 cancel_rearming_delayed_work(&ap
->port_task
);
1575 if (ata_msg_ctl(ap
))
1576 ata_port_printk(ap
, KERN_DEBUG
, "%s: EXIT\n", __func__
);
1579 static void ata_qc_complete_internal(struct ata_queued_cmd
*qc
)
1581 struct completion
*waiting
= qc
->private_data
;
1587 * ata_exec_internal_sg - execute libata internal command
1588 * @dev: Device to which the command is sent
1589 * @tf: Taskfile registers for the command and the result
1590 * @cdb: CDB for packet command
1591 * @dma_dir: Data tranfer direction of the command
1592 * @sgl: sg list for the data buffer of the command
1593 * @n_elem: Number of sg entries
1594 * @timeout: Timeout in msecs (0 for default)
1596 * Executes libata internal command with timeout. @tf contains
1597 * command on entry and result on return. Timeout and error
1598 * conditions are reported via return value. No recovery action
1599 * is taken after a command times out. It's caller's duty to
1600 * clean up after timeout.
1603 * None. Should be called with kernel context, might sleep.
1606 * Zero on success, AC_ERR_* mask on failure
1608 unsigned ata_exec_internal_sg(struct ata_device
*dev
,
1609 struct ata_taskfile
*tf
, const u8
*cdb
,
1610 int dma_dir
, struct scatterlist
*sgl
,
1611 unsigned int n_elem
, unsigned long timeout
)
1613 struct ata_link
*link
= dev
->link
;
1614 struct ata_port
*ap
= link
->ap
;
1615 u8 command
= tf
->command
;
1616 struct ata_queued_cmd
*qc
;
1617 unsigned int tag
, preempted_tag
;
1618 u32 preempted_sactive
, preempted_qc_active
;
1619 int preempted_nr_active_links
;
1620 DECLARE_COMPLETION_ONSTACK(wait
);
1621 unsigned long flags
;
1622 unsigned int err_mask
;
1625 spin_lock_irqsave(ap
->lock
, flags
);
1627 /* no internal command while frozen */
1628 if (ap
->pflags
& ATA_PFLAG_FROZEN
) {
1629 spin_unlock_irqrestore(ap
->lock
, flags
);
1630 return AC_ERR_SYSTEM
;
1633 /* initialize internal qc */
1635 /* XXX: Tag 0 is used for drivers with legacy EH as some
1636 * drivers choke if any other tag is given. This breaks
1637 * ata_tag_internal() test for those drivers. Don't use new
1638 * EH stuff without converting to it.
1640 if (ap
->ops
->error_handler
)
1641 tag
= ATA_TAG_INTERNAL
;
1645 if (test_and_set_bit(tag
, &ap
->qc_allocated
))
1647 qc
= __ata_qc_from_tag(ap
, tag
);
1655 preempted_tag
= link
->active_tag
;
1656 preempted_sactive
= link
->sactive
;
1657 preempted_qc_active
= ap
->qc_active
;
1658 preempted_nr_active_links
= ap
->nr_active_links
;
1659 link
->active_tag
= ATA_TAG_POISON
;
1662 ap
->nr_active_links
= 0;
1664 /* prepare & issue qc */
1667 memcpy(qc
->cdb
, cdb
, ATAPI_CDB_LEN
);
1668 qc
->flags
|= ATA_QCFLAG_RESULT_TF
;
1669 qc
->dma_dir
= dma_dir
;
1670 if (dma_dir
!= DMA_NONE
) {
1671 unsigned int i
, buflen
= 0;
1672 struct scatterlist
*sg
;
1674 for_each_sg(sgl
, sg
, n_elem
, i
)
1675 buflen
+= sg
->length
;
1677 ata_sg_init(qc
, sgl
, n_elem
);
1678 qc
->nbytes
= buflen
;
1681 qc
->private_data
= &wait
;
1682 qc
->complete_fn
= ata_qc_complete_internal
;
1686 spin_unlock_irqrestore(ap
->lock
, flags
);
1689 timeout
= ata_probe_timeout
* 1000 / HZ
;
1691 rc
= wait_for_completion_timeout(&wait
, msecs_to_jiffies(timeout
));
1693 ata_port_flush_task(ap
);
1696 spin_lock_irqsave(ap
->lock
, flags
);
1698 /* We're racing with irq here. If we lose, the
1699 * following test prevents us from completing the qc
1700 * twice. If we win, the port is frozen and will be
1701 * cleaned up by ->post_internal_cmd().
1703 if (qc
->flags
& ATA_QCFLAG_ACTIVE
) {
1704 qc
->err_mask
|= AC_ERR_TIMEOUT
;
1706 if (ap
->ops
->error_handler
)
1707 ata_port_freeze(ap
);
1709 ata_qc_complete(qc
);
1711 if (ata_msg_warn(ap
))
1712 ata_dev_printk(dev
, KERN_WARNING
,
1713 "qc timeout (cmd 0x%x)\n", command
);
1716 spin_unlock_irqrestore(ap
->lock
, flags
);
1719 /* do post_internal_cmd */
1720 if (ap
->ops
->post_internal_cmd
)
1721 ap
->ops
->post_internal_cmd(qc
);
1723 /* perform minimal error analysis */
1724 if (qc
->flags
& ATA_QCFLAG_FAILED
) {
1725 if (qc
->result_tf
.command
& (ATA_ERR
| ATA_DF
))
1726 qc
->err_mask
|= AC_ERR_DEV
;
1729 qc
->err_mask
|= AC_ERR_OTHER
;
1731 if (qc
->err_mask
& ~AC_ERR_OTHER
)
1732 qc
->err_mask
&= ~AC_ERR_OTHER
;
1736 spin_lock_irqsave(ap
->lock
, flags
);
1738 *tf
= qc
->result_tf
;
1739 err_mask
= qc
->err_mask
;
1742 link
->active_tag
= preempted_tag
;
1743 link
->sactive
= preempted_sactive
;
1744 ap
->qc_active
= preempted_qc_active
;
1745 ap
->nr_active_links
= preempted_nr_active_links
;
1747 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1748 * Until those drivers are fixed, we detect the condition
1749 * here, fail the command with AC_ERR_SYSTEM and reenable the
1752 * Note that this doesn't change any behavior as internal
1753 * command failure results in disabling the device in the
1754 * higher layer for LLDDs without new reset/EH callbacks.
1756 * Kill the following code as soon as those drivers are fixed.
1758 if (ap
->flags
& ATA_FLAG_DISABLED
) {
1759 err_mask
|= AC_ERR_SYSTEM
;
1763 spin_unlock_irqrestore(ap
->lock
, flags
);
1769 * ata_exec_internal - execute libata internal command
1770 * @dev: Device to which the command is sent
1771 * @tf: Taskfile registers for the command and the result
1772 * @cdb: CDB for packet command
1773 * @dma_dir: Data tranfer direction of the command
1774 * @buf: Data buffer of the command
1775 * @buflen: Length of data buffer
1776 * @timeout: Timeout in msecs (0 for default)
1778 * Wrapper around ata_exec_internal_sg() which takes simple
1779 * buffer instead of sg list.
1782 * None. Should be called with kernel context, might sleep.
1785 * Zero on success, AC_ERR_* mask on failure
1787 unsigned ata_exec_internal(struct ata_device
*dev
,
1788 struct ata_taskfile
*tf
, const u8
*cdb
,
1789 int dma_dir
, void *buf
, unsigned int buflen
,
1790 unsigned long timeout
)
1792 struct scatterlist
*psg
= NULL
, sg
;
1793 unsigned int n_elem
= 0;
1795 if (dma_dir
!= DMA_NONE
) {
1797 sg_init_one(&sg
, buf
, buflen
);
1802 return ata_exec_internal_sg(dev
, tf
, cdb
, dma_dir
, psg
, n_elem
,
1807 * ata_do_simple_cmd - execute simple internal command
1808 * @dev: Device to which the command is sent
1809 * @cmd: Opcode to execute
1811 * Execute a 'simple' command, that only consists of the opcode
1812 * 'cmd' itself, without filling any other registers
1815 * Kernel thread context (may sleep).
1818 * Zero on success, AC_ERR_* mask on failure
1820 unsigned int ata_do_simple_cmd(struct ata_device
*dev
, u8 cmd
)
1822 struct ata_taskfile tf
;
1824 ata_tf_init(dev
, &tf
);
1827 tf
.flags
|= ATA_TFLAG_DEVICE
;
1828 tf
.protocol
= ATA_PROT_NODATA
;
1830 return ata_exec_internal(dev
, &tf
, NULL
, DMA_NONE
, NULL
, 0, 0);
1834 * ata_pio_need_iordy - check if iordy needed
1837 * Check if the current speed of the device requires IORDY. Used
1838 * by various controllers for chip configuration.
1841 unsigned int ata_pio_need_iordy(const struct ata_device
*adev
)
1843 /* Controller doesn't support IORDY. Probably a pointless check
1844 as the caller should know this */
1845 if (adev
->link
->ap
->flags
& ATA_FLAG_NO_IORDY
)
1847 /* PIO3 and higher it is mandatory */
1848 if (adev
->pio_mode
> XFER_PIO_2
)
1850 /* We turn it on when possible */
1851 if (ata_id_has_iordy(adev
->id
))
1857 * ata_pio_mask_no_iordy - Return the non IORDY mask
1860 * Compute the highest mode possible if we are not using iordy. Return
1861 * -1 if no iordy mode is available.
1864 static u32
ata_pio_mask_no_iordy(const struct ata_device
*adev
)
1866 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1867 if (adev
->id
[ATA_ID_FIELD_VALID
] & 2) { /* EIDE */
1868 u16 pio
= adev
->id
[ATA_ID_EIDE_PIO
];
1869 /* Is the speed faster than the drive allows non IORDY ? */
1871 /* This is cycle times not frequency - watch the logic! */
1872 if (pio
> 240) /* PIO2 is 240nS per cycle */
1873 return 3 << ATA_SHIFT_PIO
;
1874 return 7 << ATA_SHIFT_PIO
;
1877 return 3 << ATA_SHIFT_PIO
;
1881 * ata_dev_read_id - Read ID data from the specified device
1882 * @dev: target device
1883 * @p_class: pointer to class of the target device (may be changed)
1884 * @flags: ATA_READID_* flags
1885 * @id: buffer to read IDENTIFY data into
1887 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1888 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1889 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1890 * for pre-ATA4 drives.
1892 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right
1893 * now we abort if we hit that case.
1896 * Kernel thread context (may sleep)
1899 * 0 on success, -errno otherwise.
1901 int ata_dev_read_id(struct ata_device
*dev
, unsigned int *p_class
,
1902 unsigned int flags
, u16
*id
)
1904 struct ata_port
*ap
= dev
->link
->ap
;
1905 unsigned int class = *p_class
;
1906 struct ata_taskfile tf
;
1907 unsigned int err_mask
= 0;
1909 int may_fallback
= 1, tried_spinup
= 0;
1912 if (ata_msg_ctl(ap
))
1913 ata_dev_printk(dev
, KERN_DEBUG
, "%s: ENTER\n", __func__
);
1916 ata_tf_init(dev
, &tf
);
1920 tf
.command
= ATA_CMD_ID_ATA
;
1923 tf
.command
= ATA_CMD_ID_ATAPI
;
1927 reason
= "unsupported class";
1931 tf
.protocol
= ATA_PROT_PIO
;
1933 /* Some devices choke if TF registers contain garbage. Make
1934 * sure those are properly initialized.
1936 tf
.flags
|= ATA_TFLAG_ISADDR
| ATA_TFLAG_DEVICE
;
1938 /* Device presence detection is unreliable on some
1939 * controllers. Always poll IDENTIFY if available.
1941 tf
.flags
|= ATA_TFLAG_POLLING
;
1943 err_mask
= ata_exec_internal(dev
, &tf
, NULL
, DMA_FROM_DEVICE
,
1944 id
, sizeof(id
[0]) * ATA_ID_WORDS
, 0);
1946 if (err_mask
& AC_ERR_NODEV_HINT
) {
1947 ata_dev_printk(dev
, KERN_DEBUG
,
1948 "NODEV after polling detection\n");
1952 if ((err_mask
== AC_ERR_DEV
) && (tf
.feature
& ATA_ABORTED
)) {
1953 /* Device or controller might have reported
1954 * the wrong device class. Give a shot at the
1955 * other IDENTIFY if the current one is
1956 * aborted by the device.
1961 if (class == ATA_DEV_ATA
)
1962 class = ATA_DEV_ATAPI
;
1964 class = ATA_DEV_ATA
;
1968 /* Control reaches here iff the device aborted
1969 * both flavors of IDENTIFYs which happens
1970 * sometimes with phantom devices.
1972 ata_dev_printk(dev
, KERN_DEBUG
,
1973 "both IDENTIFYs aborted, assuming NODEV\n");
1978 reason
= "I/O error";
1982 /* Falling back doesn't make sense if ID data was read
1983 * successfully at least once.
1987 swap_buf_le16(id
, ATA_ID_WORDS
);
1991 reason
= "device reports invalid type";
1993 if (class == ATA_DEV_ATA
) {
1994 if (!ata_id_is_ata(id
) && !ata_id_is_cfa(id
))
1997 if (ata_id_is_ata(id
))
2001 if (!tried_spinup
&& (id
[2] == 0x37c8 || id
[2] == 0x738c)) {
2004 * Drive powered-up in standby mode, and requires a specific
2005 * SET_FEATURES spin-up subcommand before it will accept
2006 * anything other than the original IDENTIFY command.
2008 err_mask
= ata_dev_set_feature(dev
, SETFEATURES_SPINUP
, 0);
2009 if (err_mask
&& id
[2] != 0x738c) {
2011 reason
= "SPINUP failed";
2015 * If the drive initially returned incomplete IDENTIFY info,
2016 * we now must reissue the IDENTIFY command.
2018 if (id
[2] == 0x37c8)
2022 if ((flags
& ATA_READID_POSTRESET
) && class == ATA_DEV_ATA
) {
2024 * The exact sequence expected by certain pre-ATA4 drives is:
2026 * IDENTIFY (optional in early ATA)
2027 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
2029 * Some drives were very specific about that exact sequence.
2031 * Note that ATA4 says lba is mandatory so the second check
2032 * shoud never trigger.
2034 if (ata_id_major_version(id
) < 4 || !ata_id_has_lba(id
)) {
2035 err_mask
= ata_dev_init_params(dev
, id
[3], id
[6]);
2038 reason
= "INIT_DEV_PARAMS failed";
2042 /* current CHS translation info (id[53-58]) might be
2043 * changed. reread the identify device info.
2045 flags
&= ~ATA_READID_POSTRESET
;
2055 if (ata_msg_warn(ap
))
2056 ata_dev_printk(dev
, KERN_WARNING
, "failed to IDENTIFY "
2057 "(%s, err_mask=0x%x)\n", reason
, err_mask
);
2061 static inline u8
ata_dev_knobble(struct ata_device
*dev
)
2063 struct ata_port
*ap
= dev
->link
->ap
;
2064 return ((ap
->cbl
== ATA_CBL_SATA
) && (!ata_id_is_sata(dev
->id
)));
2067 static void ata_dev_config_ncq(struct ata_device
*dev
,
2068 char *desc
, size_t desc_sz
)
2070 struct ata_port
*ap
= dev
->link
->ap
;
2071 int hdepth
= 0, ddepth
= ata_id_queue_depth(dev
->id
);
2073 if (!ata_id_has_ncq(dev
->id
)) {
2077 if (dev
->horkage
& ATA_HORKAGE_NONCQ
) {
2078 snprintf(desc
, desc_sz
, "NCQ (not used)");
2081 if (ap
->flags
& ATA_FLAG_NCQ
) {
2082 hdepth
= min(ap
->scsi_host
->can_queue
, ATA_MAX_QUEUE
- 1);
2083 dev
->flags
|= ATA_DFLAG_NCQ
;
2086 if (hdepth
>= ddepth
)
2087 snprintf(desc
, desc_sz
, "NCQ (depth %d)", ddepth
);
2089 snprintf(desc
, desc_sz
, "NCQ (depth %d/%d)", hdepth
, ddepth
);
2093 * ata_dev_configure - Configure the specified ATA/ATAPI device
2094 * @dev: Target device to configure
2096 * Configure @dev according to @dev->id. Generic and low-level
2097 * driver specific fixups are also applied.
2100 * Kernel thread context (may sleep)
2103 * 0 on success, -errno otherwise
2105 int ata_dev_configure(struct ata_device
*dev
)
2107 struct ata_port
*ap
= dev
->link
->ap
;
2108 struct ata_eh_context
*ehc
= &dev
->link
->eh_context
;
2109 int print_info
= ehc
->i
.flags
& ATA_EHI_PRINTINFO
;
2110 const u16
*id
= dev
->id
;
2111 unsigned long xfer_mask
;
2112 char revbuf
[7]; /* XYZ-99\0 */
2113 char fwrevbuf
[ATA_ID_FW_REV_LEN
+1];
2114 char modelbuf
[ATA_ID_PROD_LEN
+1];
2117 if (!ata_dev_enabled(dev
) && ata_msg_info(ap
)) {
2118 ata_dev_printk(dev
, KERN_INFO
, "%s: ENTER/EXIT -- nodev\n",
2123 if (ata_msg_probe(ap
))
2124 ata_dev_printk(dev
, KERN_DEBUG
, "%s: ENTER\n", __func__
);
2127 dev
->horkage
|= ata_dev_blacklisted(dev
);
2128 ata_force_horkage(dev
);
2130 /* let ACPI work its magic */
2131 rc
= ata_acpi_on_devcfg(dev
);
2135 /* massage HPA, do it early as it might change IDENTIFY data */
2136 rc
= ata_hpa_resize(dev
);
2140 /* print device capabilities */
2141 if (ata_msg_probe(ap
))
2142 ata_dev_printk(dev
, KERN_DEBUG
,
2143 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2144 "85:%04x 86:%04x 87:%04x 88:%04x\n",
2146 id
[49], id
[82], id
[83], id
[84],
2147 id
[85], id
[86], id
[87], id
[88]);
2149 /* initialize to-be-configured parameters */
2150 dev
->flags
&= ~ATA_DFLAG_CFG_MASK
;
2151 dev
->max_sectors
= 0;
2159 * common ATA, ATAPI feature tests
2162 /* find max transfer mode; for printk only */
2163 xfer_mask
= ata_id_xfermask(id
);
2165 if (ata_msg_probe(ap
))
2168 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2169 ata_id_c_string(dev
->id
, fwrevbuf
, ATA_ID_FW_REV
,
2172 ata_id_c_string(dev
->id
, modelbuf
, ATA_ID_PROD
,
2175 /* ATA-specific feature tests */
2176 if (dev
->class == ATA_DEV_ATA
) {
2177 if (ata_id_is_cfa(id
)) {
2178 if (id
[162] & 1) /* CPRM may make this media unusable */
2179 ata_dev_printk(dev
, KERN_WARNING
,
2180 "supports DRM functions and may "
2181 "not be fully accessable.\n");
2182 snprintf(revbuf
, 7, "CFA");
2184 snprintf(revbuf
, 7, "ATA-%d", ata_id_major_version(id
));
2185 /* Warn the user if the device has TPM extensions */
2186 if (ata_id_has_tpm(id
))
2187 ata_dev_printk(dev
, KERN_WARNING
,
2188 "supports DRM functions and may "
2189 "not be fully accessable.\n");
2192 dev
->n_sectors
= ata_id_n_sectors(id
);
2194 if (dev
->id
[59] & 0x100)
2195 dev
->multi_count
= dev
->id
[59] & 0xff;
2197 if (ata_id_has_lba(id
)) {
2198 const char *lba_desc
;
2202 dev
->flags
|= ATA_DFLAG_LBA
;
2203 if (ata_id_has_lba48(id
)) {
2204 dev
->flags
|= ATA_DFLAG_LBA48
;
2207 if (dev
->n_sectors
>= (1UL << 28) &&
2208 ata_id_has_flush_ext(id
))
2209 dev
->flags
|= ATA_DFLAG_FLUSH_EXT
;
2213 ata_dev_config_ncq(dev
, ncq_desc
, sizeof(ncq_desc
));
2215 /* print device info to dmesg */
2216 if (ata_msg_drv(ap
) && print_info
) {
2217 ata_dev_printk(dev
, KERN_INFO
,
2218 "%s: %s, %s, max %s\n",
2219 revbuf
, modelbuf
, fwrevbuf
,
2220 ata_mode_string(xfer_mask
));
2221 ata_dev_printk(dev
, KERN_INFO
,
2222 "%Lu sectors, multi %u: %s %s\n",
2223 (unsigned long long)dev
->n_sectors
,
2224 dev
->multi_count
, lba_desc
, ncq_desc
);
2229 /* Default translation */
2230 dev
->cylinders
= id
[1];
2232 dev
->sectors
= id
[6];
2234 if (ata_id_current_chs_valid(id
)) {
2235 /* Current CHS translation is valid. */
2236 dev
->cylinders
= id
[54];
2237 dev
->heads
= id
[55];
2238 dev
->sectors
= id
[56];
2241 /* print device info to dmesg */
2242 if (ata_msg_drv(ap
) && print_info
) {
2243 ata_dev_printk(dev
, KERN_INFO
,
2244 "%s: %s, %s, max %s\n",
2245 revbuf
, modelbuf
, fwrevbuf
,
2246 ata_mode_string(xfer_mask
));
2247 ata_dev_printk(dev
, KERN_INFO
,
2248 "%Lu sectors, multi %u, CHS %u/%u/%u\n",
2249 (unsigned long long)dev
->n_sectors
,
2250 dev
->multi_count
, dev
->cylinders
,
2251 dev
->heads
, dev
->sectors
);
2258 /* ATAPI-specific feature tests */
2259 else if (dev
->class == ATA_DEV_ATAPI
) {
2260 const char *cdb_intr_string
= "";
2261 const char *atapi_an_string
= "";
2262 const char *dma_dir_string
= "";
2265 rc
= atapi_cdb_len(id
);
2266 if ((rc
< 12) || (rc
> ATAPI_CDB_LEN
)) {
2267 if (ata_msg_warn(ap
))
2268 ata_dev_printk(dev
, KERN_WARNING
,
2269 "unsupported CDB len\n");
2273 dev
->cdb_len
= (unsigned int) rc
;
2275 /* Enable ATAPI AN if both the host and device have
2276 * the support. If PMP is attached, SNTF is required
2277 * to enable ATAPI AN to discern between PHY status
2278 * changed notifications and ATAPI ANs.
2280 if ((ap
->flags
& ATA_FLAG_AN
) && ata_id_has_atapi_AN(id
) &&
2281 (!sata_pmp_attached(ap
) ||
2282 sata_scr_read(&ap
->link
, SCR_NOTIFICATION
, &sntf
) == 0)) {
2283 unsigned int err_mask
;
2285 /* issue SET feature command to turn this on */
2286 err_mask
= ata_dev_set_feature(dev
,
2287 SETFEATURES_SATA_ENABLE
, SATA_AN
);
2289 ata_dev_printk(dev
, KERN_ERR
,
2290 "failed to enable ATAPI AN "
2291 "(err_mask=0x%x)\n", err_mask
);
2293 dev
->flags
|= ATA_DFLAG_AN
;
2294 atapi_an_string
= ", ATAPI AN";
2298 if (ata_id_cdb_intr(dev
->id
)) {
2299 dev
->flags
|= ATA_DFLAG_CDB_INTR
;
2300 cdb_intr_string
= ", CDB intr";
2303 if (atapi_dmadir
|| atapi_id_dmadir(dev
->id
)) {
2304 dev
->flags
|= ATA_DFLAG_DMADIR
;
2305 dma_dir_string
= ", DMADIR";
2308 /* print device info to dmesg */
2309 if (ata_msg_drv(ap
) && print_info
)
2310 ata_dev_printk(dev
, KERN_INFO
,
2311 "ATAPI: %s, %s, max %s%s%s%s\n",
2313 ata_mode_string(xfer_mask
),
2314 cdb_intr_string
, atapi_an_string
,
2318 /* determine max_sectors */
2319 dev
->max_sectors
= ATA_MAX_SECTORS
;
2320 if (dev
->flags
& ATA_DFLAG_LBA48
)
2321 dev
->max_sectors
= ATA_MAX_SECTORS_LBA48
;
2323 if (!(dev
->horkage
& ATA_HORKAGE_IPM
)) {
2324 if (ata_id_has_hipm(dev
->id
))
2325 dev
->flags
|= ATA_DFLAG_HIPM
;
2326 if (ata_id_has_dipm(dev
->id
))
2327 dev
->flags
|= ATA_DFLAG_DIPM
;
2330 /* Limit PATA drive on SATA cable bridge transfers to udma5,
2332 if (ata_dev_knobble(dev
)) {
2333 if (ata_msg_drv(ap
) && print_info
)
2334 ata_dev_printk(dev
, KERN_INFO
,
2335 "applying bridge limits\n");
2336 dev
->udma_mask
&= ATA_UDMA5
;
2337 dev
->max_sectors
= ATA_MAX_SECTORS
;
2340 if ((dev
->class == ATA_DEV_ATAPI
) &&
2341 (atapi_command_packet_set(id
) == TYPE_TAPE
)) {
2342 dev
->max_sectors
= ATA_MAX_SECTORS_TAPE
;
2343 dev
->horkage
|= ATA_HORKAGE_STUCK_ERR
;
2346 if (dev
->horkage
& ATA_HORKAGE_MAX_SEC_128
)
2347 dev
->max_sectors
= min_t(unsigned int, ATA_MAX_SECTORS_128
,
2350 if (ata_dev_blacklisted(dev
) & ATA_HORKAGE_IPM
) {
2351 dev
->horkage
|= ATA_HORKAGE_IPM
;
2353 /* reset link pm_policy for this port to no pm */
2354 ap
->pm_policy
= MAX_PERFORMANCE
;
2357 if (ap
->ops
->dev_config
)
2358 ap
->ops
->dev_config(dev
);
2360 if (dev
->horkage
& ATA_HORKAGE_DIAGNOSTIC
) {
2361 /* Let the user know. We don't want to disallow opens for
2362 rescue purposes, or in case the vendor is just a blithering
2363 idiot. Do this after the dev_config call as some controllers
2364 with buggy firmware may want to avoid reporting false device
2368 ata_dev_printk(dev
, KERN_WARNING
,
2369 "Drive reports diagnostics failure. This may indicate a drive\n");
2370 ata_dev_printk(dev
, KERN_WARNING
,
2371 "fault or invalid emulation. Contact drive vendor for information.\n");
2378 if (ata_msg_probe(ap
))
2379 ata_dev_printk(dev
, KERN_DEBUG
,
2380 "%s: EXIT, err\n", __func__
);
2385 * ata_cable_40wire - return 40 wire cable type
2388 * Helper method for drivers which want to hardwire 40 wire cable
2392 int ata_cable_40wire(struct ata_port
*ap
)
2394 return ATA_CBL_PATA40
;
2398 * ata_cable_80wire - return 80 wire cable type
2401 * Helper method for drivers which want to hardwire 80 wire cable
2405 int ata_cable_80wire(struct ata_port
*ap
)
2407 return ATA_CBL_PATA80
;
2411 * ata_cable_unknown - return unknown PATA cable.
2414 * Helper method for drivers which have no PATA cable detection.
2417 int ata_cable_unknown(struct ata_port
*ap
)
2419 return ATA_CBL_PATA_UNK
;
2423 * ata_cable_ignore - return ignored PATA cable.
2426 * Helper method for drivers which don't use cable type to limit
2429 int ata_cable_ignore(struct ata_port
*ap
)
2431 return ATA_CBL_PATA_IGN
;
2435 * ata_cable_sata - return SATA cable type
2438 * Helper method for drivers which have SATA cables
2441 int ata_cable_sata(struct ata_port
*ap
)
2443 return ATA_CBL_SATA
;
2447 * ata_bus_probe - Reset and probe ATA bus
2450 * Master ATA bus probing function. Initiates a hardware-dependent
2451 * bus reset, then attempts to identify any devices found on
2455 * PCI/etc. bus probe sem.
2458 * Zero on success, negative errno otherwise.
2461 int ata_bus_probe(struct ata_port
*ap
)
2463 unsigned int classes
[ATA_MAX_DEVICES
];
2464 int tries
[ATA_MAX_DEVICES
];
2466 struct ata_device
*dev
;
2470 ata_link_for_each_dev(dev
, &ap
->link
)
2471 tries
[dev
->devno
] = ATA_PROBE_MAX_TRIES
;
2474 ata_link_for_each_dev(dev
, &ap
->link
) {
2475 /* If we issue an SRST then an ATA drive (not ATAPI)
2476 * may change configuration and be in PIO0 timing. If
2477 * we do a hard reset (or are coming from power on)
2478 * this is true for ATA or ATAPI. Until we've set a
2479 * suitable controller mode we should not touch the
2480 * bus as we may be talking too fast.
2482 dev
->pio_mode
= XFER_PIO_0
;
2484 /* If the controller has a pio mode setup function
2485 * then use it to set the chipset to rights. Don't
2486 * touch the DMA setup as that will be dealt with when
2487 * configuring devices.
2489 if (ap
->ops
->set_piomode
)
2490 ap
->ops
->set_piomode(ap
, dev
);
2493 /* reset and determine device classes */
2494 ap
->ops
->phy_reset(ap
);
2496 ata_link_for_each_dev(dev
, &ap
->link
) {
2497 if (!(ap
->flags
& ATA_FLAG_DISABLED
) &&
2498 dev
->class != ATA_DEV_UNKNOWN
)
2499 classes
[dev
->devno
] = dev
->class;
2501 classes
[dev
->devno
] = ATA_DEV_NONE
;
2503 dev
->class = ATA_DEV_UNKNOWN
;
2508 /* read IDENTIFY page and configure devices. We have to do the identify
2509 specific sequence bass-ackwards so that PDIAG- is released by
2512 ata_link_for_each_dev_reverse(dev
, &ap
->link
) {
2513 if (tries
[dev
->devno
])
2514 dev
->class = classes
[dev
->devno
];
2516 if (!ata_dev_enabled(dev
))
2519 rc
= ata_dev_read_id(dev
, &dev
->class, ATA_READID_POSTRESET
,
2525 /* Now ask for the cable type as PDIAG- should have been released */
2526 if (ap
->ops
->cable_detect
)
2527 ap
->cbl
= ap
->ops
->cable_detect(ap
);
2529 /* We may have SATA bridge glue hiding here irrespective of the
2530 reported cable types and sensed types */
2531 ata_link_for_each_dev(dev
, &ap
->link
) {
2532 if (!ata_dev_enabled(dev
))
2534 /* SATA drives indicate we have a bridge. We don't know which
2535 end of the link the bridge is which is a problem */
2536 if (ata_id_is_sata(dev
->id
))
2537 ap
->cbl
= ATA_CBL_SATA
;
2540 /* After the identify sequence we can now set up the devices. We do
2541 this in the normal order so that the user doesn't get confused */
2543 ata_link_for_each_dev(dev
, &ap
->link
) {
2544 if (!ata_dev_enabled(dev
))
2547 ap
->link
.eh_context
.i
.flags
|= ATA_EHI_PRINTINFO
;
2548 rc
= ata_dev_configure(dev
);
2549 ap
->link
.eh_context
.i
.flags
&= ~ATA_EHI_PRINTINFO
;
2554 /* configure transfer mode */
2555 rc
= ata_set_mode(&ap
->link
, &dev
);
2559 ata_link_for_each_dev(dev
, &ap
->link
)
2560 if (ata_dev_enabled(dev
))
2563 /* no device present, disable port */
2564 ata_port_disable(ap
);
2568 tries
[dev
->devno
]--;
2572 /* eeek, something went very wrong, give up */
2573 tries
[dev
->devno
] = 0;
2577 /* give it just one more chance */
2578 tries
[dev
->devno
] = min(tries
[dev
->devno
], 1);
2580 if (tries
[dev
->devno
] == 1) {
2581 /* This is the last chance, better to slow
2582 * down than lose it.
2584 sata_down_spd_limit(&ap
->link
);
2585 ata_down_xfermask_limit(dev
, ATA_DNXFER_PIO
);
2589 if (!tries
[dev
->devno
])
2590 ata_dev_disable(dev
);
2596 * ata_port_probe - Mark port as enabled
2597 * @ap: Port for which we indicate enablement
2599 * Modify @ap data structure such that the system
2600 * thinks that the entire port is enabled.
2602 * LOCKING: host lock, or some other form of
2606 void ata_port_probe(struct ata_port
*ap
)
2608 ap
->flags
&= ~ATA_FLAG_DISABLED
;
2612 * sata_print_link_status - Print SATA link status
2613 * @link: SATA link to printk link status about
2615 * This function prints link speed and status of a SATA link.
2620 void sata_print_link_status(struct ata_link
*link
)
2622 u32 sstatus
, scontrol
, tmp
;
2624 if (sata_scr_read(link
, SCR_STATUS
, &sstatus
))
2626 sata_scr_read(link
, SCR_CONTROL
, &scontrol
);
2628 if (ata_link_online(link
)) {
2629 tmp
= (sstatus
>> 4) & 0xf;
2630 ata_link_printk(link
, KERN_INFO
,
2631 "SATA link up %s (SStatus %X SControl %X)\n",
2632 sata_spd_string(tmp
), sstatus
, scontrol
);
2634 ata_link_printk(link
, KERN_INFO
,
2635 "SATA link down (SStatus %X SControl %X)\n",
2641 * ata_dev_pair - return other device on cable
2644 * Obtain the other device on the same cable, or if none is
2645 * present NULL is returned
2648 struct ata_device
*ata_dev_pair(struct ata_device
*adev
)
2650 struct ata_link
*link
= adev
->link
;
2651 struct ata_device
*pair
= &link
->device
[1 - adev
->devno
];
2652 if (!ata_dev_enabled(pair
))
2658 * ata_port_disable - Disable port.
2659 * @ap: Port to be disabled.
2661 * Modify @ap data structure such that the system
2662 * thinks that the entire port is disabled, and should
2663 * never attempt to probe or communicate with devices
2666 * LOCKING: host lock, or some other form of
2670 void ata_port_disable(struct ata_port
*ap
)
2672 ap
->link
.device
[0].class = ATA_DEV_NONE
;
2673 ap
->link
.device
[1].class = ATA_DEV_NONE
;
2674 ap
->flags
|= ATA_FLAG_DISABLED
;
2678 * sata_down_spd_limit - adjust SATA spd limit downward
2679 * @link: Link to adjust SATA spd limit for
2681 * Adjust SATA spd limit of @link downward. Note that this
2682 * function only adjusts the limit. The change must be applied
2683 * using sata_set_spd().
2686 * Inherited from caller.
2689 * 0 on success, negative errno on failure
2691 int sata_down_spd_limit(struct ata_link
*link
)
2693 u32 sstatus
, spd
, mask
;
2696 if (!sata_scr_valid(link
))
2699 /* If SCR can be read, use it to determine the current SPD.
2700 * If not, use cached value in link->sata_spd.
2702 rc
= sata_scr_read(link
, SCR_STATUS
, &sstatus
);
2704 spd
= (sstatus
>> 4) & 0xf;
2706 spd
= link
->sata_spd
;
2708 mask
= link
->sata_spd_limit
;
2712 /* unconditionally mask off the highest bit */
2713 highbit
= fls(mask
) - 1;
2714 mask
&= ~(1 << highbit
);
2716 /* Mask off all speeds higher than or equal to the current
2717 * one. Force 1.5Gbps if current SPD is not available.
2720 mask
&= (1 << (spd
- 1)) - 1;
2724 /* were we already at the bottom? */
2728 link
->sata_spd_limit
= mask
;
2730 ata_link_printk(link
, KERN_WARNING
, "limiting SATA link speed to %s\n",
2731 sata_spd_string(fls(mask
)));
2736 static int __sata_set_spd_needed(struct ata_link
*link
, u32
*scontrol
)
2738 struct ata_link
*host_link
= &link
->ap
->link
;
2739 u32 limit
, target
, spd
;
2741 limit
= link
->sata_spd_limit
;
2743 /* Don't configure downstream link faster than upstream link.
2744 * It doesn't speed up anything and some PMPs choke on such
2747 if (!ata_is_host_link(link
) && host_link
->sata_spd
)
2748 limit
&= (1 << host_link
->sata_spd
) - 1;
2750 if (limit
== UINT_MAX
)
2753 target
= fls(limit
);
2755 spd
= (*scontrol
>> 4) & 0xf;
2756 *scontrol
= (*scontrol
& ~0xf0) | ((target
& 0xf) << 4);
2758 return spd
!= target
;
2762 * sata_set_spd_needed - is SATA spd configuration needed
2763 * @link: Link in question
2765 * Test whether the spd limit in SControl matches
2766 * @link->sata_spd_limit. This function is used to determine
2767 * whether hardreset is necessary to apply SATA spd
2771 * Inherited from caller.
2774 * 1 if SATA spd configuration is needed, 0 otherwise.
2776 int sata_set_spd_needed(struct ata_link
*link
)
2780 if (sata_scr_read(link
, SCR_CONTROL
, &scontrol
))
2783 return __sata_set_spd_needed(link
, &scontrol
);
2787 * sata_set_spd - set SATA spd according to spd limit
2788 * @link: Link to set SATA spd for
2790 * Set SATA spd of @link according to sata_spd_limit.
2793 * Inherited from caller.
2796 * 0 if spd doesn't need to be changed, 1 if spd has been
2797 * changed. Negative errno if SCR registers are inaccessible.
2799 int sata_set_spd(struct ata_link
*link
)
2804 if ((rc
= sata_scr_read(link
, SCR_CONTROL
, &scontrol
)))
2807 if (!__sata_set_spd_needed(link
, &scontrol
))
2810 if ((rc
= sata_scr_write(link
, SCR_CONTROL
, scontrol
)))
2817 * This mode timing computation functionality is ported over from
2818 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2821 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
2822 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
2823 * for UDMA6, which is currently supported only by Maxtor drives.
2825 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
2828 static const struct ata_timing ata_timing
[] = {
2829 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
2830 { XFER_PIO_0
, 70, 290, 240, 600, 165, 150, 600, 0 },
2831 { XFER_PIO_1
, 50, 290, 93, 383, 125, 100, 383, 0 },
2832 { XFER_PIO_2
, 30, 290, 40, 330, 100, 90, 240, 0 },
2833 { XFER_PIO_3
, 30, 80, 70, 180, 80, 70, 180, 0 },
2834 { XFER_PIO_4
, 25, 70, 25, 120, 70, 25, 120, 0 },
2835 { XFER_PIO_5
, 15, 65, 25, 100, 65, 25, 100, 0 },
2836 { XFER_PIO_6
, 10, 55, 20, 80, 55, 20, 80, 0 },
2838 { XFER_SW_DMA_0
, 120, 0, 0, 0, 480, 480, 960, 0 },
2839 { XFER_SW_DMA_1
, 90, 0, 0, 0, 240, 240, 480, 0 },
2840 { XFER_SW_DMA_2
, 60, 0, 0, 0, 120, 120, 240, 0 },
2842 { XFER_MW_DMA_0
, 60, 0, 0, 0, 215, 215, 480, 0 },
2843 { XFER_MW_DMA_1
, 45, 0, 0, 0, 80, 50, 150, 0 },
2844 { XFER_MW_DMA_2
, 25, 0, 0, 0, 70, 25, 120, 0 },
2845 { XFER_MW_DMA_3
, 25, 0, 0, 0, 65, 25, 100, 0 },
2846 { XFER_MW_DMA_4
, 25, 0, 0, 0, 55, 20, 80, 0 },
2848 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2849 { XFER_UDMA_0
, 0, 0, 0, 0, 0, 0, 0, 120 },
2850 { XFER_UDMA_1
, 0, 0, 0, 0, 0, 0, 0, 80 },
2851 { XFER_UDMA_2
, 0, 0, 0, 0, 0, 0, 0, 60 },
2852 { XFER_UDMA_3
, 0, 0, 0, 0, 0, 0, 0, 45 },
2853 { XFER_UDMA_4
, 0, 0, 0, 0, 0, 0, 0, 30 },
2854 { XFER_UDMA_5
, 0, 0, 0, 0, 0, 0, 0, 20 },
2855 { XFER_UDMA_6
, 0, 0, 0, 0, 0, 0, 0, 15 },
2860 #define ENOUGH(v, unit) (((v)-1)/(unit)+1)
2861 #define EZ(v, unit) ((v)?ENOUGH(v, unit):0)
2863 static void ata_timing_quantize(const struct ata_timing
*t
, struct ata_timing
*q
, int T
, int UT
)
2865 q
->setup
= EZ(t
->setup
* 1000, T
);
2866 q
->act8b
= EZ(t
->act8b
* 1000, T
);
2867 q
->rec8b
= EZ(t
->rec8b
* 1000, T
);
2868 q
->cyc8b
= EZ(t
->cyc8b
* 1000, T
);
2869 q
->active
= EZ(t
->active
* 1000, T
);
2870 q
->recover
= EZ(t
->recover
* 1000, T
);
2871 q
->cycle
= EZ(t
->cycle
* 1000, T
);
2872 q
->udma
= EZ(t
->udma
* 1000, UT
);
2875 void ata_timing_merge(const struct ata_timing
*a
, const struct ata_timing
*b
,
2876 struct ata_timing
*m
, unsigned int what
)
2878 if (what
& ATA_TIMING_SETUP
) m
->setup
= max(a
->setup
, b
->setup
);
2879 if (what
& ATA_TIMING_ACT8B
) m
->act8b
= max(a
->act8b
, b
->act8b
);
2880 if (what
& ATA_TIMING_REC8B
) m
->rec8b
= max(a
->rec8b
, b
->rec8b
);
2881 if (what
& ATA_TIMING_CYC8B
) m
->cyc8b
= max(a
->cyc8b
, b
->cyc8b
);
2882 if (what
& ATA_TIMING_ACTIVE
) m
->active
= max(a
->active
, b
->active
);
2883 if (what
& ATA_TIMING_RECOVER
) m
->recover
= max(a
->recover
, b
->recover
);
2884 if (what
& ATA_TIMING_CYCLE
) m
->cycle
= max(a
->cycle
, b
->cycle
);
2885 if (what
& ATA_TIMING_UDMA
) m
->udma
= max(a
->udma
, b
->udma
);
2888 const struct ata_timing
*ata_timing_find_mode(u8 xfer_mode
)
2890 const struct ata_timing
*t
= ata_timing
;
2892 while (xfer_mode
> t
->mode
)
2895 if (xfer_mode
== t
->mode
)
2900 int ata_timing_compute(struct ata_device
*adev
, unsigned short speed
,
2901 struct ata_timing
*t
, int T
, int UT
)
2903 const struct ata_timing
*s
;
2904 struct ata_timing p
;
2910 if (!(s
= ata_timing_find_mode(speed
)))
2913 memcpy(t
, s
, sizeof(*s
));
2916 * If the drive is an EIDE drive, it can tell us it needs extended
2917 * PIO/MW_DMA cycle timing.
2920 if (adev
->id
[ATA_ID_FIELD_VALID
] & 2) { /* EIDE drive */
2921 memset(&p
, 0, sizeof(p
));
2922 if (speed
>= XFER_PIO_0
&& speed
<= XFER_SW_DMA_0
) {
2923 if (speed
<= XFER_PIO_2
) p
.cycle
= p
.cyc8b
= adev
->id
[ATA_ID_EIDE_PIO
];
2924 else p
.cycle
= p
.cyc8b
= adev
->id
[ATA_ID_EIDE_PIO_IORDY
];
2925 } else if (speed
>= XFER_MW_DMA_0
&& speed
<= XFER_MW_DMA_2
) {
2926 p
.cycle
= adev
->id
[ATA_ID_EIDE_DMA_MIN
];
2928 ata_timing_merge(&p
, t
, t
, ATA_TIMING_CYCLE
| ATA_TIMING_CYC8B
);
2932 * Convert the timing to bus clock counts.
2935 ata_timing_quantize(t
, t
, T
, UT
);
2938 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
2939 * S.M.A.R.T * and some other commands. We have to ensure that the
2940 * DMA cycle timing is slower/equal than the fastest PIO timing.
2943 if (speed
> XFER_PIO_6
) {
2944 ata_timing_compute(adev
, adev
->pio_mode
, &p
, T
, UT
);
2945 ata_timing_merge(&p
, t
, t
, ATA_TIMING_ALL
);
2949 * Lengthen active & recovery time so that cycle time is correct.
2952 if (t
->act8b
+ t
->rec8b
< t
->cyc8b
) {
2953 t
->act8b
+= (t
->cyc8b
- (t
->act8b
+ t
->rec8b
)) / 2;
2954 t
->rec8b
= t
->cyc8b
- t
->act8b
;
2957 if (t
->active
+ t
->recover
< t
->cycle
) {
2958 t
->active
+= (t
->cycle
- (t
->active
+ t
->recover
)) / 2;
2959 t
->recover
= t
->cycle
- t
->active
;
2962 /* In a few cases quantisation may produce enough errors to
2963 leave t->cycle too low for the sum of active and recovery
2964 if so we must correct this */
2965 if (t
->active
+ t
->recover
> t
->cycle
)
2966 t
->cycle
= t
->active
+ t
->recover
;
2972 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration
2973 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine.
2974 * @cycle: cycle duration in ns
2976 * Return matching xfer mode for @cycle. The returned mode is of
2977 * the transfer type specified by @xfer_shift. If @cycle is too
2978 * slow for @xfer_shift, 0xff is returned. If @cycle is faster
2979 * than the fastest known mode, the fasted mode is returned.
2985 * Matching xfer_mode, 0xff if no match found.
2987 u8
ata_timing_cycle2mode(unsigned int xfer_shift
, int cycle
)
2989 u8 base_mode
= 0xff, last_mode
= 0xff;
2990 const struct ata_xfer_ent
*ent
;
2991 const struct ata_timing
*t
;
2993 for (ent
= ata_xfer_tbl
; ent
->shift
>= 0; ent
++)
2994 if (ent
->shift
== xfer_shift
)
2995 base_mode
= ent
->base
;
2997 for (t
= ata_timing_find_mode(base_mode
);
2998 t
&& ata_xfer_mode2shift(t
->mode
) == xfer_shift
; t
++) {
2999 unsigned short this_cycle
;
3001 switch (xfer_shift
) {
3003 case ATA_SHIFT_MWDMA
:
3004 this_cycle
= t
->cycle
;
3006 case ATA_SHIFT_UDMA
:
3007 this_cycle
= t
->udma
;
3013 if (cycle
> this_cycle
)
3016 last_mode
= t
->mode
;
3023 * ata_down_xfermask_limit - adjust dev xfer masks downward
3024 * @dev: Device to adjust xfer masks
3025 * @sel: ATA_DNXFER_* selector
3027 * Adjust xfer masks of @dev downward. Note that this function
3028 * does not apply the change. Invoking ata_set_mode() afterwards
3029 * will apply the limit.
3032 * Inherited from caller.
3035 * 0 on success, negative errno on failure
3037 int ata_down_xfermask_limit(struct ata_device
*dev
, unsigned int sel
)
3040 unsigned long orig_mask
, xfer_mask
;
3041 unsigned long pio_mask
, mwdma_mask
, udma_mask
;
3044 quiet
= !!(sel
& ATA_DNXFER_QUIET
);
3045 sel
&= ~ATA_DNXFER_QUIET
;
3047 xfer_mask
= orig_mask
= ata_pack_xfermask(dev
->pio_mask
,
3050 ata_unpack_xfermask(xfer_mask
, &pio_mask
, &mwdma_mask
, &udma_mask
);
3053 case ATA_DNXFER_PIO
:
3054 highbit
= fls(pio_mask
) - 1;
3055 pio_mask
&= ~(1 << highbit
);
3058 case ATA_DNXFER_DMA
:
3060 highbit
= fls(udma_mask
) - 1;
3061 udma_mask
&= ~(1 << highbit
);
3064 } else if (mwdma_mask
) {
3065 highbit
= fls(mwdma_mask
) - 1;
3066 mwdma_mask
&= ~(1 << highbit
);
3072 case ATA_DNXFER_40C
:
3073 udma_mask
&= ATA_UDMA_MASK_40C
;
3076 case ATA_DNXFER_FORCE_PIO0
:
3078 case ATA_DNXFER_FORCE_PIO
:
3087 xfer_mask
&= ata_pack_xfermask(pio_mask
, mwdma_mask
, udma_mask
);
3089 if (!(xfer_mask
& ATA_MASK_PIO
) || xfer_mask
== orig_mask
)
3093 if (xfer_mask
& (ATA_MASK_MWDMA
| ATA_MASK_UDMA
))
3094 snprintf(buf
, sizeof(buf
), "%s:%s",
3095 ata_mode_string(xfer_mask
),
3096 ata_mode_string(xfer_mask
& ATA_MASK_PIO
));
3098 snprintf(buf
, sizeof(buf
), "%s",
3099 ata_mode_string(xfer_mask
));
3101 ata_dev_printk(dev
, KERN_WARNING
,
3102 "limiting speed to %s\n", buf
);
3105 ata_unpack_xfermask(xfer_mask
, &dev
->pio_mask
, &dev
->mwdma_mask
,
3111 static int ata_dev_set_mode(struct ata_device
*dev
)
3113 struct ata_eh_context
*ehc
= &dev
->link
->eh_context
;
3114 const char *dev_err_whine
= "";
3115 int ign_dev_err
= 0;
3116 unsigned int err_mask
;
3119 dev
->flags
&= ~ATA_DFLAG_PIO
;
3120 if (dev
->xfer_shift
== ATA_SHIFT_PIO
)
3121 dev
->flags
|= ATA_DFLAG_PIO
;
3123 err_mask
= ata_dev_set_xfermode(dev
);
3125 if (err_mask
& ~AC_ERR_DEV
)
3129 ehc
->i
.flags
|= ATA_EHI_POST_SETMODE
;
3130 rc
= ata_dev_revalidate(dev
, ATA_DEV_UNKNOWN
, 0);
3131 ehc
->i
.flags
&= ~ATA_EHI_POST_SETMODE
;
3135 if (dev
->xfer_shift
== ATA_SHIFT_PIO
) {
3136 /* Old CFA may refuse this command, which is just fine */
3137 if (ata_id_is_cfa(dev
->id
))
3139 /* Catch several broken garbage emulations plus some pre
3141 if (ata_id_major_version(dev
->id
) == 0 &&
3142 dev
->pio_mode
<= XFER_PIO_2
)
3144 /* Some very old devices and some bad newer ones fail
3145 any kind of SET_XFERMODE request but support PIO0-2
3146 timings and no IORDY */
3147 if (!ata_id_has_iordy(dev
->id
) && dev
->pio_mode
<= XFER_PIO_2
)
3150 /* Early MWDMA devices do DMA but don't allow DMA mode setting.
3151 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3152 if (dev
->xfer_shift
== ATA_SHIFT_MWDMA
&&
3153 dev
->dma_mode
== XFER_MW_DMA_0
&&
3154 (dev
->id
[63] >> 8) & 1)
3157 /* if the device is actually configured correctly, ignore dev err */
3158 if (dev
->xfer_mode
== ata_xfer_mask2mode(ata_id_xfermask(dev
->id
)))
3161 if (err_mask
& AC_ERR_DEV
) {
3165 dev_err_whine
= " (device error ignored)";
3168 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3169 dev
->xfer_shift
, (int)dev
->xfer_mode
);
3171 ata_dev_printk(dev
, KERN_INFO
, "configured for %s%s\n",
3172 ata_mode_string(ata_xfer_mode2mask(dev
->xfer_mode
)),
3178 ata_dev_printk(dev
, KERN_ERR
, "failed to set xfermode "
3179 "(err_mask=0x%x)\n", err_mask
);
3184 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
3185 * @link: link on which timings will be programmed
3186 * @r_failed_dev: out parameter for failed device
3188 * Standard implementation of the function used to tune and set
3189 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
3190 * ata_dev_set_mode() fails, pointer to the failing device is
3191 * returned in @r_failed_dev.
3194 * PCI/etc. bus probe sem.
3197 * 0 on success, negative errno otherwise
3200 int ata_do_set_mode(struct ata_link
*link
, struct ata_device
**r_failed_dev
)
3202 struct ata_port
*ap
= link
->ap
;
3203 struct ata_device
*dev
;
3204 int rc
= 0, used_dma
= 0, found
= 0;
3206 /* step 1: calculate xfer_mask */
3207 ata_link_for_each_dev(dev
, link
) {
3208 unsigned long pio_mask
, dma_mask
;
3209 unsigned int mode_mask
;
3211 if (!ata_dev_enabled(dev
))
3214 mode_mask
= ATA_DMA_MASK_ATA
;
3215 if (dev
->class == ATA_DEV_ATAPI
)
3216 mode_mask
= ATA_DMA_MASK_ATAPI
;
3217 else if (ata_id_is_cfa(dev
->id
))
3218 mode_mask
= ATA_DMA_MASK_CFA
;
3220 ata_dev_xfermask(dev
);
3221 ata_force_xfermask(dev
);
3223 pio_mask
= ata_pack_xfermask(dev
->pio_mask
, 0, 0);
3224 dma_mask
= ata_pack_xfermask(0, dev
->mwdma_mask
, dev
->udma_mask
);
3226 if (libata_dma_mask
& mode_mask
)
3227 dma_mask
= ata_pack_xfermask(0, dev
->mwdma_mask
, dev
->udma_mask
);
3231 dev
->pio_mode
= ata_xfer_mask2mode(pio_mask
);
3232 dev
->dma_mode
= ata_xfer_mask2mode(dma_mask
);
3235 if (dev
->dma_mode
!= 0xff)
3241 /* step 2: always set host PIO timings */
3242 ata_link_for_each_dev(dev
, link
) {
3243 if (!ata_dev_enabled(dev
))
3246 if (dev
->pio_mode
== 0xff) {
3247 ata_dev_printk(dev
, KERN_WARNING
, "no PIO support\n");
3252 dev
->xfer_mode
= dev
->pio_mode
;
3253 dev
->xfer_shift
= ATA_SHIFT_PIO
;
3254 if (ap
->ops
->set_piomode
)
3255 ap
->ops
->set_piomode(ap
, dev
);
3258 /* step 3: set host DMA timings */
3259 ata_link_for_each_dev(dev
, link
) {
3260 if (!ata_dev_enabled(dev
) || dev
->dma_mode
== 0xff)
3263 dev
->xfer_mode
= dev
->dma_mode
;
3264 dev
->xfer_shift
= ata_xfer_mode2shift(dev
->dma_mode
);
3265 if (ap
->ops
->set_dmamode
)
3266 ap
->ops
->set_dmamode(ap
, dev
);
3269 /* step 4: update devices' xfer mode */
3270 ata_link_for_each_dev(dev
, link
) {
3271 /* don't update suspended devices' xfer mode */
3272 if (!ata_dev_enabled(dev
))
3275 rc
= ata_dev_set_mode(dev
);
3280 /* Record simplex status. If we selected DMA then the other
3281 * host channels are not permitted to do so.
3283 if (used_dma
&& (ap
->host
->flags
& ATA_HOST_SIMPLEX
))
3284 ap
->host
->simplex_claimed
= ap
;
3288 *r_failed_dev
= dev
;
3293 * ata_wait_ready - wait for link to become ready
3294 * @link: link to be waited on
3295 * @deadline: deadline jiffies for the operation
3296 * @check_ready: callback to check link readiness
3298 * Wait for @link to become ready. @check_ready should return
3299 * positive number if @link is ready, 0 if it isn't, -ENODEV if
3300 * link doesn't seem to be occupied, other errno for other error
3303 * Transient -ENODEV conditions are allowed for
3304 * ATA_TMOUT_FF_WAIT.
3310 * 0 if @linke is ready before @deadline; otherwise, -errno.
3312 int ata_wait_ready(struct ata_link
*link
, unsigned long deadline
,
3313 int (*check_ready
)(struct ata_link
*link
))
3315 unsigned long start
= jiffies
;
3316 unsigned long nodev_deadline
= start
+ ATA_TMOUT_FF_WAIT
;
3319 if (time_after(nodev_deadline
, deadline
))
3320 nodev_deadline
= deadline
;
3323 unsigned long now
= jiffies
;
3326 ready
= tmp
= check_ready(link
);
3330 /* -ENODEV could be transient. Ignore -ENODEV if link
3331 * is online. Also, some SATA devices take a long
3332 * time to clear 0xff after reset. For example,
3333 * HHD424020F7SV00 iVDR needs >= 800ms while Quantum
3334 * GoVault needs even more than that. Wait for
3335 * ATA_TMOUT_FF_WAIT on -ENODEV if link isn't offline.
3337 * Note that some PATA controllers (pata_ali) explode
3338 * if status register is read more than once when
3339 * there's no device attached.
3341 if (ready
== -ENODEV
) {
3342 if (ata_link_online(link
))
3344 else if ((link
->ap
->flags
& ATA_FLAG_SATA
) &&
3345 !ata_link_offline(link
) &&
3346 time_before(now
, nodev_deadline
))
3352 if (time_after(now
, deadline
))
3355 if (!warned
&& time_after(now
, start
+ 5 * HZ
) &&
3356 (deadline
- now
> 3 * HZ
)) {
3357 ata_link_printk(link
, KERN_WARNING
,
3358 "link is slow to respond, please be patient "
3359 "(ready=%d)\n", tmp
);
3368 * ata_wait_after_reset - wait for link to become ready after reset
3369 * @link: link to be waited on
3370 * @deadline: deadline jiffies for the operation
3371 * @check_ready: callback to check link readiness
3373 * Wait for @link to become ready after reset.
3379 * 0 if @linke is ready before @deadline; otherwise, -errno.
3381 extern int ata_wait_after_reset(struct ata_link
*link
, unsigned long deadline
,
3382 int (*check_ready
)(struct ata_link
*link
))
3384 msleep(ATA_WAIT_AFTER_RESET_MSECS
);
3386 return ata_wait_ready(link
, deadline
, check_ready
);
3390 * sata_link_debounce - debounce SATA phy status
3391 * @link: ATA link to debounce SATA phy status for
3392 * @params: timing parameters { interval, duratinon, timeout } in msec
3393 * @deadline: deadline jiffies for the operation
3395 * Make sure SStatus of @link reaches stable state, determined by
3396 * holding the same value where DET is not 1 for @duration polled
3397 * every @interval, before @timeout. Timeout constraints the
3398 * beginning of the stable state. Because DET gets stuck at 1 on
3399 * some controllers after hot unplugging, this functions waits
3400 * until timeout then returns 0 if DET is stable at 1.
3402 * @timeout is further limited by @deadline. The sooner of the
3406 * Kernel thread context (may sleep)
3409 * 0 on success, -errno on failure.
3411 int sata_link_debounce(struct ata_link
*link
, const unsigned long *params
,
3412 unsigned long deadline
)
3414 unsigned long interval_msec
= params
[0];
3415 unsigned long duration
= msecs_to_jiffies(params
[1]);
3416 unsigned long last_jiffies
, t
;
3420 t
= jiffies
+ msecs_to_jiffies(params
[2]);
3421 if (time_before(t
, deadline
))
3424 if ((rc
= sata_scr_read(link
, SCR_STATUS
, &cur
)))
3429 last_jiffies
= jiffies
;
3432 msleep(interval_msec
);
3433 if ((rc
= sata_scr_read(link
, SCR_STATUS
, &cur
)))
3439 if (cur
== 1 && time_before(jiffies
, deadline
))
3441 if (time_after(jiffies
, last_jiffies
+ duration
))
3446 /* unstable, start over */
3448 last_jiffies
= jiffies
;
3450 /* Check deadline. If debouncing failed, return
3451 * -EPIPE to tell upper layer to lower link speed.
3453 if (time_after(jiffies
, deadline
))
3459 * sata_link_resume - resume SATA link
3460 * @link: ATA link to resume SATA
3461 * @params: timing parameters { interval, duratinon, timeout } in msec
3462 * @deadline: deadline jiffies for the operation
3464 * Resume SATA phy @link and debounce it.
3467 * Kernel thread context (may sleep)
3470 * 0 on success, -errno on failure.
3472 int sata_link_resume(struct ata_link
*link
, const unsigned long *params
,
3473 unsigned long deadline
)
3475 u32 scontrol
, serror
;
3478 if ((rc
= sata_scr_read(link
, SCR_CONTROL
, &scontrol
)))
3481 scontrol
= (scontrol
& 0x0f0) | 0x300;
3483 if ((rc
= sata_scr_write(link
, SCR_CONTROL
, scontrol
)))
3486 /* Some PHYs react badly if SStatus is pounded immediately
3487 * after resuming. Delay 200ms before debouncing.
3491 if ((rc
= sata_link_debounce(link
, params
, deadline
)))
3494 /* Clear SError. PMP and some host PHYs require this to
3495 * operate and clearing should be done before checking PHY
3496 * online status to avoid race condition (hotplugging between
3497 * link resume and status check).
3499 if (!(rc
= sata_scr_read(link
, SCR_ERROR
, &serror
)))
3500 rc
= sata_scr_write(link
, SCR_ERROR
, serror
);
3501 if (rc
== 0 || rc
== -EINVAL
) {
3502 unsigned long flags
;
3504 spin_lock_irqsave(link
->ap
->lock
, flags
);
3505 link
->eh_info
.serror
= 0;
3506 spin_unlock_irqrestore(link
->ap
->lock
, flags
);
3513 * ata_std_prereset - prepare for reset
3514 * @link: ATA link to be reset
3515 * @deadline: deadline jiffies for the operation
3517 * @link is about to be reset. Initialize it. Failure from
3518 * prereset makes libata abort whole reset sequence and give up
3519 * that port, so prereset should be best-effort. It does its
3520 * best to prepare for reset sequence but if things go wrong, it
3521 * should just whine, not fail.
3524 * Kernel thread context (may sleep)
3527 * 0 on success, -errno otherwise.
3529 int ata_std_prereset(struct ata_link
*link
, unsigned long deadline
)
3531 struct ata_port
*ap
= link
->ap
;
3532 struct ata_eh_context
*ehc
= &link
->eh_context
;
3533 const unsigned long *timing
= sata_ehc_deb_timing(ehc
);
3536 /* if we're about to do hardreset, nothing more to do */
3537 if (ehc
->i
.action
& ATA_EH_HARDRESET
)
3540 /* if SATA, resume link */
3541 if (ap
->flags
& ATA_FLAG_SATA
) {
3542 rc
= sata_link_resume(link
, timing
, deadline
);
3543 /* whine about phy resume failure but proceed */
3544 if (rc
&& rc
!= -EOPNOTSUPP
)
3545 ata_link_printk(link
, KERN_WARNING
, "failed to resume "
3546 "link for reset (errno=%d)\n", rc
);
3549 /* no point in trying softreset on offline link */
3550 if (ata_link_offline(link
))
3551 ehc
->i
.action
&= ~ATA_EH_SOFTRESET
;
3557 * sata_link_hardreset - reset link via SATA phy reset
3558 * @link: link to reset
3559 * @timing: timing parameters { interval, duratinon, timeout } in msec
3560 * @deadline: deadline jiffies for the operation
3561 * @online: optional out parameter indicating link onlineness
3562 * @check_ready: optional callback to check link readiness
3564 * SATA phy-reset @link using DET bits of SControl register.
3565 * After hardreset, link readiness is waited upon using
3566 * ata_wait_ready() if @check_ready is specified. LLDs are
3567 * allowed to not specify @check_ready and wait itself after this
3568 * function returns. Device classification is LLD's
3571 * *@online is set to one iff reset succeeded and @link is online
3575 * Kernel thread context (may sleep)
3578 * 0 on success, -errno otherwise.
3580 int sata_link_hardreset(struct ata_link
*link
, const unsigned long *timing
,
3581 unsigned long deadline
,
3582 bool *online
, int (*check_ready
)(struct ata_link
*))
3592 if (sata_set_spd_needed(link
)) {
3593 /* SATA spec says nothing about how to reconfigure
3594 * spd. To be on the safe side, turn off phy during
3595 * reconfiguration. This works for at least ICH7 AHCI
3598 if ((rc
= sata_scr_read(link
, SCR_CONTROL
, &scontrol
)))
3601 scontrol
= (scontrol
& 0x0f0) | 0x304;
3603 if ((rc
= sata_scr_write(link
, SCR_CONTROL
, scontrol
)))
3609 /* issue phy wake/reset */
3610 if ((rc
= sata_scr_read(link
, SCR_CONTROL
, &scontrol
)))
3613 scontrol
= (scontrol
& 0x0f0) | 0x301;
3615 if ((rc
= sata_scr_write_flush(link
, SCR_CONTROL
, scontrol
)))
3618 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
3619 * 10.4.2 says at least 1 ms.
3623 /* bring link back */
3624 rc
= sata_link_resume(link
, timing
, deadline
);
3627 /* if link is offline nothing more to do */
3628 if (ata_link_offline(link
))
3631 /* Link is online. From this point, -ENODEV too is an error. */
3635 if (sata_pmp_supported(link
->ap
) && ata_is_host_link(link
)) {
3636 /* If PMP is supported, we have to do follow-up SRST.
3637 * Some PMPs don't send D2H Reg FIS after hardreset if
3638 * the first port is empty. Wait only for
3639 * ATA_TMOUT_PMP_SRST_WAIT.
3642 unsigned long pmp_deadline
;
3644 pmp_deadline
= jiffies
+ ATA_TMOUT_PMP_SRST_WAIT
;
3645 if (time_after(pmp_deadline
, deadline
))
3646 pmp_deadline
= deadline
;
3647 ata_wait_ready(link
, pmp_deadline
, check_ready
);
3655 rc
= ata_wait_ready(link
, deadline
, check_ready
);
3657 if (rc
&& rc
!= -EAGAIN
)
3658 ata_link_printk(link
, KERN_ERR
,
3659 "COMRESET failed (errno=%d)\n", rc
);
3660 DPRINTK("EXIT, rc=%d\n", rc
);
3665 * sata_std_hardreset - COMRESET w/o waiting or classification
3666 * @link: link to reset
3667 * @class: resulting class of attached device
3668 * @deadline: deadline jiffies for the operation
3670 * Standard SATA COMRESET w/o waiting or classification.
3673 * Kernel thread context (may sleep)
3676 * 0 if link offline, -EAGAIN if link online, -errno on errors.
3678 int sata_std_hardreset(struct ata_link
*link
, unsigned int *class,
3679 unsigned long deadline
)
3681 const unsigned long *timing
= sata_ehc_deb_timing(&link
->eh_context
);
3686 rc
= sata_link_hardreset(link
, timing
, deadline
, &online
, NULL
);
3687 return online
? -EAGAIN
: rc
;
3691 * ata_std_postreset - standard postreset callback
3692 * @link: the target ata_link
3693 * @classes: classes of attached devices
3695 * This function is invoked after a successful reset. Note that
3696 * the device might have been reset more than once using
3697 * different reset methods before postreset is invoked.
3700 * Kernel thread context (may sleep)
3702 void ata_std_postreset(struct ata_link
*link
, unsigned int *classes
)
3706 /* print link status */
3707 sata_print_link_status(link
);
3713 * ata_dev_same_device - Determine whether new ID matches configured device
3714 * @dev: device to compare against
3715 * @new_class: class of the new device
3716 * @new_id: IDENTIFY page of the new device
3718 * Compare @new_class and @new_id against @dev and determine
3719 * whether @dev is the device indicated by @new_class and
3726 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3728 static int ata_dev_same_device(struct ata_device
*dev
, unsigned int new_class
,
3731 const u16
*old_id
= dev
->id
;
3732 unsigned char model
[2][ATA_ID_PROD_LEN
+ 1];
3733 unsigned char serial
[2][ATA_ID_SERNO_LEN
+ 1];
3735 if (dev
->class != new_class
) {
3736 ata_dev_printk(dev
, KERN_INFO
, "class mismatch %d != %d\n",
3737 dev
->class, new_class
);
3741 ata_id_c_string(old_id
, model
[0], ATA_ID_PROD
, sizeof(model
[0]));
3742 ata_id_c_string(new_id
, model
[1], ATA_ID_PROD
, sizeof(model
[1]));
3743 ata_id_c_string(old_id
, serial
[0], ATA_ID_SERNO
, sizeof(serial
[0]));
3744 ata_id_c_string(new_id
, serial
[1], ATA_ID_SERNO
, sizeof(serial
[1]));
3746 if (strcmp(model
[0], model
[1])) {
3747 ata_dev_printk(dev
, KERN_INFO
, "model number mismatch "
3748 "'%s' != '%s'\n", model
[0], model
[1]);
3752 if (strcmp(serial
[0], serial
[1])) {
3753 ata_dev_printk(dev
, KERN_INFO
, "serial number mismatch "
3754 "'%s' != '%s'\n", serial
[0], serial
[1]);
3762 * ata_dev_reread_id - Re-read IDENTIFY data
3763 * @dev: target ATA device
3764 * @readid_flags: read ID flags
3766 * Re-read IDENTIFY page and make sure @dev is still attached to
3770 * Kernel thread context (may sleep)
3773 * 0 on success, negative errno otherwise
3775 int ata_dev_reread_id(struct ata_device
*dev
, unsigned int readid_flags
)
3777 unsigned int class = dev
->class;
3778 u16
*id
= (void *)dev
->link
->ap
->sector_buf
;
3782 rc
= ata_dev_read_id(dev
, &class, readid_flags
, id
);
3786 /* is the device still there? */
3787 if (!ata_dev_same_device(dev
, class, id
))
3790 memcpy(dev
->id
, id
, sizeof(id
[0]) * ATA_ID_WORDS
);
3795 * ata_dev_revalidate - Revalidate ATA device
3796 * @dev: device to revalidate
3797 * @new_class: new class code
3798 * @readid_flags: read ID flags
3800 * Re-read IDENTIFY page, make sure @dev is still attached to the
3801 * port and reconfigure it according to the new IDENTIFY page.
3804 * Kernel thread context (may sleep)
3807 * 0 on success, negative errno otherwise
3809 int ata_dev_revalidate(struct ata_device
*dev
, unsigned int new_class
,
3810 unsigned int readid_flags
)
3812 u64 n_sectors
= dev
->n_sectors
;
3815 if (!ata_dev_enabled(dev
))
3818 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
3819 if (ata_class_enabled(new_class
) &&
3820 new_class
!= ATA_DEV_ATA
&& new_class
!= ATA_DEV_ATAPI
) {
3821 ata_dev_printk(dev
, KERN_INFO
, "class mismatch %u != %u\n",
3822 dev
->class, new_class
);
3828 rc
= ata_dev_reread_id(dev
, readid_flags
);
3832 /* configure device according to the new ID */
3833 rc
= ata_dev_configure(dev
);
3837 /* verify n_sectors hasn't changed */
3838 if (dev
->class == ATA_DEV_ATA
&& n_sectors
&&
3839 dev
->n_sectors
!= n_sectors
) {
3840 ata_dev_printk(dev
, KERN_INFO
, "n_sectors mismatch "
3842 (unsigned long long)n_sectors
,
3843 (unsigned long long)dev
->n_sectors
);
3845 /* restore original n_sectors */
3846 dev
->n_sectors
= n_sectors
;
3855 ata_dev_printk(dev
, KERN_ERR
, "revalidation failed (errno=%d)\n", rc
);
3859 struct ata_blacklist_entry
{
3860 const char *model_num
;
3861 const char *model_rev
;
3862 unsigned long horkage
;
3865 static const struct ata_blacklist_entry ata_device_blacklist
[] = {
3866 /* Devices with DMA related problems under Linux */
3867 { "WDC AC11000H", NULL
, ATA_HORKAGE_NODMA
},
3868 { "WDC AC22100H", NULL
, ATA_HORKAGE_NODMA
},
3869 { "WDC AC32500H", NULL
, ATA_HORKAGE_NODMA
},
3870 { "WDC AC33100H", NULL
, ATA_HORKAGE_NODMA
},
3871 { "WDC AC31600H", NULL
, ATA_HORKAGE_NODMA
},
3872 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA
},
3873 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA
},
3874 { "Compaq CRD-8241B", NULL
, ATA_HORKAGE_NODMA
},
3875 { "CRD-8400B", NULL
, ATA_HORKAGE_NODMA
},
3876 { "CRD-8480B", NULL
, ATA_HORKAGE_NODMA
},
3877 { "CRD-8482B", NULL
, ATA_HORKAGE_NODMA
},
3878 { "CRD-84", NULL
, ATA_HORKAGE_NODMA
},
3879 { "SanDisk SDP3B", NULL
, ATA_HORKAGE_NODMA
},
3880 { "SanDisk SDP3B-64", NULL
, ATA_HORKAGE_NODMA
},
3881 { "SANYO CD-ROM CRD", NULL
, ATA_HORKAGE_NODMA
},
3882 { "HITACHI CDR-8", NULL
, ATA_HORKAGE_NODMA
},
3883 { "HITACHI CDR-8335", NULL
, ATA_HORKAGE_NODMA
},
3884 { "HITACHI CDR-8435", NULL
, ATA_HORKAGE_NODMA
},
3885 { "Toshiba CD-ROM XM-6202B", NULL
, ATA_HORKAGE_NODMA
},
3886 { "TOSHIBA CD-ROM XM-1702BC", NULL
, ATA_HORKAGE_NODMA
},
3887 { "CD-532E-A", NULL
, ATA_HORKAGE_NODMA
},
3888 { "E-IDE CD-ROM CR-840",NULL
, ATA_HORKAGE_NODMA
},
3889 { "CD-ROM Drive/F5A", NULL
, ATA_HORKAGE_NODMA
},
3890 { "WPI CDD-820", NULL
, ATA_HORKAGE_NODMA
},
3891 { "SAMSUNG CD-ROM SC-148C", NULL
, ATA_HORKAGE_NODMA
},
3892 { "SAMSUNG CD-ROM SC", NULL
, ATA_HORKAGE_NODMA
},
3893 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL
,ATA_HORKAGE_NODMA
},
3894 { "_NEC DV5800A", NULL
, ATA_HORKAGE_NODMA
},
3895 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA
},
3896 { "Seagate STT20000A", NULL
, ATA_HORKAGE_NODMA
},
3897 /* Odd clown on sil3726/4726 PMPs */
3898 { "Config Disk", NULL
, ATA_HORKAGE_NODMA
|
3899 ATA_HORKAGE_SKIP_PM
},
3901 /* Weird ATAPI devices */
3902 { "TORiSAN DVD-ROM DRD-N216", NULL
, ATA_HORKAGE_MAX_SEC_128
},
3904 /* Devices we expect to fail diagnostics */
3906 /* Devices where NCQ should be avoided */
3908 { "WDC WD740ADFD-00", NULL
, ATA_HORKAGE_NONCQ
},
3909 { "WDC WD740ADFD-00NLR1", NULL
, ATA_HORKAGE_NONCQ
, },
3910 /* http://thread.gmane.org/gmane.linux.ide/14907 */
3911 { "FUJITSU MHT2060BH", NULL
, ATA_HORKAGE_NONCQ
},
3913 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ
},
3914 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ
},
3915 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ
},
3916 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ
},
3918 /* Blacklist entries taken from Silicon Image 3124/3132
3919 Windows driver .inf file - also several Linux problem reports */
3920 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ
, },
3921 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ
, },
3922 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ
, },
3924 /* devices which puke on READ_NATIVE_MAX */
3925 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA
, },
3926 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA
},
3927 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA
},
3928 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA
},
3930 /* Devices which report 1 sector over size HPA */
3931 { "ST340823A", NULL
, ATA_HORKAGE_HPA_SIZE
, },
3932 { "ST320413A", NULL
, ATA_HORKAGE_HPA_SIZE
, },
3933 { "ST310211A", NULL
, ATA_HORKAGE_HPA_SIZE
, },
3935 /* Devices which get the IVB wrong */
3936 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB
, },
3937 { "TSSTcorp CDDVDW SH-S202J", "SB00", ATA_HORKAGE_IVB
, },
3938 { "TSSTcorp CDDVDW SH-S202J", "SB01", ATA_HORKAGE_IVB
, },
3939 { "TSSTcorp CDDVDW SH-S202N", "SB00", ATA_HORKAGE_IVB
, },
3940 { "TSSTcorp CDDVDW SH-S202N", "SB01", ATA_HORKAGE_IVB
, },
3946 static int strn_pattern_cmp(const char *patt
, const char *name
, int wildchar
)
3952 * check for trailing wildcard: *\0
3954 p
= strchr(patt
, wildchar
);
3955 if (p
&& ((*(p
+ 1)) == 0))
3966 return strncmp(patt
, name
, len
);
3969 static unsigned long ata_dev_blacklisted(const struct ata_device
*dev
)
3971 unsigned char model_num
[ATA_ID_PROD_LEN
+ 1];
3972 unsigned char model_rev
[ATA_ID_FW_REV_LEN
+ 1];
3973 const struct ata_blacklist_entry
*ad
= ata_device_blacklist
;
3975 ata_id_c_string(dev
->id
, model_num
, ATA_ID_PROD
, sizeof(model_num
));
3976 ata_id_c_string(dev
->id
, model_rev
, ATA_ID_FW_REV
, sizeof(model_rev
));
3978 while (ad
->model_num
) {
3979 if (!strn_pattern_cmp(ad
->model_num
, model_num
, '*')) {
3980 if (ad
->model_rev
== NULL
)
3982 if (!strn_pattern_cmp(ad
->model_rev
, model_rev
, '*'))
3990 static int ata_dma_blacklisted(const struct ata_device
*dev
)
3992 /* We don't support polling DMA.
3993 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
3994 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
3996 if ((dev
->link
->ap
->flags
& ATA_FLAG_PIO_POLLING
) &&
3997 (dev
->flags
& ATA_DFLAG_CDB_INTR
))
3999 return (dev
->horkage
& ATA_HORKAGE_NODMA
) ? 1 : 0;
4003 * ata_is_40wire - check drive side detection
4006 * Perform drive side detection decoding, allowing for device vendors
4007 * who can't follow the documentation.
4010 static int ata_is_40wire(struct ata_device
*dev
)
4012 if (dev
->horkage
& ATA_HORKAGE_IVB
)
4013 return ata_drive_40wire_relaxed(dev
->id
);
4014 return ata_drive_40wire(dev
->id
);
4018 * cable_is_40wire - 40/80/SATA decider
4019 * @ap: port to consider
4021 * This function encapsulates the policy for speed management
4022 * in one place. At the moment we don't cache the result but
4023 * there is a good case for setting ap->cbl to the result when
4024 * we are called with unknown cables (and figuring out if it
4025 * impacts hotplug at all).
4027 * Return 1 if the cable appears to be 40 wire.
4030 static int cable_is_40wire(struct ata_port
*ap
)
4032 struct ata_link
*link
;
4033 struct ata_device
*dev
;
4035 /* If the controller thinks we are 40 wire, we are */
4036 if (ap
->cbl
== ATA_CBL_PATA40
)
4038 /* If the controller thinks we are 80 wire, we are */
4039 if (ap
->cbl
== ATA_CBL_PATA80
|| ap
->cbl
== ATA_CBL_SATA
)
4041 /* If the system is known to be 40 wire short cable (eg laptop),
4042 then we allow 80 wire modes even if the drive isn't sure */
4043 if (ap
->cbl
== ATA_CBL_PATA40_SHORT
)
4045 /* If the controller doesn't know we scan
4047 - Note: We look for all 40 wire detects at this point.
4048 Any 80 wire detect is taken to be 80 wire cable
4050 - In many setups only the one drive (slave if present)
4051 will give a valid detect
4052 - If you have a non detect capable drive you don't
4053 want it to colour the choice
4055 ata_port_for_each_link(link
, ap
) {
4056 ata_link_for_each_dev(dev
, link
) {
4057 if (!ata_is_40wire(dev
))
4065 * ata_dev_xfermask - Compute supported xfermask of the given device
4066 * @dev: Device to compute xfermask for
4068 * Compute supported xfermask of @dev and store it in
4069 * dev->*_mask. This function is responsible for applying all
4070 * known limits including host controller limits, device
4076 static void ata_dev_xfermask(struct ata_device
*dev
)
4078 struct ata_link
*link
= dev
->link
;
4079 struct ata_port
*ap
= link
->ap
;
4080 struct ata_host
*host
= ap
->host
;
4081 unsigned long xfer_mask
;
4083 /* controller modes available */
4084 xfer_mask
= ata_pack_xfermask(ap
->pio_mask
,
4085 ap
->mwdma_mask
, ap
->udma_mask
);
4087 /* drive modes available */
4088 xfer_mask
&= ata_pack_xfermask(dev
->pio_mask
,
4089 dev
->mwdma_mask
, dev
->udma_mask
);
4090 xfer_mask
&= ata_id_xfermask(dev
->id
);
4093 * CFA Advanced TrueIDE timings are not allowed on a shared
4096 if (ata_dev_pair(dev
)) {
4097 /* No PIO5 or PIO6 */
4098 xfer_mask
&= ~(0x03 << (ATA_SHIFT_PIO
+ 5));
4099 /* No MWDMA3 or MWDMA 4 */
4100 xfer_mask
&= ~(0x03 << (ATA_SHIFT_MWDMA
+ 3));
4103 if (ata_dma_blacklisted(dev
)) {
4104 xfer_mask
&= ~(ATA_MASK_MWDMA
| ATA_MASK_UDMA
);
4105 ata_dev_printk(dev
, KERN_WARNING
,
4106 "device is on DMA blacklist, disabling DMA\n");
4109 if ((host
->flags
& ATA_HOST_SIMPLEX
) &&
4110 host
->simplex_claimed
&& host
->simplex_claimed
!= ap
) {
4111 xfer_mask
&= ~(ATA_MASK_MWDMA
| ATA_MASK_UDMA
);
4112 ata_dev_printk(dev
, KERN_WARNING
, "simplex DMA is claimed by "
4113 "other device, disabling DMA\n");
4116 if (ap
->flags
& ATA_FLAG_NO_IORDY
)
4117 xfer_mask
&= ata_pio_mask_no_iordy(dev
);
4119 if (ap
->ops
->mode_filter
)
4120 xfer_mask
= ap
->ops
->mode_filter(dev
, xfer_mask
);
4122 /* Apply cable rule here. Don't apply it early because when
4123 * we handle hot plug the cable type can itself change.
4124 * Check this last so that we know if the transfer rate was
4125 * solely limited by the cable.
4126 * Unknown or 80 wire cables reported host side are checked
4127 * drive side as well. Cases where we know a 40wire cable
4128 * is used safely for 80 are not checked here.
4130 if (xfer_mask
& (0xF8 << ATA_SHIFT_UDMA
))
4131 /* UDMA/44 or higher would be available */
4132 if (cable_is_40wire(ap
)) {
4133 ata_dev_printk(dev
, KERN_WARNING
,
4134 "limited to UDMA/33 due to 40-wire cable\n");
4135 xfer_mask
&= ~(0xF8 << ATA_SHIFT_UDMA
);
4138 ata_unpack_xfermask(xfer_mask
, &dev
->pio_mask
,
4139 &dev
->mwdma_mask
, &dev
->udma_mask
);
4143 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4144 * @dev: Device to which command will be sent
4146 * Issue SET FEATURES - XFER MODE command to device @dev
4150 * PCI/etc. bus probe sem.
4153 * 0 on success, AC_ERR_* mask otherwise.
4156 static unsigned int ata_dev_set_xfermode(struct ata_device
*dev
)
4158 struct ata_taskfile tf
;
4159 unsigned int err_mask
;
4161 /* set up set-features taskfile */
4162 DPRINTK("set features - xfer mode\n");
4164 /* Some controllers and ATAPI devices show flaky interrupt
4165 * behavior after setting xfer mode. Use polling instead.
4167 ata_tf_init(dev
, &tf
);
4168 tf
.command
= ATA_CMD_SET_FEATURES
;
4169 tf
.feature
= SETFEATURES_XFER
;
4170 tf
.flags
|= ATA_TFLAG_ISADDR
| ATA_TFLAG_DEVICE
| ATA_TFLAG_POLLING
;
4171 tf
.protocol
= ATA_PROT_NODATA
;
4172 /* If we are using IORDY we must send the mode setting command */
4173 if (ata_pio_need_iordy(dev
))
4174 tf
.nsect
= dev
->xfer_mode
;
4175 /* If the device has IORDY and the controller does not - turn it off */
4176 else if (ata_id_has_iordy(dev
->id
))
4178 else /* In the ancient relic department - skip all of this */
4181 err_mask
= ata_exec_internal(dev
, &tf
, NULL
, DMA_NONE
, NULL
, 0, 0);
4183 DPRINTK("EXIT, err_mask=%x\n", err_mask
);
4187 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
4188 * @dev: Device to which command will be sent
4189 * @enable: Whether to enable or disable the feature
4190 * @feature: The sector count represents the feature to set
4192 * Issue SET FEATURES - SATA FEATURES command to device @dev
4193 * on port @ap with sector count
4196 * PCI/etc. bus probe sem.
4199 * 0 on success, AC_ERR_* mask otherwise.
4201 static unsigned int ata_dev_set_feature(struct ata_device
*dev
, u8 enable
,
4204 struct ata_taskfile tf
;
4205 unsigned int err_mask
;
4207 /* set up set-features taskfile */
4208 DPRINTK("set features - SATA features\n");
4210 ata_tf_init(dev
, &tf
);
4211 tf
.command
= ATA_CMD_SET_FEATURES
;
4212 tf
.feature
= enable
;
4213 tf
.flags
|= ATA_TFLAG_ISADDR
| ATA_TFLAG_DEVICE
;
4214 tf
.protocol
= ATA_PROT_NODATA
;
4217 err_mask
= ata_exec_internal(dev
, &tf
, NULL
, DMA_NONE
, NULL
, 0, 0);
4219 DPRINTK("EXIT, err_mask=%x\n", err_mask
);
4224 * ata_dev_init_params - Issue INIT DEV PARAMS command
4225 * @dev: Device to which command will be sent
4226 * @heads: Number of heads (taskfile parameter)
4227 * @sectors: Number of sectors (taskfile parameter)
4230 * Kernel thread context (may sleep)
4233 * 0 on success, AC_ERR_* mask otherwise.
4235 static unsigned int ata_dev_init_params(struct ata_device
*dev
,
4236 u16 heads
, u16 sectors
)
4238 struct ata_taskfile tf
;
4239 unsigned int err_mask
;
4241 /* Number of sectors per track 1-255. Number of heads 1-16 */
4242 if (sectors
< 1 || sectors
> 255 || heads
< 1 || heads
> 16)
4243 return AC_ERR_INVALID
;
4245 /* set up init dev params taskfile */
4246 DPRINTK("init dev params \n");
4248 ata_tf_init(dev
, &tf
);
4249 tf
.command
= ATA_CMD_INIT_DEV_PARAMS
;
4250 tf
.flags
|= ATA_TFLAG_ISADDR
| ATA_TFLAG_DEVICE
;
4251 tf
.protocol
= ATA_PROT_NODATA
;
4253 tf
.device
|= (heads
- 1) & 0x0f; /* max head = num. of heads - 1 */
4255 err_mask
= ata_exec_internal(dev
, &tf
, NULL
, DMA_NONE
, NULL
, 0, 0);
4256 /* A clean abort indicates an original or just out of spec drive
4257 and we should continue as we issue the setup based on the
4258 drive reported working geometry */
4259 if (err_mask
== AC_ERR_DEV
&& (tf
.feature
& ATA_ABORTED
))
4262 DPRINTK("EXIT, err_mask=%x\n", err_mask
);
4267 * ata_sg_clean - Unmap DMA memory associated with command
4268 * @qc: Command containing DMA memory to be released
4270 * Unmap all mapped DMA memory associated with this command.
4273 * spin_lock_irqsave(host lock)
4275 void ata_sg_clean(struct ata_queued_cmd
*qc
)
4277 struct ata_port
*ap
= qc
->ap
;
4278 struct scatterlist
*sg
= qc
->sg
;
4279 int dir
= qc
->dma_dir
;
4281 WARN_ON(sg
== NULL
);
4283 VPRINTK("unmapping %u sg elements\n", qc
->n_elem
);
4286 dma_unmap_sg(ap
->dev
, sg
, qc
->n_elem
, dir
);
4288 qc
->flags
&= ~ATA_QCFLAG_DMAMAP
;
4293 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
4294 * @qc: Metadata associated with taskfile to check
4296 * Allow low-level driver to filter ATA PACKET commands, returning
4297 * a status indicating whether or not it is OK to use DMA for the
4298 * supplied PACKET command.
4301 * spin_lock_irqsave(host lock)
4303 * RETURNS: 0 when ATAPI DMA can be used
4306 int ata_check_atapi_dma(struct ata_queued_cmd
*qc
)
4308 struct ata_port
*ap
= qc
->ap
;
4310 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4311 * few ATAPI devices choke on such DMA requests.
4313 if (unlikely(qc
->nbytes
& 15))
4316 if (ap
->ops
->check_atapi_dma
)
4317 return ap
->ops
->check_atapi_dma(qc
);
4323 * ata_std_qc_defer - Check whether a qc needs to be deferred
4324 * @qc: ATA command in question
4326 * Non-NCQ commands cannot run with any other command, NCQ or
4327 * not. As upper layer only knows the queue depth, we are
4328 * responsible for maintaining exclusion. This function checks
4329 * whether a new command @qc can be issued.
4332 * spin_lock_irqsave(host lock)
4335 * ATA_DEFER_* if deferring is needed, 0 otherwise.
4337 int ata_std_qc_defer(struct ata_queued_cmd
*qc
)
4339 struct ata_link
*link
= qc
->dev
->link
;
4341 if (qc
->tf
.protocol
== ATA_PROT_NCQ
) {
4342 if (!ata_tag_valid(link
->active_tag
))
4345 if (!ata_tag_valid(link
->active_tag
) && !link
->sactive
)
4349 return ATA_DEFER_LINK
;
4352 void ata_noop_qc_prep(struct ata_queued_cmd
*qc
) { }
4355 * ata_sg_init - Associate command with scatter-gather table.
4356 * @qc: Command to be associated
4357 * @sg: Scatter-gather table.
4358 * @n_elem: Number of elements in s/g table.
4360 * Initialize the data-related elements of queued_cmd @qc
4361 * to point to a scatter-gather table @sg, containing @n_elem
4365 * spin_lock_irqsave(host lock)
4367 void ata_sg_init(struct ata_queued_cmd
*qc
, struct scatterlist
*sg
,
4368 unsigned int n_elem
)
4371 qc
->n_elem
= n_elem
;
4376 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4377 * @qc: Command with scatter-gather table to be mapped.
4379 * DMA-map the scatter-gather table associated with queued_cmd @qc.
4382 * spin_lock_irqsave(host lock)
4385 * Zero on success, negative on error.
4388 static int ata_sg_setup(struct ata_queued_cmd
*qc
)
4390 struct ata_port
*ap
= qc
->ap
;
4391 unsigned int n_elem
;
4393 VPRINTK("ENTER, ata%u\n", ap
->print_id
);
4395 n_elem
= dma_map_sg(ap
->dev
, qc
->sg
, qc
->n_elem
, qc
->dma_dir
);
4399 DPRINTK("%d sg elements mapped\n", n_elem
);
4401 qc
->n_elem
= n_elem
;
4402 qc
->flags
|= ATA_QCFLAG_DMAMAP
;
4408 * swap_buf_le16 - swap halves of 16-bit words in place
4409 * @buf: Buffer to swap
4410 * @buf_words: Number of 16-bit words in buffer.
4412 * Swap halves of 16-bit words if needed to convert from
4413 * little-endian byte order to native cpu byte order, or
4417 * Inherited from caller.
4419 void swap_buf_le16(u16
*buf
, unsigned int buf_words
)
4424 for (i
= 0; i
< buf_words
; i
++)
4425 buf
[i
] = le16_to_cpu(buf
[i
]);
4426 #endif /* __BIG_ENDIAN */
4430 * ata_qc_new - Request an available ATA command, for queueing
4431 * @ap: Port associated with device @dev
4432 * @dev: Device from whom we request an available command structure
4438 static struct ata_queued_cmd
*ata_qc_new(struct ata_port
*ap
)
4440 struct ata_queued_cmd
*qc
= NULL
;
4443 /* no command while frozen */
4444 if (unlikely(ap
->pflags
& ATA_PFLAG_FROZEN
))
4447 /* the last tag is reserved for internal command. */
4448 for (i
= 0; i
< ATA_MAX_QUEUE
- 1; i
++)
4449 if (!test_and_set_bit(i
, &ap
->qc_allocated
)) {
4450 qc
= __ata_qc_from_tag(ap
, i
);
4461 * ata_qc_new_init - Request an available ATA command, and initialize it
4462 * @dev: Device from whom we request an available command structure
4468 struct ata_queued_cmd
*ata_qc_new_init(struct ata_device
*dev
)
4470 struct ata_port
*ap
= dev
->link
->ap
;
4471 struct ata_queued_cmd
*qc
;
4473 qc
= ata_qc_new(ap
);
4486 * ata_qc_free - free unused ata_queued_cmd
4487 * @qc: Command to complete
4489 * Designed to free unused ata_queued_cmd object
4490 * in case something prevents using it.
4493 * spin_lock_irqsave(host lock)
4495 void ata_qc_free(struct ata_queued_cmd
*qc
)
4497 struct ata_port
*ap
= qc
->ap
;
4500 WARN_ON(qc
== NULL
); /* ata_qc_from_tag _might_ return NULL */
4504 if (likely(ata_tag_valid(tag
))) {
4505 qc
->tag
= ATA_TAG_POISON
;
4506 clear_bit(tag
, &ap
->qc_allocated
);
4510 void __ata_qc_complete(struct ata_queued_cmd
*qc
)
4512 struct ata_port
*ap
= qc
->ap
;
4513 struct ata_link
*link
= qc
->dev
->link
;
4515 WARN_ON(qc
== NULL
); /* ata_qc_from_tag _might_ return NULL */
4516 WARN_ON(!(qc
->flags
& ATA_QCFLAG_ACTIVE
));
4518 if (likely(qc
->flags
& ATA_QCFLAG_DMAMAP
))
4521 /* command should be marked inactive atomically with qc completion */
4522 if (qc
->tf
.protocol
== ATA_PROT_NCQ
) {
4523 link
->sactive
&= ~(1 << qc
->tag
);
4525 ap
->nr_active_links
--;
4527 link
->active_tag
= ATA_TAG_POISON
;
4528 ap
->nr_active_links
--;
4531 /* clear exclusive status */
4532 if (unlikely(qc
->flags
& ATA_QCFLAG_CLEAR_EXCL
&&
4533 ap
->excl_link
== link
))
4534 ap
->excl_link
= NULL
;
4536 /* atapi: mark qc as inactive to prevent the interrupt handler
4537 * from completing the command twice later, before the error handler
4538 * is called. (when rc != 0 and atapi request sense is needed)
4540 qc
->flags
&= ~ATA_QCFLAG_ACTIVE
;
4541 ap
->qc_active
&= ~(1 << qc
->tag
);
4543 /* call completion callback */
4544 qc
->complete_fn(qc
);
4547 static void fill_result_tf(struct ata_queued_cmd
*qc
)
4549 struct ata_port
*ap
= qc
->ap
;
4551 qc
->result_tf
.flags
= qc
->tf
.flags
;
4552 ap
->ops
->qc_fill_rtf(qc
);
4555 static void ata_verify_xfer(struct ata_queued_cmd
*qc
)
4557 struct ata_device
*dev
= qc
->dev
;
4559 if (ata_tag_internal(qc
->tag
))
4562 if (ata_is_nodata(qc
->tf
.protocol
))
4565 if ((dev
->mwdma_mask
|| dev
->udma_mask
) && ata_is_pio(qc
->tf
.protocol
))
4568 dev
->flags
&= ~ATA_DFLAG_DUBIOUS_XFER
;
4572 * ata_qc_complete - Complete an active ATA command
4573 * @qc: Command to complete
4574 * @err_mask: ATA Status register contents
4576 * Indicate to the mid and upper layers that an ATA
4577 * command has completed, with either an ok or not-ok status.
4580 * spin_lock_irqsave(host lock)
4582 void ata_qc_complete(struct ata_queued_cmd
*qc
)
4584 struct ata_port
*ap
= qc
->ap
;
4586 /* XXX: New EH and old EH use different mechanisms to
4587 * synchronize EH with regular execution path.
4589 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4590 * Normal execution path is responsible for not accessing a
4591 * failed qc. libata core enforces the rule by returning NULL
4592 * from ata_qc_from_tag() for failed qcs.
4594 * Old EH depends on ata_qc_complete() nullifying completion
4595 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
4596 * not synchronize with interrupt handler. Only PIO task is
4599 if (ap
->ops
->error_handler
) {
4600 struct ata_device
*dev
= qc
->dev
;
4601 struct ata_eh_info
*ehi
= &dev
->link
->eh_info
;
4603 WARN_ON(ap
->pflags
& ATA_PFLAG_FROZEN
);
4605 if (unlikely(qc
->err_mask
))
4606 qc
->flags
|= ATA_QCFLAG_FAILED
;
4608 if (unlikely(qc
->flags
& ATA_QCFLAG_FAILED
)) {
4609 if (!ata_tag_internal(qc
->tag
)) {
4610 /* always fill result TF for failed qc */
4612 ata_qc_schedule_eh(qc
);
4617 /* read result TF if requested */
4618 if (qc
->flags
& ATA_QCFLAG_RESULT_TF
)
4621 /* Some commands need post-processing after successful
4624 switch (qc
->tf
.command
) {
4625 case ATA_CMD_SET_FEATURES
:
4626 if (qc
->tf
.feature
!= SETFEATURES_WC_ON
&&
4627 qc
->tf
.feature
!= SETFEATURES_WC_OFF
)
4630 case ATA_CMD_INIT_DEV_PARAMS
: /* CHS translation changed */
4631 case ATA_CMD_SET_MULTI
: /* multi_count changed */
4632 /* revalidate device */
4633 ehi
->dev_action
[dev
->devno
] |= ATA_EH_REVALIDATE
;
4634 ata_port_schedule_eh(ap
);
4638 dev
->flags
|= ATA_DFLAG_SLEEPING
;
4642 if (unlikely(dev
->flags
& ATA_DFLAG_DUBIOUS_XFER
))
4643 ata_verify_xfer(qc
);
4645 __ata_qc_complete(qc
);
4647 if (qc
->flags
& ATA_QCFLAG_EH_SCHEDULED
)
4650 /* read result TF if failed or requested */
4651 if (qc
->err_mask
|| qc
->flags
& ATA_QCFLAG_RESULT_TF
)
4654 __ata_qc_complete(qc
);
4659 * ata_qc_complete_multiple - Complete multiple qcs successfully
4660 * @ap: port in question
4661 * @qc_active: new qc_active mask
4663 * Complete in-flight commands. This functions is meant to be
4664 * called from low-level driver's interrupt routine to complete
4665 * requests normally. ap->qc_active and @qc_active is compared
4666 * and commands are completed accordingly.
4669 * spin_lock_irqsave(host lock)
4672 * Number of completed commands on success, -errno otherwise.
4674 int ata_qc_complete_multiple(struct ata_port
*ap
, u32 qc_active
)
4680 done_mask
= ap
->qc_active
^ qc_active
;
4682 if (unlikely(done_mask
& qc_active
)) {
4683 ata_port_printk(ap
, KERN_ERR
, "illegal qc_active transition "
4684 "(%08x->%08x)\n", ap
->qc_active
, qc_active
);
4688 for (i
= 0; i
< ATA_MAX_QUEUE
; i
++) {
4689 struct ata_queued_cmd
*qc
;
4691 if (!(done_mask
& (1 << i
)))
4694 if ((qc
= ata_qc_from_tag(ap
, i
))) {
4695 ata_qc_complete(qc
);
4704 * ata_qc_issue - issue taskfile to device
4705 * @qc: command to issue to device
4707 * Prepare an ATA command to submission to device.
4708 * This includes mapping the data into a DMA-able
4709 * area, filling in the S/G table, and finally
4710 * writing the taskfile to hardware, starting the command.
4713 * spin_lock_irqsave(host lock)
4715 void ata_qc_issue(struct ata_queued_cmd
*qc
)
4717 struct ata_port
*ap
= qc
->ap
;
4718 struct ata_link
*link
= qc
->dev
->link
;
4719 u8 prot
= qc
->tf
.protocol
;
4721 /* Make sure only one non-NCQ command is outstanding. The
4722 * check is skipped for old EH because it reuses active qc to
4723 * request ATAPI sense.
4725 WARN_ON(ap
->ops
->error_handler
&& ata_tag_valid(link
->active_tag
));
4727 if (ata_is_ncq(prot
)) {
4728 WARN_ON(link
->sactive
& (1 << qc
->tag
));
4731 ap
->nr_active_links
++;
4732 link
->sactive
|= 1 << qc
->tag
;
4734 WARN_ON(link
->sactive
);
4736 ap
->nr_active_links
++;
4737 link
->active_tag
= qc
->tag
;
4740 qc
->flags
|= ATA_QCFLAG_ACTIVE
;
4741 ap
->qc_active
|= 1 << qc
->tag
;
4743 /* We guarantee to LLDs that they will have at least one
4744 * non-zero sg if the command is a data command.
4746 BUG_ON(ata_is_data(prot
) && (!qc
->sg
|| !qc
->n_elem
|| !qc
->nbytes
));
4748 if (ata_is_dma(prot
) || (ata_is_pio(prot
) &&
4749 (ap
->flags
& ATA_FLAG_PIO_DMA
)))
4750 if (ata_sg_setup(qc
))
4753 /* if device is sleeping, schedule reset and abort the link */
4754 if (unlikely(qc
->dev
->flags
& ATA_DFLAG_SLEEPING
)) {
4755 link
->eh_info
.action
|= ATA_EH_RESET
;
4756 ata_ehi_push_desc(&link
->eh_info
, "waking up from sleep");
4757 ata_link_abort(link
);
4761 ap
->ops
->qc_prep(qc
);
4763 qc
->err_mask
|= ap
->ops
->qc_issue(qc
);
4764 if (unlikely(qc
->err_mask
))
4769 qc
->err_mask
|= AC_ERR_SYSTEM
;
4771 ata_qc_complete(qc
);
4775 * sata_scr_valid - test whether SCRs are accessible
4776 * @link: ATA link to test SCR accessibility for
4778 * Test whether SCRs are accessible for @link.
4784 * 1 if SCRs are accessible, 0 otherwise.
4786 int sata_scr_valid(struct ata_link
*link
)
4788 struct ata_port
*ap
= link
->ap
;
4790 return (ap
->flags
& ATA_FLAG_SATA
) && ap
->ops
->scr_read
;
4794 * sata_scr_read - read SCR register of the specified port
4795 * @link: ATA link to read SCR for
4797 * @val: Place to store read value
4799 * Read SCR register @reg of @link into *@val. This function is
4800 * guaranteed to succeed if @link is ap->link, the cable type of
4801 * the port is SATA and the port implements ->scr_read.
4804 * None if @link is ap->link. Kernel thread context otherwise.
4807 * 0 on success, negative errno on failure.
4809 int sata_scr_read(struct ata_link
*link
, int reg
, u32
*val
)
4811 if (ata_is_host_link(link
)) {
4812 struct ata_port
*ap
= link
->ap
;
4814 if (sata_scr_valid(link
))
4815 return ap
->ops
->scr_read(ap
, reg
, val
);
4819 return sata_pmp_scr_read(link
, reg
, val
);
4823 * sata_scr_write - write SCR register of the specified port
4824 * @link: ATA link to write SCR for
4825 * @reg: SCR to write
4826 * @val: value to write
4828 * Write @val to SCR register @reg of @link. This function is
4829 * guaranteed to succeed if @link is ap->link, the cable type of
4830 * the port is SATA and the port implements ->scr_read.
4833 * None if @link is ap->link. Kernel thread context otherwise.
4836 * 0 on success, negative errno on failure.
4838 int sata_scr_write(struct ata_link
*link
, int reg
, u32 val
)
4840 if (ata_is_host_link(link
)) {
4841 struct ata_port
*ap
= link
->ap
;
4843 if (sata_scr_valid(link
))
4844 return ap
->ops
->scr_write(ap
, reg
, val
);
4848 return sata_pmp_scr_write(link
, reg
, val
);
4852 * sata_scr_write_flush - write SCR register of the specified port and flush
4853 * @link: ATA link to write SCR for
4854 * @reg: SCR to write
4855 * @val: value to write
4857 * This function is identical to sata_scr_write() except that this
4858 * function performs flush after writing to the register.
4861 * None if @link is ap->link. Kernel thread context otherwise.
4864 * 0 on success, negative errno on failure.
4866 int sata_scr_write_flush(struct ata_link
*link
, int reg
, u32 val
)
4868 if (ata_is_host_link(link
)) {
4869 struct ata_port
*ap
= link
->ap
;
4872 if (sata_scr_valid(link
)) {
4873 rc
= ap
->ops
->scr_write(ap
, reg
, val
);
4875 rc
= ap
->ops
->scr_read(ap
, reg
, &val
);
4881 return sata_pmp_scr_write(link
, reg
, val
);
4885 * ata_link_online - test whether the given link is online
4886 * @link: ATA link to test
4888 * Test whether @link is online. Note that this function returns
4889 * 0 if online status of @link cannot be obtained, so
4890 * ata_link_online(link) != !ata_link_offline(link).
4896 * 1 if the port online status is available and online.
4898 int ata_link_online(struct ata_link
*link
)
4902 if (sata_scr_read(link
, SCR_STATUS
, &sstatus
) == 0 &&
4903 (sstatus
& 0xf) == 0x3)
4909 * ata_link_offline - test whether the given link is offline
4910 * @link: ATA link to test
4912 * Test whether @link is offline. Note that this function
4913 * returns 0 if offline status of @link cannot be obtained, so
4914 * ata_link_online(link) != !ata_link_offline(link).
4920 * 1 if the port offline status is available and offline.
4922 int ata_link_offline(struct ata_link
*link
)
4926 if (sata_scr_read(link
, SCR_STATUS
, &sstatus
) == 0 &&
4927 (sstatus
& 0xf) != 0x3)
4933 static int ata_host_request_pm(struct ata_host
*host
, pm_message_t mesg
,
4934 unsigned int action
, unsigned int ehi_flags
,
4937 unsigned long flags
;
4940 for (i
= 0; i
< host
->n_ports
; i
++) {
4941 struct ata_port
*ap
= host
->ports
[i
];
4942 struct ata_link
*link
;
4944 /* Previous resume operation might still be in
4945 * progress. Wait for PM_PENDING to clear.
4947 if (ap
->pflags
& ATA_PFLAG_PM_PENDING
) {
4948 ata_port_wait_eh(ap
);
4949 WARN_ON(ap
->pflags
& ATA_PFLAG_PM_PENDING
);
4952 /* request PM ops to EH */
4953 spin_lock_irqsave(ap
->lock
, flags
);
4958 ap
->pm_result
= &rc
;
4961 ap
->pflags
|= ATA_PFLAG_PM_PENDING
;
4962 __ata_port_for_each_link(link
, ap
) {
4963 link
->eh_info
.action
|= action
;
4964 link
->eh_info
.flags
|= ehi_flags
;
4967 ata_port_schedule_eh(ap
);
4969 spin_unlock_irqrestore(ap
->lock
, flags
);
4971 /* wait and check result */
4973 ata_port_wait_eh(ap
);
4974 WARN_ON(ap
->pflags
& ATA_PFLAG_PM_PENDING
);
4984 * ata_host_suspend - suspend host
4985 * @host: host to suspend
4988 * Suspend @host. Actual operation is performed by EH. This
4989 * function requests EH to perform PM operations and waits for EH
4993 * Kernel thread context (may sleep).
4996 * 0 on success, -errno on failure.
4998 int ata_host_suspend(struct ata_host
*host
, pm_message_t mesg
)
5003 * disable link pm on all ports before requesting
5006 ata_lpm_enable(host
);
5008 rc
= ata_host_request_pm(host
, mesg
, 0, ATA_EHI_QUIET
, 1);
5010 host
->dev
->power
.power_state
= mesg
;
5015 * ata_host_resume - resume host
5016 * @host: host to resume
5018 * Resume @host. Actual operation is performed by EH. This
5019 * function requests EH to perform PM operations and returns.
5020 * Note that all resume operations are performed parallely.
5023 * Kernel thread context (may sleep).
5025 void ata_host_resume(struct ata_host
*host
)
5027 ata_host_request_pm(host
, PMSG_ON
, ATA_EH_RESET
,
5028 ATA_EHI_NO_AUTOPSY
| ATA_EHI_QUIET
, 0);
5029 host
->dev
->power
.power_state
= PMSG_ON
;
5031 /* reenable link pm */
5032 ata_lpm_disable(host
);
5037 * ata_port_start - Set port up for dma.
5038 * @ap: Port to initialize
5040 * Called just after data structures for each port are
5041 * initialized. Allocates space for PRD table.
5043 * May be used as the port_start() entry in ata_port_operations.
5046 * Inherited from caller.
5048 int ata_port_start(struct ata_port
*ap
)
5050 struct device
*dev
= ap
->dev
;
5052 ap
->prd
= dmam_alloc_coherent(dev
, ATA_PRD_TBL_SZ
, &ap
->prd_dma
,
5061 * ata_dev_init - Initialize an ata_device structure
5062 * @dev: Device structure to initialize
5064 * Initialize @dev in preparation for probing.
5067 * Inherited from caller.
5069 void ata_dev_init(struct ata_device
*dev
)
5071 struct ata_link
*link
= dev
->link
;
5072 struct ata_port
*ap
= link
->ap
;
5073 unsigned long flags
;
5075 /* SATA spd limit is bound to the first device */
5076 link
->sata_spd_limit
= link
->hw_sata_spd_limit
;
5079 /* High bits of dev->flags are used to record warm plug
5080 * requests which occur asynchronously. Synchronize using
5083 spin_lock_irqsave(ap
->lock
, flags
);
5084 dev
->flags
&= ~ATA_DFLAG_INIT_MASK
;
5086 spin_unlock_irqrestore(ap
->lock
, flags
);
5088 memset((void *)dev
+ ATA_DEVICE_CLEAR_OFFSET
, 0,
5089 sizeof(*dev
) - ATA_DEVICE_CLEAR_OFFSET
);
5090 dev
->pio_mask
= UINT_MAX
;
5091 dev
->mwdma_mask
= UINT_MAX
;
5092 dev
->udma_mask
= UINT_MAX
;
5096 * ata_link_init - Initialize an ata_link structure
5097 * @ap: ATA port link is attached to
5098 * @link: Link structure to initialize
5099 * @pmp: Port multiplier port number
5104 * Kernel thread context (may sleep)
5106 void ata_link_init(struct ata_port
*ap
, struct ata_link
*link
, int pmp
)
5110 /* clear everything except for devices */
5111 memset(link
, 0, offsetof(struct ata_link
, device
[0]));
5115 link
->active_tag
= ATA_TAG_POISON
;
5116 link
->hw_sata_spd_limit
= UINT_MAX
;
5118 /* can't use iterator, ap isn't initialized yet */
5119 for (i
= 0; i
< ATA_MAX_DEVICES
; i
++) {
5120 struct ata_device
*dev
= &link
->device
[i
];
5123 dev
->devno
= dev
- link
->device
;
5129 * sata_link_init_spd - Initialize link->sata_spd_limit
5130 * @link: Link to configure sata_spd_limit for
5132 * Initialize @link->[hw_]sata_spd_limit to the currently
5136 * Kernel thread context (may sleep).
5139 * 0 on success, -errno on failure.
5141 int sata_link_init_spd(struct ata_link
*link
)
5147 rc
= sata_scr_read(link
, SCR_CONTROL
, &scontrol
);
5151 spd
= (scontrol
>> 4) & 0xf;
5153 link
->hw_sata_spd_limit
&= (1 << spd
) - 1;
5155 ata_force_spd_limit(link
);
5157 link
->sata_spd_limit
= link
->hw_sata_spd_limit
;
5163 * ata_port_alloc - allocate and initialize basic ATA port resources
5164 * @host: ATA host this allocated port belongs to
5166 * Allocate and initialize basic ATA port resources.
5169 * Allocate ATA port on success, NULL on failure.
5172 * Inherited from calling layer (may sleep).
5174 struct ata_port
*ata_port_alloc(struct ata_host
*host
)
5176 struct ata_port
*ap
;
5180 ap
= kzalloc(sizeof(*ap
), GFP_KERNEL
);
5184 ap
->pflags
|= ATA_PFLAG_INITIALIZING
;
5185 ap
->lock
= &host
->lock
;
5186 ap
->flags
= ATA_FLAG_DISABLED
;
5188 ap
->ctl
= ATA_DEVCTL_OBS
;
5190 ap
->dev
= host
->dev
;
5191 ap
->last_ctl
= 0xFF;
5193 #if defined(ATA_VERBOSE_DEBUG)
5194 /* turn on all debugging levels */
5195 ap
->msg_enable
= 0x00FF;
5196 #elif defined(ATA_DEBUG)
5197 ap
->msg_enable
= ATA_MSG_DRV
| ATA_MSG_INFO
| ATA_MSG_CTL
| ATA_MSG_WARN
| ATA_MSG_ERR
;
5199 ap
->msg_enable
= ATA_MSG_DRV
| ATA_MSG_ERR
| ATA_MSG_WARN
;
5202 #ifdef CONFIG_ATA_SFF
5203 INIT_DELAYED_WORK(&ap
->port_task
, ata_pio_task
);
5205 INIT_DELAYED_WORK(&ap
->hotplug_task
, ata_scsi_hotplug
);
5206 INIT_WORK(&ap
->scsi_rescan_task
, ata_scsi_dev_rescan
);
5207 INIT_LIST_HEAD(&ap
->eh_done_q
);
5208 init_waitqueue_head(&ap
->eh_wait_q
);
5209 init_timer_deferrable(&ap
->fastdrain_timer
);
5210 ap
->fastdrain_timer
.function
= ata_eh_fastdrain_timerfn
;
5211 ap
->fastdrain_timer
.data
= (unsigned long)ap
;
5213 ap
->cbl
= ATA_CBL_NONE
;
5215 ata_link_init(ap
, &ap
->link
, 0);
5218 ap
->stats
.unhandled_irq
= 1;
5219 ap
->stats
.idle_irq
= 1;
5224 static void ata_host_release(struct device
*gendev
, void *res
)
5226 struct ata_host
*host
= dev_get_drvdata(gendev
);
5229 for (i
= 0; i
< host
->n_ports
; i
++) {
5230 struct ata_port
*ap
= host
->ports
[i
];
5236 scsi_host_put(ap
->scsi_host
);
5238 kfree(ap
->pmp_link
);
5240 host
->ports
[i
] = NULL
;
5243 dev_set_drvdata(gendev
, NULL
);
5247 * ata_host_alloc - allocate and init basic ATA host resources
5248 * @dev: generic device this host is associated with
5249 * @max_ports: maximum number of ATA ports associated with this host
5251 * Allocate and initialize basic ATA host resources. LLD calls
5252 * this function to allocate a host, initializes it fully and
5253 * attaches it using ata_host_register().
5255 * @max_ports ports are allocated and host->n_ports is
5256 * initialized to @max_ports. The caller is allowed to decrease
5257 * host->n_ports before calling ata_host_register(). The unused
5258 * ports will be automatically freed on registration.
5261 * Allocate ATA host on success, NULL on failure.
5264 * Inherited from calling layer (may sleep).
5266 struct ata_host
*ata_host_alloc(struct device
*dev
, int max_ports
)
5268 struct ata_host
*host
;
5274 if (!devres_open_group(dev
, NULL
, GFP_KERNEL
))
5277 /* alloc a container for our list of ATA ports (buses) */
5278 sz
= sizeof(struct ata_host
) + (max_ports
+ 1) * sizeof(void *);
5279 /* alloc a container for our list of ATA ports (buses) */
5280 host
= devres_alloc(ata_host_release
, sz
, GFP_KERNEL
);
5284 devres_add(dev
, host
);
5285 dev_set_drvdata(dev
, host
);
5287 spin_lock_init(&host
->lock
);
5289 host
->n_ports
= max_ports
;
5291 /* allocate ports bound to this host */
5292 for (i
= 0; i
< max_ports
; i
++) {
5293 struct ata_port
*ap
;
5295 ap
= ata_port_alloc(host
);
5300 host
->ports
[i
] = ap
;
5303 devres_remove_group(dev
, NULL
);
5307 devres_release_group(dev
, NULL
);
5312 * ata_host_alloc_pinfo - alloc host and init with port_info array
5313 * @dev: generic device this host is associated with
5314 * @ppi: array of ATA port_info to initialize host with
5315 * @n_ports: number of ATA ports attached to this host
5317 * Allocate ATA host and initialize with info from @ppi. If NULL
5318 * terminated, @ppi may contain fewer entries than @n_ports. The
5319 * last entry will be used for the remaining ports.
5322 * Allocate ATA host on success, NULL on failure.
5325 * Inherited from calling layer (may sleep).
5327 struct ata_host
*ata_host_alloc_pinfo(struct device
*dev
,
5328 const struct ata_port_info
* const * ppi
,
5331 const struct ata_port_info
*pi
;
5332 struct ata_host
*host
;
5335 host
= ata_host_alloc(dev
, n_ports
);
5339 for (i
= 0, j
= 0, pi
= NULL
; i
< host
->n_ports
; i
++) {
5340 struct ata_port
*ap
= host
->ports
[i
];
5345 ap
->pio_mask
= pi
->pio_mask
;
5346 ap
->mwdma_mask
= pi
->mwdma_mask
;
5347 ap
->udma_mask
= pi
->udma_mask
;
5348 ap
->flags
|= pi
->flags
;
5349 ap
->link
.flags
|= pi
->link_flags
;
5350 ap
->ops
= pi
->port_ops
;
5352 if (!host
->ops
&& (pi
->port_ops
!= &ata_dummy_port_ops
))
5353 host
->ops
= pi
->port_ops
;
5359 static void ata_host_stop(struct device
*gendev
, void *res
)
5361 struct ata_host
*host
= dev_get_drvdata(gendev
);
5364 WARN_ON(!(host
->flags
& ATA_HOST_STARTED
));
5366 for (i
= 0; i
< host
->n_ports
; i
++) {
5367 struct ata_port
*ap
= host
->ports
[i
];
5369 if (ap
->ops
->port_stop
)
5370 ap
->ops
->port_stop(ap
);
5373 if (host
->ops
->host_stop
)
5374 host
->ops
->host_stop(host
);
5378 * ata_finalize_port_ops - finalize ata_port_operations
5379 * @ops: ata_port_operations to finalize
5381 * An ata_port_operations can inherit from another ops and that
5382 * ops can again inherit from another. This can go on as many
5383 * times as necessary as long as there is no loop in the
5384 * inheritance chain.
5386 * Ops tables are finalized when the host is started. NULL or
5387 * unspecified entries are inherited from the closet ancestor
5388 * which has the method and the entry is populated with it.
5389 * After finalization, the ops table directly points to all the
5390 * methods and ->inherits is no longer necessary and cleared.
5392 * Using ATA_OP_NULL, inheriting ops can force a method to NULL.
5397 static void ata_finalize_port_ops(struct ata_port_operations
*ops
)
5399 static spinlock_t lock
= SPIN_LOCK_UNLOCKED
;
5400 const struct ata_port_operations
*cur
;
5401 void **begin
= (void **)ops
;
5402 void **end
= (void **)&ops
->inherits
;
5405 if (!ops
|| !ops
->inherits
)
5410 for (cur
= ops
->inherits
; cur
; cur
= cur
->inherits
) {
5411 void **inherit
= (void **)cur
;
5413 for (pp
= begin
; pp
< end
; pp
++, inherit
++)
5418 for (pp
= begin
; pp
< end
; pp
++)
5422 ops
->inherits
= NULL
;
5428 * ata_host_start - start and freeze ports of an ATA host
5429 * @host: ATA host to start ports for
5431 * Start and then freeze ports of @host. Started status is
5432 * recorded in host->flags, so this function can be called
5433 * multiple times. Ports are guaranteed to get started only
5434 * once. If host->ops isn't initialized yet, its set to the
5435 * first non-dummy port ops.
5438 * Inherited from calling layer (may sleep).
5441 * 0 if all ports are started successfully, -errno otherwise.
5443 int ata_host_start(struct ata_host
*host
)
5446 void *start_dr
= NULL
;
5449 if (host
->flags
& ATA_HOST_STARTED
)
5452 ata_finalize_port_ops(host
->ops
);
5454 for (i
= 0; i
< host
->n_ports
; i
++) {
5455 struct ata_port
*ap
= host
->ports
[i
];
5457 ata_finalize_port_ops(ap
->ops
);
5459 if (!host
->ops
&& !ata_port_is_dummy(ap
))
5460 host
->ops
= ap
->ops
;
5462 if (ap
->ops
->port_stop
)
5466 if (host
->ops
->host_stop
)
5470 start_dr
= devres_alloc(ata_host_stop
, 0, GFP_KERNEL
);
5475 for (i
= 0; i
< host
->n_ports
; i
++) {
5476 struct ata_port
*ap
= host
->ports
[i
];
5478 if (ap
->ops
->port_start
) {
5479 rc
= ap
->ops
->port_start(ap
);
5482 dev_printk(KERN_ERR
, host
->dev
,
5483 "failed to start port %d "
5484 "(errno=%d)\n", i
, rc
);
5488 ata_eh_freeze_port(ap
);
5492 devres_add(host
->dev
, start_dr
);
5493 host
->flags
|= ATA_HOST_STARTED
;
5498 struct ata_port
*ap
= host
->ports
[i
];
5500 if (ap
->ops
->port_stop
)
5501 ap
->ops
->port_stop(ap
);
5503 devres_free(start_dr
);
5508 * ata_sas_host_init - Initialize a host struct
5509 * @host: host to initialize
5510 * @dev: device host is attached to
5511 * @flags: host flags
5515 * PCI/etc. bus probe sem.
5518 /* KILLME - the only user left is ipr */
5519 void ata_host_init(struct ata_host
*host
, struct device
*dev
,
5520 unsigned long flags
, struct ata_port_operations
*ops
)
5522 spin_lock_init(&host
->lock
);
5524 host
->flags
= flags
;
5529 * ata_host_register - register initialized ATA host
5530 * @host: ATA host to register
5531 * @sht: template for SCSI host
5533 * Register initialized ATA host. @host is allocated using
5534 * ata_host_alloc() and fully initialized by LLD. This function
5535 * starts ports, registers @host with ATA and SCSI layers and
5536 * probe registered devices.
5539 * Inherited from calling layer (may sleep).
5542 * 0 on success, -errno otherwise.
5544 int ata_host_register(struct ata_host
*host
, struct scsi_host_template
*sht
)
5548 /* host must have been started */
5549 if (!(host
->flags
& ATA_HOST_STARTED
)) {
5550 dev_printk(KERN_ERR
, host
->dev
,
5551 "BUG: trying to register unstarted host\n");
5556 /* Blow away unused ports. This happens when LLD can't
5557 * determine the exact number of ports to allocate at
5560 for (i
= host
->n_ports
; host
->ports
[i
]; i
++)
5561 kfree(host
->ports
[i
]);
5563 /* give ports names and add SCSI hosts */
5564 for (i
= 0; i
< host
->n_ports
; i
++)
5565 host
->ports
[i
]->print_id
= ata_print_id
++;
5567 rc
= ata_scsi_add_hosts(host
, sht
);
5571 /* associate with ACPI nodes */
5572 ata_acpi_associate(host
);
5574 /* set cable, sata_spd_limit and report */
5575 for (i
= 0; i
< host
->n_ports
; i
++) {
5576 struct ata_port
*ap
= host
->ports
[i
];
5577 unsigned long xfer_mask
;
5579 /* set SATA cable type if still unset */
5580 if (ap
->cbl
== ATA_CBL_NONE
&& (ap
->flags
& ATA_FLAG_SATA
))
5581 ap
->cbl
= ATA_CBL_SATA
;
5583 /* init sata_spd_limit to the current value */
5584 sata_link_init_spd(&ap
->link
);
5586 /* print per-port info to dmesg */
5587 xfer_mask
= ata_pack_xfermask(ap
->pio_mask
, ap
->mwdma_mask
,
5590 if (!ata_port_is_dummy(ap
)) {
5591 ata_port_printk(ap
, KERN_INFO
,
5592 "%cATA max %s %s\n",
5593 (ap
->flags
& ATA_FLAG_SATA
) ? 'S' : 'P',
5594 ata_mode_string(xfer_mask
),
5595 ap
->link
.eh_info
.desc
);
5596 ata_ehi_clear_desc(&ap
->link
.eh_info
);
5598 ata_port_printk(ap
, KERN_INFO
, "DUMMY\n");
5601 /* perform each probe synchronously */
5602 DPRINTK("probe begin\n");
5603 for (i
= 0; i
< host
->n_ports
; i
++) {
5604 struct ata_port
*ap
= host
->ports
[i
];
5607 if (ap
->ops
->error_handler
) {
5608 struct ata_eh_info
*ehi
= &ap
->link
.eh_info
;
5609 unsigned long flags
;
5613 /* kick EH for boot probing */
5614 spin_lock_irqsave(ap
->lock
, flags
);
5616 ehi
->probe_mask
|= ATA_ALL_DEVICES
;
5617 ehi
->action
|= ATA_EH_RESET
;
5618 ehi
->flags
|= ATA_EHI_NO_AUTOPSY
| ATA_EHI_QUIET
;
5620 ap
->pflags
&= ~ATA_PFLAG_INITIALIZING
;
5621 ap
->pflags
|= ATA_PFLAG_LOADING
;
5622 ata_port_schedule_eh(ap
);
5624 spin_unlock_irqrestore(ap
->lock
, flags
);
5626 /* wait for EH to finish */
5627 ata_port_wait_eh(ap
);
5629 DPRINTK("ata%u: bus probe begin\n", ap
->print_id
);
5630 rc
= ata_bus_probe(ap
);
5631 DPRINTK("ata%u: bus probe end\n", ap
->print_id
);
5634 /* FIXME: do something useful here?
5635 * Current libata behavior will
5636 * tear down everything when
5637 * the module is removed
5638 * or the h/w is unplugged.
5644 /* probes are done, now scan each port's disk(s) */
5645 DPRINTK("host probe begin\n");
5646 for (i
= 0; i
< host
->n_ports
; i
++) {
5647 struct ata_port
*ap
= host
->ports
[i
];
5649 ata_scsi_scan_host(ap
, 1);
5650 ata_lpm_schedule(ap
, ap
->pm_policy
);
5657 * ata_host_activate - start host, request IRQ and register it
5658 * @host: target ATA host
5659 * @irq: IRQ to request
5660 * @irq_handler: irq_handler used when requesting IRQ
5661 * @irq_flags: irq_flags used when requesting IRQ
5662 * @sht: scsi_host_template to use when registering the host
5664 * After allocating an ATA host and initializing it, most libata
5665 * LLDs perform three steps to activate the host - start host,
5666 * request IRQ and register it. This helper takes necessasry
5667 * arguments and performs the three steps in one go.
5669 * An invalid IRQ skips the IRQ registration and expects the host to
5670 * have set polling mode on the port. In this case, @irq_handler
5674 * Inherited from calling layer (may sleep).
5677 * 0 on success, -errno otherwise.
5679 int ata_host_activate(struct ata_host
*host
, int irq
,
5680 irq_handler_t irq_handler
, unsigned long irq_flags
,
5681 struct scsi_host_template
*sht
)
5685 rc
= ata_host_start(host
);
5689 /* Special case for polling mode */
5691 WARN_ON(irq_handler
);
5692 return ata_host_register(host
, sht
);
5695 rc
= devm_request_irq(host
->dev
, irq
, irq_handler
, irq_flags
,
5696 dev_driver_string(host
->dev
), host
);
5700 for (i
= 0; i
< host
->n_ports
; i
++)
5701 ata_port_desc(host
->ports
[i
], "irq %d", irq
);
5703 rc
= ata_host_register(host
, sht
);
5704 /* if failed, just free the IRQ and leave ports alone */
5706 devm_free_irq(host
->dev
, irq
, host
);
5712 * ata_port_detach - Detach ATA port in prepration of device removal
5713 * @ap: ATA port to be detached
5715 * Detach all ATA devices and the associated SCSI devices of @ap;
5716 * then, remove the associated SCSI host. @ap is guaranteed to
5717 * be quiescent on return from this function.
5720 * Kernel thread context (may sleep).
5722 static void ata_port_detach(struct ata_port
*ap
)
5724 unsigned long flags
;
5725 struct ata_link
*link
;
5726 struct ata_device
*dev
;
5728 if (!ap
->ops
->error_handler
)
5731 /* tell EH we're leaving & flush EH */
5732 spin_lock_irqsave(ap
->lock
, flags
);
5733 ap
->pflags
|= ATA_PFLAG_UNLOADING
;
5734 spin_unlock_irqrestore(ap
->lock
, flags
);
5736 ata_port_wait_eh(ap
);
5738 /* EH is now guaranteed to see UNLOADING - EH context belongs
5739 * to us. Disable all existing devices.
5741 ata_port_for_each_link(link
, ap
) {
5742 ata_link_for_each_dev(dev
, link
)
5743 ata_dev_disable(dev
);
5746 /* Final freeze & EH. All in-flight commands are aborted. EH
5747 * will be skipped and retrials will be terminated with bad
5750 spin_lock_irqsave(ap
->lock
, flags
);
5751 ata_port_freeze(ap
); /* won't be thawed */
5752 spin_unlock_irqrestore(ap
->lock
, flags
);
5754 ata_port_wait_eh(ap
);
5755 cancel_rearming_delayed_work(&ap
->hotplug_task
);
5758 /* remove the associated SCSI host */
5759 scsi_remove_host(ap
->scsi_host
);
5763 * ata_host_detach - Detach all ports of an ATA host
5764 * @host: Host to detach
5766 * Detach all ports of @host.
5769 * Kernel thread context (may sleep).
5771 void ata_host_detach(struct ata_host
*host
)
5775 for (i
= 0; i
< host
->n_ports
; i
++)
5776 ata_port_detach(host
->ports
[i
]);
5778 /* the host is dead now, dissociate ACPI */
5779 ata_acpi_dissociate(host
);
5785 * ata_pci_remove_one - PCI layer callback for device removal
5786 * @pdev: PCI device that was removed
5788 * PCI layer indicates to libata via this hook that hot-unplug or
5789 * module unload event has occurred. Detach all ports. Resource
5790 * release is handled via devres.
5793 * Inherited from PCI layer (may sleep).
5795 void ata_pci_remove_one(struct pci_dev
*pdev
)
5797 struct device
*dev
= &pdev
->dev
;
5798 struct ata_host
*host
= dev_get_drvdata(dev
);
5800 ata_host_detach(host
);
5803 /* move to PCI subsystem */
5804 int pci_test_config_bits(struct pci_dev
*pdev
, const struct pci_bits
*bits
)
5806 unsigned long tmp
= 0;
5808 switch (bits
->width
) {
5811 pci_read_config_byte(pdev
, bits
->reg
, &tmp8
);
5817 pci_read_config_word(pdev
, bits
->reg
, &tmp16
);
5823 pci_read_config_dword(pdev
, bits
->reg
, &tmp32
);
5834 return (tmp
== bits
->val
) ? 1 : 0;
5838 void ata_pci_device_do_suspend(struct pci_dev
*pdev
, pm_message_t mesg
)
5840 pci_save_state(pdev
);
5841 pci_disable_device(pdev
);
5843 if (mesg
.event
& PM_EVENT_SLEEP
)
5844 pci_set_power_state(pdev
, PCI_D3hot
);
5847 int ata_pci_device_do_resume(struct pci_dev
*pdev
)
5851 pci_set_power_state(pdev
, PCI_D0
);
5852 pci_restore_state(pdev
);
5854 rc
= pcim_enable_device(pdev
);
5856 dev_printk(KERN_ERR
, &pdev
->dev
,
5857 "failed to enable device after resume (%d)\n", rc
);
5861 pci_set_master(pdev
);
5865 int ata_pci_device_suspend(struct pci_dev
*pdev
, pm_message_t mesg
)
5867 struct ata_host
*host
= dev_get_drvdata(&pdev
->dev
);
5870 rc
= ata_host_suspend(host
, mesg
);
5874 ata_pci_device_do_suspend(pdev
, mesg
);
5879 int ata_pci_device_resume(struct pci_dev
*pdev
)
5881 struct ata_host
*host
= dev_get_drvdata(&pdev
->dev
);
5884 rc
= ata_pci_device_do_resume(pdev
);
5886 ata_host_resume(host
);
5889 #endif /* CONFIG_PM */
5891 #endif /* CONFIG_PCI */
5893 static int __init
ata_parse_force_one(char **cur
,
5894 struct ata_force_ent
*force_ent
,
5895 const char **reason
)
5897 /* FIXME: Currently, there's no way to tag init const data and
5898 * using __initdata causes build failure on some versions of
5899 * gcc. Once __initdataconst is implemented, add const to the
5900 * following structure.
5902 static struct ata_force_param force_tbl
[] __initdata
= {
5903 { "40c", .cbl
= ATA_CBL_PATA40
},
5904 { "80c", .cbl
= ATA_CBL_PATA80
},
5905 { "short40c", .cbl
= ATA_CBL_PATA40_SHORT
},
5906 { "unk", .cbl
= ATA_CBL_PATA_UNK
},
5907 { "ign", .cbl
= ATA_CBL_PATA_IGN
},
5908 { "sata", .cbl
= ATA_CBL_SATA
},
5909 { "1.5Gbps", .spd_limit
= 1 },
5910 { "3.0Gbps", .spd_limit
= 2 },
5911 { "noncq", .horkage_on
= ATA_HORKAGE_NONCQ
},
5912 { "ncq", .horkage_off
= ATA_HORKAGE_NONCQ
},
5913 { "pio0", .xfer_mask
= 1 << (ATA_SHIFT_PIO
+ 0) },
5914 { "pio1", .xfer_mask
= 1 << (ATA_SHIFT_PIO
+ 1) },
5915 { "pio2", .xfer_mask
= 1 << (ATA_SHIFT_PIO
+ 2) },
5916 { "pio3", .xfer_mask
= 1 << (ATA_SHIFT_PIO
+ 3) },
5917 { "pio4", .xfer_mask
= 1 << (ATA_SHIFT_PIO
+ 4) },
5918 { "pio5", .xfer_mask
= 1 << (ATA_SHIFT_PIO
+ 5) },
5919 { "pio6", .xfer_mask
= 1 << (ATA_SHIFT_PIO
+ 6) },
5920 { "mwdma0", .xfer_mask
= 1 << (ATA_SHIFT_MWDMA
+ 0) },
5921 { "mwdma1", .xfer_mask
= 1 << (ATA_SHIFT_MWDMA
+ 1) },
5922 { "mwdma2", .xfer_mask
= 1 << (ATA_SHIFT_MWDMA
+ 2) },
5923 { "mwdma3", .xfer_mask
= 1 << (ATA_SHIFT_MWDMA
+ 3) },
5924 { "mwdma4", .xfer_mask
= 1 << (ATA_SHIFT_MWDMA
+ 4) },
5925 { "udma0", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 0) },
5926 { "udma16", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 0) },
5927 { "udma/16", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 0) },
5928 { "udma1", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 1) },
5929 { "udma25", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 1) },
5930 { "udma/25", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 1) },
5931 { "udma2", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 2) },
5932 { "udma33", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 2) },
5933 { "udma/33", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 2) },
5934 { "udma3", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 3) },
5935 { "udma44", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 3) },
5936 { "udma/44", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 3) },
5937 { "udma4", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 4) },
5938 { "udma66", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 4) },
5939 { "udma/66", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 4) },
5940 { "udma5", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 5) },
5941 { "udma100", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 5) },
5942 { "udma/100", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 5) },
5943 { "udma6", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 6) },
5944 { "udma133", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 6) },
5945 { "udma/133", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 6) },
5946 { "udma7", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 7) },
5948 char *start
= *cur
, *p
= *cur
;
5949 char *id
, *val
, *endp
;
5950 const struct ata_force_param
*match_fp
= NULL
;
5951 int nr_matches
= 0, i
;
5953 /* find where this param ends and update *cur */
5954 while (*p
!= '\0' && *p
!= ',')
5965 p
= strchr(start
, ':');
5967 val
= strstrip(start
);
5972 id
= strstrip(start
);
5973 val
= strstrip(p
+ 1);
5976 p
= strchr(id
, '.');
5979 force_ent
->device
= simple_strtoul(p
, &endp
, 10);
5980 if (p
== endp
|| *endp
!= '\0') {
5981 *reason
= "invalid device";
5986 force_ent
->port
= simple_strtoul(id
, &endp
, 10);
5987 if (p
== endp
|| *endp
!= '\0') {
5988 *reason
= "invalid port/link";
5993 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
5994 for (i
= 0; i
< ARRAY_SIZE(force_tbl
); i
++) {
5995 const struct ata_force_param
*fp
= &force_tbl
[i
];
5997 if (strncasecmp(val
, fp
->name
, strlen(val
)))
6003 if (strcasecmp(val
, fp
->name
) == 0) {
6010 *reason
= "unknown value";
6013 if (nr_matches
> 1) {
6014 *reason
= "ambigious value";
6018 force_ent
->param
= *match_fp
;
6023 static void __init
ata_parse_force_param(void)
6025 int idx
= 0, size
= 1;
6026 int last_port
= -1, last_device
= -1;
6027 char *p
, *cur
, *next
;
6029 /* calculate maximum number of params and allocate force_tbl */
6030 for (p
= ata_force_param_buf
; *p
; p
++)
6034 ata_force_tbl
= kzalloc(sizeof(ata_force_tbl
[0]) * size
, GFP_KERNEL
);
6035 if (!ata_force_tbl
) {
6036 printk(KERN_WARNING
"ata: failed to extend force table, "
6037 "libata.force ignored\n");
6041 /* parse and populate the table */
6042 for (cur
= ata_force_param_buf
; *cur
!= '\0'; cur
= next
) {
6043 const char *reason
= "";
6044 struct ata_force_ent te
= { .port
= -1, .device
= -1 };
6047 if (ata_parse_force_one(&next
, &te
, &reason
)) {
6048 printk(KERN_WARNING
"ata: failed to parse force "
6049 "parameter \"%s\" (%s)\n",
6054 if (te
.port
== -1) {
6055 te
.port
= last_port
;
6056 te
.device
= last_device
;
6059 ata_force_tbl
[idx
++] = te
;
6061 last_port
= te
.port
;
6062 last_device
= te
.device
;
6065 ata_force_tbl_size
= idx
;
6068 static int __init
ata_init(void)
6070 ata_probe_timeout
*= HZ
;
6072 ata_parse_force_param();
6074 ata_wq
= create_workqueue("ata");
6078 ata_aux_wq
= create_singlethread_workqueue("ata_aux");
6080 destroy_workqueue(ata_wq
);
6084 printk(KERN_DEBUG
"libata version " DRV_VERSION
" loaded.\n");
6088 static void __exit
ata_exit(void)
6090 kfree(ata_force_tbl
);
6091 destroy_workqueue(ata_wq
);
6092 destroy_workqueue(ata_aux_wq
);
6095 subsys_initcall(ata_init
);
6096 module_exit(ata_exit
);
6098 static unsigned long ratelimit_time
;
6099 static DEFINE_SPINLOCK(ata_ratelimit_lock
);
6101 int ata_ratelimit(void)
6104 unsigned long flags
;
6106 spin_lock_irqsave(&ata_ratelimit_lock
, flags
);
6108 if (time_after(jiffies
, ratelimit_time
)) {
6110 ratelimit_time
= jiffies
+ (HZ
/5);
6114 spin_unlock_irqrestore(&ata_ratelimit_lock
, flags
);
6120 * ata_wait_register - wait until register value changes
6121 * @reg: IO-mapped register
6122 * @mask: Mask to apply to read register value
6123 * @val: Wait condition
6124 * @interval_msec: polling interval in milliseconds
6125 * @timeout_msec: timeout in milliseconds
6127 * Waiting for some bits of register to change is a common
6128 * operation for ATA controllers. This function reads 32bit LE
6129 * IO-mapped register @reg and tests for the following condition.
6131 * (*@reg & mask) != val
6133 * If the condition is met, it returns; otherwise, the process is
6134 * repeated after @interval_msec until timeout.
6137 * Kernel thread context (may sleep)
6140 * The final register value.
6142 u32
ata_wait_register(void __iomem
*reg
, u32 mask
, u32 val
,
6143 unsigned long interval_msec
,
6144 unsigned long timeout_msec
)
6146 unsigned long timeout
;
6149 tmp
= ioread32(reg
);
6151 /* Calculate timeout _after_ the first read to make sure
6152 * preceding writes reach the controller before starting to
6153 * eat away the timeout.
6155 timeout
= jiffies
+ (timeout_msec
* HZ
) / 1000;
6157 while ((tmp
& mask
) == val
&& time_before(jiffies
, timeout
)) {
6158 msleep(interval_msec
);
6159 tmp
= ioread32(reg
);
6168 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd
*qc
)
6170 return AC_ERR_SYSTEM
;
6173 static void ata_dummy_error_handler(struct ata_port
*ap
)
6178 struct ata_port_operations ata_dummy_port_ops
= {
6179 .qc_prep
= ata_noop_qc_prep
,
6180 .qc_issue
= ata_dummy_qc_issue
,
6181 .error_handler
= ata_dummy_error_handler
,
6184 const struct ata_port_info ata_dummy_port_info
= {
6185 .port_ops
= &ata_dummy_port_ops
,
6189 * libata is essentially a library of internal helper functions for
6190 * low-level ATA host controller drivers. As such, the API/ABI is
6191 * likely to change as new drivers are added and updated.
6192 * Do not depend on ABI/API stability.
6194 EXPORT_SYMBOL_GPL(sata_deb_timing_normal
);
6195 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug
);
6196 EXPORT_SYMBOL_GPL(sata_deb_timing_long
);
6197 EXPORT_SYMBOL_GPL(ata_base_port_ops
);
6198 EXPORT_SYMBOL_GPL(sata_port_ops
);
6199 EXPORT_SYMBOL_GPL(ata_dummy_port_ops
);
6200 EXPORT_SYMBOL_GPL(ata_dummy_port_info
);
6201 EXPORT_SYMBOL_GPL(ata_std_bios_param
);
6202 EXPORT_SYMBOL_GPL(ata_host_init
);
6203 EXPORT_SYMBOL_GPL(ata_host_alloc
);
6204 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo
);
6205 EXPORT_SYMBOL_GPL(ata_host_start
);
6206 EXPORT_SYMBOL_GPL(ata_host_register
);
6207 EXPORT_SYMBOL_GPL(ata_host_activate
);
6208 EXPORT_SYMBOL_GPL(ata_host_detach
);
6209 EXPORT_SYMBOL_GPL(ata_sg_init
);
6210 EXPORT_SYMBOL_GPL(ata_qc_complete
);
6211 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple
);
6212 EXPORT_SYMBOL_GPL(sata_print_link_status
);
6213 EXPORT_SYMBOL_GPL(atapi_cmd_type
);
6214 EXPORT_SYMBOL_GPL(ata_tf_to_fis
);
6215 EXPORT_SYMBOL_GPL(ata_tf_from_fis
);
6216 EXPORT_SYMBOL_GPL(ata_pack_xfermask
);
6217 EXPORT_SYMBOL_GPL(ata_unpack_xfermask
);
6218 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode
);
6219 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask
);
6220 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift
);
6221 EXPORT_SYMBOL_GPL(ata_mode_string
);
6222 EXPORT_SYMBOL_GPL(ata_id_xfermask
);
6223 EXPORT_SYMBOL_GPL(ata_port_start
);
6224 EXPORT_SYMBOL_GPL(ata_do_set_mode
);
6225 EXPORT_SYMBOL_GPL(ata_std_qc_defer
);
6226 EXPORT_SYMBOL_GPL(ata_noop_qc_prep
);
6227 EXPORT_SYMBOL_GPL(ata_port_probe
);
6228 EXPORT_SYMBOL_GPL(ata_dev_disable
);
6229 EXPORT_SYMBOL_GPL(sata_set_spd
);
6230 EXPORT_SYMBOL_GPL(ata_wait_after_reset
);
6231 EXPORT_SYMBOL_GPL(sata_link_debounce
);
6232 EXPORT_SYMBOL_GPL(sata_link_resume
);
6233 EXPORT_SYMBOL_GPL(ata_std_prereset
);
6234 EXPORT_SYMBOL_GPL(sata_link_hardreset
);
6235 EXPORT_SYMBOL_GPL(sata_std_hardreset
);
6236 EXPORT_SYMBOL_GPL(ata_std_postreset
);
6237 EXPORT_SYMBOL_GPL(ata_dev_classify
);
6238 EXPORT_SYMBOL_GPL(ata_dev_pair
);
6239 EXPORT_SYMBOL_GPL(ata_port_disable
);
6240 EXPORT_SYMBOL_GPL(ata_ratelimit
);
6241 EXPORT_SYMBOL_GPL(ata_wait_register
);
6242 EXPORT_SYMBOL_GPL(ata_scsi_ioctl
);
6243 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd
);
6244 EXPORT_SYMBOL_GPL(ata_scsi_slave_config
);
6245 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy
);
6246 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth
);
6247 EXPORT_SYMBOL_GPL(sata_scr_valid
);
6248 EXPORT_SYMBOL_GPL(sata_scr_read
);
6249 EXPORT_SYMBOL_GPL(sata_scr_write
);
6250 EXPORT_SYMBOL_GPL(sata_scr_write_flush
);
6251 EXPORT_SYMBOL_GPL(ata_link_online
);
6252 EXPORT_SYMBOL_GPL(ata_link_offline
);
6254 EXPORT_SYMBOL_GPL(ata_host_suspend
);
6255 EXPORT_SYMBOL_GPL(ata_host_resume
);
6256 #endif /* CONFIG_PM */
6257 EXPORT_SYMBOL_GPL(ata_id_string
);
6258 EXPORT_SYMBOL_GPL(ata_id_c_string
);
6259 EXPORT_SYMBOL_GPL(ata_scsi_simulate
);
6261 EXPORT_SYMBOL_GPL(ata_pio_need_iordy
);
6262 EXPORT_SYMBOL_GPL(ata_timing_find_mode
);
6263 EXPORT_SYMBOL_GPL(ata_timing_compute
);
6264 EXPORT_SYMBOL_GPL(ata_timing_merge
);
6265 EXPORT_SYMBOL_GPL(ata_timing_cycle2mode
);
6268 EXPORT_SYMBOL_GPL(pci_test_config_bits
);
6269 EXPORT_SYMBOL_GPL(ata_pci_remove_one
);
6271 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend
);
6272 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume
);
6273 EXPORT_SYMBOL_GPL(ata_pci_device_suspend
);
6274 EXPORT_SYMBOL_GPL(ata_pci_device_resume
);
6275 #endif /* CONFIG_PM */
6276 #endif /* CONFIG_PCI */
6278 EXPORT_SYMBOL_GPL(__ata_ehi_push_desc
);
6279 EXPORT_SYMBOL_GPL(ata_ehi_push_desc
);
6280 EXPORT_SYMBOL_GPL(ata_ehi_clear_desc
);
6281 EXPORT_SYMBOL_GPL(ata_port_desc
);
6283 EXPORT_SYMBOL_GPL(ata_port_pbar_desc
);
6284 #endif /* CONFIG_PCI */
6285 EXPORT_SYMBOL_GPL(ata_port_schedule_eh
);
6286 EXPORT_SYMBOL_GPL(ata_link_abort
);
6287 EXPORT_SYMBOL_GPL(ata_port_abort
);
6288 EXPORT_SYMBOL_GPL(ata_port_freeze
);
6289 EXPORT_SYMBOL_GPL(sata_async_notification
);
6290 EXPORT_SYMBOL_GPL(ata_eh_freeze_port
);
6291 EXPORT_SYMBOL_GPL(ata_eh_thaw_port
);
6292 EXPORT_SYMBOL_GPL(ata_eh_qc_complete
);
6293 EXPORT_SYMBOL_GPL(ata_eh_qc_retry
);
6294 EXPORT_SYMBOL_GPL(ata_do_eh
);
6295 EXPORT_SYMBOL_GPL(ata_std_error_handler
);
6297 EXPORT_SYMBOL_GPL(ata_cable_40wire
);
6298 EXPORT_SYMBOL_GPL(ata_cable_80wire
);
6299 EXPORT_SYMBOL_GPL(ata_cable_unknown
);
6300 EXPORT_SYMBOL_GPL(ata_cable_ignore
);
6301 EXPORT_SYMBOL_GPL(ata_cable_sata
);