[MIPS] Always install the DSP exception handler.
[linux-2.6/linux-mips/linux-dm7025.git] / kernel / signal.c
blobacdfc0549c6fd88c254f8d07009edcc123804bfb
1 /*
2 * linux/kernel/signal.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
6 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson
8 * 2003-06-02 Jim Houston - Concurrent Computer Corp.
9 * Changes to use preallocated sigqueue structures
10 * to allow signals to be sent reliably.
13 #include <linux/slab.h>
14 #include <linux/module.h>
15 #include <linux/init.h>
16 #include <linux/sched.h>
17 #include <linux/fs.h>
18 #include <linux/tty.h>
19 #include <linux/binfmts.h>
20 #include <linux/security.h>
21 #include <linux/syscalls.h>
22 #include <linux/ptrace.h>
23 #include <linux/signal.h>
24 #include <linux/signalfd.h>
25 #include <linux/capability.h>
26 #include <linux/freezer.h>
27 #include <linux/pid_namespace.h>
28 #include <linux/nsproxy.h>
30 #include <asm/param.h>
31 #include <asm/uaccess.h>
32 #include <asm/unistd.h>
33 #include <asm/siginfo.h>
34 #include "audit.h" /* audit_signal_info() */
37 * SLAB caches for signal bits.
40 static struct kmem_cache *sigqueue_cachep;
43 static int sig_ignored(struct task_struct *t, int sig)
45 void __user * handler;
48 * Tracers always want to know about signals..
50 if (t->ptrace & PT_PTRACED)
51 return 0;
54 * Blocked signals are never ignored, since the
55 * signal handler may change by the time it is
56 * unblocked.
58 if (sigismember(&t->blocked, sig))
59 return 0;
61 /* Is it explicitly or implicitly ignored? */
62 handler = t->sighand->action[sig-1].sa.sa_handler;
63 return handler == SIG_IGN ||
64 (handler == SIG_DFL && sig_kernel_ignore(sig));
68 * Re-calculate pending state from the set of locally pending
69 * signals, globally pending signals, and blocked signals.
71 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
73 unsigned long ready;
74 long i;
76 switch (_NSIG_WORDS) {
77 default:
78 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
79 ready |= signal->sig[i] &~ blocked->sig[i];
80 break;
82 case 4: ready = signal->sig[3] &~ blocked->sig[3];
83 ready |= signal->sig[2] &~ blocked->sig[2];
84 ready |= signal->sig[1] &~ blocked->sig[1];
85 ready |= signal->sig[0] &~ blocked->sig[0];
86 break;
88 case 2: ready = signal->sig[1] &~ blocked->sig[1];
89 ready |= signal->sig[0] &~ blocked->sig[0];
90 break;
92 case 1: ready = signal->sig[0] &~ blocked->sig[0];
94 return ready != 0;
97 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
99 static int recalc_sigpending_tsk(struct task_struct *t)
101 if (t->signal->group_stop_count > 0 ||
102 (freezing(t)) ||
103 PENDING(&t->pending, &t->blocked) ||
104 PENDING(&t->signal->shared_pending, &t->blocked)) {
105 set_tsk_thread_flag(t, TIF_SIGPENDING);
106 return 1;
108 clear_tsk_thread_flag(t, TIF_SIGPENDING);
109 return 0;
113 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
114 * This is superfluous when called on current, the wakeup is a harmless no-op.
116 void recalc_sigpending_and_wake(struct task_struct *t)
118 if (recalc_sigpending_tsk(t))
119 signal_wake_up(t, 0);
122 void recalc_sigpending(void)
124 recalc_sigpending_tsk(current);
127 /* Given the mask, find the first available signal that should be serviced. */
129 int next_signal(struct sigpending *pending, sigset_t *mask)
131 unsigned long i, *s, *m, x;
132 int sig = 0;
134 s = pending->signal.sig;
135 m = mask->sig;
136 switch (_NSIG_WORDS) {
137 default:
138 for (i = 0; i < _NSIG_WORDS; ++i, ++s, ++m)
139 if ((x = *s &~ *m) != 0) {
140 sig = ffz(~x) + i*_NSIG_BPW + 1;
141 break;
143 break;
145 case 2: if ((x = s[0] &~ m[0]) != 0)
146 sig = 1;
147 else if ((x = s[1] &~ m[1]) != 0)
148 sig = _NSIG_BPW + 1;
149 else
150 break;
151 sig += ffz(~x);
152 break;
154 case 1: if ((x = *s &~ *m) != 0)
155 sig = ffz(~x) + 1;
156 break;
159 return sig;
162 static struct sigqueue *__sigqueue_alloc(struct task_struct *t, gfp_t flags,
163 int override_rlimit)
165 struct sigqueue *q = NULL;
166 struct user_struct *user;
169 * In order to avoid problems with "switch_user()", we want to make
170 * sure that the compiler doesn't re-load "t->user"
172 user = t->user;
173 barrier();
174 atomic_inc(&user->sigpending);
175 if (override_rlimit ||
176 atomic_read(&user->sigpending) <=
177 t->signal->rlim[RLIMIT_SIGPENDING].rlim_cur)
178 q = kmem_cache_alloc(sigqueue_cachep, flags);
179 if (unlikely(q == NULL)) {
180 atomic_dec(&user->sigpending);
181 } else {
182 INIT_LIST_HEAD(&q->list);
183 q->flags = 0;
184 q->user = get_uid(user);
186 return(q);
189 static void __sigqueue_free(struct sigqueue *q)
191 if (q->flags & SIGQUEUE_PREALLOC)
192 return;
193 atomic_dec(&q->user->sigpending);
194 free_uid(q->user);
195 kmem_cache_free(sigqueue_cachep, q);
198 void flush_sigqueue(struct sigpending *queue)
200 struct sigqueue *q;
202 sigemptyset(&queue->signal);
203 while (!list_empty(&queue->list)) {
204 q = list_entry(queue->list.next, struct sigqueue , list);
205 list_del_init(&q->list);
206 __sigqueue_free(q);
211 * Flush all pending signals for a task.
213 void flush_signals(struct task_struct *t)
215 unsigned long flags;
217 spin_lock_irqsave(&t->sighand->siglock, flags);
218 clear_tsk_thread_flag(t,TIF_SIGPENDING);
219 flush_sigqueue(&t->pending);
220 flush_sigqueue(&t->signal->shared_pending);
221 spin_unlock_irqrestore(&t->sighand->siglock, flags);
224 void ignore_signals(struct task_struct *t)
226 int i;
228 for (i = 0; i < _NSIG; ++i)
229 t->sighand->action[i].sa.sa_handler = SIG_IGN;
231 flush_signals(t);
235 * Flush all handlers for a task.
238 void
239 flush_signal_handlers(struct task_struct *t, int force_default)
241 int i;
242 struct k_sigaction *ka = &t->sighand->action[0];
243 for (i = _NSIG ; i != 0 ; i--) {
244 if (force_default || ka->sa.sa_handler != SIG_IGN)
245 ka->sa.sa_handler = SIG_DFL;
246 ka->sa.sa_flags = 0;
247 sigemptyset(&ka->sa.sa_mask);
248 ka++;
253 /* Notify the system that a driver wants to block all signals for this
254 * process, and wants to be notified if any signals at all were to be
255 * sent/acted upon. If the notifier routine returns non-zero, then the
256 * signal will be acted upon after all. If the notifier routine returns 0,
257 * then then signal will be blocked. Only one block per process is
258 * allowed. priv is a pointer to private data that the notifier routine
259 * can use to determine if the signal should be blocked or not. */
261 void
262 block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask)
264 unsigned long flags;
266 spin_lock_irqsave(&current->sighand->siglock, flags);
267 current->notifier_mask = mask;
268 current->notifier_data = priv;
269 current->notifier = notifier;
270 spin_unlock_irqrestore(&current->sighand->siglock, flags);
273 /* Notify the system that blocking has ended. */
275 void
276 unblock_all_signals(void)
278 unsigned long flags;
280 spin_lock_irqsave(&current->sighand->siglock, flags);
281 current->notifier = NULL;
282 current->notifier_data = NULL;
283 recalc_sigpending();
284 spin_unlock_irqrestore(&current->sighand->siglock, flags);
287 static int collect_signal(int sig, struct sigpending *list, siginfo_t *info)
289 struct sigqueue *q, *first = NULL;
290 int still_pending = 0;
292 if (unlikely(!sigismember(&list->signal, sig)))
293 return 0;
296 * Collect the siginfo appropriate to this signal. Check if
297 * there is another siginfo for the same signal.
299 list_for_each_entry(q, &list->list, list) {
300 if (q->info.si_signo == sig) {
301 if (first) {
302 still_pending = 1;
303 break;
305 first = q;
308 if (first) {
309 list_del_init(&first->list);
310 copy_siginfo(info, &first->info);
311 __sigqueue_free(first);
312 if (!still_pending)
313 sigdelset(&list->signal, sig);
314 } else {
316 /* Ok, it wasn't in the queue. This must be
317 a fast-pathed signal or we must have been
318 out of queue space. So zero out the info.
320 sigdelset(&list->signal, sig);
321 info->si_signo = sig;
322 info->si_errno = 0;
323 info->si_code = 0;
324 info->si_pid = 0;
325 info->si_uid = 0;
327 return 1;
330 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
331 siginfo_t *info)
333 int sig = next_signal(pending, mask);
335 if (sig) {
336 if (current->notifier) {
337 if (sigismember(current->notifier_mask, sig)) {
338 if (!(current->notifier)(current->notifier_data)) {
339 clear_thread_flag(TIF_SIGPENDING);
340 return 0;
345 if (!collect_signal(sig, pending, info))
346 sig = 0;
349 return sig;
353 * Dequeue a signal and return the element to the caller, which is
354 * expected to free it.
356 * All callers have to hold the siglock.
358 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
360 int signr = __dequeue_signal(&tsk->pending, mask, info);
361 if (!signr) {
362 signr = __dequeue_signal(&tsk->signal->shared_pending,
363 mask, info);
365 * itimer signal ?
367 * itimers are process shared and we restart periodic
368 * itimers in the signal delivery path to prevent DoS
369 * attacks in the high resolution timer case. This is
370 * compliant with the old way of self restarting
371 * itimers, as the SIGALRM is a legacy signal and only
372 * queued once. Changing the restart behaviour to
373 * restart the timer in the signal dequeue path is
374 * reducing the timer noise on heavy loaded !highres
375 * systems too.
377 if (unlikely(signr == SIGALRM)) {
378 struct hrtimer *tmr = &tsk->signal->real_timer;
380 if (!hrtimer_is_queued(tmr) &&
381 tsk->signal->it_real_incr.tv64 != 0) {
382 hrtimer_forward(tmr, tmr->base->get_time(),
383 tsk->signal->it_real_incr);
384 hrtimer_restart(tmr);
388 recalc_sigpending_tsk(tsk);
389 if (signr && unlikely(sig_kernel_stop(signr))) {
391 * Set a marker that we have dequeued a stop signal. Our
392 * caller might release the siglock and then the pending
393 * stop signal it is about to process is no longer in the
394 * pending bitmasks, but must still be cleared by a SIGCONT
395 * (and overruled by a SIGKILL). So those cases clear this
396 * shared flag after we've set it. Note that this flag may
397 * remain set after the signal we return is ignored or
398 * handled. That doesn't matter because its only purpose
399 * is to alert stop-signal processing code when another
400 * processor has come along and cleared the flag.
402 if (!(tsk->signal->flags & SIGNAL_GROUP_EXIT))
403 tsk->signal->flags |= SIGNAL_STOP_DEQUEUED;
405 if ( signr &&
406 ((info->si_code & __SI_MASK) == __SI_TIMER) &&
407 info->si_sys_private){
409 * Release the siglock to ensure proper locking order
410 * of timer locks outside of siglocks. Note, we leave
411 * irqs disabled here, since the posix-timers code is
412 * about to disable them again anyway.
414 spin_unlock(&tsk->sighand->siglock);
415 do_schedule_next_timer(info);
416 spin_lock(&tsk->sighand->siglock);
418 return signr;
422 * Tell a process that it has a new active signal..
424 * NOTE! we rely on the previous spin_lock to
425 * lock interrupts for us! We can only be called with
426 * "siglock" held, and the local interrupt must
427 * have been disabled when that got acquired!
429 * No need to set need_resched since signal event passing
430 * goes through ->blocked
432 void signal_wake_up(struct task_struct *t, int resume)
434 unsigned int mask;
436 set_tsk_thread_flag(t, TIF_SIGPENDING);
439 * For SIGKILL, we want to wake it up in the stopped/traced case.
440 * We don't check t->state here because there is a race with it
441 * executing another processor and just now entering stopped state.
442 * By using wake_up_state, we ensure the process will wake up and
443 * handle its death signal.
445 mask = TASK_INTERRUPTIBLE;
446 if (resume)
447 mask |= TASK_STOPPED | TASK_TRACED;
448 if (!wake_up_state(t, mask))
449 kick_process(t);
453 * Remove signals in mask from the pending set and queue.
454 * Returns 1 if any signals were found.
456 * All callers must be holding the siglock.
458 * This version takes a sigset mask and looks at all signals,
459 * not just those in the first mask word.
461 static int rm_from_queue_full(sigset_t *mask, struct sigpending *s)
463 struct sigqueue *q, *n;
464 sigset_t m;
466 sigandsets(&m, mask, &s->signal);
467 if (sigisemptyset(&m))
468 return 0;
470 signandsets(&s->signal, &s->signal, mask);
471 list_for_each_entry_safe(q, n, &s->list, list) {
472 if (sigismember(mask, q->info.si_signo)) {
473 list_del_init(&q->list);
474 __sigqueue_free(q);
477 return 1;
480 * Remove signals in mask from the pending set and queue.
481 * Returns 1 if any signals were found.
483 * All callers must be holding the siglock.
485 static int rm_from_queue(unsigned long mask, struct sigpending *s)
487 struct sigqueue *q, *n;
489 if (!sigtestsetmask(&s->signal, mask))
490 return 0;
492 sigdelsetmask(&s->signal, mask);
493 list_for_each_entry_safe(q, n, &s->list, list) {
494 if (q->info.si_signo < SIGRTMIN &&
495 (mask & sigmask(q->info.si_signo))) {
496 list_del_init(&q->list);
497 __sigqueue_free(q);
500 return 1;
504 * Bad permissions for sending the signal
506 static int check_kill_permission(int sig, struct siginfo *info,
507 struct task_struct *t)
509 int error = -EINVAL;
510 if (!valid_signal(sig))
511 return error;
513 error = audit_signal_info(sig, t); /* Let audit system see the signal */
514 if (error)
515 return error;
517 error = -EPERM;
518 if ((info == SEND_SIG_NOINFO || (!is_si_special(info) && SI_FROMUSER(info)))
519 && ((sig != SIGCONT) ||
520 (process_session(current) != process_session(t)))
521 && (current->euid ^ t->suid) && (current->euid ^ t->uid)
522 && (current->uid ^ t->suid) && (current->uid ^ t->uid)
523 && !capable(CAP_KILL))
524 return error;
526 return security_task_kill(t, info, sig, 0);
529 /* forward decl */
530 static void do_notify_parent_cldstop(struct task_struct *tsk, int why);
533 * Handle magic process-wide effects of stop/continue signals.
534 * Unlike the signal actions, these happen immediately at signal-generation
535 * time regardless of blocking, ignoring, or handling. This does the
536 * actual continuing for SIGCONT, but not the actual stopping for stop
537 * signals. The process stop is done as a signal action for SIG_DFL.
539 static void handle_stop_signal(int sig, struct task_struct *p)
541 struct task_struct *t;
543 if (p->signal->flags & SIGNAL_GROUP_EXIT)
545 * The process is in the middle of dying already.
547 return;
549 if (sig_kernel_stop(sig)) {
551 * This is a stop signal. Remove SIGCONT from all queues.
553 rm_from_queue(sigmask(SIGCONT), &p->signal->shared_pending);
554 t = p;
555 do {
556 rm_from_queue(sigmask(SIGCONT), &t->pending);
557 t = next_thread(t);
558 } while (t != p);
559 } else if (sig == SIGCONT) {
561 * Remove all stop signals from all queues,
562 * and wake all threads.
564 if (unlikely(p->signal->group_stop_count > 0)) {
566 * There was a group stop in progress. We'll
567 * pretend it finished before we got here. We are
568 * obliged to report it to the parent: if the
569 * SIGSTOP happened "after" this SIGCONT, then it
570 * would have cleared this pending SIGCONT. If it
571 * happened "before" this SIGCONT, then the parent
572 * got the SIGCHLD about the stop finishing before
573 * the continue happened. We do the notification
574 * now, and it's as if the stop had finished and
575 * the SIGCHLD was pending on entry to this kill.
577 p->signal->group_stop_count = 0;
578 p->signal->flags = SIGNAL_STOP_CONTINUED;
579 spin_unlock(&p->sighand->siglock);
580 do_notify_parent_cldstop(p, CLD_STOPPED);
581 spin_lock(&p->sighand->siglock);
583 rm_from_queue(SIG_KERNEL_STOP_MASK, &p->signal->shared_pending);
584 t = p;
585 do {
586 unsigned int state;
587 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
590 * If there is a handler for SIGCONT, we must make
591 * sure that no thread returns to user mode before
592 * we post the signal, in case it was the only
593 * thread eligible to run the signal handler--then
594 * it must not do anything between resuming and
595 * running the handler. With the TIF_SIGPENDING
596 * flag set, the thread will pause and acquire the
597 * siglock that we hold now and until we've queued
598 * the pending signal.
600 * Wake up the stopped thread _after_ setting
601 * TIF_SIGPENDING
603 state = TASK_STOPPED;
604 if (sig_user_defined(t, SIGCONT) && !sigismember(&t->blocked, SIGCONT)) {
605 set_tsk_thread_flag(t, TIF_SIGPENDING);
606 state |= TASK_INTERRUPTIBLE;
608 wake_up_state(t, state);
610 t = next_thread(t);
611 } while (t != p);
613 if (p->signal->flags & SIGNAL_STOP_STOPPED) {
615 * We were in fact stopped, and are now continued.
616 * Notify the parent with CLD_CONTINUED.
618 p->signal->flags = SIGNAL_STOP_CONTINUED;
619 p->signal->group_exit_code = 0;
620 spin_unlock(&p->sighand->siglock);
621 do_notify_parent_cldstop(p, CLD_CONTINUED);
622 spin_lock(&p->sighand->siglock);
623 } else {
625 * We are not stopped, but there could be a stop
626 * signal in the middle of being processed after
627 * being removed from the queue. Clear that too.
629 p->signal->flags = 0;
631 } else if (sig == SIGKILL) {
633 * Make sure that any pending stop signal already dequeued
634 * is undone by the wakeup for SIGKILL.
636 p->signal->flags = 0;
640 static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
641 struct sigpending *signals)
643 struct sigqueue * q = NULL;
644 int ret = 0;
647 * Deliver the signal to listening signalfds. This must be called
648 * with the sighand lock held.
650 signalfd_notify(t, sig);
653 * fast-pathed signals for kernel-internal things like SIGSTOP
654 * or SIGKILL.
656 if (info == SEND_SIG_FORCED)
657 goto out_set;
659 /* Real-time signals must be queued if sent by sigqueue, or
660 some other real-time mechanism. It is implementation
661 defined whether kill() does so. We attempt to do so, on
662 the principle of least surprise, but since kill is not
663 allowed to fail with EAGAIN when low on memory we just
664 make sure at least one signal gets delivered and don't
665 pass on the info struct. */
667 q = __sigqueue_alloc(t, GFP_ATOMIC, (sig < SIGRTMIN &&
668 (is_si_special(info) ||
669 info->si_code >= 0)));
670 if (q) {
671 list_add_tail(&q->list, &signals->list);
672 switch ((unsigned long) info) {
673 case (unsigned long) SEND_SIG_NOINFO:
674 q->info.si_signo = sig;
675 q->info.si_errno = 0;
676 q->info.si_code = SI_USER;
677 q->info.si_pid = current->pid;
678 q->info.si_uid = current->uid;
679 break;
680 case (unsigned long) SEND_SIG_PRIV:
681 q->info.si_signo = sig;
682 q->info.si_errno = 0;
683 q->info.si_code = SI_KERNEL;
684 q->info.si_pid = 0;
685 q->info.si_uid = 0;
686 break;
687 default:
688 copy_siginfo(&q->info, info);
689 break;
691 } else if (!is_si_special(info)) {
692 if (sig >= SIGRTMIN && info->si_code != SI_USER)
694 * Queue overflow, abort. We may abort if the signal was rt
695 * and sent by user using something other than kill().
697 return -EAGAIN;
700 out_set:
701 sigaddset(&signals->signal, sig);
702 return ret;
705 #define LEGACY_QUEUE(sigptr, sig) \
706 (((sig) < SIGRTMIN) && sigismember(&(sigptr)->signal, (sig)))
709 static int
710 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
712 int ret = 0;
714 BUG_ON(!irqs_disabled());
715 assert_spin_locked(&t->sighand->siglock);
717 /* Short-circuit ignored signals. */
718 if (sig_ignored(t, sig))
719 goto out;
721 /* Support queueing exactly one non-rt signal, so that we
722 can get more detailed information about the cause of
723 the signal. */
724 if (LEGACY_QUEUE(&t->pending, sig))
725 goto out;
727 ret = send_signal(sig, info, t, &t->pending);
728 if (!ret && !sigismember(&t->blocked, sig))
729 signal_wake_up(t, sig == SIGKILL);
730 out:
731 return ret;
735 * Force a signal that the process can't ignore: if necessary
736 * we unblock the signal and change any SIG_IGN to SIG_DFL.
738 * Note: If we unblock the signal, we always reset it to SIG_DFL,
739 * since we do not want to have a signal handler that was blocked
740 * be invoked when user space had explicitly blocked it.
742 * We don't want to have recursive SIGSEGV's etc, for example.
745 force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
747 unsigned long int flags;
748 int ret, blocked, ignored;
749 struct k_sigaction *action;
751 spin_lock_irqsave(&t->sighand->siglock, flags);
752 action = &t->sighand->action[sig-1];
753 ignored = action->sa.sa_handler == SIG_IGN;
754 blocked = sigismember(&t->blocked, sig);
755 if (blocked || ignored) {
756 action->sa.sa_handler = SIG_DFL;
757 if (blocked) {
758 sigdelset(&t->blocked, sig);
759 recalc_sigpending_and_wake(t);
762 ret = specific_send_sig_info(sig, info, t);
763 spin_unlock_irqrestore(&t->sighand->siglock, flags);
765 return ret;
768 void
769 force_sig_specific(int sig, struct task_struct *t)
771 force_sig_info(sig, SEND_SIG_FORCED, t);
775 * Test if P wants to take SIG. After we've checked all threads with this,
776 * it's equivalent to finding no threads not blocking SIG. Any threads not
777 * blocking SIG were ruled out because they are not running and already
778 * have pending signals. Such threads will dequeue from the shared queue
779 * as soon as they're available, so putting the signal on the shared queue
780 * will be equivalent to sending it to one such thread.
782 static inline int wants_signal(int sig, struct task_struct *p)
784 if (sigismember(&p->blocked, sig))
785 return 0;
786 if (p->flags & PF_EXITING)
787 return 0;
788 if (sig == SIGKILL)
789 return 1;
790 if (p->state & (TASK_STOPPED | TASK_TRACED))
791 return 0;
792 return task_curr(p) || !signal_pending(p);
795 static void
796 __group_complete_signal(int sig, struct task_struct *p)
798 struct task_struct *t;
801 * Now find a thread we can wake up to take the signal off the queue.
803 * If the main thread wants the signal, it gets first crack.
804 * Probably the least surprising to the average bear.
806 if (wants_signal(sig, p))
807 t = p;
808 else if (thread_group_empty(p))
810 * There is just one thread and it does not need to be woken.
811 * It will dequeue unblocked signals before it runs again.
813 return;
814 else {
816 * Otherwise try to find a suitable thread.
818 t = p->signal->curr_target;
819 if (t == NULL)
820 /* restart balancing at this thread */
821 t = p->signal->curr_target = p;
823 while (!wants_signal(sig, t)) {
824 t = next_thread(t);
825 if (t == p->signal->curr_target)
827 * No thread needs to be woken.
828 * Any eligible threads will see
829 * the signal in the queue soon.
831 return;
833 p->signal->curr_target = t;
837 * Found a killable thread. If the signal will be fatal,
838 * then start taking the whole group down immediately.
840 if (sig_fatal(p, sig) && !(p->signal->flags & SIGNAL_GROUP_EXIT) &&
841 !sigismember(&t->real_blocked, sig) &&
842 (sig == SIGKILL || !(t->ptrace & PT_PTRACED))) {
844 * This signal will be fatal to the whole group.
846 if (!sig_kernel_coredump(sig)) {
848 * Start a group exit and wake everybody up.
849 * This way we don't have other threads
850 * running and doing things after a slower
851 * thread has the fatal signal pending.
853 p->signal->flags = SIGNAL_GROUP_EXIT;
854 p->signal->group_exit_code = sig;
855 p->signal->group_stop_count = 0;
856 t = p;
857 do {
858 sigaddset(&t->pending.signal, SIGKILL);
859 signal_wake_up(t, 1);
860 t = next_thread(t);
861 } while (t != p);
862 return;
866 * There will be a core dump. We make all threads other
867 * than the chosen one go into a group stop so that nothing
868 * happens until it gets scheduled, takes the signal off
869 * the shared queue, and does the core dump. This is a
870 * little more complicated than strictly necessary, but it
871 * keeps the signal state that winds up in the core dump
872 * unchanged from the death state, e.g. which thread had
873 * the core-dump signal unblocked.
875 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
876 rm_from_queue(SIG_KERNEL_STOP_MASK, &p->signal->shared_pending);
877 p->signal->group_stop_count = 0;
878 p->signal->group_exit_task = t;
879 t = p;
880 do {
881 p->signal->group_stop_count++;
882 signal_wake_up(t, 0);
883 t = next_thread(t);
884 } while (t != p);
885 wake_up_process(p->signal->group_exit_task);
886 return;
890 * The signal is already in the shared-pending queue.
891 * Tell the chosen thread to wake up and dequeue it.
893 signal_wake_up(t, sig == SIGKILL);
894 return;
898 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
900 int ret = 0;
902 assert_spin_locked(&p->sighand->siglock);
903 handle_stop_signal(sig, p);
905 /* Short-circuit ignored signals. */
906 if (sig_ignored(p, sig))
907 return ret;
909 if (LEGACY_QUEUE(&p->signal->shared_pending, sig))
910 /* This is a non-RT signal and we already have one queued. */
911 return ret;
914 * Put this signal on the shared-pending queue, or fail with EAGAIN.
915 * We always use the shared queue for process-wide signals,
916 * to avoid several races.
918 ret = send_signal(sig, info, p, &p->signal->shared_pending);
919 if (unlikely(ret))
920 return ret;
922 __group_complete_signal(sig, p);
923 return 0;
927 * Nuke all other threads in the group.
929 void zap_other_threads(struct task_struct *p)
931 struct task_struct *t;
933 p->signal->flags = SIGNAL_GROUP_EXIT;
934 p->signal->group_stop_count = 0;
936 if (thread_group_empty(p))
937 return;
939 for (t = next_thread(p); t != p; t = next_thread(t)) {
941 * Don't bother with already dead threads
943 if (t->exit_state)
944 continue;
946 /* SIGKILL will be handled before any pending SIGSTOP */
947 sigaddset(&t->pending.signal, SIGKILL);
948 signal_wake_up(t, 1);
953 * Must be called under rcu_read_lock() or with tasklist_lock read-held.
955 struct sighand_struct *lock_task_sighand(struct task_struct *tsk, unsigned long *flags)
957 struct sighand_struct *sighand;
959 for (;;) {
960 sighand = rcu_dereference(tsk->sighand);
961 if (unlikely(sighand == NULL))
962 break;
964 spin_lock_irqsave(&sighand->siglock, *flags);
965 if (likely(sighand == tsk->sighand))
966 break;
967 spin_unlock_irqrestore(&sighand->siglock, *flags);
970 return sighand;
973 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
975 unsigned long flags;
976 int ret;
978 ret = check_kill_permission(sig, info, p);
980 if (!ret && sig) {
981 ret = -ESRCH;
982 if (lock_task_sighand(p, &flags)) {
983 ret = __group_send_sig_info(sig, info, p);
984 unlock_task_sighand(p, &flags);
988 return ret;
992 * kill_pgrp_info() sends a signal to a process group: this is what the tty
993 * control characters do (^C, ^Z etc)
996 int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
998 struct task_struct *p = NULL;
999 int retval, success;
1001 success = 0;
1002 retval = -ESRCH;
1003 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1004 int err = group_send_sig_info(sig, info, p);
1005 success |= !err;
1006 retval = err;
1007 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1008 return success ? 0 : retval;
1011 int kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
1013 int retval;
1015 read_lock(&tasklist_lock);
1016 retval = __kill_pgrp_info(sig, info, pgrp);
1017 read_unlock(&tasklist_lock);
1019 return retval;
1022 int kill_pid_info(int sig, struct siginfo *info, struct pid *pid)
1024 int error;
1025 struct task_struct *p;
1027 rcu_read_lock();
1028 if (unlikely(sig_needs_tasklist(sig)))
1029 read_lock(&tasklist_lock);
1031 p = pid_task(pid, PIDTYPE_PID);
1032 error = -ESRCH;
1033 if (p)
1034 error = group_send_sig_info(sig, info, p);
1036 if (unlikely(sig_needs_tasklist(sig)))
1037 read_unlock(&tasklist_lock);
1038 rcu_read_unlock();
1039 return error;
1043 kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1045 int error;
1046 rcu_read_lock();
1047 error = kill_pid_info(sig, info, find_pid(pid));
1048 rcu_read_unlock();
1049 return error;
1052 /* like kill_pid_info(), but doesn't use uid/euid of "current" */
1053 int kill_pid_info_as_uid(int sig, struct siginfo *info, struct pid *pid,
1054 uid_t uid, uid_t euid, u32 secid)
1056 int ret = -EINVAL;
1057 struct task_struct *p;
1059 if (!valid_signal(sig))
1060 return ret;
1062 read_lock(&tasklist_lock);
1063 p = pid_task(pid, PIDTYPE_PID);
1064 if (!p) {
1065 ret = -ESRCH;
1066 goto out_unlock;
1068 if ((info == SEND_SIG_NOINFO || (!is_si_special(info) && SI_FROMUSER(info)))
1069 && (euid != p->suid) && (euid != p->uid)
1070 && (uid != p->suid) && (uid != p->uid)) {
1071 ret = -EPERM;
1072 goto out_unlock;
1074 ret = security_task_kill(p, info, sig, secid);
1075 if (ret)
1076 goto out_unlock;
1077 if (sig && p->sighand) {
1078 unsigned long flags;
1079 spin_lock_irqsave(&p->sighand->siglock, flags);
1080 ret = __group_send_sig_info(sig, info, p);
1081 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1083 out_unlock:
1084 read_unlock(&tasklist_lock);
1085 return ret;
1087 EXPORT_SYMBOL_GPL(kill_pid_info_as_uid);
1090 * kill_something_info() interprets pid in interesting ways just like kill(2).
1092 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1093 * is probably wrong. Should make it like BSD or SYSV.
1096 static int kill_something_info(int sig, struct siginfo *info, int pid)
1098 int ret;
1099 rcu_read_lock();
1100 if (!pid) {
1101 ret = kill_pgrp_info(sig, info, task_pgrp(current));
1102 } else if (pid == -1) {
1103 int retval = 0, count = 0;
1104 struct task_struct * p;
1106 read_lock(&tasklist_lock);
1107 for_each_process(p) {
1108 if (p->pid > 1 && p->tgid != current->tgid) {
1109 int err = group_send_sig_info(sig, info, p);
1110 ++count;
1111 if (err != -EPERM)
1112 retval = err;
1115 read_unlock(&tasklist_lock);
1116 ret = count ? retval : -ESRCH;
1117 } else if (pid < 0) {
1118 ret = kill_pgrp_info(sig, info, find_pid(-pid));
1119 } else {
1120 ret = kill_pid_info(sig, info, find_pid(pid));
1122 rcu_read_unlock();
1123 return ret;
1127 * These are for backward compatibility with the rest of the kernel source.
1131 * These two are the most common entry points. They send a signal
1132 * just to the specific thread.
1135 send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1137 int ret;
1138 unsigned long flags;
1141 * Make sure legacy kernel users don't send in bad values
1142 * (normal paths check this in check_kill_permission).
1144 if (!valid_signal(sig))
1145 return -EINVAL;
1148 * We need the tasklist lock even for the specific
1149 * thread case (when we don't need to follow the group
1150 * lists) in order to avoid races with "p->sighand"
1151 * going away or changing from under us.
1153 read_lock(&tasklist_lock);
1154 spin_lock_irqsave(&p->sighand->siglock, flags);
1155 ret = specific_send_sig_info(sig, info, p);
1156 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1157 read_unlock(&tasklist_lock);
1158 return ret;
1161 #define __si_special(priv) \
1162 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1165 send_sig(int sig, struct task_struct *p, int priv)
1167 return send_sig_info(sig, __si_special(priv), p);
1171 * This is the entry point for "process-wide" signals.
1172 * They will go to an appropriate thread in the thread group.
1175 send_group_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1177 int ret;
1178 read_lock(&tasklist_lock);
1179 ret = group_send_sig_info(sig, info, p);
1180 read_unlock(&tasklist_lock);
1181 return ret;
1184 void
1185 force_sig(int sig, struct task_struct *p)
1187 force_sig_info(sig, SEND_SIG_PRIV, p);
1191 * When things go south during signal handling, we
1192 * will force a SIGSEGV. And if the signal that caused
1193 * the problem was already a SIGSEGV, we'll want to
1194 * make sure we don't even try to deliver the signal..
1197 force_sigsegv(int sig, struct task_struct *p)
1199 if (sig == SIGSEGV) {
1200 unsigned long flags;
1201 spin_lock_irqsave(&p->sighand->siglock, flags);
1202 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1203 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1205 force_sig(SIGSEGV, p);
1206 return 0;
1209 int kill_pgrp(struct pid *pid, int sig, int priv)
1211 return kill_pgrp_info(sig, __si_special(priv), pid);
1213 EXPORT_SYMBOL(kill_pgrp);
1215 int kill_pid(struct pid *pid, int sig, int priv)
1217 return kill_pid_info(sig, __si_special(priv), pid);
1219 EXPORT_SYMBOL(kill_pid);
1222 kill_proc(pid_t pid, int sig, int priv)
1224 return kill_proc_info(sig, __si_special(priv), pid);
1228 * These functions support sending signals using preallocated sigqueue
1229 * structures. This is needed "because realtime applications cannot
1230 * afford to lose notifications of asynchronous events, like timer
1231 * expirations or I/O completions". In the case of Posix Timers
1232 * we allocate the sigqueue structure from the timer_create. If this
1233 * allocation fails we are able to report the failure to the application
1234 * with an EAGAIN error.
1237 struct sigqueue *sigqueue_alloc(void)
1239 struct sigqueue *q;
1241 if ((q = __sigqueue_alloc(current, GFP_KERNEL, 0)))
1242 q->flags |= SIGQUEUE_PREALLOC;
1243 return(q);
1246 void sigqueue_free(struct sigqueue *q)
1248 unsigned long flags;
1249 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1251 * If the signal is still pending remove it from the
1252 * pending queue.
1254 if (unlikely(!list_empty(&q->list))) {
1255 spinlock_t *lock = &current->sighand->siglock;
1256 read_lock(&tasklist_lock);
1257 spin_lock_irqsave(lock, flags);
1258 if (!list_empty(&q->list))
1259 list_del_init(&q->list);
1260 spin_unlock_irqrestore(lock, flags);
1261 read_unlock(&tasklist_lock);
1263 q->flags &= ~SIGQUEUE_PREALLOC;
1264 __sigqueue_free(q);
1267 int send_sigqueue(int sig, struct sigqueue *q, struct task_struct *p)
1269 unsigned long flags;
1270 int ret = 0;
1272 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1275 * The rcu based delayed sighand destroy makes it possible to
1276 * run this without tasklist lock held. The task struct itself
1277 * cannot go away as create_timer did get_task_struct().
1279 * We return -1, when the task is marked exiting, so
1280 * posix_timer_event can redirect it to the group leader
1282 rcu_read_lock();
1284 if (!likely(lock_task_sighand(p, &flags))) {
1285 ret = -1;
1286 goto out_err;
1289 if (unlikely(!list_empty(&q->list))) {
1291 * If an SI_TIMER entry is already queue just increment
1292 * the overrun count.
1294 BUG_ON(q->info.si_code != SI_TIMER);
1295 q->info.si_overrun++;
1296 goto out;
1298 /* Short-circuit ignored signals. */
1299 if (sig_ignored(p, sig)) {
1300 ret = 1;
1301 goto out;
1304 * Deliver the signal to listening signalfds. This must be called
1305 * with the sighand lock held.
1307 signalfd_notify(p, sig);
1309 list_add_tail(&q->list, &p->pending.list);
1310 sigaddset(&p->pending.signal, sig);
1311 if (!sigismember(&p->blocked, sig))
1312 signal_wake_up(p, sig == SIGKILL);
1314 out:
1315 unlock_task_sighand(p, &flags);
1316 out_err:
1317 rcu_read_unlock();
1319 return ret;
1323 send_group_sigqueue(int sig, struct sigqueue *q, struct task_struct *p)
1325 unsigned long flags;
1326 int ret = 0;
1328 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1330 read_lock(&tasklist_lock);
1331 /* Since it_lock is held, p->sighand cannot be NULL. */
1332 spin_lock_irqsave(&p->sighand->siglock, flags);
1333 handle_stop_signal(sig, p);
1335 /* Short-circuit ignored signals. */
1336 if (sig_ignored(p, sig)) {
1337 ret = 1;
1338 goto out;
1341 if (unlikely(!list_empty(&q->list))) {
1343 * If an SI_TIMER entry is already queue just increment
1344 * the overrun count. Other uses should not try to
1345 * send the signal multiple times.
1347 BUG_ON(q->info.si_code != SI_TIMER);
1348 q->info.si_overrun++;
1349 goto out;
1352 * Deliver the signal to listening signalfds. This must be called
1353 * with the sighand lock held.
1355 signalfd_notify(p, sig);
1358 * Put this signal on the shared-pending queue.
1359 * We always use the shared queue for process-wide signals,
1360 * to avoid several races.
1362 list_add_tail(&q->list, &p->signal->shared_pending.list);
1363 sigaddset(&p->signal->shared_pending.signal, sig);
1365 __group_complete_signal(sig, p);
1366 out:
1367 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1368 read_unlock(&tasklist_lock);
1369 return ret;
1373 * Wake up any threads in the parent blocked in wait* syscalls.
1375 static inline void __wake_up_parent(struct task_struct *p,
1376 struct task_struct *parent)
1378 wake_up_interruptible_sync(&parent->signal->wait_chldexit);
1382 * Let a parent know about the death of a child.
1383 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1386 void do_notify_parent(struct task_struct *tsk, int sig)
1388 struct siginfo info;
1389 unsigned long flags;
1390 struct sighand_struct *psig;
1392 BUG_ON(sig == -1);
1394 /* do_notify_parent_cldstop should have been called instead. */
1395 BUG_ON(tsk->state & (TASK_STOPPED|TASK_TRACED));
1397 BUG_ON(!tsk->ptrace &&
1398 (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1400 info.si_signo = sig;
1401 info.si_errno = 0;
1402 info.si_pid = tsk->pid;
1403 info.si_uid = tsk->uid;
1405 /* FIXME: find out whether or not this is supposed to be c*time. */
1406 info.si_utime = cputime_to_jiffies(cputime_add(tsk->utime,
1407 tsk->signal->utime));
1408 info.si_stime = cputime_to_jiffies(cputime_add(tsk->stime,
1409 tsk->signal->stime));
1411 info.si_status = tsk->exit_code & 0x7f;
1412 if (tsk->exit_code & 0x80)
1413 info.si_code = CLD_DUMPED;
1414 else if (tsk->exit_code & 0x7f)
1415 info.si_code = CLD_KILLED;
1416 else {
1417 info.si_code = CLD_EXITED;
1418 info.si_status = tsk->exit_code >> 8;
1421 psig = tsk->parent->sighand;
1422 spin_lock_irqsave(&psig->siglock, flags);
1423 if (!tsk->ptrace && sig == SIGCHLD &&
1424 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1425 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1427 * We are exiting and our parent doesn't care. POSIX.1
1428 * defines special semantics for setting SIGCHLD to SIG_IGN
1429 * or setting the SA_NOCLDWAIT flag: we should be reaped
1430 * automatically and not left for our parent's wait4 call.
1431 * Rather than having the parent do it as a magic kind of
1432 * signal handler, we just set this to tell do_exit that we
1433 * can be cleaned up without becoming a zombie. Note that
1434 * we still call __wake_up_parent in this case, because a
1435 * blocked sys_wait4 might now return -ECHILD.
1437 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1438 * is implementation-defined: we do (if you don't want
1439 * it, just use SIG_IGN instead).
1441 tsk->exit_signal = -1;
1442 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1443 sig = 0;
1445 if (valid_signal(sig) && sig > 0)
1446 __group_send_sig_info(sig, &info, tsk->parent);
1447 __wake_up_parent(tsk, tsk->parent);
1448 spin_unlock_irqrestore(&psig->siglock, flags);
1451 static void do_notify_parent_cldstop(struct task_struct *tsk, int why)
1453 struct siginfo info;
1454 unsigned long flags;
1455 struct task_struct *parent;
1456 struct sighand_struct *sighand;
1458 if (tsk->ptrace & PT_PTRACED)
1459 parent = tsk->parent;
1460 else {
1461 tsk = tsk->group_leader;
1462 parent = tsk->real_parent;
1465 info.si_signo = SIGCHLD;
1466 info.si_errno = 0;
1467 info.si_pid = tsk->pid;
1468 info.si_uid = tsk->uid;
1470 /* FIXME: find out whether or not this is supposed to be c*time. */
1471 info.si_utime = cputime_to_jiffies(tsk->utime);
1472 info.si_stime = cputime_to_jiffies(tsk->stime);
1474 info.si_code = why;
1475 switch (why) {
1476 case CLD_CONTINUED:
1477 info.si_status = SIGCONT;
1478 break;
1479 case CLD_STOPPED:
1480 info.si_status = tsk->signal->group_exit_code & 0x7f;
1481 break;
1482 case CLD_TRAPPED:
1483 info.si_status = tsk->exit_code & 0x7f;
1484 break;
1485 default:
1486 BUG();
1489 sighand = parent->sighand;
1490 spin_lock_irqsave(&sighand->siglock, flags);
1491 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1492 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1493 __group_send_sig_info(SIGCHLD, &info, parent);
1495 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1497 __wake_up_parent(tsk, parent);
1498 spin_unlock_irqrestore(&sighand->siglock, flags);
1501 static inline int may_ptrace_stop(void)
1503 if (!likely(current->ptrace & PT_PTRACED))
1504 return 0;
1506 if (unlikely(current->parent == current->real_parent &&
1507 (current->ptrace & PT_ATTACHED)))
1508 return 0;
1510 if (unlikely(current->signal == current->parent->signal) &&
1511 unlikely(current->signal->flags & SIGNAL_GROUP_EXIT))
1512 return 0;
1515 * Are we in the middle of do_coredump?
1516 * If so and our tracer is also part of the coredump stopping
1517 * is a deadlock situation, and pointless because our tracer
1518 * is dead so don't allow us to stop.
1519 * If SIGKILL was already sent before the caller unlocked
1520 * ->siglock we must see ->core_waiters != 0. Otherwise it
1521 * is safe to enter schedule().
1523 if (unlikely(current->mm->core_waiters) &&
1524 unlikely(current->mm == current->parent->mm))
1525 return 0;
1527 return 1;
1531 * This must be called with current->sighand->siglock held.
1533 * This should be the path for all ptrace stops.
1534 * We always set current->last_siginfo while stopped here.
1535 * That makes it a way to test a stopped process for
1536 * being ptrace-stopped vs being job-control-stopped.
1538 * If we actually decide not to stop at all because the tracer is gone,
1539 * we leave nostop_code in current->exit_code.
1541 static void ptrace_stop(int exit_code, int nostop_code, siginfo_t *info)
1544 * If there is a group stop in progress,
1545 * we must participate in the bookkeeping.
1547 if (current->signal->group_stop_count > 0)
1548 --current->signal->group_stop_count;
1550 current->last_siginfo = info;
1551 current->exit_code = exit_code;
1553 /* Let the debugger run. */
1554 set_current_state(TASK_TRACED);
1555 spin_unlock_irq(&current->sighand->siglock);
1556 try_to_freeze();
1557 read_lock(&tasklist_lock);
1558 if (may_ptrace_stop()) {
1559 do_notify_parent_cldstop(current, CLD_TRAPPED);
1560 read_unlock(&tasklist_lock);
1561 schedule();
1562 } else {
1564 * By the time we got the lock, our tracer went away.
1565 * Don't stop here.
1567 read_unlock(&tasklist_lock);
1568 set_current_state(TASK_RUNNING);
1569 current->exit_code = nostop_code;
1573 * We are back. Now reacquire the siglock before touching
1574 * last_siginfo, so that we are sure to have synchronized with
1575 * any signal-sending on another CPU that wants to examine it.
1577 spin_lock_irq(&current->sighand->siglock);
1578 current->last_siginfo = NULL;
1581 * Queued signals ignored us while we were stopped for tracing.
1582 * So check for any that we should take before resuming user mode.
1584 recalc_sigpending();
1587 void ptrace_notify(int exit_code)
1589 siginfo_t info;
1591 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
1593 memset(&info, 0, sizeof info);
1594 info.si_signo = SIGTRAP;
1595 info.si_code = exit_code;
1596 info.si_pid = current->pid;
1597 info.si_uid = current->uid;
1599 /* Let the debugger run. */
1600 spin_lock_irq(&current->sighand->siglock);
1601 ptrace_stop(exit_code, 0, &info);
1602 spin_unlock_irq(&current->sighand->siglock);
1605 static void
1606 finish_stop(int stop_count)
1609 * If there are no other threads in the group, or if there is
1610 * a group stop in progress and we are the last to stop,
1611 * report to the parent. When ptraced, every thread reports itself.
1613 if (stop_count == 0 || (current->ptrace & PT_PTRACED)) {
1614 read_lock(&tasklist_lock);
1615 do_notify_parent_cldstop(current, CLD_STOPPED);
1616 read_unlock(&tasklist_lock);
1619 do {
1620 schedule();
1621 } while (try_to_freeze());
1623 * Now we don't run again until continued.
1625 current->exit_code = 0;
1629 * This performs the stopping for SIGSTOP and other stop signals.
1630 * We have to stop all threads in the thread group.
1631 * Returns nonzero if we've actually stopped and released the siglock.
1632 * Returns zero if we didn't stop and still hold the siglock.
1634 static int do_signal_stop(int signr)
1636 struct signal_struct *sig = current->signal;
1637 int stop_count;
1639 if (!likely(sig->flags & SIGNAL_STOP_DEQUEUED))
1640 return 0;
1642 if (sig->group_stop_count > 0) {
1644 * There is a group stop in progress. We don't need to
1645 * start another one.
1647 stop_count = --sig->group_stop_count;
1648 } else {
1650 * There is no group stop already in progress.
1651 * We must initiate one now.
1653 struct task_struct *t;
1655 sig->group_exit_code = signr;
1657 stop_count = 0;
1658 for (t = next_thread(current); t != current; t = next_thread(t))
1660 * Setting state to TASK_STOPPED for a group
1661 * stop is always done with the siglock held,
1662 * so this check has no races.
1664 if (!t->exit_state &&
1665 !(t->state & (TASK_STOPPED|TASK_TRACED))) {
1666 stop_count++;
1667 signal_wake_up(t, 0);
1669 sig->group_stop_count = stop_count;
1672 if (stop_count == 0)
1673 sig->flags = SIGNAL_STOP_STOPPED;
1674 current->exit_code = sig->group_exit_code;
1675 __set_current_state(TASK_STOPPED);
1677 spin_unlock_irq(&current->sighand->siglock);
1678 finish_stop(stop_count);
1679 return 1;
1683 * Do appropriate magic when group_stop_count > 0.
1684 * We return nonzero if we stopped, after releasing the siglock.
1685 * We return zero if we still hold the siglock and should look
1686 * for another signal without checking group_stop_count again.
1688 static int handle_group_stop(void)
1690 int stop_count;
1692 if (current->signal->group_exit_task == current) {
1694 * Group stop is so we can do a core dump,
1695 * We are the initiating thread, so get on with it.
1697 current->signal->group_exit_task = NULL;
1698 return 0;
1701 if (current->signal->flags & SIGNAL_GROUP_EXIT)
1703 * Group stop is so another thread can do a core dump,
1704 * or else we are racing against a death signal.
1705 * Just punt the stop so we can get the next signal.
1707 return 0;
1710 * There is a group stop in progress. We stop
1711 * without any associated signal being in our queue.
1713 stop_count = --current->signal->group_stop_count;
1714 if (stop_count == 0)
1715 current->signal->flags = SIGNAL_STOP_STOPPED;
1716 current->exit_code = current->signal->group_exit_code;
1717 set_current_state(TASK_STOPPED);
1718 spin_unlock_irq(&current->sighand->siglock);
1719 finish_stop(stop_count);
1720 return 1;
1723 int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka,
1724 struct pt_regs *regs, void *cookie)
1726 sigset_t *mask = &current->blocked;
1727 int signr = 0;
1729 try_to_freeze();
1731 relock:
1732 spin_lock_irq(&current->sighand->siglock);
1733 for (;;) {
1734 struct k_sigaction *ka;
1736 if (unlikely(current->signal->group_stop_count > 0) &&
1737 handle_group_stop())
1738 goto relock;
1740 signr = dequeue_signal(current, mask, info);
1742 if (!signr)
1743 break; /* will return 0 */
1745 if ((current->ptrace & PT_PTRACED) && signr != SIGKILL) {
1746 ptrace_signal_deliver(regs, cookie);
1748 /* Let the debugger run. */
1749 ptrace_stop(signr, signr, info);
1751 /* We're back. Did the debugger cancel the sig? */
1752 signr = current->exit_code;
1753 if (signr == 0)
1754 continue;
1756 current->exit_code = 0;
1758 /* Update the siginfo structure if the signal has
1759 changed. If the debugger wanted something
1760 specific in the siginfo structure then it should
1761 have updated *info via PTRACE_SETSIGINFO. */
1762 if (signr != info->si_signo) {
1763 info->si_signo = signr;
1764 info->si_errno = 0;
1765 info->si_code = SI_USER;
1766 info->si_pid = current->parent->pid;
1767 info->si_uid = current->parent->uid;
1770 /* If the (new) signal is now blocked, requeue it. */
1771 if (sigismember(&current->blocked, signr)) {
1772 specific_send_sig_info(signr, info, current);
1773 continue;
1777 ka = &current->sighand->action[signr-1];
1778 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */
1779 continue;
1780 if (ka->sa.sa_handler != SIG_DFL) {
1781 /* Run the handler. */
1782 *return_ka = *ka;
1784 if (ka->sa.sa_flags & SA_ONESHOT)
1785 ka->sa.sa_handler = SIG_DFL;
1787 break; /* will return non-zero "signr" value */
1791 * Now we are doing the default action for this signal.
1793 if (sig_kernel_ignore(signr)) /* Default is nothing. */
1794 continue;
1797 * Init of a pid space gets no signals it doesn't want from
1798 * within that pid space. It can of course get signals from
1799 * its parent pid space.
1801 if (current == child_reaper(current))
1802 continue;
1804 if (sig_kernel_stop(signr)) {
1806 * The default action is to stop all threads in
1807 * the thread group. The job control signals
1808 * do nothing in an orphaned pgrp, but SIGSTOP
1809 * always works. Note that siglock needs to be
1810 * dropped during the call to is_orphaned_pgrp()
1811 * because of lock ordering with tasklist_lock.
1812 * This allows an intervening SIGCONT to be posted.
1813 * We need to check for that and bail out if necessary.
1815 if (signr != SIGSTOP) {
1816 spin_unlock_irq(&current->sighand->siglock);
1818 /* signals can be posted during this window */
1820 if (is_current_pgrp_orphaned())
1821 goto relock;
1823 spin_lock_irq(&current->sighand->siglock);
1826 if (likely(do_signal_stop(signr))) {
1827 /* It released the siglock. */
1828 goto relock;
1832 * We didn't actually stop, due to a race
1833 * with SIGCONT or something like that.
1835 continue;
1838 spin_unlock_irq(&current->sighand->siglock);
1841 * Anything else is fatal, maybe with a core dump.
1843 current->flags |= PF_SIGNALED;
1844 if (sig_kernel_coredump(signr)) {
1846 * If it was able to dump core, this kills all
1847 * other threads in the group and synchronizes with
1848 * their demise. If we lost the race with another
1849 * thread getting here, it set group_exit_code
1850 * first and our do_group_exit call below will use
1851 * that value and ignore the one we pass it.
1853 do_coredump((long)signr, signr, regs);
1857 * Death signals, no core dump.
1859 do_group_exit(signr);
1860 /* NOTREACHED */
1862 spin_unlock_irq(&current->sighand->siglock);
1863 return signr;
1866 EXPORT_SYMBOL(recalc_sigpending);
1867 EXPORT_SYMBOL_GPL(dequeue_signal);
1868 EXPORT_SYMBOL(flush_signals);
1869 EXPORT_SYMBOL(force_sig);
1870 EXPORT_SYMBOL(kill_proc);
1871 EXPORT_SYMBOL(ptrace_notify);
1872 EXPORT_SYMBOL(send_sig);
1873 EXPORT_SYMBOL(send_sig_info);
1874 EXPORT_SYMBOL(sigprocmask);
1875 EXPORT_SYMBOL(block_all_signals);
1876 EXPORT_SYMBOL(unblock_all_signals);
1880 * System call entry points.
1883 asmlinkage long sys_restart_syscall(void)
1885 struct restart_block *restart = &current_thread_info()->restart_block;
1886 return restart->fn(restart);
1889 long do_no_restart_syscall(struct restart_block *param)
1891 return -EINTR;
1895 * We don't need to get the kernel lock - this is all local to this
1896 * particular thread.. (and that's good, because this is _heavily_
1897 * used by various programs)
1901 * This is also useful for kernel threads that want to temporarily
1902 * (or permanently) block certain signals.
1904 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
1905 * interface happily blocks "unblockable" signals like SIGKILL
1906 * and friends.
1908 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
1910 int error;
1912 spin_lock_irq(&current->sighand->siglock);
1913 if (oldset)
1914 *oldset = current->blocked;
1916 error = 0;
1917 switch (how) {
1918 case SIG_BLOCK:
1919 sigorsets(&current->blocked, &current->blocked, set);
1920 break;
1921 case SIG_UNBLOCK:
1922 signandsets(&current->blocked, &current->blocked, set);
1923 break;
1924 case SIG_SETMASK:
1925 current->blocked = *set;
1926 break;
1927 default:
1928 error = -EINVAL;
1930 recalc_sigpending();
1931 spin_unlock_irq(&current->sighand->siglock);
1933 return error;
1936 asmlinkage long
1937 sys_rt_sigprocmask(int how, sigset_t __user *set, sigset_t __user *oset, size_t sigsetsize)
1939 int error = -EINVAL;
1940 sigset_t old_set, new_set;
1942 /* XXX: Don't preclude handling different sized sigset_t's. */
1943 if (sigsetsize != sizeof(sigset_t))
1944 goto out;
1946 if (set) {
1947 error = -EFAULT;
1948 if (copy_from_user(&new_set, set, sizeof(*set)))
1949 goto out;
1950 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
1952 error = sigprocmask(how, &new_set, &old_set);
1953 if (error)
1954 goto out;
1955 if (oset)
1956 goto set_old;
1957 } else if (oset) {
1958 spin_lock_irq(&current->sighand->siglock);
1959 old_set = current->blocked;
1960 spin_unlock_irq(&current->sighand->siglock);
1962 set_old:
1963 error = -EFAULT;
1964 if (copy_to_user(oset, &old_set, sizeof(*oset)))
1965 goto out;
1967 error = 0;
1968 out:
1969 return error;
1972 long do_sigpending(void __user *set, unsigned long sigsetsize)
1974 long error = -EINVAL;
1975 sigset_t pending;
1977 if (sigsetsize > sizeof(sigset_t))
1978 goto out;
1980 spin_lock_irq(&current->sighand->siglock);
1981 sigorsets(&pending, &current->pending.signal,
1982 &current->signal->shared_pending.signal);
1983 spin_unlock_irq(&current->sighand->siglock);
1985 /* Outside the lock because only this thread touches it. */
1986 sigandsets(&pending, &current->blocked, &pending);
1988 error = -EFAULT;
1989 if (!copy_to_user(set, &pending, sigsetsize))
1990 error = 0;
1992 out:
1993 return error;
1996 asmlinkage long
1997 sys_rt_sigpending(sigset_t __user *set, size_t sigsetsize)
1999 return do_sigpending(set, sigsetsize);
2002 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
2004 int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from)
2006 int err;
2008 if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2009 return -EFAULT;
2010 if (from->si_code < 0)
2011 return __copy_to_user(to, from, sizeof(siginfo_t))
2012 ? -EFAULT : 0;
2014 * If you change siginfo_t structure, please be sure
2015 * this code is fixed accordingly.
2016 * Please remember to update the signalfd_copyinfo() function
2017 * inside fs/signalfd.c too, in case siginfo_t changes.
2018 * It should never copy any pad contained in the structure
2019 * to avoid security leaks, but must copy the generic
2020 * 3 ints plus the relevant union member.
2022 err = __put_user(from->si_signo, &to->si_signo);
2023 err |= __put_user(from->si_errno, &to->si_errno);
2024 err |= __put_user((short)from->si_code, &to->si_code);
2025 switch (from->si_code & __SI_MASK) {
2026 case __SI_KILL:
2027 err |= __put_user(from->si_pid, &to->si_pid);
2028 err |= __put_user(from->si_uid, &to->si_uid);
2029 break;
2030 case __SI_TIMER:
2031 err |= __put_user(from->si_tid, &to->si_tid);
2032 err |= __put_user(from->si_overrun, &to->si_overrun);
2033 err |= __put_user(from->si_ptr, &to->si_ptr);
2034 break;
2035 case __SI_POLL:
2036 err |= __put_user(from->si_band, &to->si_band);
2037 err |= __put_user(from->si_fd, &to->si_fd);
2038 break;
2039 case __SI_FAULT:
2040 err |= __put_user(from->si_addr, &to->si_addr);
2041 #ifdef __ARCH_SI_TRAPNO
2042 err |= __put_user(from->si_trapno, &to->si_trapno);
2043 #endif
2044 break;
2045 case __SI_CHLD:
2046 err |= __put_user(from->si_pid, &to->si_pid);
2047 err |= __put_user(from->si_uid, &to->si_uid);
2048 err |= __put_user(from->si_status, &to->si_status);
2049 err |= __put_user(from->si_utime, &to->si_utime);
2050 err |= __put_user(from->si_stime, &to->si_stime);
2051 break;
2052 case __SI_RT: /* This is not generated by the kernel as of now. */
2053 case __SI_MESGQ: /* But this is */
2054 err |= __put_user(from->si_pid, &to->si_pid);
2055 err |= __put_user(from->si_uid, &to->si_uid);
2056 err |= __put_user(from->si_ptr, &to->si_ptr);
2057 break;
2058 default: /* this is just in case for now ... */
2059 err |= __put_user(from->si_pid, &to->si_pid);
2060 err |= __put_user(from->si_uid, &to->si_uid);
2061 break;
2063 return err;
2066 #endif
2068 asmlinkage long
2069 sys_rt_sigtimedwait(const sigset_t __user *uthese,
2070 siginfo_t __user *uinfo,
2071 const struct timespec __user *uts,
2072 size_t sigsetsize)
2074 int ret, sig;
2075 sigset_t these;
2076 struct timespec ts;
2077 siginfo_t info;
2078 long timeout = 0;
2080 /* XXX: Don't preclude handling different sized sigset_t's. */
2081 if (sigsetsize != sizeof(sigset_t))
2082 return -EINVAL;
2084 if (copy_from_user(&these, uthese, sizeof(these)))
2085 return -EFAULT;
2088 * Invert the set of allowed signals to get those we
2089 * want to block.
2091 sigdelsetmask(&these, sigmask(SIGKILL)|sigmask(SIGSTOP));
2092 signotset(&these);
2094 if (uts) {
2095 if (copy_from_user(&ts, uts, sizeof(ts)))
2096 return -EFAULT;
2097 if (ts.tv_nsec >= 1000000000L || ts.tv_nsec < 0
2098 || ts.tv_sec < 0)
2099 return -EINVAL;
2102 spin_lock_irq(&current->sighand->siglock);
2103 sig = dequeue_signal(current, &these, &info);
2104 if (!sig) {
2105 timeout = MAX_SCHEDULE_TIMEOUT;
2106 if (uts)
2107 timeout = (timespec_to_jiffies(&ts)
2108 + (ts.tv_sec || ts.tv_nsec));
2110 if (timeout) {
2111 /* None ready -- temporarily unblock those we're
2112 * interested while we are sleeping in so that we'll
2113 * be awakened when they arrive. */
2114 current->real_blocked = current->blocked;
2115 sigandsets(&current->blocked, &current->blocked, &these);
2116 recalc_sigpending();
2117 spin_unlock_irq(&current->sighand->siglock);
2119 timeout = schedule_timeout_interruptible(timeout);
2121 spin_lock_irq(&current->sighand->siglock);
2122 sig = dequeue_signal(current, &these, &info);
2123 current->blocked = current->real_blocked;
2124 siginitset(&current->real_blocked, 0);
2125 recalc_sigpending();
2128 spin_unlock_irq(&current->sighand->siglock);
2130 if (sig) {
2131 ret = sig;
2132 if (uinfo) {
2133 if (copy_siginfo_to_user(uinfo, &info))
2134 ret = -EFAULT;
2136 } else {
2137 ret = -EAGAIN;
2138 if (timeout)
2139 ret = -EINTR;
2142 return ret;
2145 asmlinkage long
2146 sys_kill(int pid, int sig)
2148 struct siginfo info;
2150 info.si_signo = sig;
2151 info.si_errno = 0;
2152 info.si_code = SI_USER;
2153 info.si_pid = current->tgid;
2154 info.si_uid = current->uid;
2156 return kill_something_info(sig, &info, pid);
2159 static int do_tkill(int tgid, int pid, int sig)
2161 int error;
2162 struct siginfo info;
2163 struct task_struct *p;
2165 error = -ESRCH;
2166 info.si_signo = sig;
2167 info.si_errno = 0;
2168 info.si_code = SI_TKILL;
2169 info.si_pid = current->tgid;
2170 info.si_uid = current->uid;
2172 read_lock(&tasklist_lock);
2173 p = find_task_by_pid(pid);
2174 if (p && (tgid <= 0 || p->tgid == tgid)) {
2175 error = check_kill_permission(sig, &info, p);
2177 * The null signal is a permissions and process existence
2178 * probe. No signal is actually delivered.
2180 if (!error && sig && p->sighand) {
2181 spin_lock_irq(&p->sighand->siglock);
2182 handle_stop_signal(sig, p);
2183 error = specific_send_sig_info(sig, &info, p);
2184 spin_unlock_irq(&p->sighand->siglock);
2187 read_unlock(&tasklist_lock);
2189 return error;
2193 * sys_tgkill - send signal to one specific thread
2194 * @tgid: the thread group ID of the thread
2195 * @pid: the PID of the thread
2196 * @sig: signal to be sent
2198 * This syscall also checks the @tgid and returns -ESRCH even if the PID
2199 * exists but it's not belonging to the target process anymore. This
2200 * method solves the problem of threads exiting and PIDs getting reused.
2202 asmlinkage long sys_tgkill(int tgid, int pid, int sig)
2204 /* This is only valid for single tasks */
2205 if (pid <= 0 || tgid <= 0)
2206 return -EINVAL;
2208 return do_tkill(tgid, pid, sig);
2212 * Send a signal to only one task, even if it's a CLONE_THREAD task.
2214 asmlinkage long
2215 sys_tkill(int pid, int sig)
2217 /* This is only valid for single tasks */
2218 if (pid <= 0)
2219 return -EINVAL;
2221 return do_tkill(0, pid, sig);
2224 asmlinkage long
2225 sys_rt_sigqueueinfo(int pid, int sig, siginfo_t __user *uinfo)
2227 siginfo_t info;
2229 if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2230 return -EFAULT;
2232 /* Not even root can pretend to send signals from the kernel.
2233 Nor can they impersonate a kill(), which adds source info. */
2234 if (info.si_code >= 0)
2235 return -EPERM;
2236 info.si_signo = sig;
2238 /* POSIX.1b doesn't mention process groups. */
2239 return kill_proc_info(sig, &info, pid);
2242 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
2244 struct k_sigaction *k;
2245 sigset_t mask;
2247 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
2248 return -EINVAL;
2250 k = &current->sighand->action[sig-1];
2252 spin_lock_irq(&current->sighand->siglock);
2253 if (signal_pending(current)) {
2255 * If there might be a fatal signal pending on multiple
2256 * threads, make sure we take it before changing the action.
2258 spin_unlock_irq(&current->sighand->siglock);
2259 return -ERESTARTNOINTR;
2262 if (oact)
2263 *oact = *k;
2265 if (act) {
2266 sigdelsetmask(&act->sa.sa_mask,
2267 sigmask(SIGKILL) | sigmask(SIGSTOP));
2268 *k = *act;
2270 * POSIX 3.3.1.3:
2271 * "Setting a signal action to SIG_IGN for a signal that is
2272 * pending shall cause the pending signal to be discarded,
2273 * whether or not it is blocked."
2275 * "Setting a signal action to SIG_DFL for a signal that is
2276 * pending and whose default action is to ignore the signal
2277 * (for example, SIGCHLD), shall cause the pending signal to
2278 * be discarded, whether or not it is blocked"
2280 if (act->sa.sa_handler == SIG_IGN ||
2281 (act->sa.sa_handler == SIG_DFL && sig_kernel_ignore(sig))) {
2282 struct task_struct *t = current;
2283 sigemptyset(&mask);
2284 sigaddset(&mask, sig);
2285 rm_from_queue_full(&mask, &t->signal->shared_pending);
2286 do {
2287 rm_from_queue_full(&mask, &t->pending);
2288 recalc_sigpending_and_wake(t);
2289 t = next_thread(t);
2290 } while (t != current);
2294 spin_unlock_irq(&current->sighand->siglock);
2295 return 0;
2298 int
2299 do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
2301 stack_t oss;
2302 int error;
2304 if (uoss) {
2305 oss.ss_sp = (void __user *) current->sas_ss_sp;
2306 oss.ss_size = current->sas_ss_size;
2307 oss.ss_flags = sas_ss_flags(sp);
2310 if (uss) {
2311 void __user *ss_sp;
2312 size_t ss_size;
2313 int ss_flags;
2315 error = -EFAULT;
2316 if (!access_ok(VERIFY_READ, uss, sizeof(*uss))
2317 || __get_user(ss_sp, &uss->ss_sp)
2318 || __get_user(ss_flags, &uss->ss_flags)
2319 || __get_user(ss_size, &uss->ss_size))
2320 goto out;
2322 error = -EPERM;
2323 if (on_sig_stack(sp))
2324 goto out;
2326 error = -EINVAL;
2329 * Note - this code used to test ss_flags incorrectly
2330 * old code may have been written using ss_flags==0
2331 * to mean ss_flags==SS_ONSTACK (as this was the only
2332 * way that worked) - this fix preserves that older
2333 * mechanism
2335 if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0)
2336 goto out;
2338 if (ss_flags == SS_DISABLE) {
2339 ss_size = 0;
2340 ss_sp = NULL;
2341 } else {
2342 error = -ENOMEM;
2343 if (ss_size < MINSIGSTKSZ)
2344 goto out;
2347 current->sas_ss_sp = (unsigned long) ss_sp;
2348 current->sas_ss_size = ss_size;
2351 if (uoss) {
2352 error = -EFAULT;
2353 if (copy_to_user(uoss, &oss, sizeof(oss)))
2354 goto out;
2357 error = 0;
2358 out:
2359 return error;
2362 #ifdef __ARCH_WANT_SYS_SIGPENDING
2364 asmlinkage long
2365 sys_sigpending(old_sigset_t __user *set)
2367 return do_sigpending(set, sizeof(*set));
2370 #endif
2372 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
2373 /* Some platforms have their own version with special arguments others
2374 support only sys_rt_sigprocmask. */
2376 asmlinkage long
2377 sys_sigprocmask(int how, old_sigset_t __user *set, old_sigset_t __user *oset)
2379 int error;
2380 old_sigset_t old_set, new_set;
2382 if (set) {
2383 error = -EFAULT;
2384 if (copy_from_user(&new_set, set, sizeof(*set)))
2385 goto out;
2386 new_set &= ~(sigmask(SIGKILL) | sigmask(SIGSTOP));
2388 spin_lock_irq(&current->sighand->siglock);
2389 old_set = current->blocked.sig[0];
2391 error = 0;
2392 switch (how) {
2393 default:
2394 error = -EINVAL;
2395 break;
2396 case SIG_BLOCK:
2397 sigaddsetmask(&current->blocked, new_set);
2398 break;
2399 case SIG_UNBLOCK:
2400 sigdelsetmask(&current->blocked, new_set);
2401 break;
2402 case SIG_SETMASK:
2403 current->blocked.sig[0] = new_set;
2404 break;
2407 recalc_sigpending();
2408 spin_unlock_irq(&current->sighand->siglock);
2409 if (error)
2410 goto out;
2411 if (oset)
2412 goto set_old;
2413 } else if (oset) {
2414 old_set = current->blocked.sig[0];
2415 set_old:
2416 error = -EFAULT;
2417 if (copy_to_user(oset, &old_set, sizeof(*oset)))
2418 goto out;
2420 error = 0;
2421 out:
2422 return error;
2424 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
2426 #ifdef __ARCH_WANT_SYS_RT_SIGACTION
2427 asmlinkage long
2428 sys_rt_sigaction(int sig,
2429 const struct sigaction __user *act,
2430 struct sigaction __user *oact,
2431 size_t sigsetsize)
2433 struct k_sigaction new_sa, old_sa;
2434 int ret = -EINVAL;
2436 /* XXX: Don't preclude handling different sized sigset_t's. */
2437 if (sigsetsize != sizeof(sigset_t))
2438 goto out;
2440 if (act) {
2441 if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
2442 return -EFAULT;
2445 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
2447 if (!ret && oact) {
2448 if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
2449 return -EFAULT;
2451 out:
2452 return ret;
2454 #endif /* __ARCH_WANT_SYS_RT_SIGACTION */
2456 #ifdef __ARCH_WANT_SYS_SGETMASK
2459 * For backwards compatibility. Functionality superseded by sigprocmask.
2461 asmlinkage long
2462 sys_sgetmask(void)
2464 /* SMP safe */
2465 return current->blocked.sig[0];
2468 asmlinkage long
2469 sys_ssetmask(int newmask)
2471 int old;
2473 spin_lock_irq(&current->sighand->siglock);
2474 old = current->blocked.sig[0];
2476 siginitset(&current->blocked, newmask & ~(sigmask(SIGKILL)|
2477 sigmask(SIGSTOP)));
2478 recalc_sigpending();
2479 spin_unlock_irq(&current->sighand->siglock);
2481 return old;
2483 #endif /* __ARCH_WANT_SGETMASK */
2485 #ifdef __ARCH_WANT_SYS_SIGNAL
2487 * For backwards compatibility. Functionality superseded by sigaction.
2489 asmlinkage unsigned long
2490 sys_signal(int sig, __sighandler_t handler)
2492 struct k_sigaction new_sa, old_sa;
2493 int ret;
2495 new_sa.sa.sa_handler = handler;
2496 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
2497 sigemptyset(&new_sa.sa.sa_mask);
2499 ret = do_sigaction(sig, &new_sa, &old_sa);
2501 return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
2503 #endif /* __ARCH_WANT_SYS_SIGNAL */
2505 #ifdef __ARCH_WANT_SYS_PAUSE
2507 asmlinkage long
2508 sys_pause(void)
2510 current->state = TASK_INTERRUPTIBLE;
2511 schedule();
2512 return -ERESTARTNOHAND;
2515 #endif
2517 #ifdef __ARCH_WANT_SYS_RT_SIGSUSPEND
2518 asmlinkage long sys_rt_sigsuspend(sigset_t __user *unewset, size_t sigsetsize)
2520 sigset_t newset;
2522 /* XXX: Don't preclude handling different sized sigset_t's. */
2523 if (sigsetsize != sizeof(sigset_t))
2524 return -EINVAL;
2526 if (copy_from_user(&newset, unewset, sizeof(newset)))
2527 return -EFAULT;
2528 sigdelsetmask(&newset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2530 spin_lock_irq(&current->sighand->siglock);
2531 current->saved_sigmask = current->blocked;
2532 current->blocked = newset;
2533 recalc_sigpending();
2534 spin_unlock_irq(&current->sighand->siglock);
2536 current->state = TASK_INTERRUPTIBLE;
2537 schedule();
2538 set_thread_flag(TIF_RESTORE_SIGMASK);
2539 return -ERESTARTNOHAND;
2541 #endif /* __ARCH_WANT_SYS_RT_SIGSUSPEND */
2543 __attribute__((weak)) const char *arch_vma_name(struct vm_area_struct *vma)
2545 return NULL;
2548 void __init signals_init(void)
2550 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);