2 * linux/drivers/ide/ide-tape.c Version 1.19 Nov, 2003
4 * Copyright (C) 1995 - 1999 Gadi Oxman <gadio@netvision.net.il>
8 * This driver was constructed as a student project in the software laboratory
9 * of the faculty of electrical engineering in the Technion - Israel's
10 * Institute Of Technology, with the guide of Avner Lottem and Dr. Ilana David.
12 * It is hereby placed under the terms of the GNU general public license.
13 * (See linux/COPYING).
17 * IDE ATAPI streaming tape driver.
19 * This driver is a part of the Linux ide driver and works in co-operation
20 * with linux/drivers/block/ide.c.
22 * The driver, in co-operation with ide.c, basically traverses the
23 * request-list for the block device interface. The character device
24 * interface, on the other hand, creates new requests, adds them
25 * to the request-list of the block device, and waits for their completion.
27 * Pipelined operation mode is now supported on both reads and writes.
29 * The block device major and minor numbers are determined from the
30 * tape's relative position in the ide interfaces, as explained in ide.c.
32 * The character device interface consists of the following devices:
34 * ht0 major 37, minor 0 first IDE tape, rewind on close.
35 * ht1 major 37, minor 1 second IDE tape, rewind on close.
37 * nht0 major 37, minor 128 first IDE tape, no rewind on close.
38 * nht1 major 37, minor 129 second IDE tape, no rewind on close.
41 * Run linux/scripts/MAKEDEV.ide to create the above entries.
43 * The general magnetic tape commands compatible interface, as defined by
44 * include/linux/mtio.h, is accessible through the character device.
46 * General ide driver configuration options, such as the interrupt-unmask
47 * flag, can be configured by issuing an ioctl to the block device interface,
48 * as any other ide device.
50 * Our own ide-tape ioctl's can be issued to either the block device or
51 * the character device interface.
53 * Maximal throughput with minimal bus load will usually be achieved in the
56 * 1. ide-tape is operating in the pipelined operation mode.
57 * 2. No buffering is performed by the user backup program.
59 * Testing was done with a 2 GB CONNER CTMA 4000 IDE ATAPI Streaming Tape Drive.
61 * Ver 0.1 Nov 1 95 Pre-working code :-)
62 * Ver 0.2 Nov 23 95 A short backup (few megabytes) and restore procedure
63 * was successful ! (Using tar cvf ... on the block
65 * A longer backup resulted in major swapping, bad
66 * overall Linux performance and eventually failed as
67 * we received non serial read-ahead requests from the
69 * Ver 0.3 Nov 28 95 Long backups are now possible, thanks to the
70 * character device interface. Linux's responsiveness
71 * and performance doesn't seem to be much affected
72 * from the background backup procedure.
73 * Some general mtio.h magnetic tape operations are
74 * now supported by our character device. As a result,
75 * popular tape utilities are starting to work with
77 * The following configurations were tested:
78 * 1. An IDE ATAPI TAPE shares the same interface
79 * and irq with an IDE ATAPI CDROM.
80 * 2. An IDE ATAPI TAPE shares the same interface
81 * and irq with a normal IDE disk.
82 * Both configurations seemed to work just fine !
83 * However, to be on the safe side, it is meanwhile
84 * recommended to give the IDE TAPE its own interface
86 * The one thing which needs to be done here is to
87 * add a "request postpone" feature to ide.c,
88 * so that we won't have to wait for the tape to finish
89 * performing a long media access (DSC) request (such
90 * as a rewind) before we can access the other device
91 * on the same interface. This effect doesn't disturb
92 * normal operation most of the time because read/write
93 * requests are relatively fast, and once we are
94 * performing one tape r/w request, a lot of requests
95 * from the other device can be queued and ide.c will
96 * service all of them after this single tape request.
97 * Ver 1.0 Dec 11 95 Integrated into Linux 1.3.46 development tree.
98 * On each read / write request, we now ask the drive
99 * if we can transfer a constant number of bytes
100 * (a parameter of the drive) only to its buffers,
101 * without causing actual media access. If we can't,
102 * we just wait until we can by polling the DSC bit.
103 * This ensures that while we are not transferring
104 * more bytes than the constant referred to above, the
105 * interrupt latency will not become too high and
106 * we won't cause an interrupt timeout, as happened
107 * occasionally in the previous version.
108 * While polling for DSC, the current request is
109 * postponed and ide.c is free to handle requests from
110 * the other device. This is handled transparently to
111 * ide.c. The hwgroup locking method which was used
112 * in the previous version was removed.
113 * Use of new general features which are provided by
114 * ide.c for use with atapi devices.
115 * (Programming done by Mark Lord)
116 * Few potential bug fixes (Again, suggested by Mark)
117 * Single character device data transfers are now
118 * not limited in size, as they were before.
119 * We are asking the tape about its recommended
120 * transfer unit and send a larger data transfer
121 * as several transfers of the above size.
122 * For best results, use an integral number of this
123 * basic unit (which is shown during driver
124 * initialization). I will soon add an ioctl to get
125 * this important parameter.
126 * Our data transfer buffer is allocated on startup,
127 * rather than before each data transfer. This should
128 * ensure that we will indeed have a data buffer.
129 * Ver 1.1 Dec 14 95 Fixed random problems which occurred when the tape
130 * shared an interface with another device.
131 * (poll_for_dsc was a complete mess).
132 * Removed some old (non-active) code which had
133 * to do with supporting buffer cache originated
135 * The block device interface can now be opened, so
136 * that general ide driver features like the unmask
137 * interrupts flag can be selected with an ioctl.
138 * This is the only use of the block device interface.
139 * New fast pipelined operation mode (currently only on
140 * writes). When using the pipelined mode, the
141 * throughput can potentially reach the maximum
142 * tape supported throughput, regardless of the
143 * user backup program. On my tape drive, it sometimes
144 * boosted performance by a factor of 2. Pipelined
145 * mode is enabled by default, but since it has a few
146 * downfalls as well, you may want to disable it.
147 * A short explanation of the pipelined operation mode
148 * is available below.
149 * Ver 1.2 Jan 1 96 Eliminated pipelined mode race condition.
150 * Added pipeline read mode. As a result, restores
151 * are now as fast as backups.
152 * Optimized shared interface behavior. The new behavior
153 * typically results in better IDE bus efficiency and
154 * higher tape throughput.
155 * Pre-calculation of the expected read/write request
156 * service time, based on the tape's parameters. In
157 * the pipelined operation mode, this allows us to
158 * adjust our polling frequency to a much lower value,
159 * and thus to dramatically reduce our load on Linux,
160 * without any decrease in performance.
161 * Implemented additional mtio.h operations.
162 * The recommended user block size is returned by
163 * the MTIOCGET ioctl.
164 * Additional minor changes.
165 * Ver 1.3 Feb 9 96 Fixed pipelined read mode bug which prevented the
166 * use of some block sizes during a restore procedure.
167 * The character device interface will now present a
168 * continuous view of the media - any mix of block sizes
169 * during a backup/restore procedure is supported. The
170 * driver will buffer the requests internally and
171 * convert them to the tape's recommended transfer
172 * unit, making performance almost independent of the
173 * chosen user block size.
174 * Some improvements in error recovery.
175 * By cooperating with ide-dma.c, bus mastering DMA can
176 * now sometimes be used with IDE tape drives as well.
177 * Bus mastering DMA has the potential to dramatically
178 * reduce the CPU's overhead when accessing the device,
179 * and can be enabled by using hdparm -d1 on the tape's
180 * block device interface. For more info, read the
181 * comments in ide-dma.c.
182 * Ver 1.4 Mar 13 96 Fixed serialize support.
183 * Ver 1.5 Apr 12 96 Fixed shared interface operation, broken in 1.3.85.
184 * Fixed pipelined read mode inefficiency.
185 * Fixed nasty null dereferencing bug.
186 * Ver 1.6 Aug 16 96 Fixed FPU usage in the driver.
187 * Fixed end of media bug.
188 * Ver 1.7 Sep 10 96 Minor changes for the CONNER CTT8000-A model.
189 * Ver 1.8 Sep 26 96 Attempt to find a better balance between good
190 * interactive response and high system throughput.
191 * Ver 1.9 Nov 5 96 Automatically cross encountered filemarks rather
192 * than requiring an explicit FSF command.
193 * Abort pending requests at end of media.
194 * MTTELL was sometimes returning incorrect results.
195 * Return the real block size in the MTIOCGET ioctl.
196 * Some error recovery bug fixes.
197 * Ver 1.10 Nov 5 96 Major reorganization.
198 * Reduced CPU overhead a bit by eliminating internal
200 * Added module support.
201 * Added multiple tape drives support.
202 * Added partition support.
203 * Rewrote DSC handling.
204 * Some portability fixes.
205 * Removed ide-tape.h.
206 * Additional minor changes.
207 * Ver 1.11 Dec 2 96 Bug fix in previous DSC timeout handling.
208 * Use ide_stall_queue() for DSC overlap.
209 * Use the maximum speed rather than the current speed
210 * to compute the request service time.
211 * Ver 1.12 Dec 7 97 Fix random memory overwriting and/or last block data
212 * corruption, which could occur if the total number
213 * of bytes written to the tape was not an integral
214 * number of tape blocks.
215 * Add support for INTERRUPT DRQ devices.
216 * Ver 1.13 Jan 2 98 Add "speed == 0" work-around for HP COLORADO 5GB
217 * Ver 1.14 Dec 30 98 Partial fixes for the Sony/AIWA tape drives.
218 * Replace cli()/sti() with hwgroup spinlocks.
219 * Ver 1.15 Mar 25 99 Fix SMP race condition by replacing hwgroup
220 * spinlock with private per-tape spinlock.
221 * Ver 1.16 Sep 1 99 Add OnStream tape support.
222 * Abort read pipeline on EOD.
223 * Wait for the tape to become ready in case it returns
224 * "in the process of becoming ready" on open().
225 * Fix zero padding of the last written block in
226 * case the tape block size is larger than PAGE_SIZE.
227 * Decrease the default disconnection time to tn.
228 * Ver 1.16e Oct 3 99 Minor fixes.
229 * Ver 1.16e1 Oct 13 99 Patches by Arnold Niessen,
230 * niessen@iae.nl / arnold.niessen@philips.com
231 * GO-1) Undefined code in idetape_read_position
232 * according to Gadi's email
233 * AJN-1) Minor fix asc == 11 should be asc == 0x11
234 * in idetape_issue_packet_command (did effect
235 * debugging output only)
236 * AJN-2) Added more debugging output, and
237 * added ide-tape: where missing. I would also
238 * like to add tape->name where possible
239 * AJN-3) Added different debug_level's
240 * via /proc/ide/hdc/settings
241 * "debug_level" determines amount of debugging output;
242 * can be changed using /proc/ide/hdx/settings
243 * 0 : almost no debugging output
244 * 1 : 0+output errors only
245 * 2 : 1+output all sensekey/asc
246 * 3 : 2+follow all chrdev related procedures
247 * 4 : 3+follow all procedures
248 * 5 : 4+include pc_stack rq_stack info
249 * 6 : 5+USE_COUNT updates
250 * AJN-4) Fixed timeout for retension in idetape_queue_pc_tail
251 * from 5 to 10 minutes
252 * AJN-5) Changed maximum number of blocks to skip when
253 * reading tapes with multiple consecutive write
254 * errors from 100 to 1000 in idetape_get_logical_blk
255 * Proposed changes to code:
256 * 1) output "logical_blk_num" via /proc
257 * 2) output "current_operation" via /proc
258 * 3) Either solve or document the fact that `mt rewind' is
259 * required after reading from /dev/nhtx to be
260 * able to rmmod the idetape module;
261 * Also, sometimes an application finishes but the
262 * device remains `busy' for some time. Same cause ?
263 * Proposed changes to release-notes:
264 * 4) write a simple `quickstart' section in the
265 * release notes; I volunteer if you don't want to
266 * 5) include a pointer to video4linux in the doc
267 * to stimulate video applications
268 * 6) release notes lines 331 and 362: explain what happens
269 * if the application data rate is higher than 1100 KB/s;
270 * similar approach to lower-than-500 kB/s ?
271 * 7) 6.6 Comparison; wouldn't it be better to allow different
272 * strategies for read and write ?
273 * Wouldn't it be better to control the tape buffer
274 * contents instead of the bandwidth ?
275 * 8) line 536: replace will by would (if I understand
276 * this section correctly, a hypothetical and unwanted situation
277 * is being described)
278 * Ver 1.16f Dec 15 99 Change place of the secondary OnStream header frames.
279 * Ver 1.17 Nov 2000 / Jan 2001 Marcel Mol, marcel@mesa.nl
280 * - Add idetape_onstream_mode_sense_tape_parameter_page
281 * function to get tape capacity in frames: tape->capacity.
282 * - Add support for DI-50 drives( or any DI- drive).
283 * - 'workaround' for read error/blank block around block 3000.
284 * - Implement Early warning for end of media for Onstream.
285 * - Cosmetic code changes for readability.
286 * - Idetape_position_tape should not use SKIP bit during
287 * Onstream read recovery.
288 * - Add capacity, logical_blk_num and first/last_frame_position
289 * to /proc/ide/hd?/settings.
290 * - Module use count was gone in the Linux 2.4 driver.
291 * Ver 1.17a Apr 2001 Willem Riede osst@riede.org
292 * - Get drive's actual block size from mode sense block descriptor
293 * - Limit size of pipeline
294 * Ver 1.17b Oct 2002 Alan Stern <stern@rowland.harvard.edu>
295 * Changed IDETAPE_MIN_PIPELINE_STAGES to 1 and actually used
297 * Actually removed aborted stages in idetape_abort_pipeline
298 * instead of just changing the command code.
299 * Made the transfer byte count for Request Sense equal to the
300 * actual length of the data transfer.
301 * Changed handling of partial data transfers: they do not
303 * Moved initiation of DMA transfers to the correct place.
304 * Removed reference to unallocated memory.
305 * Made __idetape_discard_read_pipeline return the number of
306 * sectors skipped, not the number of stages.
307 * Replaced errant kfree() calls with __idetape_kfree_stage().
308 * Fixed off-by-one error in testing the pipeline length.
309 * Fixed handling of filemarks in the read pipeline.
310 * Small code optimization for MTBSF and MTBSFM ioctls.
311 * Don't try to unlock the door during device close if is
313 * Cosmetic fixes to miscellaneous debugging output messages.
314 * Set the minimum /proc/ide/hd?/settings values for "pipeline",
315 * "pipeline_min", and "pipeline_max" to 1.
317 * Here are some words from the first releases of hd.c, which are quoted
318 * in ide.c and apply here as well:
320 * | Special care is recommended. Have Fun!
325 * An overview of the pipelined operation mode.
327 * In the pipelined write mode, we will usually just add requests to our
328 * pipeline and return immediately, before we even start to service them. The
329 * user program will then have enough time to prepare the next request while
330 * we are still busy servicing previous requests. In the pipelined read mode,
331 * the situation is similar - we add read-ahead requests into the pipeline,
332 * before the user even requested them.
334 * The pipeline can be viewed as a "safety net" which will be activated when
335 * the system load is high and prevents the user backup program from keeping up
336 * with the current tape speed. At this point, the pipeline will get
337 * shorter and shorter but the tape will still be streaming at the same speed.
338 * Assuming we have enough pipeline stages, the system load will hopefully
339 * decrease before the pipeline is completely empty, and the backup program
340 * will be able to "catch up" and refill the pipeline again.
342 * When using the pipelined mode, it would be best to disable any type of
343 * buffering done by the user program, as ide-tape already provides all the
344 * benefits in the kernel, where it can be done in a more efficient way.
345 * As we will usually not block the user program on a request, the most
346 * efficient user code will then be a simple read-write-read-... cycle.
347 * Any additional logic will usually just slow down the backup process.
349 * Using the pipelined mode, I get a constant over 400 KBps throughput,
350 * which seems to be the maximum throughput supported by my tape.
352 * However, there are some downfalls:
354 * 1. We use memory (for data buffers) in proportional to the number
355 * of pipeline stages (each stage is about 26 KB with my tape).
356 * 2. In the pipelined write mode, we cheat and postpone error codes
357 * to the user task. In read mode, the actual tape position
358 * will be a bit further than the last requested block.
362 * 1. We allocate stages dynamically only when we need them. When
363 * we don't need them, we don't consume additional memory. In
364 * case we can't allocate stages, we just manage without them
365 * (at the expense of decreased throughput) so when Linux is
366 * tight in memory, we will not pose additional difficulties.
368 * 2. The maximum number of stages (which is, in fact, the maximum
369 * amount of memory) which we allocate is limited by the compile
370 * time parameter IDETAPE_MAX_PIPELINE_STAGES.
372 * 3. The maximum number of stages is a controlled parameter - We
373 * don't start from the user defined maximum number of stages
374 * but from the lower IDETAPE_MIN_PIPELINE_STAGES (again, we
375 * will not even allocate this amount of stages if the user
376 * program can't handle the speed). We then implement a feedback
377 * loop which checks if the pipeline is empty, and if it is, we
378 * increase the maximum number of stages as necessary until we
379 * reach the optimum value which just manages to keep the tape
380 * busy with minimum allocated memory or until we reach
381 * IDETAPE_MAX_PIPELINE_STAGES.
385 * In pipelined write mode, ide-tape can not return accurate error codes
386 * to the user program since we usually just add the request to the
387 * pipeline without waiting for it to be serviced. In case an error
388 * occurs, I will report it on the next user request.
390 * In the pipelined read mode, subsequent read requests or forward
391 * filemark spacing will perform correctly, as we preserve all blocks
392 * and filemarks which we encountered during our excess read-ahead.
394 * For accurate tape positioning and error reporting, disabling
395 * pipelined mode might be the best option.
397 * You can enable/disable/tune the pipelined operation mode by adjusting
398 * the compile time parameters below.
402 * Possible improvements.
404 * 1. Support for the ATAPI overlap protocol.
406 * In order to maximize bus throughput, we currently use the DSC
407 * overlap method which enables ide.c to service requests from the
408 * other device while the tape is busy executing a command. The
409 * DSC overlap method involves polling the tape's status register
410 * for the DSC bit, and servicing the other device while the tape
413 * In the current QIC development standard (December 1995),
414 * it is recommended that new tape drives will *in addition*
415 * implement the ATAPI overlap protocol, which is used for the
416 * same purpose - efficient use of the IDE bus, but is interrupt
417 * driven and thus has much less CPU overhead.
419 * ATAPI overlap is likely to be supported in most new ATAPI
420 * devices, including new ATAPI cdroms, and thus provides us
421 * a method by which we can achieve higher throughput when
422 * sharing a (fast) ATA-2 disk with any (slow) new ATAPI device.
425 #define IDETAPE_VERSION "1.19"
427 #include <linux/module.h>
428 #include <linux/types.h>
429 #include <linux/string.h>
430 #include <linux/kernel.h>
431 #include <linux/delay.h>
432 #include <linux/timer.h>
433 #include <linux/mm.h>
434 #include <linux/interrupt.h>
435 #include <linux/jiffies.h>
436 #include <linux/major.h>
437 #include <linux/errno.h>
438 #include <linux/genhd.h>
439 #include <linux/slab.h>
440 #include <linux/pci.h>
441 #include <linux/ide.h>
442 #include <linux/smp_lock.h>
443 #include <linux/completion.h>
444 #include <linux/bitops.h>
445 #include <linux/mutex.h>
447 #include <asm/byteorder.h>
449 #include <asm/uaccess.h>
451 #include <asm/unaligned.h>
456 typedef struct os_partition_s
{
460 __u32 first_frame_addr
;
461 __u32 last_frame_addr
;
462 __u32 eod_frame_addr
;
468 typedef struct os_dat_entry_s
{
478 #define OS_DAT_FLAGS_DATA (0xc)
479 #define OS_DAT_FLAGS_MARK (0x1)
481 typedef struct os_dat_s
{
486 os_dat_entry_t dat_list
[16];
489 #include <linux/mtio.h>
491 /**************************** Tunable parameters *****************************/
495 * Pipelined mode parameters.
497 * We try to use the minimum number of stages which is enough to
498 * keep the tape constantly streaming. To accomplish that, we implement
499 * a feedback loop around the maximum number of stages:
501 * We start from MIN maximum stages (we will not even use MIN stages
502 * if we don't need them), increment it by RATE*(MAX-MIN)
503 * whenever we sense that the pipeline is empty, until we reach
504 * the optimum value or until we reach MAX.
506 * Setting the following parameter to 0 is illegal: the pipelined mode
507 * cannot be disabled (calculate_speeds() divides by tape->max_stages.)
509 #define IDETAPE_MIN_PIPELINE_STAGES 1
510 #define IDETAPE_MAX_PIPELINE_STAGES 400
511 #define IDETAPE_INCREASE_STAGES_RATE 20
514 * The following are used to debug the driver:
516 * Setting IDETAPE_DEBUG_INFO to 1 will report device capabilities.
517 * Setting IDETAPE_DEBUG_LOG to 1 will log driver flow control.
518 * Setting IDETAPE_DEBUG_BUGS to 1 will enable self-sanity checks in
521 * Setting them to 0 will restore normal operation mode:
523 * 1. Disable logging normal successful operations.
524 * 2. Disable self-sanity checks.
525 * 3. Errors will still be logged, of course.
527 * All the #if DEBUG code will be removed some day, when the driver
528 * is verified to be stable enough. This will make it much more
531 #define IDETAPE_DEBUG_INFO 0
532 #define IDETAPE_DEBUG_LOG 0
533 #define IDETAPE_DEBUG_BUGS 1
536 * After each failed packet command we issue a request sense command
537 * and retry the packet command IDETAPE_MAX_PC_RETRIES times.
539 * Setting IDETAPE_MAX_PC_RETRIES to 0 will disable retries.
541 #define IDETAPE_MAX_PC_RETRIES 3
544 * With each packet command, we allocate a buffer of
545 * IDETAPE_PC_BUFFER_SIZE bytes. This is used for several packet
546 * commands (Not for READ/WRITE commands).
548 #define IDETAPE_PC_BUFFER_SIZE 256
551 * In various places in the driver, we need to allocate storage
552 * for packet commands and requests, which will remain valid while
553 * we leave the driver to wait for an interrupt or a timeout event.
555 #define IDETAPE_PC_STACK (10 + IDETAPE_MAX_PC_RETRIES)
558 * Some drives (for example, Seagate STT3401A Travan) require a very long
559 * timeout, because they don't return an interrupt or clear their busy bit
560 * until after the command completes (even retension commands).
562 #define IDETAPE_WAIT_CMD (900*HZ)
565 * The following parameter is used to select the point in the internal
566 * tape fifo in which we will start to refill the buffer. Decreasing
567 * the following parameter will improve the system's latency and
568 * interactive response, while using a high value might improve system
571 #define IDETAPE_FIFO_THRESHOLD 2
574 * DSC polling parameters.
576 * Polling for DSC (a single bit in the status register) is a very
577 * important function in ide-tape. There are two cases in which we
580 * 1. Before a read/write packet command, to ensure that we
581 * can transfer data from/to the tape's data buffers, without
582 * causing an actual media access. In case the tape is not
583 * ready yet, we take out our request from the device
584 * request queue, so that ide.c will service requests from
585 * the other device on the same interface meanwhile.
587 * 2. After the successful initialization of a "media access
588 * packet command", which is a command which can take a long
589 * time to complete (it can be several seconds or even an hour).
591 * Again, we postpone our request in the middle to free the bus
592 * for the other device. The polling frequency here should be
593 * lower than the read/write frequency since those media access
594 * commands are slow. We start from a "fast" frequency -
595 * IDETAPE_DSC_MA_FAST (one second), and if we don't receive DSC
596 * after IDETAPE_DSC_MA_THRESHOLD (5 minutes), we switch it to a
597 * lower frequency - IDETAPE_DSC_MA_SLOW (1 minute).
599 * We also set a timeout for the timer, in case something goes wrong.
600 * The timeout should be longer then the maximum execution time of a
607 #define IDETAPE_DSC_RW_MIN 5*HZ/100 /* 50 msec */
608 #define IDETAPE_DSC_RW_MAX 40*HZ/100 /* 400 msec */
609 #define IDETAPE_DSC_RW_TIMEOUT 2*60*HZ /* 2 minutes */
610 #define IDETAPE_DSC_MA_FAST 2*HZ /* 2 seconds */
611 #define IDETAPE_DSC_MA_THRESHOLD 5*60*HZ /* 5 minutes */
612 #define IDETAPE_DSC_MA_SLOW 30*HZ /* 30 seconds */
613 #define IDETAPE_DSC_MA_TIMEOUT 2*60*60*HZ /* 2 hours */
615 /*************************** End of tunable parameters ***********************/
618 * Debugging/Performance analysis
622 #define USE_IOTRACE 0
624 #define IO_IDETAPE_FIFO 500
628 * Read/Write error simulation
630 #define SIMULATE_ERRORS 0
633 * For general magnetic tape device compatibility.
636 idetape_direction_none
,
637 idetape_direction_read
,
638 idetape_direction_write
639 } idetape_chrdev_direction_t
;
644 struct idetape_bh
*b_reqnext
;
649 * Our view of a packet command.
651 typedef struct idetape_packet_command_s
{
652 u8 c
[12]; /* Actual packet bytes */
653 int retries
; /* On each retry, we increment retries */
654 int error
; /* Error code */
655 int request_transfer
; /* Bytes to transfer */
656 int actually_transferred
; /* Bytes actually transferred */
657 int buffer_size
; /* Size of our data buffer */
658 struct idetape_bh
*bh
;
661 u8
*buffer
; /* Data buffer */
662 u8
*current_position
; /* Pointer into the above buffer */
663 ide_startstop_t (*callback
) (ide_drive_t
*); /* Called when this packet command is completed */
664 u8 pc_buffer
[IDETAPE_PC_BUFFER_SIZE
]; /* Temporary buffer */
665 unsigned long flags
; /* Status/Action bit flags: long for set_bit */
669 * Packet command flag bits.
671 /* Set when an error is considered normal - We won't retry */
673 /* 1 When polling for DSC on a media access command */
674 #define PC_WAIT_FOR_DSC 1
675 /* 1 when we prefer to use DMA if possible */
676 #define PC_DMA_RECOMMENDED 2
677 /* 1 while DMA in progress */
678 #define PC_DMA_IN_PROGRESS 3
679 /* 1 when encountered problem during DMA */
680 #define PC_DMA_ERROR 4
685 * Capabilities and Mechanical Status Page
688 unsigned page_code
:6; /* Page code - Should be 0x2a */
690 __u8 ps
:1; /* parameters saveable */
691 __u8 page_length
; /* Page Length - Should be 0x12 */
692 __u8 reserved2
, reserved3
;
693 unsigned ro
:1; /* Read Only Mode */
694 unsigned reserved4_1234
:4;
695 unsigned sprev
:1; /* Supports SPACE in the reverse direction */
696 unsigned reserved4_67
:2;
697 unsigned reserved5_012
:3;
698 unsigned efmt
:1; /* Supports ERASE command initiated formatting */
699 unsigned reserved5_4
:1;
700 unsigned qfa
:1; /* Supports the QFA two partition formats */
701 unsigned reserved5_67
:2;
702 unsigned lock
:1; /* Supports locking the volume */
703 unsigned locked
:1; /* The volume is locked */
704 unsigned prevent
:1; /* The device defaults in the prevent state after power up */
705 unsigned eject
:1; /* The device can eject the volume */
706 __u8 disconnect
:1; /* The device can break request > ctl */
708 unsigned ecc
:1; /* Supports error correction */
709 unsigned cmprs
:1; /* Supports data compression */
710 unsigned reserved7_0
:1;
711 unsigned blk512
:1; /* Supports 512 bytes block size */
712 unsigned blk1024
:1; /* Supports 1024 bytes block size */
713 unsigned reserved7_3_6
:4;
714 unsigned blk32768
:1; /* slowb - the device restricts the byte count for PIO */
715 /* transfers for slow buffer memory ??? */
716 /* Also 32768 block size in some cases */
717 __u16 max_speed
; /* Maximum speed supported in KBps */
718 __u8 reserved10
, reserved11
;
719 __u16 ctl
; /* Continuous Transfer Limit in blocks */
720 __u16 speed
; /* Current Speed, in KBps */
721 __u16 buffer_size
; /* Buffer Size, in 512 bytes */
722 __u8 reserved18
, reserved19
;
723 } idetape_capabilities_page_t
;
729 unsigned page_code
:6; /* Page code - Should be 0x30 */
730 unsigned reserved1_6
:1;
732 __u8 page_length
; /* Page Length - Should be 2 */
735 unsigned play32_5
:1;
736 unsigned reserved2_23
:2;
737 unsigned record32
:1;
738 unsigned record32_5
:1;
739 unsigned reserved2_6
:1;
741 } idetape_block_size_page_t
;
746 typedef struct idetape_stage_s
{
747 struct request rq
; /* The corresponding request */
748 struct idetape_bh
*bh
; /* The data buffers */
749 struct idetape_stage_s
*next
; /* Pointer to the next stage */
753 * REQUEST SENSE packet command result - Data Format.
756 unsigned error_code
:7; /* Current of deferred errors */
757 unsigned valid
:1; /* The information field conforms to QIC-157C */
758 __u8 reserved1
:8; /* Segment Number - Reserved */
759 unsigned sense_key
:4; /* Sense Key */
760 unsigned reserved2_4
:1; /* Reserved */
761 unsigned ili
:1; /* Incorrect Length Indicator */
762 unsigned eom
:1; /* End Of Medium */
763 unsigned filemark
:1; /* Filemark */
764 __u32 information
__attribute__ ((packed
));
765 __u8 asl
; /* Additional sense length (n-7) */
766 __u32 command_specific
; /* Additional command specific information */
767 __u8 asc
; /* Additional Sense Code */
768 __u8 ascq
; /* Additional Sense Code Qualifier */
769 __u8 replaceable_unit_code
; /* Field Replaceable Unit Code */
770 unsigned sk_specific1
:7; /* Sense Key Specific */
771 unsigned sksv
:1; /* Sense Key Specific information is valid */
772 __u8 sk_specific2
; /* Sense Key Specific */
773 __u8 sk_specific3
; /* Sense Key Specific */
774 __u8 pad
[2]; /* Padding to 20 bytes */
775 } idetape_request_sense_result_t
;
779 * Most of our global data which we need to save even as we leave the
780 * driver due to an interrupt or a timer event is stored in a variable
781 * of type idetape_tape_t, defined below.
783 typedef struct ide_tape_obj
{
785 ide_driver_t
*driver
;
786 struct gendisk
*disk
;
790 * Since a typical character device operation requires more
791 * than one packet command, we provide here enough memory
792 * for the maximum of interconnected packet commands.
793 * The packet commands are stored in the circular array pc_stack.
794 * pc_stack_index points to the last used entry, and warps around
795 * to the start when we get to the last array entry.
797 * pc points to the current processed packet command.
799 * failed_pc points to the last failed packet command, or contains
800 * NULL if we do not need to retry any packet command. This is
801 * required since an additional packet command is needed before the
802 * retry, to get detailed information on what went wrong.
804 /* Current packet command */
806 /* Last failed packet command */
807 idetape_pc_t
*failed_pc
;
808 /* Packet command stack */
809 idetape_pc_t pc_stack
[IDETAPE_PC_STACK
];
810 /* Next free packet command storage space */
812 struct request rq_stack
[IDETAPE_PC_STACK
];
813 /* We implement a circular array */
817 * DSC polling variables.
819 * While polling for DSC we use postponed_rq to postpone the
820 * current request so that ide.c will be able to service
821 * pending requests on the other device. Note that at most
822 * we will have only one DSC (usually data transfer) request
823 * in the device request queue. Additional requests can be
824 * queued in our internal pipeline, but they will be visible
825 * to ide.c only one at a time.
827 struct request
*postponed_rq
;
828 /* The time in which we started polling for DSC */
829 unsigned long dsc_polling_start
;
830 /* Timer used to poll for dsc */
831 struct timer_list dsc_timer
;
832 /* Read/Write dsc polling frequency */
833 unsigned long best_dsc_rw_frequency
;
834 /* The current polling frequency */
835 unsigned long dsc_polling_frequency
;
836 /* Maximum waiting time */
837 unsigned long dsc_timeout
;
840 * Read position information
844 unsigned int first_frame_position
;
845 unsigned int last_frame_position
;
846 unsigned int blocks_in_buffer
;
849 * Last error information
851 u8 sense_key
, asc
, ascq
;
854 * Character device operation
859 /* Current character device data transfer direction */
860 idetape_chrdev_direction_t chrdev_direction
;
865 /* Usually 512 or 1024 bytes */
866 unsigned short tape_block_size
;
868 /* Copy of the tape's Capabilities and Mechanical Page */
869 idetape_capabilities_page_t capabilities
;
872 * Active data transfer request parameters.
874 * At most, there is only one ide-tape originated data transfer
875 * request in the device request queue. This allows ide.c to
876 * easily service requests from the other device when we
877 * postpone our active request. In the pipelined operation
878 * mode, we use our internal pipeline structure to hold
879 * more data requests.
881 * The data buffer size is chosen based on the tape's
884 /* Pointer to the request which is waiting in the device request queue */
885 struct request
*active_data_request
;
886 /* Data buffer size (chosen based on the tape's recommendation */
888 idetape_stage_t
*merge_stage
;
889 int merge_stage_size
;
890 struct idetape_bh
*bh
;
895 * Pipeline parameters.
897 * To accomplish non-pipelined mode, we simply set the following
898 * variables to zero (or NULL, where appropriate).
900 /* Number of currently used stages */
902 /* Number of pending stages */
903 int nr_pending_stages
;
904 /* We will not allocate more than this number of stages */
905 int max_stages
, min_pipeline
, max_pipeline
;
906 /* The first stage which will be removed from the pipeline */
907 idetape_stage_t
*first_stage
;
908 /* The currently active stage */
909 idetape_stage_t
*active_stage
;
910 /* Will be serviced after the currently active request */
911 idetape_stage_t
*next_stage
;
912 /* New requests will be added to the pipeline here */
913 idetape_stage_t
*last_stage
;
914 /* Optional free stage which we can use */
915 idetape_stage_t
*cache_stage
;
917 /* Wasted space in each stage */
920 /* Status/Action flags: long for set_bit */
922 /* protects the ide-tape queue */
926 * Measures average tape speed
928 unsigned long avg_time
;
932 /* last sense information */
933 idetape_request_sense_result_t sense
;
937 char firmware_revision
[6];
938 int firmware_revision_num
;
940 /* the door is currently locked */
942 /* the tape hardware is write protected */
944 /* the tape is write protected (hardware or opened as read-only) */
948 * Limit the number of times a request can
949 * be postponed, to avoid an infinite postpone
952 /* request postpone count limit */
956 * Measures number of frames:
958 * 1. written/read to/from the driver pipeline (pipeline_head).
959 * 2. written/read to/from the tape buffers (idetape_bh).
960 * 3. written/read by the tape to/from the media (tape_head).
968 * Speed control at the tape buffers input/output
970 unsigned long insert_time
;
973 int max_insert_speed
;
974 int measure_insert_time
;
977 * Measure tape still time, in milliseconds
979 unsigned long tape_still_time_begin
;
983 * Speed regulation negative feedback loop
986 int pipeline_head_speed
;
987 int controlled_pipeline_head_speed
;
988 int uncontrolled_pipeline_head_speed
;
989 int controlled_last_pipeline_head
;
990 int uncontrolled_last_pipeline_head
;
991 unsigned long uncontrolled_pipeline_head_time
;
992 unsigned long controlled_pipeline_head_time
;
993 int controlled_previous_pipeline_head
;
994 int uncontrolled_previous_pipeline_head
;
995 unsigned long controlled_previous_head_time
;
996 unsigned long uncontrolled_previous_head_time
;
997 int restart_speed_control_req
;
1000 * Debug_level determines amount of debugging output;
1001 * can be changed using /proc/ide/hdx/settings
1002 * 0 : almost no debugging output
1003 * 1 : 0+output errors only
1004 * 2 : 1+output all sensekey/asc
1005 * 3 : 2+follow all chrdev related procedures
1006 * 4 : 3+follow all procedures
1007 * 5 : 4+include pc_stack rq_stack info
1008 * 6 : 5+USE_COUNT updates
1013 static DEFINE_MUTEX(idetape_ref_mutex
);
1015 static struct class *idetape_sysfs_class
;
1017 #define to_ide_tape(obj) container_of(obj, struct ide_tape_obj, kref)
1019 #define ide_tape_g(disk) \
1020 container_of((disk)->private_data, struct ide_tape_obj, driver)
1022 static struct ide_tape_obj
*ide_tape_get(struct gendisk
*disk
)
1024 struct ide_tape_obj
*tape
= NULL
;
1026 mutex_lock(&idetape_ref_mutex
);
1027 tape
= ide_tape_g(disk
);
1029 kref_get(&tape
->kref
);
1030 mutex_unlock(&idetape_ref_mutex
);
1034 static void ide_tape_release(struct kref
*);
1036 static void ide_tape_put(struct ide_tape_obj
*tape
)
1038 mutex_lock(&idetape_ref_mutex
);
1039 kref_put(&tape
->kref
, ide_tape_release
);
1040 mutex_unlock(&idetape_ref_mutex
);
1046 #define DOOR_UNLOCKED 0
1047 #define DOOR_LOCKED 1
1048 #define DOOR_EXPLICITLY_LOCKED 2
1051 * Tape flag bits values.
1053 #define IDETAPE_IGNORE_DSC 0
1054 #define IDETAPE_ADDRESS_VALID 1 /* 0 When the tape position is unknown */
1055 #define IDETAPE_BUSY 2 /* Device already opened */
1056 #define IDETAPE_PIPELINE_ERROR 3 /* Error detected in a pipeline stage */
1057 #define IDETAPE_DETECT_BS 4 /* Attempt to auto-detect the current user block size */
1058 #define IDETAPE_FILEMARK 5 /* Currently on a filemark */
1059 #define IDETAPE_DRQ_INTERRUPT 6 /* DRQ interrupt device */
1060 #define IDETAPE_READ_ERROR 7
1061 #define IDETAPE_PIPELINE_ACTIVE 8 /* pipeline active */
1062 /* 0 = no tape is loaded, so we don't rewind after ejecting */
1063 #define IDETAPE_MEDIUM_PRESENT 9
1066 * Supported ATAPI tape drives packet commands
1068 #define IDETAPE_TEST_UNIT_READY_CMD 0x00
1069 #define IDETAPE_REWIND_CMD 0x01
1070 #define IDETAPE_REQUEST_SENSE_CMD 0x03
1071 #define IDETAPE_READ_CMD 0x08
1072 #define IDETAPE_WRITE_CMD 0x0a
1073 #define IDETAPE_WRITE_FILEMARK_CMD 0x10
1074 #define IDETAPE_SPACE_CMD 0x11
1075 #define IDETAPE_INQUIRY_CMD 0x12
1076 #define IDETAPE_ERASE_CMD 0x19
1077 #define IDETAPE_MODE_SENSE_CMD 0x1a
1078 #define IDETAPE_MODE_SELECT_CMD 0x15
1079 #define IDETAPE_LOAD_UNLOAD_CMD 0x1b
1080 #define IDETAPE_PREVENT_CMD 0x1e
1081 #define IDETAPE_LOCATE_CMD 0x2b
1082 #define IDETAPE_READ_POSITION_CMD 0x34
1083 #define IDETAPE_READ_BUFFER_CMD 0x3c
1084 #define IDETAPE_SET_SPEED_CMD 0xbb
1087 * Some defines for the READ BUFFER command
1089 #define IDETAPE_RETRIEVE_FAULTY_BLOCK 6
1092 * Some defines for the SPACE command
1094 #define IDETAPE_SPACE_OVER_FILEMARK 1
1095 #define IDETAPE_SPACE_TO_EOD 3
1098 * Some defines for the LOAD UNLOAD command
1100 #define IDETAPE_LU_LOAD_MASK 1
1101 #define IDETAPE_LU_RETENSION_MASK 2
1102 #define IDETAPE_LU_EOT_MASK 4
1105 * Special requests for our block device strategy routine.
1107 * In order to service a character device command, we add special
1108 * requests to the tail of our block device request queue and wait
1109 * for their completion.
1113 REQ_IDETAPE_PC1
= (1 << 0), /* packet command (first stage) */
1114 REQ_IDETAPE_PC2
= (1 << 1), /* packet command (second stage) */
1115 REQ_IDETAPE_READ
= (1 << 2),
1116 REQ_IDETAPE_WRITE
= (1 << 3),
1117 REQ_IDETAPE_READ_BUFFER
= (1 << 4),
1121 * Error codes which are returned in rq->errors to the higher part
1124 #define IDETAPE_ERROR_GENERAL 101
1125 #define IDETAPE_ERROR_FILEMARK 102
1126 #define IDETAPE_ERROR_EOD 103
1129 * The following is used to format the general configuration word of
1130 * the ATAPI IDENTIFY DEVICE command.
1132 struct idetape_id_gcw
{
1133 unsigned packet_size
:2; /* Packet Size */
1134 unsigned reserved234
:3; /* Reserved */
1135 unsigned drq_type
:2; /* Command packet DRQ type */
1136 unsigned removable
:1; /* Removable media */
1137 unsigned device_type
:5; /* Device type */
1138 unsigned reserved13
:1; /* Reserved */
1139 unsigned protocol
:2; /* Protocol type */
1143 * INQUIRY packet command - Data Format (From Table 6-8 of QIC-157C)
1146 unsigned device_type
:5; /* Peripheral Device Type */
1147 unsigned reserved0_765
:3; /* Peripheral Qualifier - Reserved */
1148 unsigned reserved1_6t0
:7; /* Reserved */
1149 unsigned rmb
:1; /* Removable Medium Bit */
1150 unsigned ansi_version
:3; /* ANSI Version */
1151 unsigned ecma_version
:3; /* ECMA Version */
1152 unsigned iso_version
:2; /* ISO Version */
1153 unsigned response_format
:4; /* Response Data Format */
1154 unsigned reserved3_45
:2; /* Reserved */
1155 unsigned reserved3_6
:1; /* TrmIOP - Reserved */
1156 unsigned reserved3_7
:1; /* AENC - Reserved */
1157 __u8 additional_length
; /* Additional Length (total_length-4) */
1158 __u8 rsv5
, rsv6
, rsv7
; /* Reserved */
1159 __u8 vendor_id
[8]; /* Vendor Identification */
1160 __u8 product_id
[16]; /* Product Identification */
1161 __u8 revision_level
[4]; /* Revision Level */
1162 __u8 vendor_specific
[20]; /* Vendor Specific - Optional */
1163 __u8 reserved56t95
[40]; /* Reserved - Optional */
1164 /* Additional information may be returned */
1165 } idetape_inquiry_result_t
;
1168 * READ POSITION packet command - Data Format (From Table 6-57)
1171 unsigned reserved0_10
:2; /* Reserved */
1172 unsigned bpu
:1; /* Block Position Unknown */
1173 unsigned reserved0_543
:3; /* Reserved */
1174 unsigned eop
:1; /* End Of Partition */
1175 unsigned bop
:1; /* Beginning Of Partition */
1176 u8 partition
; /* Partition Number */
1177 u8 reserved2
, reserved3
; /* Reserved */
1178 u32 first_block
; /* First Block Location */
1179 u32 last_block
; /* Last Block Location (Optional) */
1180 u8 reserved12
; /* Reserved */
1181 u8 blocks_in_buffer
[3]; /* Blocks In Buffer - (Optional) */
1182 u32 bytes_in_buffer
; /* Bytes In Buffer (Optional) */
1183 } idetape_read_position_result_t
;
1186 * Follows structures which are related to the SELECT SENSE / MODE SENSE
1187 * packet commands. Those packet commands are still not supported
1190 #define IDETAPE_BLOCK_DESCRIPTOR 0
1191 #define IDETAPE_CAPABILITIES_PAGE 0x2a
1192 #define IDETAPE_PARAMTR_PAGE 0x2b /* Onstream DI-x0 only */
1193 #define IDETAPE_BLOCK_SIZE_PAGE 0x30
1194 #define IDETAPE_BUFFER_FILLING_PAGE 0x33
1197 * Mode Parameter Header for the MODE SENSE packet command
1200 __u8 mode_data_length
; /* Length of the following data transfer */
1201 __u8 medium_type
; /* Medium Type */
1202 __u8 dsp
; /* Device Specific Parameter */
1203 __u8 bdl
; /* Block Descriptor Length */
1205 /* data transfer page */
1207 __u8 reserved0_6
:1;
1208 __u8 ps
:1; /* parameters saveable */
1209 __u8 page_length
; /* page Length == 0x02 */
1211 __u8 read32k
:1; /* 32k blk size (data only) */
1212 __u8 read32k5
:1; /* 32.5k blk size (data&AUX) */
1213 __u8 reserved3_23
:2;
1214 __u8 write32k
:1; /* 32k blk size (data only) */
1215 __u8 write32k5
:1; /* 32.5k blk size (data&AUX) */
1216 __u8 reserved3_6
:1;
1217 __u8 streaming
:1; /* streaming mode enable */
1219 } idetape_mode_parameter_header_t
;
1222 * Mode Parameter Block Descriptor the MODE SENSE packet command
1224 * Support for block descriptors is optional.
1227 __u8 density_code
; /* Medium density code */
1228 __u8 blocks
[3]; /* Number of blocks */
1229 __u8 reserved4
; /* Reserved */
1230 __u8 length
[3]; /* Block Length */
1231 } idetape_parameter_block_descriptor_t
;
1234 * The Data Compression Page, as returned by the MODE SENSE packet command.
1237 unsigned page_code
:6; /* Page Code - Should be 0xf */
1238 unsigned reserved0
:1; /* Reserved */
1240 __u8 page_length
; /* Page Length - Should be 14 */
1241 unsigned reserved2
:6; /* Reserved */
1242 unsigned dcc
:1; /* Data Compression Capable */
1243 unsigned dce
:1; /* Data Compression Enable */
1244 unsigned reserved3
:5; /* Reserved */
1245 unsigned red
:2; /* Report Exception on Decompression */
1246 unsigned dde
:1; /* Data Decompression Enable */
1247 __u32 ca
; /* Compression Algorithm */
1248 __u32 da
; /* Decompression Algorithm */
1249 __u8 reserved
[4]; /* Reserved */
1250 } idetape_data_compression_page_t
;
1253 * The Medium Partition Page, as returned by the MODE SENSE packet command.
1256 unsigned page_code
:6; /* Page Code - Should be 0x11 */
1257 unsigned reserved1_6
:1; /* Reserved */
1259 __u8 page_length
; /* Page Length - Should be 6 */
1260 __u8 map
; /* Maximum Additional Partitions - Should be 0 */
1261 __u8 apd
; /* Additional Partitions Defined - Should be 0 */
1262 unsigned reserved4_012
:3; /* Reserved */
1263 unsigned psum
:2; /* Should be 0 */
1264 unsigned idp
:1; /* Should be 0 */
1265 unsigned sdp
:1; /* Should be 0 */
1266 unsigned fdp
:1; /* Fixed Data Partitions */
1267 __u8 mfr
; /* Medium Format Recognition */
1268 __u8 reserved
[2]; /* Reserved */
1269 } idetape_medium_partition_page_t
;
1272 * Run time configurable parameters.
1275 int dsc_rw_frequency
;
1276 int dsc_media_access_frequency
;
1281 * The variables below are used for the character device interface.
1282 * Additional state variables are defined in our ide_drive_t structure.
1284 static struct ide_tape_obj
* idetape_devs
[MAX_HWIFS
* MAX_DRIVES
];
1286 #define ide_tape_f(file) ((file)->private_data)
1288 static struct ide_tape_obj
*ide_tape_chrdev_get(unsigned int i
)
1290 struct ide_tape_obj
*tape
= NULL
;
1292 mutex_lock(&idetape_ref_mutex
);
1293 tape
= idetape_devs
[i
];
1295 kref_get(&tape
->kref
);
1296 mutex_unlock(&idetape_ref_mutex
);
1301 * Function declarations
1304 static int idetape_chrdev_release (struct inode
*inode
, struct file
*filp
);
1305 static void idetape_write_release (ide_drive_t
*drive
, unsigned int minor
);
1308 * Too bad. The drive wants to send us data which we are not ready to accept.
1309 * Just throw it away.
1311 static void idetape_discard_data (ide_drive_t
*drive
, unsigned int bcount
)
1314 (void) HWIF(drive
)->INB(IDE_DATA_REG
);
1317 static void idetape_input_buffers (ide_drive_t
*drive
, idetape_pc_t
*pc
, unsigned int bcount
)
1319 struct idetape_bh
*bh
= pc
->bh
;
1323 #if IDETAPE_DEBUG_BUGS
1325 printk(KERN_ERR
"ide-tape: bh == NULL in "
1326 "idetape_input_buffers\n");
1327 idetape_discard_data(drive
, bcount
);
1330 #endif /* IDETAPE_DEBUG_BUGS */
1331 count
= min((unsigned int)(bh
->b_size
- atomic_read(&bh
->b_count
)), bcount
);
1332 HWIF(drive
)->atapi_input_bytes(drive
, bh
->b_data
+ atomic_read(&bh
->b_count
), count
);
1334 atomic_add(count
, &bh
->b_count
);
1335 if (atomic_read(&bh
->b_count
) == bh
->b_size
) {
1338 atomic_set(&bh
->b_count
, 0);
1344 static void idetape_output_buffers (ide_drive_t
*drive
, idetape_pc_t
*pc
, unsigned int bcount
)
1346 struct idetape_bh
*bh
= pc
->bh
;
1350 #if IDETAPE_DEBUG_BUGS
1352 printk(KERN_ERR
"ide-tape: bh == NULL in "
1353 "idetape_output_buffers\n");
1356 #endif /* IDETAPE_DEBUG_BUGS */
1357 count
= min((unsigned int)pc
->b_count
, (unsigned int)bcount
);
1358 HWIF(drive
)->atapi_output_bytes(drive
, pc
->b_data
, count
);
1360 pc
->b_data
+= count
;
1361 pc
->b_count
-= count
;
1363 pc
->bh
= bh
= bh
->b_reqnext
;
1365 pc
->b_data
= bh
->b_data
;
1366 pc
->b_count
= atomic_read(&bh
->b_count
);
1372 static void idetape_update_buffers (idetape_pc_t
*pc
)
1374 struct idetape_bh
*bh
= pc
->bh
;
1376 unsigned int bcount
= pc
->actually_transferred
;
1378 if (test_bit(PC_WRITING
, &pc
->flags
))
1381 #if IDETAPE_DEBUG_BUGS
1383 printk(KERN_ERR
"ide-tape: bh == NULL in "
1384 "idetape_update_buffers\n");
1387 #endif /* IDETAPE_DEBUG_BUGS */
1388 count
= min((unsigned int)bh
->b_size
, (unsigned int)bcount
);
1389 atomic_set(&bh
->b_count
, count
);
1390 if (atomic_read(&bh
->b_count
) == bh
->b_size
)
1398 * idetape_next_pc_storage returns a pointer to a place in which we can
1399 * safely store a packet command, even though we intend to leave the
1400 * driver. A storage space for a maximum of IDETAPE_PC_STACK packet
1401 * commands is allocated at initialization time.
1403 static idetape_pc_t
*idetape_next_pc_storage (ide_drive_t
*drive
)
1405 idetape_tape_t
*tape
= drive
->driver_data
;
1407 #if IDETAPE_DEBUG_LOG
1408 if (tape
->debug_level
>= 5)
1409 printk(KERN_INFO
"ide-tape: pc_stack_index=%d\n",
1410 tape
->pc_stack_index
);
1411 #endif /* IDETAPE_DEBUG_LOG */
1412 if (tape
->pc_stack_index
== IDETAPE_PC_STACK
)
1413 tape
->pc_stack_index
=0;
1414 return (&tape
->pc_stack
[tape
->pc_stack_index
++]);
1418 * idetape_next_rq_storage is used along with idetape_next_pc_storage.
1419 * Since we queue packet commands in the request queue, we need to
1420 * allocate a request, along with the allocation of a packet command.
1423 /**************************************************************
1425 * This should get fixed to use kmalloc(.., GFP_ATOMIC) *
1426 * followed later on by kfree(). -ml *
1428 **************************************************************/
1430 static struct request
*idetape_next_rq_storage (ide_drive_t
*drive
)
1432 idetape_tape_t
*tape
= drive
->driver_data
;
1434 #if IDETAPE_DEBUG_LOG
1435 if (tape
->debug_level
>= 5)
1436 printk(KERN_INFO
"ide-tape: rq_stack_index=%d\n",
1437 tape
->rq_stack_index
);
1438 #endif /* IDETAPE_DEBUG_LOG */
1439 if (tape
->rq_stack_index
== IDETAPE_PC_STACK
)
1440 tape
->rq_stack_index
=0;
1441 return (&tape
->rq_stack
[tape
->rq_stack_index
++]);
1445 * idetape_init_pc initializes a packet command.
1447 static void idetape_init_pc (idetape_pc_t
*pc
)
1449 memset(pc
->c
, 0, 12);
1452 pc
->request_transfer
= 0;
1453 pc
->buffer
= pc
->pc_buffer
;
1454 pc
->buffer_size
= IDETAPE_PC_BUFFER_SIZE
;
1460 * idetape_analyze_error is called on each failed packet command retry
1461 * to analyze the request sense. We currently do not utilize this
1464 static void idetape_analyze_error (ide_drive_t
*drive
, idetape_request_sense_result_t
*result
)
1466 idetape_tape_t
*tape
= drive
->driver_data
;
1467 idetape_pc_t
*pc
= tape
->failed_pc
;
1469 tape
->sense
= *result
;
1470 tape
->sense_key
= result
->sense_key
;
1471 tape
->asc
= result
->asc
;
1472 tape
->ascq
= result
->ascq
;
1473 #if IDETAPE_DEBUG_LOG
1475 * Without debugging, we only log an error if we decided to
1478 if (tape
->debug_level
>= 1)
1479 printk(KERN_INFO
"ide-tape: pc = %x, sense key = %x, "
1480 "asc = %x, ascq = %x\n",
1481 pc
->c
[0], result
->sense_key
,
1482 result
->asc
, result
->ascq
);
1483 #endif /* IDETAPE_DEBUG_LOG */
1486 * Correct pc->actually_transferred by asking the tape.
1488 if (test_bit(PC_DMA_ERROR
, &pc
->flags
)) {
1489 pc
->actually_transferred
= pc
->request_transfer
- tape
->tape_block_size
* ntohl(get_unaligned(&result
->information
));
1490 idetape_update_buffers(pc
);
1494 * If error was the result of a zero-length read or write command,
1495 * with sense key=5, asc=0x22, ascq=0, let it slide. Some drives
1496 * (i.e. Seagate STT3401A Travan) don't support 0-length read/writes.
1498 if ((pc
->c
[0] == IDETAPE_READ_CMD
|| pc
->c
[0] == IDETAPE_WRITE_CMD
)
1499 && pc
->c
[4] == 0 && pc
->c
[3] == 0 && pc
->c
[2] == 0) { /* length==0 */
1500 if (result
->sense_key
== 5) {
1501 /* don't report an error, everything's ok */
1503 /* don't retry read/write */
1504 set_bit(PC_ABORT
, &pc
->flags
);
1507 if (pc
->c
[0] == IDETAPE_READ_CMD
&& result
->filemark
) {
1508 pc
->error
= IDETAPE_ERROR_FILEMARK
;
1509 set_bit(PC_ABORT
, &pc
->flags
);
1511 if (pc
->c
[0] == IDETAPE_WRITE_CMD
) {
1513 (result
->sense_key
== 0xd && result
->asc
== 0x0 &&
1514 result
->ascq
== 0x2)) {
1515 pc
->error
= IDETAPE_ERROR_EOD
;
1516 set_bit(PC_ABORT
, &pc
->flags
);
1519 if (pc
->c
[0] == IDETAPE_READ_CMD
|| pc
->c
[0] == IDETAPE_WRITE_CMD
) {
1520 if (result
->sense_key
== 8) {
1521 pc
->error
= IDETAPE_ERROR_EOD
;
1522 set_bit(PC_ABORT
, &pc
->flags
);
1524 if (!test_bit(PC_ABORT
, &pc
->flags
) &&
1525 pc
->actually_transferred
)
1526 pc
->retries
= IDETAPE_MAX_PC_RETRIES
+ 1;
1531 * idetape_active_next_stage will declare the next stage as "active".
1533 static void idetape_active_next_stage (ide_drive_t
*drive
)
1535 idetape_tape_t
*tape
= drive
->driver_data
;
1536 idetape_stage_t
*stage
= tape
->next_stage
;
1537 struct request
*rq
= &stage
->rq
;
1539 #if IDETAPE_DEBUG_LOG
1540 if (tape
->debug_level
>= 4)
1541 printk(KERN_INFO
"ide-tape: Reached idetape_active_next_stage\n");
1542 #endif /* IDETAPE_DEBUG_LOG */
1543 #if IDETAPE_DEBUG_BUGS
1544 if (stage
== NULL
) {
1545 printk(KERN_ERR
"ide-tape: bug: Trying to activate a non existing stage\n");
1548 #endif /* IDETAPE_DEBUG_BUGS */
1550 rq
->rq_disk
= tape
->disk
;
1552 rq
->special
= (void *)stage
->bh
;
1553 tape
->active_data_request
= rq
;
1554 tape
->active_stage
= stage
;
1555 tape
->next_stage
= stage
->next
;
1559 * idetape_increase_max_pipeline_stages is a part of the feedback
1560 * loop which tries to find the optimum number of stages. In the
1561 * feedback loop, we are starting from a minimum maximum number of
1562 * stages, and if we sense that the pipeline is empty, we try to
1563 * increase it, until we reach the user compile time memory limit.
1565 static void idetape_increase_max_pipeline_stages (ide_drive_t
*drive
)
1567 idetape_tape_t
*tape
= drive
->driver_data
;
1568 int increase
= (tape
->max_pipeline
- tape
->min_pipeline
) / 10;
1570 #if IDETAPE_DEBUG_LOG
1571 if (tape
->debug_level
>= 4)
1572 printk (KERN_INFO
"ide-tape: Reached idetape_increase_max_pipeline_stages\n");
1573 #endif /* IDETAPE_DEBUG_LOG */
1575 tape
->max_stages
+= max(increase
, 1);
1576 tape
->max_stages
= max(tape
->max_stages
, tape
->min_pipeline
);
1577 tape
->max_stages
= min(tape
->max_stages
, tape
->max_pipeline
);
1581 * idetape_kfree_stage calls kfree to completely free a stage, along with
1582 * its related buffers.
1584 static void __idetape_kfree_stage (idetape_stage_t
*stage
)
1586 struct idetape_bh
*prev_bh
, *bh
= stage
->bh
;
1589 while (bh
!= NULL
) {
1590 if (bh
->b_data
!= NULL
) {
1591 size
= (int) bh
->b_size
;
1593 free_page((unsigned long) bh
->b_data
);
1595 bh
->b_data
+= PAGE_SIZE
;
1605 static void idetape_kfree_stage (idetape_tape_t
*tape
, idetape_stage_t
*stage
)
1607 __idetape_kfree_stage(stage
);
1611 * idetape_remove_stage_head removes tape->first_stage from the pipeline.
1612 * The caller should avoid race conditions.
1614 static void idetape_remove_stage_head (ide_drive_t
*drive
)
1616 idetape_tape_t
*tape
= drive
->driver_data
;
1617 idetape_stage_t
*stage
;
1619 #if IDETAPE_DEBUG_LOG
1620 if (tape
->debug_level
>= 4)
1621 printk(KERN_INFO
"ide-tape: Reached idetape_remove_stage_head\n");
1622 #endif /* IDETAPE_DEBUG_LOG */
1623 #if IDETAPE_DEBUG_BUGS
1624 if (tape
->first_stage
== NULL
) {
1625 printk(KERN_ERR
"ide-tape: bug: tape->first_stage is NULL\n");
1628 if (tape
->active_stage
== tape
->first_stage
) {
1629 printk(KERN_ERR
"ide-tape: bug: Trying to free our active pipeline stage\n");
1632 #endif /* IDETAPE_DEBUG_BUGS */
1633 stage
= tape
->first_stage
;
1634 tape
->first_stage
= stage
->next
;
1635 idetape_kfree_stage(tape
, stage
);
1637 if (tape
->first_stage
== NULL
) {
1638 tape
->last_stage
= NULL
;
1639 #if IDETAPE_DEBUG_BUGS
1640 if (tape
->next_stage
!= NULL
)
1641 printk(KERN_ERR
"ide-tape: bug: tape->next_stage != NULL\n");
1642 if (tape
->nr_stages
)
1643 printk(KERN_ERR
"ide-tape: bug: nr_stages should be 0 now\n");
1644 #endif /* IDETAPE_DEBUG_BUGS */
1649 * This will free all the pipeline stages starting from new_last_stage->next
1650 * to the end of the list, and point tape->last_stage to new_last_stage.
1652 static void idetape_abort_pipeline(ide_drive_t
*drive
,
1653 idetape_stage_t
*new_last_stage
)
1655 idetape_tape_t
*tape
= drive
->driver_data
;
1656 idetape_stage_t
*stage
= new_last_stage
->next
;
1657 idetape_stage_t
*nstage
;
1659 #if IDETAPE_DEBUG_LOG
1660 if (tape
->debug_level
>= 4)
1661 printk(KERN_INFO
"ide-tape: %s: idetape_abort_pipeline called\n", tape
->name
);
1664 nstage
= stage
->next
;
1665 idetape_kfree_stage(tape
, stage
);
1667 --tape
->nr_pending_stages
;
1671 new_last_stage
->next
= NULL
;
1672 tape
->last_stage
= new_last_stage
;
1673 tape
->next_stage
= NULL
;
1677 * idetape_end_request is used to finish servicing a request, and to
1678 * insert a pending pipeline request into the main device queue.
1680 static int idetape_end_request(ide_drive_t
*drive
, int uptodate
, int nr_sects
)
1682 struct request
*rq
= HWGROUP(drive
)->rq
;
1683 idetape_tape_t
*tape
= drive
->driver_data
;
1684 unsigned long flags
;
1686 int remove_stage
= 0;
1687 idetape_stage_t
*active_stage
;
1689 #if IDETAPE_DEBUG_LOG
1690 if (tape
->debug_level
>= 4)
1691 printk(KERN_INFO
"ide-tape: Reached idetape_end_request\n");
1692 #endif /* IDETAPE_DEBUG_LOG */
1695 case 0: error
= IDETAPE_ERROR_GENERAL
; break;
1696 case 1: error
= 0; break;
1697 default: error
= uptodate
;
1701 tape
->failed_pc
= NULL
;
1703 spin_lock_irqsave(&tape
->spinlock
, flags
);
1705 /* The request was a pipelined data transfer request */
1706 if (tape
->active_data_request
== rq
) {
1707 active_stage
= tape
->active_stage
;
1708 tape
->active_stage
= NULL
;
1709 tape
->active_data_request
= NULL
;
1710 tape
->nr_pending_stages
--;
1711 if (rq
->cmd
[0] & REQ_IDETAPE_WRITE
) {
1714 set_bit(IDETAPE_PIPELINE_ERROR
, &tape
->flags
);
1715 if (error
== IDETAPE_ERROR_EOD
)
1716 idetape_abort_pipeline(drive
, active_stage
);
1718 } else if (rq
->cmd
[0] & REQ_IDETAPE_READ
) {
1719 if (error
== IDETAPE_ERROR_EOD
) {
1720 set_bit(IDETAPE_PIPELINE_ERROR
, &tape
->flags
);
1721 idetape_abort_pipeline(drive
, active_stage
);
1724 if (tape
->next_stage
!= NULL
) {
1725 idetape_active_next_stage(drive
);
1728 * Insert the next request into the request queue.
1730 (void) ide_do_drive_cmd(drive
, tape
->active_data_request
, ide_end
);
1731 } else if (!error
) {
1732 idetape_increase_max_pipeline_stages(drive
);
1735 ide_end_drive_cmd(drive
, 0, 0);
1736 // blkdev_dequeue_request(rq);
1737 // drive->rq = NULL;
1738 // end_that_request_last(rq);
1741 idetape_remove_stage_head(drive
);
1742 if (tape
->active_data_request
== NULL
)
1743 clear_bit(IDETAPE_PIPELINE_ACTIVE
, &tape
->flags
);
1744 spin_unlock_irqrestore(&tape
->spinlock
, flags
);
1748 static ide_startstop_t
idetape_request_sense_callback (ide_drive_t
*drive
)
1750 idetape_tape_t
*tape
= drive
->driver_data
;
1752 #if IDETAPE_DEBUG_LOG
1753 if (tape
->debug_level
>= 4)
1754 printk(KERN_INFO
"ide-tape: Reached idetape_request_sense_callback\n");
1755 #endif /* IDETAPE_DEBUG_LOG */
1756 if (!tape
->pc
->error
) {
1757 idetape_analyze_error(drive
, (idetape_request_sense_result_t
*) tape
->pc
->buffer
);
1758 idetape_end_request(drive
, 1, 0);
1760 printk(KERN_ERR
"ide-tape: Error in REQUEST SENSE itself - Aborting request!\n");
1761 idetape_end_request(drive
, 0, 0);
1766 static void idetape_create_request_sense_cmd (idetape_pc_t
*pc
)
1768 idetape_init_pc(pc
);
1769 pc
->c
[0] = IDETAPE_REQUEST_SENSE_CMD
;
1771 pc
->request_transfer
= 20;
1772 pc
->callback
= &idetape_request_sense_callback
;
1775 static void idetape_init_rq(struct request
*rq
, u8 cmd
)
1777 memset(rq
, 0, sizeof(*rq
));
1778 rq
->cmd_type
= REQ_TYPE_SPECIAL
;
1783 * idetape_queue_pc_head generates a new packet command request in front
1784 * of the request queue, before the current request, so that it will be
1785 * processed immediately, on the next pass through the driver.
1787 * idetape_queue_pc_head is called from the request handling part of
1788 * the driver (the "bottom" part). Safe storage for the request should
1789 * be allocated with idetape_next_pc_storage and idetape_next_rq_storage
1790 * before calling idetape_queue_pc_head.
1792 * Memory for those requests is pre-allocated at initialization time, and
1793 * is limited to IDETAPE_PC_STACK requests. We assume that we have enough
1794 * space for the maximum possible number of inter-dependent packet commands.
1796 * The higher level of the driver - The ioctl handler and the character
1797 * device handling functions should queue request to the lower level part
1798 * and wait for their completion using idetape_queue_pc_tail or
1799 * idetape_queue_rw_tail.
1801 static void idetape_queue_pc_head (ide_drive_t
*drive
, idetape_pc_t
*pc
,struct request
*rq
)
1803 struct ide_tape_obj
*tape
= drive
->driver_data
;
1805 idetape_init_rq(rq
, REQ_IDETAPE_PC1
);
1806 rq
->buffer
= (char *) pc
;
1807 rq
->rq_disk
= tape
->disk
;
1808 (void) ide_do_drive_cmd(drive
, rq
, ide_preempt
);
1812 * idetape_retry_pc is called when an error was detected during the
1813 * last packet command. We queue a request sense packet command in
1814 * the head of the request list.
1816 static ide_startstop_t
idetape_retry_pc (ide_drive_t
*drive
)
1818 idetape_tape_t
*tape
= drive
->driver_data
;
1821 atapi_error_t error
;
1823 error
.all
= HWIF(drive
)->INB(IDE_ERROR_REG
);
1824 pc
= idetape_next_pc_storage(drive
);
1825 rq
= idetape_next_rq_storage(drive
);
1826 idetape_create_request_sense_cmd(pc
);
1827 set_bit(IDETAPE_IGNORE_DSC
, &tape
->flags
);
1828 idetape_queue_pc_head(drive
, pc
, rq
);
1833 * idetape_postpone_request postpones the current request so that
1834 * ide.c will be able to service requests from another device on
1835 * the same hwgroup while we are polling for DSC.
1837 static void idetape_postpone_request (ide_drive_t
*drive
)
1839 idetape_tape_t
*tape
= drive
->driver_data
;
1841 #if IDETAPE_DEBUG_LOG
1842 if (tape
->debug_level
>= 4)
1843 printk(KERN_INFO
"ide-tape: idetape_postpone_request\n");
1845 tape
->postponed_rq
= HWGROUP(drive
)->rq
;
1846 ide_stall_queue(drive
, tape
->dsc_polling_frequency
);
1850 * idetape_pc_intr is the usual interrupt handler which will be called
1851 * during a packet command. We will transfer some of the data (as
1852 * requested by the drive) and will re-point interrupt handler to us.
1853 * When data transfer is finished, we will act according to the
1854 * algorithm described before idetape_issue_packet_command.
1857 static ide_startstop_t
idetape_pc_intr (ide_drive_t
*drive
)
1859 ide_hwif_t
*hwif
= drive
->hwif
;
1860 idetape_tape_t
*tape
= drive
->driver_data
;
1861 atapi_status_t status
;
1862 atapi_bcount_t bcount
;
1863 atapi_ireason_t ireason
;
1864 idetape_pc_t
*pc
= tape
->pc
;
1868 static int error_sim_count
= 0;
1871 #if IDETAPE_DEBUG_LOG
1872 if (tape
->debug_level
>= 4)
1873 printk(KERN_INFO
"ide-tape: Reached idetape_pc_intr "
1874 "interrupt handler\n");
1875 #endif /* IDETAPE_DEBUG_LOG */
1877 /* Clear the interrupt */
1878 status
.all
= HWIF(drive
)->INB(IDE_STATUS_REG
);
1880 if (test_bit(PC_DMA_IN_PROGRESS
, &pc
->flags
)) {
1881 if (HWIF(drive
)->ide_dma_end(drive
) || status
.b
.check
) {
1883 * A DMA error is sometimes expected. For example,
1884 * if the tape is crossing a filemark during a
1885 * READ command, it will issue an irq and position
1886 * itself before the filemark, so that only a partial
1887 * data transfer will occur (which causes the DMA
1888 * error). In that case, we will later ask the tape
1889 * how much bytes of the original request were
1890 * actually transferred (we can't receive that
1891 * information from the DMA engine on most chipsets).
1895 * On the contrary, a DMA error is never expected;
1896 * it usually indicates a hardware error or abort.
1897 * If the tape crosses a filemark during a READ
1898 * command, it will issue an irq and position itself
1899 * after the filemark (not before). Only a partial
1900 * data transfer will occur, but no DMA error.
1903 set_bit(PC_DMA_ERROR
, &pc
->flags
);
1905 pc
->actually_transferred
= pc
->request_transfer
;
1906 idetape_update_buffers(pc
);
1908 #if IDETAPE_DEBUG_LOG
1909 if (tape
->debug_level
>= 4)
1910 printk(KERN_INFO
"ide-tape: DMA finished\n");
1911 #endif /* IDETAPE_DEBUG_LOG */
1914 /* No more interrupts */
1915 if (!status
.b
.drq
) {
1916 #if IDETAPE_DEBUG_LOG
1917 if (tape
->debug_level
>= 2)
1918 printk(KERN_INFO
"ide-tape: Packet command completed, %d bytes transferred\n", pc
->actually_transferred
);
1919 #endif /* IDETAPE_DEBUG_LOG */
1920 clear_bit(PC_DMA_IN_PROGRESS
, &pc
->flags
);
1925 if ((pc
->c
[0] == IDETAPE_WRITE_CMD
||
1926 pc
->c
[0] == IDETAPE_READ_CMD
) &&
1927 (++error_sim_count
% 100) == 0) {
1928 printk(KERN_INFO
"ide-tape: %s: simulating error\n",
1933 if (status
.b
.check
&& pc
->c
[0] == IDETAPE_REQUEST_SENSE_CMD
)
1935 if (status
.b
.check
|| test_bit(PC_DMA_ERROR
, &pc
->flags
)) { /* Error detected */
1936 #if IDETAPE_DEBUG_LOG
1937 if (tape
->debug_level
>= 1)
1938 printk(KERN_INFO
"ide-tape: %s: I/O error\n",
1940 #endif /* IDETAPE_DEBUG_LOG */
1941 if (pc
->c
[0] == IDETAPE_REQUEST_SENSE_CMD
) {
1942 printk(KERN_ERR
"ide-tape: I/O error in request sense command\n");
1943 return ide_do_reset(drive
);
1945 #if IDETAPE_DEBUG_LOG
1946 if (tape
->debug_level
>= 1)
1947 printk(KERN_INFO
"ide-tape: [cmd %x]: check condition\n", pc
->c
[0]);
1949 /* Retry operation */
1950 return idetape_retry_pc(drive
);
1953 if (test_bit(PC_WAIT_FOR_DSC
, &pc
->flags
) &&
1955 /* Media access command */
1956 tape
->dsc_polling_start
= jiffies
;
1957 tape
->dsc_polling_frequency
= IDETAPE_DSC_MA_FAST
;
1958 tape
->dsc_timeout
= jiffies
+ IDETAPE_DSC_MA_TIMEOUT
;
1959 /* Allow ide.c to handle other requests */
1960 idetape_postpone_request(drive
);
1963 if (tape
->failed_pc
== pc
)
1964 tape
->failed_pc
= NULL
;
1965 /* Command finished - Call the callback function */
1966 return pc
->callback(drive
);
1968 if (test_and_clear_bit(PC_DMA_IN_PROGRESS
, &pc
->flags
)) {
1969 printk(KERN_ERR
"ide-tape: The tape wants to issue more "
1970 "interrupts in DMA mode\n");
1971 printk(KERN_ERR
"ide-tape: DMA disabled, reverting to PIO\n");
1973 return ide_do_reset(drive
);
1975 /* Get the number of bytes to transfer on this interrupt. */
1976 bcount
.b
.high
= hwif
->INB(IDE_BCOUNTH_REG
);
1977 bcount
.b
.low
= hwif
->INB(IDE_BCOUNTL_REG
);
1979 ireason
.all
= hwif
->INB(IDE_IREASON_REG
);
1981 if (ireason
.b
.cod
) {
1982 printk(KERN_ERR
"ide-tape: CoD != 0 in idetape_pc_intr\n");
1983 return ide_do_reset(drive
);
1985 if (ireason
.b
.io
== test_bit(PC_WRITING
, &pc
->flags
)) {
1986 /* Hopefully, we will never get here */
1987 printk(KERN_ERR
"ide-tape: We wanted to %s, ",
1988 ireason
.b
.io
? "Write":"Read");
1989 printk(KERN_ERR
"ide-tape: but the tape wants us to %s !\n",
1990 ireason
.b
.io
? "Read":"Write");
1991 return ide_do_reset(drive
);
1993 if (!test_bit(PC_WRITING
, &pc
->flags
)) {
1994 /* Reading - Check that we have enough space */
1995 temp
= pc
->actually_transferred
+ bcount
.all
;
1996 if (temp
> pc
->request_transfer
) {
1997 if (temp
> pc
->buffer_size
) {
1998 printk(KERN_ERR
"ide-tape: The tape wants to send us more data than expected - discarding data\n");
1999 idetape_discard_data(drive
, bcount
.all
);
2000 ide_set_handler(drive
, &idetape_pc_intr
, IDETAPE_WAIT_CMD
, NULL
);
2003 #if IDETAPE_DEBUG_LOG
2004 if (tape
->debug_level
>= 2)
2005 printk(KERN_NOTICE
"ide-tape: The tape wants to send us more data than expected - allowing transfer\n");
2006 #endif /* IDETAPE_DEBUG_LOG */
2009 if (test_bit(PC_WRITING
, &pc
->flags
)) {
2011 idetape_output_buffers(drive
, pc
, bcount
.all
);
2013 /* Write the current buffer */
2014 HWIF(drive
)->atapi_output_bytes(drive
, pc
->current_position
, bcount
.all
);
2017 idetape_input_buffers(drive
, pc
, bcount
.all
);
2019 /* Read the current buffer */
2020 HWIF(drive
)->atapi_input_bytes(drive
, pc
->current_position
, bcount
.all
);
2022 /* Update the current position */
2023 pc
->actually_transferred
+= bcount
.all
;
2024 pc
->current_position
+= bcount
.all
;
2025 #if IDETAPE_DEBUG_LOG
2026 if (tape
->debug_level
>= 2)
2027 printk(KERN_INFO
"ide-tape: [cmd %x] transferred %d bytes on that interrupt\n", pc
->c
[0], bcount
.all
);
2029 /* And set the interrupt handler again */
2030 ide_set_handler(drive
, &idetape_pc_intr
, IDETAPE_WAIT_CMD
, NULL
);
2035 * Packet Command Interface
2037 * The current Packet Command is available in tape->pc, and will not
2038 * change until we finish handling it. Each packet command is associated
2039 * with a callback function that will be called when the command is
2042 * The handling will be done in three stages:
2044 * 1. idetape_issue_packet_command will send the packet command to the
2045 * drive, and will set the interrupt handler to idetape_pc_intr.
2047 * 2. On each interrupt, idetape_pc_intr will be called. This step
2048 * will be repeated until the device signals us that no more
2049 * interrupts will be issued.
2051 * 3. ATAPI Tape media access commands have immediate status with a
2052 * delayed process. In case of a successful initiation of a
2053 * media access packet command, the DSC bit will be set when the
2054 * actual execution of the command is finished.
2055 * Since the tape drive will not issue an interrupt, we have to
2056 * poll for this event. In this case, we define the request as
2057 * "low priority request" by setting rq_status to
2058 * IDETAPE_RQ_POSTPONED, set a timer to poll for DSC and exit
2061 * ide.c will then give higher priority to requests which
2062 * originate from the other device, until will change rq_status
2065 * 4. When the packet command is finished, it will be checked for errors.
2067 * 5. In case an error was found, we queue a request sense packet
2068 * command in front of the request queue and retry the operation
2069 * up to IDETAPE_MAX_PC_RETRIES times.
2071 * 6. In case no error was found, or we decided to give up and not
2072 * to retry again, the callback function will be called and then
2073 * we will handle the next request.
2076 static ide_startstop_t
idetape_transfer_pc(ide_drive_t
*drive
)
2078 ide_hwif_t
*hwif
= drive
->hwif
;
2079 idetape_tape_t
*tape
= drive
->driver_data
;
2080 idetape_pc_t
*pc
= tape
->pc
;
2081 atapi_ireason_t ireason
;
2083 ide_startstop_t startstop
;
2085 if (ide_wait_stat(&startstop
,drive
,DRQ_STAT
,BUSY_STAT
,WAIT_READY
)) {
2086 printk(KERN_ERR
"ide-tape: Strange, packet command initiated yet DRQ isn't asserted\n");
2089 ireason
.all
= hwif
->INB(IDE_IREASON_REG
);
2090 while (retries
-- && (!ireason
.b
.cod
|| ireason
.b
.io
)) {
2091 printk(KERN_ERR
"ide-tape: (IO,CoD != (0,1) while issuing "
2092 "a packet command, retrying\n");
2094 ireason
.all
= hwif
->INB(IDE_IREASON_REG
);
2096 printk(KERN_ERR
"ide-tape: (IO,CoD != (0,1) while "
2097 "issuing a packet command, ignoring\n");
2102 if (!ireason
.b
.cod
|| ireason
.b
.io
) {
2103 printk(KERN_ERR
"ide-tape: (IO,CoD) != (0,1) while issuing "
2104 "a packet command\n");
2105 return ide_do_reset(drive
);
2107 /* Set the interrupt routine */
2108 ide_set_handler(drive
, &idetape_pc_intr
, IDETAPE_WAIT_CMD
, NULL
);
2109 #ifdef CONFIG_BLK_DEV_IDEDMA
2110 /* Begin DMA, if necessary */
2111 if (test_bit(PC_DMA_IN_PROGRESS
, &pc
->flags
))
2112 hwif
->dma_start(drive
);
2114 /* Send the actual packet */
2115 HWIF(drive
)->atapi_output_bytes(drive
, pc
->c
, 12);
2119 static ide_startstop_t
idetape_issue_packet_command (ide_drive_t
*drive
, idetape_pc_t
*pc
)
2121 ide_hwif_t
*hwif
= drive
->hwif
;
2122 idetape_tape_t
*tape
= drive
->driver_data
;
2123 atapi_bcount_t bcount
;
2126 #if IDETAPE_DEBUG_BUGS
2127 if (tape
->pc
->c
[0] == IDETAPE_REQUEST_SENSE_CMD
&&
2128 pc
->c
[0] == IDETAPE_REQUEST_SENSE_CMD
) {
2129 printk(KERN_ERR
"ide-tape: possible ide-tape.c bug - "
2130 "Two request sense in serial were issued\n");
2132 #endif /* IDETAPE_DEBUG_BUGS */
2134 if (tape
->failed_pc
== NULL
&& pc
->c
[0] != IDETAPE_REQUEST_SENSE_CMD
)
2135 tape
->failed_pc
= pc
;
2136 /* Set the current packet command */
2139 if (pc
->retries
> IDETAPE_MAX_PC_RETRIES
||
2140 test_bit(PC_ABORT
, &pc
->flags
)) {
2142 * We will "abort" retrying a packet command in case
2143 * a legitimate error code was received (crossing a
2144 * filemark, or end of the media, for example).
2146 if (!test_bit(PC_ABORT
, &pc
->flags
)) {
2147 if (!(pc
->c
[0] == IDETAPE_TEST_UNIT_READY_CMD
&&
2148 tape
->sense_key
== 2 && tape
->asc
== 4 &&
2149 (tape
->ascq
== 1 || tape
->ascq
== 8))) {
2150 printk(KERN_ERR
"ide-tape: %s: I/O error, "
2151 "pc = %2x, key = %2x, "
2152 "asc = %2x, ascq = %2x\n",
2153 tape
->name
, pc
->c
[0],
2154 tape
->sense_key
, tape
->asc
,
2158 pc
->error
= IDETAPE_ERROR_GENERAL
;
2160 tape
->failed_pc
= NULL
;
2161 return pc
->callback(drive
);
2163 #if IDETAPE_DEBUG_LOG
2164 if (tape
->debug_level
>= 2)
2165 printk(KERN_INFO
"ide-tape: Retry number - %d, cmd = %02X\n", pc
->retries
, pc
->c
[0]);
2166 #endif /* IDETAPE_DEBUG_LOG */
2169 /* We haven't transferred any data yet */
2170 pc
->actually_transferred
= 0;
2171 pc
->current_position
= pc
->buffer
;
2172 /* Request to transfer the entire buffer at once */
2173 bcount
.all
= pc
->request_transfer
;
2175 if (test_and_clear_bit(PC_DMA_ERROR
, &pc
->flags
)) {
2176 printk(KERN_WARNING
"ide-tape: DMA disabled, "
2177 "reverting to PIO\n");
2180 if (test_bit(PC_DMA_RECOMMENDED
, &pc
->flags
) && drive
->using_dma
)
2181 dma_ok
= !hwif
->dma_setup(drive
);
2183 if (IDE_CONTROL_REG
)
2184 hwif
->OUTB(drive
->ctl
, IDE_CONTROL_REG
);
2185 hwif
->OUTB(dma_ok
? 1 : 0, IDE_FEATURE_REG
); /* Use PIO/DMA */
2186 hwif
->OUTB(bcount
.b
.high
, IDE_BCOUNTH_REG
);
2187 hwif
->OUTB(bcount
.b
.low
, IDE_BCOUNTL_REG
);
2188 hwif
->OUTB(drive
->select
.all
, IDE_SELECT_REG
);
2189 if (dma_ok
) /* Will begin DMA later */
2190 set_bit(PC_DMA_IN_PROGRESS
, &pc
->flags
);
2191 if (test_bit(IDETAPE_DRQ_INTERRUPT
, &tape
->flags
)) {
2192 ide_set_handler(drive
, &idetape_transfer_pc
, IDETAPE_WAIT_CMD
, NULL
);
2193 hwif
->OUTB(WIN_PACKETCMD
, IDE_COMMAND_REG
);
2196 hwif
->OUTB(WIN_PACKETCMD
, IDE_COMMAND_REG
);
2197 return idetape_transfer_pc(drive
);
2202 * General packet command callback function.
2204 static ide_startstop_t
idetape_pc_callback (ide_drive_t
*drive
)
2206 idetape_tape_t
*tape
= drive
->driver_data
;
2208 #if IDETAPE_DEBUG_LOG
2209 if (tape
->debug_level
>= 4)
2210 printk(KERN_INFO
"ide-tape: Reached idetape_pc_callback\n");
2211 #endif /* IDETAPE_DEBUG_LOG */
2213 idetape_end_request(drive
, tape
->pc
->error
? 0 : 1, 0);
2218 * A mode sense command is used to "sense" tape parameters.
2220 static void idetape_create_mode_sense_cmd (idetape_pc_t
*pc
, u8 page_code
)
2222 idetape_init_pc(pc
);
2223 pc
->c
[0] = IDETAPE_MODE_SENSE_CMD
;
2224 if (page_code
!= IDETAPE_BLOCK_DESCRIPTOR
)
2225 pc
->c
[1] = 8; /* DBD = 1 - Don't return block descriptors */
2226 pc
->c
[2] = page_code
;
2228 * Changed pc->c[3] to 0 (255 will at best return unused info).
2230 * For SCSI this byte is defined as subpage instead of high byte
2231 * of length and some IDE drives seem to interpret it this way
2232 * and return an error when 255 is used.
2235 pc
->c
[4] = 255; /* (We will just discard data in that case) */
2236 if (page_code
== IDETAPE_BLOCK_DESCRIPTOR
)
2237 pc
->request_transfer
= 12;
2238 else if (page_code
== IDETAPE_CAPABILITIES_PAGE
)
2239 pc
->request_transfer
= 24;
2241 pc
->request_transfer
= 50;
2242 pc
->callback
= &idetape_pc_callback
;
2245 static void calculate_speeds(ide_drive_t
*drive
)
2247 idetape_tape_t
*tape
= drive
->driver_data
;
2248 int full
= 125, empty
= 75;
2250 if (time_after(jiffies
, tape
->controlled_pipeline_head_time
+ 120 * HZ
)) {
2251 tape
->controlled_previous_pipeline_head
= tape
->controlled_last_pipeline_head
;
2252 tape
->controlled_previous_head_time
= tape
->controlled_pipeline_head_time
;
2253 tape
->controlled_last_pipeline_head
= tape
->pipeline_head
;
2254 tape
->controlled_pipeline_head_time
= jiffies
;
2256 if (time_after(jiffies
, tape
->controlled_pipeline_head_time
+ 60 * HZ
))
2257 tape
->controlled_pipeline_head_speed
= (tape
->pipeline_head
- tape
->controlled_last_pipeline_head
) * 32 * HZ
/ (jiffies
- tape
->controlled_pipeline_head_time
);
2258 else if (time_after(jiffies
, tape
->controlled_previous_head_time
))
2259 tape
->controlled_pipeline_head_speed
= (tape
->pipeline_head
- tape
->controlled_previous_pipeline_head
) * 32 * HZ
/ (jiffies
- tape
->controlled_previous_head_time
);
2261 if (tape
->nr_pending_stages
< tape
->max_stages
/*- 1 */) {
2262 /* -1 for read mode error recovery */
2263 if (time_after(jiffies
, tape
->uncontrolled_previous_head_time
+ 10 * HZ
)) {
2264 tape
->uncontrolled_pipeline_head_time
= jiffies
;
2265 tape
->uncontrolled_pipeline_head_speed
= (tape
->pipeline_head
- tape
->uncontrolled_previous_pipeline_head
) * 32 * HZ
/ (jiffies
- tape
->uncontrolled_previous_head_time
);
2268 tape
->uncontrolled_previous_head_time
= jiffies
;
2269 tape
->uncontrolled_previous_pipeline_head
= tape
->pipeline_head
;
2270 if (time_after(jiffies
, tape
->uncontrolled_pipeline_head_time
+ 30 * HZ
)) {
2271 tape
->uncontrolled_pipeline_head_time
= jiffies
;
2274 tape
->pipeline_head_speed
= max(tape
->uncontrolled_pipeline_head_speed
, tape
->controlled_pipeline_head_speed
);
2275 if (tape
->speed_control
== 0) {
2276 tape
->max_insert_speed
= 5000;
2277 } else if (tape
->speed_control
== 1) {
2278 if (tape
->nr_pending_stages
>= tape
->max_stages
/ 2)
2279 tape
->max_insert_speed
= tape
->pipeline_head_speed
+
2280 (1100 - tape
->pipeline_head_speed
) * 2 * (tape
->nr_pending_stages
- tape
->max_stages
/ 2) / tape
->max_stages
;
2282 tape
->max_insert_speed
= 500 +
2283 (tape
->pipeline_head_speed
- 500) * 2 * tape
->nr_pending_stages
/ tape
->max_stages
;
2284 if (tape
->nr_pending_stages
>= tape
->max_stages
* 99 / 100)
2285 tape
->max_insert_speed
= 5000;
2286 } else if (tape
->speed_control
== 2) {
2287 tape
->max_insert_speed
= tape
->pipeline_head_speed
* empty
/ 100 +
2288 (tape
->pipeline_head_speed
* full
/ 100 - tape
->pipeline_head_speed
* empty
/ 100) * tape
->nr_pending_stages
/ tape
->max_stages
;
2290 tape
->max_insert_speed
= tape
->speed_control
;
2291 tape
->max_insert_speed
= max(tape
->max_insert_speed
, 500);
2294 static ide_startstop_t
idetape_media_access_finished (ide_drive_t
*drive
)
2296 idetape_tape_t
*tape
= drive
->driver_data
;
2297 idetape_pc_t
*pc
= tape
->pc
;
2298 atapi_status_t status
;
2300 status
.all
= HWIF(drive
)->INB(IDE_STATUS_REG
);
2302 if (status
.b
.check
) {
2303 /* Error detected */
2304 if (pc
->c
[0] != IDETAPE_TEST_UNIT_READY_CMD
)
2305 printk(KERN_ERR
"ide-tape: %s: I/O error, ",
2307 /* Retry operation */
2308 return idetape_retry_pc(drive
);
2311 if (tape
->failed_pc
== pc
)
2312 tape
->failed_pc
= NULL
;
2314 pc
->error
= IDETAPE_ERROR_GENERAL
;
2315 tape
->failed_pc
= NULL
;
2317 return pc
->callback(drive
);
2320 static ide_startstop_t
idetape_rw_callback (ide_drive_t
*drive
)
2322 idetape_tape_t
*tape
= drive
->driver_data
;
2323 struct request
*rq
= HWGROUP(drive
)->rq
;
2324 int blocks
= tape
->pc
->actually_transferred
/ tape
->tape_block_size
;
2326 tape
->avg_size
+= blocks
* tape
->tape_block_size
;
2327 tape
->insert_size
+= blocks
* tape
->tape_block_size
;
2328 if (tape
->insert_size
> 1024 * 1024)
2329 tape
->measure_insert_time
= 1;
2330 if (tape
->measure_insert_time
) {
2331 tape
->measure_insert_time
= 0;
2332 tape
->insert_time
= jiffies
;
2333 tape
->insert_size
= 0;
2335 if (time_after(jiffies
, tape
->insert_time
))
2336 tape
->insert_speed
= tape
->insert_size
/ 1024 * HZ
/ (jiffies
- tape
->insert_time
);
2337 if (time_after_eq(jiffies
, tape
->avg_time
+ HZ
)) {
2338 tape
->avg_speed
= tape
->avg_size
* HZ
/ (jiffies
- tape
->avg_time
) / 1024;
2340 tape
->avg_time
= jiffies
;
2343 #if IDETAPE_DEBUG_LOG
2344 if (tape
->debug_level
>= 4)
2345 printk(KERN_INFO
"ide-tape: Reached idetape_rw_callback\n");
2346 #endif /* IDETAPE_DEBUG_LOG */
2348 tape
->first_frame_position
+= blocks
;
2349 rq
->current_nr_sectors
-= blocks
;
2351 if (!tape
->pc
->error
)
2352 idetape_end_request(drive
, 1, 0);
2354 idetape_end_request(drive
, tape
->pc
->error
, 0);
2358 static void idetape_create_read_cmd(idetape_tape_t
*tape
, idetape_pc_t
*pc
, unsigned int length
, struct idetape_bh
*bh
)
2360 idetape_init_pc(pc
);
2361 pc
->c
[0] = IDETAPE_READ_CMD
;
2362 put_unaligned(htonl(length
), (unsigned int *) &pc
->c
[1]);
2364 pc
->callback
= &idetape_rw_callback
;
2366 atomic_set(&bh
->b_count
, 0);
2368 pc
->request_transfer
= pc
->buffer_size
= length
* tape
->tape_block_size
;
2369 if (pc
->request_transfer
== tape
->stage_size
)
2370 set_bit(PC_DMA_RECOMMENDED
, &pc
->flags
);
2373 static void idetape_create_read_buffer_cmd(idetape_tape_t
*tape
, idetape_pc_t
*pc
, unsigned int length
, struct idetape_bh
*bh
)
2376 struct idetape_bh
*p
= bh
;
2378 idetape_init_pc(pc
);
2379 pc
->c
[0] = IDETAPE_READ_BUFFER_CMD
;
2380 pc
->c
[1] = IDETAPE_RETRIEVE_FAULTY_BLOCK
;
2381 pc
->c
[7] = size
>> 8;
2382 pc
->c
[8] = size
& 0xff;
2383 pc
->callback
= &idetape_pc_callback
;
2385 atomic_set(&bh
->b_count
, 0);
2388 atomic_set(&p
->b_count
, 0);
2391 pc
->request_transfer
= pc
->buffer_size
= size
;
2394 static void idetape_create_write_cmd(idetape_tape_t
*tape
, idetape_pc_t
*pc
, unsigned int length
, struct idetape_bh
*bh
)
2396 idetape_init_pc(pc
);
2397 pc
->c
[0] = IDETAPE_WRITE_CMD
;
2398 put_unaligned(htonl(length
), (unsigned int *) &pc
->c
[1]);
2400 pc
->callback
= &idetape_rw_callback
;
2401 set_bit(PC_WRITING
, &pc
->flags
);
2403 pc
->b_data
= bh
->b_data
;
2404 pc
->b_count
= atomic_read(&bh
->b_count
);
2406 pc
->request_transfer
= pc
->buffer_size
= length
* tape
->tape_block_size
;
2407 if (pc
->request_transfer
== tape
->stage_size
)
2408 set_bit(PC_DMA_RECOMMENDED
, &pc
->flags
);
2412 * idetape_do_request is our request handling function.
2414 static ide_startstop_t
idetape_do_request(ide_drive_t
*drive
,
2415 struct request
*rq
, sector_t block
)
2417 idetape_tape_t
*tape
= drive
->driver_data
;
2418 idetape_pc_t
*pc
= NULL
;
2419 struct request
*postponed_rq
= tape
->postponed_rq
;
2420 atapi_status_t status
;
2422 #if IDETAPE_DEBUG_LOG
2424 if (tape
->debug_level
>= 5)
2425 printk(KERN_INFO
"ide-tape: %d, "
2426 "dev: %s, cmd: %ld, errors: %d\n",
2427 rq
->rq_disk
->disk_name
, rq
->cmd
[0], rq
->errors
);
2429 if (tape
->debug_level
>= 2)
2430 printk(KERN_INFO
"ide-tape: sector: %ld, "
2431 "nr_sectors: %ld, current_nr_sectors: %d\n",
2432 rq
->sector
, rq
->nr_sectors
, rq
->current_nr_sectors
);
2433 #endif /* IDETAPE_DEBUG_LOG */
2435 if (!blk_special_request(rq
)) {
2437 * We do not support buffer cache originated requests.
2439 printk(KERN_NOTICE
"ide-tape: %s: Unsupported request in "
2440 "request queue (%d)\n", drive
->name
, rq
->cmd_type
);
2441 ide_end_request(drive
, 0, 0);
2446 * Retry a failed packet command
2448 if (tape
->failed_pc
!= NULL
&&
2449 tape
->pc
->c
[0] == IDETAPE_REQUEST_SENSE_CMD
) {
2450 return idetape_issue_packet_command(drive
, tape
->failed_pc
);
2452 #if IDETAPE_DEBUG_BUGS
2453 if (postponed_rq
!= NULL
)
2454 if (rq
!= postponed_rq
) {
2455 printk(KERN_ERR
"ide-tape: ide-tape.c bug - "
2456 "Two DSC requests were queued\n");
2457 idetape_end_request(drive
, 0, 0);
2460 #endif /* IDETAPE_DEBUG_BUGS */
2462 tape
->postponed_rq
= NULL
;
2465 * If the tape is still busy, postpone our request and service
2466 * the other device meanwhile.
2468 status
.all
= HWIF(drive
)->INB(IDE_STATUS_REG
);
2470 if (!drive
->dsc_overlap
&& !(rq
->cmd
[0] & REQ_IDETAPE_PC2
))
2471 set_bit(IDETAPE_IGNORE_DSC
, &tape
->flags
);
2473 if (drive
->post_reset
== 1) {
2474 set_bit(IDETAPE_IGNORE_DSC
, &tape
->flags
);
2475 drive
->post_reset
= 0;
2478 if (tape
->tape_still_time
> 100 && tape
->tape_still_time
< 200)
2479 tape
->measure_insert_time
= 1;
2480 if (time_after(jiffies
, tape
->insert_time
))
2481 tape
->insert_speed
= tape
->insert_size
/ 1024 * HZ
/ (jiffies
- tape
->insert_time
);
2482 calculate_speeds(drive
);
2483 if (!test_and_clear_bit(IDETAPE_IGNORE_DSC
, &tape
->flags
) &&
2485 if (postponed_rq
== NULL
) {
2486 tape
->dsc_polling_start
= jiffies
;
2487 tape
->dsc_polling_frequency
= tape
->best_dsc_rw_frequency
;
2488 tape
->dsc_timeout
= jiffies
+ IDETAPE_DSC_RW_TIMEOUT
;
2489 } else if (time_after(jiffies
, tape
->dsc_timeout
)) {
2490 printk(KERN_ERR
"ide-tape: %s: DSC timeout\n",
2492 if (rq
->cmd
[0] & REQ_IDETAPE_PC2
) {
2493 idetape_media_access_finished(drive
);
2496 return ide_do_reset(drive
);
2498 } else if (time_after(jiffies
, tape
->dsc_polling_start
+ IDETAPE_DSC_MA_THRESHOLD
))
2499 tape
->dsc_polling_frequency
= IDETAPE_DSC_MA_SLOW
;
2500 idetape_postpone_request(drive
);
2503 if (rq
->cmd
[0] & REQ_IDETAPE_READ
) {
2504 tape
->buffer_head
++;
2506 IO_trace(IO_IDETAPE_FIFO
, tape
->pipeline_head
, tape
->buffer_head
, tape
->tape_head
, tape
->minor
);
2508 tape
->postpone_cnt
= 0;
2509 pc
= idetape_next_pc_storage(drive
);
2510 idetape_create_read_cmd(tape
, pc
, rq
->current_nr_sectors
, (struct idetape_bh
*)rq
->special
);
2513 if (rq
->cmd
[0] & REQ_IDETAPE_WRITE
) {
2514 tape
->buffer_head
++;
2516 IO_trace(IO_IDETAPE_FIFO
, tape
->pipeline_head
, tape
->buffer_head
, tape
->tape_head
, tape
->minor
);
2518 tape
->postpone_cnt
= 0;
2519 pc
= idetape_next_pc_storage(drive
);
2520 idetape_create_write_cmd(tape
, pc
, rq
->current_nr_sectors
, (struct idetape_bh
*)rq
->special
);
2523 if (rq
->cmd
[0] & REQ_IDETAPE_READ_BUFFER
) {
2524 tape
->postpone_cnt
= 0;
2525 pc
= idetape_next_pc_storage(drive
);
2526 idetape_create_read_buffer_cmd(tape
, pc
, rq
->current_nr_sectors
, (struct idetape_bh
*)rq
->special
);
2529 if (rq
->cmd
[0] & REQ_IDETAPE_PC1
) {
2530 pc
= (idetape_pc_t
*) rq
->buffer
;
2531 rq
->cmd
[0] &= ~(REQ_IDETAPE_PC1
);
2532 rq
->cmd
[0] |= REQ_IDETAPE_PC2
;
2535 if (rq
->cmd
[0] & REQ_IDETAPE_PC2
) {
2536 idetape_media_access_finished(drive
);
2541 return idetape_issue_packet_command(drive
, pc
);
2545 * Pipeline related functions
2547 static inline int idetape_pipeline_active (idetape_tape_t
*tape
)
2551 rc1
= test_bit(IDETAPE_PIPELINE_ACTIVE
, &tape
->flags
);
2552 rc2
= (tape
->active_data_request
!= NULL
);
2557 * idetape_kmalloc_stage uses __get_free_page to allocate a pipeline
2558 * stage, along with all the necessary small buffers which together make
2559 * a buffer of size tape->stage_size (or a bit more). We attempt to
2560 * combine sequential pages as much as possible.
2562 * Returns a pointer to the new allocated stage, or NULL if we
2563 * can't (or don't want to) allocate a stage.
2565 * Pipeline stages are optional and are used to increase performance.
2566 * If we can't allocate them, we'll manage without them.
2568 static idetape_stage_t
*__idetape_kmalloc_stage (idetape_tape_t
*tape
, int full
, int clear
)
2570 idetape_stage_t
*stage
;
2571 struct idetape_bh
*prev_bh
, *bh
;
2572 int pages
= tape
->pages_per_stage
;
2573 char *b_data
= NULL
;
2575 if ((stage
= kmalloc(sizeof (idetape_stage_t
),GFP_KERNEL
)) == NULL
)
2579 bh
= stage
->bh
= kmalloc(sizeof(struct idetape_bh
), GFP_KERNEL
);
2582 bh
->b_reqnext
= NULL
;
2583 if ((bh
->b_data
= (char *) __get_free_page (GFP_KERNEL
)) == NULL
)
2586 memset(bh
->b_data
, 0, PAGE_SIZE
);
2587 bh
->b_size
= PAGE_SIZE
;
2588 atomic_set(&bh
->b_count
, full
? bh
->b_size
: 0);
2591 if ((b_data
= (char *) __get_free_page (GFP_KERNEL
)) == NULL
)
2594 memset(b_data
, 0, PAGE_SIZE
);
2595 if (bh
->b_data
== b_data
+ PAGE_SIZE
) {
2596 bh
->b_size
+= PAGE_SIZE
;
2597 bh
->b_data
-= PAGE_SIZE
;
2599 atomic_add(PAGE_SIZE
, &bh
->b_count
);
2602 if (b_data
== bh
->b_data
+ bh
->b_size
) {
2603 bh
->b_size
+= PAGE_SIZE
;
2605 atomic_add(PAGE_SIZE
, &bh
->b_count
);
2609 if ((bh
= kmalloc(sizeof(struct idetape_bh
), GFP_KERNEL
)) == NULL
) {
2610 free_page((unsigned long) b_data
);
2613 bh
->b_reqnext
= NULL
;
2614 bh
->b_data
= b_data
;
2615 bh
->b_size
= PAGE_SIZE
;
2616 atomic_set(&bh
->b_count
, full
? bh
->b_size
: 0);
2617 prev_bh
->b_reqnext
= bh
;
2619 bh
->b_size
-= tape
->excess_bh_size
;
2621 atomic_sub(tape
->excess_bh_size
, &bh
->b_count
);
2624 __idetape_kfree_stage(stage
);
2628 static idetape_stage_t
*idetape_kmalloc_stage (idetape_tape_t
*tape
)
2630 idetape_stage_t
*cache_stage
= tape
->cache_stage
;
2632 #if IDETAPE_DEBUG_LOG
2633 if (tape
->debug_level
>= 4)
2634 printk(KERN_INFO
"ide-tape: Reached idetape_kmalloc_stage\n");
2635 #endif /* IDETAPE_DEBUG_LOG */
2637 if (tape
->nr_stages
>= tape
->max_stages
)
2639 if (cache_stage
!= NULL
) {
2640 tape
->cache_stage
= NULL
;
2643 return __idetape_kmalloc_stage(tape
, 0, 0);
2646 static int idetape_copy_stage_from_user (idetape_tape_t
*tape
, idetape_stage_t
*stage
, const char __user
*buf
, int n
)
2648 struct idetape_bh
*bh
= tape
->bh
;
2653 #if IDETAPE_DEBUG_BUGS
2655 printk(KERN_ERR
"ide-tape: bh == NULL in "
2656 "idetape_copy_stage_from_user\n");
2659 #endif /* IDETAPE_DEBUG_BUGS */
2660 count
= min((unsigned int)(bh
->b_size
- atomic_read(&bh
->b_count
)), (unsigned int)n
);
2661 if (copy_from_user(bh
->b_data
+ atomic_read(&bh
->b_count
), buf
, count
))
2664 atomic_add(count
, &bh
->b_count
);
2666 if (atomic_read(&bh
->b_count
) == bh
->b_size
) {
2669 atomic_set(&bh
->b_count
, 0);
2676 static int idetape_copy_stage_to_user (idetape_tape_t
*tape
, char __user
*buf
, idetape_stage_t
*stage
, int n
)
2678 struct idetape_bh
*bh
= tape
->bh
;
2683 #if IDETAPE_DEBUG_BUGS
2685 printk(KERN_ERR
"ide-tape: bh == NULL in "
2686 "idetape_copy_stage_to_user\n");
2689 #endif /* IDETAPE_DEBUG_BUGS */
2690 count
= min(tape
->b_count
, n
);
2691 if (copy_to_user(buf
, tape
->b_data
, count
))
2694 tape
->b_data
+= count
;
2695 tape
->b_count
-= count
;
2697 if (!tape
->b_count
) {
2698 tape
->bh
= bh
= bh
->b_reqnext
;
2700 tape
->b_data
= bh
->b_data
;
2701 tape
->b_count
= atomic_read(&bh
->b_count
);
2708 static void idetape_init_merge_stage (idetape_tape_t
*tape
)
2710 struct idetape_bh
*bh
= tape
->merge_stage
->bh
;
2713 if (tape
->chrdev_direction
== idetape_direction_write
)
2714 atomic_set(&bh
->b_count
, 0);
2716 tape
->b_data
= bh
->b_data
;
2717 tape
->b_count
= atomic_read(&bh
->b_count
);
2721 static void idetape_switch_buffers (idetape_tape_t
*tape
, idetape_stage_t
*stage
)
2723 struct idetape_bh
*tmp
;
2726 stage
->bh
= tape
->merge_stage
->bh
;
2727 tape
->merge_stage
->bh
= tmp
;
2728 idetape_init_merge_stage(tape
);
2732 * idetape_add_stage_tail adds a new stage at the end of the pipeline.
2734 static void idetape_add_stage_tail (ide_drive_t
*drive
,idetape_stage_t
*stage
)
2736 idetape_tape_t
*tape
= drive
->driver_data
;
2737 unsigned long flags
;
2739 #if IDETAPE_DEBUG_LOG
2740 if (tape
->debug_level
>= 4)
2741 printk (KERN_INFO
"ide-tape: Reached idetape_add_stage_tail\n");
2742 #endif /* IDETAPE_DEBUG_LOG */
2743 spin_lock_irqsave(&tape
->spinlock
, flags
);
2745 if (tape
->last_stage
!= NULL
)
2746 tape
->last_stage
->next
=stage
;
2748 tape
->first_stage
= tape
->next_stage
=stage
;
2749 tape
->last_stage
= stage
;
2750 if (tape
->next_stage
== NULL
)
2751 tape
->next_stage
= tape
->last_stage
;
2753 tape
->nr_pending_stages
++;
2754 spin_unlock_irqrestore(&tape
->spinlock
, flags
);
2758 * idetape_wait_for_request installs a completion in a pending request
2759 * and sleeps until it is serviced.
2761 * The caller should ensure that the request will not be serviced
2762 * before we install the completion (usually by disabling interrupts).
2764 static void idetape_wait_for_request (ide_drive_t
*drive
, struct request
*rq
)
2766 DECLARE_COMPLETION_ONSTACK(wait
);
2767 idetape_tape_t
*tape
= drive
->driver_data
;
2769 #if IDETAPE_DEBUG_BUGS
2770 if (rq
== NULL
|| !blk_special_request(rq
)) {
2771 printk (KERN_ERR
"ide-tape: bug: Trying to sleep on non-valid request\n");
2774 #endif /* IDETAPE_DEBUG_BUGS */
2775 rq
->end_io_data
= &wait
;
2776 rq
->end_io
= blk_end_sync_rq
;
2777 spin_unlock_irq(&tape
->spinlock
);
2778 wait_for_completion(&wait
);
2779 /* The stage and its struct request have been deallocated */
2780 spin_lock_irq(&tape
->spinlock
);
2783 static ide_startstop_t
idetape_read_position_callback (ide_drive_t
*drive
)
2785 idetape_tape_t
*tape
= drive
->driver_data
;
2786 idetape_read_position_result_t
*result
;
2788 #if IDETAPE_DEBUG_LOG
2789 if (tape
->debug_level
>= 4)
2790 printk(KERN_INFO
"ide-tape: Reached idetape_read_position_callback\n");
2791 #endif /* IDETAPE_DEBUG_LOG */
2793 if (!tape
->pc
->error
) {
2794 result
= (idetape_read_position_result_t
*) tape
->pc
->buffer
;
2795 #if IDETAPE_DEBUG_LOG
2796 if (tape
->debug_level
>= 2)
2797 printk(KERN_INFO
"ide-tape: BOP - %s\n",result
->bop
? "Yes":"No");
2798 if (tape
->debug_level
>= 2)
2799 printk(KERN_INFO
"ide-tape: EOP - %s\n",result
->eop
? "Yes":"No");
2800 #endif /* IDETAPE_DEBUG_LOG */
2802 printk(KERN_INFO
"ide-tape: Block location is unknown to the tape\n");
2803 clear_bit(IDETAPE_ADDRESS_VALID
, &tape
->flags
);
2804 idetape_end_request(drive
, 0, 0);
2806 #if IDETAPE_DEBUG_LOG
2807 if (tape
->debug_level
>= 2)
2808 printk(KERN_INFO
"ide-tape: Block Location - %u\n", ntohl(result
->first_block
));
2809 #endif /* IDETAPE_DEBUG_LOG */
2810 tape
->partition
= result
->partition
;
2811 tape
->first_frame_position
= ntohl(result
->first_block
);
2812 tape
->last_frame_position
= ntohl(result
->last_block
);
2813 tape
->blocks_in_buffer
= result
->blocks_in_buffer
[2];
2814 set_bit(IDETAPE_ADDRESS_VALID
, &tape
->flags
);
2815 idetape_end_request(drive
, 1, 0);
2818 idetape_end_request(drive
, 0, 0);
2824 * idetape_create_write_filemark_cmd will:
2826 * 1. Write a filemark if write_filemark=1.
2827 * 2. Flush the device buffers without writing a filemark
2828 * if write_filemark=0.
2831 static void idetape_create_write_filemark_cmd (ide_drive_t
*drive
, idetape_pc_t
*pc
,int write_filemark
)
2833 idetape_init_pc(pc
);
2834 pc
->c
[0] = IDETAPE_WRITE_FILEMARK_CMD
;
2835 pc
->c
[4] = write_filemark
;
2836 set_bit(PC_WAIT_FOR_DSC
, &pc
->flags
);
2837 pc
->callback
= &idetape_pc_callback
;
2840 static void idetape_create_test_unit_ready_cmd(idetape_pc_t
*pc
)
2842 idetape_init_pc(pc
);
2843 pc
->c
[0] = IDETAPE_TEST_UNIT_READY_CMD
;
2844 pc
->callback
= &idetape_pc_callback
;
2848 * idetape_queue_pc_tail is based on the following functions:
2850 * ide_do_drive_cmd from ide.c
2851 * cdrom_queue_request and cdrom_queue_packet_command from ide-cd.c
2853 * We add a special packet command request to the tail of the request
2854 * queue, and wait for it to be serviced.
2856 * This is not to be called from within the request handling part
2857 * of the driver ! We allocate here data in the stack, and it is valid
2858 * until the request is finished. This is not the case for the bottom
2859 * part of the driver, where we are always leaving the functions to wait
2860 * for an interrupt or a timer event.
2862 * From the bottom part of the driver, we should allocate safe memory
2863 * using idetape_next_pc_storage and idetape_next_rq_storage, and add
2864 * the request to the request list without waiting for it to be serviced !
2865 * In that case, we usually use idetape_queue_pc_head.
2867 static int __idetape_queue_pc_tail (ide_drive_t
*drive
, idetape_pc_t
*pc
)
2869 struct ide_tape_obj
*tape
= drive
->driver_data
;
2872 idetape_init_rq(&rq
, REQ_IDETAPE_PC1
);
2873 rq
.buffer
= (char *) pc
;
2874 rq
.rq_disk
= tape
->disk
;
2875 return ide_do_drive_cmd(drive
, &rq
, ide_wait
);
2878 static void idetape_create_load_unload_cmd (ide_drive_t
*drive
, idetape_pc_t
*pc
,int cmd
)
2880 idetape_init_pc(pc
);
2881 pc
->c
[0] = IDETAPE_LOAD_UNLOAD_CMD
;
2883 set_bit(PC_WAIT_FOR_DSC
, &pc
->flags
);
2884 pc
->callback
= &idetape_pc_callback
;
2887 static int idetape_wait_ready(ide_drive_t
*drive
, unsigned long timeout
)
2889 idetape_tape_t
*tape
= drive
->driver_data
;
2891 int load_attempted
= 0;
2894 * Wait for the tape to become ready
2896 set_bit(IDETAPE_MEDIUM_PRESENT
, &tape
->flags
);
2898 while (time_before(jiffies
, timeout
)) {
2899 idetape_create_test_unit_ready_cmd(&pc
);
2900 if (!__idetape_queue_pc_tail(drive
, &pc
))
2902 if ((tape
->sense_key
== 2 && tape
->asc
== 4 && tape
->ascq
== 2)
2903 || (tape
->asc
== 0x3A)) { /* no media */
2906 idetape_create_load_unload_cmd(drive
, &pc
, IDETAPE_LU_LOAD_MASK
);
2907 __idetape_queue_pc_tail(drive
, &pc
);
2909 /* not about to be ready */
2910 } else if (!(tape
->sense_key
== 2 && tape
->asc
== 4 &&
2911 (tape
->ascq
== 1 || tape
->ascq
== 8)))
2918 static int idetape_queue_pc_tail (ide_drive_t
*drive
,idetape_pc_t
*pc
)
2920 return __idetape_queue_pc_tail(drive
, pc
);
2923 static int idetape_flush_tape_buffers (ide_drive_t
*drive
)
2928 idetape_create_write_filemark_cmd(drive
, &pc
, 0);
2929 if ((rc
= idetape_queue_pc_tail(drive
, &pc
)))
2931 idetape_wait_ready(drive
, 60 * 5 * HZ
);
2935 static void idetape_create_read_position_cmd (idetape_pc_t
*pc
)
2937 idetape_init_pc(pc
);
2938 pc
->c
[0] = IDETAPE_READ_POSITION_CMD
;
2939 pc
->request_transfer
= 20;
2940 pc
->callback
= &idetape_read_position_callback
;
2943 static int idetape_read_position (ide_drive_t
*drive
)
2945 idetape_tape_t
*tape
= drive
->driver_data
;
2949 #if IDETAPE_DEBUG_LOG
2950 if (tape
->debug_level
>= 4)
2951 printk(KERN_INFO
"ide-tape: Reached idetape_read_position\n");
2952 #endif /* IDETAPE_DEBUG_LOG */
2954 idetape_create_read_position_cmd(&pc
);
2955 if (idetape_queue_pc_tail(drive
, &pc
))
2957 position
= tape
->first_frame_position
;
2961 static void idetape_create_locate_cmd (ide_drive_t
*drive
, idetape_pc_t
*pc
, unsigned int block
, u8 partition
, int skip
)
2963 idetape_init_pc(pc
);
2964 pc
->c
[0] = IDETAPE_LOCATE_CMD
;
2966 put_unaligned(htonl(block
), (unsigned int *) &pc
->c
[3]);
2967 pc
->c
[8] = partition
;
2968 set_bit(PC_WAIT_FOR_DSC
, &pc
->flags
);
2969 pc
->callback
= &idetape_pc_callback
;
2972 static int idetape_create_prevent_cmd (ide_drive_t
*drive
, idetape_pc_t
*pc
, int prevent
)
2974 idetape_tape_t
*tape
= drive
->driver_data
;
2976 if (!tape
->capabilities
.lock
)
2979 idetape_init_pc(pc
);
2980 pc
->c
[0] = IDETAPE_PREVENT_CMD
;
2982 pc
->callback
= &idetape_pc_callback
;
2986 static int __idetape_discard_read_pipeline (ide_drive_t
*drive
)
2988 idetape_tape_t
*tape
= drive
->driver_data
;
2989 unsigned long flags
;
2992 if (tape
->chrdev_direction
!= idetape_direction_read
)
2995 /* Remove merge stage. */
2996 cnt
= tape
->merge_stage_size
/ tape
->tape_block_size
;
2997 if (test_and_clear_bit(IDETAPE_FILEMARK
, &tape
->flags
))
2998 ++cnt
; /* Filemarks count as 1 sector */
2999 tape
->merge_stage_size
= 0;
3000 if (tape
->merge_stage
!= NULL
) {
3001 __idetape_kfree_stage(tape
->merge_stage
);
3002 tape
->merge_stage
= NULL
;
3005 /* Clear pipeline flags. */
3006 clear_bit(IDETAPE_PIPELINE_ERROR
, &tape
->flags
);
3007 tape
->chrdev_direction
= idetape_direction_none
;
3009 /* Remove pipeline stages. */
3010 if (tape
->first_stage
== NULL
)
3013 spin_lock_irqsave(&tape
->spinlock
, flags
);
3014 tape
->next_stage
= NULL
;
3015 if (idetape_pipeline_active(tape
))
3016 idetape_wait_for_request(drive
, tape
->active_data_request
);
3017 spin_unlock_irqrestore(&tape
->spinlock
, flags
);
3019 while (tape
->first_stage
!= NULL
) {
3020 struct request
*rq_ptr
= &tape
->first_stage
->rq
;
3022 cnt
+= rq_ptr
->nr_sectors
- rq_ptr
->current_nr_sectors
;
3023 if (rq_ptr
->errors
== IDETAPE_ERROR_FILEMARK
)
3025 idetape_remove_stage_head(drive
);
3027 tape
->nr_pending_stages
= 0;
3028 tape
->max_stages
= tape
->min_pipeline
;
3033 * idetape_position_tape positions the tape to the requested block
3034 * using the LOCATE packet command. A READ POSITION command is then
3035 * issued to check where we are positioned.
3037 * Like all higher level operations, we queue the commands at the tail
3038 * of the request queue and wait for their completion.
3041 static int idetape_position_tape (ide_drive_t
*drive
, unsigned int block
, u8 partition
, int skip
)
3043 idetape_tape_t
*tape
= drive
->driver_data
;
3047 if (tape
->chrdev_direction
== idetape_direction_read
)
3048 __idetape_discard_read_pipeline(drive
);
3049 idetape_wait_ready(drive
, 60 * 5 * HZ
);
3050 idetape_create_locate_cmd(drive
, &pc
, block
, partition
, skip
);
3051 retval
= idetape_queue_pc_tail(drive
, &pc
);
3055 idetape_create_read_position_cmd(&pc
);
3056 return (idetape_queue_pc_tail(drive
, &pc
));
3059 static void idetape_discard_read_pipeline (ide_drive_t
*drive
, int restore_position
)
3061 idetape_tape_t
*tape
= drive
->driver_data
;
3065 cnt
= __idetape_discard_read_pipeline(drive
);
3066 if (restore_position
) {
3067 position
= idetape_read_position(drive
);
3068 seek
= position
> cnt
? position
- cnt
: 0;
3069 if (idetape_position_tape(drive
, seek
, 0, 0)) {
3070 printk(KERN_INFO
"ide-tape: %s: position_tape failed in discard_pipeline()\n", tape
->name
);
3077 * idetape_queue_rw_tail generates a read/write request for the block
3078 * device interface and wait for it to be serviced.
3080 static int idetape_queue_rw_tail(ide_drive_t
*drive
, int cmd
, int blocks
, struct idetape_bh
*bh
)
3082 idetape_tape_t
*tape
= drive
->driver_data
;
3085 #if IDETAPE_DEBUG_LOG
3086 if (tape
->debug_level
>= 2)
3087 printk(KERN_INFO
"ide-tape: idetape_queue_rw_tail: cmd=%d\n",cmd
);
3088 #endif /* IDETAPE_DEBUG_LOG */
3089 #if IDETAPE_DEBUG_BUGS
3090 if (idetape_pipeline_active(tape
)) {
3091 printk(KERN_ERR
"ide-tape: bug: the pipeline is active in idetape_queue_rw_tail\n");
3094 #endif /* IDETAPE_DEBUG_BUGS */
3096 idetape_init_rq(&rq
, cmd
);
3097 rq
.rq_disk
= tape
->disk
;
3098 rq
.special
= (void *)bh
;
3099 rq
.sector
= tape
->first_frame_position
;
3100 rq
.nr_sectors
= rq
.current_nr_sectors
= blocks
;
3101 (void) ide_do_drive_cmd(drive
, &rq
, ide_wait
);
3103 if ((cmd
& (REQ_IDETAPE_READ
| REQ_IDETAPE_WRITE
)) == 0)
3106 if (tape
->merge_stage
)
3107 idetape_init_merge_stage(tape
);
3108 if (rq
.errors
== IDETAPE_ERROR_GENERAL
)
3110 return (tape
->tape_block_size
* (blocks
-rq
.current_nr_sectors
));
3114 * idetape_insert_pipeline_into_queue is used to start servicing the
3115 * pipeline stages, starting from tape->next_stage.
3117 static void idetape_insert_pipeline_into_queue (ide_drive_t
*drive
)
3119 idetape_tape_t
*tape
= drive
->driver_data
;
3121 if (tape
->next_stage
== NULL
)
3123 if (!idetape_pipeline_active(tape
)) {
3124 set_bit(IDETAPE_PIPELINE_ACTIVE
, &tape
->flags
);
3125 idetape_active_next_stage(drive
);
3126 (void) ide_do_drive_cmd(drive
, tape
->active_data_request
, ide_end
);
3130 static void idetape_create_inquiry_cmd (idetape_pc_t
*pc
)
3132 idetape_init_pc(pc
);
3133 pc
->c
[0] = IDETAPE_INQUIRY_CMD
;
3134 pc
->c
[4] = pc
->request_transfer
= 254;
3135 pc
->callback
= &idetape_pc_callback
;
3138 static void idetape_create_rewind_cmd (ide_drive_t
*drive
, idetape_pc_t
*pc
)
3140 idetape_init_pc(pc
);
3141 pc
->c
[0] = IDETAPE_REWIND_CMD
;
3142 set_bit(PC_WAIT_FOR_DSC
, &pc
->flags
);
3143 pc
->callback
= &idetape_pc_callback
;
3147 static void idetape_create_mode_select_cmd (idetape_pc_t
*pc
, int length
)
3149 idetape_init_pc(pc
);
3150 set_bit(PC_WRITING
, &pc
->flags
);
3151 pc
->c
[0] = IDETAPE_MODE_SELECT_CMD
;
3153 put_unaligned(htons(length
), (unsigned short *) &pc
->c
[3]);
3154 pc
->request_transfer
= 255;
3155 pc
->callback
= &idetape_pc_callback
;
3159 static void idetape_create_erase_cmd (idetape_pc_t
*pc
)
3161 idetape_init_pc(pc
);
3162 pc
->c
[0] = IDETAPE_ERASE_CMD
;
3164 set_bit(PC_WAIT_FOR_DSC
, &pc
->flags
);
3165 pc
->callback
= &idetape_pc_callback
;
3168 static void idetape_create_space_cmd (idetape_pc_t
*pc
,int count
, u8 cmd
)
3170 idetape_init_pc(pc
);
3171 pc
->c
[0] = IDETAPE_SPACE_CMD
;
3172 put_unaligned(htonl(count
), (unsigned int *) &pc
->c
[1]);
3174 set_bit(PC_WAIT_FOR_DSC
, &pc
->flags
);
3175 pc
->callback
= &idetape_pc_callback
;
3178 static void idetape_wait_first_stage (ide_drive_t
*drive
)
3180 idetape_tape_t
*tape
= drive
->driver_data
;
3181 unsigned long flags
;
3183 if (tape
->first_stage
== NULL
)
3185 spin_lock_irqsave(&tape
->spinlock
, flags
);
3186 if (tape
->active_stage
== tape
->first_stage
)
3187 idetape_wait_for_request(drive
, tape
->active_data_request
);
3188 spin_unlock_irqrestore(&tape
->spinlock
, flags
);
3192 * idetape_add_chrdev_write_request tries to add a character device
3193 * originated write request to our pipeline. In case we don't succeed,
3194 * we revert to non-pipelined operation mode for this request.
3196 * 1. Try to allocate a new pipeline stage.
3197 * 2. If we can't, wait for more and more requests to be serviced
3198 * and try again each time.
3199 * 3. If we still can't allocate a stage, fallback to
3200 * non-pipelined operation mode for this request.
3202 static int idetape_add_chrdev_write_request (ide_drive_t
*drive
, int blocks
)
3204 idetape_tape_t
*tape
= drive
->driver_data
;
3205 idetape_stage_t
*new_stage
;
3206 unsigned long flags
;
3209 #if IDETAPE_DEBUG_LOG
3210 if (tape
->debug_level
>= 3)
3211 printk(KERN_INFO
"ide-tape: Reached idetape_add_chrdev_write_request\n");
3212 #endif /* IDETAPE_DEBUG_LOG */
3215 * Attempt to allocate a new stage.
3216 * Pay special attention to possible race conditions.
3218 while ((new_stage
= idetape_kmalloc_stage(tape
)) == NULL
) {
3219 spin_lock_irqsave(&tape
->spinlock
, flags
);
3220 if (idetape_pipeline_active(tape
)) {
3221 idetape_wait_for_request(drive
, tape
->active_data_request
);
3222 spin_unlock_irqrestore(&tape
->spinlock
, flags
);
3224 spin_unlock_irqrestore(&tape
->spinlock
, flags
);
3225 idetape_insert_pipeline_into_queue(drive
);
3226 if (idetape_pipeline_active(tape
))
3229 * Linux is short on memory. Fallback to
3230 * non-pipelined operation mode for this request.
3232 return idetape_queue_rw_tail(drive
, REQ_IDETAPE_WRITE
, blocks
, tape
->merge_stage
->bh
);
3235 rq
= &new_stage
->rq
;
3236 idetape_init_rq(rq
, REQ_IDETAPE_WRITE
);
3237 /* Doesn't actually matter - We always assume sequential access */
3238 rq
->sector
= tape
->first_frame_position
;
3239 rq
->nr_sectors
= rq
->current_nr_sectors
= blocks
;
3241 idetape_switch_buffers(tape
, new_stage
);
3242 idetape_add_stage_tail(drive
, new_stage
);
3243 tape
->pipeline_head
++;
3245 IO_trace(IO_IDETAPE_FIFO
, tape
->pipeline_head
, tape
->buffer_head
, tape
->tape_head
, tape
->minor
);
3247 calculate_speeds(drive
);
3250 * Estimate whether the tape has stopped writing by checking
3251 * if our write pipeline is currently empty. If we are not
3252 * writing anymore, wait for the pipeline to be full enough
3253 * (90%) before starting to service requests, so that we will
3254 * be able to keep up with the higher speeds of the tape.
3256 if (!idetape_pipeline_active(tape
)) {
3257 if (tape
->nr_stages
>= tape
->max_stages
* 9 / 10 ||
3258 tape
->nr_stages
>= tape
->max_stages
- tape
->uncontrolled_pipeline_head_speed
* 3 * 1024 / tape
->tape_block_size
) {
3259 tape
->measure_insert_time
= 1;
3260 tape
->insert_time
= jiffies
;
3261 tape
->insert_size
= 0;
3262 tape
->insert_speed
= 0;
3263 idetape_insert_pipeline_into_queue(drive
);
3266 if (test_and_clear_bit(IDETAPE_PIPELINE_ERROR
, &tape
->flags
))
3267 /* Return a deferred error */
3273 * idetape_wait_for_pipeline will wait until all pending pipeline
3274 * requests are serviced. Typically called on device close.
3276 static void idetape_wait_for_pipeline (ide_drive_t
*drive
)
3278 idetape_tape_t
*tape
= drive
->driver_data
;
3279 unsigned long flags
;
3281 while (tape
->next_stage
|| idetape_pipeline_active(tape
)) {
3282 idetape_insert_pipeline_into_queue(drive
);
3283 spin_lock_irqsave(&tape
->spinlock
, flags
);
3284 if (idetape_pipeline_active(tape
))
3285 idetape_wait_for_request(drive
, tape
->active_data_request
);
3286 spin_unlock_irqrestore(&tape
->spinlock
, flags
);
3290 static void idetape_empty_write_pipeline (ide_drive_t
*drive
)
3292 idetape_tape_t
*tape
= drive
->driver_data
;
3294 struct idetape_bh
*bh
;
3296 #if IDETAPE_DEBUG_BUGS
3297 if (tape
->chrdev_direction
!= idetape_direction_write
) {
3298 printk(KERN_ERR
"ide-tape: bug: Trying to empty write pipeline, but we are not writing.\n");
3301 if (tape
->merge_stage_size
> tape
->stage_size
) {
3302 printk(KERN_ERR
"ide-tape: bug: merge_buffer too big\n");
3303 tape
->merge_stage_size
= tape
->stage_size
;
3305 #endif /* IDETAPE_DEBUG_BUGS */
3306 if (tape
->merge_stage_size
) {
3307 blocks
= tape
->merge_stage_size
/ tape
->tape_block_size
;
3308 if (tape
->merge_stage_size
% tape
->tape_block_size
) {
3312 i
= tape
->tape_block_size
- tape
->merge_stage_size
% tape
->tape_block_size
;
3313 bh
= tape
->bh
->b_reqnext
;
3315 atomic_set(&bh
->b_count
, 0);
3322 printk(KERN_INFO
"ide-tape: bug, bh NULL\n");
3325 min
= min(i
, (unsigned int)(bh
->b_size
- atomic_read(&bh
->b_count
)));
3326 memset(bh
->b_data
+ atomic_read(&bh
->b_count
), 0, min
);
3327 atomic_add(min
, &bh
->b_count
);
3332 (void) idetape_add_chrdev_write_request(drive
, blocks
);
3333 tape
->merge_stage_size
= 0;
3335 idetape_wait_for_pipeline(drive
);
3336 if (tape
->merge_stage
!= NULL
) {
3337 __idetape_kfree_stage(tape
->merge_stage
);
3338 tape
->merge_stage
= NULL
;
3340 clear_bit(IDETAPE_PIPELINE_ERROR
, &tape
->flags
);
3341 tape
->chrdev_direction
= idetape_direction_none
;
3344 * On the next backup, perform the feedback loop again.
3345 * (I don't want to keep sense information between backups,
3346 * as some systems are constantly on, and the system load
3347 * can be totally different on the next backup).
3349 tape
->max_stages
= tape
->min_pipeline
;
3350 #if IDETAPE_DEBUG_BUGS
3351 if (tape
->first_stage
!= NULL
||
3352 tape
->next_stage
!= NULL
||
3353 tape
->last_stage
!= NULL
||
3354 tape
->nr_stages
!= 0) {
3355 printk(KERN_ERR
"ide-tape: ide-tape pipeline bug, "
3356 "first_stage %p, next_stage %p, "
3357 "last_stage %p, nr_stages %d\n",
3358 tape
->first_stage
, tape
->next_stage
,
3359 tape
->last_stage
, tape
->nr_stages
);
3361 #endif /* IDETAPE_DEBUG_BUGS */
3364 static void idetape_restart_speed_control (ide_drive_t
*drive
)
3366 idetape_tape_t
*tape
= drive
->driver_data
;
3368 tape
->restart_speed_control_req
= 0;
3369 tape
->pipeline_head
= 0;
3370 tape
->controlled_last_pipeline_head
= tape
->uncontrolled_last_pipeline_head
= 0;
3371 tape
->controlled_previous_pipeline_head
= tape
->uncontrolled_previous_pipeline_head
= 0;
3372 tape
->pipeline_head_speed
= tape
->controlled_pipeline_head_speed
= 5000;
3373 tape
->uncontrolled_pipeline_head_speed
= 0;
3374 tape
->controlled_pipeline_head_time
= tape
->uncontrolled_pipeline_head_time
= jiffies
;
3375 tape
->controlled_previous_head_time
= tape
->uncontrolled_previous_head_time
= jiffies
;
3378 static int idetape_initiate_read (ide_drive_t
*drive
, int max_stages
)
3380 idetape_tape_t
*tape
= drive
->driver_data
;
3381 idetape_stage_t
*new_stage
;
3384 int blocks
= tape
->capabilities
.ctl
;
3386 /* Initialize read operation */
3387 if (tape
->chrdev_direction
!= idetape_direction_read
) {
3388 if (tape
->chrdev_direction
== idetape_direction_write
) {
3389 idetape_empty_write_pipeline(drive
);
3390 idetape_flush_tape_buffers(drive
);
3392 #if IDETAPE_DEBUG_BUGS
3393 if (tape
->merge_stage
|| tape
->merge_stage_size
) {
3394 printk (KERN_ERR
"ide-tape: merge_stage_size should be 0 now\n");
3395 tape
->merge_stage_size
= 0;
3397 #endif /* IDETAPE_DEBUG_BUGS */
3398 if ((tape
->merge_stage
= __idetape_kmalloc_stage(tape
, 0, 0)) == NULL
)
3400 tape
->chrdev_direction
= idetape_direction_read
;
3403 * Issue a read 0 command to ensure that DSC handshake
3404 * is switched from completion mode to buffer available
3406 * No point in issuing this if DSC overlap isn't supported,
3407 * some drives (Seagate STT3401A) will return an error.
3409 if (drive
->dsc_overlap
) {
3410 bytes_read
= idetape_queue_rw_tail(drive
, REQ_IDETAPE_READ
, 0, tape
->merge_stage
->bh
);
3411 if (bytes_read
< 0) {
3412 __idetape_kfree_stage(tape
->merge_stage
);
3413 tape
->merge_stage
= NULL
;
3414 tape
->chrdev_direction
= idetape_direction_none
;
3419 if (tape
->restart_speed_control_req
)
3420 idetape_restart_speed_control(drive
);
3421 idetape_init_rq(&rq
, REQ_IDETAPE_READ
);
3422 rq
.sector
= tape
->first_frame_position
;
3423 rq
.nr_sectors
= rq
.current_nr_sectors
= blocks
;
3424 if (!test_bit(IDETAPE_PIPELINE_ERROR
, &tape
->flags
) &&
3425 tape
->nr_stages
< max_stages
) {
3426 new_stage
= idetape_kmalloc_stage(tape
);
3427 while (new_stage
!= NULL
) {
3429 idetape_add_stage_tail(drive
, new_stage
);
3430 if (tape
->nr_stages
>= max_stages
)
3432 new_stage
= idetape_kmalloc_stage(tape
);
3435 if (!idetape_pipeline_active(tape
)) {
3436 if (tape
->nr_pending_stages
>= 3 * max_stages
/ 4) {
3437 tape
->measure_insert_time
= 1;
3438 tape
->insert_time
= jiffies
;
3439 tape
->insert_size
= 0;
3440 tape
->insert_speed
= 0;
3441 idetape_insert_pipeline_into_queue(drive
);
3448 * idetape_add_chrdev_read_request is called from idetape_chrdev_read
3449 * to service a character device read request and add read-ahead
3450 * requests to our pipeline.
3452 static int idetape_add_chrdev_read_request (ide_drive_t
*drive
,int blocks
)
3454 idetape_tape_t
*tape
= drive
->driver_data
;
3455 unsigned long flags
;
3456 struct request
*rq_ptr
;
3459 #if IDETAPE_DEBUG_LOG
3460 if (tape
->debug_level
>= 4)
3461 printk(KERN_INFO
"ide-tape: Reached idetape_add_chrdev_read_request, %d blocks\n", blocks
);
3462 #endif /* IDETAPE_DEBUG_LOG */
3465 * If we are at a filemark, return a read length of 0
3467 if (test_bit(IDETAPE_FILEMARK
, &tape
->flags
))
3471 * Wait for the next block to be available at the head
3474 idetape_initiate_read(drive
, tape
->max_stages
);
3475 if (tape
->first_stage
== NULL
) {
3476 if (test_bit(IDETAPE_PIPELINE_ERROR
, &tape
->flags
))
3478 return idetape_queue_rw_tail(drive
, REQ_IDETAPE_READ
, blocks
, tape
->merge_stage
->bh
);
3480 idetape_wait_first_stage(drive
);
3481 rq_ptr
= &tape
->first_stage
->rq
;
3482 bytes_read
= tape
->tape_block_size
* (rq_ptr
->nr_sectors
- rq_ptr
->current_nr_sectors
);
3483 rq_ptr
->nr_sectors
= rq_ptr
->current_nr_sectors
= 0;
3486 if (rq_ptr
->errors
== IDETAPE_ERROR_EOD
)
3489 idetape_switch_buffers(tape
, tape
->first_stage
);
3490 if (rq_ptr
->errors
== IDETAPE_ERROR_FILEMARK
)
3491 set_bit(IDETAPE_FILEMARK
, &tape
->flags
);
3492 spin_lock_irqsave(&tape
->spinlock
, flags
);
3493 idetape_remove_stage_head(drive
);
3494 spin_unlock_irqrestore(&tape
->spinlock
, flags
);
3495 tape
->pipeline_head
++;
3497 IO_trace(IO_IDETAPE_FIFO
, tape
->pipeline_head
, tape
->buffer_head
, tape
->tape_head
, tape
->minor
);
3499 calculate_speeds(drive
);
3501 #if IDETAPE_DEBUG_BUGS
3502 if (bytes_read
> blocks
* tape
->tape_block_size
) {
3503 printk(KERN_ERR
"ide-tape: bug: trying to return more bytes than requested\n");
3504 bytes_read
= blocks
* tape
->tape_block_size
;
3506 #endif /* IDETAPE_DEBUG_BUGS */
3507 return (bytes_read
);
3510 static void idetape_pad_zeros (ide_drive_t
*drive
, int bcount
)
3512 idetape_tape_t
*tape
= drive
->driver_data
;
3513 struct idetape_bh
*bh
;
3519 bh
= tape
->merge_stage
->bh
;
3520 count
= min(tape
->stage_size
, bcount
);
3522 blocks
= count
/ tape
->tape_block_size
;
3524 atomic_set(&bh
->b_count
, min(count
, (unsigned int)bh
->b_size
));
3525 memset(bh
->b_data
, 0, atomic_read(&bh
->b_count
));
3526 count
-= atomic_read(&bh
->b_count
);
3529 idetape_queue_rw_tail(drive
, REQ_IDETAPE_WRITE
, blocks
, tape
->merge_stage
->bh
);
3533 static int idetape_pipeline_size (ide_drive_t
*drive
)
3535 idetape_tape_t
*tape
= drive
->driver_data
;
3536 idetape_stage_t
*stage
;
3540 idetape_wait_for_pipeline(drive
);
3541 stage
= tape
->first_stage
;
3542 while (stage
!= NULL
) {
3544 size
+= tape
->tape_block_size
* (rq
->nr_sectors
-rq
->current_nr_sectors
);
3545 if (rq
->errors
== IDETAPE_ERROR_FILEMARK
)
3546 size
+= tape
->tape_block_size
;
3547 stage
= stage
->next
;
3549 size
+= tape
->merge_stage_size
;
3554 * Rewinds the tape to the Beginning Of the current Partition (BOP).
3556 * We currently support only one partition.
3558 static int idetape_rewind_tape (ide_drive_t
*drive
)
3562 #if IDETAPE_DEBUG_LOG
3563 idetape_tape_t
*tape
= drive
->driver_data
;
3564 if (tape
->debug_level
>= 2)
3565 printk(KERN_INFO
"ide-tape: Reached idetape_rewind_tape\n");
3566 #endif /* IDETAPE_DEBUG_LOG */
3568 idetape_create_rewind_cmd(drive
, &pc
);
3569 retval
= idetape_queue_pc_tail(drive
, &pc
);
3573 idetape_create_read_position_cmd(&pc
);
3574 retval
= idetape_queue_pc_tail(drive
, &pc
);
3581 * Our special ide-tape ioctl's.
3583 * Currently there aren't any ioctl's.
3584 * mtio.h compatible commands should be issued to the character device
3587 static int idetape_blkdev_ioctl(ide_drive_t
*drive
, unsigned int cmd
, unsigned long arg
)
3589 idetape_tape_t
*tape
= drive
->driver_data
;
3590 idetape_config_t config
;
3591 void __user
*argp
= (void __user
*)arg
;
3593 #if IDETAPE_DEBUG_LOG
3594 if (tape
->debug_level
>= 4)
3595 printk(KERN_INFO
"ide-tape: Reached idetape_blkdev_ioctl\n");
3596 #endif /* IDETAPE_DEBUG_LOG */
3599 if (copy_from_user(&config
, argp
, sizeof (idetape_config_t
)))
3601 tape
->best_dsc_rw_frequency
= config
.dsc_rw_frequency
;
3602 tape
->max_stages
= config
.nr_stages
;
3605 config
.dsc_rw_frequency
= (int) tape
->best_dsc_rw_frequency
;
3606 config
.nr_stages
= tape
->max_stages
;
3607 if (copy_to_user(argp
, &config
, sizeof (idetape_config_t
)))
3617 * idetape_space_over_filemarks is now a bit more complicated than just
3618 * passing the command to the tape since we may have crossed some
3619 * filemarks during our pipelined read-ahead mode.
3621 * As a minor side effect, the pipeline enables us to support MTFSFM when
3622 * the filemark is in our internal pipeline even if the tape doesn't
3623 * support spacing over filemarks in the reverse direction.
3625 static int idetape_space_over_filemarks (ide_drive_t
*drive
,short mt_op
,int mt_count
)
3627 idetape_tape_t
*tape
= drive
->driver_data
;
3629 unsigned long flags
;
3634 if (MTBSF
== mt_op
|| MTBSFM
== mt_op
) {
3635 if (!tape
->capabilities
.sprev
)
3637 mt_count
= - mt_count
;
3640 if (tape
->chrdev_direction
== idetape_direction_read
) {
3642 * We have a read-ahead buffer. Scan it for crossed
3645 tape
->merge_stage_size
= 0;
3646 if (test_and_clear_bit(IDETAPE_FILEMARK
, &tape
->flags
))
3648 while (tape
->first_stage
!= NULL
) {
3649 if (count
== mt_count
) {
3650 if (mt_op
== MTFSFM
)
3651 set_bit(IDETAPE_FILEMARK
, &tape
->flags
);
3654 spin_lock_irqsave(&tape
->spinlock
, flags
);
3655 if (tape
->first_stage
== tape
->active_stage
) {
3657 * We have reached the active stage in the read pipeline.
3658 * There is no point in allowing the drive to continue
3659 * reading any farther, so we stop the pipeline.
3661 * This section should be moved to a separate subroutine,
3662 * because a similar function is performed in
3663 * __idetape_discard_read_pipeline(), for example.
3665 tape
->next_stage
= NULL
;
3666 spin_unlock_irqrestore(&tape
->spinlock
, flags
);
3667 idetape_wait_first_stage(drive
);
3668 tape
->next_stage
= tape
->first_stage
->next
;
3670 spin_unlock_irqrestore(&tape
->spinlock
, flags
);
3671 if (tape
->first_stage
->rq
.errors
== IDETAPE_ERROR_FILEMARK
)
3673 idetape_remove_stage_head(drive
);
3675 idetape_discard_read_pipeline(drive
, 0);
3679 * The filemark was not found in our internal pipeline.
3680 * Now we can issue the space command.
3685 idetape_create_space_cmd(&pc
,mt_count
-count
,IDETAPE_SPACE_OVER_FILEMARK
);
3686 return (idetape_queue_pc_tail(drive
, &pc
));
3689 if (!tape
->capabilities
.sprev
)
3691 retval
= idetape_space_over_filemarks(drive
, MTFSF
, mt_count
-count
);
3692 if (retval
) return (retval
);
3693 count
= (MTBSFM
== mt_op
? 1 : -1);
3694 return (idetape_space_over_filemarks(drive
, MTFSF
, count
));
3696 printk(KERN_ERR
"ide-tape: MTIO operation %d not supported\n",mt_op
);
3703 * Our character device read / write functions.
3705 * The tape is optimized to maximize throughput when it is transferring
3706 * an integral number of the "continuous transfer limit", which is
3707 * a parameter of the specific tape (26 KB on my particular tape).
3708 * (32 kB for Onstream)
3710 * As of version 1.3 of the driver, the character device provides an
3711 * abstract continuous view of the media - any mix of block sizes (even 1
3712 * byte) on the same backup/restore procedure is supported. The driver
3713 * will internally convert the requests to the recommended transfer unit,
3714 * so that an unmatch between the user's block size to the recommended
3715 * size will only result in a (slightly) increased driver overhead, but
3716 * will no longer hit performance.
3717 * This is not applicable to Onstream.
3719 static ssize_t
idetape_chrdev_read (struct file
*file
, char __user
*buf
,
3720 size_t count
, loff_t
*ppos
)
3722 struct ide_tape_obj
*tape
= ide_tape_f(file
);
3723 ide_drive_t
*drive
= tape
->drive
;
3724 ssize_t bytes_read
,temp
, actually_read
= 0, rc
;
3727 #if IDETAPE_DEBUG_LOG
3728 if (tape
->debug_level
>= 3)
3729 printk(KERN_INFO
"ide-tape: Reached idetape_chrdev_read, count %Zd\n", count
);
3730 #endif /* IDETAPE_DEBUG_LOG */
3732 if (tape
->chrdev_direction
!= idetape_direction_read
) {
3733 if (test_bit(IDETAPE_DETECT_BS
, &tape
->flags
))
3734 if (count
> tape
->tape_block_size
&&
3735 (count
% tape
->tape_block_size
) == 0)
3736 tape
->user_bs_factor
= count
/ tape
->tape_block_size
;
3738 if ((rc
= idetape_initiate_read(drive
, tape
->max_stages
)) < 0)
3742 if (tape
->merge_stage_size
) {
3743 actually_read
= min((unsigned int)(tape
->merge_stage_size
), (unsigned int)count
);
3744 if (idetape_copy_stage_to_user(tape
, buf
, tape
->merge_stage
, actually_read
))
3746 buf
+= actually_read
;
3747 tape
->merge_stage_size
-= actually_read
;
3748 count
-= actually_read
;
3750 while (count
>= tape
->stage_size
) {
3751 bytes_read
= idetape_add_chrdev_read_request(drive
, tape
->capabilities
.ctl
);
3752 if (bytes_read
<= 0)
3754 if (idetape_copy_stage_to_user(tape
, buf
, tape
->merge_stage
, bytes_read
))
3757 count
-= bytes_read
;
3758 actually_read
+= bytes_read
;
3761 bytes_read
= idetape_add_chrdev_read_request(drive
, tape
->capabilities
.ctl
);
3762 if (bytes_read
<= 0)
3764 temp
= min((unsigned long)count
, (unsigned long)bytes_read
);
3765 if (idetape_copy_stage_to_user(tape
, buf
, tape
->merge_stage
, temp
))
3767 actually_read
+= temp
;
3768 tape
->merge_stage_size
= bytes_read
-temp
;
3771 if (!actually_read
&& test_bit(IDETAPE_FILEMARK
, &tape
->flags
)) {
3772 #if IDETAPE_DEBUG_LOG
3773 if (tape
->debug_level
>= 2)
3774 printk(KERN_INFO
"ide-tape: %s: spacing over filemark\n", tape
->name
);
3776 idetape_space_over_filemarks(drive
, MTFSF
, 1);
3780 return (ret
) ? ret
: actually_read
;
3783 static ssize_t
idetape_chrdev_write (struct file
*file
, const char __user
*buf
,
3784 size_t count
, loff_t
*ppos
)
3786 struct ide_tape_obj
*tape
= ide_tape_f(file
);
3787 ide_drive_t
*drive
= tape
->drive
;
3788 ssize_t actually_written
= 0;
3791 /* The drive is write protected. */
3792 if (tape
->write_prot
)
3795 #if IDETAPE_DEBUG_LOG
3796 if (tape
->debug_level
>= 3)
3797 printk(KERN_INFO
"ide-tape: Reached idetape_chrdev_write, "
3798 "count %Zd\n", count
);
3799 #endif /* IDETAPE_DEBUG_LOG */
3801 /* Initialize write operation */
3802 if (tape
->chrdev_direction
!= idetape_direction_write
) {
3803 if (tape
->chrdev_direction
== idetape_direction_read
)
3804 idetape_discard_read_pipeline(drive
, 1);
3805 #if IDETAPE_DEBUG_BUGS
3806 if (tape
->merge_stage
|| tape
->merge_stage_size
) {
3807 printk(KERN_ERR
"ide-tape: merge_stage_size "
3808 "should be 0 now\n");
3809 tape
->merge_stage_size
= 0;
3811 #endif /* IDETAPE_DEBUG_BUGS */
3812 if ((tape
->merge_stage
= __idetape_kmalloc_stage(tape
, 0, 0)) == NULL
)
3814 tape
->chrdev_direction
= idetape_direction_write
;
3815 idetape_init_merge_stage(tape
);
3818 * Issue a write 0 command to ensure that DSC handshake
3819 * is switched from completion mode to buffer available
3821 * No point in issuing this if DSC overlap isn't supported,
3822 * some drives (Seagate STT3401A) will return an error.
3824 if (drive
->dsc_overlap
) {
3825 ssize_t retval
= idetape_queue_rw_tail(drive
, REQ_IDETAPE_WRITE
, 0, tape
->merge_stage
->bh
);
3827 __idetape_kfree_stage(tape
->merge_stage
);
3828 tape
->merge_stage
= NULL
;
3829 tape
->chrdev_direction
= idetape_direction_none
;
3836 if (tape
->restart_speed_control_req
)
3837 idetape_restart_speed_control(drive
);
3838 if (tape
->merge_stage_size
) {
3839 #if IDETAPE_DEBUG_BUGS
3840 if (tape
->merge_stage_size
>= tape
->stage_size
) {
3841 printk(KERN_ERR
"ide-tape: bug: merge buffer too big\n");
3842 tape
->merge_stage_size
= 0;
3844 #endif /* IDETAPE_DEBUG_BUGS */
3845 actually_written
= min((unsigned int)(tape
->stage_size
- tape
->merge_stage_size
), (unsigned int)count
);
3846 if (idetape_copy_stage_from_user(tape
, tape
->merge_stage
, buf
, actually_written
))
3848 buf
+= actually_written
;
3849 tape
->merge_stage_size
+= actually_written
;
3850 count
-= actually_written
;
3852 if (tape
->merge_stage_size
== tape
->stage_size
) {
3854 tape
->merge_stage_size
= 0;
3855 retval
= idetape_add_chrdev_write_request(drive
, tape
->capabilities
.ctl
);
3860 while (count
>= tape
->stage_size
) {
3862 if (idetape_copy_stage_from_user(tape
, tape
->merge_stage
, buf
, tape
->stage_size
))
3864 buf
+= tape
->stage_size
;
3865 count
-= tape
->stage_size
;
3866 retval
= idetape_add_chrdev_write_request(drive
, tape
->capabilities
.ctl
);
3867 actually_written
+= tape
->stage_size
;
3872 actually_written
+= count
;
3873 if (idetape_copy_stage_from_user(tape
, tape
->merge_stage
, buf
, count
))
3875 tape
->merge_stage_size
+= count
;
3877 return (ret
) ? ret
: actually_written
;
3880 static int idetape_write_filemark (ide_drive_t
*drive
)
3884 /* Write a filemark */
3885 idetape_create_write_filemark_cmd(drive
, &pc
, 1);
3886 if (idetape_queue_pc_tail(drive
, &pc
)) {
3887 printk(KERN_ERR
"ide-tape: Couldn't write a filemark\n");
3894 * idetape_mtioctop is called from idetape_chrdev_ioctl when
3895 * the general mtio MTIOCTOP ioctl is requested.
3897 * We currently support the following mtio.h operations:
3899 * MTFSF - Space over mt_count filemarks in the positive direction.
3900 * The tape is positioned after the last spaced filemark.
3902 * MTFSFM - Same as MTFSF, but the tape is positioned before the
3905 * MTBSF - Steps background over mt_count filemarks, tape is
3906 * positioned before the last filemark.
3908 * MTBSFM - Like MTBSF, only tape is positioned after the last filemark.
3912 * MTBSF and MTBSFM are not supported when the tape doesn't
3913 * support spacing over filemarks in the reverse direction.
3914 * In this case, MTFSFM is also usually not supported (it is
3915 * supported in the rare case in which we crossed the filemark
3916 * during our read-ahead pipelined operation mode).
3918 * MTWEOF - Writes mt_count filemarks. Tape is positioned after
3919 * the last written filemark.
3921 * MTREW - Rewinds tape.
3923 * MTLOAD - Loads the tape.
3925 * MTOFFL - Puts the tape drive "Offline": Rewinds the tape and
3926 * MTUNLOAD prevents further access until the media is replaced.
3928 * MTNOP - Flushes tape buffers.
3930 * MTRETEN - Retension media. This typically consists of one end
3931 * to end pass on the media.
3933 * MTEOM - Moves to the end of recorded data.
3935 * MTERASE - Erases tape.
3937 * MTSETBLK - Sets the user block size to mt_count bytes. If
3938 * mt_count is 0, we will attempt to autodetect
3941 * MTSEEK - Positions the tape in a specific block number, where
3942 * each block is assumed to contain which user_block_size
3945 * MTSETPART - Switches to another tape partition.
3947 * MTLOCK - Locks the tape door.
3949 * MTUNLOCK - Unlocks the tape door.
3951 * The following commands are currently not supported:
3953 * MTFSS, MTBSS, MTWSM, MTSETDENSITY,
3954 * MTSETDRVBUFFER, MT_ST_BOOLEANS, MT_ST_WRITE_THRESHOLD.
3956 static int idetape_mtioctop (ide_drive_t
*drive
,short mt_op
,int mt_count
)
3958 idetape_tape_t
*tape
= drive
->driver_data
;
3962 #if IDETAPE_DEBUG_LOG
3963 if (tape
->debug_level
>= 1)
3964 printk(KERN_INFO
"ide-tape: Handling MTIOCTOP ioctl: "
3965 "mt_op=%d, mt_count=%d\n", mt_op
, mt_count
);
3966 #endif /* IDETAPE_DEBUG_LOG */
3968 * Commands which need our pipelined read-ahead stages.
3977 return (idetape_space_over_filemarks(drive
,mt_op
,mt_count
));
3983 if (tape
->write_prot
)
3985 idetape_discard_read_pipeline(drive
, 1);
3986 for (i
= 0; i
< mt_count
; i
++) {
3987 retval
= idetape_write_filemark(drive
);
3993 idetape_discard_read_pipeline(drive
, 0);
3994 if (idetape_rewind_tape(drive
))
3998 idetape_discard_read_pipeline(drive
, 0);
3999 idetape_create_load_unload_cmd(drive
, &pc
, IDETAPE_LU_LOAD_MASK
);
4000 return (idetape_queue_pc_tail(drive
, &pc
));
4004 * If door is locked, attempt to unlock before
4005 * attempting to eject.
4007 if (tape
->door_locked
) {
4008 if (idetape_create_prevent_cmd(drive
, &pc
, 0))
4009 if (!idetape_queue_pc_tail(drive
, &pc
))
4010 tape
->door_locked
= DOOR_UNLOCKED
;
4012 idetape_discard_read_pipeline(drive
, 0);
4013 idetape_create_load_unload_cmd(drive
, &pc
,!IDETAPE_LU_LOAD_MASK
);
4014 retval
= idetape_queue_pc_tail(drive
, &pc
);
4016 clear_bit(IDETAPE_MEDIUM_PRESENT
, &tape
->flags
);
4019 idetape_discard_read_pipeline(drive
, 0);
4020 return (idetape_flush_tape_buffers(drive
));
4022 idetape_discard_read_pipeline(drive
, 0);
4023 idetape_create_load_unload_cmd(drive
, &pc
,IDETAPE_LU_RETENSION_MASK
| IDETAPE_LU_LOAD_MASK
);
4024 return (idetape_queue_pc_tail(drive
, &pc
));
4026 idetape_create_space_cmd(&pc
, 0, IDETAPE_SPACE_TO_EOD
);
4027 return (idetape_queue_pc_tail(drive
, &pc
));
4029 (void) idetape_rewind_tape(drive
);
4030 idetape_create_erase_cmd(&pc
);
4031 return (idetape_queue_pc_tail(drive
, &pc
));
4034 if (mt_count
< tape
->tape_block_size
|| mt_count
% tape
->tape_block_size
)
4036 tape
->user_bs_factor
= mt_count
/ tape
->tape_block_size
;
4037 clear_bit(IDETAPE_DETECT_BS
, &tape
->flags
);
4039 set_bit(IDETAPE_DETECT_BS
, &tape
->flags
);
4042 idetape_discard_read_pipeline(drive
, 0);
4043 return idetape_position_tape(drive
, mt_count
* tape
->user_bs_factor
, tape
->partition
, 0);
4045 idetape_discard_read_pipeline(drive
, 0);
4046 return (idetape_position_tape(drive
, 0, mt_count
, 0));
4050 if (!idetape_create_prevent_cmd(drive
, &pc
, 1))
4052 retval
= idetape_queue_pc_tail(drive
, &pc
);
4053 if (retval
) return retval
;
4054 tape
->door_locked
= DOOR_EXPLICITLY_LOCKED
;
4057 if (!idetape_create_prevent_cmd(drive
, &pc
, 0))
4059 retval
= idetape_queue_pc_tail(drive
, &pc
);
4060 if (retval
) return retval
;
4061 tape
->door_locked
= DOOR_UNLOCKED
;
4064 printk(KERN_ERR
"ide-tape: MTIO operation %d not "
4065 "supported\n", mt_op
);
4071 * Our character device ioctls.
4073 * General mtio.h magnetic io commands are supported here, and not in
4074 * the corresponding block interface.
4076 * The following ioctls are supported:
4078 * MTIOCTOP - Refer to idetape_mtioctop for detailed description.
4080 * MTIOCGET - The mt_dsreg field in the returned mtget structure
4081 * will be set to (user block size in bytes <<
4082 * MT_ST_BLKSIZE_SHIFT) & MT_ST_BLKSIZE_MASK.
4084 * The mt_blkno is set to the current user block number.
4085 * The other mtget fields are not supported.
4087 * MTIOCPOS - The current tape "block position" is returned. We
4088 * assume that each block contains user_block_size
4091 * Our own ide-tape ioctls are supported on both interfaces.
4093 static int idetape_chrdev_ioctl (struct inode
*inode
, struct file
*file
, unsigned int cmd
, unsigned long arg
)
4095 struct ide_tape_obj
*tape
= ide_tape_f(file
);
4096 ide_drive_t
*drive
= tape
->drive
;
4100 int block_offset
= 0, position
= tape
->first_frame_position
;
4101 void __user
*argp
= (void __user
*)arg
;
4103 #if IDETAPE_DEBUG_LOG
4104 if (tape
->debug_level
>= 3)
4105 printk(KERN_INFO
"ide-tape: Reached idetape_chrdev_ioctl, "
4107 #endif /* IDETAPE_DEBUG_LOG */
4109 tape
->restart_speed_control_req
= 1;
4110 if (tape
->chrdev_direction
== idetape_direction_write
) {
4111 idetape_empty_write_pipeline(drive
);
4112 idetape_flush_tape_buffers(drive
);
4114 if (cmd
== MTIOCGET
|| cmd
== MTIOCPOS
) {
4115 block_offset
= idetape_pipeline_size(drive
) / (tape
->tape_block_size
* tape
->user_bs_factor
);
4116 if ((position
= idetape_read_position(drive
)) < 0)
4121 if (copy_from_user(&mtop
, argp
, sizeof (struct mtop
)))
4123 return (idetape_mtioctop(drive
,mtop
.mt_op
,mtop
.mt_count
));
4125 memset(&mtget
, 0, sizeof (struct mtget
));
4126 mtget
.mt_type
= MT_ISSCSI2
;
4127 mtget
.mt_blkno
= position
/ tape
->user_bs_factor
- block_offset
;
4128 mtget
.mt_dsreg
= ((tape
->tape_block_size
* tape
->user_bs_factor
) << MT_ST_BLKSIZE_SHIFT
) & MT_ST_BLKSIZE_MASK
;
4129 if (tape
->drv_write_prot
) {
4130 mtget
.mt_gstat
|= GMT_WR_PROT(0xffffffff);
4132 if (copy_to_user(argp
, &mtget
, sizeof(struct mtget
)))
4136 mtpos
.mt_blkno
= position
/ tape
->user_bs_factor
- block_offset
;
4137 if (copy_to_user(argp
, &mtpos
, sizeof(struct mtpos
)))
4141 if (tape
->chrdev_direction
== idetape_direction_read
)
4142 idetape_discard_read_pipeline(drive
, 1);
4143 return idetape_blkdev_ioctl(drive
, cmd
, arg
);
4147 static void idetape_get_blocksize_from_block_descriptor(ide_drive_t
*drive
);
4150 * Our character device open function.
4152 static int idetape_chrdev_open (struct inode
*inode
, struct file
*filp
)
4154 unsigned int minor
= iminor(inode
), i
= minor
& ~0xc0;
4156 idetape_tape_t
*tape
;
4161 * We really want to do nonseekable_open(inode, filp); here, but some
4162 * versions of tar incorrectly call lseek on tapes and bail out if that
4163 * fails. So we disallow pread() and pwrite(), but permit lseeks.
4165 filp
->f_mode
&= ~(FMODE_PREAD
| FMODE_PWRITE
);
4167 #if IDETAPE_DEBUG_LOG
4168 printk(KERN_INFO
"ide-tape: Reached idetape_chrdev_open\n");
4169 #endif /* IDETAPE_DEBUG_LOG */
4171 if (i
>= MAX_HWIFS
* MAX_DRIVES
)
4174 if (!(tape
= ide_tape_chrdev_get(i
)))
4177 drive
= tape
->drive
;
4179 filp
->private_data
= tape
;
4181 if (test_and_set_bit(IDETAPE_BUSY
, &tape
->flags
)) {
4186 retval
= idetape_wait_ready(drive
, 60 * HZ
);
4188 clear_bit(IDETAPE_BUSY
, &tape
->flags
);
4189 printk(KERN_ERR
"ide-tape: %s: drive not ready\n", tape
->name
);
4193 idetape_read_position(drive
);
4194 if (!test_bit(IDETAPE_ADDRESS_VALID
, &tape
->flags
))
4195 (void)idetape_rewind_tape(drive
);
4197 if (tape
->chrdev_direction
!= idetape_direction_read
)
4198 clear_bit(IDETAPE_PIPELINE_ERROR
, &tape
->flags
);
4200 /* Read block size and write protect status from drive. */
4201 idetape_get_blocksize_from_block_descriptor(drive
);
4203 /* Set write protect flag if device is opened as read-only. */
4204 if ((filp
->f_flags
& O_ACCMODE
) == O_RDONLY
)
4205 tape
->write_prot
= 1;
4207 tape
->write_prot
= tape
->drv_write_prot
;
4209 /* Make sure drive isn't write protected if user wants to write. */
4210 if (tape
->write_prot
) {
4211 if ((filp
->f_flags
& O_ACCMODE
) == O_WRONLY
||
4212 (filp
->f_flags
& O_ACCMODE
) == O_RDWR
) {
4213 clear_bit(IDETAPE_BUSY
, &tape
->flags
);
4220 * Lock the tape drive door so user can't eject.
4222 if (tape
->chrdev_direction
== idetape_direction_none
) {
4223 if (idetape_create_prevent_cmd(drive
, &pc
, 1)) {
4224 if (!idetape_queue_pc_tail(drive
, &pc
)) {
4225 if (tape
->door_locked
!= DOOR_EXPLICITLY_LOCKED
)
4226 tape
->door_locked
= DOOR_LOCKED
;
4230 idetape_restart_speed_control(drive
);
4231 tape
->restart_speed_control_req
= 0;
4239 static void idetape_write_release (ide_drive_t
*drive
, unsigned int minor
)
4241 idetape_tape_t
*tape
= drive
->driver_data
;
4243 idetape_empty_write_pipeline(drive
);
4244 tape
->merge_stage
= __idetape_kmalloc_stage(tape
, 1, 0);
4245 if (tape
->merge_stage
!= NULL
) {
4246 idetape_pad_zeros(drive
, tape
->tape_block_size
* (tape
->user_bs_factor
- 1));
4247 __idetape_kfree_stage(tape
->merge_stage
);
4248 tape
->merge_stage
= NULL
;
4250 idetape_write_filemark(drive
);
4251 idetape_flush_tape_buffers(drive
);
4252 idetape_flush_tape_buffers(drive
);
4256 * Our character device release function.
4258 static int idetape_chrdev_release (struct inode
*inode
, struct file
*filp
)
4260 struct ide_tape_obj
*tape
= ide_tape_f(filp
);
4261 ide_drive_t
*drive
= tape
->drive
;
4263 unsigned int minor
= iminor(inode
);
4266 tape
= drive
->driver_data
;
4267 #if IDETAPE_DEBUG_LOG
4268 if (tape
->debug_level
>= 3)
4269 printk(KERN_INFO
"ide-tape: Reached idetape_chrdev_release\n");
4270 #endif /* IDETAPE_DEBUG_LOG */
4272 if (tape
->chrdev_direction
== idetape_direction_write
)
4273 idetape_write_release(drive
, minor
);
4274 if (tape
->chrdev_direction
== idetape_direction_read
) {
4276 idetape_discard_read_pipeline(drive
, 1);
4278 idetape_wait_for_pipeline(drive
);
4280 if (tape
->cache_stage
!= NULL
) {
4281 __idetape_kfree_stage(tape
->cache_stage
);
4282 tape
->cache_stage
= NULL
;
4284 if (minor
< 128 && test_bit(IDETAPE_MEDIUM_PRESENT
, &tape
->flags
))
4285 (void) idetape_rewind_tape(drive
);
4286 if (tape
->chrdev_direction
== idetape_direction_none
) {
4287 if (tape
->door_locked
== DOOR_LOCKED
) {
4288 if (idetape_create_prevent_cmd(drive
, &pc
, 0)) {
4289 if (!idetape_queue_pc_tail(drive
, &pc
))
4290 tape
->door_locked
= DOOR_UNLOCKED
;
4294 clear_bit(IDETAPE_BUSY
, &tape
->flags
);
4301 * idetape_identify_device is called to check the contents of the
4302 * ATAPI IDENTIFY command results. We return:
4304 * 1 If the tape can be supported by us, based on the information
4307 * 0 If this tape driver is not currently supported by us.
4309 static int idetape_identify_device (ide_drive_t
*drive
)
4311 struct idetape_id_gcw gcw
;
4312 struct hd_driveid
*id
= drive
->id
;
4313 #if IDETAPE_DEBUG_INFO
4314 unsigned short mask
,i
;
4315 #endif /* IDETAPE_DEBUG_INFO */
4317 if (drive
->id_read
== 0)
4320 *((unsigned short *) &gcw
) = id
->config
;
4322 #if IDETAPE_DEBUG_INFO
4323 printk(KERN_INFO
"ide-tape: Dumping ATAPI Identify Device tape parameters\n");
4324 printk(KERN_INFO
"ide-tape: Protocol Type: ");
4325 switch (gcw
.protocol
) {
4326 case 0: case 1: printk("ATA\n");break;
4327 case 2: printk("ATAPI\n");break;
4328 case 3: printk("Reserved (Unknown to ide-tape)\n");break;
4330 printk(KERN_INFO
"ide-tape: Device Type: %x - ",gcw
.device_type
);
4331 switch (gcw
.device_type
) {
4332 case 0: printk("Direct-access Device\n");break;
4333 case 1: printk("Streaming Tape Device\n");break;
4334 case 2: case 3: case 4: printk("Reserved\n");break;
4335 case 5: printk("CD-ROM Device\n");break;
4336 case 6: printk("Reserved\n");
4337 case 7: printk("Optical memory Device\n");break;
4338 case 0x1f: printk("Unknown or no Device type\n");break;
4339 default: printk("Reserved\n");
4341 printk(KERN_INFO
"ide-tape: Removable: %s",gcw
.removable
? "Yes\n":"No\n");
4342 printk(KERN_INFO
"ide-tape: Command Packet DRQ Type: ");
4343 switch (gcw
.drq_type
) {
4344 case 0: printk("Microprocessor DRQ\n");break;
4345 case 1: printk("Interrupt DRQ\n");break;
4346 case 2: printk("Accelerated DRQ\n");break;
4347 case 3: printk("Reserved\n");break;
4349 printk(KERN_INFO
"ide-tape: Command Packet Size: ");
4350 switch (gcw
.packet_size
) {
4351 case 0: printk("12 bytes\n");break;
4352 case 1: printk("16 bytes\n");break;
4353 default: printk("Reserved\n");break;
4355 printk(KERN_INFO
"ide-tape: Model: %.40s\n",id
->model
);
4356 printk(KERN_INFO
"ide-tape: Firmware Revision: %.8s\n",id
->fw_rev
);
4357 printk(KERN_INFO
"ide-tape: Serial Number: %.20s\n",id
->serial_no
);
4358 printk(KERN_INFO
"ide-tape: Write buffer size: %d bytes\n",id
->buf_size
*512);
4359 printk(KERN_INFO
"ide-tape: DMA: %s",id
->capability
& 0x01 ? "Yes\n":"No\n");
4360 printk(KERN_INFO
"ide-tape: LBA: %s",id
->capability
& 0x02 ? "Yes\n":"No\n");
4361 printk(KERN_INFO
"ide-tape: IORDY can be disabled: %s",id
->capability
& 0x04 ? "Yes\n":"No\n");
4362 printk(KERN_INFO
"ide-tape: IORDY supported: %s",id
->capability
& 0x08 ? "Yes\n":"Unknown\n");
4363 printk(KERN_INFO
"ide-tape: ATAPI overlap supported: %s",id
->capability
& 0x20 ? "Yes\n":"No\n");
4364 printk(KERN_INFO
"ide-tape: PIO Cycle Timing Category: %d\n",id
->tPIO
);
4365 printk(KERN_INFO
"ide-tape: DMA Cycle Timing Category: %d\n",id
->tDMA
);
4366 printk(KERN_INFO
"ide-tape: Single Word DMA supported modes: ");
4367 for (i
=0,mask
=1;i
<8;i
++,mask
=mask
<< 1) {
4368 if (id
->dma_1word
& mask
)
4370 if (id
->dma_1word
& (mask
<< 8))
4371 printk("(active) ");
4374 printk(KERN_INFO
"ide-tape: Multi Word DMA supported modes: ");
4375 for (i
=0,mask
=1;i
<8;i
++,mask
=mask
<< 1) {
4376 if (id
->dma_mword
& mask
)
4378 if (id
->dma_mword
& (mask
<< 8))
4379 printk("(active) ");
4382 if (id
->field_valid
& 0x0002) {
4383 printk(KERN_INFO
"ide-tape: Enhanced PIO Modes: %s\n",
4384 id
->eide_pio_modes
& 1 ? "Mode 3":"None");
4385 printk(KERN_INFO
"ide-tape: Minimum Multi-word DMA cycle per word: ");
4386 if (id
->eide_dma_min
== 0)
4387 printk("Not supported\n");
4389 printk("%d ns\n",id
->eide_dma_min
);
4391 printk(KERN_INFO
"ide-tape: Manufacturer\'s Recommended Multi-word cycle: ");
4392 if (id
->eide_dma_time
== 0)
4393 printk("Not supported\n");
4395 printk("%d ns\n",id
->eide_dma_time
);
4397 printk(KERN_INFO
"ide-tape: Minimum PIO cycle without IORDY: ");
4398 if (id
->eide_pio
== 0)
4399 printk("Not supported\n");
4401 printk("%d ns\n",id
->eide_pio
);
4403 printk(KERN_INFO
"ide-tape: Minimum PIO cycle with IORDY: ");
4404 if (id
->eide_pio_iordy
== 0)
4405 printk("Not supported\n");
4407 printk("%d ns\n",id
->eide_pio_iordy
);
4410 printk(KERN_INFO
"ide-tape: According to the device, fields 64-70 are not valid.\n");
4411 #endif /* IDETAPE_DEBUG_INFO */
4413 /* Check that we can support this device */
4415 if (gcw
.protocol
!=2 )
4416 printk(KERN_ERR
"ide-tape: Protocol is not ATAPI\n");
4417 else if (gcw
.device_type
!= 1)
4418 printk(KERN_ERR
"ide-tape: Device type is not set to tape\n");
4419 else if (!gcw
.removable
)
4420 printk(KERN_ERR
"ide-tape: The removable flag is not set\n");
4421 else if (gcw
.packet_size
!= 0) {
4422 printk(KERN_ERR
"ide-tape: Packet size is not 12 bytes long\n");
4423 if (gcw
.packet_size
== 1)
4424 printk(KERN_ERR
"ide-tape: Sorry, padding to 16 bytes is still not supported\n");
4431 * Use INQUIRY to get the firmware revision
4433 static void idetape_get_inquiry_results (ide_drive_t
*drive
)
4436 idetape_tape_t
*tape
= drive
->driver_data
;
4438 idetape_inquiry_result_t
*inquiry
;
4440 idetape_create_inquiry_cmd(&pc
);
4441 if (idetape_queue_pc_tail(drive
, &pc
)) {
4442 printk(KERN_ERR
"ide-tape: %s: can't get INQUIRY results\n", tape
->name
);
4445 inquiry
= (idetape_inquiry_result_t
*) pc
.buffer
;
4446 memcpy(tape
->vendor_id
, inquiry
->vendor_id
, 8);
4447 memcpy(tape
->product_id
, inquiry
->product_id
, 16);
4448 memcpy(tape
->firmware_revision
, inquiry
->revision_level
, 4);
4449 ide_fixstring(tape
->vendor_id
, 10, 0);
4450 ide_fixstring(tape
->product_id
, 18, 0);
4451 ide_fixstring(tape
->firmware_revision
, 6, 0);
4452 r
= tape
->firmware_revision
;
4453 if (*(r
+ 1) == '.')
4454 tape
->firmware_revision_num
= (*r
- '0') * 100 + (*(r
+ 2) - '0') * 10 + *(r
+ 3) - '0';
4455 printk(KERN_INFO
"ide-tape: %s <-> %s: %s %s rev %s\n", drive
->name
, tape
->name
, tape
->vendor_id
, tape
->product_id
, tape
->firmware_revision
);
4459 * idetape_get_mode_sense_results asks the tape about its various
4460 * parameters. In particular, we will adjust our data transfer buffer
4461 * size to the recommended value as returned by the tape.
4463 static void idetape_get_mode_sense_results (ide_drive_t
*drive
)
4465 idetape_tape_t
*tape
= drive
->driver_data
;
4467 idetape_mode_parameter_header_t
*header
;
4468 idetape_capabilities_page_t
*capabilities
;
4470 idetape_create_mode_sense_cmd(&pc
, IDETAPE_CAPABILITIES_PAGE
);
4471 if (idetape_queue_pc_tail(drive
, &pc
)) {
4472 printk(KERN_ERR
"ide-tape: Can't get tape parameters - assuming some default values\n");
4473 tape
->tape_block_size
= 512;
4474 tape
->capabilities
.ctl
= 52;
4475 tape
->capabilities
.speed
= 450;
4476 tape
->capabilities
.buffer_size
= 6 * 52;
4479 header
= (idetape_mode_parameter_header_t
*) pc
.buffer
;
4480 capabilities
= (idetape_capabilities_page_t
*) (pc
.buffer
+ sizeof(idetape_mode_parameter_header_t
) + header
->bdl
);
4482 capabilities
->max_speed
= ntohs(capabilities
->max_speed
);
4483 capabilities
->ctl
= ntohs(capabilities
->ctl
);
4484 capabilities
->speed
= ntohs(capabilities
->speed
);
4485 capabilities
->buffer_size
= ntohs(capabilities
->buffer_size
);
4487 if (!capabilities
->speed
) {
4488 printk(KERN_INFO
"ide-tape: %s: overriding capabilities->speed (assuming 650KB/sec)\n", drive
->name
);
4489 capabilities
->speed
= 650;
4491 if (!capabilities
->max_speed
) {
4492 printk(KERN_INFO
"ide-tape: %s: overriding capabilities->max_speed (assuming 650KB/sec)\n", drive
->name
);
4493 capabilities
->max_speed
= 650;
4496 tape
->capabilities
= *capabilities
; /* Save us a copy */
4497 if (capabilities
->blk512
)
4498 tape
->tape_block_size
= 512;
4499 else if (capabilities
->blk1024
)
4500 tape
->tape_block_size
= 1024;
4502 #if IDETAPE_DEBUG_INFO
4503 printk(KERN_INFO
"ide-tape: Dumping the results of the MODE SENSE packet command\n");
4504 printk(KERN_INFO
"ide-tape: Mode Parameter Header:\n");
4505 printk(KERN_INFO
"ide-tape: Mode Data Length - %d\n",header
->mode_data_length
);
4506 printk(KERN_INFO
"ide-tape: Medium Type - %d\n",header
->medium_type
);
4507 printk(KERN_INFO
"ide-tape: Device Specific Parameter - %d\n",header
->dsp
);
4508 printk(KERN_INFO
"ide-tape: Block Descriptor Length - %d\n",header
->bdl
);
4510 printk(KERN_INFO
"ide-tape: Capabilities and Mechanical Status Page:\n");
4511 printk(KERN_INFO
"ide-tape: Page code - %d\n",capabilities
->page_code
);
4512 printk(KERN_INFO
"ide-tape: Page length - %d\n",capabilities
->page_length
);
4513 printk(KERN_INFO
"ide-tape: Read only - %s\n",capabilities
->ro
? "Yes":"No");
4514 printk(KERN_INFO
"ide-tape: Supports reverse space - %s\n",capabilities
->sprev
? "Yes":"No");
4515 printk(KERN_INFO
"ide-tape: Supports erase initiated formatting - %s\n",capabilities
->efmt
? "Yes":"No");
4516 printk(KERN_INFO
"ide-tape: Supports QFA two Partition format - %s\n",capabilities
->qfa
? "Yes":"No");
4517 printk(KERN_INFO
"ide-tape: Supports locking the medium - %s\n",capabilities
->lock
? "Yes":"No");
4518 printk(KERN_INFO
"ide-tape: The volume is currently locked - %s\n",capabilities
->locked
? "Yes":"No");
4519 printk(KERN_INFO
"ide-tape: The device defaults in the prevent state - %s\n",capabilities
->prevent
? "Yes":"No");
4520 printk(KERN_INFO
"ide-tape: Supports ejecting the medium - %s\n",capabilities
->eject
? "Yes":"No");
4521 printk(KERN_INFO
"ide-tape: Supports error correction - %s\n",capabilities
->ecc
? "Yes":"No");
4522 printk(KERN_INFO
"ide-tape: Supports data compression - %s\n",capabilities
->cmprs
? "Yes":"No");
4523 printk(KERN_INFO
"ide-tape: Supports 512 bytes block size - %s\n",capabilities
->blk512
? "Yes":"No");
4524 printk(KERN_INFO
"ide-tape: Supports 1024 bytes block size - %s\n",capabilities
->blk1024
? "Yes":"No");
4525 printk(KERN_INFO
"ide-tape: Supports 32768 bytes block size / Restricted byte count for PIO transfers - %s\n",capabilities
->blk32768
? "Yes":"No");
4526 printk(KERN_INFO
"ide-tape: Maximum supported speed in KBps - %d\n",capabilities
->max_speed
);
4527 printk(KERN_INFO
"ide-tape: Continuous transfer limits in blocks - %d\n",capabilities
->ctl
);
4528 printk(KERN_INFO
"ide-tape: Current speed in KBps - %d\n",capabilities
->speed
);
4529 printk(KERN_INFO
"ide-tape: Buffer size - %d\n",capabilities
->buffer_size
*512);
4530 #endif /* IDETAPE_DEBUG_INFO */
4534 * ide_get_blocksize_from_block_descriptor does a mode sense page 0 with block descriptor
4535 * and if it succeeds sets the tape block size with the reported value
4537 static void idetape_get_blocksize_from_block_descriptor(ide_drive_t
*drive
)
4540 idetape_tape_t
*tape
= drive
->driver_data
;
4542 idetape_mode_parameter_header_t
*header
;
4543 idetape_parameter_block_descriptor_t
*block_descrp
;
4545 idetape_create_mode_sense_cmd(&pc
, IDETAPE_BLOCK_DESCRIPTOR
);
4546 if (idetape_queue_pc_tail(drive
, &pc
)) {
4547 printk(KERN_ERR
"ide-tape: Can't get block descriptor\n");
4548 if (tape
->tape_block_size
== 0) {
4549 printk(KERN_WARNING
"ide-tape: Cannot deal with zero block size, assume 32k\n");
4550 tape
->tape_block_size
= 32768;
4554 header
= (idetape_mode_parameter_header_t
*) pc
.buffer
;
4555 block_descrp
= (idetape_parameter_block_descriptor_t
*) (pc
.buffer
+ sizeof(idetape_mode_parameter_header_t
));
4556 tape
->tape_block_size
=( block_descrp
->length
[0]<<16) + (block_descrp
->length
[1]<<8) + block_descrp
->length
[2];
4557 tape
->drv_write_prot
= (header
->dsp
& 0x80) >> 7;
4559 #if IDETAPE_DEBUG_INFO
4560 printk(KERN_INFO
"ide-tape: Adjusted block size - %d\n", tape
->tape_block_size
);
4561 #endif /* IDETAPE_DEBUG_INFO */
4564 #ifdef CONFIG_IDE_PROC_FS
4565 static void idetape_add_settings (ide_drive_t
*drive
)
4567 idetape_tape_t
*tape
= drive
->driver_data
;
4570 * drive setting name read/write data type min max mul_factor div_factor data pointer set function
4572 ide_add_setting(drive
, "buffer", SETTING_READ
, TYPE_SHORT
, 0, 0xffff, 1, 2, &tape
->capabilities
.buffer_size
, NULL
);
4573 ide_add_setting(drive
, "pipeline_min", SETTING_RW
, TYPE_INT
, 1, 0xffff, tape
->stage_size
/ 1024, 1, &tape
->min_pipeline
, NULL
);
4574 ide_add_setting(drive
, "pipeline", SETTING_RW
, TYPE_INT
, 1, 0xffff, tape
->stage_size
/ 1024, 1, &tape
->max_stages
, NULL
);
4575 ide_add_setting(drive
, "pipeline_max", SETTING_RW
, TYPE_INT
, 1, 0xffff, tape
->stage_size
/ 1024, 1, &tape
->max_pipeline
, NULL
);
4576 ide_add_setting(drive
, "pipeline_used", SETTING_READ
, TYPE_INT
, 0, 0xffff, tape
->stage_size
/ 1024, 1, &tape
->nr_stages
, NULL
);
4577 ide_add_setting(drive
, "pipeline_pending", SETTING_READ
, TYPE_INT
, 0, 0xffff, tape
->stage_size
/ 1024, 1, &tape
->nr_pending_stages
, NULL
);
4578 ide_add_setting(drive
, "speed", SETTING_READ
, TYPE_SHORT
, 0, 0xffff, 1, 1, &tape
->capabilities
.speed
, NULL
);
4579 ide_add_setting(drive
, "stage", SETTING_READ
, TYPE_INT
, 0, 0xffff, 1, 1024, &tape
->stage_size
, NULL
);
4580 ide_add_setting(drive
, "tdsc", SETTING_RW
, TYPE_INT
, IDETAPE_DSC_RW_MIN
, IDETAPE_DSC_RW_MAX
, 1000, HZ
, &tape
->best_dsc_rw_frequency
, NULL
);
4581 ide_add_setting(drive
, "dsc_overlap", SETTING_RW
, TYPE_BYTE
, 0, 1, 1, 1, &drive
->dsc_overlap
, NULL
);
4582 ide_add_setting(drive
, "pipeline_head_speed_c",SETTING_READ
, TYPE_INT
, 0, 0xffff, 1, 1, &tape
->controlled_pipeline_head_speed
, NULL
);
4583 ide_add_setting(drive
, "pipeline_head_speed_u",SETTING_READ
, TYPE_INT
, 0, 0xffff, 1, 1, &tape
->uncontrolled_pipeline_head_speed
,NULL
);
4584 ide_add_setting(drive
, "avg_speed", SETTING_READ
, TYPE_INT
, 0, 0xffff, 1, 1, &tape
->avg_speed
, NULL
);
4585 ide_add_setting(drive
, "debug_level", SETTING_RW
, TYPE_INT
, 0, 0xffff, 1, 1, &tape
->debug_level
, NULL
);
4588 static inline void idetape_add_settings(ide_drive_t
*drive
) { ; }
4592 * ide_setup is called to:
4594 * 1. Initialize our various state variables.
4595 * 2. Ask the tape for its capabilities.
4596 * 3. Allocate a buffer which will be used for data
4597 * transfer. The buffer size is chosen based on
4598 * the recommendation which we received in step (2).
4600 * Note that at this point ide.c already assigned us an irq, so that
4601 * we can queue requests here and wait for their completion.
4603 static void idetape_setup (ide_drive_t
*drive
, idetape_tape_t
*tape
, int minor
)
4605 unsigned long t1
, tmid
, tn
, t
;
4607 struct idetape_id_gcw gcw
;
4611 spin_lock_init(&tape
->spinlock
);
4612 drive
->dsc_overlap
= 1;
4613 #ifdef CONFIG_BLK_DEV_IDEPCI
4614 if (HWIF(drive
)->pci_dev
!= NULL
) {
4616 * These two ide-pci host adapters appear to need DSC overlap disabled.
4617 * This probably needs further analysis.
4619 if ((HWIF(drive
)->pci_dev
->device
== PCI_DEVICE_ID_ARTOP_ATP850UF
) ||
4620 (HWIF(drive
)->pci_dev
->device
== PCI_DEVICE_ID_TTI_HPT343
)) {
4621 printk(KERN_INFO
"ide-tape: %s: disabling DSC overlap\n", tape
->name
);
4622 drive
->dsc_overlap
= 0;
4625 #endif /* CONFIG_BLK_DEV_IDEPCI */
4626 /* Seagate Travan drives do not support DSC overlap. */
4627 if (strstr(drive
->id
->model
, "Seagate STT3401"))
4628 drive
->dsc_overlap
= 0;
4629 tape
->minor
= minor
;
4630 tape
->name
[0] = 'h';
4631 tape
->name
[1] = 't';
4632 tape
->name
[2] = '0' + minor
;
4633 tape
->chrdev_direction
= idetape_direction_none
;
4634 tape
->pc
= tape
->pc_stack
;
4635 tape
->max_insert_speed
= 10000;
4636 tape
->speed_control
= 1;
4637 *((unsigned short *) &gcw
) = drive
->id
->config
;
4638 if (gcw
.drq_type
== 1)
4639 set_bit(IDETAPE_DRQ_INTERRUPT
, &tape
->flags
);
4641 tape
->min_pipeline
= tape
->max_pipeline
= tape
->max_stages
= 10;
4643 idetape_get_inquiry_results(drive
);
4644 idetape_get_mode_sense_results(drive
);
4645 idetape_get_blocksize_from_block_descriptor(drive
);
4646 tape
->user_bs_factor
= 1;
4647 tape
->stage_size
= tape
->capabilities
.ctl
* tape
->tape_block_size
;
4648 while (tape
->stage_size
> 0xffff) {
4649 printk(KERN_NOTICE
"ide-tape: decreasing stage size\n");
4650 tape
->capabilities
.ctl
/= 2;
4651 tape
->stage_size
= tape
->capabilities
.ctl
* tape
->tape_block_size
;
4653 stage_size
= tape
->stage_size
;
4654 tape
->pages_per_stage
= stage_size
/ PAGE_SIZE
;
4655 if (stage_size
% PAGE_SIZE
) {
4656 tape
->pages_per_stage
++;
4657 tape
->excess_bh_size
= PAGE_SIZE
- stage_size
% PAGE_SIZE
;
4661 * Select the "best" DSC read/write polling frequency
4662 * and pipeline size.
4664 speed
= max(tape
->capabilities
.speed
, tape
->capabilities
.max_speed
);
4666 tape
->max_stages
= speed
* 1000 * 10 / tape
->stage_size
;
4669 * Limit memory use for pipeline to 10% of physical memory
4672 if (tape
->max_stages
* tape
->stage_size
> si
.totalram
* si
.mem_unit
/ 10)
4673 tape
->max_stages
= si
.totalram
* si
.mem_unit
/ (10 * tape
->stage_size
);
4674 tape
->max_stages
= min(tape
->max_stages
, IDETAPE_MAX_PIPELINE_STAGES
);
4675 tape
->min_pipeline
= min(tape
->max_stages
, IDETAPE_MIN_PIPELINE_STAGES
);
4676 tape
->max_pipeline
= min(tape
->max_stages
* 2, IDETAPE_MAX_PIPELINE_STAGES
);
4677 if (tape
->max_stages
== 0)
4678 tape
->max_stages
= tape
->min_pipeline
= tape
->max_pipeline
= 1;
4680 t1
= (tape
->stage_size
* HZ
) / (speed
* 1000);
4681 tmid
= (tape
->capabilities
.buffer_size
* 32 * HZ
) / (speed
* 125);
4682 tn
= (IDETAPE_FIFO_THRESHOLD
* tape
->stage_size
* HZ
) / (speed
* 1000);
4684 if (tape
->max_stages
)
4690 * Ensure that the number we got makes sense; limit
4691 * it within IDETAPE_DSC_RW_MIN and IDETAPE_DSC_RW_MAX.
4693 tape
->best_dsc_rw_frequency
= max_t(unsigned long, min_t(unsigned long, t
, IDETAPE_DSC_RW_MAX
), IDETAPE_DSC_RW_MIN
);
4694 printk(KERN_INFO
"ide-tape: %s <-> %s: %dKBps, %d*%dkB buffer, "
4695 "%dkB pipeline, %lums tDSC%s\n",
4696 drive
->name
, tape
->name
, tape
->capabilities
.speed
,
4697 (tape
->capabilities
.buffer_size
* 512) / tape
->stage_size
,
4698 tape
->stage_size
/ 1024,
4699 tape
->max_stages
* tape
->stage_size
/ 1024,
4700 tape
->best_dsc_rw_frequency
* 1000 / HZ
,
4701 drive
->using_dma
? ", DMA":"");
4703 idetape_add_settings(drive
);
4706 static void ide_tape_remove(ide_drive_t
*drive
)
4708 idetape_tape_t
*tape
= drive
->driver_data
;
4710 ide_proc_unregister_driver(drive
, tape
->driver
);
4712 ide_unregister_region(tape
->disk
);
4717 static void ide_tape_release(struct kref
*kref
)
4719 struct ide_tape_obj
*tape
= to_ide_tape(kref
);
4720 ide_drive_t
*drive
= tape
->drive
;
4721 struct gendisk
*g
= tape
->disk
;
4723 BUG_ON(tape
->first_stage
!= NULL
|| tape
->merge_stage_size
);
4725 drive
->dsc_overlap
= 0;
4726 drive
->driver_data
= NULL
;
4727 class_device_destroy(idetape_sysfs_class
,
4728 MKDEV(IDETAPE_MAJOR
, tape
->minor
));
4729 class_device_destroy(idetape_sysfs_class
,
4730 MKDEV(IDETAPE_MAJOR
, tape
->minor
+ 128));
4731 idetape_devs
[tape
->minor
] = NULL
;
4732 g
->private_data
= NULL
;
4737 #ifdef CONFIG_IDE_PROC_FS
4738 static int proc_idetape_read_name
4739 (char *page
, char **start
, off_t off
, int count
, int *eof
, void *data
)
4741 ide_drive_t
*drive
= (ide_drive_t
*) data
;
4742 idetape_tape_t
*tape
= drive
->driver_data
;
4746 len
= sprintf(out
, "%s\n", tape
->name
);
4747 PROC_IDE_READ_RETURN(page
, start
, off
, count
, eof
, len
);
4750 static ide_proc_entry_t idetape_proc
[] = {
4751 { "capacity", S_IFREG
|S_IRUGO
, proc_ide_read_capacity
, NULL
},
4752 { "name", S_IFREG
|S_IRUGO
, proc_idetape_read_name
, NULL
},
4753 { NULL
, 0, NULL
, NULL
}
4757 static int ide_tape_probe(ide_drive_t
*);
4759 static ide_driver_t idetape_driver
= {
4761 .owner
= THIS_MODULE
,
4763 .bus
= &ide_bus_type
,
4765 .probe
= ide_tape_probe
,
4766 .remove
= ide_tape_remove
,
4767 .version
= IDETAPE_VERSION
,
4769 .supports_dsc_overlap
= 1,
4770 .do_request
= idetape_do_request
,
4771 .end_request
= idetape_end_request
,
4772 .error
= __ide_error
,
4773 .abort
= __ide_abort
,
4774 #ifdef CONFIG_IDE_PROC_FS
4775 .proc
= idetape_proc
,
4780 * Our character device supporting functions, passed to register_chrdev.
4782 static const struct file_operations idetape_fops
= {
4783 .owner
= THIS_MODULE
,
4784 .read
= idetape_chrdev_read
,
4785 .write
= idetape_chrdev_write
,
4786 .ioctl
= idetape_chrdev_ioctl
,
4787 .open
= idetape_chrdev_open
,
4788 .release
= idetape_chrdev_release
,
4791 static int idetape_open(struct inode
*inode
, struct file
*filp
)
4793 struct gendisk
*disk
= inode
->i_bdev
->bd_disk
;
4794 struct ide_tape_obj
*tape
;
4796 if (!(tape
= ide_tape_get(disk
)))
4802 static int idetape_release(struct inode
*inode
, struct file
*filp
)
4804 struct gendisk
*disk
= inode
->i_bdev
->bd_disk
;
4805 struct ide_tape_obj
*tape
= ide_tape_g(disk
);
4812 static int idetape_ioctl(struct inode
*inode
, struct file
*file
,
4813 unsigned int cmd
, unsigned long arg
)
4815 struct block_device
*bdev
= inode
->i_bdev
;
4816 struct ide_tape_obj
*tape
= ide_tape_g(bdev
->bd_disk
);
4817 ide_drive_t
*drive
= tape
->drive
;
4818 int err
= generic_ide_ioctl(drive
, file
, bdev
, cmd
, arg
);
4820 err
= idetape_blkdev_ioctl(drive
, cmd
, arg
);
4824 static struct block_device_operations idetape_block_ops
= {
4825 .owner
= THIS_MODULE
,
4826 .open
= idetape_open
,
4827 .release
= idetape_release
,
4828 .ioctl
= idetape_ioctl
,
4831 static int ide_tape_probe(ide_drive_t
*drive
)
4833 idetape_tape_t
*tape
;
4837 if (!strstr("ide-tape", drive
->driver_req
))
4839 if (!drive
->present
)
4841 if (drive
->media
!= ide_tape
)
4843 if (!idetape_identify_device (drive
)) {
4844 printk(KERN_ERR
"ide-tape: %s: not supported by this version of ide-tape\n", drive
->name
);
4848 printk("ide-tape: passing drive %s to ide-scsi emulation.\n", drive
->name
);
4851 if (strstr(drive
->id
->model
, "OnStream DI-")) {
4852 printk(KERN_WARNING
"ide-tape: Use drive %s with ide-scsi emulation and osst.\n", drive
->name
);
4853 printk(KERN_WARNING
"ide-tape: OnStream support will be removed soon from ide-tape!\n");
4855 tape
= kzalloc(sizeof (idetape_tape_t
), GFP_KERNEL
);
4857 printk(KERN_ERR
"ide-tape: %s: Can't allocate a tape structure\n", drive
->name
);
4861 g
= alloc_disk(1 << PARTN_BITS
);
4865 ide_init_disk(g
, drive
);
4867 ide_proc_register_driver(drive
, &idetape_driver
);
4869 kref_init(&tape
->kref
);
4871 tape
->drive
= drive
;
4872 tape
->driver
= &idetape_driver
;
4875 g
->private_data
= &tape
->driver
;
4877 drive
->driver_data
= tape
;
4879 mutex_lock(&idetape_ref_mutex
);
4880 for (minor
= 0; idetape_devs
[minor
]; minor
++)
4882 idetape_devs
[minor
] = tape
;
4883 mutex_unlock(&idetape_ref_mutex
);
4885 idetape_setup(drive
, tape
, minor
);
4887 class_device_create(idetape_sysfs_class
, NULL
,
4888 MKDEV(IDETAPE_MAJOR
, minor
), &drive
->gendev
, "%s", tape
->name
);
4889 class_device_create(idetape_sysfs_class
, NULL
,
4890 MKDEV(IDETAPE_MAJOR
, minor
+ 128), &drive
->gendev
, "n%s", tape
->name
);
4892 g
->fops
= &idetape_block_ops
;
4893 ide_register_region(g
);
4903 MODULE_DESCRIPTION("ATAPI Streaming TAPE Driver");
4904 MODULE_LICENSE("GPL");
4906 static void __exit
idetape_exit (void)
4908 driver_unregister(&idetape_driver
.gen_driver
);
4909 class_destroy(idetape_sysfs_class
);
4910 unregister_chrdev(IDETAPE_MAJOR
, "ht");
4913 static int __init
idetape_init(void)
4916 idetape_sysfs_class
= class_create(THIS_MODULE
, "ide_tape");
4917 if (IS_ERR(idetape_sysfs_class
)) {
4918 idetape_sysfs_class
= NULL
;
4919 printk(KERN_ERR
"Unable to create sysfs class for ide tapes\n");
4924 if (register_chrdev(IDETAPE_MAJOR
, "ht", &idetape_fops
)) {
4925 printk(KERN_ERR
"ide-tape: Failed to register character device interface\n");
4927 goto out_free_class
;
4930 error
= driver_register(&idetape_driver
.gen_driver
);
4932 goto out_free_driver
;
4937 driver_unregister(&idetape_driver
.gen_driver
);
4939 class_destroy(idetape_sysfs_class
);
4944 MODULE_ALIAS("ide:*m-tape*");
4945 module_init(idetape_init
);
4946 module_exit(idetape_exit
);
4947 MODULE_ALIAS_CHARDEV_MAJOR(IDETAPE_MAJOR
);