cmd64x: don't clear the other channel's interrupt
[linux-2.6/linux-mips/linux-dm7025.git] / drivers / net / rrunner.c
blob73a7e6529ee0f91abb46f1bda1e05bcd21330bef
1 /*
2 * rrunner.c: Linux driver for the Essential RoadRunner HIPPI board.
4 * Copyright (C) 1998-2002 by Jes Sorensen, <jes@wildopensource.com>.
6 * Thanks to Essential Communication for providing us with hardware
7 * and very comprehensive documentation without which I would not have
8 * been able to write this driver. A special thank you to John Gibbon
9 * for sorting out the legal issues, with the NDA, allowing the code to
10 * be released under the GPL.
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License, or
15 * (at your option) any later version.
17 * Thanks to Jayaram Bhat from ODS/Essential for fixing some of the
18 * stupid bugs in my code.
20 * Softnet support and various other patches from Val Henson of
21 * ODS/Essential.
23 * PCI DMA mapping code partly based on work by Francois Romieu.
27 #define DEBUG 1
28 #define RX_DMA_SKBUFF 1
29 #define PKT_COPY_THRESHOLD 512
31 #include <linux/module.h>
32 #include <linux/types.h>
33 #include <linux/errno.h>
34 #include <linux/ioport.h>
35 #include <linux/pci.h>
36 #include <linux/kernel.h>
37 #include <linux/netdevice.h>
38 #include <linux/hippidevice.h>
39 #include <linux/skbuff.h>
40 #include <linux/init.h>
41 #include <linux/delay.h>
42 #include <linux/mm.h>
43 #include <net/sock.h>
45 #include <asm/system.h>
46 #include <asm/cache.h>
47 #include <asm/byteorder.h>
48 #include <asm/io.h>
49 #include <asm/irq.h>
50 #include <asm/uaccess.h>
52 #define rr_if_busy(dev) netif_queue_stopped(dev)
53 #define rr_if_running(dev) netif_running(dev)
55 #include "rrunner.h"
57 #define RUN_AT(x) (jiffies + (x))
60 MODULE_AUTHOR("Jes Sorensen <jes@wildopensource.com>");
61 MODULE_DESCRIPTION("Essential RoadRunner HIPPI driver");
62 MODULE_LICENSE("GPL");
64 static char version[] __devinitdata = "rrunner.c: v0.50 11/11/2002 Jes Sorensen (jes@wildopensource.com)\n";
67 * Implementation notes:
69 * The DMA engine only allows for DMA within physical 64KB chunks of
70 * memory. The current approach of the driver (and stack) is to use
71 * linear blocks of memory for the skbuffs. However, as the data block
72 * is always the first part of the skb and skbs are 2^n aligned so we
73 * are guarantted to get the whole block within one 64KB align 64KB
74 * chunk.
76 * On the long term, relying on being able to allocate 64KB linear
77 * chunks of memory is not feasible and the skb handling code and the
78 * stack will need to know about I/O vectors or something similar.
81 static int __devinit rr_init_one(struct pci_dev *pdev,
82 const struct pci_device_id *ent)
84 struct net_device *dev;
85 static int version_disp;
86 u8 pci_latency;
87 struct rr_private *rrpriv;
88 void *tmpptr;
89 dma_addr_t ring_dma;
90 int ret = -ENOMEM;
92 dev = alloc_hippi_dev(sizeof(struct rr_private));
93 if (!dev)
94 goto out3;
96 ret = pci_enable_device(pdev);
97 if (ret) {
98 ret = -ENODEV;
99 goto out2;
102 rrpriv = netdev_priv(dev);
104 SET_NETDEV_DEV(dev, &pdev->dev);
106 if (pci_request_regions(pdev, "rrunner")) {
107 ret = -EIO;
108 goto out;
111 pci_set_drvdata(pdev, dev);
113 rrpriv->pci_dev = pdev;
115 spin_lock_init(&rrpriv->lock);
117 dev->irq = pdev->irq;
118 dev->open = &rr_open;
119 dev->hard_start_xmit = &rr_start_xmit;
120 dev->stop = &rr_close;
121 dev->do_ioctl = &rr_ioctl;
123 dev->base_addr = pci_resource_start(pdev, 0);
125 /* display version info if adapter is found */
126 if (!version_disp) {
127 /* set display flag to TRUE so that */
128 /* we only display this string ONCE */
129 version_disp = 1;
130 printk(version);
133 pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &pci_latency);
134 if (pci_latency <= 0x58){
135 pci_latency = 0x58;
136 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, pci_latency);
139 pci_set_master(pdev);
141 printk(KERN_INFO "%s: Essential RoadRunner serial HIPPI "
142 "at 0x%08lx, irq %i, PCI latency %i\n", dev->name,
143 dev->base_addr, dev->irq, pci_latency);
146 * Remap the regs into kernel space.
149 rrpriv->regs = ioremap(dev->base_addr, 0x1000);
151 if (!rrpriv->regs){
152 printk(KERN_ERR "%s: Unable to map I/O register, "
153 "RoadRunner will be disabled.\n", dev->name);
154 ret = -EIO;
155 goto out;
158 tmpptr = pci_alloc_consistent(pdev, TX_TOTAL_SIZE, &ring_dma);
159 rrpriv->tx_ring = tmpptr;
160 rrpriv->tx_ring_dma = ring_dma;
162 if (!tmpptr) {
163 ret = -ENOMEM;
164 goto out;
167 tmpptr = pci_alloc_consistent(pdev, RX_TOTAL_SIZE, &ring_dma);
168 rrpriv->rx_ring = tmpptr;
169 rrpriv->rx_ring_dma = ring_dma;
171 if (!tmpptr) {
172 ret = -ENOMEM;
173 goto out;
176 tmpptr = pci_alloc_consistent(pdev, EVT_RING_SIZE, &ring_dma);
177 rrpriv->evt_ring = tmpptr;
178 rrpriv->evt_ring_dma = ring_dma;
180 if (!tmpptr) {
181 ret = -ENOMEM;
182 goto out;
186 * Don't access any register before this point!
188 #ifdef __BIG_ENDIAN
189 writel(readl(&rrpriv->regs->HostCtrl) | NO_SWAP,
190 &rrpriv->regs->HostCtrl);
191 #endif
193 * Need to add a case for little-endian 64-bit hosts here.
196 rr_init(dev);
198 dev->base_addr = 0;
200 ret = register_netdev(dev);
201 if (ret)
202 goto out;
203 return 0;
205 out:
206 if (rrpriv->rx_ring)
207 pci_free_consistent(pdev, RX_TOTAL_SIZE, rrpriv->rx_ring,
208 rrpriv->rx_ring_dma);
209 if (rrpriv->tx_ring)
210 pci_free_consistent(pdev, TX_TOTAL_SIZE, rrpriv->tx_ring,
211 rrpriv->tx_ring_dma);
212 if (rrpriv->regs)
213 iounmap(rrpriv->regs);
214 if (pdev) {
215 pci_release_regions(pdev);
216 pci_set_drvdata(pdev, NULL);
218 out2:
219 free_netdev(dev);
220 out3:
221 return ret;
224 static void __devexit rr_remove_one (struct pci_dev *pdev)
226 struct net_device *dev = pci_get_drvdata(pdev);
228 if (dev) {
229 struct rr_private *rr = netdev_priv(dev);
231 if (!(readl(&rr->regs->HostCtrl) & NIC_HALTED)){
232 printk(KERN_ERR "%s: trying to unload running NIC\n",
233 dev->name);
234 writel(HALT_NIC, &rr->regs->HostCtrl);
237 pci_free_consistent(pdev, EVT_RING_SIZE, rr->evt_ring,
238 rr->evt_ring_dma);
239 pci_free_consistent(pdev, RX_TOTAL_SIZE, rr->rx_ring,
240 rr->rx_ring_dma);
241 pci_free_consistent(pdev, TX_TOTAL_SIZE, rr->tx_ring,
242 rr->tx_ring_dma);
243 unregister_netdev(dev);
244 iounmap(rr->regs);
245 free_netdev(dev);
246 pci_release_regions(pdev);
247 pci_disable_device(pdev);
248 pci_set_drvdata(pdev, NULL);
254 * Commands are considered to be slow, thus there is no reason to
255 * inline this.
257 static void rr_issue_cmd(struct rr_private *rrpriv, struct cmd *cmd)
259 struct rr_regs __iomem *regs;
260 u32 idx;
262 regs = rrpriv->regs;
264 * This is temporary - it will go away in the final version.
265 * We probably also want to make this function inline.
267 if (readl(&regs->HostCtrl) & NIC_HALTED){
268 printk("issuing command for halted NIC, code 0x%x, "
269 "HostCtrl %08x\n", cmd->code, readl(&regs->HostCtrl));
270 if (readl(&regs->Mode) & FATAL_ERR)
271 printk("error codes Fail1 %02x, Fail2 %02x\n",
272 readl(&regs->Fail1), readl(&regs->Fail2));
275 idx = rrpriv->info->cmd_ctrl.pi;
277 writel(*(u32*)(cmd), &regs->CmdRing[idx]);
278 wmb();
280 idx = (idx - 1) % CMD_RING_ENTRIES;
281 rrpriv->info->cmd_ctrl.pi = idx;
282 wmb();
284 if (readl(&regs->Mode) & FATAL_ERR)
285 printk("error code %02x\n", readl(&regs->Fail1));
290 * Reset the board in a sensible manner. The NIC is already halted
291 * when we get here and a spin-lock is held.
293 static int rr_reset(struct net_device *dev)
295 struct rr_private *rrpriv;
296 struct rr_regs __iomem *regs;
297 struct eeprom *hw = NULL;
298 u32 start_pc;
299 int i;
301 rrpriv = netdev_priv(dev);
302 regs = rrpriv->regs;
304 rr_load_firmware(dev);
306 writel(0x01000000, &regs->TX_state);
307 writel(0xff800000, &regs->RX_state);
308 writel(0, &regs->AssistState);
309 writel(CLEAR_INTA, &regs->LocalCtrl);
310 writel(0x01, &regs->BrkPt);
311 writel(0, &regs->Timer);
312 writel(0, &regs->TimerRef);
313 writel(RESET_DMA, &regs->DmaReadState);
314 writel(RESET_DMA, &regs->DmaWriteState);
315 writel(0, &regs->DmaWriteHostHi);
316 writel(0, &regs->DmaWriteHostLo);
317 writel(0, &regs->DmaReadHostHi);
318 writel(0, &regs->DmaReadHostLo);
319 writel(0, &regs->DmaReadLen);
320 writel(0, &regs->DmaWriteLen);
321 writel(0, &regs->DmaWriteLcl);
322 writel(0, &regs->DmaWriteIPchecksum);
323 writel(0, &regs->DmaReadLcl);
324 writel(0, &regs->DmaReadIPchecksum);
325 writel(0, &regs->PciState);
326 #if (BITS_PER_LONG == 64) && defined __LITTLE_ENDIAN
327 writel(SWAP_DATA | PTR64BIT | PTR_WD_SWAP, &regs->Mode);
328 #elif (BITS_PER_LONG == 64)
329 writel(SWAP_DATA | PTR64BIT | PTR_WD_NOSWAP, &regs->Mode);
330 #else
331 writel(SWAP_DATA | PTR32BIT | PTR_WD_NOSWAP, &regs->Mode);
332 #endif
334 #if 0
336 * Don't worry, this is just black magic.
338 writel(0xdf000, &regs->RxBase);
339 writel(0xdf000, &regs->RxPrd);
340 writel(0xdf000, &regs->RxCon);
341 writel(0xce000, &regs->TxBase);
342 writel(0xce000, &regs->TxPrd);
343 writel(0xce000, &regs->TxCon);
344 writel(0, &regs->RxIndPro);
345 writel(0, &regs->RxIndCon);
346 writel(0, &regs->RxIndRef);
347 writel(0, &regs->TxIndPro);
348 writel(0, &regs->TxIndCon);
349 writel(0, &regs->TxIndRef);
350 writel(0xcc000, &regs->pad10[0]);
351 writel(0, &regs->DrCmndPro);
352 writel(0, &regs->DrCmndCon);
353 writel(0, &regs->DwCmndPro);
354 writel(0, &regs->DwCmndCon);
355 writel(0, &regs->DwCmndRef);
356 writel(0, &regs->DrDataPro);
357 writel(0, &regs->DrDataCon);
358 writel(0, &regs->DrDataRef);
359 writel(0, &regs->DwDataPro);
360 writel(0, &regs->DwDataCon);
361 writel(0, &regs->DwDataRef);
362 #endif
364 writel(0xffffffff, &regs->MbEvent);
365 writel(0, &regs->Event);
367 writel(0, &regs->TxPi);
368 writel(0, &regs->IpRxPi);
370 writel(0, &regs->EvtCon);
371 writel(0, &regs->EvtPrd);
373 rrpriv->info->evt_ctrl.pi = 0;
375 for (i = 0; i < CMD_RING_ENTRIES; i++)
376 writel(0, &regs->CmdRing[i]);
379 * Why 32 ? is this not cache line size dependent?
381 writel(RBURST_64|WBURST_64, &regs->PciState);
382 wmb();
384 start_pc = rr_read_eeprom_word(rrpriv, &hw->rncd_info.FwStart);
386 #if (DEBUG > 1)
387 printk("%s: Executing firmware at address 0x%06x\n",
388 dev->name, start_pc);
389 #endif
391 writel(start_pc + 0x800, &regs->Pc);
392 wmb();
393 udelay(5);
395 writel(start_pc, &regs->Pc);
396 wmb();
398 return 0;
403 * Read a string from the EEPROM.
405 static unsigned int rr_read_eeprom(struct rr_private *rrpriv,
406 unsigned long offset,
407 unsigned char *buf,
408 unsigned long length)
410 struct rr_regs __iomem *regs = rrpriv->regs;
411 u32 misc, io, host, i;
413 io = readl(&regs->ExtIo);
414 writel(0, &regs->ExtIo);
415 misc = readl(&regs->LocalCtrl);
416 writel(0, &regs->LocalCtrl);
417 host = readl(&regs->HostCtrl);
418 writel(host | HALT_NIC, &regs->HostCtrl);
419 mb();
421 for (i = 0; i < length; i++){
422 writel((EEPROM_BASE + ((offset+i) << 3)), &regs->WinBase);
423 mb();
424 buf[i] = (readl(&regs->WinData) >> 24) & 0xff;
425 mb();
428 writel(host, &regs->HostCtrl);
429 writel(misc, &regs->LocalCtrl);
430 writel(io, &regs->ExtIo);
431 mb();
432 return i;
437 * Shortcut to read one word (4 bytes) out of the EEPROM and convert
438 * it to our CPU byte-order.
440 static u32 rr_read_eeprom_word(struct rr_private *rrpriv,
441 void * offset)
443 u32 word;
445 if ((rr_read_eeprom(rrpriv, (unsigned long)offset,
446 (char *)&word, 4) == 4))
447 return be32_to_cpu(word);
448 return 0;
453 * Write a string to the EEPROM.
455 * This is only called when the firmware is not running.
457 static unsigned int write_eeprom(struct rr_private *rrpriv,
458 unsigned long offset,
459 unsigned char *buf,
460 unsigned long length)
462 struct rr_regs __iomem *regs = rrpriv->regs;
463 u32 misc, io, data, i, j, ready, error = 0;
465 io = readl(&regs->ExtIo);
466 writel(0, &regs->ExtIo);
467 misc = readl(&regs->LocalCtrl);
468 writel(ENABLE_EEPROM_WRITE, &regs->LocalCtrl);
469 mb();
471 for (i = 0; i < length; i++){
472 writel((EEPROM_BASE + ((offset+i) << 3)), &regs->WinBase);
473 mb();
474 data = buf[i] << 24;
476 * Only try to write the data if it is not the same
477 * value already.
479 if ((readl(&regs->WinData) & 0xff000000) != data){
480 writel(data, &regs->WinData);
481 ready = 0;
482 j = 0;
483 mb();
484 while(!ready){
485 udelay(20);
486 if ((readl(&regs->WinData) & 0xff000000) ==
487 data)
488 ready = 1;
489 mb();
490 if (j++ > 5000){
491 printk("data mismatch: %08x, "
492 "WinData %08x\n", data,
493 readl(&regs->WinData));
494 ready = 1;
495 error = 1;
501 writel(misc, &regs->LocalCtrl);
502 writel(io, &regs->ExtIo);
503 mb();
505 return error;
509 static int __devinit rr_init(struct net_device *dev)
511 struct rr_private *rrpriv;
512 struct rr_regs __iomem *regs;
513 struct eeprom *hw = NULL;
514 u32 sram_size, rev;
515 DECLARE_MAC_BUF(mac);
517 rrpriv = netdev_priv(dev);
518 regs = rrpriv->regs;
520 rev = readl(&regs->FwRev);
521 rrpriv->fw_rev = rev;
522 if (rev > 0x00020024)
523 printk(" Firmware revision: %i.%i.%i\n", (rev >> 16),
524 ((rev >> 8) & 0xff), (rev & 0xff));
525 else if (rev >= 0x00020000) {
526 printk(" Firmware revision: %i.%i.%i (2.0.37 or "
527 "later is recommended)\n", (rev >> 16),
528 ((rev >> 8) & 0xff), (rev & 0xff));
529 }else{
530 printk(" Firmware revision too old: %i.%i.%i, please "
531 "upgrade to 2.0.37 or later.\n",
532 (rev >> 16), ((rev >> 8) & 0xff), (rev & 0xff));
535 #if (DEBUG > 2)
536 printk(" Maximum receive rings %i\n", readl(&regs->MaxRxRng));
537 #endif
540 * Read the hardware address from the eeprom. The HW address
541 * is not really necessary for HIPPI but awfully convenient.
542 * The pointer arithmetic to put it in dev_addr is ugly, but
543 * Donald Becker does it this way for the GigE version of this
544 * card and it's shorter and more portable than any
545 * other method I've seen. -VAL
548 *(u16 *)(dev->dev_addr) =
549 htons(rr_read_eeprom_word(rrpriv, &hw->manf.BoardULA));
550 *(u32 *)(dev->dev_addr+2) =
551 htonl(rr_read_eeprom_word(rrpriv, &hw->manf.BoardULA[4]));
553 printk(" MAC: %s\n", print_mac(mac, dev->dev_addr));
555 sram_size = rr_read_eeprom_word(rrpriv, (void *)8);
556 printk(" SRAM size 0x%06x\n", sram_size);
558 return 0;
562 static int rr_init1(struct net_device *dev)
564 struct rr_private *rrpriv;
565 struct rr_regs __iomem *regs;
566 unsigned long myjif, flags;
567 struct cmd cmd;
568 u32 hostctrl;
569 int ecode = 0;
570 short i;
572 rrpriv = netdev_priv(dev);
573 regs = rrpriv->regs;
575 spin_lock_irqsave(&rrpriv->lock, flags);
577 hostctrl = readl(&regs->HostCtrl);
578 writel(hostctrl | HALT_NIC | RR_CLEAR_INT, &regs->HostCtrl);
579 wmb();
581 if (hostctrl & PARITY_ERR){
582 printk("%s: Parity error halting NIC - this is serious!\n",
583 dev->name);
584 spin_unlock_irqrestore(&rrpriv->lock, flags);
585 ecode = -EFAULT;
586 goto error;
589 set_rxaddr(regs, rrpriv->rx_ctrl_dma);
590 set_infoaddr(regs, rrpriv->info_dma);
592 rrpriv->info->evt_ctrl.entry_size = sizeof(struct event);
593 rrpriv->info->evt_ctrl.entries = EVT_RING_ENTRIES;
594 rrpriv->info->evt_ctrl.mode = 0;
595 rrpriv->info->evt_ctrl.pi = 0;
596 set_rraddr(&rrpriv->info->evt_ctrl.rngptr, rrpriv->evt_ring_dma);
598 rrpriv->info->cmd_ctrl.entry_size = sizeof(struct cmd);
599 rrpriv->info->cmd_ctrl.entries = CMD_RING_ENTRIES;
600 rrpriv->info->cmd_ctrl.mode = 0;
601 rrpriv->info->cmd_ctrl.pi = 15;
603 for (i = 0; i < CMD_RING_ENTRIES; i++) {
604 writel(0, &regs->CmdRing[i]);
607 for (i = 0; i < TX_RING_ENTRIES; i++) {
608 rrpriv->tx_ring[i].size = 0;
609 set_rraddr(&rrpriv->tx_ring[i].addr, 0);
610 rrpriv->tx_skbuff[i] = NULL;
612 rrpriv->info->tx_ctrl.entry_size = sizeof(struct tx_desc);
613 rrpriv->info->tx_ctrl.entries = TX_RING_ENTRIES;
614 rrpriv->info->tx_ctrl.mode = 0;
615 rrpriv->info->tx_ctrl.pi = 0;
616 set_rraddr(&rrpriv->info->tx_ctrl.rngptr, rrpriv->tx_ring_dma);
619 * Set dirty_tx before we start receiving interrupts, otherwise
620 * the interrupt handler might think it is supposed to process
621 * tx ints before we are up and running, which may cause a null
622 * pointer access in the int handler.
624 rrpriv->tx_full = 0;
625 rrpriv->cur_rx = 0;
626 rrpriv->dirty_rx = rrpriv->dirty_tx = 0;
628 rr_reset(dev);
630 /* Tuning values */
631 writel(0x5000, &regs->ConRetry);
632 writel(0x100, &regs->ConRetryTmr);
633 writel(0x500000, &regs->ConTmout);
634 writel(0x60, &regs->IntrTmr);
635 writel(0x500000, &regs->TxDataMvTimeout);
636 writel(0x200000, &regs->RxDataMvTimeout);
637 writel(0x80, &regs->WriteDmaThresh);
638 writel(0x80, &regs->ReadDmaThresh);
640 rrpriv->fw_running = 0;
641 wmb();
643 hostctrl &= ~(HALT_NIC | INVALID_INST_B | PARITY_ERR);
644 writel(hostctrl, &regs->HostCtrl);
645 wmb();
647 spin_unlock_irqrestore(&rrpriv->lock, flags);
649 for (i = 0; i < RX_RING_ENTRIES; i++) {
650 struct sk_buff *skb;
651 dma_addr_t addr;
653 rrpriv->rx_ring[i].mode = 0;
654 skb = alloc_skb(dev->mtu + HIPPI_HLEN, GFP_ATOMIC);
655 if (!skb) {
656 printk(KERN_WARNING "%s: Unable to allocate memory "
657 "for receive ring - halting NIC\n", dev->name);
658 ecode = -ENOMEM;
659 goto error;
661 rrpriv->rx_skbuff[i] = skb;
662 addr = pci_map_single(rrpriv->pci_dev, skb->data,
663 dev->mtu + HIPPI_HLEN, PCI_DMA_FROMDEVICE);
665 * Sanity test to see if we conflict with the DMA
666 * limitations of the Roadrunner.
668 if ((((unsigned long)skb->data) & 0xfff) > ~65320)
669 printk("skb alloc error\n");
671 set_rraddr(&rrpriv->rx_ring[i].addr, addr);
672 rrpriv->rx_ring[i].size = dev->mtu + HIPPI_HLEN;
675 rrpriv->rx_ctrl[4].entry_size = sizeof(struct rx_desc);
676 rrpriv->rx_ctrl[4].entries = RX_RING_ENTRIES;
677 rrpriv->rx_ctrl[4].mode = 8;
678 rrpriv->rx_ctrl[4].pi = 0;
679 wmb();
680 set_rraddr(&rrpriv->rx_ctrl[4].rngptr, rrpriv->rx_ring_dma);
682 udelay(1000);
685 * Now start the FirmWare.
687 cmd.code = C_START_FW;
688 cmd.ring = 0;
689 cmd.index = 0;
691 rr_issue_cmd(rrpriv, &cmd);
694 * Give the FirmWare time to chew on the `get running' command.
696 myjif = jiffies + 5 * HZ;
697 while (time_before(jiffies, myjif) && !rrpriv->fw_running)
698 cpu_relax();
700 netif_start_queue(dev);
702 return ecode;
704 error:
706 * We might have gotten here because we are out of memory,
707 * make sure we release everything we allocated before failing
709 for (i = 0; i < RX_RING_ENTRIES; i++) {
710 struct sk_buff *skb = rrpriv->rx_skbuff[i];
712 if (skb) {
713 pci_unmap_single(rrpriv->pci_dev,
714 rrpriv->rx_ring[i].addr.addrlo,
715 dev->mtu + HIPPI_HLEN,
716 PCI_DMA_FROMDEVICE);
717 rrpriv->rx_ring[i].size = 0;
718 set_rraddr(&rrpriv->rx_ring[i].addr, 0);
719 dev_kfree_skb(skb);
720 rrpriv->rx_skbuff[i] = NULL;
723 return ecode;
728 * All events are considered to be slow (RX/TX ints do not generate
729 * events) and are handled here, outside the main interrupt handler,
730 * to reduce the size of the handler.
732 static u32 rr_handle_event(struct net_device *dev, u32 prodidx, u32 eidx)
734 struct rr_private *rrpriv;
735 struct rr_regs __iomem *regs;
736 u32 tmp;
738 rrpriv = netdev_priv(dev);
739 regs = rrpriv->regs;
741 while (prodidx != eidx){
742 switch (rrpriv->evt_ring[eidx].code){
743 case E_NIC_UP:
744 tmp = readl(&regs->FwRev);
745 printk(KERN_INFO "%s: Firmware revision %i.%i.%i "
746 "up and running\n", dev->name,
747 (tmp >> 16), ((tmp >> 8) & 0xff), (tmp & 0xff));
748 rrpriv->fw_running = 1;
749 writel(RX_RING_ENTRIES - 1, &regs->IpRxPi);
750 wmb();
751 break;
752 case E_LINK_ON:
753 printk(KERN_INFO "%s: Optical link ON\n", dev->name);
754 break;
755 case E_LINK_OFF:
756 printk(KERN_INFO "%s: Optical link OFF\n", dev->name);
757 break;
758 case E_RX_IDLE:
759 printk(KERN_WARNING "%s: RX data not moving\n",
760 dev->name);
761 goto drop;
762 case E_WATCHDOG:
763 printk(KERN_INFO "%s: The watchdog is here to see "
764 "us\n", dev->name);
765 break;
766 case E_INTERN_ERR:
767 printk(KERN_ERR "%s: HIPPI Internal NIC error\n",
768 dev->name);
769 writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
770 &regs->HostCtrl);
771 wmb();
772 break;
773 case E_HOST_ERR:
774 printk(KERN_ERR "%s: Host software error\n",
775 dev->name);
776 writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
777 &regs->HostCtrl);
778 wmb();
779 break;
781 * TX events.
783 case E_CON_REJ:
784 printk(KERN_WARNING "%s: Connection rejected\n",
785 dev->name);
786 dev->stats.tx_aborted_errors++;
787 break;
788 case E_CON_TMOUT:
789 printk(KERN_WARNING "%s: Connection timeout\n",
790 dev->name);
791 break;
792 case E_DISC_ERR:
793 printk(KERN_WARNING "%s: HIPPI disconnect error\n",
794 dev->name);
795 dev->stats.tx_aborted_errors++;
796 break;
797 case E_INT_PRTY:
798 printk(KERN_ERR "%s: HIPPI Internal Parity error\n",
799 dev->name);
800 writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
801 &regs->HostCtrl);
802 wmb();
803 break;
804 case E_TX_IDLE:
805 printk(KERN_WARNING "%s: Transmitter idle\n",
806 dev->name);
807 break;
808 case E_TX_LINK_DROP:
809 printk(KERN_WARNING "%s: Link lost during transmit\n",
810 dev->name);
811 dev->stats.tx_aborted_errors++;
812 writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
813 &regs->HostCtrl);
814 wmb();
815 break;
816 case E_TX_INV_RNG:
817 printk(KERN_ERR "%s: Invalid send ring block\n",
818 dev->name);
819 writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
820 &regs->HostCtrl);
821 wmb();
822 break;
823 case E_TX_INV_BUF:
824 printk(KERN_ERR "%s: Invalid send buffer address\n",
825 dev->name);
826 writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
827 &regs->HostCtrl);
828 wmb();
829 break;
830 case E_TX_INV_DSC:
831 printk(KERN_ERR "%s: Invalid descriptor address\n",
832 dev->name);
833 writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
834 &regs->HostCtrl);
835 wmb();
836 break;
838 * RX events.
840 case E_RX_RNG_OUT:
841 printk(KERN_INFO "%s: Receive ring full\n", dev->name);
842 break;
844 case E_RX_PAR_ERR:
845 printk(KERN_WARNING "%s: Receive parity error\n",
846 dev->name);
847 goto drop;
848 case E_RX_LLRC_ERR:
849 printk(KERN_WARNING "%s: Receive LLRC error\n",
850 dev->name);
851 goto drop;
852 case E_PKT_LN_ERR:
853 printk(KERN_WARNING "%s: Receive packet length "
854 "error\n", dev->name);
855 goto drop;
856 case E_DTA_CKSM_ERR:
857 printk(KERN_WARNING "%s: Data checksum error\n",
858 dev->name);
859 goto drop;
860 case E_SHT_BST:
861 printk(KERN_WARNING "%s: Unexpected short burst "
862 "error\n", dev->name);
863 goto drop;
864 case E_STATE_ERR:
865 printk(KERN_WARNING "%s: Recv. state transition"
866 " error\n", dev->name);
867 goto drop;
868 case E_UNEXP_DATA:
869 printk(KERN_WARNING "%s: Unexpected data error\n",
870 dev->name);
871 goto drop;
872 case E_LST_LNK_ERR:
873 printk(KERN_WARNING "%s: Link lost error\n",
874 dev->name);
875 goto drop;
876 case E_FRM_ERR:
877 printk(KERN_WARNING "%s: Framming Error\n",
878 dev->name);
879 goto drop;
880 case E_FLG_SYN_ERR:
881 printk(KERN_WARNING "%s: Flag sync. lost during"
882 "packet\n", dev->name);
883 goto drop;
884 case E_RX_INV_BUF:
885 printk(KERN_ERR "%s: Invalid receive buffer "
886 "address\n", dev->name);
887 writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
888 &regs->HostCtrl);
889 wmb();
890 break;
891 case E_RX_INV_DSC:
892 printk(KERN_ERR "%s: Invalid receive descriptor "
893 "address\n", dev->name);
894 writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
895 &regs->HostCtrl);
896 wmb();
897 break;
898 case E_RNG_BLK:
899 printk(KERN_ERR "%s: Invalid ring block\n",
900 dev->name);
901 writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
902 &regs->HostCtrl);
903 wmb();
904 break;
905 drop:
906 /* Label packet to be dropped.
907 * Actual dropping occurs in rx
908 * handling.
910 * The index of packet we get to drop is
911 * the index of the packet following
912 * the bad packet. -kbf
915 u16 index = rrpriv->evt_ring[eidx].index;
916 index = (index + (RX_RING_ENTRIES - 1)) %
917 RX_RING_ENTRIES;
918 rrpriv->rx_ring[index].mode |=
919 (PACKET_BAD | PACKET_END);
921 break;
922 default:
923 printk(KERN_WARNING "%s: Unhandled event 0x%02x\n",
924 dev->name, rrpriv->evt_ring[eidx].code);
926 eidx = (eidx + 1) % EVT_RING_ENTRIES;
929 rrpriv->info->evt_ctrl.pi = eidx;
930 wmb();
931 return eidx;
935 static void rx_int(struct net_device *dev, u32 rxlimit, u32 index)
937 struct rr_private *rrpriv = netdev_priv(dev);
938 struct rr_regs __iomem *regs = rrpriv->regs;
940 do {
941 struct rx_desc *desc;
942 u32 pkt_len;
944 desc = &(rrpriv->rx_ring[index]);
945 pkt_len = desc->size;
946 #if (DEBUG > 2)
947 printk("index %i, rxlimit %i\n", index, rxlimit);
948 printk("len %x, mode %x\n", pkt_len, desc->mode);
949 #endif
950 if ( (rrpriv->rx_ring[index].mode & PACKET_BAD) == PACKET_BAD){
951 dev->stats.rx_dropped++;
952 goto defer;
955 if (pkt_len > 0){
956 struct sk_buff *skb, *rx_skb;
958 rx_skb = rrpriv->rx_skbuff[index];
960 if (pkt_len < PKT_COPY_THRESHOLD) {
961 skb = alloc_skb(pkt_len, GFP_ATOMIC);
962 if (skb == NULL){
963 printk(KERN_WARNING "%s: Unable to allocate skb (%i bytes), deferring packet\n", dev->name, pkt_len);
964 dev->stats.rx_dropped++;
965 goto defer;
966 } else {
967 pci_dma_sync_single_for_cpu(rrpriv->pci_dev,
968 desc->addr.addrlo,
969 pkt_len,
970 PCI_DMA_FROMDEVICE);
972 memcpy(skb_put(skb, pkt_len),
973 rx_skb->data, pkt_len);
975 pci_dma_sync_single_for_device(rrpriv->pci_dev,
976 desc->addr.addrlo,
977 pkt_len,
978 PCI_DMA_FROMDEVICE);
980 }else{
981 struct sk_buff *newskb;
983 newskb = alloc_skb(dev->mtu + HIPPI_HLEN,
984 GFP_ATOMIC);
985 if (newskb){
986 dma_addr_t addr;
988 pci_unmap_single(rrpriv->pci_dev,
989 desc->addr.addrlo, dev->mtu +
990 HIPPI_HLEN, PCI_DMA_FROMDEVICE);
991 skb = rx_skb;
992 skb_put(skb, pkt_len);
993 rrpriv->rx_skbuff[index] = newskb;
994 addr = pci_map_single(rrpriv->pci_dev,
995 newskb->data,
996 dev->mtu + HIPPI_HLEN,
997 PCI_DMA_FROMDEVICE);
998 set_rraddr(&desc->addr, addr);
999 } else {
1000 printk("%s: Out of memory, deferring "
1001 "packet\n", dev->name);
1002 dev->stats.rx_dropped++;
1003 goto defer;
1006 skb->protocol = hippi_type_trans(skb, dev);
1008 netif_rx(skb); /* send it up */
1010 dev->last_rx = jiffies;
1011 dev->stats.rx_packets++;
1012 dev->stats.rx_bytes += pkt_len;
1014 defer:
1015 desc->mode = 0;
1016 desc->size = dev->mtu + HIPPI_HLEN;
1018 if ((index & 7) == 7)
1019 writel(index, &regs->IpRxPi);
1021 index = (index + 1) % RX_RING_ENTRIES;
1022 } while(index != rxlimit);
1024 rrpriv->cur_rx = index;
1025 wmb();
1029 static irqreturn_t rr_interrupt(int irq, void *dev_id)
1031 struct rr_private *rrpriv;
1032 struct rr_regs __iomem *regs;
1033 struct net_device *dev = (struct net_device *)dev_id;
1034 u32 prodidx, rxindex, eidx, txcsmr, rxlimit, txcon;
1036 rrpriv = netdev_priv(dev);
1037 regs = rrpriv->regs;
1039 if (!(readl(&regs->HostCtrl) & RR_INT))
1040 return IRQ_NONE;
1042 spin_lock(&rrpriv->lock);
1044 prodidx = readl(&regs->EvtPrd);
1045 txcsmr = (prodidx >> 8) & 0xff;
1046 rxlimit = (prodidx >> 16) & 0xff;
1047 prodidx &= 0xff;
1049 #if (DEBUG > 2)
1050 printk("%s: interrupt, prodidx = %i, eidx = %i\n", dev->name,
1051 prodidx, rrpriv->info->evt_ctrl.pi);
1052 #endif
1054 * Order here is important. We must handle events
1055 * before doing anything else in order to catch
1056 * such things as LLRC errors, etc -kbf
1059 eidx = rrpriv->info->evt_ctrl.pi;
1060 if (prodidx != eidx)
1061 eidx = rr_handle_event(dev, prodidx, eidx);
1063 rxindex = rrpriv->cur_rx;
1064 if (rxindex != rxlimit)
1065 rx_int(dev, rxlimit, rxindex);
1067 txcon = rrpriv->dirty_tx;
1068 if (txcsmr != txcon) {
1069 do {
1070 /* Due to occational firmware TX producer/consumer out
1071 * of sync. error need to check entry in ring -kbf
1073 if(rrpriv->tx_skbuff[txcon]){
1074 struct tx_desc *desc;
1075 struct sk_buff *skb;
1077 desc = &(rrpriv->tx_ring[txcon]);
1078 skb = rrpriv->tx_skbuff[txcon];
1080 dev->stats.tx_packets++;
1081 dev->stats.tx_bytes += skb->len;
1083 pci_unmap_single(rrpriv->pci_dev,
1084 desc->addr.addrlo, skb->len,
1085 PCI_DMA_TODEVICE);
1086 dev_kfree_skb_irq(skb);
1088 rrpriv->tx_skbuff[txcon] = NULL;
1089 desc->size = 0;
1090 set_rraddr(&rrpriv->tx_ring[txcon].addr, 0);
1091 desc->mode = 0;
1093 txcon = (txcon + 1) % TX_RING_ENTRIES;
1094 } while (txcsmr != txcon);
1095 wmb();
1097 rrpriv->dirty_tx = txcon;
1098 if (rrpriv->tx_full && rr_if_busy(dev) &&
1099 (((rrpriv->info->tx_ctrl.pi + 1) % TX_RING_ENTRIES)
1100 != rrpriv->dirty_tx)){
1101 rrpriv->tx_full = 0;
1102 netif_wake_queue(dev);
1106 eidx |= ((txcsmr << 8) | (rxlimit << 16));
1107 writel(eidx, &regs->EvtCon);
1108 wmb();
1110 spin_unlock(&rrpriv->lock);
1111 return IRQ_HANDLED;
1114 static inline void rr_raz_tx(struct rr_private *rrpriv,
1115 struct net_device *dev)
1117 int i;
1119 for (i = 0; i < TX_RING_ENTRIES; i++) {
1120 struct sk_buff *skb = rrpriv->tx_skbuff[i];
1122 if (skb) {
1123 struct tx_desc *desc = &(rrpriv->tx_ring[i]);
1125 pci_unmap_single(rrpriv->pci_dev, desc->addr.addrlo,
1126 skb->len, PCI_DMA_TODEVICE);
1127 desc->size = 0;
1128 set_rraddr(&desc->addr, 0);
1129 dev_kfree_skb(skb);
1130 rrpriv->tx_skbuff[i] = NULL;
1136 static inline void rr_raz_rx(struct rr_private *rrpriv,
1137 struct net_device *dev)
1139 int i;
1141 for (i = 0; i < RX_RING_ENTRIES; i++) {
1142 struct sk_buff *skb = rrpriv->rx_skbuff[i];
1144 if (skb) {
1145 struct rx_desc *desc = &(rrpriv->rx_ring[i]);
1147 pci_unmap_single(rrpriv->pci_dev, desc->addr.addrlo,
1148 dev->mtu + HIPPI_HLEN, PCI_DMA_FROMDEVICE);
1149 desc->size = 0;
1150 set_rraddr(&desc->addr, 0);
1151 dev_kfree_skb(skb);
1152 rrpriv->rx_skbuff[i] = NULL;
1157 static void rr_timer(unsigned long data)
1159 struct net_device *dev = (struct net_device *)data;
1160 struct rr_private *rrpriv = netdev_priv(dev);
1161 struct rr_regs __iomem *regs = rrpriv->regs;
1162 unsigned long flags;
1164 if (readl(&regs->HostCtrl) & NIC_HALTED){
1165 printk("%s: Restarting nic\n", dev->name);
1166 memset(rrpriv->rx_ctrl, 0, 256 * sizeof(struct ring_ctrl));
1167 memset(rrpriv->info, 0, sizeof(struct rr_info));
1168 wmb();
1170 rr_raz_tx(rrpriv, dev);
1171 rr_raz_rx(rrpriv, dev);
1173 if (rr_init1(dev)) {
1174 spin_lock_irqsave(&rrpriv->lock, flags);
1175 writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
1176 &regs->HostCtrl);
1177 spin_unlock_irqrestore(&rrpriv->lock, flags);
1180 rrpriv->timer.expires = RUN_AT(5*HZ);
1181 add_timer(&rrpriv->timer);
1185 static int rr_open(struct net_device *dev)
1187 struct rr_private *rrpriv = netdev_priv(dev);
1188 struct pci_dev *pdev = rrpriv->pci_dev;
1189 struct rr_regs __iomem *regs;
1190 int ecode = 0;
1191 unsigned long flags;
1192 dma_addr_t dma_addr;
1194 regs = rrpriv->regs;
1196 if (rrpriv->fw_rev < 0x00020000) {
1197 printk(KERN_WARNING "%s: trying to configure device with "
1198 "obsolete firmware\n", dev->name);
1199 ecode = -EBUSY;
1200 goto error;
1203 rrpriv->rx_ctrl = pci_alloc_consistent(pdev,
1204 256 * sizeof(struct ring_ctrl),
1205 &dma_addr);
1206 if (!rrpriv->rx_ctrl) {
1207 ecode = -ENOMEM;
1208 goto error;
1210 rrpriv->rx_ctrl_dma = dma_addr;
1211 memset(rrpriv->rx_ctrl, 0, 256*sizeof(struct ring_ctrl));
1213 rrpriv->info = pci_alloc_consistent(pdev, sizeof(struct rr_info),
1214 &dma_addr);
1215 if (!rrpriv->info) {
1216 ecode = -ENOMEM;
1217 goto error;
1219 rrpriv->info_dma = dma_addr;
1220 memset(rrpriv->info, 0, sizeof(struct rr_info));
1221 wmb();
1223 spin_lock_irqsave(&rrpriv->lock, flags);
1224 writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT, &regs->HostCtrl);
1225 readl(&regs->HostCtrl);
1226 spin_unlock_irqrestore(&rrpriv->lock, flags);
1228 if (request_irq(dev->irq, rr_interrupt, IRQF_SHARED, dev->name, dev)) {
1229 printk(KERN_WARNING "%s: Requested IRQ %d is busy\n",
1230 dev->name, dev->irq);
1231 ecode = -EAGAIN;
1232 goto error;
1235 if ((ecode = rr_init1(dev)))
1236 goto error;
1238 /* Set the timer to switch to check for link beat and perhaps switch
1239 to an alternate media type. */
1240 init_timer(&rrpriv->timer);
1241 rrpriv->timer.expires = RUN_AT(5*HZ); /* 5 sec. watchdog */
1242 rrpriv->timer.data = (unsigned long)dev;
1243 rrpriv->timer.function = &rr_timer; /* timer handler */
1244 add_timer(&rrpriv->timer);
1246 netif_start_queue(dev);
1248 return ecode;
1250 error:
1251 spin_lock_irqsave(&rrpriv->lock, flags);
1252 writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT, &regs->HostCtrl);
1253 spin_unlock_irqrestore(&rrpriv->lock, flags);
1255 if (rrpriv->info) {
1256 pci_free_consistent(pdev, sizeof(struct rr_info), rrpriv->info,
1257 rrpriv->info_dma);
1258 rrpriv->info = NULL;
1260 if (rrpriv->rx_ctrl) {
1261 pci_free_consistent(pdev, sizeof(struct ring_ctrl),
1262 rrpriv->rx_ctrl, rrpriv->rx_ctrl_dma);
1263 rrpriv->rx_ctrl = NULL;
1266 netif_stop_queue(dev);
1268 return ecode;
1272 static void rr_dump(struct net_device *dev)
1274 struct rr_private *rrpriv;
1275 struct rr_regs __iomem *regs;
1276 u32 index, cons;
1277 short i;
1278 int len;
1280 rrpriv = netdev_priv(dev);
1281 regs = rrpriv->regs;
1283 printk("%s: dumping NIC TX rings\n", dev->name);
1285 printk("RxPrd %08x, TxPrd %02x, EvtPrd %08x, TxPi %02x, TxCtrlPi %02x\n",
1286 readl(&regs->RxPrd), readl(&regs->TxPrd),
1287 readl(&regs->EvtPrd), readl(&regs->TxPi),
1288 rrpriv->info->tx_ctrl.pi);
1290 printk("Error code 0x%x\n", readl(&regs->Fail1));
1292 index = (((readl(&regs->EvtPrd) >> 8) & 0xff ) - 1) % EVT_RING_ENTRIES;
1293 cons = rrpriv->dirty_tx;
1294 printk("TX ring index %i, TX consumer %i\n",
1295 index, cons);
1297 if (rrpriv->tx_skbuff[index]){
1298 len = min_t(int, 0x80, rrpriv->tx_skbuff[index]->len);
1299 printk("skbuff for index %i is valid - dumping data (0x%x bytes - DMA len 0x%x)\n", index, len, rrpriv->tx_ring[index].size);
1300 for (i = 0; i < len; i++){
1301 if (!(i & 7))
1302 printk("\n");
1303 printk("%02x ", (unsigned char) rrpriv->tx_skbuff[index]->data[i]);
1305 printk("\n");
1308 if (rrpriv->tx_skbuff[cons]){
1309 len = min_t(int, 0x80, rrpriv->tx_skbuff[cons]->len);
1310 printk("skbuff for cons %i is valid - dumping data (0x%x bytes - skbuff len 0x%x)\n", cons, len, rrpriv->tx_skbuff[cons]->len);
1311 printk("mode 0x%x, size 0x%x,\n phys %08Lx, skbuff-addr %08lx, truesize 0x%x\n",
1312 rrpriv->tx_ring[cons].mode,
1313 rrpriv->tx_ring[cons].size,
1314 (unsigned long long) rrpriv->tx_ring[cons].addr.addrlo,
1315 (unsigned long)rrpriv->tx_skbuff[cons]->data,
1316 (unsigned int)rrpriv->tx_skbuff[cons]->truesize);
1317 for (i = 0; i < len; i++){
1318 if (!(i & 7))
1319 printk("\n");
1320 printk("%02x ", (unsigned char)rrpriv->tx_ring[cons].size);
1322 printk("\n");
1325 printk("dumping TX ring info:\n");
1326 for (i = 0; i < TX_RING_ENTRIES; i++)
1327 printk("mode 0x%x, size 0x%x, phys-addr %08Lx\n",
1328 rrpriv->tx_ring[i].mode,
1329 rrpriv->tx_ring[i].size,
1330 (unsigned long long) rrpriv->tx_ring[i].addr.addrlo);
1335 static int rr_close(struct net_device *dev)
1337 struct rr_private *rrpriv;
1338 struct rr_regs __iomem *regs;
1339 unsigned long flags;
1340 u32 tmp;
1341 short i;
1343 netif_stop_queue(dev);
1345 rrpriv = netdev_priv(dev);
1346 regs = rrpriv->regs;
1349 * Lock to make sure we are not cleaning up while another CPU
1350 * is handling interrupts.
1352 spin_lock_irqsave(&rrpriv->lock, flags);
1354 tmp = readl(&regs->HostCtrl);
1355 if (tmp & NIC_HALTED){
1356 printk("%s: NIC already halted\n", dev->name);
1357 rr_dump(dev);
1358 }else{
1359 tmp |= HALT_NIC | RR_CLEAR_INT;
1360 writel(tmp, &regs->HostCtrl);
1361 readl(&regs->HostCtrl);
1364 rrpriv->fw_running = 0;
1366 del_timer_sync(&rrpriv->timer);
1368 writel(0, &regs->TxPi);
1369 writel(0, &regs->IpRxPi);
1371 writel(0, &regs->EvtCon);
1372 writel(0, &regs->EvtPrd);
1374 for (i = 0; i < CMD_RING_ENTRIES; i++)
1375 writel(0, &regs->CmdRing[i]);
1377 rrpriv->info->tx_ctrl.entries = 0;
1378 rrpriv->info->cmd_ctrl.pi = 0;
1379 rrpriv->info->evt_ctrl.pi = 0;
1380 rrpriv->rx_ctrl[4].entries = 0;
1382 rr_raz_tx(rrpriv, dev);
1383 rr_raz_rx(rrpriv, dev);
1385 pci_free_consistent(rrpriv->pci_dev, 256 * sizeof(struct ring_ctrl),
1386 rrpriv->rx_ctrl, rrpriv->rx_ctrl_dma);
1387 rrpriv->rx_ctrl = NULL;
1389 pci_free_consistent(rrpriv->pci_dev, sizeof(struct rr_info),
1390 rrpriv->info, rrpriv->info_dma);
1391 rrpriv->info = NULL;
1393 free_irq(dev->irq, dev);
1394 spin_unlock_irqrestore(&rrpriv->lock, flags);
1396 return 0;
1400 static int rr_start_xmit(struct sk_buff *skb, struct net_device *dev)
1402 struct rr_private *rrpriv = netdev_priv(dev);
1403 struct rr_regs __iomem *regs = rrpriv->regs;
1404 struct hippi_cb *hcb = (struct hippi_cb *) skb->cb;
1405 struct ring_ctrl *txctrl;
1406 unsigned long flags;
1407 u32 index, len = skb->len;
1408 u32 *ifield;
1409 struct sk_buff *new_skb;
1411 if (readl(&regs->Mode) & FATAL_ERR)
1412 printk("error codes Fail1 %02x, Fail2 %02x\n",
1413 readl(&regs->Fail1), readl(&regs->Fail2));
1416 * We probably need to deal with tbusy here to prevent overruns.
1419 if (skb_headroom(skb) < 8){
1420 printk("incoming skb too small - reallocating\n");
1421 if (!(new_skb = dev_alloc_skb(len + 8))) {
1422 dev_kfree_skb(skb);
1423 netif_wake_queue(dev);
1424 return -EBUSY;
1426 skb_reserve(new_skb, 8);
1427 skb_put(new_skb, len);
1428 skb_copy_from_linear_data(skb, new_skb->data, len);
1429 dev_kfree_skb(skb);
1430 skb = new_skb;
1433 ifield = (u32 *)skb_push(skb, 8);
1435 ifield[0] = 0;
1436 ifield[1] = hcb->ifield;
1439 * We don't need the lock before we are actually going to start
1440 * fiddling with the control blocks.
1442 spin_lock_irqsave(&rrpriv->lock, flags);
1444 txctrl = &rrpriv->info->tx_ctrl;
1446 index = txctrl->pi;
1448 rrpriv->tx_skbuff[index] = skb;
1449 set_rraddr(&rrpriv->tx_ring[index].addr, pci_map_single(
1450 rrpriv->pci_dev, skb->data, len + 8, PCI_DMA_TODEVICE));
1451 rrpriv->tx_ring[index].size = len + 8; /* include IFIELD */
1452 rrpriv->tx_ring[index].mode = PACKET_START | PACKET_END;
1453 txctrl->pi = (index + 1) % TX_RING_ENTRIES;
1454 wmb();
1455 writel(txctrl->pi, &regs->TxPi);
1457 if (txctrl->pi == rrpriv->dirty_tx){
1458 rrpriv->tx_full = 1;
1459 netif_stop_queue(dev);
1462 spin_unlock_irqrestore(&rrpriv->lock, flags);
1464 dev->trans_start = jiffies;
1465 return 0;
1470 * Read the firmware out of the EEPROM and put it into the SRAM
1471 * (or from user space - later)
1473 * This operation requires the NIC to be halted and is performed with
1474 * interrupts disabled and with the spinlock hold.
1476 static int rr_load_firmware(struct net_device *dev)
1478 struct rr_private *rrpriv;
1479 struct rr_regs __iomem *regs;
1480 unsigned long eptr, segptr;
1481 int i, j;
1482 u32 localctrl, sptr, len, tmp;
1483 u32 p2len, p2size, nr_seg, revision, io, sram_size;
1484 struct eeprom *hw = NULL;
1486 rrpriv = netdev_priv(dev);
1487 regs = rrpriv->regs;
1489 if (dev->flags & IFF_UP)
1490 return -EBUSY;
1492 if (!(readl(&regs->HostCtrl) & NIC_HALTED)){
1493 printk("%s: Trying to load firmware to a running NIC.\n",
1494 dev->name);
1495 return -EBUSY;
1498 localctrl = readl(&regs->LocalCtrl);
1499 writel(0, &regs->LocalCtrl);
1501 writel(0, &regs->EvtPrd);
1502 writel(0, &regs->RxPrd);
1503 writel(0, &regs->TxPrd);
1506 * First wipe the entire SRAM, otherwise we might run into all
1507 * kinds of trouble ... sigh, this took almost all afternoon
1508 * to track down ;-(
1510 io = readl(&regs->ExtIo);
1511 writel(0, &regs->ExtIo);
1512 sram_size = rr_read_eeprom_word(rrpriv, (void *)8);
1514 for (i = 200; i < sram_size / 4; i++){
1515 writel(i * 4, &regs->WinBase);
1516 mb();
1517 writel(0, &regs->WinData);
1518 mb();
1520 writel(io, &regs->ExtIo);
1521 mb();
1523 eptr = (unsigned long)rr_read_eeprom_word(rrpriv,
1524 &hw->rncd_info.AddrRunCodeSegs);
1525 eptr = ((eptr & 0x1fffff) >> 3);
1527 p2len = rr_read_eeprom_word(rrpriv, (void *)(0x83*4));
1528 p2len = (p2len << 2);
1529 p2size = rr_read_eeprom_word(rrpriv, (void *)(0x84*4));
1530 p2size = ((p2size & 0x1fffff) >> 3);
1532 if ((eptr < p2size) || (eptr > (p2size + p2len))){
1533 printk("%s: eptr is invalid\n", dev->name);
1534 goto out;
1537 revision = rr_read_eeprom_word(rrpriv, &hw->manf.HeaderFmt);
1539 if (revision != 1){
1540 printk("%s: invalid firmware format (%i)\n",
1541 dev->name, revision);
1542 goto out;
1545 nr_seg = rr_read_eeprom_word(rrpriv, (void *)eptr);
1546 eptr +=4;
1547 #if (DEBUG > 1)
1548 printk("%s: nr_seg %i\n", dev->name, nr_seg);
1549 #endif
1551 for (i = 0; i < nr_seg; i++){
1552 sptr = rr_read_eeprom_word(rrpriv, (void *)eptr);
1553 eptr += 4;
1554 len = rr_read_eeprom_word(rrpriv, (void *)eptr);
1555 eptr += 4;
1556 segptr = (unsigned long)rr_read_eeprom_word(rrpriv, (void *)eptr);
1557 segptr = ((segptr & 0x1fffff) >> 3);
1558 eptr += 4;
1559 #if (DEBUG > 1)
1560 printk("%s: segment %i, sram address %06x, length %04x, segptr %06x\n",
1561 dev->name, i, sptr, len, segptr);
1562 #endif
1563 for (j = 0; j < len; j++){
1564 tmp = rr_read_eeprom_word(rrpriv, (void *)segptr);
1565 writel(sptr, &regs->WinBase);
1566 mb();
1567 writel(tmp, &regs->WinData);
1568 mb();
1569 segptr += 4;
1570 sptr += 4;
1574 out:
1575 writel(localctrl, &regs->LocalCtrl);
1576 mb();
1577 return 0;
1581 static int rr_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1583 struct rr_private *rrpriv;
1584 unsigned char *image, *oldimage;
1585 unsigned long flags;
1586 unsigned int i;
1587 int error = -EOPNOTSUPP;
1589 rrpriv = netdev_priv(dev);
1591 switch(cmd){
1592 case SIOCRRGFW:
1593 if (!capable(CAP_SYS_RAWIO)){
1594 return -EPERM;
1597 image = kmalloc(EEPROM_WORDS * sizeof(u32), GFP_KERNEL);
1598 if (!image){
1599 printk(KERN_ERR "%s: Unable to allocate memory "
1600 "for EEPROM image\n", dev->name);
1601 return -ENOMEM;
1605 if (rrpriv->fw_running){
1606 printk("%s: Firmware already running\n", dev->name);
1607 error = -EPERM;
1608 goto gf_out;
1611 spin_lock_irqsave(&rrpriv->lock, flags);
1612 i = rr_read_eeprom(rrpriv, 0, image, EEPROM_BYTES);
1613 spin_unlock_irqrestore(&rrpriv->lock, flags);
1614 if (i != EEPROM_BYTES){
1615 printk(KERN_ERR "%s: Error reading EEPROM\n",
1616 dev->name);
1617 error = -EFAULT;
1618 goto gf_out;
1620 error = copy_to_user(rq->ifr_data, image, EEPROM_BYTES);
1621 if (error)
1622 error = -EFAULT;
1623 gf_out:
1624 kfree(image);
1625 return error;
1627 case SIOCRRPFW:
1628 if (!capable(CAP_SYS_RAWIO)){
1629 return -EPERM;
1632 image = kmalloc(EEPROM_WORDS * sizeof(u32), GFP_KERNEL);
1633 oldimage = kmalloc(EEPROM_WORDS * sizeof(u32), GFP_KERNEL);
1634 if (!image || !oldimage) {
1635 printk(KERN_ERR "%s: Unable to allocate memory "
1636 "for EEPROM image\n", dev->name);
1637 error = -ENOMEM;
1638 goto wf_out;
1641 error = copy_from_user(image, rq->ifr_data, EEPROM_BYTES);
1642 if (error) {
1643 error = -EFAULT;
1644 goto wf_out;
1647 if (rrpriv->fw_running){
1648 printk("%s: Firmware already running\n", dev->name);
1649 error = -EPERM;
1650 goto wf_out;
1653 printk("%s: Updating EEPROM firmware\n", dev->name);
1655 spin_lock_irqsave(&rrpriv->lock, flags);
1656 error = write_eeprom(rrpriv, 0, image, EEPROM_BYTES);
1657 if (error)
1658 printk(KERN_ERR "%s: Error writing EEPROM\n",
1659 dev->name);
1661 i = rr_read_eeprom(rrpriv, 0, oldimage, EEPROM_BYTES);
1662 spin_unlock_irqrestore(&rrpriv->lock, flags);
1664 if (i != EEPROM_BYTES)
1665 printk(KERN_ERR "%s: Error reading back EEPROM "
1666 "image\n", dev->name);
1668 error = memcmp(image, oldimage, EEPROM_BYTES);
1669 if (error){
1670 printk(KERN_ERR "%s: Error verifying EEPROM image\n",
1671 dev->name);
1672 error = -EFAULT;
1674 wf_out:
1675 kfree(oldimage);
1676 kfree(image);
1677 return error;
1679 case SIOCRRID:
1680 return put_user(0x52523032, (int __user *)rq->ifr_data);
1681 default:
1682 return error;
1686 static struct pci_device_id rr_pci_tbl[] = {
1687 { PCI_VENDOR_ID_ESSENTIAL, PCI_DEVICE_ID_ESSENTIAL_ROADRUNNER,
1688 PCI_ANY_ID, PCI_ANY_ID, },
1689 { 0,}
1691 MODULE_DEVICE_TABLE(pci, rr_pci_tbl);
1693 static struct pci_driver rr_driver = {
1694 .name = "rrunner",
1695 .id_table = rr_pci_tbl,
1696 .probe = rr_init_one,
1697 .remove = __devexit_p(rr_remove_one),
1700 static int __init rr_init_module(void)
1702 return pci_register_driver(&rr_driver);
1705 static void __exit rr_cleanup_module(void)
1707 pci_unregister_driver(&rr_driver);
1710 module_init(rr_init_module);
1711 module_exit(rr_cleanup_module);
1714 * Local variables:
1715 * compile-command: "gcc -D__KERNEL__ -I../../include -Wall -Wstrict-prototypes -O2 -pipe -fomit-frame-pointer -fno-strength-reduce -m486 -malign-loops=2 -malign-jumps=2 -malign-functions=2 -DMODULE -DMODVERSIONS -include ../../include/linux/modversions.h -c rrunner.c"
1716 * End: