2 * Tehuti Networks(R) Network Driver
3 * ethtool interface implementation
4 * Copyright (C) 2007 Tehuti Networks Ltd. All rights reserved
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
13 * RX HW/SW interaction overview
14 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
15 * There are 2 types of RX communication channels betwean driver and NIC.
16 * 1) RX Free Fifo - RXF - holds descriptors of empty buffers to accept incoming
17 * traffic. This Fifo is filled by SW and is readen by HW. Each descriptor holds
18 * info about buffer's location, size and ID. An ID field is used to identify a
19 * buffer when it's returned with data via RXD Fifo (see below)
20 * 2) RX Data Fifo - RXD - holds descriptors of full buffers. This Fifo is
21 * filled by HW and is readen by SW. Each descriptor holds status and ID.
22 * HW pops descriptor from RXF Fifo, stores ID, fills buffer with incoming data,
23 * via dma moves it into host memory, builds new RXD descriptor with same ID,
24 * pushes it into RXD Fifo and raises interrupt to indicate new RX data.
26 * Current NIC configuration (registers + firmware) makes NIC use 2 RXF Fifos.
27 * One holds 1.5K packets and another - 26K packets. Depending on incoming
28 * packet size, HW desides on a RXF Fifo to pop buffer from. When packet is
29 * filled with data, HW builds new RXD descriptor for it and push it into single
32 * RX SW Data Structures
33 * ~~~~~~~~~~~~~~~~~~~~~
34 * skb db - used to keep track of all skbs owned by SW and their dma addresses.
35 * For RX case, ownership lasts from allocating new empty skb for RXF until
36 * accepting full skb from RXD and passing it to OS. Each RXF Fifo has its own
37 * skb db. Implemented as array with bitmask.
38 * fifo - keeps info about fifo's size and location, relevant HW registers,
39 * usage and skb db. Each RXD and RXF Fifo has its own fifo structure.
40 * Implemented as simple struct.
42 * RX SW Execution Flow
43 * ~~~~~~~~~~~~~~~~~~~~
44 * Upon initialization (ifconfig up) driver creates RX fifos and initializes
45 * relevant registers. At the end of init phase, driver enables interrupts.
46 * NIC sees that there is no RXF buffers and raises
47 * RD_INTR interrupt, isr fills skbs and Rx begins.
48 * Driver has two receive operation modes:
49 * NAPI - interrupt-driven mixed with polling
50 * interrupt-driven only
52 * Interrupt-driven only flow is following. When buffer is ready, HW raises
53 * interrupt and isr is called. isr collects all available packets
54 * (bdx_rx_receive), refills skbs (bdx_rx_alloc_skbs) and exit.
56 * Rx buffer allocation note
57 * ~~~~~~~~~~~~~~~~~~~~~~~~~
58 * Driver cares to feed such amount of RxF descriptors that respective amount of
59 * RxD descriptors can not fill entire RxD fifo. The main reason is lack of
60 * overflow check in Bordeaux for RxD fifo free/used size.
61 * FIXME: this is NOT fully implemented, more work should be done
66 #include "tehuti_fw.h"
68 static struct pci_device_id __devinitdata bdx_pci_tbl
[] = {
69 {0x1FC9, 0x3009, PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0},
70 {0x1FC9, 0x3010, PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0},
71 {0x1FC9, 0x3014, PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0},
75 MODULE_DEVICE_TABLE(pci
, bdx_pci_tbl
);
77 /* Definitions needed by ISR or NAPI functions */
78 static void bdx_rx_alloc_skbs(struct bdx_priv
*priv
, struct rxf_fifo
*f
);
79 static void bdx_tx_cleanup(struct bdx_priv
*priv
);
80 static int bdx_rx_receive(struct bdx_priv
*priv
, struct rxd_fifo
*f
, int budget
);
82 /* Definitions needed by FW loading */
83 static void bdx_tx_push_desc_safe(struct bdx_priv
*priv
, void *data
, int size
);
85 /* Definitions needed by hw_start */
86 static int bdx_tx_init(struct bdx_priv
*priv
);
87 static int bdx_rx_init(struct bdx_priv
*priv
);
89 /* Definitions needed by bdx_close */
90 static void bdx_rx_free(struct bdx_priv
*priv
);
91 static void bdx_tx_free(struct bdx_priv
*priv
);
93 /* Definitions needed by bdx_probe */
94 static void bdx_ethtool_ops(struct net_device
*netdev
);
96 /*************************************************************************
98 *************************************************************************/
100 static void print_hw_id(struct pci_dev
*pdev
)
102 struct pci_nic
*nic
= pci_get_drvdata(pdev
);
103 u16 pci_link_status
= 0;
106 pci_read_config_word(pdev
, PCI_LINK_STATUS_REG
, &pci_link_status
);
107 pci_read_config_word(pdev
, PCI_DEV_CTRL_REG
, &pci_ctrl
);
109 printk(KERN_INFO
"tehuti: %s%s\n", BDX_NIC_NAME
,
110 nic
->port_num
== 1 ? "" : ", 2-Port");
112 "tehuti: srom 0x%x fpga %d build %u lane# %d"
113 " max_pl 0x%x mrrs 0x%x\n",
114 readl(nic
->regs
+ SROM_VER
), readl(nic
->regs
+ FPGA_VER
) & 0xFFF,
115 readl(nic
->regs
+ FPGA_SEED
),
116 GET_LINK_STATUS_LANES(pci_link_status
),
117 GET_DEV_CTRL_MAXPL(pci_ctrl
), GET_DEV_CTRL_MRRS(pci_ctrl
));
120 static void print_fw_id(struct pci_nic
*nic
)
122 printk(KERN_INFO
"tehuti: fw 0x%x\n", readl(nic
->regs
+ FW_VER
));
125 static void print_eth_id(struct net_device
*ndev
)
127 printk(KERN_INFO
"%s: %s, Port %c\n", ndev
->name
, BDX_NIC_NAME
,
128 (ndev
->if_port
== 0) ? 'A' : 'B');
132 /*************************************************************************
134 *************************************************************************/
136 #define bdx_enable_interrupts(priv) \
137 do { WRITE_REG(priv, regIMR, IR_RUN); } while (0)
138 #define bdx_disable_interrupts(priv) \
139 do { WRITE_REG(priv, regIMR, 0); } while (0)
142 * create TX/RX descriptor fifo for host-NIC communication.
143 * 1K extra space is allocated at the end of the fifo to simplify
144 * processing of descriptors that wraps around fifo's end
145 * @priv - NIC private structure
146 * @f - fifo to initialize
147 * @fsz_type - fifo size type: 0-4KB, 1-8KB, 2-16KB, 3-32KB
148 * @reg_XXX - offsets of registers relative to base address
150 * Returns 0 on success, negative value on failure
154 bdx_fifo_init(struct bdx_priv
*priv
, struct fifo
*f
, int fsz_type
,
155 u16 reg_CFG0
, u16 reg_CFG1
, u16 reg_RPTR
, u16 reg_WPTR
)
157 u16 memsz
= FIFO_SIZE
* (1 << fsz_type
);
159 memset(f
, 0, sizeof(struct fifo
));
160 /* pci_alloc_consistent gives us 4k-aligned memory */
161 f
->va
= pci_alloc_consistent(priv
->pdev
,
162 memsz
+ FIFO_EXTRA_SPACE
, &f
->da
);
164 ERR("pci_alloc_consistent failed\n");
167 f
->reg_CFG0
= reg_CFG0
;
168 f
->reg_CFG1
= reg_CFG1
;
169 f
->reg_RPTR
= reg_RPTR
;
170 f
->reg_WPTR
= reg_WPTR
;
174 f
->size_mask
= memsz
- 1;
175 WRITE_REG(priv
, reg_CFG0
, (u32
) ((f
->da
& TX_RX_CFG0_BASE
) | fsz_type
));
176 WRITE_REG(priv
, reg_CFG1
, H32_64(f
->da
));
181 /* bdx_fifo_free - free all resources used by fifo
182 * @priv - NIC private structure
183 * @f - fifo to release
185 static void bdx_fifo_free(struct bdx_priv
*priv
, struct fifo
*f
)
189 pci_free_consistent(priv
->pdev
,
190 f
->memsz
+ FIFO_EXTRA_SPACE
, f
->va
, f
->da
);
197 * bdx_link_changed - notifies OS about hw link state.
198 * @bdx_priv - hw adapter structure
200 static void bdx_link_changed(struct bdx_priv
*priv
)
202 u32 link
= READ_REG(priv
, regMAC_LNK_STAT
) & MAC_LINK_STAT
;
205 if (netif_carrier_ok(priv
->ndev
)) {
206 netif_stop_queue(priv
->ndev
);
207 netif_carrier_off(priv
->ndev
);
208 ERR("%s: Link Down\n", priv
->ndev
->name
);
211 if (!netif_carrier_ok(priv
->ndev
)) {
212 netif_wake_queue(priv
->ndev
);
213 netif_carrier_on(priv
->ndev
);
214 ERR("%s: Link Up\n", priv
->ndev
->name
);
219 static void bdx_isr_extra(struct bdx_priv
*priv
, u32 isr
)
221 if (isr
& IR_RX_FREE_0
) {
222 bdx_rx_alloc_skbs(priv
, &priv
->rxf_fifo0
);
226 if (isr
& IR_LNKCHG0
)
227 bdx_link_changed(priv
);
229 if (isr
& IR_PCIE_LINK
)
230 ERR("%s: PCI-E Link Fault\n", priv
->ndev
->name
);
232 if (isr
& IR_PCIE_TOUT
)
233 ERR("%s: PCI-E Time Out\n", priv
->ndev
->name
);
237 /* bdx_isr - Interrupt Service Routine for Bordeaux NIC
238 * @irq - interrupt number
239 * @ndev - network device
240 * @regs - CPU registers
242 * Return IRQ_NONE if it was not our interrupt, IRQ_HANDLED - otherwise
244 * It reads ISR register to know interrupt reasons, and proceed them one by one.
245 * Reasons of interest are:
246 * RX_DESC - new packet has arrived and RXD fifo holds its descriptor
247 * RX_FREE - number of free Rx buffers in RXF fifo gets low
248 * TX_FREE - packet was transmited and RXF fifo holds its descriptor
251 static irqreturn_t
bdx_isr_napi(int irq
, void *dev
)
253 struct net_device
*ndev
= dev
;
254 struct bdx_priv
*priv
= ndev
->priv
;
258 isr
= (READ_REG(priv
, regISR
) & IR_RUN
);
259 if (unlikely(!isr
)) {
260 bdx_enable_interrupts(priv
);
261 return IRQ_NONE
; /* Not our interrupt */
265 bdx_isr_extra(priv
, isr
);
267 if (isr
& (IR_RX_DESC_0
| IR_TX_FREE_0
)) {
268 if (likely(netif_rx_schedule_prep(ndev
, &priv
->napi
))) {
269 __netif_rx_schedule(ndev
, &priv
->napi
);
272 /* NOTE: we get here if intr has slipped into window
273 * between these lines in bdx_poll:
274 * bdx_enable_interrupts(priv);
276 * currently intrs are disabled (since we read ISR),
277 * and we have failed to register next poll.
278 * so we read the regs to trigger chip
279 * and allow further interupts. */
280 READ_REG(priv
, regTXF_WPTR_0
);
281 READ_REG(priv
, regRXD_WPTR_0
);
285 bdx_enable_interrupts(priv
);
289 static int bdx_poll(struct napi_struct
*napi
, int budget
)
291 struct bdx_priv
*priv
= container_of(napi
, struct bdx_priv
, napi
);
292 struct net_device
*dev
= priv
->ndev
;
296 bdx_tx_cleanup(priv
);
297 work_done
= bdx_rx_receive(priv
, &priv
->rxd_fifo0
, budget
);
298 if ((work_done
< budget
) ||
299 (priv
->napi_stop
++ >= 30)) {
300 DBG("rx poll is done. backing to isr-driven\n");
302 /* from time to time we exit to let NAPI layer release
303 * device lock and allow waiting tasks (eg rmmod) to advance) */
306 netif_rx_complete(dev
, napi
);
307 bdx_enable_interrupts(priv
);
312 /* bdx_fw_load - loads firmware to NIC
313 * @priv - NIC private structure
314 * Firmware is loaded via TXD fifo, so it must be initialized first.
315 * Firware must be loaded once per NIC not per PCI device provided by NIC (NIC
316 * can have few of them). So all drivers use semaphore register to choose one
317 * that will actually load FW to NIC.
320 static int bdx_fw_load(struct bdx_priv
*priv
)
325 master
= READ_REG(priv
, regINIT_SEMAPHORE
);
326 if (!READ_REG(priv
, regINIT_STATUS
) && master
) {
327 bdx_tx_push_desc_safe(priv
, s_firmLoad
, sizeof(s_firmLoad
));
330 for (i
= 0; i
< 200; i
++) {
331 if (READ_REG(priv
, regINIT_STATUS
))
336 WRITE_REG(priv
, regINIT_SEMAPHORE
, 1);
339 ERR("%s: firmware loading failed\n", priv
->ndev
->name
);
340 DBG("VPC = 0x%x VIC = 0x%x INIT_STATUS = 0x%x i=%d\n",
341 READ_REG(priv
, regVPC
),
342 READ_REG(priv
, regVIC
), READ_REG(priv
, regINIT_STATUS
), i
);
345 DBG("%s: firmware loading success\n", priv
->ndev
->name
);
350 static void bdx_restore_mac(struct net_device
*ndev
, struct bdx_priv
*priv
)
355 DBG("mac0=%x mac1=%x mac2=%x\n",
356 READ_REG(priv
, regUNC_MAC0_A
),
357 READ_REG(priv
, regUNC_MAC1_A
), READ_REG(priv
, regUNC_MAC2_A
));
359 val
= (ndev
->dev_addr
[0] << 8) | (ndev
->dev_addr
[1]);
360 WRITE_REG(priv
, regUNC_MAC2_A
, val
);
361 val
= (ndev
->dev_addr
[2] << 8) | (ndev
->dev_addr
[3]);
362 WRITE_REG(priv
, regUNC_MAC1_A
, val
);
363 val
= (ndev
->dev_addr
[4] << 8) | (ndev
->dev_addr
[5]);
364 WRITE_REG(priv
, regUNC_MAC0_A
, val
);
366 DBG("mac0=%x mac1=%x mac2=%x\n",
367 READ_REG(priv
, regUNC_MAC0_A
),
368 READ_REG(priv
, regUNC_MAC1_A
), READ_REG(priv
, regUNC_MAC2_A
));
372 /* bdx_hw_start - inits registers and starts HW's Rx and Tx engines
373 * @priv - NIC private structure
375 static int bdx_hw_start(struct bdx_priv
*priv
)
378 struct net_device
*ndev
= priv
->ndev
;
381 bdx_link_changed(priv
);
383 /* 10G overall max length (vlan, eth&ip header, ip payload, crc) */
384 WRITE_REG(priv
, regFRM_LENGTH
, 0X3FE0);
385 WRITE_REG(priv
, regPAUSE_QUANT
, 0x96);
386 WRITE_REG(priv
, regRX_FIFO_SECTION
, 0x800010);
387 WRITE_REG(priv
, regTX_FIFO_SECTION
, 0xE00010);
388 WRITE_REG(priv
, regRX_FULLNESS
, 0);
389 WRITE_REG(priv
, regTX_FULLNESS
, 0);
390 WRITE_REG(priv
, regCTRLST
,
391 regCTRLST_BASE
| regCTRLST_RX_ENA
| regCTRLST_TX_ENA
);
393 WRITE_REG(priv
, regVGLB
, 0);
394 WRITE_REG(priv
, regMAX_FRAME_A
,
395 priv
->rxf_fifo0
.m
.pktsz
& MAX_FRAME_AB_VAL
);
397 DBG("RDINTCM=%08x\n", priv
->rdintcm
); /*NOTE: test script uses this */
398 WRITE_REG(priv
, regRDINTCM0
, priv
->rdintcm
);
399 WRITE_REG(priv
, regRDINTCM2
, 0); /*cpu_to_le32(rcm.val)); */
401 DBG("TDINTCM=%08x\n", priv
->tdintcm
); /*NOTE: test script uses this */
402 WRITE_REG(priv
, regTDINTCM0
, priv
->tdintcm
); /* old val = 0x300064 */
404 /* Enable timer interrupt once in 2 secs. */
405 /*WRITE_REG(priv, regGTMR0, ((GTMR_SEC * 2) & GTMR_DATA)); */
406 bdx_restore_mac(priv
->ndev
, priv
);
408 WRITE_REG(priv
, regGMAC_RXF_A
, GMAC_RX_FILTER_OSEN
|
409 GMAC_RX_FILTER_AM
| GMAC_RX_FILTER_AB
);
411 #define BDX_IRQ_TYPE ((priv->nic->irq_type == IRQ_MSI)?0:IRQF_SHARED)
412 if ((rc
= request_irq(priv
->pdev
->irq
, &bdx_isr_napi
, BDX_IRQ_TYPE
,
415 bdx_enable_interrupts(priv
);
423 static void bdx_hw_stop(struct bdx_priv
*priv
)
426 bdx_disable_interrupts(priv
);
427 free_irq(priv
->pdev
->irq
, priv
->ndev
);
429 netif_carrier_off(priv
->ndev
);
430 netif_stop_queue(priv
->ndev
);
435 static int bdx_hw_reset_direct(void __iomem
*regs
)
440 /* reset sequences: read, write 1, read, write 0 */
441 val
= readl(regs
+ regCLKPLL
);
442 writel((val
| CLKPLL_SFTRST
) + 0x8, regs
+ regCLKPLL
);
444 val
= readl(regs
+ regCLKPLL
);
445 writel(val
& ~CLKPLL_SFTRST
, regs
+ regCLKPLL
);
447 /* check that the PLLs are locked and reset ended */
448 for (i
= 0; i
< 70; i
++, mdelay(10))
449 if ((readl(regs
+ regCLKPLL
) & CLKPLL_LKD
) == CLKPLL_LKD
) {
450 /* do any PCI-E read transaction */
451 readl(regs
+ regRXD_CFG0_0
);
454 ERR("tehuti: HW reset failed\n");
455 return 1; /* failure */
458 static int bdx_hw_reset(struct bdx_priv
*priv
)
463 if (priv
->port
== 0) {
464 /* reset sequences: read, write 1, read, write 0 */
465 val
= READ_REG(priv
, regCLKPLL
);
466 WRITE_REG(priv
, regCLKPLL
, (val
| CLKPLL_SFTRST
) + 0x8);
468 val
= READ_REG(priv
, regCLKPLL
);
469 WRITE_REG(priv
, regCLKPLL
, val
& ~CLKPLL_SFTRST
);
471 /* check that the PLLs are locked and reset ended */
472 for (i
= 0; i
< 70; i
++, mdelay(10))
473 if ((READ_REG(priv
, regCLKPLL
) & CLKPLL_LKD
) == CLKPLL_LKD
) {
474 /* do any PCI-E read transaction */
475 READ_REG(priv
, regRXD_CFG0_0
);
478 ERR("tehuti: HW reset failed\n");
479 return 1; /* failure */
482 static int bdx_sw_reset(struct bdx_priv
*priv
)
487 /* 1. load MAC (obsolete) */
488 /* 2. disable Rx (and Tx) */
489 WRITE_REG(priv
, regGMAC_RXF_A
, 0);
491 /* 3. disable port */
492 WRITE_REG(priv
, regDIS_PORT
, 1);
493 /* 4. disable queue */
494 WRITE_REG(priv
, regDIS_QU
, 1);
495 /* 5. wait until hw is disabled */
496 for (i
= 0; i
< 50; i
++) {
497 if (READ_REG(priv
, regRST_PORT
) & 1)
502 ERR("%s: SW reset timeout. continuing anyway\n",
505 /* 6. disable intrs */
506 WRITE_REG(priv
, regRDINTCM0
, 0);
507 WRITE_REG(priv
, regTDINTCM0
, 0);
508 WRITE_REG(priv
, regIMR
, 0);
509 READ_REG(priv
, regISR
);
512 WRITE_REG(priv
, regRST_QU
, 1);
514 WRITE_REG(priv
, regRST_PORT
, 1);
515 /* 9. zero all read and write pointers */
516 for (i
= regTXD_WPTR_0
; i
<= regTXF_RPTR_3
; i
+= 0x10)
517 DBG("%x = %x\n", i
, READ_REG(priv
, i
) & TXF_WPTR_WR_PTR
);
518 for (i
= regTXD_WPTR_0
; i
<= regTXF_RPTR_3
; i
+= 0x10)
519 WRITE_REG(priv
, i
, 0);
520 /* 10. unseet port disable */
521 WRITE_REG(priv
, regDIS_PORT
, 0);
522 /* 11. unset queue disable */
523 WRITE_REG(priv
, regDIS_QU
, 0);
524 /* 12. unset queue reset */
525 WRITE_REG(priv
, regRST_QU
, 0);
526 /* 13. unset port reset */
527 WRITE_REG(priv
, regRST_PORT
, 0);
529 /* skiped. will be done later */
530 /* 15. save MAC (obsolete) */
531 for (i
= regTXD_WPTR_0
; i
<= regTXF_RPTR_3
; i
+= 0x10)
532 DBG("%x = %x\n", i
, READ_REG(priv
, i
) & TXF_WPTR_WR_PTR
);
537 /* bdx_reset - performs right type of reset depending on hw type */
538 static int bdx_reset(struct bdx_priv
*priv
)
541 RET((priv
->pdev
->device
== 0x3009)
543 : bdx_sw_reset(priv
));
547 * bdx_close - Disables a network interface
548 * @netdev: network interface device structure
550 * Returns 0, this is not allowed to fail
552 * The close entry point is called when an interface is de-activated
553 * by the OS. The hardware is still under the drivers control, but
554 * needs to be disabled. A global MAC reset is issued to stop the
555 * hardware, and all transmit and receive resources are freed.
557 static int bdx_close(struct net_device
*ndev
)
559 struct bdx_priv
*priv
= NULL
;
564 napi_disable(&priv
->napi
);
574 * bdx_open - Called when a network interface is made active
575 * @netdev: network interface device structure
577 * Returns 0 on success, negative value on failure
579 * The open entry point is called when a network interface is made
580 * active by the system (IFF_UP). At this point all resources needed
581 * for transmit and receive operations are allocated, the interrupt
582 * handler is registered with the OS, the watchdog timer is started,
583 * and the stack is notified that the interface is ready.
585 static int bdx_open(struct net_device
*ndev
)
587 struct bdx_priv
*priv
;
593 if (netif_running(ndev
))
594 netif_stop_queue(priv
->ndev
);
596 if ((rc
= bdx_tx_init(priv
)))
599 if ((rc
= bdx_rx_init(priv
)))
602 if ((rc
= bdx_fw_load(priv
)))
605 bdx_rx_alloc_skbs(priv
, &priv
->rxf_fifo0
);
607 if ((rc
= bdx_hw_start(priv
)))
610 napi_enable(&priv
->napi
);
612 print_fw_id(priv
->nic
);
621 static void __init
bdx_firmware_endianess(void)
624 for (i
= 0; i
< sizeof(s_firmLoad
) / sizeof(u32
); i
++)
625 s_firmLoad
[i
] = CPU_CHIP_SWAP32(s_firmLoad
[i
]);
628 static int bdx_ioctl_priv(struct net_device
*ndev
, struct ifreq
*ifr
, int cmd
)
630 struct bdx_priv
*priv
= ndev
->priv
;
636 DBG("jiffies=%ld cmd=%d\n", jiffies
, cmd
);
637 if (cmd
!= SIOCDEVPRIVATE
) {
638 error
= copy_from_user(data
, ifr
->ifr_data
, sizeof(data
));
640 ERR("cant copy from user\n");
643 DBG("%d 0x%x 0x%x\n", data
[0], data
[1], data
[2]);
649 data
[2] = READ_REG(priv
, data
[1]);
650 DBG("read_reg(0x%x)=0x%x (dec %d)\n", data
[1], data
[2],
652 error
= copy_to_user(ifr
->ifr_data
, data
, sizeof(data
));
658 WRITE_REG(priv
, data
[1], data
[2]);
659 DBG("write_reg(0x%x, 0x%x)\n", data
[1], data
[2]);
668 static int bdx_ioctl(struct net_device
*ndev
, struct ifreq
*ifr
, int cmd
)
671 if (cmd
>= SIOCDEVPRIVATE
&& cmd
<= (SIOCDEVPRIVATE
+ 15))
672 RET(bdx_ioctl_priv(ndev
, ifr
, cmd
));
678 * __bdx_vlan_rx_vid - private helper for adding/killing VLAN vid
679 * by passing VLAN filter table to hardware
680 * @ndev network device
682 * @op add or kill operation
684 static void __bdx_vlan_rx_vid(struct net_device
*ndev
, uint16_t vid
, int enable
)
686 struct bdx_priv
*priv
= ndev
->priv
;
690 DBG2("vid=%d value=%d\n", (int)vid
, enable
);
691 if (unlikely(vid
>= 4096)) {
692 ERR("tehuti: invalid VID: %u (> 4096)\n", vid
);
695 reg
= regVLAN_0
+ (vid
/ 32) * 4;
697 val
= READ_REG(priv
, reg
);
698 DBG2("reg=%x, val=%x, bit=%d\n", reg
, val
, bit
);
703 DBG2("new val %x\n", val
);
704 WRITE_REG(priv
, reg
, val
);
709 * bdx_vlan_rx_add_vid - kernel hook for adding VLAN vid to hw filtering table
710 * @ndev network device
711 * @vid VLAN vid to add
713 static void bdx_vlan_rx_add_vid(struct net_device
*ndev
, uint16_t vid
)
715 __bdx_vlan_rx_vid(ndev
, vid
, 1);
719 * bdx_vlan_rx_kill_vid - kernel hook for killing VLAN vid in hw filtering table
720 * @ndev network device
721 * @vid VLAN vid to kill
723 static void bdx_vlan_rx_kill_vid(struct net_device
*ndev
, unsigned short vid
)
725 __bdx_vlan_rx_vid(ndev
, vid
, 0);
729 * bdx_vlan_rx_register - kernel hook for adding VLAN group
730 * @ndev network device
734 bdx_vlan_rx_register(struct net_device
*ndev
, struct vlan_group
*grp
)
736 struct bdx_priv
*priv
= ndev
->priv
;
739 DBG("device='%s', group='%p'\n", ndev
->name
, grp
);
745 * bdx_change_mtu - Change the Maximum Transfer Unit
746 * @netdev: network interface device structure
747 * @new_mtu: new value for maximum frame size
749 * Returns 0 on success, negative on failure
751 static int bdx_change_mtu(struct net_device
*ndev
, int new_mtu
)
755 if (new_mtu
== ndev
->mtu
)
758 /* enforce minimum frame size */
759 if (new_mtu
< ETH_ZLEN
) {
760 ERR("%s: %s mtu %d is less then minimal %d\n",
761 BDX_DRV_NAME
, ndev
->name
, new_mtu
, ETH_ZLEN
);
766 if (netif_running(ndev
)) {
773 static void bdx_setmulti(struct net_device
*ndev
)
775 struct bdx_priv
*priv
= ndev
->priv
;
778 GMAC_RX_FILTER_AM
| GMAC_RX_FILTER_AB
| GMAC_RX_FILTER_OSEN
;
782 /* IMF - imperfect (hash) rx multicat filter */
783 /* PMF - perfect rx multicat filter */
785 /* FIXME: RXE(OFF) */
786 if (ndev
->flags
& IFF_PROMISC
) {
787 rxf_val
|= GMAC_RX_FILTER_PRM
;
788 } else if (ndev
->flags
& IFF_ALLMULTI
) {
789 /* set IMF to accept all multicast frmaes */
790 for (i
= 0; i
< MAC_MCST_HASH_NUM
; i
++)
791 WRITE_REG(priv
, regRX_MCST_HASH0
+ i
* 4, ~0);
792 } else if (ndev
->mc_count
) {
794 struct dev_mc_list
*mclist
;
797 /* set IMF to deny all multicast frames */
798 for (i
= 0; i
< MAC_MCST_HASH_NUM
; i
++)
799 WRITE_REG(priv
, regRX_MCST_HASH0
+ i
* 4, 0);
800 /* set PMF to deny all multicast frames */
801 for (i
= 0; i
< MAC_MCST_NUM
; i
++) {
802 WRITE_REG(priv
, regRX_MAC_MCST0
+ i
* 8, 0);
803 WRITE_REG(priv
, regRX_MAC_MCST1
+ i
* 8, 0);
806 /* use PMF to accept first MAC_MCST_NUM (15) addresses */
807 /* TBD: sort addreses and write them in ascending order
808 * into RX_MAC_MCST regs. we skip this phase now and accept ALL
809 * multicast frames throu IMF */
810 mclist
= ndev
->mc_list
;
812 /* accept the rest of addresses throu IMF */
813 for (; mclist
; mclist
= mclist
->next
) {
815 for (i
= 0; i
< ETH_ALEN
; i
++)
816 hash
^= mclist
->dmi_addr
[i
];
817 reg
= regRX_MCST_HASH0
+ ((hash
>> 5) << 2);
818 val
= READ_REG(priv
, reg
);
819 val
|= (1 << (hash
% 32));
820 WRITE_REG(priv
, reg
, val
);
824 DBG("only own mac %d\n", ndev
->mc_count
);
825 rxf_val
|= GMAC_RX_FILTER_AB
;
827 WRITE_REG(priv
, regGMAC_RXF_A
, rxf_val
);
833 static int bdx_set_mac(struct net_device
*ndev
, void *p
)
835 struct bdx_priv
*priv
= ndev
->priv
;
836 struct sockaddr
*addr
= p
;
840 if (netif_running(dev))
843 memcpy(ndev
->dev_addr
, addr
->sa_data
, ndev
->addr_len
);
844 bdx_restore_mac(ndev
, priv
);
848 static int bdx_read_mac(struct bdx_priv
*priv
)
850 u16 macAddress
[3], i
;
853 macAddress
[2] = READ_REG(priv
, regUNC_MAC0_A
);
854 macAddress
[2] = READ_REG(priv
, regUNC_MAC0_A
);
855 macAddress
[1] = READ_REG(priv
, regUNC_MAC1_A
);
856 macAddress
[1] = READ_REG(priv
, regUNC_MAC1_A
);
857 macAddress
[0] = READ_REG(priv
, regUNC_MAC2_A
);
858 macAddress
[0] = READ_REG(priv
, regUNC_MAC2_A
);
859 for (i
= 0; i
< 3; i
++) {
860 priv
->ndev
->dev_addr
[i
* 2 + 1] = macAddress
[i
];
861 priv
->ndev
->dev_addr
[i
* 2] = macAddress
[i
] >> 8;
866 static u64
bdx_read_l2stat(struct bdx_priv
*priv
, int reg
)
870 val
= READ_REG(priv
, reg
);
871 val
|= ((u64
) READ_REG(priv
, reg
+ 8)) << 32;
875 /*Do the statistics-update work*/
876 static void bdx_update_stats(struct bdx_priv
*priv
)
878 struct bdx_stats
*stats
= &priv
->hw_stats
;
879 u64
*stats_vector
= (u64
*) stats
;
883 /*Fill HW structure */
885 /*First 12 statistics - 0x7200 - 0x72B0 */
886 for (i
= 0; i
< 12; i
++) {
887 stats_vector
[i
] = bdx_read_l2stat(priv
, addr
);
890 BDX_ASSERT(addr
!= 0x72C0);
891 /* 0x72C0-0x72E0 RSRV */
893 for (; i
< 16; i
++) {
894 stats_vector
[i
] = bdx_read_l2stat(priv
, addr
);
897 BDX_ASSERT(addr
!= 0x7330);
898 /* 0x7330-0x7360 RSRV */
900 for (; i
< 19; i
++) {
901 stats_vector
[i
] = bdx_read_l2stat(priv
, addr
);
904 BDX_ASSERT(addr
!= 0x73A0);
905 /* 0x73A0-0x73B0 RSRV */
907 for (; i
< 23; i
++) {
908 stats_vector
[i
] = bdx_read_l2stat(priv
, addr
);
911 BDX_ASSERT(addr
!= 0x7400);
912 BDX_ASSERT((sizeof(struct bdx_stats
) / sizeof(u64
)) != i
);
915 static struct net_device_stats
*bdx_get_stats(struct net_device
*ndev
)
917 struct bdx_priv
*priv
= ndev
->priv
;
918 struct net_device_stats
*net_stat
= &priv
->net_stats
;
922 static void print_rxdd(struct rxd_desc
*rxdd
, u32 rxd_val1
, u16 len
,
924 static void print_rxfd(struct rxf_desc
*rxfd
);
926 /*************************************************************************
928 *************************************************************************/
930 static void bdx_rxdb_destroy(struct rxdb
*db
)
936 static struct rxdb
*bdx_rxdb_create(int nelem
)
941 db
= vmalloc(sizeof(struct rxdb
)
942 + (nelem
* sizeof(int))
943 + (nelem
* sizeof(struct rx_map
)));
944 if (likely(db
!= NULL
)) {
945 db
->stack
= (int *)(db
+ 1);
946 db
->elems
= (void *)(db
->stack
+ nelem
);
949 for (i
= 0; i
< nelem
; i
++)
950 db
->stack
[i
] = nelem
- i
- 1; /* to make first allocs
957 static inline int bdx_rxdb_alloc_elem(struct rxdb
*db
)
959 BDX_ASSERT(db
->top
<= 0);
960 return db
->stack
[--(db
->top
)];
963 static inline void *bdx_rxdb_addr_elem(struct rxdb
*db
, int n
)
965 BDX_ASSERT((n
< 0) || (n
>= db
->nelem
));
966 return db
->elems
+ n
;
969 static inline int bdx_rxdb_available(struct rxdb
*db
)
974 static inline void bdx_rxdb_free_elem(struct rxdb
*db
, int n
)
976 BDX_ASSERT((n
>= db
->nelem
) || (n
< 0));
977 db
->stack
[(db
->top
)++] = n
;
980 /*************************************************************************
982 *************************************************************************/
984 /* bdx_rx_init - initialize RX all related HW and SW resources
985 * @priv - NIC private structure
987 * Returns 0 on success, negative value on failure
989 * It creates rxf and rxd fifos, update relevant HW registers, preallocate
990 * skb for rx. It assumes that Rx is desabled in HW
991 * funcs are grouped for better cache usage
993 * RxD fifo is smaller then RxF fifo by design. Upon high load, RxD will be
994 * filled and packets will be dropped by nic without getting into host or
995 * cousing interrupt. Anyway, in that condition, host has no chance to proccess
996 * all packets, but dropping in nic is cheaper, since it takes 0 cpu cycles
999 /* TBD: ensure proper packet size */
1001 static int bdx_rx_init(struct bdx_priv
*priv
)
1005 if (bdx_fifo_init(priv
, &priv
->rxd_fifo0
.m
, priv
->rxd_size
,
1006 regRXD_CFG0_0
, regRXD_CFG1_0
,
1007 regRXD_RPTR_0
, regRXD_WPTR_0
))
1009 if (bdx_fifo_init(priv
, &priv
->rxf_fifo0
.m
, priv
->rxf_size
,
1010 regRXF_CFG0_0
, regRXF_CFG1_0
,
1011 regRXF_RPTR_0
, regRXF_WPTR_0
))
1015 bdx_rxdb_create(priv
->rxf_fifo0
.m
.memsz
/
1016 sizeof(struct rxf_desc
))))
1019 priv
->rxf_fifo0
.m
.pktsz
= priv
->ndev
->mtu
+ VLAN_ETH_HLEN
;
1023 ERR("%s: %s: Rx init failed\n", BDX_DRV_NAME
, priv
->ndev
->name
);
1027 /* bdx_rx_free_skbs - frees and unmaps all skbs allocated for the fifo
1028 * @priv - NIC private structure
1031 static void bdx_rx_free_skbs(struct bdx_priv
*priv
, struct rxf_fifo
*f
)
1034 struct rxdb
*db
= priv
->rxdb
;
1038 DBG("total=%d free=%d busy=%d\n", db
->nelem
, bdx_rxdb_available(db
),
1039 db
->nelem
- bdx_rxdb_available(db
));
1040 while (bdx_rxdb_available(db
) > 0) {
1041 i
= bdx_rxdb_alloc_elem(db
);
1042 dm
= bdx_rxdb_addr_elem(db
, i
);
1045 for (i
= 0; i
< db
->nelem
; i
++) {
1046 dm
= bdx_rxdb_addr_elem(db
, i
);
1048 pci_unmap_single(priv
->pdev
,
1049 dm
->dma
, f
->m
.pktsz
,
1050 PCI_DMA_FROMDEVICE
);
1051 dev_kfree_skb(dm
->skb
);
1056 /* bdx_rx_free - release all Rx resources
1057 * @priv - NIC private structure
1058 * It assumes that Rx is desabled in HW
1060 static void bdx_rx_free(struct bdx_priv
*priv
)
1064 bdx_rx_free_skbs(priv
, &priv
->rxf_fifo0
);
1065 bdx_rxdb_destroy(priv
->rxdb
);
1068 bdx_fifo_free(priv
, &priv
->rxf_fifo0
.m
);
1069 bdx_fifo_free(priv
, &priv
->rxd_fifo0
.m
);
1074 /*************************************************************************
1076 *************************************************************************/
1078 /* bdx_rx_alloc_skbs - fill rxf fifo with new skbs
1079 * @priv - nic's private structure
1080 * @f - RXF fifo that needs skbs
1081 * It allocates skbs, build rxf descs and push it (rxf descr) into rxf fifo.
1082 * skb's virtual and physical addresses are stored in skb db.
1083 * To calculate free space, func uses cached values of RPTR and WPTR
1084 * When needed, it also updates RPTR and WPTR.
1087 /* TBD: do not update WPTR if no desc were written */
1089 static void bdx_rx_alloc_skbs(struct bdx_priv
*priv
, struct rxf_fifo
*f
)
1091 struct sk_buff
*skb
;
1092 struct rxf_desc
*rxfd
;
1094 int dno
, delta
, idx
;
1095 struct rxdb
*db
= priv
->rxdb
;
1098 dno
= bdx_rxdb_available(db
) - 1;
1100 if (!(skb
= dev_alloc_skb(f
->m
.pktsz
+ NET_IP_ALIGN
))) {
1101 ERR("NO MEM: dev_alloc_skb failed\n");
1104 skb
->dev
= priv
->ndev
;
1105 skb_reserve(skb
, NET_IP_ALIGN
);
1107 idx
= bdx_rxdb_alloc_elem(db
);
1108 dm
= bdx_rxdb_addr_elem(db
, idx
);
1109 dm
->dma
= pci_map_single(priv
->pdev
,
1110 skb
->data
, f
->m
.pktsz
,
1111 PCI_DMA_FROMDEVICE
);
1113 rxfd
= (struct rxf_desc
*)(f
->m
.va
+ f
->m
.wptr
);
1114 rxfd
->info
= CPU_CHIP_SWAP32(0x10003); /* INFO=1 BC=3 */
1116 rxfd
->pa_lo
= CPU_CHIP_SWAP32(L32_64(dm
->dma
));
1117 rxfd
->pa_hi
= CPU_CHIP_SWAP32(H32_64(dm
->dma
));
1118 rxfd
->len
= CPU_CHIP_SWAP32(f
->m
.pktsz
);
1121 f
->m
.wptr
+= sizeof(struct rxf_desc
);
1122 delta
= f
->m
.wptr
- f
->m
.memsz
;
1123 if (unlikely(delta
>= 0)) {
1126 memcpy(f
->m
.va
, f
->m
.va
+ f
->m
.memsz
, delta
);
1127 DBG("wrapped descriptor\n");
1132 /*TBD: to do - delayed rxf wptr like in txd */
1133 WRITE_REG(priv
, f
->m
.reg_WPTR
, f
->m
.wptr
& TXF_WPTR_WR_PTR
);
1138 NETIF_RX_MUX(struct bdx_priv
*priv
, u32 rxd_val1
, u16 rxd_vlan
,
1139 struct sk_buff
*skb
)
1142 DBG("rxdd->flags.bits.vtag=%d vlgrp=%p\n", GET_RXD_VTAG(rxd_val1
),
1144 if (priv
->vlgrp
&& GET_RXD_VTAG(rxd_val1
)) {
1145 DBG("%s: vlan rcv vlan '%x' vtag '%x', device name '%s'\n",
1147 GET_RXD_VLAN_ID(rxd_vlan
),
1148 GET_RXD_VTAG(rxd_val1
),
1149 vlan_group_get_device(priv
->vlgrp
,
1150 GET_RXD_VLAN_ID(rxd_vlan
))->name
);
1151 /* NAPI variant of receive functions */
1152 vlan_hwaccel_receive_skb(skb
, priv
->vlgrp
,
1153 GET_RXD_VLAN_ID(rxd_vlan
));
1155 netif_receive_skb(skb
);
1159 static void bdx_recycle_skb(struct bdx_priv
*priv
, struct rxd_desc
*rxdd
)
1161 struct rxf_desc
*rxfd
;
1165 struct sk_buff
*skb
;
1169 DBG("priv=%p rxdd=%p\n", priv
, rxdd
);
1170 f
= &priv
->rxf_fifo0
;
1172 DBG("db=%p f=%p\n", db
, f
);
1173 dm
= bdx_rxdb_addr_elem(db
, rxdd
->va_lo
);
1176 rxfd
= (struct rxf_desc
*)(f
->m
.va
+ f
->m
.wptr
);
1177 rxfd
->info
= CPU_CHIP_SWAP32(0x10003); /* INFO=1 BC=3 */
1178 rxfd
->va_lo
= rxdd
->va_lo
;
1179 rxfd
->pa_lo
= CPU_CHIP_SWAP32(L32_64(dm
->dma
));
1180 rxfd
->pa_hi
= CPU_CHIP_SWAP32(H32_64(dm
->dma
));
1181 rxfd
->len
= CPU_CHIP_SWAP32(f
->m
.pktsz
);
1184 f
->m
.wptr
+= sizeof(struct rxf_desc
);
1185 delta
= f
->m
.wptr
- f
->m
.memsz
;
1186 if (unlikely(delta
>= 0)) {
1189 memcpy(f
->m
.va
, f
->m
.va
+ f
->m
.memsz
, delta
);
1190 DBG("wrapped descriptor\n");
1196 /* bdx_rx_receive - recieves full packets from RXD fifo and pass them to OS
1197 * NOTE: a special treatment is given to non-continous descriptors
1198 * that start near the end, wraps around and continue at the beginning. a second
1199 * part is copied right after the first, and then descriptor is interpreted as
1200 * normal. fifo has an extra space to allow such operations
1201 * @priv - nic's private structure
1202 * @f - RXF fifo that needs skbs
1205 /* TBD: replace memcpy func call by explicite inline asm */
1207 static int bdx_rx_receive(struct bdx_priv
*priv
, struct rxd_fifo
*f
, int budget
)
1209 struct sk_buff
*skb
, *skb2
;
1210 struct rxd_desc
*rxdd
;
1212 struct rxf_fifo
*rxf_fifo
;
1215 int max_done
= BDX_MAX_RX_DONE
;
1216 struct rxdb
*db
= NULL
;
1217 /* Unmarshalled descriptor - copy of descriptor in host order */
1225 priv
->ndev
->last_rx
= jiffies
;
1226 f
->m
.wptr
= READ_REG(priv
, f
->m
.reg_WPTR
) & TXF_WPTR_WR_PTR
;
1228 size
= f
->m
.wptr
- f
->m
.rptr
;
1230 size
= f
->m
.memsz
+ size
; /* size is negative :-) */
1234 rxdd
= (struct rxd_desc
*)(f
->m
.va
+ f
->m
.rptr
);
1235 rxd_val1
= CPU_CHIP_SWAP32(rxdd
->rxd_val1
);
1237 len
= CPU_CHIP_SWAP16(rxdd
->len
);
1239 rxd_vlan
= CPU_CHIP_SWAP16(rxdd
->rxd_vlan
);
1241 print_rxdd(rxdd
, rxd_val1
, len
, rxd_vlan
);
1243 tmp_len
= GET_RXD_BC(rxd_val1
) << 3;
1244 BDX_ASSERT(tmp_len
<= 0);
1246 if (size
< 0) /* test for partially arrived descriptor */
1249 f
->m
.rptr
+= tmp_len
;
1251 tmp_len
= f
->m
.rptr
- f
->m
.memsz
;
1252 if (unlikely(tmp_len
>= 0)) {
1253 f
->m
.rptr
= tmp_len
;
1255 DBG("wrapped desc rptr=%d tmp_len=%d\n",
1256 f
->m
.rptr
, tmp_len
);
1257 memcpy(f
->m
.va
+ f
->m
.memsz
, f
->m
.va
, tmp_len
);
1261 if (unlikely(GET_RXD_ERR(rxd_val1
))) {
1262 DBG("rxd_err = 0x%x\n", GET_RXD_ERR(rxd_val1
));
1263 priv
->net_stats
.rx_errors
++;
1264 bdx_recycle_skb(priv
, rxdd
);
1268 rxf_fifo
= &priv
->rxf_fifo0
;
1270 dm
= bdx_rxdb_addr_elem(db
, rxdd
->va_lo
);
1273 if (len
< BDX_COPYBREAK
&&
1274 (skb2
= dev_alloc_skb(len
+ NET_IP_ALIGN
))) {
1275 skb_reserve(skb2
, NET_IP_ALIGN
);
1276 /*skb_put(skb2, len); */
1277 pci_dma_sync_single_for_cpu(priv
->pdev
,
1278 dm
->dma
, rxf_fifo
->m
.pktsz
,
1279 PCI_DMA_FROMDEVICE
);
1280 memcpy(skb2
->data
, skb
->data
, len
);
1281 bdx_recycle_skb(priv
, rxdd
);
1284 pci_unmap_single(priv
->pdev
,
1285 dm
->dma
, rxf_fifo
->m
.pktsz
,
1286 PCI_DMA_FROMDEVICE
);
1287 bdx_rxdb_free_elem(db
, rxdd
->va_lo
);
1290 priv
->net_stats
.rx_bytes
+= len
;
1293 skb
->dev
= priv
->ndev
;
1294 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
1295 skb
->protocol
= eth_type_trans(skb
, priv
->ndev
);
1297 /* Non-IP packets aren't checksum-offloaded */
1298 if (GET_RXD_PKT_ID(rxd_val1
) == 0)
1299 skb
->ip_summed
= CHECKSUM_NONE
;
1301 NETIF_RX_MUX(priv
, rxd_val1
, rxd_vlan
, skb
);
1303 if (++done
>= max_done
)
1307 priv
->net_stats
.rx_packets
+= done
;
1309 /* FIXME: do smth to minimize pci accesses */
1310 WRITE_REG(priv
, f
->m
.reg_RPTR
, f
->m
.rptr
& TXF_WPTR_WR_PTR
);
1312 bdx_rx_alloc_skbs(priv
, &priv
->rxf_fifo0
);
1317 /*************************************************************************
1318 * Debug / Temprorary Code *
1319 *************************************************************************/
1320 static void print_rxdd(struct rxd_desc
*rxdd
, u32 rxd_val1
, u16 len
,
1323 DBG("ERROR: rxdd bc %d rxfq %d to %d type %d err %d rxp %d "
1324 "pkt_id %d vtag %d len %d vlan_id %d cfi %d prio %d "
1325 "va_lo %d va_hi %d\n",
1326 GET_RXD_BC(rxd_val1
), GET_RXD_RXFQ(rxd_val1
), GET_RXD_TO(rxd_val1
),
1327 GET_RXD_TYPE(rxd_val1
), GET_RXD_ERR(rxd_val1
),
1328 GET_RXD_RXP(rxd_val1
), GET_RXD_PKT_ID(rxd_val1
),
1329 GET_RXD_VTAG(rxd_val1
), len
, GET_RXD_VLAN_ID(rxd_vlan
),
1330 GET_RXD_CFI(rxd_vlan
), GET_RXD_PRIO(rxd_vlan
), rxdd
->va_lo
,
1334 static void print_rxfd(struct rxf_desc
*rxfd
)
1336 DBG("=== RxF desc CHIP ORDER/ENDIANESS =============\n"
1337 "info 0x%x va_lo %u pa_lo 0x%x pa_hi 0x%x len 0x%x\n",
1338 rxfd
->info
, rxfd
->va_lo
, rxfd
->pa_lo
, rxfd
->pa_hi
, rxfd
->len
);
1342 * TX HW/SW interaction overview
1343 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1344 * There are 2 types of TX communication channels betwean driver and NIC.
1345 * 1) TX Free Fifo - TXF - holds ack descriptors for sent packets
1346 * 2) TX Data Fifo - TXD - holds descriptors of full buffers.
1348 * Currently NIC supports TSO, checksuming and gather DMA
1349 * UFO and IP fragmentation is on the way
1351 * RX SW Data Structures
1352 * ~~~~~~~~~~~~~~~~~~~~~
1353 * txdb - used to keep track of all skbs owned by SW and their dma addresses.
1354 * For TX case, ownership lasts from geting packet via hard_xmit and until HW
1355 * acknowledges sent by TXF descriptors.
1356 * Implemented as cyclic buffer.
1357 * fifo - keeps info about fifo's size and location, relevant HW registers,
1358 * usage and skb db. Each RXD and RXF Fifo has its own fifo structure.
1359 * Implemented as simple struct.
1361 * TX SW Execution Flow
1362 * ~~~~~~~~~~~~~~~~~~~~
1363 * OS calls driver's hard_xmit method with packet to sent.
1364 * Driver creates DMA mappings, builds TXD descriptors and kicks HW
1365 * by updating TXD WPTR.
1366 * When packet is sent, HW write us TXF descriptor and SW frees original skb.
1367 * To prevent TXD fifo overflow without reading HW registers every time,
1368 * SW deploys "tx level" technique.
1369 * Upon strart up, tx level is initialized to TXD fifo length.
1370 * For every sent packet, SW gets its TXD descriptor sizei
1371 * (from precalculated array) and substructs it from tx level.
1372 * The size is also stored in txdb. When TXF ack arrives, SW fetch size of
1373 * original TXD descriptor from txdb and adds it to tx level.
1374 * When Tx level drops under some predefined treshhold, the driver
1375 * stops the TX queue. When TX level rises above that level,
1376 * the tx queue is enabled again.
1378 * This technique avoids eccessive reading of RPTR and WPTR registers.
1379 * As our benchmarks shows, it adds 1.5 Gbit/sec to NIS's throuput.
1382 /*************************************************************************
1384 *************************************************************************/
1385 static inline int bdx_tx_db_size(struct txdb
*db
)
1387 int taken
= db
->wptr
- db
->rptr
;
1389 taken
= db
->size
+ 1 + taken
; /* (size + 1) equals memsz */
1391 return db
->size
- taken
;
1394 /* __bdx_tx_ptr_next - helper function, increment read/write pointer + wrap
1396 * @ptr - read or write pointer
1398 static inline void __bdx_tx_db_ptr_next(struct txdb
*db
, struct tx_map
**pptr
)
1400 BDX_ASSERT(db
== NULL
|| pptr
== NULL
); /* sanity */
1402 BDX_ASSERT(*pptr
!= db
->rptr
&& /* expect either read */
1403 *pptr
!= db
->wptr
); /* or write pointer */
1405 BDX_ASSERT(*pptr
< db
->start
|| /* pointer has to be */
1406 *pptr
>= db
->end
); /* in range */
1409 if (unlikely(*pptr
== db
->end
))
1413 /* bdx_tx_db_inc_rptr - increment read pointer
1416 static inline void bdx_tx_db_inc_rptr(struct txdb
*db
)
1418 BDX_ASSERT(db
->rptr
== db
->wptr
); /* can't read from empty db */
1419 __bdx_tx_db_ptr_next(db
, &db
->rptr
);
1422 /* bdx_tx_db_inc_rptr - increment write pointer
1425 static inline void bdx_tx_db_inc_wptr(struct txdb
*db
)
1427 __bdx_tx_db_ptr_next(db
, &db
->wptr
);
1428 BDX_ASSERT(db
->rptr
== db
->wptr
); /* we can not get empty db as
1429 a result of write */
1432 /* bdx_tx_db_init - creates and initializes tx db
1434 * @sz_type - size of tx fifo
1435 * Returns 0 on success, error code otherwise
1437 static int bdx_tx_db_init(struct txdb
*d
, int sz_type
)
1439 int memsz
= FIFO_SIZE
* (1 << (sz_type
+ 1));
1441 d
->start
= vmalloc(memsz
);
1446 * In order to differentiate between db is empty and db is full
1447 * states at least one element should always be empty in order to
1448 * avoid rptr == wptr which means db is empty
1450 d
->size
= memsz
/ sizeof(struct tx_map
) - 1;
1451 d
->end
= d
->start
+ d
->size
+ 1; /* just after last element */
1453 /* all dbs are created equally empty */
1460 /* bdx_tx_db_close - closes tx db and frees all memory
1463 static void bdx_tx_db_close(struct txdb
*d
)
1465 BDX_ASSERT(d
== NULL
);
1473 /*************************************************************************
1475 *************************************************************************/
1477 /* sizes of tx desc (including padding if needed) as function
1478 * of skb's frag number */
1481 u16 qwords
; /* qword = 64 bit */
1482 } txd_sizes
[MAX_SKB_FRAGS
+ 1];
1484 /* txdb_map_skb - creates and stores dma mappings for skb's data blocks
1485 * @priv - NIC private structure
1486 * @skb - socket buffer to map
1488 * It makes dma mappings for skb's data blocks and writes them to PBL of
1489 * new tx descriptor. It also stores them in the tx db, so they could be
1490 * unmaped after data was sent. It is reponsibility of a caller to make
1491 * sure that there is enough space in the tx db. Last element holds pointer
1492 * to skb itself and marked with zero length
1495 bdx_tx_map_skb(struct bdx_priv
*priv
, struct sk_buff
*skb
,
1496 struct txd_desc
*txdd
)
1498 struct txdb
*db
= &priv
->txdb
;
1499 struct pbl
*pbl
= &txdd
->pbl
[0];
1500 int nr_frags
= skb_shinfo(skb
)->nr_frags
;
1503 db
->wptr
->len
= skb
->len
- skb
->data_len
;
1504 db
->wptr
->addr
.dma
= pci_map_single(priv
->pdev
, skb
->data
,
1505 db
->wptr
->len
, PCI_DMA_TODEVICE
);
1506 pbl
->len
= CPU_CHIP_SWAP32(db
->wptr
->len
);
1507 pbl
->pa_lo
= CPU_CHIP_SWAP32(L32_64(db
->wptr
->addr
.dma
));
1508 pbl
->pa_hi
= CPU_CHIP_SWAP32(H32_64(db
->wptr
->addr
.dma
));
1509 DBG("=== pbl len: 0x%x ================\n", pbl
->len
);
1510 DBG("=== pbl pa_lo: 0x%x ================\n", pbl
->pa_lo
);
1511 DBG("=== pbl pa_hi: 0x%x ================\n", pbl
->pa_hi
);
1512 bdx_tx_db_inc_wptr(db
);
1514 for (i
= 0; i
< nr_frags
; i
++) {
1515 struct skb_frag_struct
*frag
;
1517 frag
= &skb_shinfo(skb
)->frags
[i
];
1518 db
->wptr
->len
= frag
->size
;
1519 db
->wptr
->addr
.dma
=
1520 pci_map_page(priv
->pdev
, frag
->page
, frag
->page_offset
,
1521 frag
->size
, PCI_DMA_TODEVICE
);
1524 pbl
->len
= CPU_CHIP_SWAP32(db
->wptr
->len
);
1525 pbl
->pa_lo
= CPU_CHIP_SWAP32(L32_64(db
->wptr
->addr
.dma
));
1526 pbl
->pa_hi
= CPU_CHIP_SWAP32(H32_64(db
->wptr
->addr
.dma
));
1527 bdx_tx_db_inc_wptr(db
);
1530 /* add skb clean up info. */
1531 db
->wptr
->len
= -txd_sizes
[nr_frags
].bytes
;
1532 db
->wptr
->addr
.skb
= skb
;
1533 bdx_tx_db_inc_wptr(db
);
1536 /* init_txd_sizes - precalculate sizes of descriptors for skbs up to 16 frags
1537 * number of frags is used as index to fetch correct descriptors size,
1538 * instead of calculating it each time */
1539 static void __init
init_txd_sizes(void)
1543 /* 7 - is number of lwords in txd with one phys buffer
1544 * 3 - is number of lwords used for every additional phys buffer */
1545 for (i
= 0; i
< MAX_SKB_FRAGS
+ 1; i
++) {
1546 lwords
= 7 + (i
* 3);
1548 lwords
++; /* pad it with 1 lword */
1549 txd_sizes
[i
].qwords
= lwords
>> 1;
1550 txd_sizes
[i
].bytes
= lwords
<< 2;
1554 /* bdx_tx_init - initialize all Tx related stuff.
1555 * Namely, TXD and TXF fifos, database etc */
1556 static int bdx_tx_init(struct bdx_priv
*priv
)
1558 if (bdx_fifo_init(priv
, &priv
->txd_fifo0
.m
, priv
->txd_size
,
1560 regTXD_CFG1_0
, regTXD_RPTR_0
, regTXD_WPTR_0
))
1562 if (bdx_fifo_init(priv
, &priv
->txf_fifo0
.m
, priv
->txf_size
,
1564 regTXF_CFG1_0
, regTXF_RPTR_0
, regTXF_WPTR_0
))
1567 /* The TX db has to keep mappings for all packets sent (on TxD)
1568 * and not yet reclaimed (on TxF) */
1569 if (bdx_tx_db_init(&priv
->txdb
, max(priv
->txd_size
, priv
->txf_size
)))
1572 priv
->tx_level
= BDX_MAX_TX_LEVEL
;
1573 #ifdef BDX_DELAY_WPTR
1574 priv
->tx_update_mark
= priv
->tx_level
- 1024;
1579 ERR("tehuti: %s: Tx init failed\n", priv
->ndev
->name
);
1584 * bdx_tx_space - calculates avalable space in TX fifo
1585 * @priv - NIC private structure
1586 * Returns avaliable space in TX fifo in bytes
1588 static inline int bdx_tx_space(struct bdx_priv
*priv
)
1590 struct txd_fifo
*f
= &priv
->txd_fifo0
;
1593 f
->m
.rptr
= READ_REG(priv
, f
->m
.reg_RPTR
) & TXF_WPTR_WR_PTR
;
1594 fsize
= f
->m
.rptr
- f
->m
.wptr
;
1596 fsize
= f
->m
.memsz
+ fsize
;
1600 /* bdx_tx_transmit - send packet to NIC
1601 * @skb - packet to send
1602 * ndev - network device assigned to NIC
1604 * o NETDEV_TX_OK everything ok.
1605 * o NETDEV_TX_BUSY Cannot transmit packet, try later
1606 * Usually a bug, means queue start/stop flow control is broken in
1607 * the driver. Note: the driver must NOT put the skb in its DMA ring.
1608 * o NETDEV_TX_LOCKED Locking failed, please retry quickly.
1610 static int bdx_tx_transmit(struct sk_buff
*skb
, struct net_device
*ndev
)
1612 struct bdx_priv
*priv
= ndev
->priv
;
1613 struct txd_fifo
*f
= &priv
->txd_fifo0
;
1614 int txd_checksum
= 7; /* full checksum */
1616 int txd_vlan_id
= 0;
1620 int nr_frags
= skb_shinfo(skb
)->nr_frags
;
1621 struct txd_desc
*txdd
;
1623 unsigned long flags
;
1626 local_irq_save(flags
);
1627 if (!spin_trylock(&priv
->tx_lock
)) {
1628 local_irq_restore(flags
);
1629 DBG("%s[%s]: TX locked, returning NETDEV_TX_LOCKED\n",
1630 BDX_DRV_NAME
, ndev
->name
);
1631 return NETDEV_TX_LOCKED
;
1634 /* build tx descriptor */
1635 BDX_ASSERT(f
->m
.wptr
>= f
->m
.memsz
); /* started with valid wptr */
1636 txdd
= (struct txd_desc
*)(f
->m
.va
+ f
->m
.wptr
);
1637 if (unlikely(skb
->ip_summed
!= CHECKSUM_PARTIAL
))
1640 if (skb_shinfo(skb
)->gso_size
) {
1641 txd_mss
= skb_shinfo(skb
)->gso_size
;
1643 DBG("skb %p skb len %d gso size = %d\n", skb
, skb
->len
,
1647 if (vlan_tx_tag_present(skb
)) {
1648 /*Cut VLAN ID to 12 bits */
1649 txd_vlan_id
= vlan_tx_tag_get(skb
) & BITS_MASK(12);
1653 txdd
->length
= CPU_CHIP_SWAP16(skb
->len
);
1654 txdd
->mss
= CPU_CHIP_SWAP16(txd_mss
);
1656 CPU_CHIP_SWAP32(TXD_W1_VAL
1657 (txd_sizes
[nr_frags
].qwords
, txd_checksum
, txd_vtag
,
1658 txd_lgsnd
, txd_vlan_id
));
1659 DBG("=== TxD desc =====================\n");
1660 DBG("=== w1: 0x%x ================\n", txdd
->txd_val1
);
1661 DBG("=== w2: mss 0x%x len 0x%x\n", txdd
->mss
, txdd
->length
);
1663 bdx_tx_map_skb(priv
, skb
, txdd
);
1665 /* increment TXD write pointer. In case of
1666 fifo wrapping copy reminder of the descriptor
1668 f
->m
.wptr
+= txd_sizes
[nr_frags
].bytes
;
1669 len
= f
->m
.wptr
- f
->m
.memsz
;
1670 if (unlikely(len
>= 0)) {
1673 BDX_ASSERT(len
> f
->m
.memsz
);
1674 memcpy(f
->m
.va
, f
->m
.va
+ f
->m
.memsz
, len
);
1677 BDX_ASSERT(f
->m
.wptr
>= f
->m
.memsz
); /* finished with valid wptr */
1679 priv
->tx_level
-= txd_sizes
[nr_frags
].bytes
;
1680 BDX_ASSERT(priv
->tx_level
<= 0 || priv
->tx_level
> BDX_MAX_TX_LEVEL
);
1681 #ifdef BDX_DELAY_WPTR
1682 if (priv
->tx_level
> priv
->tx_update_mark
) {
1683 /* Force memory writes to complete before letting h/w
1684 know there are new descriptors to fetch.
1685 (might be needed on platforms like IA64)
1687 WRITE_REG(priv
, f
->m
.reg_WPTR
, f
->m
.wptr
& TXF_WPTR_WR_PTR
);
1689 if (priv
->tx_noupd
++ > BDX_NO_UPD_PACKETS
) {
1691 WRITE_REG(priv
, f
->m
.reg_WPTR
,
1692 f
->m
.wptr
& TXF_WPTR_WR_PTR
);
1696 /* Force memory writes to complete before letting h/w
1697 know there are new descriptors to fetch.
1698 (might be needed on platforms like IA64)
1700 WRITE_REG(priv
, f
->m
.reg_WPTR
, f
->m
.wptr
& TXF_WPTR_WR_PTR
);
1703 ndev
->trans_start
= jiffies
;
1705 priv
->net_stats
.tx_packets
++;
1706 priv
->net_stats
.tx_bytes
+= skb
->len
;
1708 if (priv
->tx_level
< BDX_MIN_TX_LEVEL
) {
1709 DBG("%s: %s: TX Q STOP level %d\n",
1710 BDX_DRV_NAME
, ndev
->name
, priv
->tx_level
);
1711 netif_stop_queue(ndev
);
1714 spin_unlock_irqrestore(&priv
->tx_lock
, flags
);
1715 return NETDEV_TX_OK
;
1718 /* bdx_tx_cleanup - clean TXF fifo, run in the context of IRQ.
1719 * @priv - bdx adapter
1720 * It scans TXF fifo for descriptors, frees DMA mappings and reports to OS
1721 * that those packets were sent
1723 static void bdx_tx_cleanup(struct bdx_priv
*priv
)
1725 struct txf_fifo
*f
= &priv
->txf_fifo0
;
1726 struct txdb
*db
= &priv
->txdb
;
1730 f
->m
.wptr
= READ_REG(priv
, f
->m
.reg_WPTR
) & TXF_WPTR_MASK
;
1731 BDX_ASSERT(f
->m
.rptr
>= f
->m
.memsz
); /* started with valid rptr */
1733 while (f
->m
.wptr
!= f
->m
.rptr
) {
1734 f
->m
.rptr
+= BDX_TXF_DESC_SZ
;
1735 f
->m
.rptr
&= f
->m
.size_mask
;
1737 /* unmap all the fragments */
1738 /* first has to come tx_maps containing dma */
1739 BDX_ASSERT(db
->rptr
->len
== 0);
1741 BDX_ASSERT(db
->rptr
->addr
.dma
== 0);
1742 pci_unmap_page(priv
->pdev
, db
->rptr
->addr
.dma
,
1743 db
->rptr
->len
, PCI_DMA_TODEVICE
);
1744 bdx_tx_db_inc_rptr(db
);
1745 } while (db
->rptr
->len
> 0);
1746 tx_level
-= db
->rptr
->len
; /* '-' koz len is negative */
1748 /* now should come skb pointer - free it */
1749 dev_kfree_skb_irq(db
->rptr
->addr
.skb
);
1750 bdx_tx_db_inc_rptr(db
);
1753 /* let h/w know which TXF descriptors were cleaned */
1754 BDX_ASSERT((f
->m
.wptr
& TXF_WPTR_WR_PTR
) >= f
->m
.memsz
);
1755 WRITE_REG(priv
, f
->m
.reg_RPTR
, f
->m
.rptr
& TXF_WPTR_WR_PTR
);
1757 /* We reclaimed resources, so in case the Q is stopped by xmit callback,
1758 * we resume the transmition and use tx_lock to synchronize with xmit.*/
1759 spin_lock(&priv
->tx_lock
);
1760 priv
->tx_level
+= tx_level
;
1761 BDX_ASSERT(priv
->tx_level
<= 0 || priv
->tx_level
> BDX_MAX_TX_LEVEL
);
1762 #ifdef BDX_DELAY_WPTR
1763 if (priv
->tx_noupd
) {
1765 WRITE_REG(priv
, priv
->txd_fifo0
.m
.reg_WPTR
,
1766 priv
->txd_fifo0
.m
.wptr
& TXF_WPTR_WR_PTR
);
1770 if (unlikely(netif_queue_stopped(priv
->ndev
)
1771 && netif_carrier_ok(priv
->ndev
)
1772 && (priv
->tx_level
>= BDX_MIN_TX_LEVEL
))) {
1773 DBG("%s: %s: TX Q WAKE level %d\n",
1774 BDX_DRV_NAME
, priv
->ndev
->name
, priv
->tx_level
);
1775 netif_wake_queue(priv
->ndev
);
1777 spin_unlock(&priv
->tx_lock
);
1780 /* bdx_tx_free_skbs - frees all skbs from TXD fifo.
1781 * It gets called when OS stops this dev, eg upon "ifconfig down" or rmmod
1783 static void bdx_tx_free_skbs(struct bdx_priv
*priv
)
1785 struct txdb
*db
= &priv
->txdb
;
1788 while (db
->rptr
!= db
->wptr
) {
1789 if (likely(db
->rptr
->len
))
1790 pci_unmap_page(priv
->pdev
, db
->rptr
->addr
.dma
,
1791 db
->rptr
->len
, PCI_DMA_TODEVICE
);
1793 dev_kfree_skb(db
->rptr
->addr
.skb
);
1794 bdx_tx_db_inc_rptr(db
);
1799 /* bdx_tx_free - frees all Tx resources */
1800 static void bdx_tx_free(struct bdx_priv
*priv
)
1803 bdx_tx_free_skbs(priv
);
1804 bdx_fifo_free(priv
, &priv
->txd_fifo0
.m
);
1805 bdx_fifo_free(priv
, &priv
->txf_fifo0
.m
);
1806 bdx_tx_db_close(&priv
->txdb
);
1809 /* bdx_tx_push_desc - push descriptor to TxD fifo
1810 * @priv - NIC private structure
1811 * @data - desc's data
1812 * @size - desc's size
1814 * Pushes desc to TxD fifo and overlaps it if needed.
1815 * NOTE: this func does not check for available space. this is responsibility
1816 * of the caller. Neither does it check that data size is smaller then
1819 static void bdx_tx_push_desc(struct bdx_priv
*priv
, void *data
, int size
)
1821 struct txd_fifo
*f
= &priv
->txd_fifo0
;
1822 int i
= f
->m
.memsz
- f
->m
.wptr
;
1828 memcpy(f
->m
.va
+ f
->m
.wptr
, data
, size
);
1831 memcpy(f
->m
.va
+ f
->m
.wptr
, data
, i
);
1832 f
->m
.wptr
= size
- i
;
1833 memcpy(f
->m
.va
, data
+ i
, f
->m
.wptr
);
1835 WRITE_REG(priv
, f
->m
.reg_WPTR
, f
->m
.wptr
& TXF_WPTR_WR_PTR
);
1838 /* bdx_tx_push_desc_safe - push descriptor to TxD fifo in a safe way
1839 * @priv - NIC private structure
1840 * @data - desc's data
1841 * @size - desc's size
1843 * NOTE: this func does check for available space and, if neccessary, waits for
1844 * NIC to read existing data before writing new one.
1846 static void bdx_tx_push_desc_safe(struct bdx_priv
*priv
, void *data
, int size
)
1852 /* we substruct 8 because when fifo is full rptr == wptr
1853 which also means that fifo is empty, we can understand
1854 the difference, but could hw do the same ??? :) */
1855 int avail
= bdx_tx_space(priv
) - 8;
1857 if (timer
++ > 300) { /* prevent endless loop */
1858 DBG("timeout while writing desc to TxD fifo\n");
1861 udelay(50); /* give hw a chance to clean fifo */
1864 avail
= MIN(avail
, size
);
1865 DBG("about to push %d bytes starting %p size %d\n", avail
,
1867 bdx_tx_push_desc(priv
, data
, avail
);
1875 * bdx_probe - Device Initialization Routine
1876 * @pdev: PCI device information struct
1877 * @ent: entry in bdx_pci_tbl
1879 * Returns 0 on success, negative on failure
1881 * bdx_probe initializes an adapter identified by a pci_dev structure.
1882 * The OS initialization, configuring of the adapter private structure,
1883 * and a hardware reset occur.
1885 * functions and their order used as explained in
1886 * /usr/src/linux/Documentation/DMA-{API,mapping}.txt
1890 /* TBD: netif_msg should be checked and implemented. I disable it for now */
1891 static int __devinit
1892 bdx_probe(struct pci_dev
*pdev
, const struct pci_device_id
*ent
)
1894 struct net_device
*ndev
;
1895 struct bdx_priv
*priv
;
1896 int err
, pci_using_dac
, port
;
1897 unsigned long pciaddr
;
1899 struct pci_nic
*nic
;
1903 nic
= vmalloc(sizeof(*nic
));
1907 /************** pci *****************/
1908 if ((err
= pci_enable_device(pdev
))) /* it trigers interrupt, dunno why. */
1909 goto err_pci
; /* it's not a problem though */
1911 if (!(err
= pci_set_dma_mask(pdev
, DMA_64BIT_MASK
)) &&
1912 !(err
= pci_set_consistent_dma_mask(pdev
, DMA_64BIT_MASK
))) {
1915 if ((err
= pci_set_dma_mask(pdev
, DMA_32BIT_MASK
)) ||
1916 (err
= pci_set_consistent_dma_mask(pdev
, DMA_32BIT_MASK
))) {
1917 printk(KERN_ERR
"tehuti: No usable DMA configuration"
1924 if ((err
= pci_request_regions(pdev
, BDX_DRV_NAME
)))
1927 pci_set_master(pdev
);
1929 pciaddr
= pci_resource_start(pdev
, 0);
1932 ERR("tehuti: no MMIO resource\n");
1935 if ((regionSize
= pci_resource_len(pdev
, 0)) < BDX_REGS_SIZE
) {
1937 ERR("tehuti: MMIO resource (%x) too small\n", regionSize
);
1941 nic
->regs
= ioremap(pciaddr
, regionSize
);
1944 ERR("tehuti: ioremap failed\n");
1948 if (pdev
->irq
< 2) {
1950 ERR("tehuti: invalid irq (%d)\n", pdev
->irq
);
1953 pci_set_drvdata(pdev
, nic
);
1955 if (pdev
->device
== 0x3014)
1962 bdx_hw_reset_direct(nic
->regs
);
1964 nic
->irq_type
= IRQ_INTX
;
1966 if ((readl(nic
->regs
+ FPGA_VER
) & 0xFFF) >= 378) {
1967 if ((err
= pci_enable_msi(pdev
)))
1968 ERR("Tehuti: Can't eneble msi. error is %d\n", err
);
1970 nic
->irq_type
= IRQ_MSI
;
1972 DBG("HW does not support MSI\n");
1975 /************** netdev **************/
1976 for (port
= 0; port
< nic
->port_num
; port
++) {
1977 if (!(ndev
= alloc_etherdev(sizeof(struct bdx_priv
)))) {
1979 printk(KERN_ERR
"tehuti: alloc_etherdev failed\n");
1983 ndev
->open
= bdx_open
;
1984 ndev
->stop
= bdx_close
;
1985 ndev
->hard_start_xmit
= bdx_tx_transmit
;
1986 ndev
->do_ioctl
= bdx_ioctl
;
1987 ndev
->set_multicast_list
= bdx_setmulti
;
1988 ndev
->get_stats
= bdx_get_stats
;
1989 ndev
->change_mtu
= bdx_change_mtu
;
1990 ndev
->set_mac_address
= bdx_set_mac
;
1991 ndev
->tx_queue_len
= BDX_NDEV_TXQ_LEN
;
1992 ndev
->vlan_rx_register
= bdx_vlan_rx_register
;
1993 ndev
->vlan_rx_add_vid
= bdx_vlan_rx_add_vid
;
1994 ndev
->vlan_rx_kill_vid
= bdx_vlan_rx_kill_vid
;
1996 bdx_ethtool_ops(ndev
); /* ethtool interface */
1998 /* these fields are used for info purposes only
1999 * so we can have them same for all ports of the board */
2000 ndev
->if_port
= port
;
2001 ndev
->base_addr
= pciaddr
;
2002 ndev
->mem_start
= pciaddr
;
2003 ndev
->mem_end
= pciaddr
+ regionSize
;
2004 ndev
->irq
= pdev
->irq
;
2005 ndev
->features
= NETIF_F_IP_CSUM
| NETIF_F_SG
| NETIF_F_TSO
2006 | NETIF_F_HW_VLAN_TX
| NETIF_F_HW_VLAN_RX
|
2007 NETIF_F_HW_VLAN_FILTER
2008 /*| NETIF_F_FRAGLIST */
2012 ndev
->features
|= NETIF_F_HIGHDMA
;
2014 /************** priv ****************/
2015 priv
= nic
->priv
[port
] = ndev
->priv
;
2017 memset(priv
, 0, sizeof(struct bdx_priv
));
2018 priv
->pBdxRegs
= nic
->regs
+ port
* 0x8000;
2023 priv
->msg_enable
= BDX_DEF_MSG_ENABLE
;
2025 netif_napi_add(ndev
, &priv
->napi
, bdx_poll
, 64);
2027 if ((readl(nic
->regs
+ FPGA_VER
) & 0xFFF) == 308) {
2028 DBG("HW statistics not supported\n");
2029 priv
->stats_flag
= 0;
2031 priv
->stats_flag
= 1;
2034 /* Initialize fifo sizes. */
2040 /* Initialize the initial coalescing registers. */
2041 priv
->rdintcm
= INT_REG_VAL(0x20, 1, 4, 12);
2042 priv
->tdintcm
= INT_REG_VAL(0x20, 1, 0, 12);
2044 /* ndev->xmit_lock spinlock is not used.
2045 * Private priv->tx_lock is used for synchronization
2046 * between transmit and TX irq cleanup. In addition
2047 * set multicast list callback has to use priv->tx_lock.
2050 ndev
->features
|= NETIF_F_LLTX
;
2052 spin_lock_init(&priv
->tx_lock
);
2054 /*bdx_hw_reset(priv); */
2055 if (bdx_read_mac(priv
)) {
2056 printk(KERN_ERR
"tehuti: load MAC address failed\n");
2059 SET_NETDEV_DEV(ndev
, &pdev
->dev
);
2060 if ((err
= register_netdev(ndev
))) {
2061 printk(KERN_ERR
"tehuti: register_netdev failed\n");
2064 netif_carrier_off(ndev
);
2065 netif_stop_queue(ndev
);
2076 pci_release_regions(pdev
);
2078 pci_disable_device(pdev
);
2085 /****************** Ethtool interface *********************/
2086 /* get strings for tests */
2088 bdx_test_names
[][ETH_GSTRING_LEN
] = {
2092 /* get strings for statistics counters */
2094 bdx_stat_names
[][ETH_GSTRING_LEN
] = {
2095 "InUCast", /* 0x7200 */
2096 "InMCast", /* 0x7210 */
2097 "InBCast", /* 0x7220 */
2098 "InPkts", /* 0x7230 */
2099 "InErrors", /* 0x7240 */
2100 "InDropped", /* 0x7250 */
2101 "FrameTooLong", /* 0x7260 */
2102 "FrameSequenceErrors", /* 0x7270 */
2103 "InVLAN", /* 0x7280 */
2104 "InDroppedDFE", /* 0x7290 */
2105 "InDroppedIntFull", /* 0x72A0 */
2106 "InFrameAlignErrors", /* 0x72B0 */
2108 /* 0x72C0-0x72E0 RSRV */
2110 "OutUCast", /* 0x72F0 */
2111 "OutMCast", /* 0x7300 */
2112 "OutBCast", /* 0x7310 */
2113 "OutPkts", /* 0x7320 */
2115 /* 0x7330-0x7360 RSRV */
2117 "OutVLAN", /* 0x7370 */
2118 "InUCastOctects", /* 0x7380 */
2119 "OutUCastOctects", /* 0x7390 */
2121 /* 0x73A0-0x73B0 RSRV */
2123 "InBCastOctects", /* 0x73C0 */
2124 "OutBCastOctects", /* 0x73D0 */
2125 "InOctects", /* 0x73E0 */
2126 "OutOctects", /* 0x73F0 */
2130 * bdx_get_settings - get device-specific settings
2134 static int bdx_get_settings(struct net_device
*netdev
, struct ethtool_cmd
*ecmd
)
2138 struct bdx_priv
*priv
= netdev
->priv
;
2140 rdintcm
= priv
->rdintcm
;
2141 tdintcm
= priv
->tdintcm
;
2143 ecmd
->supported
= (SUPPORTED_10000baseT_Full
| SUPPORTED_FIBRE
);
2144 ecmd
->advertising
= (ADVERTISED_10000baseT_Full
| ADVERTISED_FIBRE
);
2145 ecmd
->speed
= SPEED_10000
;
2146 ecmd
->duplex
= DUPLEX_FULL
;
2147 ecmd
->port
= PORT_FIBRE
;
2148 ecmd
->transceiver
= XCVR_EXTERNAL
; /* what does it mean? */
2149 ecmd
->autoneg
= AUTONEG_DISABLE
;
2151 /* PCK_TH measures in multiples of FIFO bytes
2152 We translate to packets */
2154 ((GET_PCK_TH(tdintcm
) * PCK_TH_MULT
) / BDX_TXF_DESC_SZ
);
2156 ((GET_PCK_TH(rdintcm
) * PCK_TH_MULT
) / sizeof(struct rxf_desc
));
2162 * bdx_get_drvinfo - report driver information
2167 bdx_get_drvinfo(struct net_device
*netdev
, struct ethtool_drvinfo
*drvinfo
)
2169 struct bdx_priv
*priv
= netdev
->priv
;
2171 strlcat(drvinfo
->driver
, BDX_DRV_NAME
, sizeof(drvinfo
->driver
));
2172 strlcat(drvinfo
->version
, BDX_DRV_VERSION
, sizeof(drvinfo
->version
));
2173 strlcat(drvinfo
->fw_version
, "N/A", sizeof(drvinfo
->fw_version
));
2174 strlcat(drvinfo
->bus_info
, pci_name(priv
->pdev
),
2175 sizeof(drvinfo
->bus_info
));
2177 drvinfo
->n_stats
= ((priv
->stats_flag
) ?
2178 (sizeof(bdx_stat_names
) / ETH_GSTRING_LEN
) : 0);
2179 drvinfo
->testinfo_len
= 0;
2180 drvinfo
->regdump_len
= 0;
2181 drvinfo
->eedump_len
= 0;
2185 * bdx_get_rx_csum - report whether receive checksums are turned on or off
2188 static u32
bdx_get_rx_csum(struct net_device
*netdev
)
2190 return 1; /* always on */
2194 * bdx_get_tx_csum - report whether transmit checksums are turned on or off
2197 static u32
bdx_get_tx_csum(struct net_device
*netdev
)
2199 return (netdev
->features
& NETIF_F_IP_CSUM
) != 0;
2203 * bdx_get_coalesce - get interrupt coalescing parameters
2208 bdx_get_coalesce(struct net_device
*netdev
, struct ethtool_coalesce
*ecoal
)
2212 struct bdx_priv
*priv
= netdev
->priv
;
2214 rdintcm
= priv
->rdintcm
;
2215 tdintcm
= priv
->tdintcm
;
2217 /* PCK_TH measures in multiples of FIFO bytes
2218 We translate to packets */
2219 ecoal
->rx_coalesce_usecs
= GET_INT_COAL(rdintcm
) * INT_COAL_MULT
;
2220 ecoal
->rx_max_coalesced_frames
=
2221 ((GET_PCK_TH(rdintcm
) * PCK_TH_MULT
) / sizeof(struct rxf_desc
));
2223 ecoal
->tx_coalesce_usecs
= GET_INT_COAL(tdintcm
) * INT_COAL_MULT
;
2224 ecoal
->tx_max_coalesced_frames
=
2225 ((GET_PCK_TH(tdintcm
) * PCK_TH_MULT
) / BDX_TXF_DESC_SZ
);
2227 /* adaptive parameters ignored */
2232 * bdx_set_coalesce - set interrupt coalescing parameters
2237 bdx_set_coalesce(struct net_device
*netdev
, struct ethtool_coalesce
*ecoal
)
2241 struct bdx_priv
*priv
= netdev
->priv
;
2247 /* Check for valid input */
2248 rx_coal
= ecoal
->rx_coalesce_usecs
/ INT_COAL_MULT
;
2249 tx_coal
= ecoal
->tx_coalesce_usecs
/ INT_COAL_MULT
;
2250 rx_max_coal
= ecoal
->rx_max_coalesced_frames
;
2251 tx_max_coal
= ecoal
->tx_max_coalesced_frames
;
2253 /* Translate from packets to multiples of FIFO bytes */
2255 (((rx_max_coal
* sizeof(struct rxf_desc
)) + PCK_TH_MULT
- 1)
2258 (((tx_max_coal
* BDX_TXF_DESC_SZ
) + PCK_TH_MULT
- 1)
2261 if ((rx_coal
> 0x7FFF) || (tx_coal
> 0x7FFF)
2262 || (rx_max_coal
> 0xF) || (tx_max_coal
> 0xF))
2265 rdintcm
= INT_REG_VAL(rx_coal
, GET_INT_COAL_RC(priv
->rdintcm
),
2266 GET_RXF_TH(priv
->rdintcm
), rx_max_coal
);
2267 tdintcm
= INT_REG_VAL(tx_coal
, GET_INT_COAL_RC(priv
->tdintcm
), 0,
2270 priv
->rdintcm
= rdintcm
;
2271 priv
->tdintcm
= tdintcm
;
2273 WRITE_REG(priv
, regRDINTCM0
, rdintcm
);
2274 WRITE_REG(priv
, regTDINTCM0
, tdintcm
);
2279 /* Convert RX fifo size to number of pending packets */
2280 static inline int bdx_rx_fifo_size_to_packets(int rx_size
)
2282 return ((FIFO_SIZE
* (1 << rx_size
)) / sizeof(struct rxf_desc
));
2285 /* Convert TX fifo size to number of pending packets */
2286 static inline int bdx_tx_fifo_size_to_packets(int tx_size
)
2288 return ((FIFO_SIZE
* (1 << tx_size
)) / BDX_TXF_DESC_SZ
);
2292 * bdx_get_ringparam - report ring sizes
2297 bdx_get_ringparam(struct net_device
*netdev
, struct ethtool_ringparam
*ring
)
2299 struct bdx_priv
*priv
= netdev
->priv
;
2301 /*max_pending - the maximum-sized FIFO we allow */
2302 ring
->rx_max_pending
= bdx_rx_fifo_size_to_packets(3);
2303 ring
->tx_max_pending
= bdx_tx_fifo_size_to_packets(3);
2304 ring
->rx_pending
= bdx_rx_fifo_size_to_packets(priv
->rxf_size
);
2305 ring
->tx_pending
= bdx_tx_fifo_size_to_packets(priv
->txd_size
);
2309 * bdx_set_ringparam - set ring sizes
2314 bdx_set_ringparam(struct net_device
*netdev
, struct ethtool_ringparam
*ring
)
2316 struct bdx_priv
*priv
= netdev
->priv
;
2320 for (; rx_size
< 4; rx_size
++) {
2321 if (bdx_rx_fifo_size_to_packets(rx_size
) >= ring
->rx_pending
)
2327 for (; tx_size
< 4; tx_size
++) {
2328 if (bdx_tx_fifo_size_to_packets(tx_size
) >= ring
->tx_pending
)
2334 /*Is there anything to do? */
2335 if ((rx_size
== priv
->rxf_size
)
2336 && (tx_size
== priv
->txd_size
))
2339 priv
->rxf_size
= rx_size
;
2341 priv
->rxd_size
= rx_size
- 1;
2343 priv
->rxd_size
= rx_size
;
2345 priv
->txf_size
= priv
->txd_size
= tx_size
;
2347 if (netif_running(netdev
)) {
2355 * bdx_get_strings - return a set of strings that describe the requested objects
2359 static void bdx_get_strings(struct net_device
*netdev
, u32 stringset
, u8
*data
)
2361 switch (stringset
) {
2363 memcpy(data
, *bdx_test_names
, sizeof(bdx_test_names
));
2366 memcpy(data
, *bdx_stat_names
, sizeof(bdx_stat_names
));
2372 * bdx_get_stats_count - return number of 64bit statistics counters
2375 static int bdx_get_stats_count(struct net_device
*netdev
)
2377 struct bdx_priv
*priv
= netdev
->priv
;
2378 BDX_ASSERT(sizeof(bdx_stat_names
) / ETH_GSTRING_LEN
2379 != sizeof(struct bdx_stats
) / sizeof(u64
));
2380 return ((priv
->stats_flag
) ? (sizeof(bdx_stat_names
) / ETH_GSTRING_LEN
)
2385 * bdx_get_ethtool_stats - return device's hardware L2 statistics
2390 static void bdx_get_ethtool_stats(struct net_device
*netdev
,
2391 struct ethtool_stats
*stats
, u64
*data
)
2393 struct bdx_priv
*priv
= netdev
->priv
;
2395 if (priv
->stats_flag
) {
2397 /* Update stats from HW */
2398 bdx_update_stats(priv
);
2400 /* Copy data to user buffer */
2401 memcpy(data
, &priv
->hw_stats
, sizeof(priv
->hw_stats
));
2406 * bdx_ethtool_ops - ethtool interface implementation
2409 static void bdx_ethtool_ops(struct net_device
*netdev
)
2411 static struct ethtool_ops bdx_ethtool_ops
= {
2412 .get_settings
= bdx_get_settings
,
2413 .get_drvinfo
= bdx_get_drvinfo
,
2414 .get_link
= ethtool_op_get_link
,
2415 .get_coalesce
= bdx_get_coalesce
,
2416 .set_coalesce
= bdx_set_coalesce
,
2417 .get_ringparam
= bdx_get_ringparam
,
2418 .set_ringparam
= bdx_set_ringparam
,
2419 .get_rx_csum
= bdx_get_rx_csum
,
2420 .get_tx_csum
= bdx_get_tx_csum
,
2421 .get_sg
= ethtool_op_get_sg
,
2422 .get_tso
= ethtool_op_get_tso
,
2423 .get_strings
= bdx_get_strings
,
2424 .get_stats_count
= bdx_get_stats_count
,
2425 .get_ethtool_stats
= bdx_get_ethtool_stats
,
2428 SET_ETHTOOL_OPS(netdev
, &bdx_ethtool_ops
);
2432 * bdx_remove - Device Removal Routine
2433 * @pdev: PCI device information struct
2435 * bdx_remove is called by the PCI subsystem to alert the driver
2436 * that it should release a PCI device. The could be caused by a
2437 * Hot-Plug event, or because the driver is going to be removed from
2440 static void __devexit
bdx_remove(struct pci_dev
*pdev
)
2442 struct pci_nic
*nic
= pci_get_drvdata(pdev
);
2443 struct net_device
*ndev
;
2446 for (port
= 0; port
< nic
->port_num
; port
++) {
2447 ndev
= nic
->priv
[port
]->ndev
;
2448 unregister_netdev(ndev
);
2452 /*bdx_hw_reset_direct(nic->regs); */
2454 if (nic
->irq_type
== IRQ_MSI
)
2455 pci_disable_msi(pdev
);
2459 pci_release_regions(pdev
);
2460 pci_disable_device(pdev
);
2461 pci_set_drvdata(pdev
, NULL
);
2467 static struct pci_driver bdx_pci_driver
= {
2468 .name
= BDX_DRV_NAME
,
2469 .id_table
= bdx_pci_tbl
,
2471 .remove
= __devexit_p(bdx_remove
),
2475 * print_driver_id - print parameters of the driver build
2477 static void __init
print_driver_id(void)
2479 printk(KERN_INFO
"%s: %s, %s\n", BDX_DRV_NAME
, BDX_DRV_DESC
,
2481 printk(KERN_INFO
"%s: Options: hw_csum %s\n", BDX_DRV_NAME
,
2485 static int __init
bdx_module_init(void)
2488 bdx_firmware_endianess();
2491 RET(pci_register_driver(&bdx_pci_driver
));
2494 module_init(bdx_module_init
);
2496 static void __exit
bdx_module_exit(void)
2499 pci_unregister_driver(&bdx_pci_driver
);
2503 module_exit(bdx_module_exit
);
2505 MODULE_LICENSE("GPL");
2506 MODULE_AUTHOR(DRIVER_AUTHOR
);
2507 MODULE_DESCRIPTION(BDX_DRV_DESC
);