cmd64x: don't clear the other channel's interrupt
[linux-2.6/linux-mips/linux-dm7025.git] / drivers / video / sa1100fb.c
blobab2b2110478bc212a2f274f02bd24358ce371188
1 /*
2 * linux/drivers/video/sa1100fb.c
4 * Copyright (C) 1999 Eric A. Thomas
5 * Based on acornfb.c Copyright (C) Russell King.
7 * This file is subject to the terms and conditions of the GNU General Public
8 * License. See the file COPYING in the main directory of this archive for
9 * more details.
11 * StrongARM 1100 LCD Controller Frame Buffer Driver
13 * Please direct your questions and comments on this driver to the following
14 * email address:
16 * linux-arm-kernel@lists.arm.linux.org.uk
18 * Clean patches should be sent to the ARM Linux Patch System. Please see the
19 * following web page for more information:
21 * http://www.arm.linux.org.uk/developer/patches/info.shtml
23 * Thank you.
25 * Known problems:
26 * - With the Neponset plugged into an Assabet, LCD powerdown
27 * doesn't work (LCD stays powered up). Therefore we shouldn't
28 * blank the screen.
29 * - We don't limit the CPU clock rate nor the mode selection
30 * according to the available SDRAM bandwidth.
32 * Other notes:
33 * - Linear grayscale palettes and the kernel.
34 * Such code does not belong in the kernel. The kernel frame buffer
35 * drivers do not expect a linear colourmap, but a colourmap based on
36 * the VT100 standard mapping.
38 * If your _userspace_ requires a linear colourmap, then the setup of
39 * such a colourmap belongs _in userspace_, not in the kernel. Code
40 * to set the colourmap correctly from user space has been sent to
41 * David Neuer. It's around 8 lines of C code, plus another 4 to
42 * detect if we are using grayscale.
44 * - The following must never be specified in a panel definition:
45 * LCCR0_LtlEnd, LCCR3_PixClkDiv, LCCR3_VrtSnchL, LCCR3_HorSnchL
47 * - The following should be specified:
48 * either LCCR0_Color or LCCR0_Mono
49 * either LCCR0_Sngl or LCCR0_Dual
50 * either LCCR0_Act or LCCR0_Pas
51 * either LCCR3_OutEnH or LCCD3_OutEnL
52 * either LCCR3_PixRsEdg or LCCR3_PixFlEdg
53 * either LCCR3_ACBsDiv or LCCR3_ACBsCntOff
55 * Code Status:
56 * 1999/04/01:
57 * - Driver appears to be working for Brutus 320x200x8bpp mode. Other
58 * resolutions are working, but only the 8bpp mode is supported.
59 * Changes need to be made to the palette encode and decode routines
60 * to support 4 and 16 bpp modes.
61 * Driver is not designed to be a module. The FrameBuffer is statically
62 * allocated since dynamic allocation of a 300k buffer cannot be
63 * guaranteed.
65 * 1999/06/17:
66 * - FrameBuffer memory is now allocated at run-time when the
67 * driver is initialized.
69 * 2000/04/10: Nicolas Pitre <nico@cam.org>
70 * - Big cleanup for dynamic selection of machine type at run time.
72 * 2000/07/19: Jamey Hicks <jamey@crl.dec.com>
73 * - Support for Bitsy aka Compaq iPAQ H3600 added.
75 * 2000/08/07: Tak-Shing Chan <tchan.rd@idthk.com>
76 * Jeff Sutherland <jsutherland@accelent.com>
77 * - Resolved an issue caused by a change made to the Assabet's PLD
78 * earlier this year which broke the framebuffer driver for newer
79 * Phase 4 Assabets. Some other parameters were changed to optimize
80 * for the Sharp display.
82 * 2000/08/09: Kunihiko IMAI <imai@vasara.co.jp>
83 * - XP860 support added
85 * 2000/08/19: Mark Huang <mhuang@livetoy.com>
86 * - Allows standard options to be passed on the kernel command line
87 * for most common passive displays.
89 * 2000/08/29:
90 * - s/save_flags_cli/local_irq_save/
91 * - remove unneeded extra save_flags_cli in sa1100fb_enable_lcd_controller
93 * 2000/10/10: Erik Mouw <J.A.K.Mouw@its.tudelft.nl>
94 * - Updated LART stuff. Fixed some minor bugs.
96 * 2000/10/30: Murphy Chen <murphy@mail.dialogue.com.tw>
97 * - Pangolin support added
99 * 2000/10/31: Roman Jordan <jor@hoeft-wessel.de>
100 * - Huw Webpanel support added
102 * 2000/11/23: Eric Peng <ericpeng@coventive.com>
103 * - Freebird add
105 * 2001/02/07: Jamey Hicks <jamey.hicks@compaq.com>
106 * Cliff Brake <cbrake@accelent.com>
107 * - Added PM callback
109 * 2001/05/26: <rmk@arm.linux.org.uk>
110 * - Fix 16bpp so that (a) we use the right colours rather than some
111 * totally random colour depending on what was in page 0, and (b)
112 * we don't de-reference a NULL pointer.
113 * - remove duplicated implementation of consistent_alloc()
114 * - convert dma address types to dma_addr_t
115 * - remove unused 'montype' stuff
116 * - remove redundant zero inits of init_var after the initial
117 * memzero.
118 * - remove allow_modeset (acornfb idea does not belong here)
120 * 2001/05/28: <rmk@arm.linux.org.uk>
121 * - massive cleanup - move machine dependent data into structures
122 * - I've left various #warnings in - if you see one, and know
123 * the hardware concerned, please get in contact with me.
125 * 2001/05/31: <rmk@arm.linux.org.uk>
126 * - Fix LCCR1 HSW value, fix all machine type specifications to
127 * keep values in line. (Please check your machine type specs)
129 * 2001/06/10: <rmk@arm.linux.org.uk>
130 * - Fiddle with the LCD controller from task context only; mainly
131 * so that we can run with interrupts on, and sleep.
132 * - Convert #warnings into #errors. No pain, no gain. ;)
134 * 2001/06/14: <rmk@arm.linux.org.uk>
135 * - Make the palette BPS value for 12bpp come out correctly.
136 * - Take notice of "greyscale" on any colour depth.
137 * - Make truecolor visuals use the RGB channel encoding information.
139 * 2001/07/02: <rmk@arm.linux.org.uk>
140 * - Fix colourmap problems.
142 * 2001/07/13: <abraham@2d3d.co.za>
143 * - Added support for the ICP LCD-Kit01 on LART. This LCD is
144 * manufactured by Prime View, model no V16C6448AB
146 * 2001/07/23: <rmk@arm.linux.org.uk>
147 * - Hand merge version from handhelds.org CVS tree. See patch
148 * notes for 595/1 for more information.
149 * - Drop 12bpp (it's 16bpp with different colour register mappings).
150 * - This hardware can not do direct colour. Therefore we don't
151 * support it.
153 * 2001/07/27: <rmk@arm.linux.org.uk>
154 * - Halve YRES on dual scan LCDs.
156 * 2001/08/22: <rmk@arm.linux.org.uk>
157 * - Add b/w iPAQ pixclock value.
159 * 2001/10/12: <rmk@arm.linux.org.uk>
160 * - Add patch 681/1 and clean up stork definitions.
163 #include <linux/module.h>
164 #include <linux/kernel.h>
165 #include <linux/sched.h>
166 #include <linux/errno.h>
167 #include <linux/string.h>
168 #include <linux/interrupt.h>
169 #include <linux/slab.h>
170 #include <linux/fb.h>
171 #include <linux/delay.h>
172 #include <linux/init.h>
173 #include <linux/ioport.h>
174 #include <linux/cpufreq.h>
175 #include <linux/platform_device.h>
176 #include <linux/dma-mapping.h>
178 #include <asm/hardware.h>
179 #include <asm/io.h>
180 #include <asm/mach-types.h>
181 #include <asm/arch/assabet.h>
182 #include <asm/arch/shannon.h>
185 * debugging?
187 #define DEBUG 0
189 * Complain if VAR is out of range.
191 #define DEBUG_VAR 1
193 #undef ASSABET_PAL_VIDEO
195 #include "sa1100fb.h"
197 extern void (*sa1100fb_backlight_power)(int on);
198 extern void (*sa1100fb_lcd_power)(int on);
201 * IMHO this looks wrong. In 8BPP, length should be 8.
203 static struct sa1100fb_rgb rgb_8 = {
204 .red = { .offset = 0, .length = 4, },
205 .green = { .offset = 0, .length = 4, },
206 .blue = { .offset = 0, .length = 4, },
207 .transp = { .offset = 0, .length = 0, },
210 static struct sa1100fb_rgb def_rgb_16 = {
211 .red = { .offset = 11, .length = 5, },
212 .green = { .offset = 5, .length = 6, },
213 .blue = { .offset = 0, .length = 5, },
214 .transp = { .offset = 0, .length = 0, },
217 #ifdef CONFIG_SA1100_ASSABET
218 #ifndef ASSABET_PAL_VIDEO
220 * The assabet uses a sharp LQ039Q2DS54 LCD module. It is actually
221 * takes an RGB666 signal, but we provide it with an RGB565 signal
222 * instead (def_rgb_16).
224 static struct sa1100fb_mach_info lq039q2ds54_info __initdata = {
225 .pixclock = 171521, .bpp = 16,
226 .xres = 320, .yres = 240,
228 .hsync_len = 5, .vsync_len = 1,
229 .left_margin = 61, .upper_margin = 3,
230 .right_margin = 9, .lower_margin = 0,
232 .sync = FB_SYNC_HOR_HIGH_ACT | FB_SYNC_VERT_HIGH_ACT,
234 .lccr0 = LCCR0_Color | LCCR0_Sngl | LCCR0_Act,
235 .lccr3 = LCCR3_OutEnH | LCCR3_PixRsEdg | LCCR3_ACBsDiv(2),
237 #else
238 static struct sa1100fb_mach_info pal_info __initdata = {
239 .pixclock = 67797, .bpp = 16,
240 .xres = 640, .yres = 512,
242 .hsync_len = 64, .vsync_len = 6,
243 .left_margin = 125, .upper_margin = 70,
244 .right_margin = 115, .lower_margin = 36,
246 .lccr0 = LCCR0_Color | LCCR0_Sngl | LCCR0_Act,
247 .lccr3 = LCCR3_OutEnH | LCCR3_PixRsEdg | LCCR3_ACBsDiv(512),
249 #endif
250 #endif
252 #ifdef CONFIG_SA1100_H3800
253 static struct sa1100fb_mach_info h3800_info __initdata = {
254 .pixclock = 174757, .bpp = 16,
255 .xres = 320, .yres = 240,
257 .hsync_len = 3, .vsync_len = 3,
258 .left_margin = 12, .upper_margin = 10,
259 .right_margin = 17, .lower_margin = 1,
261 .cmap_static = 1,
263 .lccr0 = LCCR0_Color | LCCR0_Sngl | LCCR0_Act,
264 .lccr3 = LCCR3_OutEnH | LCCR3_PixRsEdg | LCCR3_ACBsDiv(2),
266 #endif
268 #ifdef CONFIG_SA1100_H3600
269 static struct sa1100fb_mach_info h3600_info __initdata = {
270 .pixclock = 174757, .bpp = 16,
271 .xres = 320, .yres = 240,
273 .hsync_len = 3, .vsync_len = 3,
274 .left_margin = 12, .upper_margin = 10,
275 .right_margin = 17, .lower_margin = 1,
277 .cmap_static = 1,
279 .lccr0 = LCCR0_Color | LCCR0_Sngl | LCCR0_Act,
280 .lccr3 = LCCR3_OutEnH | LCCR3_PixRsEdg | LCCR3_ACBsDiv(2),
283 static struct sa1100fb_rgb h3600_rgb_16 = {
284 .red = { .offset = 12, .length = 4, },
285 .green = { .offset = 7, .length = 4, },
286 .blue = { .offset = 1, .length = 4, },
287 .transp = { .offset = 0, .length = 0, },
289 #endif
291 #ifdef CONFIG_SA1100_H3100
292 static struct sa1100fb_mach_info h3100_info __initdata = {
293 .pixclock = 406977, .bpp = 4,
294 .xres = 320, .yres = 240,
296 .hsync_len = 26, .vsync_len = 41,
297 .left_margin = 4, .upper_margin = 0,
298 .right_margin = 4, .lower_margin = 0,
300 .sync = FB_SYNC_HOR_HIGH_ACT | FB_SYNC_VERT_HIGH_ACT,
301 .cmap_greyscale = 1,
302 .cmap_inverse = 1,
304 .lccr0 = LCCR0_Mono | LCCR0_4PixMono | LCCR0_Sngl | LCCR0_Pas,
305 .lccr3 = LCCR3_OutEnH | LCCR3_PixRsEdg | LCCR3_ACBsDiv(2),
307 #endif
309 #ifdef CONFIG_SA1100_COLLIE
310 static struct sa1100fb_mach_info collie_info __initdata = {
311 .pixclock = 171521, .bpp = 16,
312 .xres = 320, .yres = 240,
314 .hsync_len = 5, .vsync_len = 1,
315 .left_margin = 11, .upper_margin = 2,
316 .right_margin = 30, .lower_margin = 0,
318 .sync = FB_SYNC_HOR_HIGH_ACT | FB_SYNC_VERT_HIGH_ACT,
320 .lccr0 = LCCR0_Color | LCCR0_Sngl | LCCR0_Act,
321 .lccr3 = LCCR3_OutEnH | LCCR3_PixRsEdg | LCCR3_ACBsDiv(2),
323 #endif
325 #ifdef LART_GREY_LCD
326 static struct sa1100fb_mach_info lart_grey_info __initdata = {
327 .pixclock = 150000, .bpp = 4,
328 .xres = 320, .yres = 240,
330 .hsync_len = 1, .vsync_len = 1,
331 .left_margin = 4, .upper_margin = 0,
332 .right_margin = 2, .lower_margin = 0,
334 .cmap_greyscale = 1,
335 .sync = FB_SYNC_HOR_HIGH_ACT | FB_SYNC_VERT_HIGH_ACT,
337 .lccr0 = LCCR0_Mono | LCCR0_Sngl | LCCR0_Pas | LCCR0_4PixMono,
338 .lccr3 = LCCR3_OutEnH | LCCR3_PixRsEdg | LCCR3_ACBsDiv(512),
340 #endif
341 #ifdef LART_COLOR_LCD
342 static struct sa1100fb_mach_info lart_color_info __initdata = {
343 .pixclock = 150000, .bpp = 16,
344 .xres = 320, .yres = 240,
346 .hsync_len = 2, .vsync_len = 3,
347 .left_margin = 69, .upper_margin = 14,
348 .right_margin = 8, .lower_margin = 4,
350 .lccr0 = LCCR0_Color | LCCR0_Sngl | LCCR0_Act,
351 .lccr3 = LCCR3_OutEnH | LCCR3_PixFlEdg | LCCR3_ACBsDiv(512),
353 #endif
354 #ifdef LART_VIDEO_OUT
355 static struct sa1100fb_mach_info lart_video_info __initdata = {
356 .pixclock = 39721, .bpp = 16,
357 .xres = 640, .yres = 480,
359 .hsync_len = 95, .vsync_len = 2,
360 .left_margin = 40, .upper_margin = 32,
361 .right_margin = 24, .lower_margin = 11,
363 .sync = FB_SYNC_HOR_HIGH_ACT | FB_SYNC_VERT_HIGH_ACT,
365 .lccr0 = LCCR0_Color | LCCR0_Sngl | LCCR0_Act,
366 .lccr3 = LCCR3_OutEnL | LCCR3_PixFlEdg | LCCR3_ACBsDiv(512),
368 #endif
370 #ifdef LART_KIT01_LCD
371 static struct sa1100fb_mach_info lart_kit01_info __initdata = {
372 .pixclock = 63291, .bpp = 16,
373 .xres = 640, .yres = 480,
375 .hsync_len = 64, .vsync_len = 3,
376 .left_margin = 122, .upper_margin = 45,
377 .right_margin = 10, .lower_margin = 10,
379 .lccr0 = LCCR0_Color | LCCR0_Sngl | LCCR0_Act,
380 .lccr3 = LCCR3_OutEnH | LCCR3_PixFlEdg
382 #endif
384 #ifdef CONFIG_SA1100_SHANNON
385 static struct sa1100fb_mach_info shannon_info __initdata = {
386 .pixclock = 152500, .bpp = 8,
387 .xres = 640, .yres = 480,
389 .hsync_len = 4, .vsync_len = 3,
390 .left_margin = 2, .upper_margin = 0,
391 .right_margin = 1, .lower_margin = 0,
393 .sync = FB_SYNC_HOR_HIGH_ACT | FB_SYNC_VERT_HIGH_ACT,
395 .lccr0 = LCCR0_Color | LCCR0_Dual | LCCR0_Pas,
396 .lccr3 = LCCR3_ACBsDiv(512),
398 #endif
402 static struct sa1100fb_mach_info * __init
403 sa1100fb_get_machine_info(struct sa1100fb_info *fbi)
405 struct sa1100fb_mach_info *inf = NULL;
408 * R G B T
409 * default {11,5}, { 5,6}, { 0,5}, { 0,0}
410 * h3600 {12,4}, { 7,4}, { 1,4}, { 0,0}
411 * freebird { 8,4}, { 4,4}, { 0,4}, {12,4}
413 #ifdef CONFIG_SA1100_ASSABET
414 if (machine_is_assabet()) {
415 #ifndef ASSABET_PAL_VIDEO
416 inf = &lq039q2ds54_info;
417 #else
418 inf = &pal_info;
419 #endif
421 #endif
422 #ifdef CONFIG_SA1100_H3100
423 if (machine_is_h3100()) {
424 inf = &h3100_info;
426 #endif
427 #ifdef CONFIG_SA1100_H3600
428 if (machine_is_h3600()) {
429 inf = &h3600_info;
430 fbi->rgb[RGB_16] = &h3600_rgb_16;
432 #endif
433 #ifdef CONFIG_SA1100_H3800
434 if (machine_is_h3800()) {
435 inf = &h3800_info;
437 #endif
438 #ifdef CONFIG_SA1100_COLLIE
439 if (machine_is_collie()) {
440 inf = &collie_info;
442 #endif
443 #ifdef CONFIG_SA1100_LART
444 if (machine_is_lart()) {
445 #ifdef LART_GREY_LCD
446 inf = &lart_grey_info;
447 #endif
448 #ifdef LART_COLOR_LCD
449 inf = &lart_color_info;
450 #endif
451 #ifdef LART_VIDEO_OUT
452 inf = &lart_video_info;
453 #endif
454 #ifdef LART_KIT01_LCD
455 inf = &lart_kit01_info;
456 #endif
458 #endif
459 #ifdef CONFIG_SA1100_SHANNON
460 if (machine_is_shannon()) {
461 inf = &shannon_info;
463 #endif
464 return inf;
467 static int sa1100fb_activate_var(struct fb_var_screeninfo *var, struct sa1100fb_info *);
468 static void set_ctrlr_state(struct sa1100fb_info *fbi, u_int state);
470 static inline void sa1100fb_schedule_work(struct sa1100fb_info *fbi, u_int state)
472 unsigned long flags;
474 local_irq_save(flags);
476 * We need to handle two requests being made at the same time.
477 * There are two important cases:
478 * 1. When we are changing VT (C_REENABLE) while unblanking (C_ENABLE)
479 * We must perform the unblanking, which will do our REENABLE for us.
480 * 2. When we are blanking, but immediately unblank before we have
481 * blanked. We do the "REENABLE" thing here as well, just to be sure.
483 if (fbi->task_state == C_ENABLE && state == C_REENABLE)
484 state = (u_int) -1;
485 if (fbi->task_state == C_DISABLE && state == C_ENABLE)
486 state = C_REENABLE;
488 if (state != (u_int)-1) {
489 fbi->task_state = state;
490 schedule_work(&fbi->task);
492 local_irq_restore(flags);
495 static inline u_int chan_to_field(u_int chan, struct fb_bitfield *bf)
497 chan &= 0xffff;
498 chan >>= 16 - bf->length;
499 return chan << bf->offset;
503 * Convert bits-per-pixel to a hardware palette PBS value.
505 static inline u_int palette_pbs(struct fb_var_screeninfo *var)
507 int ret = 0;
508 switch (var->bits_per_pixel) {
509 case 4: ret = 0 << 12; break;
510 case 8: ret = 1 << 12; break;
511 case 16: ret = 2 << 12; break;
513 return ret;
516 static int
517 sa1100fb_setpalettereg(u_int regno, u_int red, u_int green, u_int blue,
518 u_int trans, struct fb_info *info)
520 struct sa1100fb_info *fbi = (struct sa1100fb_info *)info;
521 u_int val, ret = 1;
523 if (regno < fbi->palette_size) {
524 val = ((red >> 4) & 0xf00);
525 val |= ((green >> 8) & 0x0f0);
526 val |= ((blue >> 12) & 0x00f);
528 if (regno == 0)
529 val |= palette_pbs(&fbi->fb.var);
531 fbi->palette_cpu[regno] = val;
532 ret = 0;
534 return ret;
537 static int
538 sa1100fb_setcolreg(u_int regno, u_int red, u_int green, u_int blue,
539 u_int trans, struct fb_info *info)
541 struct sa1100fb_info *fbi = (struct sa1100fb_info *)info;
542 unsigned int val;
543 int ret = 1;
546 * If inverse mode was selected, invert all the colours
547 * rather than the register number. The register number
548 * is what you poke into the framebuffer to produce the
549 * colour you requested.
551 if (fbi->cmap_inverse) {
552 red = 0xffff - red;
553 green = 0xffff - green;
554 blue = 0xffff - blue;
558 * If greyscale is true, then we convert the RGB value
559 * to greyscale no mater what visual we are using.
561 if (fbi->fb.var.grayscale)
562 red = green = blue = (19595 * red + 38470 * green +
563 7471 * blue) >> 16;
565 switch (fbi->fb.fix.visual) {
566 case FB_VISUAL_TRUECOLOR:
568 * 12 or 16-bit True Colour. We encode the RGB value
569 * according to the RGB bitfield information.
571 if (regno < 16) {
572 u32 *pal = fbi->fb.pseudo_palette;
574 val = chan_to_field(red, &fbi->fb.var.red);
575 val |= chan_to_field(green, &fbi->fb.var.green);
576 val |= chan_to_field(blue, &fbi->fb.var.blue);
578 pal[regno] = val;
579 ret = 0;
581 break;
583 case FB_VISUAL_STATIC_PSEUDOCOLOR:
584 case FB_VISUAL_PSEUDOCOLOR:
585 ret = sa1100fb_setpalettereg(regno, red, green, blue, trans, info);
586 break;
589 return ret;
592 #ifdef CONFIG_CPU_FREQ
594 * sa1100fb_display_dma_period()
595 * Calculate the minimum period (in picoseconds) between two DMA
596 * requests for the LCD controller. If we hit this, it means we're
597 * doing nothing but LCD DMA.
599 static inline unsigned int sa1100fb_display_dma_period(struct fb_var_screeninfo *var)
602 * Period = pixclock * bits_per_byte * bytes_per_transfer
603 * / memory_bits_per_pixel;
605 return var->pixclock * 8 * 16 / var->bits_per_pixel;
607 #endif
610 * sa1100fb_check_var():
611 * Round up in the following order: bits_per_pixel, xres,
612 * yres, xres_virtual, yres_virtual, xoffset, yoffset, grayscale,
613 * bitfields, horizontal timing, vertical timing.
615 static int
616 sa1100fb_check_var(struct fb_var_screeninfo *var, struct fb_info *info)
618 struct sa1100fb_info *fbi = (struct sa1100fb_info *)info;
619 int rgbidx;
621 if (var->xres < MIN_XRES)
622 var->xres = MIN_XRES;
623 if (var->yres < MIN_YRES)
624 var->yres = MIN_YRES;
625 if (var->xres > fbi->max_xres)
626 var->xres = fbi->max_xres;
627 if (var->yres > fbi->max_yres)
628 var->yres = fbi->max_yres;
629 var->xres_virtual = max(var->xres_virtual, var->xres);
630 var->yres_virtual = max(var->yres_virtual, var->yres);
632 DPRINTK("var->bits_per_pixel=%d\n", var->bits_per_pixel);
633 switch (var->bits_per_pixel) {
634 case 4:
635 rgbidx = RGB_8;
636 break;
637 case 8:
638 rgbidx = RGB_8;
639 break;
640 case 16:
641 rgbidx = RGB_16;
642 break;
643 default:
644 return -EINVAL;
648 * Copy the RGB parameters for this display
649 * from the machine specific parameters.
651 var->red = fbi->rgb[rgbidx]->red;
652 var->green = fbi->rgb[rgbidx]->green;
653 var->blue = fbi->rgb[rgbidx]->blue;
654 var->transp = fbi->rgb[rgbidx]->transp;
656 DPRINTK("RGBT length = %d:%d:%d:%d\n",
657 var->red.length, var->green.length, var->blue.length,
658 var->transp.length);
660 DPRINTK("RGBT offset = %d:%d:%d:%d\n",
661 var->red.offset, var->green.offset, var->blue.offset,
662 var->transp.offset);
664 #ifdef CONFIG_CPU_FREQ
665 printk(KERN_DEBUG "dma period = %d ps, clock = %d kHz\n",
666 sa1100fb_display_dma_period(var),
667 cpufreq_get(smp_processor_id()));
668 #endif
670 return 0;
673 static inline void sa1100fb_set_truecolor(u_int is_true_color)
675 if (machine_is_assabet()) {
676 #if 1 // phase 4 or newer Assabet's
677 if (is_true_color)
678 ASSABET_BCR_set(ASSABET_BCR_LCD_12RGB);
679 else
680 ASSABET_BCR_clear(ASSABET_BCR_LCD_12RGB);
681 #else
682 // older Assabet's
683 if (is_true_color)
684 ASSABET_BCR_clear(ASSABET_BCR_LCD_12RGB);
685 else
686 ASSABET_BCR_set(ASSABET_BCR_LCD_12RGB);
687 #endif
692 * sa1100fb_set_par():
693 * Set the user defined part of the display for the specified console
695 static int sa1100fb_set_par(struct fb_info *info)
697 struct sa1100fb_info *fbi = (struct sa1100fb_info *)info;
698 struct fb_var_screeninfo *var = &info->var;
699 unsigned long palette_mem_size;
701 DPRINTK("set_par\n");
703 if (var->bits_per_pixel == 16)
704 fbi->fb.fix.visual = FB_VISUAL_TRUECOLOR;
705 else if (!fbi->cmap_static)
706 fbi->fb.fix.visual = FB_VISUAL_PSEUDOCOLOR;
707 else {
709 * Some people have weird ideas about wanting static
710 * pseudocolor maps. I suspect their user space
711 * applications are broken.
713 fbi->fb.fix.visual = FB_VISUAL_STATIC_PSEUDOCOLOR;
716 fbi->fb.fix.line_length = var->xres_virtual *
717 var->bits_per_pixel / 8;
718 fbi->palette_size = var->bits_per_pixel == 8 ? 256 : 16;
720 palette_mem_size = fbi->palette_size * sizeof(u16);
722 DPRINTK("palette_mem_size = 0x%08lx\n", (u_long) palette_mem_size);
724 fbi->palette_cpu = (u16 *)(fbi->map_cpu + PAGE_SIZE - palette_mem_size);
725 fbi->palette_dma = fbi->map_dma + PAGE_SIZE - palette_mem_size;
728 * Set (any) board control register to handle new color depth
730 sa1100fb_set_truecolor(fbi->fb.fix.visual == FB_VISUAL_TRUECOLOR);
731 sa1100fb_activate_var(var, fbi);
733 return 0;
736 #if 0
737 static int
738 sa1100fb_set_cmap(struct fb_cmap *cmap, int kspc, int con,
739 struct fb_info *info)
741 struct sa1100fb_info *fbi = (struct sa1100fb_info *)info;
744 * Make sure the user isn't doing something stupid.
746 if (!kspc && (fbi->fb.var.bits_per_pixel == 16 || fbi->cmap_static))
747 return -EINVAL;
749 return gen_set_cmap(cmap, kspc, con, info);
751 #endif
754 * Formal definition of the VESA spec:
755 * On
756 * This refers to the state of the display when it is in full operation
757 * Stand-By
758 * This defines an optional operating state of minimal power reduction with
759 * the shortest recovery time
760 * Suspend
761 * This refers to a level of power management in which substantial power
762 * reduction is achieved by the display. The display can have a longer
763 * recovery time from this state than from the Stand-by state
764 * Off
765 * This indicates that the display is consuming the lowest level of power
766 * and is non-operational. Recovery from this state may optionally require
767 * the user to manually power on the monitor
769 * Now, the fbdev driver adds an additional state, (blank), where they
770 * turn off the video (maybe by colormap tricks), but don't mess with the
771 * video itself: think of it semantically between on and Stand-By.
773 * So here's what we should do in our fbdev blank routine:
775 * VESA_NO_BLANKING (mode 0) Video on, front/back light on
776 * VESA_VSYNC_SUSPEND (mode 1) Video on, front/back light off
777 * VESA_HSYNC_SUSPEND (mode 2) Video on, front/back light off
778 * VESA_POWERDOWN (mode 3) Video off, front/back light off
780 * This will match the matrox implementation.
783 * sa1100fb_blank():
784 * Blank the display by setting all palette values to zero. Note, the
785 * 12 and 16 bpp modes don't really use the palette, so this will not
786 * blank the display in all modes.
788 static int sa1100fb_blank(int blank, struct fb_info *info)
790 struct sa1100fb_info *fbi = (struct sa1100fb_info *)info;
791 int i;
793 DPRINTK("sa1100fb_blank: blank=%d\n", blank);
795 switch (blank) {
796 case FB_BLANK_POWERDOWN:
797 case FB_BLANK_VSYNC_SUSPEND:
798 case FB_BLANK_HSYNC_SUSPEND:
799 case FB_BLANK_NORMAL:
800 if (fbi->fb.fix.visual == FB_VISUAL_PSEUDOCOLOR ||
801 fbi->fb.fix.visual == FB_VISUAL_STATIC_PSEUDOCOLOR)
802 for (i = 0; i < fbi->palette_size; i++)
803 sa1100fb_setpalettereg(i, 0, 0, 0, 0, info);
804 sa1100fb_schedule_work(fbi, C_DISABLE);
805 break;
807 case FB_BLANK_UNBLANK:
808 if (fbi->fb.fix.visual == FB_VISUAL_PSEUDOCOLOR ||
809 fbi->fb.fix.visual == FB_VISUAL_STATIC_PSEUDOCOLOR)
810 fb_set_cmap(&fbi->fb.cmap, info);
811 sa1100fb_schedule_work(fbi, C_ENABLE);
813 return 0;
816 static int sa1100fb_mmap(struct fb_info *info,
817 struct vm_area_struct *vma)
819 struct sa1100fb_info *fbi = (struct sa1100fb_info *)info;
820 unsigned long start, len, off = vma->vm_pgoff << PAGE_SHIFT;
822 if (off < info->fix.smem_len) {
823 vma->vm_pgoff += 1; /* skip over the palette */
824 return dma_mmap_writecombine(fbi->dev, vma, fbi->map_cpu,
825 fbi->map_dma, fbi->map_size);
828 start = info->fix.mmio_start;
829 len = PAGE_ALIGN((start & ~PAGE_MASK) + info->fix.mmio_len);
831 if ((vma->vm_end - vma->vm_start + off) > len)
832 return -EINVAL;
834 off += start & PAGE_MASK;
835 vma->vm_pgoff = off >> PAGE_SHIFT;
836 vma->vm_flags |= VM_IO;
837 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
838 return io_remap_pfn_range(vma, vma->vm_start, off >> PAGE_SHIFT,
839 vma->vm_end - vma->vm_start,
840 vma->vm_page_prot);
843 static struct fb_ops sa1100fb_ops = {
844 .owner = THIS_MODULE,
845 .fb_check_var = sa1100fb_check_var,
846 .fb_set_par = sa1100fb_set_par,
847 // .fb_set_cmap = sa1100fb_set_cmap,
848 .fb_setcolreg = sa1100fb_setcolreg,
849 .fb_fillrect = cfb_fillrect,
850 .fb_copyarea = cfb_copyarea,
851 .fb_imageblit = cfb_imageblit,
852 .fb_blank = sa1100fb_blank,
853 .fb_mmap = sa1100fb_mmap,
857 * Calculate the PCD value from the clock rate (in picoseconds).
858 * We take account of the PPCR clock setting.
860 static inline unsigned int get_pcd(unsigned int pixclock, unsigned int cpuclock)
862 unsigned int pcd = cpuclock / 100;
864 pcd *= pixclock;
865 pcd /= 10000000;
867 return pcd + 1; /* make up for integer math truncations */
871 * sa1100fb_activate_var():
872 * Configures LCD Controller based on entries in var parameter. Settings are
873 * only written to the controller if changes were made.
875 static int sa1100fb_activate_var(struct fb_var_screeninfo *var, struct sa1100fb_info *fbi)
877 struct sa1100fb_lcd_reg new_regs;
878 u_int half_screen_size, yres, pcd;
879 u_long flags;
881 DPRINTK("Configuring SA1100 LCD\n");
883 DPRINTK("var: xres=%d hslen=%d lm=%d rm=%d\n",
884 var->xres, var->hsync_len,
885 var->left_margin, var->right_margin);
886 DPRINTK("var: yres=%d vslen=%d um=%d bm=%d\n",
887 var->yres, var->vsync_len,
888 var->upper_margin, var->lower_margin);
890 #if DEBUG_VAR
891 if (var->xres < 16 || var->xres > 1024)
892 printk(KERN_ERR "%s: invalid xres %d\n",
893 fbi->fb.fix.id, var->xres);
894 if (var->hsync_len < 1 || var->hsync_len > 64)
895 printk(KERN_ERR "%s: invalid hsync_len %d\n",
896 fbi->fb.fix.id, var->hsync_len);
897 if (var->left_margin < 1 || var->left_margin > 255)
898 printk(KERN_ERR "%s: invalid left_margin %d\n",
899 fbi->fb.fix.id, var->left_margin);
900 if (var->right_margin < 1 || var->right_margin > 255)
901 printk(KERN_ERR "%s: invalid right_margin %d\n",
902 fbi->fb.fix.id, var->right_margin);
903 if (var->yres < 1 || var->yres > 1024)
904 printk(KERN_ERR "%s: invalid yres %d\n",
905 fbi->fb.fix.id, var->yres);
906 if (var->vsync_len < 1 || var->vsync_len > 64)
907 printk(KERN_ERR "%s: invalid vsync_len %d\n",
908 fbi->fb.fix.id, var->vsync_len);
909 if (var->upper_margin < 0 || var->upper_margin > 255)
910 printk(KERN_ERR "%s: invalid upper_margin %d\n",
911 fbi->fb.fix.id, var->upper_margin);
912 if (var->lower_margin < 0 || var->lower_margin > 255)
913 printk(KERN_ERR "%s: invalid lower_margin %d\n",
914 fbi->fb.fix.id, var->lower_margin);
915 #endif
917 new_regs.lccr0 = fbi->lccr0 |
918 LCCR0_LEN | LCCR0_LDM | LCCR0_BAM |
919 LCCR0_ERM | LCCR0_LtlEnd | LCCR0_DMADel(0);
921 new_regs.lccr1 =
922 LCCR1_DisWdth(var->xres) +
923 LCCR1_HorSnchWdth(var->hsync_len) +
924 LCCR1_BegLnDel(var->left_margin) +
925 LCCR1_EndLnDel(var->right_margin);
928 * If we have a dual scan LCD, then we need to halve
929 * the YRES parameter.
931 yres = var->yres;
932 if (fbi->lccr0 & LCCR0_Dual)
933 yres /= 2;
935 new_regs.lccr2 =
936 LCCR2_DisHght(yres) +
937 LCCR2_VrtSnchWdth(var->vsync_len) +
938 LCCR2_BegFrmDel(var->upper_margin) +
939 LCCR2_EndFrmDel(var->lower_margin);
941 pcd = get_pcd(var->pixclock, cpufreq_get(0));
942 new_regs.lccr3 = LCCR3_PixClkDiv(pcd) | fbi->lccr3 |
943 (var->sync & FB_SYNC_HOR_HIGH_ACT ? LCCR3_HorSnchH : LCCR3_HorSnchL) |
944 (var->sync & FB_SYNC_VERT_HIGH_ACT ? LCCR3_VrtSnchH : LCCR3_VrtSnchL);
946 DPRINTK("nlccr0 = 0x%08lx\n", new_regs.lccr0);
947 DPRINTK("nlccr1 = 0x%08lx\n", new_regs.lccr1);
948 DPRINTK("nlccr2 = 0x%08lx\n", new_regs.lccr2);
949 DPRINTK("nlccr3 = 0x%08lx\n", new_regs.lccr3);
951 half_screen_size = var->bits_per_pixel;
952 half_screen_size = half_screen_size * var->xres * var->yres / 16;
954 /* Update shadow copy atomically */
955 local_irq_save(flags);
956 fbi->dbar1 = fbi->palette_dma;
957 fbi->dbar2 = fbi->screen_dma + half_screen_size;
959 fbi->reg_lccr0 = new_regs.lccr0;
960 fbi->reg_lccr1 = new_regs.lccr1;
961 fbi->reg_lccr2 = new_regs.lccr2;
962 fbi->reg_lccr3 = new_regs.lccr3;
963 local_irq_restore(flags);
966 * Only update the registers if the controller is enabled
967 * and something has changed.
969 if ((LCCR0 != fbi->reg_lccr0) || (LCCR1 != fbi->reg_lccr1) ||
970 (LCCR2 != fbi->reg_lccr2) || (LCCR3 != fbi->reg_lccr3) ||
971 (DBAR1 != fbi->dbar1) || (DBAR2 != fbi->dbar2))
972 sa1100fb_schedule_work(fbi, C_REENABLE);
974 return 0;
978 * NOTE! The following functions are purely helpers for set_ctrlr_state.
979 * Do not call them directly; set_ctrlr_state does the correct serialisation
980 * to ensure that things happen in the right way 100% of time time.
981 * -- rmk
983 static inline void __sa1100fb_backlight_power(struct sa1100fb_info *fbi, int on)
985 DPRINTK("backlight o%s\n", on ? "n" : "ff");
987 if (sa1100fb_backlight_power)
988 sa1100fb_backlight_power(on);
991 static inline void __sa1100fb_lcd_power(struct sa1100fb_info *fbi, int on)
993 DPRINTK("LCD power o%s\n", on ? "n" : "ff");
995 if (sa1100fb_lcd_power)
996 sa1100fb_lcd_power(on);
999 static void sa1100fb_setup_gpio(struct sa1100fb_info *fbi)
1001 u_int mask = 0;
1004 * Enable GPIO<9:2> for LCD use if:
1005 * 1. Active display, or
1006 * 2. Color Dual Passive display
1008 * see table 11.8 on page 11-27 in the SA1100 manual
1009 * -- Erik.
1011 * SA1110 spec update nr. 25 says we can and should
1012 * clear LDD15 to 12 for 4 or 8bpp modes with active
1013 * panels.
1015 if ((fbi->reg_lccr0 & LCCR0_CMS) == LCCR0_Color &&
1016 (fbi->reg_lccr0 & (LCCR0_Dual|LCCR0_Act)) != 0) {
1017 mask = GPIO_LDD11 | GPIO_LDD10 | GPIO_LDD9 | GPIO_LDD8;
1019 if (fbi->fb.var.bits_per_pixel > 8 ||
1020 (fbi->reg_lccr0 & (LCCR0_Dual|LCCR0_Act)) == LCCR0_Dual)
1021 mask |= GPIO_LDD15 | GPIO_LDD14 | GPIO_LDD13 | GPIO_LDD12;
1025 if (mask) {
1026 GPDR |= mask;
1027 GAFR |= mask;
1031 static void sa1100fb_enable_controller(struct sa1100fb_info *fbi)
1033 DPRINTK("Enabling LCD controller\n");
1036 * Make sure the mode bits are present in the first palette entry
1038 fbi->palette_cpu[0] &= 0xcfff;
1039 fbi->palette_cpu[0] |= palette_pbs(&fbi->fb.var);
1041 /* Sequence from 11.7.10 */
1042 LCCR3 = fbi->reg_lccr3;
1043 LCCR2 = fbi->reg_lccr2;
1044 LCCR1 = fbi->reg_lccr1;
1045 LCCR0 = fbi->reg_lccr0 & ~LCCR0_LEN;
1046 DBAR1 = fbi->dbar1;
1047 DBAR2 = fbi->dbar2;
1048 LCCR0 |= LCCR0_LEN;
1050 if (machine_is_shannon()) {
1051 GPDR |= SHANNON_GPIO_DISP_EN;
1052 GPSR |= SHANNON_GPIO_DISP_EN;
1055 DPRINTK("DBAR1 = 0x%08x\n", DBAR1);
1056 DPRINTK("DBAR2 = 0x%08x\n", DBAR2);
1057 DPRINTK("LCCR0 = 0x%08x\n", LCCR0);
1058 DPRINTK("LCCR1 = 0x%08x\n", LCCR1);
1059 DPRINTK("LCCR2 = 0x%08x\n", LCCR2);
1060 DPRINTK("LCCR3 = 0x%08x\n", LCCR3);
1063 static void sa1100fb_disable_controller(struct sa1100fb_info *fbi)
1065 DECLARE_WAITQUEUE(wait, current);
1067 DPRINTK("Disabling LCD controller\n");
1069 if (machine_is_shannon()) {
1070 GPCR |= SHANNON_GPIO_DISP_EN;
1073 set_current_state(TASK_UNINTERRUPTIBLE);
1074 add_wait_queue(&fbi->ctrlr_wait, &wait);
1076 LCSR = 0xffffffff; /* Clear LCD Status Register */
1077 LCCR0 &= ~LCCR0_LDM; /* Enable LCD Disable Done Interrupt */
1078 LCCR0 &= ~LCCR0_LEN; /* Disable LCD Controller */
1080 schedule_timeout(20 * HZ / 1000);
1081 remove_wait_queue(&fbi->ctrlr_wait, &wait);
1085 * sa1100fb_handle_irq: Handle 'LCD DONE' interrupts.
1087 static irqreturn_t sa1100fb_handle_irq(int irq, void *dev_id)
1089 struct sa1100fb_info *fbi = dev_id;
1090 unsigned int lcsr = LCSR;
1092 if (lcsr & LCSR_LDD) {
1093 LCCR0 |= LCCR0_LDM;
1094 wake_up(&fbi->ctrlr_wait);
1097 LCSR = lcsr;
1098 return IRQ_HANDLED;
1102 * This function must be called from task context only, since it will
1103 * sleep when disabling the LCD controller, or if we get two contending
1104 * processes trying to alter state.
1106 static void set_ctrlr_state(struct sa1100fb_info *fbi, u_int state)
1108 u_int old_state;
1110 down(&fbi->ctrlr_sem);
1112 old_state = fbi->state;
1115 * Hack around fbcon initialisation.
1117 if (old_state == C_STARTUP && state == C_REENABLE)
1118 state = C_ENABLE;
1120 switch (state) {
1121 case C_DISABLE_CLKCHANGE:
1123 * Disable controller for clock change. If the
1124 * controller is already disabled, then do nothing.
1126 if (old_state != C_DISABLE && old_state != C_DISABLE_PM) {
1127 fbi->state = state;
1128 sa1100fb_disable_controller(fbi);
1130 break;
1132 case C_DISABLE_PM:
1133 case C_DISABLE:
1135 * Disable controller
1137 if (old_state != C_DISABLE) {
1138 fbi->state = state;
1140 __sa1100fb_backlight_power(fbi, 0);
1141 if (old_state != C_DISABLE_CLKCHANGE)
1142 sa1100fb_disable_controller(fbi);
1143 __sa1100fb_lcd_power(fbi, 0);
1145 break;
1147 case C_ENABLE_CLKCHANGE:
1149 * Enable the controller after clock change. Only
1150 * do this if we were disabled for the clock change.
1152 if (old_state == C_DISABLE_CLKCHANGE) {
1153 fbi->state = C_ENABLE;
1154 sa1100fb_enable_controller(fbi);
1156 break;
1158 case C_REENABLE:
1160 * Re-enable the controller only if it was already
1161 * enabled. This is so we reprogram the control
1162 * registers.
1164 if (old_state == C_ENABLE) {
1165 sa1100fb_disable_controller(fbi);
1166 sa1100fb_setup_gpio(fbi);
1167 sa1100fb_enable_controller(fbi);
1169 break;
1171 case C_ENABLE_PM:
1173 * Re-enable the controller after PM. This is not
1174 * perfect - think about the case where we were doing
1175 * a clock change, and we suspended half-way through.
1177 if (old_state != C_DISABLE_PM)
1178 break;
1179 /* fall through */
1181 case C_ENABLE:
1183 * Power up the LCD screen, enable controller, and
1184 * turn on the backlight.
1186 if (old_state != C_ENABLE) {
1187 fbi->state = C_ENABLE;
1188 sa1100fb_setup_gpio(fbi);
1189 __sa1100fb_lcd_power(fbi, 1);
1190 sa1100fb_enable_controller(fbi);
1191 __sa1100fb_backlight_power(fbi, 1);
1193 break;
1195 up(&fbi->ctrlr_sem);
1199 * Our LCD controller task (which is called when we blank or unblank)
1200 * via keventd.
1202 static void sa1100fb_task(struct work_struct *w)
1204 struct sa1100fb_info *fbi = container_of(w, struct sa1100fb_info, task);
1205 u_int state = xchg(&fbi->task_state, -1);
1207 set_ctrlr_state(fbi, state);
1210 #ifdef CONFIG_CPU_FREQ
1212 * Calculate the minimum DMA period over all displays that we own.
1213 * This, together with the SDRAM bandwidth defines the slowest CPU
1214 * frequency that can be selected.
1216 static unsigned int sa1100fb_min_dma_period(struct sa1100fb_info *fbi)
1218 #if 0
1219 unsigned int min_period = (unsigned int)-1;
1220 int i;
1222 for (i = 0; i < MAX_NR_CONSOLES; i++) {
1223 struct display *disp = &fb_display[i];
1224 unsigned int period;
1227 * Do we own this display?
1229 if (disp->fb_info != &fbi->fb)
1230 continue;
1233 * Ok, calculate its DMA period
1235 period = sa1100fb_display_dma_period(&disp->var);
1236 if (period < min_period)
1237 min_period = period;
1240 return min_period;
1241 #else
1243 * FIXME: we need to verify _all_ consoles.
1245 return sa1100fb_display_dma_period(&fbi->fb.var);
1246 #endif
1250 * CPU clock speed change handler. We need to adjust the LCD timing
1251 * parameters when the CPU clock is adjusted by the power management
1252 * subsystem.
1254 static int
1255 sa1100fb_freq_transition(struct notifier_block *nb, unsigned long val,
1256 void *data)
1258 struct sa1100fb_info *fbi = TO_INF(nb, freq_transition);
1259 struct cpufreq_freqs *f = data;
1260 u_int pcd;
1262 switch (val) {
1263 case CPUFREQ_PRECHANGE:
1264 set_ctrlr_state(fbi, C_DISABLE_CLKCHANGE);
1265 break;
1267 case CPUFREQ_POSTCHANGE:
1268 pcd = get_pcd(fbi->fb.var.pixclock, f->new);
1269 fbi->reg_lccr3 = (fbi->reg_lccr3 & ~0xff) | LCCR3_PixClkDiv(pcd);
1270 set_ctrlr_state(fbi, C_ENABLE_CLKCHANGE);
1271 break;
1273 return 0;
1276 static int
1277 sa1100fb_freq_policy(struct notifier_block *nb, unsigned long val,
1278 void *data)
1280 struct sa1100fb_info *fbi = TO_INF(nb, freq_policy);
1281 struct cpufreq_policy *policy = data;
1283 switch (val) {
1284 case CPUFREQ_ADJUST:
1285 case CPUFREQ_INCOMPATIBLE:
1286 printk(KERN_DEBUG "min dma period: %d ps, "
1287 "new clock %d kHz\n", sa1100fb_min_dma_period(fbi),
1288 policy->max);
1289 /* todo: fill in min/max values */
1290 break;
1291 case CPUFREQ_NOTIFY:
1292 do {} while(0);
1293 /* todo: panic if min/max values aren't fulfilled
1294 * [can't really happen unless there's a bug in the
1295 * CPU policy verififcation process *
1297 break;
1299 return 0;
1301 #endif
1303 #ifdef CONFIG_PM
1305 * Power management hooks. Note that we won't be called from IRQ context,
1306 * unlike the blank functions above, so we may sleep.
1308 static int sa1100fb_suspend(struct platform_device *dev, pm_message_t state)
1310 struct sa1100fb_info *fbi = platform_get_drvdata(dev);
1312 set_ctrlr_state(fbi, C_DISABLE_PM);
1313 return 0;
1316 static int sa1100fb_resume(struct platform_device *dev)
1318 struct sa1100fb_info *fbi = platform_get_drvdata(dev);
1320 set_ctrlr_state(fbi, C_ENABLE_PM);
1321 return 0;
1323 #else
1324 #define sa1100fb_suspend NULL
1325 #define sa1100fb_resume NULL
1326 #endif
1329 * sa1100fb_map_video_memory():
1330 * Allocates the DRAM memory for the frame buffer. This buffer is
1331 * remapped into a non-cached, non-buffered, memory region to
1332 * allow palette and pixel writes to occur without flushing the
1333 * cache. Once this area is remapped, all virtual memory
1334 * access to the video memory should occur at the new region.
1336 static int __init sa1100fb_map_video_memory(struct sa1100fb_info *fbi)
1339 * We reserve one page for the palette, plus the size
1340 * of the framebuffer.
1342 fbi->map_size = PAGE_ALIGN(fbi->fb.fix.smem_len + PAGE_SIZE);
1343 fbi->map_cpu = dma_alloc_writecombine(fbi->dev, fbi->map_size,
1344 &fbi->map_dma, GFP_KERNEL);
1346 if (fbi->map_cpu) {
1347 fbi->fb.screen_base = fbi->map_cpu + PAGE_SIZE;
1348 fbi->screen_dma = fbi->map_dma + PAGE_SIZE;
1350 * FIXME: this is actually the wrong thing to place in
1351 * smem_start. But fbdev suffers from the problem that
1352 * it needs an API which doesn't exist (in this case,
1353 * dma_writecombine_mmap)
1355 fbi->fb.fix.smem_start = fbi->screen_dma;
1358 return fbi->map_cpu ? 0 : -ENOMEM;
1361 /* Fake monspecs to fill in fbinfo structure */
1362 static struct fb_monspecs monspecs __initdata = {
1363 .hfmin = 30000,
1364 .hfmax = 70000,
1365 .vfmin = 50,
1366 .vfmax = 65,
1370 static struct sa1100fb_info * __init sa1100fb_init_fbinfo(struct device *dev)
1372 struct sa1100fb_mach_info *inf;
1373 struct sa1100fb_info *fbi;
1375 fbi = kmalloc(sizeof(struct sa1100fb_info) + sizeof(u32) * 16,
1376 GFP_KERNEL);
1377 if (!fbi)
1378 return NULL;
1380 memset(fbi, 0, sizeof(struct sa1100fb_info));
1381 fbi->dev = dev;
1383 strcpy(fbi->fb.fix.id, SA1100_NAME);
1385 fbi->fb.fix.type = FB_TYPE_PACKED_PIXELS;
1386 fbi->fb.fix.type_aux = 0;
1387 fbi->fb.fix.xpanstep = 0;
1388 fbi->fb.fix.ypanstep = 0;
1389 fbi->fb.fix.ywrapstep = 0;
1390 fbi->fb.fix.accel = FB_ACCEL_NONE;
1392 fbi->fb.var.nonstd = 0;
1393 fbi->fb.var.activate = FB_ACTIVATE_NOW;
1394 fbi->fb.var.height = -1;
1395 fbi->fb.var.width = -1;
1396 fbi->fb.var.accel_flags = 0;
1397 fbi->fb.var.vmode = FB_VMODE_NONINTERLACED;
1399 fbi->fb.fbops = &sa1100fb_ops;
1400 fbi->fb.flags = FBINFO_DEFAULT;
1401 fbi->fb.monspecs = monspecs;
1402 fbi->fb.pseudo_palette = (fbi + 1);
1404 fbi->rgb[RGB_8] = &rgb_8;
1405 fbi->rgb[RGB_16] = &def_rgb_16;
1407 inf = sa1100fb_get_machine_info(fbi);
1410 * People just don't seem to get this. We don't support
1411 * anything but correct entries now, so panic if someone
1412 * does something stupid.
1414 if (inf->lccr3 & (LCCR3_VrtSnchL|LCCR3_HorSnchL|0xff) ||
1415 inf->pixclock == 0)
1416 panic("sa1100fb error: invalid LCCR3 fields set or zero "
1417 "pixclock.");
1419 fbi->max_xres = inf->xres;
1420 fbi->fb.var.xres = inf->xres;
1421 fbi->fb.var.xres_virtual = inf->xres;
1422 fbi->max_yres = inf->yres;
1423 fbi->fb.var.yres = inf->yres;
1424 fbi->fb.var.yres_virtual = inf->yres;
1425 fbi->max_bpp = inf->bpp;
1426 fbi->fb.var.bits_per_pixel = inf->bpp;
1427 fbi->fb.var.pixclock = inf->pixclock;
1428 fbi->fb.var.hsync_len = inf->hsync_len;
1429 fbi->fb.var.left_margin = inf->left_margin;
1430 fbi->fb.var.right_margin = inf->right_margin;
1431 fbi->fb.var.vsync_len = inf->vsync_len;
1432 fbi->fb.var.upper_margin = inf->upper_margin;
1433 fbi->fb.var.lower_margin = inf->lower_margin;
1434 fbi->fb.var.sync = inf->sync;
1435 fbi->fb.var.grayscale = inf->cmap_greyscale;
1436 fbi->cmap_inverse = inf->cmap_inverse;
1437 fbi->cmap_static = inf->cmap_static;
1438 fbi->lccr0 = inf->lccr0;
1439 fbi->lccr3 = inf->lccr3;
1440 fbi->state = C_STARTUP;
1441 fbi->task_state = (u_char)-1;
1442 fbi->fb.fix.smem_len = fbi->max_xres * fbi->max_yres *
1443 fbi->max_bpp / 8;
1445 init_waitqueue_head(&fbi->ctrlr_wait);
1446 INIT_WORK(&fbi->task, sa1100fb_task);
1447 init_MUTEX(&fbi->ctrlr_sem);
1449 return fbi;
1452 static int __init sa1100fb_probe(struct platform_device *pdev)
1454 struct sa1100fb_info *fbi;
1455 int ret, irq;
1457 irq = platform_get_irq(pdev, 0);
1458 if (irq < 0)
1459 return -EINVAL;
1461 if (!request_mem_region(0xb0100000, 0x10000, "LCD"))
1462 return -EBUSY;
1464 fbi = sa1100fb_init_fbinfo(&pdev->dev);
1465 ret = -ENOMEM;
1466 if (!fbi)
1467 goto failed;
1469 /* Initialize video memory */
1470 ret = sa1100fb_map_video_memory(fbi);
1471 if (ret)
1472 goto failed;
1474 ret = request_irq(irq, sa1100fb_handle_irq, IRQF_DISABLED,
1475 "LCD", fbi);
1476 if (ret) {
1477 printk(KERN_ERR "sa1100fb: request_irq failed: %d\n", ret);
1478 goto failed;
1481 #ifdef ASSABET_PAL_VIDEO
1482 if (machine_is_assabet())
1483 ASSABET_BCR_clear(ASSABET_BCR_LCD_ON);
1484 #endif
1487 * This makes sure that our colour bitfield
1488 * descriptors are correctly initialised.
1490 sa1100fb_check_var(&fbi->fb.var, &fbi->fb);
1492 platform_set_drvdata(pdev, fbi);
1494 ret = register_framebuffer(&fbi->fb);
1495 if (ret < 0)
1496 goto err_free_irq;
1498 #ifdef CONFIG_CPU_FREQ
1499 fbi->freq_transition.notifier_call = sa1100fb_freq_transition;
1500 fbi->freq_policy.notifier_call = sa1100fb_freq_policy;
1501 cpufreq_register_notifier(&fbi->freq_transition, CPUFREQ_TRANSITION_NOTIFIER);
1502 cpufreq_register_notifier(&fbi->freq_policy, CPUFREQ_POLICY_NOTIFIER);
1503 #endif
1505 /* This driver cannot be unloaded at the moment */
1506 return 0;
1508 err_free_irq:
1509 free_irq(irq, fbi);
1510 failed:
1511 platform_set_drvdata(pdev, NULL);
1512 kfree(fbi);
1513 release_mem_region(0xb0100000, 0x10000);
1514 return ret;
1517 static struct platform_driver sa1100fb_driver = {
1518 .probe = sa1100fb_probe,
1519 .suspend = sa1100fb_suspend,
1520 .resume = sa1100fb_resume,
1521 .driver = {
1522 .name = "sa11x0-fb",
1526 int __init sa1100fb_init(void)
1528 if (fb_get_options("sa1100fb", NULL))
1529 return -ENODEV;
1531 return platform_driver_register(&sa1100fb_driver);
1534 int __init sa1100fb_setup(char *options)
1536 #if 0
1537 char *this_opt;
1539 if (!options || !*options)
1540 return 0;
1542 while ((this_opt = strsep(&options, ",")) != NULL) {
1544 if (!strncmp(this_opt, "bpp:", 4))
1545 current_par.max_bpp =
1546 simple_strtoul(this_opt + 4, NULL, 0);
1548 if (!strncmp(this_opt, "lccr0:", 6))
1549 lcd_shadow.lccr0 =
1550 simple_strtoul(this_opt + 6, NULL, 0);
1551 if (!strncmp(this_opt, "lccr1:", 6)) {
1552 lcd_shadow.lccr1 =
1553 simple_strtoul(this_opt + 6, NULL, 0);
1554 current_par.max_xres =
1555 (lcd_shadow.lccr1 & 0x3ff) + 16;
1557 if (!strncmp(this_opt, "lccr2:", 6)) {
1558 lcd_shadow.lccr2 =
1559 simple_strtoul(this_opt + 6, NULL, 0);
1560 current_par.max_yres =
1561 (lcd_shadow.
1562 lccr0 & LCCR0_SDS) ? ((lcd_shadow.
1563 lccr2 & 0x3ff) +
1564 1) *
1565 2 : ((lcd_shadow.lccr2 & 0x3ff) + 1);
1567 if (!strncmp(this_opt, "lccr3:", 6))
1568 lcd_shadow.lccr3 =
1569 simple_strtoul(this_opt + 6, NULL, 0);
1571 #endif
1572 return 0;
1575 module_init(sa1100fb_init);
1576 MODULE_DESCRIPTION("StrongARM-1100/1110 framebuffer driver");
1577 MODULE_LICENSE("GPL");