4 * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
11 #include <linux/threads.h>
12 #include <linux/bootmem.h>
13 #include <linux/init.h>
15 #include <linux/mmzone.h>
16 #include <linux/module.h>
17 #include <linux/nodemask.h>
18 #include <linux/cpu.h>
19 #include <linux/notifier.h>
20 #include <asm/sparsemem.h>
22 #include <asm/system.h>
25 static int numa_enabled
= 1;
27 static int numa_debug
;
28 #define dbg(args...) if (numa_debug) { printk(KERN_INFO args); }
30 int numa_cpu_lookup_table
[NR_CPUS
];
31 cpumask_t numa_cpumask_lookup_table
[MAX_NUMNODES
];
32 struct pglist_data
*node_data
[MAX_NUMNODES
];
34 EXPORT_SYMBOL(numa_cpu_lookup_table
);
35 EXPORT_SYMBOL(numa_cpumask_lookup_table
);
36 EXPORT_SYMBOL(node_data
);
38 static bootmem_data_t __initdata plat_node_bdata
[MAX_NUMNODES
];
39 static int min_common_depth
;
40 static int n_mem_addr_cells
, n_mem_size_cells
;
43 * We need somewhere to store start/end/node for each region until we have
44 * allocated the real node_data structures.
46 #define MAX_REGIONS (MAX_LMB_REGIONS*2)
48 unsigned long start_pfn
;
49 unsigned long end_pfn
;
51 } init_node_data
[MAX_REGIONS
] __initdata
;
53 int __init
early_pfn_to_nid(unsigned long pfn
)
57 for (i
= 0; init_node_data
[i
].end_pfn
; i
++) {
58 unsigned long start_pfn
= init_node_data
[i
].start_pfn
;
59 unsigned long end_pfn
= init_node_data
[i
].end_pfn
;
61 if ((start_pfn
<= pfn
) && (pfn
< end_pfn
))
62 return init_node_data
[i
].nid
;
68 void __init
add_region(unsigned int nid
, unsigned long start_pfn
,
73 dbg("add_region nid %d start_pfn 0x%lx pages 0x%lx\n",
74 nid
, start_pfn
, pages
);
76 for (i
= 0; init_node_data
[i
].end_pfn
; i
++) {
77 if (init_node_data
[i
].nid
!= nid
)
79 if (init_node_data
[i
].end_pfn
== start_pfn
) {
80 init_node_data
[i
].end_pfn
+= pages
;
83 if (init_node_data
[i
].start_pfn
== (start_pfn
+ pages
)) {
84 init_node_data
[i
].start_pfn
-= pages
;
90 * Leave last entry NULL so we dont iterate off the end (we use
91 * entry.end_pfn to terminate the walk).
93 if (i
>= (MAX_REGIONS
- 1)) {
94 printk(KERN_ERR
"WARNING: too many memory regions in "
95 "numa code, truncating\n");
99 init_node_data
[i
].start_pfn
= start_pfn
;
100 init_node_data
[i
].end_pfn
= start_pfn
+ pages
;
101 init_node_data
[i
].nid
= nid
;
104 /* We assume init_node_data has no overlapping regions */
105 void __init
get_region(unsigned int nid
, unsigned long *start_pfn
,
106 unsigned long *end_pfn
, unsigned long *pages_present
)
111 *end_pfn
= *pages_present
= 0;
113 for (i
= 0; init_node_data
[i
].end_pfn
; i
++) {
114 if (init_node_data
[i
].nid
!= nid
)
117 *pages_present
+= init_node_data
[i
].end_pfn
-
118 init_node_data
[i
].start_pfn
;
120 if (init_node_data
[i
].start_pfn
< *start_pfn
)
121 *start_pfn
= init_node_data
[i
].start_pfn
;
123 if (init_node_data
[i
].end_pfn
> *end_pfn
)
124 *end_pfn
= init_node_data
[i
].end_pfn
;
127 /* We didnt find a matching region, return start/end as 0 */
128 if (*start_pfn
== -1UL)
132 static void __cpuinit
map_cpu_to_node(int cpu
, int node
)
134 numa_cpu_lookup_table
[cpu
] = node
;
136 dbg("adding cpu %d to node %d\n", cpu
, node
);
138 if (!(cpu_isset(cpu
, numa_cpumask_lookup_table
[node
])))
139 cpu_set(cpu
, numa_cpumask_lookup_table
[node
]);
142 #ifdef CONFIG_HOTPLUG_CPU
143 static void unmap_cpu_from_node(unsigned long cpu
)
145 int node
= numa_cpu_lookup_table
[cpu
];
147 dbg("removing cpu %lu from node %d\n", cpu
, node
);
149 if (cpu_isset(cpu
, numa_cpumask_lookup_table
[node
])) {
150 cpu_clear(cpu
, numa_cpumask_lookup_table
[node
]);
152 printk(KERN_ERR
"WARNING: cpu %lu not found in node %d\n",
156 #endif /* CONFIG_HOTPLUG_CPU */
158 static struct device_node
* __cpuinit
find_cpu_node(unsigned int cpu
)
160 unsigned int hw_cpuid
= get_hard_smp_processor_id(cpu
);
161 struct device_node
*cpu_node
= NULL
;
162 const unsigned int *interrupt_server
, *reg
;
165 while ((cpu_node
= of_find_node_by_type(cpu_node
, "cpu")) != NULL
) {
166 /* Try interrupt server first */
167 interrupt_server
= get_property(cpu_node
,
168 "ibm,ppc-interrupt-server#s", &len
);
170 len
= len
/ sizeof(u32
);
172 if (interrupt_server
&& (len
> 0)) {
174 if (interrupt_server
[len
] == hw_cpuid
)
178 reg
= get_property(cpu_node
, "reg", &len
);
179 if (reg
&& (len
> 0) && (reg
[0] == hw_cpuid
))
187 /* must hold reference to node during call */
188 static const int *of_get_associativity(struct device_node
*dev
)
190 return get_property(dev
, "ibm,associativity", NULL
);
193 /* Returns nid in the range [0..MAX_NUMNODES-1], or -1 if no useful numa
196 static int of_node_to_nid_single(struct device_node
*device
)
199 const unsigned int *tmp
;
201 if (min_common_depth
== -1)
204 tmp
= of_get_associativity(device
);
208 if (tmp
[0] >= min_common_depth
)
209 nid
= tmp
[min_common_depth
];
211 /* POWER4 LPAR uses 0xffff as invalid node */
212 if (nid
== 0xffff || nid
>= MAX_NUMNODES
)
218 /* Walk the device tree upwards, looking for an associativity id */
219 int of_node_to_nid(struct device_node
*device
)
221 struct device_node
*tmp
;
226 nid
= of_node_to_nid_single(device
);
231 device
= of_get_parent(tmp
);
238 EXPORT_SYMBOL_GPL(of_node_to_nid
);
241 * In theory, the "ibm,associativity" property may contain multiple
242 * associativity lists because a resource may be multiply connected
243 * into the machine. This resource then has different associativity
244 * characteristics relative to its multiple connections. We ignore
245 * this for now. We also assume that all cpu and memory sets have
246 * their distances represented at a common level. This won't be
247 * true for heirarchical NUMA.
249 * In any case the ibm,associativity-reference-points should give
250 * the correct depth for a normal NUMA system.
252 * - Dave Hansen <haveblue@us.ibm.com>
254 static int __init
find_min_common_depth(void)
257 const unsigned int *ref_points
;
258 struct device_node
*rtas_root
;
261 rtas_root
= of_find_node_by_path("/rtas");
267 * this property is 2 32-bit integers, each representing a level of
268 * depth in the associativity nodes. The first is for an SMP
269 * configuration (should be all 0's) and the second is for a normal
270 * NUMA configuration.
272 ref_points
= get_property(rtas_root
,
273 "ibm,associativity-reference-points", &len
);
275 if ((len
>= 1) && ref_points
) {
276 depth
= ref_points
[1];
278 dbg("NUMA: ibm,associativity-reference-points not found.\n");
281 of_node_put(rtas_root
);
286 static void __init
get_n_mem_cells(int *n_addr_cells
, int *n_size_cells
)
288 struct device_node
*memory
= NULL
;
290 memory
= of_find_node_by_type(memory
, "memory");
292 panic("numa.c: No memory nodes found!");
294 *n_addr_cells
= prom_n_addr_cells(memory
);
295 *n_size_cells
= prom_n_size_cells(memory
);
299 static unsigned long __devinit
read_n_cells(int n
, const unsigned int **buf
)
301 unsigned long result
= 0;
304 result
= (result
<< 32) | **buf
;
311 * Figure out to which domain a cpu belongs and stick it there.
312 * Return the id of the domain used.
314 static int __cpuinit
numa_setup_cpu(unsigned long lcpu
)
317 struct device_node
*cpu
= find_cpu_node(lcpu
);
324 nid
= of_node_to_nid_single(cpu
);
326 if (nid
< 0 || !node_online(nid
))
327 nid
= any_online_node(NODE_MASK_ALL
);
329 map_cpu_to_node(lcpu
, nid
);
336 static int __cpuinit
cpu_numa_callback(struct notifier_block
*nfb
,
337 unsigned long action
,
340 unsigned long lcpu
= (unsigned long)hcpu
;
341 int ret
= NOTIFY_DONE
;
345 numa_setup_cpu(lcpu
);
348 #ifdef CONFIG_HOTPLUG_CPU
350 case CPU_UP_CANCELED
:
351 unmap_cpu_from_node(lcpu
);
360 * Check and possibly modify a memory region to enforce the memory limit.
362 * Returns the size the region should have to enforce the memory limit.
363 * This will either be the original value of size, a truncated value,
364 * or zero. If the returned value of size is 0 the region should be
365 * discarded as it lies wholy above the memory limit.
367 static unsigned long __init
numa_enforce_memory_limit(unsigned long start
,
371 * We use lmb_end_of_DRAM() in here instead of memory_limit because
372 * we've already adjusted it for the limit and it takes care of
373 * having memory holes below the limit.
379 if (start
+ size
<= lmb_end_of_DRAM())
382 if (start
>= lmb_end_of_DRAM())
385 return lmb_end_of_DRAM() - start
;
388 static int __init
parse_numa_properties(void)
390 struct device_node
*cpu
= NULL
;
391 struct device_node
*memory
= NULL
;
395 if (numa_enabled
== 0) {
396 printk(KERN_WARNING
"NUMA disabled by user\n");
400 min_common_depth
= find_min_common_depth();
402 if (min_common_depth
< 0)
403 return min_common_depth
;
405 dbg("NUMA associativity depth for CPU/Memory: %d\n", min_common_depth
);
408 * Even though we connect cpus to numa domains later in SMP
409 * init, we need to know the node ids now. This is because
410 * each node to be onlined must have NODE_DATA etc backing it.
412 for_each_present_cpu(i
) {
415 cpu
= find_cpu_node(i
);
417 nid
= of_node_to_nid_single(cpu
);
421 * Don't fall back to default_nid yet -- we will plug
422 * cpus into nodes once the memory scan has discovered
427 node_set_online(nid
);
430 get_n_mem_cells(&n_mem_addr_cells
, &n_mem_size_cells
);
432 while ((memory
= of_find_node_by_type(memory
, "memory")) != NULL
) {
437 const unsigned int *memcell_buf
;
440 memcell_buf
= get_property(memory
,
441 "linux,usable-memory", &len
);
442 if (!memcell_buf
|| len
<= 0)
443 memcell_buf
= get_property(memory
, "reg", &len
);
444 if (!memcell_buf
|| len
<= 0)
448 ranges
= (len
>> 2) / (n_mem_addr_cells
+ n_mem_size_cells
);
450 /* these are order-sensitive, and modify the buffer pointer */
451 start
= read_n_cells(n_mem_addr_cells
, &memcell_buf
);
452 size
= read_n_cells(n_mem_size_cells
, &memcell_buf
);
455 * Assumption: either all memory nodes or none will
456 * have associativity properties. If none, then
457 * everything goes to default_nid.
459 nid
= of_node_to_nid_single(memory
);
462 node_set_online(nid
);
464 if (!(size
= numa_enforce_memory_limit(start
, size
))) {
471 add_region(nid
, start
>> PAGE_SHIFT
,
481 static void __init
setup_nonnuma(void)
483 unsigned long top_of_ram
= lmb_end_of_DRAM();
484 unsigned long total_ram
= lmb_phys_mem_size();
487 printk(KERN_DEBUG
"Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
488 top_of_ram
, total_ram
);
489 printk(KERN_DEBUG
"Memory hole size: %ldMB\n",
490 (top_of_ram
- total_ram
) >> 20);
492 for (i
= 0; i
< lmb
.memory
.cnt
; ++i
)
493 add_region(0, lmb
.memory
.region
[i
].base
>> PAGE_SHIFT
,
494 lmb_size_pages(&lmb
.memory
, i
));
498 void __init
dump_numa_cpu_topology(void)
501 unsigned int cpu
, count
;
503 if (min_common_depth
== -1 || !numa_enabled
)
506 for_each_online_node(node
) {
507 printk(KERN_DEBUG
"Node %d CPUs:", node
);
511 * If we used a CPU iterator here we would miss printing
512 * the holes in the cpumap.
514 for (cpu
= 0; cpu
< NR_CPUS
; cpu
++) {
515 if (cpu_isset(cpu
, numa_cpumask_lookup_table
[node
])) {
521 printk("-%u", cpu
- 1);
527 printk("-%u", NR_CPUS
- 1);
532 static void __init
dump_numa_memory_topology(void)
537 if (min_common_depth
== -1 || !numa_enabled
)
540 for_each_online_node(node
) {
543 printk(KERN_DEBUG
"Node %d Memory:", node
);
547 for (i
= 0; i
< lmb_end_of_DRAM();
548 i
+= (1 << SECTION_SIZE_BITS
)) {
549 if (early_pfn_to_nid(i
>> PAGE_SHIFT
) == node
) {
567 * Allocate some memory, satisfying the lmb or bootmem allocator where
568 * required. nid is the preferred node and end is the physical address of
569 * the highest address in the node.
571 * Returns the physical address of the memory.
573 static void __init
*careful_allocation(int nid
, unsigned long size
,
575 unsigned long end_pfn
)
578 unsigned long ret
= __lmb_alloc_base(size
, align
, end_pfn
<< PAGE_SHIFT
);
580 /* retry over all memory */
582 ret
= __lmb_alloc_base(size
, align
, lmb_end_of_DRAM());
585 panic("numa.c: cannot allocate %lu bytes on node %d",
589 * If the memory came from a previously allocated node, we must
590 * retry with the bootmem allocator.
592 new_nid
= early_pfn_to_nid(ret
>> PAGE_SHIFT
);
594 ret
= (unsigned long)__alloc_bootmem_node(NODE_DATA(new_nid
),
598 panic("numa.c: cannot allocate %lu bytes on node %d",
603 dbg("alloc_bootmem %lx %lx\n", ret
, size
);
609 static struct notifier_block __cpuinitdata ppc64_numa_nb
= {
610 .notifier_call
= cpu_numa_callback
,
611 .priority
= 1 /* Must run before sched domains notifier. */
614 void __init
do_init_bootmem(void)
620 max_low_pfn
= lmb_end_of_DRAM() >> PAGE_SHIFT
;
621 max_pfn
= max_low_pfn
;
623 if (parse_numa_properties())
626 dump_numa_memory_topology();
628 register_cpu_notifier(&ppc64_numa_nb
);
629 cpu_numa_callback(&ppc64_numa_nb
, CPU_UP_PREPARE
,
630 (void *)(unsigned long)boot_cpuid
);
632 for_each_online_node(nid
) {
633 unsigned long start_pfn
, end_pfn
, pages_present
;
634 unsigned long bootmem_paddr
;
635 unsigned long bootmap_pages
;
637 get_region(nid
, &start_pfn
, &end_pfn
, &pages_present
);
639 /* Allocate the node structure node local if possible */
640 NODE_DATA(nid
) = careful_allocation(nid
,
641 sizeof(struct pglist_data
),
642 SMP_CACHE_BYTES
, end_pfn
);
643 NODE_DATA(nid
) = __va(NODE_DATA(nid
));
644 memset(NODE_DATA(nid
), 0, sizeof(struct pglist_data
));
646 dbg("node %d\n", nid
);
647 dbg("NODE_DATA() = %p\n", NODE_DATA(nid
));
649 NODE_DATA(nid
)->bdata
= &plat_node_bdata
[nid
];
650 NODE_DATA(nid
)->node_start_pfn
= start_pfn
;
651 NODE_DATA(nid
)->node_spanned_pages
= end_pfn
- start_pfn
;
653 if (NODE_DATA(nid
)->node_spanned_pages
== 0)
656 dbg("start_paddr = %lx\n", start_pfn
<< PAGE_SHIFT
);
657 dbg("end_paddr = %lx\n", end_pfn
<< PAGE_SHIFT
);
659 bootmap_pages
= bootmem_bootmap_pages(end_pfn
- start_pfn
);
660 bootmem_paddr
= (unsigned long)careful_allocation(nid
,
661 bootmap_pages
<< PAGE_SHIFT
,
663 memset(__va(bootmem_paddr
), 0, bootmap_pages
<< PAGE_SHIFT
);
665 dbg("bootmap_paddr = %lx\n", bootmem_paddr
);
667 init_bootmem_node(NODE_DATA(nid
), bootmem_paddr
>> PAGE_SHIFT
,
670 /* Add free regions on this node */
671 for (i
= 0; init_node_data
[i
].end_pfn
; i
++) {
672 unsigned long start
, end
;
674 if (init_node_data
[i
].nid
!= nid
)
677 start
= init_node_data
[i
].start_pfn
<< PAGE_SHIFT
;
678 end
= init_node_data
[i
].end_pfn
<< PAGE_SHIFT
;
680 dbg("free_bootmem %lx %lx\n", start
, end
- start
);
681 free_bootmem_node(NODE_DATA(nid
), start
, end
- start
);
684 /* Mark reserved regions on this node */
685 for (i
= 0; i
< lmb
.reserved
.cnt
; i
++) {
686 unsigned long physbase
= lmb
.reserved
.region
[i
].base
;
687 unsigned long size
= lmb
.reserved
.region
[i
].size
;
688 unsigned long start_paddr
= start_pfn
<< PAGE_SHIFT
;
689 unsigned long end_paddr
= end_pfn
<< PAGE_SHIFT
;
691 if (early_pfn_to_nid(physbase
>> PAGE_SHIFT
) != nid
&&
692 early_pfn_to_nid((physbase
+size
-1) >> PAGE_SHIFT
) != nid
)
695 if (physbase
< end_paddr
&&
696 (physbase
+size
) > start_paddr
) {
698 if (physbase
< start_paddr
) {
699 size
-= start_paddr
- physbase
;
700 physbase
= start_paddr
;
703 if (size
> end_paddr
- physbase
)
704 size
= end_paddr
- physbase
;
706 dbg("reserve_bootmem %lx %lx\n", physbase
,
708 reserve_bootmem_node(NODE_DATA(nid
), physbase
,
713 /* Add regions into sparsemem */
714 for (i
= 0; init_node_data
[i
].end_pfn
; i
++) {
715 unsigned long start
, end
;
717 if (init_node_data
[i
].nid
!= nid
)
720 start
= init_node_data
[i
].start_pfn
;
721 end
= init_node_data
[i
].end_pfn
;
723 memory_present(nid
, start
, end
);
728 void __init
paging_init(void)
730 unsigned long zones_size
[MAX_NR_ZONES
];
731 unsigned long zholes_size
[MAX_NR_ZONES
];
734 memset(zones_size
, 0, sizeof(zones_size
));
735 memset(zholes_size
, 0, sizeof(zholes_size
));
737 for_each_online_node(nid
) {
738 unsigned long start_pfn
, end_pfn
, pages_present
;
740 get_region(nid
, &start_pfn
, &end_pfn
, &pages_present
);
742 zones_size
[ZONE_DMA
] = end_pfn
- start_pfn
;
743 zholes_size
[ZONE_DMA
] = zones_size
[ZONE_DMA
] - pages_present
;
745 dbg("free_area_init node %d %lx %lx (hole: %lx)\n", nid
,
746 zones_size
[ZONE_DMA
], start_pfn
, zholes_size
[ZONE_DMA
]);
748 free_area_init_node(nid
, NODE_DATA(nid
), zones_size
, start_pfn
,
753 static int __init
early_numa(char *p
)
758 if (strstr(p
, "off"))
761 if (strstr(p
, "debug"))
766 early_param("numa", early_numa
);
768 #ifdef CONFIG_MEMORY_HOTPLUG
770 * Find the node associated with a hot added memory section. Section
771 * corresponds to a SPARSEMEM section, not an LMB. It is assumed that
772 * sections are fully contained within a single LMB.
774 int hot_add_scn_to_nid(unsigned long scn_addr
)
776 struct device_node
*memory
= NULL
;
778 int default_nid
= any_online_node(NODE_MASK_ALL
);
781 if (!numa_enabled
|| (min_common_depth
< 0))
784 while ((memory
= of_find_node_by_type(memory
, "memory")) != NULL
) {
785 unsigned long start
, size
;
787 const unsigned int *memcell_buf
;
790 memcell_buf
= get_property(memory
, "reg", &len
);
791 if (!memcell_buf
|| len
<= 0)
795 ranges
= (len
>> 2) / (n_mem_addr_cells
+ n_mem_size_cells
);
797 start
= read_n_cells(n_mem_addr_cells
, &memcell_buf
);
798 size
= read_n_cells(n_mem_size_cells
, &memcell_buf
);
799 nid
= of_node_to_nid_single(memory
);
801 /* Domains not present at boot default to 0 */
802 if (nid
< 0 || !node_online(nid
))
805 if ((scn_addr
>= start
) && (scn_addr
< (start
+ size
))) {
810 if (--ranges
) /* process all ranges in cell */
813 BUG(); /* section address should be found above */
816 /* Temporary code to ensure that returned node is not empty */
819 while (NODE_DATA(nid
)->node_spanned_pages
== 0) {
820 node_clear(nid
, nodes
);
821 nid
= any_online_node(nodes
);
825 #endif /* CONFIG_MEMORY_HOTPLUG */