Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux-2.6
[linux-2.6/linux-mips/linux-dm7025.git] / arch / powerpc / mm / hugetlbpage.c
bloba02266dad215cc3d1065b69e542bf48f8e2e27be
1 /*
2 * PPC64 (POWER4) Huge TLB Page Support for Kernel.
4 * Copyright (C) 2003 David Gibson, IBM Corporation.
6 * Based on the IA-32 version:
7 * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com>
8 */
10 #include <linux/init.h>
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/hugetlb.h>
14 #include <linux/pagemap.h>
15 #include <linux/slab.h>
16 #include <linux/err.h>
17 #include <linux/sysctl.h>
18 #include <asm/mman.h>
19 #include <asm/pgalloc.h>
20 #include <asm/tlb.h>
21 #include <asm/tlbflush.h>
22 #include <asm/mmu_context.h>
23 #include <asm/machdep.h>
24 #include <asm/cputable.h>
25 #include <asm/spu.h>
27 #define HPAGE_SHIFT_64K 16
28 #define HPAGE_SHIFT_16M 24
30 #define NUM_LOW_AREAS (0x100000000UL >> SID_SHIFT)
31 #define NUM_HIGH_AREAS (PGTABLE_RANGE >> HTLB_AREA_SHIFT)
33 unsigned int hugepte_shift;
34 #define PTRS_PER_HUGEPTE (1 << hugepte_shift)
35 #define HUGEPTE_TABLE_SIZE (sizeof(pte_t) << hugepte_shift)
37 #define HUGEPD_SHIFT (HPAGE_SHIFT + hugepte_shift)
38 #define HUGEPD_SIZE (1UL << HUGEPD_SHIFT)
39 #define HUGEPD_MASK (~(HUGEPD_SIZE-1))
41 #define huge_pgtable_cache (pgtable_cache[HUGEPTE_CACHE_NUM])
43 /* Flag to mark huge PD pointers. This means pmd_bad() and pud_bad()
44 * will choke on pointers to hugepte tables, which is handy for
45 * catching screwups early. */
46 #define HUGEPD_OK 0x1
48 typedef struct { unsigned long pd; } hugepd_t;
50 #define hugepd_none(hpd) ((hpd).pd == 0)
52 static inline pte_t *hugepd_page(hugepd_t hpd)
54 BUG_ON(!(hpd.pd & HUGEPD_OK));
55 return (pte_t *)(hpd.pd & ~HUGEPD_OK);
58 static inline pte_t *hugepte_offset(hugepd_t *hpdp, unsigned long addr)
60 unsigned long idx = ((addr >> HPAGE_SHIFT) & (PTRS_PER_HUGEPTE-1));
61 pte_t *dir = hugepd_page(*hpdp);
63 return dir + idx;
66 static int __hugepte_alloc(struct mm_struct *mm, hugepd_t *hpdp,
67 unsigned long address)
69 pte_t *new = kmem_cache_alloc(huge_pgtable_cache,
70 GFP_KERNEL|__GFP_REPEAT);
72 if (! new)
73 return -ENOMEM;
75 spin_lock(&mm->page_table_lock);
76 if (!hugepd_none(*hpdp))
77 kmem_cache_free(huge_pgtable_cache, new);
78 else
79 hpdp->pd = (unsigned long)new | HUGEPD_OK;
80 spin_unlock(&mm->page_table_lock);
81 return 0;
84 /* Base page size affects how we walk hugetlb page tables */
85 #ifdef CONFIG_PPC_64K_PAGES
86 #define hpmd_offset(pud, addr) pmd_offset(pud, addr)
87 #define hpmd_alloc(mm, pud, addr) pmd_alloc(mm, pud, addr)
88 #else
89 static inline
90 pmd_t *hpmd_offset(pud_t *pud, unsigned long addr)
92 if (HPAGE_SHIFT == HPAGE_SHIFT_64K)
93 return pmd_offset(pud, addr);
94 else
95 return (pmd_t *) pud;
97 static inline
98 pmd_t *hpmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long addr)
100 if (HPAGE_SHIFT == HPAGE_SHIFT_64K)
101 return pmd_alloc(mm, pud, addr);
102 else
103 return (pmd_t *) pud;
105 #endif
107 /* Modelled after find_linux_pte() */
108 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
110 pgd_t *pg;
111 pud_t *pu;
112 pmd_t *pm;
114 BUG_ON(get_slice_psize(mm, addr) != mmu_huge_psize);
116 addr &= HPAGE_MASK;
118 pg = pgd_offset(mm, addr);
119 if (!pgd_none(*pg)) {
120 pu = pud_offset(pg, addr);
121 if (!pud_none(*pu)) {
122 pm = hpmd_offset(pu, addr);
123 if (!pmd_none(*pm))
124 return hugepte_offset((hugepd_t *)pm, addr);
128 return NULL;
131 pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr)
133 pgd_t *pg;
134 pud_t *pu;
135 pmd_t *pm;
136 hugepd_t *hpdp = NULL;
138 BUG_ON(get_slice_psize(mm, addr) != mmu_huge_psize);
140 addr &= HPAGE_MASK;
142 pg = pgd_offset(mm, addr);
143 pu = pud_alloc(mm, pg, addr);
145 if (pu) {
146 pm = hpmd_alloc(mm, pu, addr);
147 if (pm)
148 hpdp = (hugepd_t *)pm;
151 if (! hpdp)
152 return NULL;
154 if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr))
155 return NULL;
157 return hugepte_offset(hpdp, addr);
160 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
162 return 0;
165 static void free_hugepte_range(struct mmu_gather *tlb, hugepd_t *hpdp)
167 pte_t *hugepte = hugepd_page(*hpdp);
169 hpdp->pd = 0;
170 tlb->need_flush = 1;
171 pgtable_free_tlb(tlb, pgtable_free_cache(hugepte, HUGEPTE_CACHE_NUM,
172 PGF_CACHENUM_MASK));
175 static void hugetlb_free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
176 unsigned long addr, unsigned long end,
177 unsigned long floor, unsigned long ceiling)
179 pmd_t *pmd;
180 unsigned long next;
181 unsigned long start;
183 start = addr;
184 pmd = pmd_offset(pud, addr);
185 do {
186 next = pmd_addr_end(addr, end);
187 if (pmd_none(*pmd))
188 continue;
189 free_hugepte_range(tlb, (hugepd_t *)pmd);
190 } while (pmd++, addr = next, addr != end);
192 start &= PUD_MASK;
193 if (start < floor)
194 return;
195 if (ceiling) {
196 ceiling &= PUD_MASK;
197 if (!ceiling)
198 return;
200 if (end - 1 > ceiling - 1)
201 return;
203 pmd = pmd_offset(pud, start);
204 pud_clear(pud);
205 pmd_free_tlb(tlb, pmd);
208 static void hugetlb_free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
209 unsigned long addr, unsigned long end,
210 unsigned long floor, unsigned long ceiling)
212 pud_t *pud;
213 unsigned long next;
214 unsigned long start;
216 start = addr;
217 pud = pud_offset(pgd, addr);
218 do {
219 next = pud_addr_end(addr, end);
220 #ifdef CONFIG_PPC_64K_PAGES
221 if (pud_none_or_clear_bad(pud))
222 continue;
223 hugetlb_free_pmd_range(tlb, pud, addr, next, floor, ceiling);
224 #else
225 if (HPAGE_SHIFT == HPAGE_SHIFT_64K) {
226 if (pud_none_or_clear_bad(pud))
227 continue;
228 hugetlb_free_pmd_range(tlb, pud, addr, next, floor, ceiling);
229 } else {
230 if (pud_none(*pud))
231 continue;
232 free_hugepte_range(tlb, (hugepd_t *)pud);
234 #endif
235 } while (pud++, addr = next, addr != end);
237 start &= PGDIR_MASK;
238 if (start < floor)
239 return;
240 if (ceiling) {
241 ceiling &= PGDIR_MASK;
242 if (!ceiling)
243 return;
245 if (end - 1 > ceiling - 1)
246 return;
248 pud = pud_offset(pgd, start);
249 pgd_clear(pgd);
250 pud_free_tlb(tlb, pud);
254 * This function frees user-level page tables of a process.
256 * Must be called with pagetable lock held.
258 void hugetlb_free_pgd_range(struct mmu_gather **tlb,
259 unsigned long addr, unsigned long end,
260 unsigned long floor, unsigned long ceiling)
262 pgd_t *pgd;
263 unsigned long next;
264 unsigned long start;
267 * Comments below take from the normal free_pgd_range(). They
268 * apply here too. The tests against HUGEPD_MASK below are
269 * essential, because we *don't* test for this at the bottom
270 * level. Without them we'll attempt to free a hugepte table
271 * when we unmap just part of it, even if there are other
272 * active mappings using it.
274 * The next few lines have given us lots of grief...
276 * Why are we testing HUGEPD* at this top level? Because
277 * often there will be no work to do at all, and we'd prefer
278 * not to go all the way down to the bottom just to discover
279 * that.
281 * Why all these "- 1"s? Because 0 represents both the bottom
282 * of the address space and the top of it (using -1 for the
283 * top wouldn't help much: the masks would do the wrong thing).
284 * The rule is that addr 0 and floor 0 refer to the bottom of
285 * the address space, but end 0 and ceiling 0 refer to the top
286 * Comparisons need to use "end - 1" and "ceiling - 1" (though
287 * that end 0 case should be mythical).
289 * Wherever addr is brought up or ceiling brought down, we
290 * must be careful to reject "the opposite 0" before it
291 * confuses the subsequent tests. But what about where end is
292 * brought down by HUGEPD_SIZE below? no, end can't go down to
293 * 0 there.
295 * Whereas we round start (addr) and ceiling down, by different
296 * masks at different levels, in order to test whether a table
297 * now has no other vmas using it, so can be freed, we don't
298 * bother to round floor or end up - the tests don't need that.
301 addr &= HUGEPD_MASK;
302 if (addr < floor) {
303 addr += HUGEPD_SIZE;
304 if (!addr)
305 return;
307 if (ceiling) {
308 ceiling &= HUGEPD_MASK;
309 if (!ceiling)
310 return;
312 if (end - 1 > ceiling - 1)
313 end -= HUGEPD_SIZE;
314 if (addr > end - 1)
315 return;
317 start = addr;
318 pgd = pgd_offset((*tlb)->mm, addr);
319 do {
320 BUG_ON(get_slice_psize((*tlb)->mm, addr) != mmu_huge_psize);
321 next = pgd_addr_end(addr, end);
322 if (pgd_none_or_clear_bad(pgd))
323 continue;
324 hugetlb_free_pud_range(*tlb, pgd, addr, next, floor, ceiling);
325 } while (pgd++, addr = next, addr != end);
328 void set_huge_pte_at(struct mm_struct *mm, unsigned long addr,
329 pte_t *ptep, pte_t pte)
331 if (pte_present(*ptep)) {
332 /* We open-code pte_clear because we need to pass the right
333 * argument to hpte_need_flush (huge / !huge). Might not be
334 * necessary anymore if we make hpte_need_flush() get the
335 * page size from the slices
337 pte_update(mm, addr & HPAGE_MASK, ptep, ~0UL, 1);
339 *ptep = __pte(pte_val(pte) & ~_PAGE_HPTEFLAGS);
342 pte_t huge_ptep_get_and_clear(struct mm_struct *mm, unsigned long addr,
343 pte_t *ptep)
345 unsigned long old = pte_update(mm, addr, ptep, ~0UL, 1);
346 return __pte(old);
349 struct page *
350 follow_huge_addr(struct mm_struct *mm, unsigned long address, int write)
352 pte_t *ptep;
353 struct page *page;
355 if (get_slice_psize(mm, address) != mmu_huge_psize)
356 return ERR_PTR(-EINVAL);
358 ptep = huge_pte_offset(mm, address);
359 page = pte_page(*ptep);
360 if (page)
361 page += (address % HPAGE_SIZE) / PAGE_SIZE;
363 return page;
366 int pmd_huge(pmd_t pmd)
368 return 0;
371 struct page *
372 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
373 pmd_t *pmd, int write)
375 BUG();
376 return NULL;
380 unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
381 unsigned long len, unsigned long pgoff,
382 unsigned long flags)
384 return slice_get_unmapped_area(addr, len, flags,
385 mmu_huge_psize, 1, 0);
389 * Called by asm hashtable.S for doing lazy icache flush
391 static unsigned int hash_huge_page_do_lazy_icache(unsigned long rflags,
392 pte_t pte, int trap)
394 struct page *page;
395 int i;
397 if (!pfn_valid(pte_pfn(pte)))
398 return rflags;
400 page = pte_page(pte);
402 /* page is dirty */
403 if (!test_bit(PG_arch_1, &page->flags) && !PageReserved(page)) {
404 if (trap == 0x400) {
405 for (i = 0; i < (HPAGE_SIZE / PAGE_SIZE); i++)
406 __flush_dcache_icache(page_address(page+i));
407 set_bit(PG_arch_1, &page->flags);
408 } else {
409 rflags |= HPTE_R_N;
412 return rflags;
415 int hash_huge_page(struct mm_struct *mm, unsigned long access,
416 unsigned long ea, unsigned long vsid, int local,
417 unsigned long trap)
419 pte_t *ptep;
420 unsigned long old_pte, new_pte;
421 unsigned long va, rflags, pa;
422 long slot;
423 int err = 1;
424 int ssize = user_segment_size(ea);
426 ptep = huge_pte_offset(mm, ea);
428 /* Search the Linux page table for a match with va */
429 va = hpt_va(ea, vsid, ssize);
432 * If no pte found or not present, send the problem up to
433 * do_page_fault
435 if (unlikely(!ptep || pte_none(*ptep)))
436 goto out;
439 * Check the user's access rights to the page. If access should be
440 * prevented then send the problem up to do_page_fault.
442 if (unlikely(access & ~pte_val(*ptep)))
443 goto out;
445 * At this point, we have a pte (old_pte) which can be used to build
446 * or update an HPTE. There are 2 cases:
448 * 1. There is a valid (present) pte with no associated HPTE (this is
449 * the most common case)
450 * 2. There is a valid (present) pte with an associated HPTE. The
451 * current values of the pp bits in the HPTE prevent access
452 * because we are doing software DIRTY bit management and the
453 * page is currently not DIRTY.
457 do {
458 old_pte = pte_val(*ptep);
459 if (old_pte & _PAGE_BUSY)
460 goto out;
461 new_pte = old_pte | _PAGE_BUSY |
462 _PAGE_ACCESSED | _PAGE_HASHPTE;
463 } while(old_pte != __cmpxchg_u64((unsigned long *)ptep,
464 old_pte, new_pte));
466 rflags = 0x2 | (!(new_pte & _PAGE_RW));
467 /* _PAGE_EXEC -> HW_NO_EXEC since it's inverted */
468 rflags |= ((new_pte & _PAGE_EXEC) ? 0 : HPTE_R_N);
469 if (!cpu_has_feature(CPU_FTR_COHERENT_ICACHE))
470 /* No CPU has hugepages but lacks no execute, so we
471 * don't need to worry about that case */
472 rflags = hash_huge_page_do_lazy_icache(rflags, __pte(old_pte),
473 trap);
475 /* Check if pte already has an hpte (case 2) */
476 if (unlikely(old_pte & _PAGE_HASHPTE)) {
477 /* There MIGHT be an HPTE for this pte */
478 unsigned long hash, slot;
480 hash = hpt_hash(va, HPAGE_SHIFT, ssize);
481 if (old_pte & _PAGE_F_SECOND)
482 hash = ~hash;
483 slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
484 slot += (old_pte & _PAGE_F_GIX) >> 12;
486 if (ppc_md.hpte_updatepp(slot, rflags, va, mmu_huge_psize,
487 ssize, local) == -1)
488 old_pte &= ~_PAGE_HPTEFLAGS;
491 if (likely(!(old_pte & _PAGE_HASHPTE))) {
492 unsigned long hash = hpt_hash(va, HPAGE_SHIFT, ssize);
493 unsigned long hpte_group;
495 pa = pte_pfn(__pte(old_pte)) << PAGE_SHIFT;
497 repeat:
498 hpte_group = ((hash & htab_hash_mask) *
499 HPTES_PER_GROUP) & ~0x7UL;
501 /* clear HPTE slot informations in new PTE */
502 new_pte = (new_pte & ~_PAGE_HPTEFLAGS) | _PAGE_HASHPTE;
504 /* Add in WIMG bits */
505 /* XXX We should store these in the pte */
506 /* --BenH: I think they are ... */
507 rflags |= _PAGE_COHERENT;
509 /* Insert into the hash table, primary slot */
510 slot = ppc_md.hpte_insert(hpte_group, va, pa, rflags, 0,
511 mmu_huge_psize, ssize);
513 /* Primary is full, try the secondary */
514 if (unlikely(slot == -1)) {
515 hpte_group = ((~hash & htab_hash_mask) *
516 HPTES_PER_GROUP) & ~0x7UL;
517 slot = ppc_md.hpte_insert(hpte_group, va, pa, rflags,
518 HPTE_V_SECONDARY,
519 mmu_huge_psize, ssize);
520 if (slot == -1) {
521 if (mftb() & 0x1)
522 hpte_group = ((hash & htab_hash_mask) *
523 HPTES_PER_GROUP)&~0x7UL;
525 ppc_md.hpte_remove(hpte_group);
526 goto repeat;
530 if (unlikely(slot == -2))
531 panic("hash_huge_page: pte_insert failed\n");
533 new_pte |= (slot << 12) & (_PAGE_F_SECOND | _PAGE_F_GIX);
537 * No need to use ldarx/stdcx here
539 *ptep = __pte(new_pte & ~_PAGE_BUSY);
541 err = 0;
543 out:
544 return err;
547 void set_huge_psize(int psize)
549 /* Check that it is a page size supported by the hardware and
550 * that it fits within pagetable limits. */
551 if (mmu_psize_defs[psize].shift && mmu_psize_defs[psize].shift < SID_SHIFT &&
552 (mmu_psize_defs[psize].shift > MIN_HUGEPTE_SHIFT ||
553 mmu_psize_defs[psize].shift == HPAGE_SHIFT_64K)) {
554 HPAGE_SHIFT = mmu_psize_defs[psize].shift;
555 mmu_huge_psize = psize;
556 #ifdef CONFIG_PPC_64K_PAGES
557 hugepte_shift = (PMD_SHIFT-HPAGE_SHIFT);
558 #else
559 if (HPAGE_SHIFT == HPAGE_SHIFT_64K)
560 hugepte_shift = (PMD_SHIFT-HPAGE_SHIFT);
561 else
562 hugepte_shift = (PUD_SHIFT-HPAGE_SHIFT);
563 #endif
565 } else
566 HPAGE_SHIFT = 0;
569 static int __init hugepage_setup_sz(char *str)
571 unsigned long long size;
572 int mmu_psize = -1;
573 int shift;
575 size = memparse(str, &str);
577 shift = __ffs(size);
578 switch (shift) {
579 #ifndef CONFIG_PPC_64K_PAGES
580 case HPAGE_SHIFT_64K:
581 mmu_psize = MMU_PAGE_64K;
582 break;
583 #endif
584 case HPAGE_SHIFT_16M:
585 mmu_psize = MMU_PAGE_16M;
586 break;
589 if (mmu_psize >=0 && mmu_psize_defs[mmu_psize].shift)
590 set_huge_psize(mmu_psize);
591 else
592 printk(KERN_WARNING "Invalid huge page size specified(%llu)\n", size);
594 return 1;
596 __setup("hugepagesz=", hugepage_setup_sz);
598 static void zero_ctor(struct kmem_cache *cache, void *addr)
600 memset(addr, 0, kmem_cache_size(cache));
603 static int __init hugetlbpage_init(void)
605 if (!cpu_has_feature(CPU_FTR_16M_PAGE))
606 return -ENODEV;
608 huge_pgtable_cache = kmem_cache_create("hugepte_cache",
609 HUGEPTE_TABLE_SIZE,
610 HUGEPTE_TABLE_SIZE,
612 zero_ctor);
613 if (! huge_pgtable_cache)
614 panic("hugetlbpage_init(): could not create hugepte cache\n");
616 return 0;
619 module_init(hugetlbpage_init);