Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux-2.6
[linux-2.6/linux-mips/linux-dm7025.git] / drivers / md / raid5.c
blob087eee0cb80913fabc692187eed59e981c5eb95e
1 /*
2 * raid5.c : Multiple Devices driver for Linux
3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 * Copyright (C) 1999, 2000 Ingo Molnar
5 * Copyright (C) 2002, 2003 H. Peter Anvin
7 * RAID-4/5/6 management functions.
8 * Thanks to Penguin Computing for making the RAID-6 development possible
9 * by donating a test server!
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
22 * BITMAP UNPLUGGING:
24 * The sequencing for updating the bitmap reliably is a little
25 * subtle (and I got it wrong the first time) so it deserves some
26 * explanation.
28 * We group bitmap updates into batches. Each batch has a number.
29 * We may write out several batches at once, but that isn't very important.
30 * conf->bm_write is the number of the last batch successfully written.
31 * conf->bm_flush is the number of the last batch that was closed to
32 * new additions.
33 * When we discover that we will need to write to any block in a stripe
34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35 * the number of the batch it will be in. This is bm_flush+1.
36 * When we are ready to do a write, if that batch hasn't been written yet,
37 * we plug the array and queue the stripe for later.
38 * When an unplug happens, we increment bm_flush, thus closing the current
39 * batch.
40 * When we notice that bm_flush > bm_write, we write out all pending updates
41 * to the bitmap, and advance bm_write to where bm_flush was.
42 * This may occasionally write a bit out twice, but is sure never to
43 * miss any bits.
46 #include <linux/module.h>
47 #include <linux/slab.h>
48 #include <linux/highmem.h>
49 #include <linux/bitops.h>
50 #include <linux/kthread.h>
51 #include <asm/atomic.h>
52 #include "raid6.h"
54 #include <linux/raid/bitmap.h>
55 #include <linux/async_tx.h>
58 * Stripe cache
61 #define NR_STRIPES 256
62 #define STRIPE_SIZE PAGE_SIZE
63 #define STRIPE_SHIFT (PAGE_SHIFT - 9)
64 #define STRIPE_SECTORS (STRIPE_SIZE>>9)
65 #define IO_THRESHOLD 1
66 #define BYPASS_THRESHOLD 1
67 #define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head))
68 #define HASH_MASK (NR_HASH - 1)
70 #define stripe_hash(conf, sect) (&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
72 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
73 * order without overlap. There may be several bio's per stripe+device, and
74 * a bio could span several devices.
75 * When walking this list for a particular stripe+device, we must never proceed
76 * beyond a bio that extends past this device, as the next bio might no longer
77 * be valid.
78 * This macro is used to determine the 'next' bio in the list, given the sector
79 * of the current stripe+device
81 #define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
83 * The following can be used to debug the driver
85 #define RAID5_PARANOIA 1
86 #if RAID5_PARANOIA && defined(CONFIG_SMP)
87 # define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
88 #else
89 # define CHECK_DEVLOCK()
90 #endif
92 #ifdef DEBUG
93 #define inline
94 #define __inline__
95 #endif
97 #if !RAID6_USE_EMPTY_ZERO_PAGE
98 /* In .bss so it's zeroed */
99 const char raid6_empty_zero_page[PAGE_SIZE] __attribute__((aligned(256)));
100 #endif
102 static inline int raid6_next_disk(int disk, int raid_disks)
104 disk++;
105 return (disk < raid_disks) ? disk : 0;
108 static void return_io(struct bio *return_bi)
110 struct bio *bi = return_bi;
111 while (bi) {
113 return_bi = bi->bi_next;
114 bi->bi_next = NULL;
115 bi->bi_size = 0;
116 bi->bi_end_io(bi,
117 test_bit(BIO_UPTODATE, &bi->bi_flags)
118 ? 0 : -EIO);
119 bi = return_bi;
123 static void print_raid5_conf (raid5_conf_t *conf);
125 static void __release_stripe(raid5_conf_t *conf, struct stripe_head *sh)
127 if (atomic_dec_and_test(&sh->count)) {
128 BUG_ON(!list_empty(&sh->lru));
129 BUG_ON(atomic_read(&conf->active_stripes)==0);
130 if (test_bit(STRIPE_HANDLE, &sh->state)) {
131 if (test_bit(STRIPE_DELAYED, &sh->state)) {
132 list_add_tail(&sh->lru, &conf->delayed_list);
133 blk_plug_device(conf->mddev->queue);
134 } else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
135 sh->bm_seq - conf->seq_write > 0) {
136 list_add_tail(&sh->lru, &conf->bitmap_list);
137 blk_plug_device(conf->mddev->queue);
138 } else {
139 clear_bit(STRIPE_BIT_DELAY, &sh->state);
140 list_add_tail(&sh->lru, &conf->handle_list);
142 md_wakeup_thread(conf->mddev->thread);
143 } else {
144 BUG_ON(sh->ops.pending);
145 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
146 atomic_dec(&conf->preread_active_stripes);
147 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
148 md_wakeup_thread(conf->mddev->thread);
150 atomic_dec(&conf->active_stripes);
151 if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
152 list_add_tail(&sh->lru, &conf->inactive_list);
153 wake_up(&conf->wait_for_stripe);
154 if (conf->retry_read_aligned)
155 md_wakeup_thread(conf->mddev->thread);
160 static void release_stripe(struct stripe_head *sh)
162 raid5_conf_t *conf = sh->raid_conf;
163 unsigned long flags;
165 spin_lock_irqsave(&conf->device_lock, flags);
166 __release_stripe(conf, sh);
167 spin_unlock_irqrestore(&conf->device_lock, flags);
170 static inline void remove_hash(struct stripe_head *sh)
172 pr_debug("remove_hash(), stripe %llu\n",
173 (unsigned long long)sh->sector);
175 hlist_del_init(&sh->hash);
178 static inline void insert_hash(raid5_conf_t *conf, struct stripe_head *sh)
180 struct hlist_head *hp = stripe_hash(conf, sh->sector);
182 pr_debug("insert_hash(), stripe %llu\n",
183 (unsigned long long)sh->sector);
185 CHECK_DEVLOCK();
186 hlist_add_head(&sh->hash, hp);
190 /* find an idle stripe, make sure it is unhashed, and return it. */
191 static struct stripe_head *get_free_stripe(raid5_conf_t *conf)
193 struct stripe_head *sh = NULL;
194 struct list_head *first;
196 CHECK_DEVLOCK();
197 if (list_empty(&conf->inactive_list))
198 goto out;
199 first = conf->inactive_list.next;
200 sh = list_entry(first, struct stripe_head, lru);
201 list_del_init(first);
202 remove_hash(sh);
203 atomic_inc(&conf->active_stripes);
204 out:
205 return sh;
208 static void shrink_buffers(struct stripe_head *sh, int num)
210 struct page *p;
211 int i;
213 for (i=0; i<num ; i++) {
214 p = sh->dev[i].page;
215 if (!p)
216 continue;
217 sh->dev[i].page = NULL;
218 put_page(p);
222 static int grow_buffers(struct stripe_head *sh, int num)
224 int i;
226 for (i=0; i<num; i++) {
227 struct page *page;
229 if (!(page = alloc_page(GFP_KERNEL))) {
230 return 1;
232 sh->dev[i].page = page;
234 return 0;
237 static void raid5_build_block (struct stripe_head *sh, int i);
239 static void init_stripe(struct stripe_head *sh, sector_t sector, int pd_idx, int disks)
241 raid5_conf_t *conf = sh->raid_conf;
242 int i;
244 BUG_ON(atomic_read(&sh->count) != 0);
245 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
246 BUG_ON(sh->ops.pending || sh->ops.ack || sh->ops.complete);
248 CHECK_DEVLOCK();
249 pr_debug("init_stripe called, stripe %llu\n",
250 (unsigned long long)sh->sector);
252 remove_hash(sh);
254 sh->sector = sector;
255 sh->pd_idx = pd_idx;
256 sh->state = 0;
258 sh->disks = disks;
260 for (i = sh->disks; i--; ) {
261 struct r5dev *dev = &sh->dev[i];
263 if (dev->toread || dev->read || dev->towrite || dev->written ||
264 test_bit(R5_LOCKED, &dev->flags)) {
265 printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
266 (unsigned long long)sh->sector, i, dev->toread,
267 dev->read, dev->towrite, dev->written,
268 test_bit(R5_LOCKED, &dev->flags));
269 BUG();
271 dev->flags = 0;
272 raid5_build_block(sh, i);
274 insert_hash(conf, sh);
277 static struct stripe_head *__find_stripe(raid5_conf_t *conf, sector_t sector, int disks)
279 struct stripe_head *sh;
280 struct hlist_node *hn;
282 CHECK_DEVLOCK();
283 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
284 hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
285 if (sh->sector == sector && sh->disks == disks)
286 return sh;
287 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
288 return NULL;
291 static void unplug_slaves(mddev_t *mddev);
292 static void raid5_unplug_device(struct request_queue *q);
294 static struct stripe_head *get_active_stripe(raid5_conf_t *conf, sector_t sector, int disks,
295 int pd_idx, int noblock)
297 struct stripe_head *sh;
299 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
301 spin_lock_irq(&conf->device_lock);
303 do {
304 wait_event_lock_irq(conf->wait_for_stripe,
305 conf->quiesce == 0,
306 conf->device_lock, /* nothing */);
307 sh = __find_stripe(conf, sector, disks);
308 if (!sh) {
309 if (!conf->inactive_blocked)
310 sh = get_free_stripe(conf);
311 if (noblock && sh == NULL)
312 break;
313 if (!sh) {
314 conf->inactive_blocked = 1;
315 wait_event_lock_irq(conf->wait_for_stripe,
316 !list_empty(&conf->inactive_list) &&
317 (atomic_read(&conf->active_stripes)
318 < (conf->max_nr_stripes *3/4)
319 || !conf->inactive_blocked),
320 conf->device_lock,
321 raid5_unplug_device(conf->mddev->queue)
323 conf->inactive_blocked = 0;
324 } else
325 init_stripe(sh, sector, pd_idx, disks);
326 } else {
327 if (atomic_read(&sh->count)) {
328 BUG_ON(!list_empty(&sh->lru));
329 } else {
330 if (!test_bit(STRIPE_HANDLE, &sh->state))
331 atomic_inc(&conf->active_stripes);
332 if (list_empty(&sh->lru) &&
333 !test_bit(STRIPE_EXPANDING, &sh->state))
334 BUG();
335 list_del_init(&sh->lru);
338 } while (sh == NULL);
340 if (sh)
341 atomic_inc(&sh->count);
343 spin_unlock_irq(&conf->device_lock);
344 return sh;
347 /* test_and_ack_op() ensures that we only dequeue an operation once */
348 #define test_and_ack_op(op, pend) \
349 do { \
350 if (test_bit(op, &sh->ops.pending) && \
351 !test_bit(op, &sh->ops.complete)) { \
352 if (test_and_set_bit(op, &sh->ops.ack)) \
353 clear_bit(op, &pend); \
354 else \
355 ack++; \
356 } else \
357 clear_bit(op, &pend); \
358 } while (0)
360 /* find new work to run, do not resubmit work that is already
361 * in flight
363 static unsigned long get_stripe_work(struct stripe_head *sh)
365 unsigned long pending;
366 int ack = 0;
368 pending = sh->ops.pending;
370 test_and_ack_op(STRIPE_OP_BIOFILL, pending);
371 test_and_ack_op(STRIPE_OP_COMPUTE_BLK, pending);
372 test_and_ack_op(STRIPE_OP_PREXOR, pending);
373 test_and_ack_op(STRIPE_OP_BIODRAIN, pending);
374 test_and_ack_op(STRIPE_OP_POSTXOR, pending);
375 test_and_ack_op(STRIPE_OP_CHECK, pending);
376 if (test_and_clear_bit(STRIPE_OP_IO, &sh->ops.pending))
377 ack++;
379 sh->ops.count -= ack;
380 if (unlikely(sh->ops.count < 0)) {
381 printk(KERN_ERR "pending: %#lx ops.pending: %#lx ops.ack: %#lx "
382 "ops.complete: %#lx\n", pending, sh->ops.pending,
383 sh->ops.ack, sh->ops.complete);
384 BUG();
387 return pending;
390 static void
391 raid5_end_read_request(struct bio *bi, int error);
392 static void
393 raid5_end_write_request(struct bio *bi, int error);
395 static void ops_run_io(struct stripe_head *sh)
397 raid5_conf_t *conf = sh->raid_conf;
398 int i, disks = sh->disks;
400 might_sleep();
402 set_bit(STRIPE_IO_STARTED, &sh->state);
403 for (i = disks; i--; ) {
404 int rw;
405 struct bio *bi;
406 mdk_rdev_t *rdev;
407 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags))
408 rw = WRITE;
409 else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
410 rw = READ;
411 else
412 continue;
414 bi = &sh->dev[i].req;
416 bi->bi_rw = rw;
417 if (rw == WRITE)
418 bi->bi_end_io = raid5_end_write_request;
419 else
420 bi->bi_end_io = raid5_end_read_request;
422 rcu_read_lock();
423 rdev = rcu_dereference(conf->disks[i].rdev);
424 if (rdev && test_bit(Faulty, &rdev->flags))
425 rdev = NULL;
426 if (rdev)
427 atomic_inc(&rdev->nr_pending);
428 rcu_read_unlock();
430 if (rdev) {
431 if (test_bit(STRIPE_SYNCING, &sh->state) ||
432 test_bit(STRIPE_EXPAND_SOURCE, &sh->state) ||
433 test_bit(STRIPE_EXPAND_READY, &sh->state))
434 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
436 bi->bi_bdev = rdev->bdev;
437 pr_debug("%s: for %llu schedule op %ld on disc %d\n",
438 __func__, (unsigned long long)sh->sector,
439 bi->bi_rw, i);
440 atomic_inc(&sh->count);
441 bi->bi_sector = sh->sector + rdev->data_offset;
442 bi->bi_flags = 1 << BIO_UPTODATE;
443 bi->bi_vcnt = 1;
444 bi->bi_max_vecs = 1;
445 bi->bi_idx = 0;
446 bi->bi_io_vec = &sh->dev[i].vec;
447 bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
448 bi->bi_io_vec[0].bv_offset = 0;
449 bi->bi_size = STRIPE_SIZE;
450 bi->bi_next = NULL;
451 if (rw == WRITE &&
452 test_bit(R5_ReWrite, &sh->dev[i].flags))
453 atomic_add(STRIPE_SECTORS,
454 &rdev->corrected_errors);
455 generic_make_request(bi);
456 } else {
457 if (rw == WRITE)
458 set_bit(STRIPE_DEGRADED, &sh->state);
459 pr_debug("skip op %ld on disc %d for sector %llu\n",
460 bi->bi_rw, i, (unsigned long long)sh->sector);
461 clear_bit(R5_LOCKED, &sh->dev[i].flags);
462 set_bit(STRIPE_HANDLE, &sh->state);
467 static struct dma_async_tx_descriptor *
468 async_copy_data(int frombio, struct bio *bio, struct page *page,
469 sector_t sector, struct dma_async_tx_descriptor *tx)
471 struct bio_vec *bvl;
472 struct page *bio_page;
473 int i;
474 int page_offset;
476 if (bio->bi_sector >= sector)
477 page_offset = (signed)(bio->bi_sector - sector) * 512;
478 else
479 page_offset = (signed)(sector - bio->bi_sector) * -512;
480 bio_for_each_segment(bvl, bio, i) {
481 int len = bio_iovec_idx(bio, i)->bv_len;
482 int clen;
483 int b_offset = 0;
485 if (page_offset < 0) {
486 b_offset = -page_offset;
487 page_offset += b_offset;
488 len -= b_offset;
491 if (len > 0 && page_offset + len > STRIPE_SIZE)
492 clen = STRIPE_SIZE - page_offset;
493 else
494 clen = len;
496 if (clen > 0) {
497 b_offset += bio_iovec_idx(bio, i)->bv_offset;
498 bio_page = bio_iovec_idx(bio, i)->bv_page;
499 if (frombio)
500 tx = async_memcpy(page, bio_page, page_offset,
501 b_offset, clen,
502 ASYNC_TX_DEP_ACK,
503 tx, NULL, NULL);
504 else
505 tx = async_memcpy(bio_page, page, b_offset,
506 page_offset, clen,
507 ASYNC_TX_DEP_ACK,
508 tx, NULL, NULL);
510 if (clen < len) /* hit end of page */
511 break;
512 page_offset += len;
515 return tx;
518 static void ops_complete_biofill(void *stripe_head_ref)
520 struct stripe_head *sh = stripe_head_ref;
521 struct bio *return_bi = NULL;
522 raid5_conf_t *conf = sh->raid_conf;
523 int i;
525 pr_debug("%s: stripe %llu\n", __func__,
526 (unsigned long long)sh->sector);
528 /* clear completed biofills */
529 for (i = sh->disks; i--; ) {
530 struct r5dev *dev = &sh->dev[i];
532 /* acknowledge completion of a biofill operation */
533 /* and check if we need to reply to a read request,
534 * new R5_Wantfill requests are held off until
535 * !test_bit(STRIPE_OP_BIOFILL, &sh->ops.pending)
537 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
538 struct bio *rbi, *rbi2;
540 /* The access to dev->read is outside of the
541 * spin_lock_irq(&conf->device_lock), but is protected
542 * by the STRIPE_OP_BIOFILL pending bit
544 BUG_ON(!dev->read);
545 rbi = dev->read;
546 dev->read = NULL;
547 while (rbi && rbi->bi_sector <
548 dev->sector + STRIPE_SECTORS) {
549 rbi2 = r5_next_bio(rbi, dev->sector);
550 spin_lock_irq(&conf->device_lock);
551 if (--rbi->bi_phys_segments == 0) {
552 rbi->bi_next = return_bi;
553 return_bi = rbi;
555 spin_unlock_irq(&conf->device_lock);
556 rbi = rbi2;
560 set_bit(STRIPE_OP_BIOFILL, &sh->ops.complete);
562 return_io(return_bi);
564 set_bit(STRIPE_HANDLE, &sh->state);
565 release_stripe(sh);
568 static void ops_run_biofill(struct stripe_head *sh)
570 struct dma_async_tx_descriptor *tx = NULL;
571 raid5_conf_t *conf = sh->raid_conf;
572 int i;
574 pr_debug("%s: stripe %llu\n", __func__,
575 (unsigned long long)sh->sector);
577 for (i = sh->disks; i--; ) {
578 struct r5dev *dev = &sh->dev[i];
579 if (test_bit(R5_Wantfill, &dev->flags)) {
580 struct bio *rbi;
581 spin_lock_irq(&conf->device_lock);
582 dev->read = rbi = dev->toread;
583 dev->toread = NULL;
584 spin_unlock_irq(&conf->device_lock);
585 while (rbi && rbi->bi_sector <
586 dev->sector + STRIPE_SECTORS) {
587 tx = async_copy_data(0, rbi, dev->page,
588 dev->sector, tx);
589 rbi = r5_next_bio(rbi, dev->sector);
594 atomic_inc(&sh->count);
595 async_trigger_callback(ASYNC_TX_DEP_ACK | ASYNC_TX_ACK, tx,
596 ops_complete_biofill, sh);
599 static void ops_complete_compute5(void *stripe_head_ref)
601 struct stripe_head *sh = stripe_head_ref;
602 int target = sh->ops.target;
603 struct r5dev *tgt = &sh->dev[target];
605 pr_debug("%s: stripe %llu\n", __func__,
606 (unsigned long long)sh->sector);
608 set_bit(R5_UPTODATE, &tgt->flags);
609 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
610 clear_bit(R5_Wantcompute, &tgt->flags);
611 set_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.complete);
612 set_bit(STRIPE_HANDLE, &sh->state);
613 release_stripe(sh);
616 static struct dma_async_tx_descriptor *
617 ops_run_compute5(struct stripe_head *sh, unsigned long pending)
619 /* kernel stack size limits the total number of disks */
620 int disks = sh->disks;
621 struct page *xor_srcs[disks];
622 int target = sh->ops.target;
623 struct r5dev *tgt = &sh->dev[target];
624 struct page *xor_dest = tgt->page;
625 int count = 0;
626 struct dma_async_tx_descriptor *tx;
627 int i;
629 pr_debug("%s: stripe %llu block: %d\n",
630 __func__, (unsigned long long)sh->sector, target);
631 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
633 for (i = disks; i--; )
634 if (i != target)
635 xor_srcs[count++] = sh->dev[i].page;
637 atomic_inc(&sh->count);
639 if (unlikely(count == 1))
640 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE,
641 0, NULL, ops_complete_compute5, sh);
642 else
643 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
644 ASYNC_TX_XOR_ZERO_DST, NULL,
645 ops_complete_compute5, sh);
647 /* ack now if postxor is not set to be run */
648 if (tx && !test_bit(STRIPE_OP_POSTXOR, &pending))
649 async_tx_ack(tx);
651 return tx;
654 static void ops_complete_prexor(void *stripe_head_ref)
656 struct stripe_head *sh = stripe_head_ref;
658 pr_debug("%s: stripe %llu\n", __func__,
659 (unsigned long long)sh->sector);
661 set_bit(STRIPE_OP_PREXOR, &sh->ops.complete);
664 static struct dma_async_tx_descriptor *
665 ops_run_prexor(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
667 /* kernel stack size limits the total number of disks */
668 int disks = sh->disks;
669 struct page *xor_srcs[disks];
670 int count = 0, pd_idx = sh->pd_idx, i;
672 /* existing parity data subtracted */
673 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
675 pr_debug("%s: stripe %llu\n", __func__,
676 (unsigned long long)sh->sector);
678 for (i = disks; i--; ) {
679 struct r5dev *dev = &sh->dev[i];
680 /* Only process blocks that are known to be uptodate */
681 if (dev->towrite && test_bit(R5_Wantprexor, &dev->flags))
682 xor_srcs[count++] = dev->page;
685 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
686 ASYNC_TX_DEP_ACK | ASYNC_TX_XOR_DROP_DST, tx,
687 ops_complete_prexor, sh);
689 return tx;
692 static struct dma_async_tx_descriptor *
693 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx,
694 unsigned long pending)
696 int disks = sh->disks;
697 int pd_idx = sh->pd_idx, i;
699 /* check if prexor is active which means only process blocks
700 * that are part of a read-modify-write (Wantprexor)
702 int prexor = test_bit(STRIPE_OP_PREXOR, &pending);
704 pr_debug("%s: stripe %llu\n", __func__,
705 (unsigned long long)sh->sector);
707 for (i = disks; i--; ) {
708 struct r5dev *dev = &sh->dev[i];
709 struct bio *chosen;
710 int towrite;
712 towrite = 0;
713 if (prexor) { /* rmw */
714 if (dev->towrite &&
715 test_bit(R5_Wantprexor, &dev->flags))
716 towrite = 1;
717 } else { /* rcw */
718 if (i != pd_idx && dev->towrite &&
719 test_bit(R5_LOCKED, &dev->flags))
720 towrite = 1;
723 if (towrite) {
724 struct bio *wbi;
726 spin_lock(&sh->lock);
727 chosen = dev->towrite;
728 dev->towrite = NULL;
729 BUG_ON(dev->written);
730 wbi = dev->written = chosen;
731 spin_unlock(&sh->lock);
733 while (wbi && wbi->bi_sector <
734 dev->sector + STRIPE_SECTORS) {
735 tx = async_copy_data(1, wbi, dev->page,
736 dev->sector, tx);
737 wbi = r5_next_bio(wbi, dev->sector);
742 return tx;
745 static void ops_complete_postxor(void *stripe_head_ref)
747 struct stripe_head *sh = stripe_head_ref;
749 pr_debug("%s: stripe %llu\n", __func__,
750 (unsigned long long)sh->sector);
752 set_bit(STRIPE_OP_POSTXOR, &sh->ops.complete);
753 set_bit(STRIPE_HANDLE, &sh->state);
754 release_stripe(sh);
757 static void ops_complete_write(void *stripe_head_ref)
759 struct stripe_head *sh = stripe_head_ref;
760 int disks = sh->disks, i, pd_idx = sh->pd_idx;
762 pr_debug("%s: stripe %llu\n", __func__,
763 (unsigned long long)sh->sector);
765 for (i = disks; i--; ) {
766 struct r5dev *dev = &sh->dev[i];
767 if (dev->written || i == pd_idx)
768 set_bit(R5_UPTODATE, &dev->flags);
771 set_bit(STRIPE_OP_BIODRAIN, &sh->ops.complete);
772 set_bit(STRIPE_OP_POSTXOR, &sh->ops.complete);
774 set_bit(STRIPE_HANDLE, &sh->state);
775 release_stripe(sh);
778 static void
779 ops_run_postxor(struct stripe_head *sh, struct dma_async_tx_descriptor *tx,
780 unsigned long pending)
782 /* kernel stack size limits the total number of disks */
783 int disks = sh->disks;
784 struct page *xor_srcs[disks];
786 int count = 0, pd_idx = sh->pd_idx, i;
787 struct page *xor_dest;
788 int prexor = test_bit(STRIPE_OP_PREXOR, &pending);
789 unsigned long flags;
790 dma_async_tx_callback callback;
792 pr_debug("%s: stripe %llu\n", __func__,
793 (unsigned long long)sh->sector);
795 /* check if prexor is active which means only process blocks
796 * that are part of a read-modify-write (written)
798 if (prexor) {
799 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
800 for (i = disks; i--; ) {
801 struct r5dev *dev = &sh->dev[i];
802 if (dev->written)
803 xor_srcs[count++] = dev->page;
805 } else {
806 xor_dest = sh->dev[pd_idx].page;
807 for (i = disks; i--; ) {
808 struct r5dev *dev = &sh->dev[i];
809 if (i != pd_idx)
810 xor_srcs[count++] = dev->page;
814 /* check whether this postxor is part of a write */
815 callback = test_bit(STRIPE_OP_BIODRAIN, &pending) ?
816 ops_complete_write : ops_complete_postxor;
818 /* 1/ if we prexor'd then the dest is reused as a source
819 * 2/ if we did not prexor then we are redoing the parity
820 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
821 * for the synchronous xor case
823 flags = ASYNC_TX_DEP_ACK | ASYNC_TX_ACK |
824 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
826 atomic_inc(&sh->count);
828 if (unlikely(count == 1)) {
829 flags &= ~(ASYNC_TX_XOR_DROP_DST | ASYNC_TX_XOR_ZERO_DST);
830 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE,
831 flags, tx, callback, sh);
832 } else
833 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
834 flags, tx, callback, sh);
837 static void ops_complete_check(void *stripe_head_ref)
839 struct stripe_head *sh = stripe_head_ref;
840 int pd_idx = sh->pd_idx;
842 pr_debug("%s: stripe %llu\n", __func__,
843 (unsigned long long)sh->sector);
845 if (test_and_clear_bit(STRIPE_OP_MOD_DMA_CHECK, &sh->ops.pending) &&
846 sh->ops.zero_sum_result == 0)
847 set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
849 set_bit(STRIPE_OP_CHECK, &sh->ops.complete);
850 set_bit(STRIPE_HANDLE, &sh->state);
851 release_stripe(sh);
854 static void ops_run_check(struct stripe_head *sh)
856 /* kernel stack size limits the total number of disks */
857 int disks = sh->disks;
858 struct page *xor_srcs[disks];
859 struct dma_async_tx_descriptor *tx;
861 int count = 0, pd_idx = sh->pd_idx, i;
862 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
864 pr_debug("%s: stripe %llu\n", __func__,
865 (unsigned long long)sh->sector);
867 for (i = disks; i--; ) {
868 struct r5dev *dev = &sh->dev[i];
869 if (i != pd_idx)
870 xor_srcs[count++] = dev->page;
873 tx = async_xor_zero_sum(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
874 &sh->ops.zero_sum_result, 0, NULL, NULL, NULL);
876 if (tx)
877 set_bit(STRIPE_OP_MOD_DMA_CHECK, &sh->ops.pending);
878 else
879 clear_bit(STRIPE_OP_MOD_DMA_CHECK, &sh->ops.pending);
881 atomic_inc(&sh->count);
882 tx = async_trigger_callback(ASYNC_TX_DEP_ACK | ASYNC_TX_ACK, tx,
883 ops_complete_check, sh);
886 static void raid5_run_ops(struct stripe_head *sh, unsigned long pending)
888 int overlap_clear = 0, i, disks = sh->disks;
889 struct dma_async_tx_descriptor *tx = NULL;
891 if (test_bit(STRIPE_OP_BIOFILL, &pending)) {
892 ops_run_biofill(sh);
893 overlap_clear++;
896 if (test_bit(STRIPE_OP_COMPUTE_BLK, &pending))
897 tx = ops_run_compute5(sh, pending);
899 if (test_bit(STRIPE_OP_PREXOR, &pending))
900 tx = ops_run_prexor(sh, tx);
902 if (test_bit(STRIPE_OP_BIODRAIN, &pending)) {
903 tx = ops_run_biodrain(sh, tx, pending);
904 overlap_clear++;
907 if (test_bit(STRIPE_OP_POSTXOR, &pending))
908 ops_run_postxor(sh, tx, pending);
910 if (test_bit(STRIPE_OP_CHECK, &pending))
911 ops_run_check(sh);
913 if (test_bit(STRIPE_OP_IO, &pending))
914 ops_run_io(sh);
916 if (overlap_clear)
917 for (i = disks; i--; ) {
918 struct r5dev *dev = &sh->dev[i];
919 if (test_and_clear_bit(R5_Overlap, &dev->flags))
920 wake_up(&sh->raid_conf->wait_for_overlap);
924 static int grow_one_stripe(raid5_conf_t *conf)
926 struct stripe_head *sh;
927 sh = kmem_cache_alloc(conf->slab_cache, GFP_KERNEL);
928 if (!sh)
929 return 0;
930 memset(sh, 0, sizeof(*sh) + (conf->raid_disks-1)*sizeof(struct r5dev));
931 sh->raid_conf = conf;
932 spin_lock_init(&sh->lock);
934 if (grow_buffers(sh, conf->raid_disks)) {
935 shrink_buffers(sh, conf->raid_disks);
936 kmem_cache_free(conf->slab_cache, sh);
937 return 0;
939 sh->disks = conf->raid_disks;
940 /* we just created an active stripe so... */
941 atomic_set(&sh->count, 1);
942 atomic_inc(&conf->active_stripes);
943 INIT_LIST_HEAD(&sh->lru);
944 release_stripe(sh);
945 return 1;
948 static int grow_stripes(raid5_conf_t *conf, int num)
950 struct kmem_cache *sc;
951 int devs = conf->raid_disks;
953 sprintf(conf->cache_name[0], "raid5-%s", mdname(conf->mddev));
954 sprintf(conf->cache_name[1], "raid5-%s-alt", mdname(conf->mddev));
955 conf->active_name = 0;
956 sc = kmem_cache_create(conf->cache_name[conf->active_name],
957 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
958 0, 0, NULL);
959 if (!sc)
960 return 1;
961 conf->slab_cache = sc;
962 conf->pool_size = devs;
963 while (num--)
964 if (!grow_one_stripe(conf))
965 return 1;
966 return 0;
969 #ifdef CONFIG_MD_RAID5_RESHAPE
970 static int resize_stripes(raid5_conf_t *conf, int newsize)
972 /* Make all the stripes able to hold 'newsize' devices.
973 * New slots in each stripe get 'page' set to a new page.
975 * This happens in stages:
976 * 1/ create a new kmem_cache and allocate the required number of
977 * stripe_heads.
978 * 2/ gather all the old stripe_heads and tranfer the pages across
979 * to the new stripe_heads. This will have the side effect of
980 * freezing the array as once all stripe_heads have been collected,
981 * no IO will be possible. Old stripe heads are freed once their
982 * pages have been transferred over, and the old kmem_cache is
983 * freed when all stripes are done.
984 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
985 * we simple return a failre status - no need to clean anything up.
986 * 4/ allocate new pages for the new slots in the new stripe_heads.
987 * If this fails, we don't bother trying the shrink the
988 * stripe_heads down again, we just leave them as they are.
989 * As each stripe_head is processed the new one is released into
990 * active service.
992 * Once step2 is started, we cannot afford to wait for a write,
993 * so we use GFP_NOIO allocations.
995 struct stripe_head *osh, *nsh;
996 LIST_HEAD(newstripes);
997 struct disk_info *ndisks;
998 int err = 0;
999 struct kmem_cache *sc;
1000 int i;
1002 if (newsize <= conf->pool_size)
1003 return 0; /* never bother to shrink */
1005 md_allow_write(conf->mddev);
1007 /* Step 1 */
1008 sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
1009 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1010 0, 0, NULL);
1011 if (!sc)
1012 return -ENOMEM;
1014 for (i = conf->max_nr_stripes; i; i--) {
1015 nsh = kmem_cache_alloc(sc, GFP_KERNEL);
1016 if (!nsh)
1017 break;
1019 memset(nsh, 0, sizeof(*nsh) + (newsize-1)*sizeof(struct r5dev));
1021 nsh->raid_conf = conf;
1022 spin_lock_init(&nsh->lock);
1024 list_add(&nsh->lru, &newstripes);
1026 if (i) {
1027 /* didn't get enough, give up */
1028 while (!list_empty(&newstripes)) {
1029 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1030 list_del(&nsh->lru);
1031 kmem_cache_free(sc, nsh);
1033 kmem_cache_destroy(sc);
1034 return -ENOMEM;
1036 /* Step 2 - Must use GFP_NOIO now.
1037 * OK, we have enough stripes, start collecting inactive
1038 * stripes and copying them over
1040 list_for_each_entry(nsh, &newstripes, lru) {
1041 spin_lock_irq(&conf->device_lock);
1042 wait_event_lock_irq(conf->wait_for_stripe,
1043 !list_empty(&conf->inactive_list),
1044 conf->device_lock,
1045 unplug_slaves(conf->mddev)
1047 osh = get_free_stripe(conf);
1048 spin_unlock_irq(&conf->device_lock);
1049 atomic_set(&nsh->count, 1);
1050 for(i=0; i<conf->pool_size; i++)
1051 nsh->dev[i].page = osh->dev[i].page;
1052 for( ; i<newsize; i++)
1053 nsh->dev[i].page = NULL;
1054 kmem_cache_free(conf->slab_cache, osh);
1056 kmem_cache_destroy(conf->slab_cache);
1058 /* Step 3.
1059 * At this point, we are holding all the stripes so the array
1060 * is completely stalled, so now is a good time to resize
1061 * conf->disks.
1063 ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1064 if (ndisks) {
1065 for (i=0; i<conf->raid_disks; i++)
1066 ndisks[i] = conf->disks[i];
1067 kfree(conf->disks);
1068 conf->disks = ndisks;
1069 } else
1070 err = -ENOMEM;
1072 /* Step 4, return new stripes to service */
1073 while(!list_empty(&newstripes)) {
1074 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1075 list_del_init(&nsh->lru);
1076 for (i=conf->raid_disks; i < newsize; i++)
1077 if (nsh->dev[i].page == NULL) {
1078 struct page *p = alloc_page(GFP_NOIO);
1079 nsh->dev[i].page = p;
1080 if (!p)
1081 err = -ENOMEM;
1083 release_stripe(nsh);
1085 /* critical section pass, GFP_NOIO no longer needed */
1087 conf->slab_cache = sc;
1088 conf->active_name = 1-conf->active_name;
1089 conf->pool_size = newsize;
1090 return err;
1092 #endif
1094 static int drop_one_stripe(raid5_conf_t *conf)
1096 struct stripe_head *sh;
1098 spin_lock_irq(&conf->device_lock);
1099 sh = get_free_stripe(conf);
1100 spin_unlock_irq(&conf->device_lock);
1101 if (!sh)
1102 return 0;
1103 BUG_ON(atomic_read(&sh->count));
1104 shrink_buffers(sh, conf->pool_size);
1105 kmem_cache_free(conf->slab_cache, sh);
1106 atomic_dec(&conf->active_stripes);
1107 return 1;
1110 static void shrink_stripes(raid5_conf_t *conf)
1112 while (drop_one_stripe(conf))
1115 if (conf->slab_cache)
1116 kmem_cache_destroy(conf->slab_cache);
1117 conf->slab_cache = NULL;
1120 static void raid5_end_read_request(struct bio * bi, int error)
1122 struct stripe_head *sh = bi->bi_private;
1123 raid5_conf_t *conf = sh->raid_conf;
1124 int disks = sh->disks, i;
1125 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1126 char b[BDEVNAME_SIZE];
1127 mdk_rdev_t *rdev;
1130 for (i=0 ; i<disks; i++)
1131 if (bi == &sh->dev[i].req)
1132 break;
1134 pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1135 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1136 uptodate);
1137 if (i == disks) {
1138 BUG();
1139 return;
1142 if (uptodate) {
1143 set_bit(R5_UPTODATE, &sh->dev[i].flags);
1144 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1145 rdev = conf->disks[i].rdev;
1146 printk(KERN_INFO "raid5:%s: read error corrected (%lu sectors at %llu on %s)\n",
1147 mdname(conf->mddev), STRIPE_SECTORS,
1148 (unsigned long long)(sh->sector + rdev->data_offset),
1149 bdevname(rdev->bdev, b));
1150 clear_bit(R5_ReadError, &sh->dev[i].flags);
1151 clear_bit(R5_ReWrite, &sh->dev[i].flags);
1153 if (atomic_read(&conf->disks[i].rdev->read_errors))
1154 atomic_set(&conf->disks[i].rdev->read_errors, 0);
1155 } else {
1156 const char *bdn = bdevname(conf->disks[i].rdev->bdev, b);
1157 int retry = 0;
1158 rdev = conf->disks[i].rdev;
1160 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1161 atomic_inc(&rdev->read_errors);
1162 if (conf->mddev->degraded)
1163 printk(KERN_WARNING "raid5:%s: read error not correctable (sector %llu on %s).\n",
1164 mdname(conf->mddev),
1165 (unsigned long long)(sh->sector + rdev->data_offset),
1166 bdn);
1167 else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
1168 /* Oh, no!!! */
1169 printk(KERN_WARNING "raid5:%s: read error NOT corrected!! (sector %llu on %s).\n",
1170 mdname(conf->mddev),
1171 (unsigned long long)(sh->sector + rdev->data_offset),
1172 bdn);
1173 else if (atomic_read(&rdev->read_errors)
1174 > conf->max_nr_stripes)
1175 printk(KERN_WARNING
1176 "raid5:%s: Too many read errors, failing device %s.\n",
1177 mdname(conf->mddev), bdn);
1178 else
1179 retry = 1;
1180 if (retry)
1181 set_bit(R5_ReadError, &sh->dev[i].flags);
1182 else {
1183 clear_bit(R5_ReadError, &sh->dev[i].flags);
1184 clear_bit(R5_ReWrite, &sh->dev[i].flags);
1185 md_error(conf->mddev, rdev);
1188 rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1189 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1190 set_bit(STRIPE_HANDLE, &sh->state);
1191 release_stripe(sh);
1194 static void raid5_end_write_request (struct bio *bi, int error)
1196 struct stripe_head *sh = bi->bi_private;
1197 raid5_conf_t *conf = sh->raid_conf;
1198 int disks = sh->disks, i;
1199 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1201 for (i=0 ; i<disks; i++)
1202 if (bi == &sh->dev[i].req)
1203 break;
1205 pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1206 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1207 uptodate);
1208 if (i == disks) {
1209 BUG();
1210 return;
1213 if (!uptodate)
1214 md_error(conf->mddev, conf->disks[i].rdev);
1216 rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1218 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1219 set_bit(STRIPE_HANDLE, &sh->state);
1220 release_stripe(sh);
1224 static sector_t compute_blocknr(struct stripe_head *sh, int i);
1226 static void raid5_build_block (struct stripe_head *sh, int i)
1228 struct r5dev *dev = &sh->dev[i];
1230 bio_init(&dev->req);
1231 dev->req.bi_io_vec = &dev->vec;
1232 dev->req.bi_vcnt++;
1233 dev->req.bi_max_vecs++;
1234 dev->vec.bv_page = dev->page;
1235 dev->vec.bv_len = STRIPE_SIZE;
1236 dev->vec.bv_offset = 0;
1238 dev->req.bi_sector = sh->sector;
1239 dev->req.bi_private = sh;
1241 dev->flags = 0;
1242 dev->sector = compute_blocknr(sh, i);
1245 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1247 char b[BDEVNAME_SIZE];
1248 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
1249 pr_debug("raid5: error called\n");
1251 if (!test_bit(Faulty, &rdev->flags)) {
1252 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1253 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1254 unsigned long flags;
1255 spin_lock_irqsave(&conf->device_lock, flags);
1256 mddev->degraded++;
1257 spin_unlock_irqrestore(&conf->device_lock, flags);
1259 * if recovery was running, make sure it aborts.
1261 set_bit(MD_RECOVERY_ERR, &mddev->recovery);
1263 set_bit(Faulty, &rdev->flags);
1264 printk (KERN_ALERT
1265 "raid5: Disk failure on %s, disabling device.\n"
1266 "raid5: Operation continuing on %d devices.\n",
1267 bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded);
1272 * Input: a 'big' sector number,
1273 * Output: index of the data and parity disk, and the sector # in them.
1275 static sector_t raid5_compute_sector(sector_t r_sector, unsigned int raid_disks,
1276 unsigned int data_disks, unsigned int * dd_idx,
1277 unsigned int * pd_idx, raid5_conf_t *conf)
1279 long stripe;
1280 unsigned long chunk_number;
1281 unsigned int chunk_offset;
1282 sector_t new_sector;
1283 int sectors_per_chunk = conf->chunk_size >> 9;
1285 /* First compute the information on this sector */
1288 * Compute the chunk number and the sector offset inside the chunk
1290 chunk_offset = sector_div(r_sector, sectors_per_chunk);
1291 chunk_number = r_sector;
1292 BUG_ON(r_sector != chunk_number);
1295 * Compute the stripe number
1297 stripe = chunk_number / data_disks;
1300 * Compute the data disk and parity disk indexes inside the stripe
1302 *dd_idx = chunk_number % data_disks;
1305 * Select the parity disk based on the user selected algorithm.
1307 switch(conf->level) {
1308 case 4:
1309 *pd_idx = data_disks;
1310 break;
1311 case 5:
1312 switch (conf->algorithm) {
1313 case ALGORITHM_LEFT_ASYMMETRIC:
1314 *pd_idx = data_disks - stripe % raid_disks;
1315 if (*dd_idx >= *pd_idx)
1316 (*dd_idx)++;
1317 break;
1318 case ALGORITHM_RIGHT_ASYMMETRIC:
1319 *pd_idx = stripe % raid_disks;
1320 if (*dd_idx >= *pd_idx)
1321 (*dd_idx)++;
1322 break;
1323 case ALGORITHM_LEFT_SYMMETRIC:
1324 *pd_idx = data_disks - stripe % raid_disks;
1325 *dd_idx = (*pd_idx + 1 + *dd_idx) % raid_disks;
1326 break;
1327 case ALGORITHM_RIGHT_SYMMETRIC:
1328 *pd_idx = stripe % raid_disks;
1329 *dd_idx = (*pd_idx + 1 + *dd_idx) % raid_disks;
1330 break;
1331 default:
1332 printk(KERN_ERR "raid5: unsupported algorithm %d\n",
1333 conf->algorithm);
1335 break;
1336 case 6:
1338 /**** FIX THIS ****/
1339 switch (conf->algorithm) {
1340 case ALGORITHM_LEFT_ASYMMETRIC:
1341 *pd_idx = raid_disks - 1 - (stripe % raid_disks);
1342 if (*pd_idx == raid_disks-1)
1343 (*dd_idx)++; /* Q D D D P */
1344 else if (*dd_idx >= *pd_idx)
1345 (*dd_idx) += 2; /* D D P Q D */
1346 break;
1347 case ALGORITHM_RIGHT_ASYMMETRIC:
1348 *pd_idx = stripe % raid_disks;
1349 if (*pd_idx == raid_disks-1)
1350 (*dd_idx)++; /* Q D D D P */
1351 else if (*dd_idx >= *pd_idx)
1352 (*dd_idx) += 2; /* D D P Q D */
1353 break;
1354 case ALGORITHM_LEFT_SYMMETRIC:
1355 *pd_idx = raid_disks - 1 - (stripe % raid_disks);
1356 *dd_idx = (*pd_idx + 2 + *dd_idx) % raid_disks;
1357 break;
1358 case ALGORITHM_RIGHT_SYMMETRIC:
1359 *pd_idx = stripe % raid_disks;
1360 *dd_idx = (*pd_idx + 2 + *dd_idx) % raid_disks;
1361 break;
1362 default:
1363 printk (KERN_CRIT "raid6: unsupported algorithm %d\n",
1364 conf->algorithm);
1366 break;
1370 * Finally, compute the new sector number
1372 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
1373 return new_sector;
1377 static sector_t compute_blocknr(struct stripe_head *sh, int i)
1379 raid5_conf_t *conf = sh->raid_conf;
1380 int raid_disks = sh->disks;
1381 int data_disks = raid_disks - conf->max_degraded;
1382 sector_t new_sector = sh->sector, check;
1383 int sectors_per_chunk = conf->chunk_size >> 9;
1384 sector_t stripe;
1385 int chunk_offset;
1386 int chunk_number, dummy1, dummy2, dd_idx = i;
1387 sector_t r_sector;
1390 chunk_offset = sector_div(new_sector, sectors_per_chunk);
1391 stripe = new_sector;
1392 BUG_ON(new_sector != stripe);
1394 if (i == sh->pd_idx)
1395 return 0;
1396 switch(conf->level) {
1397 case 4: break;
1398 case 5:
1399 switch (conf->algorithm) {
1400 case ALGORITHM_LEFT_ASYMMETRIC:
1401 case ALGORITHM_RIGHT_ASYMMETRIC:
1402 if (i > sh->pd_idx)
1403 i--;
1404 break;
1405 case ALGORITHM_LEFT_SYMMETRIC:
1406 case ALGORITHM_RIGHT_SYMMETRIC:
1407 if (i < sh->pd_idx)
1408 i += raid_disks;
1409 i -= (sh->pd_idx + 1);
1410 break;
1411 default:
1412 printk(KERN_ERR "raid5: unsupported algorithm %d\n",
1413 conf->algorithm);
1415 break;
1416 case 6:
1417 if (i == raid6_next_disk(sh->pd_idx, raid_disks))
1418 return 0; /* It is the Q disk */
1419 switch (conf->algorithm) {
1420 case ALGORITHM_LEFT_ASYMMETRIC:
1421 case ALGORITHM_RIGHT_ASYMMETRIC:
1422 if (sh->pd_idx == raid_disks-1)
1423 i--; /* Q D D D P */
1424 else if (i > sh->pd_idx)
1425 i -= 2; /* D D P Q D */
1426 break;
1427 case ALGORITHM_LEFT_SYMMETRIC:
1428 case ALGORITHM_RIGHT_SYMMETRIC:
1429 if (sh->pd_idx == raid_disks-1)
1430 i--; /* Q D D D P */
1431 else {
1432 /* D D P Q D */
1433 if (i < sh->pd_idx)
1434 i += raid_disks;
1435 i -= (sh->pd_idx + 2);
1437 break;
1438 default:
1439 printk (KERN_CRIT "raid6: unsupported algorithm %d\n",
1440 conf->algorithm);
1442 break;
1445 chunk_number = stripe * data_disks + i;
1446 r_sector = (sector_t)chunk_number * sectors_per_chunk + chunk_offset;
1448 check = raid5_compute_sector (r_sector, raid_disks, data_disks, &dummy1, &dummy2, conf);
1449 if (check != sh->sector || dummy1 != dd_idx || dummy2 != sh->pd_idx) {
1450 printk(KERN_ERR "compute_blocknr: map not correct\n");
1451 return 0;
1453 return r_sector;
1459 * Copy data between a page in the stripe cache, and one or more bion
1460 * The page could align with the middle of the bio, or there could be
1461 * several bion, each with several bio_vecs, which cover part of the page
1462 * Multiple bion are linked together on bi_next. There may be extras
1463 * at the end of this list. We ignore them.
1465 static void copy_data(int frombio, struct bio *bio,
1466 struct page *page,
1467 sector_t sector)
1469 char *pa = page_address(page);
1470 struct bio_vec *bvl;
1471 int i;
1472 int page_offset;
1474 if (bio->bi_sector >= sector)
1475 page_offset = (signed)(bio->bi_sector - sector) * 512;
1476 else
1477 page_offset = (signed)(sector - bio->bi_sector) * -512;
1478 bio_for_each_segment(bvl, bio, i) {
1479 int len = bio_iovec_idx(bio,i)->bv_len;
1480 int clen;
1481 int b_offset = 0;
1483 if (page_offset < 0) {
1484 b_offset = -page_offset;
1485 page_offset += b_offset;
1486 len -= b_offset;
1489 if (len > 0 && page_offset + len > STRIPE_SIZE)
1490 clen = STRIPE_SIZE - page_offset;
1491 else clen = len;
1493 if (clen > 0) {
1494 char *ba = __bio_kmap_atomic(bio, i, KM_USER0);
1495 if (frombio)
1496 memcpy(pa+page_offset, ba+b_offset, clen);
1497 else
1498 memcpy(ba+b_offset, pa+page_offset, clen);
1499 __bio_kunmap_atomic(ba, KM_USER0);
1501 if (clen < len) /* hit end of page */
1502 break;
1503 page_offset += len;
1507 #define check_xor() do { \
1508 if (count == MAX_XOR_BLOCKS) { \
1509 xor_blocks(count, STRIPE_SIZE, dest, ptr);\
1510 count = 0; \
1512 } while(0)
1514 static void compute_parity6(struct stripe_head *sh, int method)
1516 raid6_conf_t *conf = sh->raid_conf;
1517 int i, pd_idx = sh->pd_idx, qd_idx, d0_idx, disks = sh->disks, count;
1518 struct bio *chosen;
1519 /**** FIX THIS: This could be very bad if disks is close to 256 ****/
1520 void *ptrs[disks];
1522 qd_idx = raid6_next_disk(pd_idx, disks);
1523 d0_idx = raid6_next_disk(qd_idx, disks);
1525 pr_debug("compute_parity, stripe %llu, method %d\n",
1526 (unsigned long long)sh->sector, method);
1528 switch(method) {
1529 case READ_MODIFY_WRITE:
1530 BUG(); /* READ_MODIFY_WRITE N/A for RAID-6 */
1531 case RECONSTRUCT_WRITE:
1532 for (i= disks; i-- ;)
1533 if ( i != pd_idx && i != qd_idx && sh->dev[i].towrite ) {
1534 chosen = sh->dev[i].towrite;
1535 sh->dev[i].towrite = NULL;
1537 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1538 wake_up(&conf->wait_for_overlap);
1540 BUG_ON(sh->dev[i].written);
1541 sh->dev[i].written = chosen;
1543 break;
1544 case CHECK_PARITY:
1545 BUG(); /* Not implemented yet */
1548 for (i = disks; i--;)
1549 if (sh->dev[i].written) {
1550 sector_t sector = sh->dev[i].sector;
1551 struct bio *wbi = sh->dev[i].written;
1552 while (wbi && wbi->bi_sector < sector + STRIPE_SECTORS) {
1553 copy_data(1, wbi, sh->dev[i].page, sector);
1554 wbi = r5_next_bio(wbi, sector);
1557 set_bit(R5_LOCKED, &sh->dev[i].flags);
1558 set_bit(R5_UPTODATE, &sh->dev[i].flags);
1561 // switch(method) {
1562 // case RECONSTRUCT_WRITE:
1563 // case CHECK_PARITY:
1564 // case UPDATE_PARITY:
1565 /* Note that unlike RAID-5, the ordering of the disks matters greatly. */
1566 /* FIX: Is this ordering of drives even remotely optimal? */
1567 count = 0;
1568 i = d0_idx;
1569 do {
1570 ptrs[count++] = page_address(sh->dev[i].page);
1571 if (count <= disks-2 && !test_bit(R5_UPTODATE, &sh->dev[i].flags))
1572 printk("block %d/%d not uptodate on parity calc\n", i,count);
1573 i = raid6_next_disk(i, disks);
1574 } while ( i != d0_idx );
1575 // break;
1576 // }
1578 raid6_call.gen_syndrome(disks, STRIPE_SIZE, ptrs);
1580 switch(method) {
1581 case RECONSTRUCT_WRITE:
1582 set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1583 set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags);
1584 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
1585 set_bit(R5_LOCKED, &sh->dev[qd_idx].flags);
1586 break;
1587 case UPDATE_PARITY:
1588 set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1589 set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags);
1590 break;
1595 /* Compute one missing block */
1596 static void compute_block_1(struct stripe_head *sh, int dd_idx, int nozero)
1598 int i, count, disks = sh->disks;
1599 void *ptr[MAX_XOR_BLOCKS], *dest, *p;
1600 int pd_idx = sh->pd_idx;
1601 int qd_idx = raid6_next_disk(pd_idx, disks);
1603 pr_debug("compute_block_1, stripe %llu, idx %d\n",
1604 (unsigned long long)sh->sector, dd_idx);
1606 if ( dd_idx == qd_idx ) {
1607 /* We're actually computing the Q drive */
1608 compute_parity6(sh, UPDATE_PARITY);
1609 } else {
1610 dest = page_address(sh->dev[dd_idx].page);
1611 if (!nozero) memset(dest, 0, STRIPE_SIZE);
1612 count = 0;
1613 for (i = disks ; i--; ) {
1614 if (i == dd_idx || i == qd_idx)
1615 continue;
1616 p = page_address(sh->dev[i].page);
1617 if (test_bit(R5_UPTODATE, &sh->dev[i].flags))
1618 ptr[count++] = p;
1619 else
1620 printk("compute_block() %d, stripe %llu, %d"
1621 " not present\n", dd_idx,
1622 (unsigned long long)sh->sector, i);
1624 check_xor();
1626 if (count)
1627 xor_blocks(count, STRIPE_SIZE, dest, ptr);
1628 if (!nozero) set_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
1629 else clear_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
1633 /* Compute two missing blocks */
1634 static void compute_block_2(struct stripe_head *sh, int dd_idx1, int dd_idx2)
1636 int i, count, disks = sh->disks;
1637 int pd_idx = sh->pd_idx;
1638 int qd_idx = raid6_next_disk(pd_idx, disks);
1639 int d0_idx = raid6_next_disk(qd_idx, disks);
1640 int faila, failb;
1642 /* faila and failb are disk numbers relative to d0_idx */
1643 /* pd_idx become disks-2 and qd_idx become disks-1 */
1644 faila = (dd_idx1 < d0_idx) ? dd_idx1+(disks-d0_idx) : dd_idx1-d0_idx;
1645 failb = (dd_idx2 < d0_idx) ? dd_idx2+(disks-d0_idx) : dd_idx2-d0_idx;
1647 BUG_ON(faila == failb);
1648 if ( failb < faila ) { int tmp = faila; faila = failb; failb = tmp; }
1650 pr_debug("compute_block_2, stripe %llu, idx %d,%d (%d,%d)\n",
1651 (unsigned long long)sh->sector, dd_idx1, dd_idx2, faila, failb);
1653 if ( failb == disks-1 ) {
1654 /* Q disk is one of the missing disks */
1655 if ( faila == disks-2 ) {
1656 /* Missing P+Q, just recompute */
1657 compute_parity6(sh, UPDATE_PARITY);
1658 return;
1659 } else {
1660 /* We're missing D+Q; recompute D from P */
1661 compute_block_1(sh, (dd_idx1 == qd_idx) ? dd_idx2 : dd_idx1, 0);
1662 compute_parity6(sh, UPDATE_PARITY); /* Is this necessary? */
1663 return;
1667 /* We're missing D+P or D+D; build pointer table */
1669 /**** FIX THIS: This could be very bad if disks is close to 256 ****/
1670 void *ptrs[disks];
1672 count = 0;
1673 i = d0_idx;
1674 do {
1675 ptrs[count++] = page_address(sh->dev[i].page);
1676 i = raid6_next_disk(i, disks);
1677 if (i != dd_idx1 && i != dd_idx2 &&
1678 !test_bit(R5_UPTODATE, &sh->dev[i].flags))
1679 printk("compute_2 with missing block %d/%d\n", count, i);
1680 } while ( i != d0_idx );
1682 if ( failb == disks-2 ) {
1683 /* We're missing D+P. */
1684 raid6_datap_recov(disks, STRIPE_SIZE, faila, ptrs);
1685 } else {
1686 /* We're missing D+D. */
1687 raid6_2data_recov(disks, STRIPE_SIZE, faila, failb, ptrs);
1690 /* Both the above update both missing blocks */
1691 set_bit(R5_UPTODATE, &sh->dev[dd_idx1].flags);
1692 set_bit(R5_UPTODATE, &sh->dev[dd_idx2].flags);
1696 static int
1697 handle_write_operations5(struct stripe_head *sh, int rcw, int expand)
1699 int i, pd_idx = sh->pd_idx, disks = sh->disks;
1700 int locked = 0;
1702 if (rcw) {
1703 /* if we are not expanding this is a proper write request, and
1704 * there will be bios with new data to be drained into the
1705 * stripe cache
1707 if (!expand) {
1708 set_bit(STRIPE_OP_BIODRAIN, &sh->ops.pending);
1709 sh->ops.count++;
1712 set_bit(STRIPE_OP_POSTXOR, &sh->ops.pending);
1713 sh->ops.count++;
1715 for (i = disks; i--; ) {
1716 struct r5dev *dev = &sh->dev[i];
1718 if (dev->towrite) {
1719 set_bit(R5_LOCKED, &dev->flags);
1720 if (!expand)
1721 clear_bit(R5_UPTODATE, &dev->flags);
1722 locked++;
1725 if (locked + 1 == disks)
1726 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
1727 atomic_inc(&sh->raid_conf->pending_full_writes);
1728 } else {
1729 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
1730 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
1732 set_bit(STRIPE_OP_PREXOR, &sh->ops.pending);
1733 set_bit(STRIPE_OP_BIODRAIN, &sh->ops.pending);
1734 set_bit(STRIPE_OP_POSTXOR, &sh->ops.pending);
1736 sh->ops.count += 3;
1738 for (i = disks; i--; ) {
1739 struct r5dev *dev = &sh->dev[i];
1740 if (i == pd_idx)
1741 continue;
1743 /* For a read-modify write there may be blocks that are
1744 * locked for reading while others are ready to be
1745 * written so we distinguish these blocks by the
1746 * R5_Wantprexor bit
1748 if (dev->towrite &&
1749 (test_bit(R5_UPTODATE, &dev->flags) ||
1750 test_bit(R5_Wantcompute, &dev->flags))) {
1751 set_bit(R5_Wantprexor, &dev->flags);
1752 set_bit(R5_LOCKED, &dev->flags);
1753 clear_bit(R5_UPTODATE, &dev->flags);
1754 locked++;
1759 /* keep the parity disk locked while asynchronous operations
1760 * are in flight
1762 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
1763 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1764 locked++;
1766 pr_debug("%s: stripe %llu locked: %d pending: %lx\n",
1767 __func__, (unsigned long long)sh->sector,
1768 locked, sh->ops.pending);
1770 return locked;
1774 * Each stripe/dev can have one or more bion attached.
1775 * toread/towrite point to the first in a chain.
1776 * The bi_next chain must be in order.
1778 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
1780 struct bio **bip;
1781 raid5_conf_t *conf = sh->raid_conf;
1782 int firstwrite=0;
1784 pr_debug("adding bh b#%llu to stripe s#%llu\n",
1785 (unsigned long long)bi->bi_sector,
1786 (unsigned long long)sh->sector);
1789 spin_lock(&sh->lock);
1790 spin_lock_irq(&conf->device_lock);
1791 if (forwrite) {
1792 bip = &sh->dev[dd_idx].towrite;
1793 if (*bip == NULL && sh->dev[dd_idx].written == NULL)
1794 firstwrite = 1;
1795 } else
1796 bip = &sh->dev[dd_idx].toread;
1797 while (*bip && (*bip)->bi_sector < bi->bi_sector) {
1798 if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
1799 goto overlap;
1800 bip = & (*bip)->bi_next;
1802 if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
1803 goto overlap;
1805 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
1806 if (*bip)
1807 bi->bi_next = *bip;
1808 *bip = bi;
1809 bi->bi_phys_segments ++;
1810 spin_unlock_irq(&conf->device_lock);
1811 spin_unlock(&sh->lock);
1813 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
1814 (unsigned long long)bi->bi_sector,
1815 (unsigned long long)sh->sector, dd_idx);
1817 if (conf->mddev->bitmap && firstwrite) {
1818 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
1819 STRIPE_SECTORS, 0);
1820 sh->bm_seq = conf->seq_flush+1;
1821 set_bit(STRIPE_BIT_DELAY, &sh->state);
1824 if (forwrite) {
1825 /* check if page is covered */
1826 sector_t sector = sh->dev[dd_idx].sector;
1827 for (bi=sh->dev[dd_idx].towrite;
1828 sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
1829 bi && bi->bi_sector <= sector;
1830 bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
1831 if (bi->bi_sector + (bi->bi_size>>9) >= sector)
1832 sector = bi->bi_sector + (bi->bi_size>>9);
1834 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
1835 set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
1837 return 1;
1839 overlap:
1840 set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
1841 spin_unlock_irq(&conf->device_lock);
1842 spin_unlock(&sh->lock);
1843 return 0;
1846 static void end_reshape(raid5_conf_t *conf);
1848 static int page_is_zero(struct page *p)
1850 char *a = page_address(p);
1851 return ((*(u32*)a) == 0 &&
1852 memcmp(a, a+4, STRIPE_SIZE-4)==0);
1855 static int stripe_to_pdidx(sector_t stripe, raid5_conf_t *conf, int disks)
1857 int sectors_per_chunk = conf->chunk_size >> 9;
1858 int pd_idx, dd_idx;
1859 int chunk_offset = sector_div(stripe, sectors_per_chunk);
1861 raid5_compute_sector(stripe * (disks - conf->max_degraded)
1862 *sectors_per_chunk + chunk_offset,
1863 disks, disks - conf->max_degraded,
1864 &dd_idx, &pd_idx, conf);
1865 return pd_idx;
1868 static void
1869 handle_requests_to_failed_array(raid5_conf_t *conf, struct stripe_head *sh,
1870 struct stripe_head_state *s, int disks,
1871 struct bio **return_bi)
1873 int i;
1874 for (i = disks; i--; ) {
1875 struct bio *bi;
1876 int bitmap_end = 0;
1878 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1879 mdk_rdev_t *rdev;
1880 rcu_read_lock();
1881 rdev = rcu_dereference(conf->disks[i].rdev);
1882 if (rdev && test_bit(In_sync, &rdev->flags))
1883 /* multiple read failures in one stripe */
1884 md_error(conf->mddev, rdev);
1885 rcu_read_unlock();
1887 spin_lock_irq(&conf->device_lock);
1888 /* fail all writes first */
1889 bi = sh->dev[i].towrite;
1890 sh->dev[i].towrite = NULL;
1891 if (bi) {
1892 s->to_write--;
1893 bitmap_end = 1;
1896 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1897 wake_up(&conf->wait_for_overlap);
1899 while (bi && bi->bi_sector <
1900 sh->dev[i].sector + STRIPE_SECTORS) {
1901 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
1902 clear_bit(BIO_UPTODATE, &bi->bi_flags);
1903 if (--bi->bi_phys_segments == 0) {
1904 md_write_end(conf->mddev);
1905 bi->bi_next = *return_bi;
1906 *return_bi = bi;
1908 bi = nextbi;
1910 /* and fail all 'written' */
1911 bi = sh->dev[i].written;
1912 sh->dev[i].written = NULL;
1913 if (bi) bitmap_end = 1;
1914 while (bi && bi->bi_sector <
1915 sh->dev[i].sector + STRIPE_SECTORS) {
1916 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
1917 clear_bit(BIO_UPTODATE, &bi->bi_flags);
1918 if (--bi->bi_phys_segments == 0) {
1919 md_write_end(conf->mddev);
1920 bi->bi_next = *return_bi;
1921 *return_bi = bi;
1923 bi = bi2;
1926 /* fail any reads if this device is non-operational and
1927 * the data has not reached the cache yet.
1929 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
1930 (!test_bit(R5_Insync, &sh->dev[i].flags) ||
1931 test_bit(R5_ReadError, &sh->dev[i].flags))) {
1932 bi = sh->dev[i].toread;
1933 sh->dev[i].toread = NULL;
1934 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1935 wake_up(&conf->wait_for_overlap);
1936 if (bi) s->to_read--;
1937 while (bi && bi->bi_sector <
1938 sh->dev[i].sector + STRIPE_SECTORS) {
1939 struct bio *nextbi =
1940 r5_next_bio(bi, sh->dev[i].sector);
1941 clear_bit(BIO_UPTODATE, &bi->bi_flags);
1942 if (--bi->bi_phys_segments == 0) {
1943 bi->bi_next = *return_bi;
1944 *return_bi = bi;
1946 bi = nextbi;
1949 spin_unlock_irq(&conf->device_lock);
1950 if (bitmap_end)
1951 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
1952 STRIPE_SECTORS, 0, 0);
1955 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
1956 if (atomic_dec_and_test(&conf->pending_full_writes))
1957 md_wakeup_thread(conf->mddev->thread);
1960 /* __handle_issuing_new_read_requests5 - returns 0 if there are no more disks
1961 * to process
1963 static int __handle_issuing_new_read_requests5(struct stripe_head *sh,
1964 struct stripe_head_state *s, int disk_idx, int disks)
1966 struct r5dev *dev = &sh->dev[disk_idx];
1967 struct r5dev *failed_dev = &sh->dev[s->failed_num];
1969 /* don't schedule compute operations or reads on the parity block while
1970 * a check is in flight
1972 if ((disk_idx == sh->pd_idx) &&
1973 test_bit(STRIPE_OP_CHECK, &sh->ops.pending))
1974 return ~0;
1976 /* is the data in this block needed, and can we get it? */
1977 if (!test_bit(R5_LOCKED, &dev->flags) &&
1978 !test_bit(R5_UPTODATE, &dev->flags) && (dev->toread ||
1979 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
1980 s->syncing || s->expanding || (s->failed &&
1981 (failed_dev->toread || (failed_dev->towrite &&
1982 !test_bit(R5_OVERWRITE, &failed_dev->flags)
1983 ))))) {
1984 /* 1/ We would like to get this block, possibly by computing it,
1985 * but we might not be able to.
1987 * 2/ Since parity check operations potentially make the parity
1988 * block !uptodate it will need to be refreshed before any
1989 * compute operations on data disks are scheduled.
1991 * 3/ We hold off parity block re-reads until check operations
1992 * have quiesced.
1994 if ((s->uptodate == disks - 1) &&
1995 !test_bit(STRIPE_OP_CHECK, &sh->ops.pending)) {
1996 set_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending);
1997 set_bit(R5_Wantcompute, &dev->flags);
1998 sh->ops.target = disk_idx;
1999 s->req_compute = 1;
2000 sh->ops.count++;
2001 /* Careful: from this point on 'uptodate' is in the eye
2002 * of raid5_run_ops which services 'compute' operations
2003 * before writes. R5_Wantcompute flags a block that will
2004 * be R5_UPTODATE by the time it is needed for a
2005 * subsequent operation.
2007 s->uptodate++;
2008 return 0; /* uptodate + compute == disks */
2009 } else if ((s->uptodate < disks - 1) &&
2010 test_bit(R5_Insync, &dev->flags)) {
2011 /* Note: we hold off compute operations while checks are
2012 * in flight, but we still prefer 'compute' over 'read'
2013 * hence we only read if (uptodate < * disks-1)
2015 set_bit(R5_LOCKED, &dev->flags);
2016 set_bit(R5_Wantread, &dev->flags);
2017 if (!test_and_set_bit(STRIPE_OP_IO, &sh->ops.pending))
2018 sh->ops.count++;
2019 s->locked++;
2020 pr_debug("Reading block %d (sync=%d)\n", disk_idx,
2021 s->syncing);
2025 return ~0;
2028 static void handle_issuing_new_read_requests5(struct stripe_head *sh,
2029 struct stripe_head_state *s, int disks)
2031 int i;
2033 /* Clear completed compute operations. Parity recovery
2034 * (STRIPE_OP_MOD_REPAIR_PD) implies a write-back which is handled
2035 * later on in this routine
2037 if (test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.complete) &&
2038 !test_bit(STRIPE_OP_MOD_REPAIR_PD, &sh->ops.pending)) {
2039 clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.complete);
2040 clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.ack);
2041 clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending);
2044 /* look for blocks to read/compute, skip this if a compute
2045 * is already in flight, or if the stripe contents are in the
2046 * midst of changing due to a write
2048 if (!test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending) &&
2049 !test_bit(STRIPE_OP_PREXOR, &sh->ops.pending) &&
2050 !test_bit(STRIPE_OP_POSTXOR, &sh->ops.pending)) {
2051 for (i = disks; i--; )
2052 if (__handle_issuing_new_read_requests5(
2053 sh, s, i, disks) == 0)
2054 break;
2056 set_bit(STRIPE_HANDLE, &sh->state);
2059 static void handle_issuing_new_read_requests6(struct stripe_head *sh,
2060 struct stripe_head_state *s, struct r6_state *r6s,
2061 int disks)
2063 int i;
2064 for (i = disks; i--; ) {
2065 struct r5dev *dev = &sh->dev[i];
2066 if (!test_bit(R5_LOCKED, &dev->flags) &&
2067 !test_bit(R5_UPTODATE, &dev->flags) &&
2068 (dev->toread || (dev->towrite &&
2069 !test_bit(R5_OVERWRITE, &dev->flags)) ||
2070 s->syncing || s->expanding ||
2071 (s->failed >= 1 &&
2072 (sh->dev[r6s->failed_num[0]].toread ||
2073 s->to_write)) ||
2074 (s->failed >= 2 &&
2075 (sh->dev[r6s->failed_num[1]].toread ||
2076 s->to_write)))) {
2077 /* we would like to get this block, possibly
2078 * by computing it, but we might not be able to
2080 if (s->uptodate == disks-1) {
2081 pr_debug("Computing stripe %llu block %d\n",
2082 (unsigned long long)sh->sector, i);
2083 compute_block_1(sh, i, 0);
2084 s->uptodate++;
2085 } else if ( s->uptodate == disks-2 && s->failed >= 2 ) {
2086 /* Computing 2-failure is *very* expensive; only
2087 * do it if failed >= 2
2089 int other;
2090 for (other = disks; other--; ) {
2091 if (other == i)
2092 continue;
2093 if (!test_bit(R5_UPTODATE,
2094 &sh->dev[other].flags))
2095 break;
2097 BUG_ON(other < 0);
2098 pr_debug("Computing stripe %llu blocks %d,%d\n",
2099 (unsigned long long)sh->sector,
2100 i, other);
2101 compute_block_2(sh, i, other);
2102 s->uptodate += 2;
2103 } else if (test_bit(R5_Insync, &dev->flags)) {
2104 set_bit(R5_LOCKED, &dev->flags);
2105 set_bit(R5_Wantread, &dev->flags);
2106 s->locked++;
2107 pr_debug("Reading block %d (sync=%d)\n",
2108 i, s->syncing);
2112 set_bit(STRIPE_HANDLE, &sh->state);
2116 /* handle_completed_write_requests
2117 * any written block on an uptodate or failed drive can be returned.
2118 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2119 * never LOCKED, so we don't need to test 'failed' directly.
2121 static void handle_completed_write_requests(raid5_conf_t *conf,
2122 struct stripe_head *sh, int disks, struct bio **return_bi)
2124 int i;
2125 struct r5dev *dev;
2127 for (i = disks; i--; )
2128 if (sh->dev[i].written) {
2129 dev = &sh->dev[i];
2130 if (!test_bit(R5_LOCKED, &dev->flags) &&
2131 test_bit(R5_UPTODATE, &dev->flags)) {
2132 /* We can return any write requests */
2133 struct bio *wbi, *wbi2;
2134 int bitmap_end = 0;
2135 pr_debug("Return write for disc %d\n", i);
2136 spin_lock_irq(&conf->device_lock);
2137 wbi = dev->written;
2138 dev->written = NULL;
2139 while (wbi && wbi->bi_sector <
2140 dev->sector + STRIPE_SECTORS) {
2141 wbi2 = r5_next_bio(wbi, dev->sector);
2142 if (--wbi->bi_phys_segments == 0) {
2143 md_write_end(conf->mddev);
2144 wbi->bi_next = *return_bi;
2145 *return_bi = wbi;
2147 wbi = wbi2;
2149 if (dev->towrite == NULL)
2150 bitmap_end = 1;
2151 spin_unlock_irq(&conf->device_lock);
2152 if (bitmap_end)
2153 bitmap_endwrite(conf->mddev->bitmap,
2154 sh->sector,
2155 STRIPE_SECTORS,
2156 !test_bit(STRIPE_DEGRADED, &sh->state),
2161 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2162 if (atomic_dec_and_test(&conf->pending_full_writes))
2163 md_wakeup_thread(conf->mddev->thread);
2166 static void handle_issuing_new_write_requests5(raid5_conf_t *conf,
2167 struct stripe_head *sh, struct stripe_head_state *s, int disks)
2169 int rmw = 0, rcw = 0, i;
2170 for (i = disks; i--; ) {
2171 /* would I have to read this buffer for read_modify_write */
2172 struct r5dev *dev = &sh->dev[i];
2173 if ((dev->towrite || i == sh->pd_idx) &&
2174 !test_bit(R5_LOCKED, &dev->flags) &&
2175 !(test_bit(R5_UPTODATE, &dev->flags) ||
2176 test_bit(R5_Wantcompute, &dev->flags))) {
2177 if (test_bit(R5_Insync, &dev->flags))
2178 rmw++;
2179 else
2180 rmw += 2*disks; /* cannot read it */
2182 /* Would I have to read this buffer for reconstruct_write */
2183 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
2184 !test_bit(R5_LOCKED, &dev->flags) &&
2185 !(test_bit(R5_UPTODATE, &dev->flags) ||
2186 test_bit(R5_Wantcompute, &dev->flags))) {
2187 if (test_bit(R5_Insync, &dev->flags)) rcw++;
2188 else
2189 rcw += 2*disks;
2192 pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2193 (unsigned long long)sh->sector, rmw, rcw);
2194 set_bit(STRIPE_HANDLE, &sh->state);
2195 if (rmw < rcw && rmw > 0)
2196 /* prefer read-modify-write, but need to get some data */
2197 for (i = disks; i--; ) {
2198 struct r5dev *dev = &sh->dev[i];
2199 if ((dev->towrite || i == sh->pd_idx) &&
2200 !test_bit(R5_LOCKED, &dev->flags) &&
2201 !(test_bit(R5_UPTODATE, &dev->flags) ||
2202 test_bit(R5_Wantcompute, &dev->flags)) &&
2203 test_bit(R5_Insync, &dev->flags)) {
2204 if (
2205 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2206 pr_debug("Read_old block "
2207 "%d for r-m-w\n", i);
2208 set_bit(R5_LOCKED, &dev->flags);
2209 set_bit(R5_Wantread, &dev->flags);
2210 if (!test_and_set_bit(
2211 STRIPE_OP_IO, &sh->ops.pending))
2212 sh->ops.count++;
2213 s->locked++;
2214 } else {
2215 set_bit(STRIPE_DELAYED, &sh->state);
2216 set_bit(STRIPE_HANDLE, &sh->state);
2220 if (rcw <= rmw && rcw > 0)
2221 /* want reconstruct write, but need to get some data */
2222 for (i = disks; i--; ) {
2223 struct r5dev *dev = &sh->dev[i];
2224 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2225 i != sh->pd_idx &&
2226 !test_bit(R5_LOCKED, &dev->flags) &&
2227 !(test_bit(R5_UPTODATE, &dev->flags) ||
2228 test_bit(R5_Wantcompute, &dev->flags)) &&
2229 test_bit(R5_Insync, &dev->flags)) {
2230 if (
2231 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2232 pr_debug("Read_old block "
2233 "%d for Reconstruct\n", i);
2234 set_bit(R5_LOCKED, &dev->flags);
2235 set_bit(R5_Wantread, &dev->flags);
2236 if (!test_and_set_bit(
2237 STRIPE_OP_IO, &sh->ops.pending))
2238 sh->ops.count++;
2239 s->locked++;
2240 } else {
2241 set_bit(STRIPE_DELAYED, &sh->state);
2242 set_bit(STRIPE_HANDLE, &sh->state);
2246 /* now if nothing is locked, and if we have enough data,
2247 * we can start a write request
2249 /* since handle_stripe can be called at any time we need to handle the
2250 * case where a compute block operation has been submitted and then a
2251 * subsequent call wants to start a write request. raid5_run_ops only
2252 * handles the case where compute block and postxor are requested
2253 * simultaneously. If this is not the case then new writes need to be
2254 * held off until the compute completes.
2256 if ((s->req_compute ||
2257 !test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending)) &&
2258 (s->locked == 0 && (rcw == 0 || rmw == 0) &&
2259 !test_bit(STRIPE_BIT_DELAY, &sh->state)))
2260 s->locked += handle_write_operations5(sh, rcw == 0, 0);
2263 static void handle_issuing_new_write_requests6(raid5_conf_t *conf,
2264 struct stripe_head *sh, struct stripe_head_state *s,
2265 struct r6_state *r6s, int disks)
2267 int rcw = 0, must_compute = 0, pd_idx = sh->pd_idx, i;
2268 int qd_idx = r6s->qd_idx;
2269 for (i = disks; i--; ) {
2270 struct r5dev *dev = &sh->dev[i];
2271 /* Would I have to read this buffer for reconstruct_write */
2272 if (!test_bit(R5_OVERWRITE, &dev->flags)
2273 && i != pd_idx && i != qd_idx
2274 && (!test_bit(R5_LOCKED, &dev->flags)
2275 ) &&
2276 !test_bit(R5_UPTODATE, &dev->flags)) {
2277 if (test_bit(R5_Insync, &dev->flags)) rcw++;
2278 else {
2279 pr_debug("raid6: must_compute: "
2280 "disk %d flags=%#lx\n", i, dev->flags);
2281 must_compute++;
2285 pr_debug("for sector %llu, rcw=%d, must_compute=%d\n",
2286 (unsigned long long)sh->sector, rcw, must_compute);
2287 set_bit(STRIPE_HANDLE, &sh->state);
2289 if (rcw > 0)
2290 /* want reconstruct write, but need to get some data */
2291 for (i = disks; i--; ) {
2292 struct r5dev *dev = &sh->dev[i];
2293 if (!test_bit(R5_OVERWRITE, &dev->flags)
2294 && !(s->failed == 0 && (i == pd_idx || i == qd_idx))
2295 && !test_bit(R5_LOCKED, &dev->flags) &&
2296 !test_bit(R5_UPTODATE, &dev->flags) &&
2297 test_bit(R5_Insync, &dev->flags)) {
2298 if (
2299 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2300 pr_debug("Read_old stripe %llu "
2301 "block %d for Reconstruct\n",
2302 (unsigned long long)sh->sector, i);
2303 set_bit(R5_LOCKED, &dev->flags);
2304 set_bit(R5_Wantread, &dev->flags);
2305 s->locked++;
2306 } else {
2307 pr_debug("Request delayed stripe %llu "
2308 "block %d for Reconstruct\n",
2309 (unsigned long long)sh->sector, i);
2310 set_bit(STRIPE_DELAYED, &sh->state);
2311 set_bit(STRIPE_HANDLE, &sh->state);
2315 /* now if nothing is locked, and if we have enough data, we can start a
2316 * write request
2318 if (s->locked == 0 && rcw == 0 &&
2319 !test_bit(STRIPE_BIT_DELAY, &sh->state)) {
2320 if (must_compute > 0) {
2321 /* We have failed blocks and need to compute them */
2322 switch (s->failed) {
2323 case 0:
2324 BUG();
2325 case 1:
2326 compute_block_1(sh, r6s->failed_num[0], 0);
2327 break;
2328 case 2:
2329 compute_block_2(sh, r6s->failed_num[0],
2330 r6s->failed_num[1]);
2331 break;
2332 default: /* This request should have been failed? */
2333 BUG();
2337 pr_debug("Computing parity for stripe %llu\n",
2338 (unsigned long long)sh->sector);
2339 compute_parity6(sh, RECONSTRUCT_WRITE);
2340 /* now every locked buffer is ready to be written */
2341 for (i = disks; i--; )
2342 if (test_bit(R5_LOCKED, &sh->dev[i].flags)) {
2343 pr_debug("Writing stripe %llu block %d\n",
2344 (unsigned long long)sh->sector, i);
2345 s->locked++;
2346 set_bit(R5_Wantwrite, &sh->dev[i].flags);
2348 if (s->locked == disks)
2349 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2350 atomic_inc(&conf->pending_full_writes);
2351 /* after a RECONSTRUCT_WRITE, the stripe MUST be in-sync */
2352 set_bit(STRIPE_INSYNC, &sh->state);
2354 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2355 atomic_dec(&conf->preread_active_stripes);
2356 if (atomic_read(&conf->preread_active_stripes) <
2357 IO_THRESHOLD)
2358 md_wakeup_thread(conf->mddev->thread);
2363 static void handle_parity_checks5(raid5_conf_t *conf, struct stripe_head *sh,
2364 struct stripe_head_state *s, int disks)
2366 int canceled_check = 0;
2368 set_bit(STRIPE_HANDLE, &sh->state);
2370 /* complete a check operation */
2371 if (test_and_clear_bit(STRIPE_OP_CHECK, &sh->ops.complete)) {
2372 clear_bit(STRIPE_OP_CHECK, &sh->ops.ack);
2373 clear_bit(STRIPE_OP_CHECK, &sh->ops.pending);
2374 if (s->failed == 0) {
2375 if (sh->ops.zero_sum_result == 0)
2376 /* parity is correct (on disc,
2377 * not in buffer any more)
2379 set_bit(STRIPE_INSYNC, &sh->state);
2380 else {
2381 conf->mddev->resync_mismatches +=
2382 STRIPE_SECTORS;
2383 if (test_bit(
2384 MD_RECOVERY_CHECK, &conf->mddev->recovery))
2385 /* don't try to repair!! */
2386 set_bit(STRIPE_INSYNC, &sh->state);
2387 else {
2388 set_bit(STRIPE_OP_COMPUTE_BLK,
2389 &sh->ops.pending);
2390 set_bit(STRIPE_OP_MOD_REPAIR_PD,
2391 &sh->ops.pending);
2392 set_bit(R5_Wantcompute,
2393 &sh->dev[sh->pd_idx].flags);
2394 sh->ops.target = sh->pd_idx;
2395 sh->ops.count++;
2396 s->uptodate++;
2399 } else
2400 canceled_check = 1; /* STRIPE_INSYNC is not set */
2403 /* check if we can clear a parity disk reconstruct */
2404 if (test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.complete) &&
2405 test_bit(STRIPE_OP_MOD_REPAIR_PD, &sh->ops.pending)) {
2407 clear_bit(STRIPE_OP_MOD_REPAIR_PD, &sh->ops.pending);
2408 clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.complete);
2409 clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.ack);
2410 clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending);
2413 /* start a new check operation if there are no failures, the stripe is
2414 * not insync, and a repair is not in flight
2416 if (s->failed == 0 &&
2417 !test_bit(STRIPE_INSYNC, &sh->state) &&
2418 !test_bit(STRIPE_OP_MOD_REPAIR_PD, &sh->ops.pending)) {
2419 if (!test_and_set_bit(STRIPE_OP_CHECK, &sh->ops.pending)) {
2420 BUG_ON(s->uptodate != disks);
2421 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
2422 sh->ops.count++;
2423 s->uptodate--;
2427 /* Wait for check parity and compute block operations to complete
2428 * before write-back. If a failure occurred while the check operation
2429 * was in flight we need to cycle this stripe through handle_stripe
2430 * since the parity block may not be uptodate
2432 if (!canceled_check && !test_bit(STRIPE_INSYNC, &sh->state) &&
2433 !test_bit(STRIPE_OP_CHECK, &sh->ops.pending) &&
2434 !test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending)) {
2435 struct r5dev *dev;
2436 /* either failed parity check, or recovery is happening */
2437 if (s->failed == 0)
2438 s->failed_num = sh->pd_idx;
2439 dev = &sh->dev[s->failed_num];
2440 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
2441 BUG_ON(s->uptodate != disks);
2443 set_bit(R5_LOCKED, &dev->flags);
2444 set_bit(R5_Wantwrite, &dev->flags);
2445 if (!test_and_set_bit(STRIPE_OP_IO, &sh->ops.pending))
2446 sh->ops.count++;
2448 clear_bit(STRIPE_DEGRADED, &sh->state);
2449 s->locked++;
2450 set_bit(STRIPE_INSYNC, &sh->state);
2455 static void handle_parity_checks6(raid5_conf_t *conf, struct stripe_head *sh,
2456 struct stripe_head_state *s,
2457 struct r6_state *r6s, struct page *tmp_page,
2458 int disks)
2460 int update_p = 0, update_q = 0;
2461 struct r5dev *dev;
2462 int pd_idx = sh->pd_idx;
2463 int qd_idx = r6s->qd_idx;
2465 set_bit(STRIPE_HANDLE, &sh->state);
2467 BUG_ON(s->failed > 2);
2468 BUG_ON(s->uptodate < disks);
2469 /* Want to check and possibly repair P and Q.
2470 * However there could be one 'failed' device, in which
2471 * case we can only check one of them, possibly using the
2472 * other to generate missing data
2475 /* If !tmp_page, we cannot do the calculations,
2476 * but as we have set STRIPE_HANDLE, we will soon be called
2477 * by stripe_handle with a tmp_page - just wait until then.
2479 if (tmp_page) {
2480 if (s->failed == r6s->q_failed) {
2481 /* The only possible failed device holds 'Q', so it
2482 * makes sense to check P (If anything else were failed,
2483 * we would have used P to recreate it).
2485 compute_block_1(sh, pd_idx, 1);
2486 if (!page_is_zero(sh->dev[pd_idx].page)) {
2487 compute_block_1(sh, pd_idx, 0);
2488 update_p = 1;
2491 if (!r6s->q_failed && s->failed < 2) {
2492 /* q is not failed, and we didn't use it to generate
2493 * anything, so it makes sense to check it
2495 memcpy(page_address(tmp_page),
2496 page_address(sh->dev[qd_idx].page),
2497 STRIPE_SIZE);
2498 compute_parity6(sh, UPDATE_PARITY);
2499 if (memcmp(page_address(tmp_page),
2500 page_address(sh->dev[qd_idx].page),
2501 STRIPE_SIZE) != 0) {
2502 clear_bit(STRIPE_INSYNC, &sh->state);
2503 update_q = 1;
2506 if (update_p || update_q) {
2507 conf->mddev->resync_mismatches += STRIPE_SECTORS;
2508 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2509 /* don't try to repair!! */
2510 update_p = update_q = 0;
2513 /* now write out any block on a failed drive,
2514 * or P or Q if they need it
2517 if (s->failed == 2) {
2518 dev = &sh->dev[r6s->failed_num[1]];
2519 s->locked++;
2520 set_bit(R5_LOCKED, &dev->flags);
2521 set_bit(R5_Wantwrite, &dev->flags);
2523 if (s->failed >= 1) {
2524 dev = &sh->dev[r6s->failed_num[0]];
2525 s->locked++;
2526 set_bit(R5_LOCKED, &dev->flags);
2527 set_bit(R5_Wantwrite, &dev->flags);
2530 if (update_p) {
2531 dev = &sh->dev[pd_idx];
2532 s->locked++;
2533 set_bit(R5_LOCKED, &dev->flags);
2534 set_bit(R5_Wantwrite, &dev->flags);
2536 if (update_q) {
2537 dev = &sh->dev[qd_idx];
2538 s->locked++;
2539 set_bit(R5_LOCKED, &dev->flags);
2540 set_bit(R5_Wantwrite, &dev->flags);
2542 clear_bit(STRIPE_DEGRADED, &sh->state);
2544 set_bit(STRIPE_INSYNC, &sh->state);
2548 static void handle_stripe_expansion(raid5_conf_t *conf, struct stripe_head *sh,
2549 struct r6_state *r6s)
2551 int i;
2553 /* We have read all the blocks in this stripe and now we need to
2554 * copy some of them into a target stripe for expand.
2556 struct dma_async_tx_descriptor *tx = NULL;
2557 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2558 for (i = 0; i < sh->disks; i++)
2559 if (i != sh->pd_idx && (!r6s || i != r6s->qd_idx)) {
2560 int dd_idx, pd_idx, j;
2561 struct stripe_head *sh2;
2563 sector_t bn = compute_blocknr(sh, i);
2564 sector_t s = raid5_compute_sector(bn, conf->raid_disks,
2565 conf->raid_disks -
2566 conf->max_degraded, &dd_idx,
2567 &pd_idx, conf);
2568 sh2 = get_active_stripe(conf, s, conf->raid_disks,
2569 pd_idx, 1);
2570 if (sh2 == NULL)
2571 /* so far only the early blocks of this stripe
2572 * have been requested. When later blocks
2573 * get requested, we will try again
2575 continue;
2576 if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
2577 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
2578 /* must have already done this block */
2579 release_stripe(sh2);
2580 continue;
2583 /* place all the copies on one channel */
2584 tx = async_memcpy(sh2->dev[dd_idx].page,
2585 sh->dev[i].page, 0, 0, STRIPE_SIZE,
2586 ASYNC_TX_DEP_ACK, tx, NULL, NULL);
2588 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
2589 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
2590 for (j = 0; j < conf->raid_disks; j++)
2591 if (j != sh2->pd_idx &&
2592 (!r6s || j != raid6_next_disk(sh2->pd_idx,
2593 sh2->disks)) &&
2594 !test_bit(R5_Expanded, &sh2->dev[j].flags))
2595 break;
2596 if (j == conf->raid_disks) {
2597 set_bit(STRIPE_EXPAND_READY, &sh2->state);
2598 set_bit(STRIPE_HANDLE, &sh2->state);
2600 release_stripe(sh2);
2603 /* done submitting copies, wait for them to complete */
2604 if (tx) {
2605 async_tx_ack(tx);
2606 dma_wait_for_async_tx(tx);
2612 * handle_stripe - do things to a stripe.
2614 * We lock the stripe and then examine the state of various bits
2615 * to see what needs to be done.
2616 * Possible results:
2617 * return some read request which now have data
2618 * return some write requests which are safely on disc
2619 * schedule a read on some buffers
2620 * schedule a write of some buffers
2621 * return confirmation of parity correctness
2623 * buffers are taken off read_list or write_list, and bh_cache buffers
2624 * get BH_Lock set before the stripe lock is released.
2628 static void handle_stripe5(struct stripe_head *sh)
2630 raid5_conf_t *conf = sh->raid_conf;
2631 int disks = sh->disks, i;
2632 struct bio *return_bi = NULL;
2633 struct stripe_head_state s;
2634 struct r5dev *dev;
2635 unsigned long pending = 0;
2636 mdk_rdev_t *blocked_rdev = NULL;
2638 memset(&s, 0, sizeof(s));
2639 pr_debug("handling stripe %llu, state=%#lx cnt=%d, pd_idx=%d "
2640 "ops=%lx:%lx:%lx\n", (unsigned long long)sh->sector, sh->state,
2641 atomic_read(&sh->count), sh->pd_idx,
2642 sh->ops.pending, sh->ops.ack, sh->ops.complete);
2644 spin_lock(&sh->lock);
2645 clear_bit(STRIPE_HANDLE, &sh->state);
2646 clear_bit(STRIPE_DELAYED, &sh->state);
2648 s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
2649 s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2650 s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
2651 /* Now to look around and see what can be done */
2653 /* clean-up completed biofill operations */
2654 if (test_bit(STRIPE_OP_BIOFILL, &sh->ops.complete)) {
2655 clear_bit(STRIPE_OP_BIOFILL, &sh->ops.pending);
2656 clear_bit(STRIPE_OP_BIOFILL, &sh->ops.ack);
2657 clear_bit(STRIPE_OP_BIOFILL, &sh->ops.complete);
2660 rcu_read_lock();
2661 for (i=disks; i--; ) {
2662 mdk_rdev_t *rdev;
2663 struct r5dev *dev = &sh->dev[i];
2664 clear_bit(R5_Insync, &dev->flags);
2666 pr_debug("check %d: state 0x%lx toread %p read %p write %p "
2667 "written %p\n", i, dev->flags, dev->toread, dev->read,
2668 dev->towrite, dev->written);
2670 /* maybe we can request a biofill operation
2672 * new wantfill requests are only permitted while
2673 * STRIPE_OP_BIOFILL is clear
2675 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
2676 !test_bit(STRIPE_OP_BIOFILL, &sh->ops.pending))
2677 set_bit(R5_Wantfill, &dev->flags);
2679 /* now count some things */
2680 if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
2681 if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
2682 if (test_bit(R5_Wantcompute, &dev->flags)) s.compute++;
2684 if (test_bit(R5_Wantfill, &dev->flags))
2685 s.to_fill++;
2686 else if (dev->toread)
2687 s.to_read++;
2688 if (dev->towrite) {
2689 s.to_write++;
2690 if (!test_bit(R5_OVERWRITE, &dev->flags))
2691 s.non_overwrite++;
2693 if (dev->written)
2694 s.written++;
2695 rdev = rcu_dereference(conf->disks[i].rdev);
2696 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
2697 blocked_rdev = rdev;
2698 atomic_inc(&rdev->nr_pending);
2699 break;
2701 if (!rdev || !test_bit(In_sync, &rdev->flags)) {
2702 /* The ReadError flag will just be confusing now */
2703 clear_bit(R5_ReadError, &dev->flags);
2704 clear_bit(R5_ReWrite, &dev->flags);
2706 if (!rdev || !test_bit(In_sync, &rdev->flags)
2707 || test_bit(R5_ReadError, &dev->flags)) {
2708 s.failed++;
2709 s.failed_num = i;
2710 } else
2711 set_bit(R5_Insync, &dev->flags);
2713 rcu_read_unlock();
2715 if (unlikely(blocked_rdev)) {
2716 set_bit(STRIPE_HANDLE, &sh->state);
2717 goto unlock;
2720 if (s.to_fill && !test_and_set_bit(STRIPE_OP_BIOFILL, &sh->ops.pending))
2721 sh->ops.count++;
2723 pr_debug("locked=%d uptodate=%d to_read=%d"
2724 " to_write=%d failed=%d failed_num=%d\n",
2725 s.locked, s.uptodate, s.to_read, s.to_write,
2726 s.failed, s.failed_num);
2727 /* check if the array has lost two devices and, if so, some requests might
2728 * need to be failed
2730 if (s.failed > 1 && s.to_read+s.to_write+s.written)
2731 handle_requests_to_failed_array(conf, sh, &s, disks,
2732 &return_bi);
2733 if (s.failed > 1 && s.syncing) {
2734 md_done_sync(conf->mddev, STRIPE_SECTORS,0);
2735 clear_bit(STRIPE_SYNCING, &sh->state);
2736 s.syncing = 0;
2739 /* might be able to return some write requests if the parity block
2740 * is safe, or on a failed drive
2742 dev = &sh->dev[sh->pd_idx];
2743 if ( s.written &&
2744 ((test_bit(R5_Insync, &dev->flags) &&
2745 !test_bit(R5_LOCKED, &dev->flags) &&
2746 test_bit(R5_UPTODATE, &dev->flags)) ||
2747 (s.failed == 1 && s.failed_num == sh->pd_idx)))
2748 handle_completed_write_requests(conf, sh, disks, &return_bi);
2750 /* Now we might consider reading some blocks, either to check/generate
2751 * parity, or to satisfy requests
2752 * or to load a block that is being partially written.
2754 if (s.to_read || s.non_overwrite ||
2755 (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding ||
2756 test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending))
2757 handle_issuing_new_read_requests5(sh, &s, disks);
2759 /* Now we check to see if any write operations have recently
2760 * completed
2763 /* leave prexor set until postxor is done, allows us to distinguish
2764 * a rmw from a rcw during biodrain
2766 if (test_bit(STRIPE_OP_PREXOR, &sh->ops.complete) &&
2767 test_bit(STRIPE_OP_POSTXOR, &sh->ops.complete)) {
2769 clear_bit(STRIPE_OP_PREXOR, &sh->ops.complete);
2770 clear_bit(STRIPE_OP_PREXOR, &sh->ops.ack);
2771 clear_bit(STRIPE_OP_PREXOR, &sh->ops.pending);
2773 for (i = disks; i--; )
2774 clear_bit(R5_Wantprexor, &sh->dev[i].flags);
2777 /* if only POSTXOR is set then this is an 'expand' postxor */
2778 if (test_bit(STRIPE_OP_BIODRAIN, &sh->ops.complete) &&
2779 test_bit(STRIPE_OP_POSTXOR, &sh->ops.complete)) {
2781 clear_bit(STRIPE_OP_BIODRAIN, &sh->ops.complete);
2782 clear_bit(STRIPE_OP_BIODRAIN, &sh->ops.ack);
2783 clear_bit(STRIPE_OP_BIODRAIN, &sh->ops.pending);
2785 clear_bit(STRIPE_OP_POSTXOR, &sh->ops.complete);
2786 clear_bit(STRIPE_OP_POSTXOR, &sh->ops.ack);
2787 clear_bit(STRIPE_OP_POSTXOR, &sh->ops.pending);
2789 /* All the 'written' buffers and the parity block are ready to
2790 * be written back to disk
2792 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
2793 for (i = disks; i--; ) {
2794 dev = &sh->dev[i];
2795 if (test_bit(R5_LOCKED, &dev->flags) &&
2796 (i == sh->pd_idx || dev->written)) {
2797 pr_debug("Writing block %d\n", i);
2798 set_bit(R5_Wantwrite, &dev->flags);
2799 if (!test_and_set_bit(
2800 STRIPE_OP_IO, &sh->ops.pending))
2801 sh->ops.count++;
2802 if (!test_bit(R5_Insync, &dev->flags) ||
2803 (i == sh->pd_idx && s.failed == 0))
2804 set_bit(STRIPE_INSYNC, &sh->state);
2807 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2808 atomic_dec(&conf->preread_active_stripes);
2809 if (atomic_read(&conf->preread_active_stripes) <
2810 IO_THRESHOLD)
2811 md_wakeup_thread(conf->mddev->thread);
2815 /* Now to consider new write requests and what else, if anything
2816 * should be read. We do not handle new writes when:
2817 * 1/ A 'write' operation (copy+xor) is already in flight.
2818 * 2/ A 'check' operation is in flight, as it may clobber the parity
2819 * block.
2821 if (s.to_write && !test_bit(STRIPE_OP_POSTXOR, &sh->ops.pending) &&
2822 !test_bit(STRIPE_OP_CHECK, &sh->ops.pending))
2823 handle_issuing_new_write_requests5(conf, sh, &s, disks);
2825 /* maybe we need to check and possibly fix the parity for this stripe
2826 * Any reads will already have been scheduled, so we just see if enough
2827 * data is available. The parity check is held off while parity
2828 * dependent operations are in flight.
2830 if ((s.syncing && s.locked == 0 &&
2831 !test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending) &&
2832 !test_bit(STRIPE_INSYNC, &sh->state)) ||
2833 test_bit(STRIPE_OP_CHECK, &sh->ops.pending) ||
2834 test_bit(STRIPE_OP_MOD_REPAIR_PD, &sh->ops.pending))
2835 handle_parity_checks5(conf, sh, &s, disks);
2837 if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
2838 md_done_sync(conf->mddev, STRIPE_SECTORS,1);
2839 clear_bit(STRIPE_SYNCING, &sh->state);
2842 /* If the failed drive is just a ReadError, then we might need to progress
2843 * the repair/check process
2845 if (s.failed == 1 && !conf->mddev->ro &&
2846 test_bit(R5_ReadError, &sh->dev[s.failed_num].flags)
2847 && !test_bit(R5_LOCKED, &sh->dev[s.failed_num].flags)
2848 && test_bit(R5_UPTODATE, &sh->dev[s.failed_num].flags)
2850 dev = &sh->dev[s.failed_num];
2851 if (!test_bit(R5_ReWrite, &dev->flags)) {
2852 set_bit(R5_Wantwrite, &dev->flags);
2853 if (!test_and_set_bit(STRIPE_OP_IO, &sh->ops.pending))
2854 sh->ops.count++;
2855 set_bit(R5_ReWrite, &dev->flags);
2856 set_bit(R5_LOCKED, &dev->flags);
2857 s.locked++;
2858 } else {
2859 /* let's read it back */
2860 set_bit(R5_Wantread, &dev->flags);
2861 if (!test_and_set_bit(STRIPE_OP_IO, &sh->ops.pending))
2862 sh->ops.count++;
2863 set_bit(R5_LOCKED, &dev->flags);
2864 s.locked++;
2868 /* Finish postxor operations initiated by the expansion
2869 * process
2871 if (test_bit(STRIPE_OP_POSTXOR, &sh->ops.complete) &&
2872 !test_bit(STRIPE_OP_BIODRAIN, &sh->ops.pending)) {
2874 clear_bit(STRIPE_EXPANDING, &sh->state);
2876 clear_bit(STRIPE_OP_POSTXOR, &sh->ops.pending);
2877 clear_bit(STRIPE_OP_POSTXOR, &sh->ops.ack);
2878 clear_bit(STRIPE_OP_POSTXOR, &sh->ops.complete);
2880 for (i = conf->raid_disks; i--; ) {
2881 set_bit(R5_Wantwrite, &sh->dev[i].flags);
2882 if (!test_and_set_bit(STRIPE_OP_IO, &sh->ops.pending))
2883 sh->ops.count++;
2887 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
2888 !test_bit(STRIPE_OP_POSTXOR, &sh->ops.pending)) {
2889 /* Need to write out all blocks after computing parity */
2890 sh->disks = conf->raid_disks;
2891 sh->pd_idx = stripe_to_pdidx(sh->sector, conf,
2892 conf->raid_disks);
2893 s.locked += handle_write_operations5(sh, 1, 1);
2894 } else if (s.expanded &&
2895 !test_bit(STRIPE_OP_POSTXOR, &sh->ops.pending)) {
2896 clear_bit(STRIPE_EXPAND_READY, &sh->state);
2897 atomic_dec(&conf->reshape_stripes);
2898 wake_up(&conf->wait_for_overlap);
2899 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
2902 if (s.expanding && s.locked == 0 &&
2903 !test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending))
2904 handle_stripe_expansion(conf, sh, NULL);
2906 if (sh->ops.count)
2907 pending = get_stripe_work(sh);
2909 unlock:
2910 spin_unlock(&sh->lock);
2912 /* wait for this device to become unblocked */
2913 if (unlikely(blocked_rdev))
2914 md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);
2916 if (pending)
2917 raid5_run_ops(sh, pending);
2919 return_io(return_bi);
2923 static void handle_stripe6(struct stripe_head *sh, struct page *tmp_page)
2925 raid6_conf_t *conf = sh->raid_conf;
2926 int disks = sh->disks;
2927 struct bio *return_bi = NULL;
2928 int i, pd_idx = sh->pd_idx;
2929 struct stripe_head_state s;
2930 struct r6_state r6s;
2931 struct r5dev *dev, *pdev, *qdev;
2932 mdk_rdev_t *blocked_rdev = NULL;
2934 r6s.qd_idx = raid6_next_disk(pd_idx, disks);
2935 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
2936 "pd_idx=%d, qd_idx=%d\n",
2937 (unsigned long long)sh->sector, sh->state,
2938 atomic_read(&sh->count), pd_idx, r6s.qd_idx);
2939 memset(&s, 0, sizeof(s));
2941 spin_lock(&sh->lock);
2942 clear_bit(STRIPE_HANDLE, &sh->state);
2943 clear_bit(STRIPE_DELAYED, &sh->state);
2945 s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
2946 s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2947 s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
2948 /* Now to look around and see what can be done */
2950 rcu_read_lock();
2951 for (i=disks; i--; ) {
2952 mdk_rdev_t *rdev;
2953 dev = &sh->dev[i];
2954 clear_bit(R5_Insync, &dev->flags);
2956 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
2957 i, dev->flags, dev->toread, dev->towrite, dev->written);
2958 /* maybe we can reply to a read */
2959 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread) {
2960 struct bio *rbi, *rbi2;
2961 pr_debug("Return read for disc %d\n", i);
2962 spin_lock_irq(&conf->device_lock);
2963 rbi = dev->toread;
2964 dev->toread = NULL;
2965 if (test_and_clear_bit(R5_Overlap, &dev->flags))
2966 wake_up(&conf->wait_for_overlap);
2967 spin_unlock_irq(&conf->device_lock);
2968 while (rbi && rbi->bi_sector < dev->sector + STRIPE_SECTORS) {
2969 copy_data(0, rbi, dev->page, dev->sector);
2970 rbi2 = r5_next_bio(rbi, dev->sector);
2971 spin_lock_irq(&conf->device_lock);
2972 if (--rbi->bi_phys_segments == 0) {
2973 rbi->bi_next = return_bi;
2974 return_bi = rbi;
2976 spin_unlock_irq(&conf->device_lock);
2977 rbi = rbi2;
2981 /* now count some things */
2982 if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
2983 if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
2986 if (dev->toread)
2987 s.to_read++;
2988 if (dev->towrite) {
2989 s.to_write++;
2990 if (!test_bit(R5_OVERWRITE, &dev->flags))
2991 s.non_overwrite++;
2993 if (dev->written)
2994 s.written++;
2995 rdev = rcu_dereference(conf->disks[i].rdev);
2996 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
2997 blocked_rdev = rdev;
2998 atomic_inc(&rdev->nr_pending);
2999 break;
3001 if (!rdev || !test_bit(In_sync, &rdev->flags)) {
3002 /* The ReadError flag will just be confusing now */
3003 clear_bit(R5_ReadError, &dev->flags);
3004 clear_bit(R5_ReWrite, &dev->flags);
3006 if (!rdev || !test_bit(In_sync, &rdev->flags)
3007 || test_bit(R5_ReadError, &dev->flags)) {
3008 if (s.failed < 2)
3009 r6s.failed_num[s.failed] = i;
3010 s.failed++;
3011 } else
3012 set_bit(R5_Insync, &dev->flags);
3014 rcu_read_unlock();
3016 if (unlikely(blocked_rdev)) {
3017 set_bit(STRIPE_HANDLE, &sh->state);
3018 goto unlock;
3020 pr_debug("locked=%d uptodate=%d to_read=%d"
3021 " to_write=%d failed=%d failed_num=%d,%d\n",
3022 s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
3023 r6s.failed_num[0], r6s.failed_num[1]);
3024 /* check if the array has lost >2 devices and, if so, some requests
3025 * might need to be failed
3027 if (s.failed > 2 && s.to_read+s.to_write+s.written)
3028 handle_requests_to_failed_array(conf, sh, &s, disks,
3029 &return_bi);
3030 if (s.failed > 2 && s.syncing) {
3031 md_done_sync(conf->mddev, STRIPE_SECTORS,0);
3032 clear_bit(STRIPE_SYNCING, &sh->state);
3033 s.syncing = 0;
3037 * might be able to return some write requests if the parity blocks
3038 * are safe, or on a failed drive
3040 pdev = &sh->dev[pd_idx];
3041 r6s.p_failed = (s.failed >= 1 && r6s.failed_num[0] == pd_idx)
3042 || (s.failed >= 2 && r6s.failed_num[1] == pd_idx);
3043 qdev = &sh->dev[r6s.qd_idx];
3044 r6s.q_failed = (s.failed >= 1 && r6s.failed_num[0] == r6s.qd_idx)
3045 || (s.failed >= 2 && r6s.failed_num[1] == r6s.qd_idx);
3047 if ( s.written &&
3048 ( r6s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3049 && !test_bit(R5_LOCKED, &pdev->flags)
3050 && test_bit(R5_UPTODATE, &pdev->flags)))) &&
3051 ( r6s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3052 && !test_bit(R5_LOCKED, &qdev->flags)
3053 && test_bit(R5_UPTODATE, &qdev->flags)))))
3054 handle_completed_write_requests(conf, sh, disks, &return_bi);
3056 /* Now we might consider reading some blocks, either to check/generate
3057 * parity, or to satisfy requests
3058 * or to load a block that is being partially written.
3060 if (s.to_read || s.non_overwrite || (s.to_write && s.failed) ||
3061 (s.syncing && (s.uptodate < disks)) || s.expanding)
3062 handle_issuing_new_read_requests6(sh, &s, &r6s, disks);
3064 /* now to consider writing and what else, if anything should be read */
3065 if (s.to_write)
3066 handle_issuing_new_write_requests6(conf, sh, &s, &r6s, disks);
3068 /* maybe we need to check and possibly fix the parity for this stripe
3069 * Any reads will already have been scheduled, so we just see if enough
3070 * data is available
3072 if (s.syncing && s.locked == 0 && !test_bit(STRIPE_INSYNC, &sh->state))
3073 handle_parity_checks6(conf, sh, &s, &r6s, tmp_page, disks);
3075 if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
3076 md_done_sync(conf->mddev, STRIPE_SECTORS,1);
3077 clear_bit(STRIPE_SYNCING, &sh->state);
3080 /* If the failed drives are just a ReadError, then we might need
3081 * to progress the repair/check process
3083 if (s.failed <= 2 && !conf->mddev->ro)
3084 for (i = 0; i < s.failed; i++) {
3085 dev = &sh->dev[r6s.failed_num[i]];
3086 if (test_bit(R5_ReadError, &dev->flags)
3087 && !test_bit(R5_LOCKED, &dev->flags)
3088 && test_bit(R5_UPTODATE, &dev->flags)
3090 if (!test_bit(R5_ReWrite, &dev->flags)) {
3091 set_bit(R5_Wantwrite, &dev->flags);
3092 set_bit(R5_ReWrite, &dev->flags);
3093 set_bit(R5_LOCKED, &dev->flags);
3094 } else {
3095 /* let's read it back */
3096 set_bit(R5_Wantread, &dev->flags);
3097 set_bit(R5_LOCKED, &dev->flags);
3102 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state)) {
3103 /* Need to write out all blocks after computing P&Q */
3104 sh->disks = conf->raid_disks;
3105 sh->pd_idx = stripe_to_pdidx(sh->sector, conf,
3106 conf->raid_disks);
3107 compute_parity6(sh, RECONSTRUCT_WRITE);
3108 for (i = conf->raid_disks ; i-- ; ) {
3109 set_bit(R5_LOCKED, &sh->dev[i].flags);
3110 s.locked++;
3111 set_bit(R5_Wantwrite, &sh->dev[i].flags);
3113 clear_bit(STRIPE_EXPANDING, &sh->state);
3114 } else if (s.expanded) {
3115 clear_bit(STRIPE_EXPAND_READY, &sh->state);
3116 atomic_dec(&conf->reshape_stripes);
3117 wake_up(&conf->wait_for_overlap);
3118 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3121 if (s.expanding && s.locked == 0 &&
3122 !test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending))
3123 handle_stripe_expansion(conf, sh, &r6s);
3125 unlock:
3126 spin_unlock(&sh->lock);
3128 /* wait for this device to become unblocked */
3129 if (unlikely(blocked_rdev))
3130 md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);
3132 return_io(return_bi);
3134 for (i=disks; i-- ;) {
3135 int rw;
3136 struct bio *bi;
3137 mdk_rdev_t *rdev;
3138 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags))
3139 rw = WRITE;
3140 else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
3141 rw = READ;
3142 else
3143 continue;
3145 set_bit(STRIPE_IO_STARTED, &sh->state);
3147 bi = &sh->dev[i].req;
3149 bi->bi_rw = rw;
3150 if (rw == WRITE)
3151 bi->bi_end_io = raid5_end_write_request;
3152 else
3153 bi->bi_end_io = raid5_end_read_request;
3155 rcu_read_lock();
3156 rdev = rcu_dereference(conf->disks[i].rdev);
3157 if (rdev && test_bit(Faulty, &rdev->flags))
3158 rdev = NULL;
3159 if (rdev)
3160 atomic_inc(&rdev->nr_pending);
3161 rcu_read_unlock();
3163 if (rdev) {
3164 if (s.syncing || s.expanding || s.expanded)
3165 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
3167 bi->bi_bdev = rdev->bdev;
3168 pr_debug("for %llu schedule op %ld on disc %d\n",
3169 (unsigned long long)sh->sector, bi->bi_rw, i);
3170 atomic_inc(&sh->count);
3171 bi->bi_sector = sh->sector + rdev->data_offset;
3172 bi->bi_flags = 1 << BIO_UPTODATE;
3173 bi->bi_vcnt = 1;
3174 bi->bi_max_vecs = 1;
3175 bi->bi_idx = 0;
3176 bi->bi_io_vec = &sh->dev[i].vec;
3177 bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
3178 bi->bi_io_vec[0].bv_offset = 0;
3179 bi->bi_size = STRIPE_SIZE;
3180 bi->bi_next = NULL;
3181 if (rw == WRITE &&
3182 test_bit(R5_ReWrite, &sh->dev[i].flags))
3183 atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
3184 generic_make_request(bi);
3185 } else {
3186 if (rw == WRITE)
3187 set_bit(STRIPE_DEGRADED, &sh->state);
3188 pr_debug("skip op %ld on disc %d for sector %llu\n",
3189 bi->bi_rw, i, (unsigned long long)sh->sector);
3190 clear_bit(R5_LOCKED, &sh->dev[i].flags);
3191 set_bit(STRIPE_HANDLE, &sh->state);
3196 static void handle_stripe(struct stripe_head *sh, struct page *tmp_page)
3198 if (sh->raid_conf->level == 6)
3199 handle_stripe6(sh, tmp_page);
3200 else
3201 handle_stripe5(sh);
3206 static void raid5_activate_delayed(raid5_conf_t *conf)
3208 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
3209 while (!list_empty(&conf->delayed_list)) {
3210 struct list_head *l = conf->delayed_list.next;
3211 struct stripe_head *sh;
3212 sh = list_entry(l, struct stripe_head, lru);
3213 list_del_init(l);
3214 clear_bit(STRIPE_DELAYED, &sh->state);
3215 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3216 atomic_inc(&conf->preread_active_stripes);
3217 list_add_tail(&sh->lru, &conf->hold_list);
3219 } else
3220 blk_plug_device(conf->mddev->queue);
3223 static void activate_bit_delay(raid5_conf_t *conf)
3225 /* device_lock is held */
3226 struct list_head head;
3227 list_add(&head, &conf->bitmap_list);
3228 list_del_init(&conf->bitmap_list);
3229 while (!list_empty(&head)) {
3230 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
3231 list_del_init(&sh->lru);
3232 atomic_inc(&sh->count);
3233 __release_stripe(conf, sh);
3237 static void unplug_slaves(mddev_t *mddev)
3239 raid5_conf_t *conf = mddev_to_conf(mddev);
3240 int i;
3242 rcu_read_lock();
3243 for (i=0; i<mddev->raid_disks; i++) {
3244 mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
3245 if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
3246 struct request_queue *r_queue = bdev_get_queue(rdev->bdev);
3248 atomic_inc(&rdev->nr_pending);
3249 rcu_read_unlock();
3251 blk_unplug(r_queue);
3253 rdev_dec_pending(rdev, mddev);
3254 rcu_read_lock();
3257 rcu_read_unlock();
3260 static void raid5_unplug_device(struct request_queue *q)
3262 mddev_t *mddev = q->queuedata;
3263 raid5_conf_t *conf = mddev_to_conf(mddev);
3264 unsigned long flags;
3266 spin_lock_irqsave(&conf->device_lock, flags);
3268 if (blk_remove_plug(q)) {
3269 conf->seq_flush++;
3270 raid5_activate_delayed(conf);
3272 md_wakeup_thread(mddev->thread);
3274 spin_unlock_irqrestore(&conf->device_lock, flags);
3276 unplug_slaves(mddev);
3279 static int raid5_congested(void *data, int bits)
3281 mddev_t *mddev = data;
3282 raid5_conf_t *conf = mddev_to_conf(mddev);
3284 /* No difference between reads and writes. Just check
3285 * how busy the stripe_cache is
3287 if (conf->inactive_blocked)
3288 return 1;
3289 if (conf->quiesce)
3290 return 1;
3291 if (list_empty_careful(&conf->inactive_list))
3292 return 1;
3294 return 0;
3297 /* We want read requests to align with chunks where possible,
3298 * but write requests don't need to.
3300 static int raid5_mergeable_bvec(struct request_queue *q, struct bio *bio, struct bio_vec *biovec)
3302 mddev_t *mddev = q->queuedata;
3303 sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3304 int max;
3305 unsigned int chunk_sectors = mddev->chunk_size >> 9;
3306 unsigned int bio_sectors = bio->bi_size >> 9;
3308 if (bio_data_dir(bio) == WRITE)
3309 return biovec->bv_len; /* always allow writes to be mergeable */
3311 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
3312 if (max < 0) max = 0;
3313 if (max <= biovec->bv_len && bio_sectors == 0)
3314 return biovec->bv_len;
3315 else
3316 return max;
3320 static int in_chunk_boundary(mddev_t *mddev, struct bio *bio)
3322 sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3323 unsigned int chunk_sectors = mddev->chunk_size >> 9;
3324 unsigned int bio_sectors = bio->bi_size >> 9;
3326 return chunk_sectors >=
3327 ((sector & (chunk_sectors - 1)) + bio_sectors);
3331 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
3332 * later sampled by raid5d.
3334 static void add_bio_to_retry(struct bio *bi,raid5_conf_t *conf)
3336 unsigned long flags;
3338 spin_lock_irqsave(&conf->device_lock, flags);
3340 bi->bi_next = conf->retry_read_aligned_list;
3341 conf->retry_read_aligned_list = bi;
3343 spin_unlock_irqrestore(&conf->device_lock, flags);
3344 md_wakeup_thread(conf->mddev->thread);
3348 static struct bio *remove_bio_from_retry(raid5_conf_t *conf)
3350 struct bio *bi;
3352 bi = conf->retry_read_aligned;
3353 if (bi) {
3354 conf->retry_read_aligned = NULL;
3355 return bi;
3357 bi = conf->retry_read_aligned_list;
3358 if(bi) {
3359 conf->retry_read_aligned_list = bi->bi_next;
3360 bi->bi_next = NULL;
3361 bi->bi_phys_segments = 1; /* biased count of active stripes */
3362 bi->bi_hw_segments = 0; /* count of processed stripes */
3365 return bi;
3370 * The "raid5_align_endio" should check if the read succeeded and if it
3371 * did, call bio_endio on the original bio (having bio_put the new bio
3372 * first).
3373 * If the read failed..
3375 static void raid5_align_endio(struct bio *bi, int error)
3377 struct bio* raid_bi = bi->bi_private;
3378 mddev_t *mddev;
3379 raid5_conf_t *conf;
3380 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3381 mdk_rdev_t *rdev;
3383 bio_put(bi);
3385 mddev = raid_bi->bi_bdev->bd_disk->queue->queuedata;
3386 conf = mddev_to_conf(mddev);
3387 rdev = (void*)raid_bi->bi_next;
3388 raid_bi->bi_next = NULL;
3390 rdev_dec_pending(rdev, conf->mddev);
3392 if (!error && uptodate) {
3393 bio_endio(raid_bi, 0);
3394 if (atomic_dec_and_test(&conf->active_aligned_reads))
3395 wake_up(&conf->wait_for_stripe);
3396 return;
3400 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3402 add_bio_to_retry(raid_bi, conf);
3405 static int bio_fits_rdev(struct bio *bi)
3407 struct request_queue *q = bdev_get_queue(bi->bi_bdev);
3409 if ((bi->bi_size>>9) > q->max_sectors)
3410 return 0;
3411 blk_recount_segments(q, bi);
3412 if (bi->bi_phys_segments > q->max_phys_segments ||
3413 bi->bi_hw_segments > q->max_hw_segments)
3414 return 0;
3416 if (q->merge_bvec_fn)
3417 /* it's too hard to apply the merge_bvec_fn at this stage,
3418 * just just give up
3420 return 0;
3422 return 1;
3426 static int chunk_aligned_read(struct request_queue *q, struct bio * raid_bio)
3428 mddev_t *mddev = q->queuedata;
3429 raid5_conf_t *conf = mddev_to_conf(mddev);
3430 const unsigned int raid_disks = conf->raid_disks;
3431 const unsigned int data_disks = raid_disks - conf->max_degraded;
3432 unsigned int dd_idx, pd_idx;
3433 struct bio* align_bi;
3434 mdk_rdev_t *rdev;
3436 if (!in_chunk_boundary(mddev, raid_bio)) {
3437 pr_debug("chunk_aligned_read : non aligned\n");
3438 return 0;
3441 * use bio_clone to make a copy of the bio
3443 align_bi = bio_clone(raid_bio, GFP_NOIO);
3444 if (!align_bi)
3445 return 0;
3447 * set bi_end_io to a new function, and set bi_private to the
3448 * original bio.
3450 align_bi->bi_end_io = raid5_align_endio;
3451 align_bi->bi_private = raid_bio;
3453 * compute position
3455 align_bi->bi_sector = raid5_compute_sector(raid_bio->bi_sector,
3456 raid_disks,
3457 data_disks,
3458 &dd_idx,
3459 &pd_idx,
3460 conf);
3462 rcu_read_lock();
3463 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
3464 if (rdev && test_bit(In_sync, &rdev->flags)) {
3465 atomic_inc(&rdev->nr_pending);
3466 rcu_read_unlock();
3467 raid_bio->bi_next = (void*)rdev;
3468 align_bi->bi_bdev = rdev->bdev;
3469 align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
3470 align_bi->bi_sector += rdev->data_offset;
3472 if (!bio_fits_rdev(align_bi)) {
3473 /* too big in some way */
3474 bio_put(align_bi);
3475 rdev_dec_pending(rdev, mddev);
3476 return 0;
3479 spin_lock_irq(&conf->device_lock);
3480 wait_event_lock_irq(conf->wait_for_stripe,
3481 conf->quiesce == 0,
3482 conf->device_lock, /* nothing */);
3483 atomic_inc(&conf->active_aligned_reads);
3484 spin_unlock_irq(&conf->device_lock);
3486 generic_make_request(align_bi);
3487 return 1;
3488 } else {
3489 rcu_read_unlock();
3490 bio_put(align_bi);
3491 return 0;
3495 /* __get_priority_stripe - get the next stripe to process
3497 * Full stripe writes are allowed to pass preread active stripes up until
3498 * the bypass_threshold is exceeded. In general the bypass_count
3499 * increments when the handle_list is handled before the hold_list; however, it
3500 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
3501 * stripe with in flight i/o. The bypass_count will be reset when the
3502 * head of the hold_list has changed, i.e. the head was promoted to the
3503 * handle_list.
3505 static struct stripe_head *__get_priority_stripe(raid5_conf_t *conf)
3507 struct stripe_head *sh;
3509 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
3510 __func__,
3511 list_empty(&conf->handle_list) ? "empty" : "busy",
3512 list_empty(&conf->hold_list) ? "empty" : "busy",
3513 atomic_read(&conf->pending_full_writes), conf->bypass_count);
3515 if (!list_empty(&conf->handle_list)) {
3516 sh = list_entry(conf->handle_list.next, typeof(*sh), lru);
3518 if (list_empty(&conf->hold_list))
3519 conf->bypass_count = 0;
3520 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
3521 if (conf->hold_list.next == conf->last_hold)
3522 conf->bypass_count++;
3523 else {
3524 conf->last_hold = conf->hold_list.next;
3525 conf->bypass_count -= conf->bypass_threshold;
3526 if (conf->bypass_count < 0)
3527 conf->bypass_count = 0;
3530 } else if (!list_empty(&conf->hold_list) &&
3531 ((conf->bypass_threshold &&
3532 conf->bypass_count > conf->bypass_threshold) ||
3533 atomic_read(&conf->pending_full_writes) == 0)) {
3534 sh = list_entry(conf->hold_list.next,
3535 typeof(*sh), lru);
3536 conf->bypass_count -= conf->bypass_threshold;
3537 if (conf->bypass_count < 0)
3538 conf->bypass_count = 0;
3539 } else
3540 return NULL;
3542 list_del_init(&sh->lru);
3543 atomic_inc(&sh->count);
3544 BUG_ON(atomic_read(&sh->count) != 1);
3545 return sh;
3548 static int make_request(struct request_queue *q, struct bio * bi)
3550 mddev_t *mddev = q->queuedata;
3551 raid5_conf_t *conf = mddev_to_conf(mddev);
3552 unsigned int dd_idx, pd_idx;
3553 sector_t new_sector;
3554 sector_t logical_sector, last_sector;
3555 struct stripe_head *sh;
3556 const int rw = bio_data_dir(bi);
3557 int remaining;
3559 if (unlikely(bio_barrier(bi))) {
3560 bio_endio(bi, -EOPNOTSUPP);
3561 return 0;
3564 md_write_start(mddev, bi);
3566 disk_stat_inc(mddev->gendisk, ios[rw]);
3567 disk_stat_add(mddev->gendisk, sectors[rw], bio_sectors(bi));
3569 if (rw == READ &&
3570 mddev->reshape_position == MaxSector &&
3571 chunk_aligned_read(q,bi))
3572 return 0;
3574 logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
3575 last_sector = bi->bi_sector + (bi->bi_size>>9);
3576 bi->bi_next = NULL;
3577 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
3579 for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
3580 DEFINE_WAIT(w);
3581 int disks, data_disks;
3583 retry:
3584 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
3585 if (likely(conf->expand_progress == MaxSector))
3586 disks = conf->raid_disks;
3587 else {
3588 /* spinlock is needed as expand_progress may be
3589 * 64bit on a 32bit platform, and so it might be
3590 * possible to see a half-updated value
3591 * Ofcourse expand_progress could change after
3592 * the lock is dropped, so once we get a reference
3593 * to the stripe that we think it is, we will have
3594 * to check again.
3596 spin_lock_irq(&conf->device_lock);
3597 disks = conf->raid_disks;
3598 if (logical_sector >= conf->expand_progress)
3599 disks = conf->previous_raid_disks;
3600 else {
3601 if (logical_sector >= conf->expand_lo) {
3602 spin_unlock_irq(&conf->device_lock);
3603 schedule();
3604 goto retry;
3607 spin_unlock_irq(&conf->device_lock);
3609 data_disks = disks - conf->max_degraded;
3611 new_sector = raid5_compute_sector(logical_sector, disks, data_disks,
3612 &dd_idx, &pd_idx, conf);
3613 pr_debug("raid5: make_request, sector %llu logical %llu\n",
3614 (unsigned long long)new_sector,
3615 (unsigned long long)logical_sector);
3617 sh = get_active_stripe(conf, new_sector, disks, pd_idx, (bi->bi_rw&RWA_MASK));
3618 if (sh) {
3619 if (unlikely(conf->expand_progress != MaxSector)) {
3620 /* expansion might have moved on while waiting for a
3621 * stripe, so we must do the range check again.
3622 * Expansion could still move past after this
3623 * test, but as we are holding a reference to
3624 * 'sh', we know that if that happens,
3625 * STRIPE_EXPANDING will get set and the expansion
3626 * won't proceed until we finish with the stripe.
3628 int must_retry = 0;
3629 spin_lock_irq(&conf->device_lock);
3630 if (logical_sector < conf->expand_progress &&
3631 disks == conf->previous_raid_disks)
3632 /* mismatch, need to try again */
3633 must_retry = 1;
3634 spin_unlock_irq(&conf->device_lock);
3635 if (must_retry) {
3636 release_stripe(sh);
3637 goto retry;
3640 /* FIXME what if we get a false positive because these
3641 * are being updated.
3643 if (logical_sector >= mddev->suspend_lo &&
3644 logical_sector < mddev->suspend_hi) {
3645 release_stripe(sh);
3646 schedule();
3647 goto retry;
3650 if (test_bit(STRIPE_EXPANDING, &sh->state) ||
3651 !add_stripe_bio(sh, bi, dd_idx, (bi->bi_rw&RW_MASK))) {
3652 /* Stripe is busy expanding or
3653 * add failed due to overlap. Flush everything
3654 * and wait a while
3656 raid5_unplug_device(mddev->queue);
3657 release_stripe(sh);
3658 schedule();
3659 goto retry;
3661 finish_wait(&conf->wait_for_overlap, &w);
3662 set_bit(STRIPE_HANDLE, &sh->state);
3663 clear_bit(STRIPE_DELAYED, &sh->state);
3664 release_stripe(sh);
3665 } else {
3666 /* cannot get stripe for read-ahead, just give-up */
3667 clear_bit(BIO_UPTODATE, &bi->bi_flags);
3668 finish_wait(&conf->wait_for_overlap, &w);
3669 break;
3673 spin_lock_irq(&conf->device_lock);
3674 remaining = --bi->bi_phys_segments;
3675 spin_unlock_irq(&conf->device_lock);
3676 if (remaining == 0) {
3678 if ( rw == WRITE )
3679 md_write_end(mddev);
3681 bi->bi_end_io(bi,
3682 test_bit(BIO_UPTODATE, &bi->bi_flags)
3683 ? 0 : -EIO);
3685 return 0;
3688 static sector_t reshape_request(mddev_t *mddev, sector_t sector_nr, int *skipped)
3690 /* reshaping is quite different to recovery/resync so it is
3691 * handled quite separately ... here.
3693 * On each call to sync_request, we gather one chunk worth of
3694 * destination stripes and flag them as expanding.
3695 * Then we find all the source stripes and request reads.
3696 * As the reads complete, handle_stripe will copy the data
3697 * into the destination stripe and release that stripe.
3699 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
3700 struct stripe_head *sh;
3701 int pd_idx;
3702 sector_t first_sector, last_sector;
3703 int raid_disks = conf->previous_raid_disks;
3704 int data_disks = raid_disks - conf->max_degraded;
3705 int new_data_disks = conf->raid_disks - conf->max_degraded;
3706 int i;
3707 int dd_idx;
3708 sector_t writepos, safepos, gap;
3710 if (sector_nr == 0 &&
3711 conf->expand_progress != 0) {
3712 /* restarting in the middle, skip the initial sectors */
3713 sector_nr = conf->expand_progress;
3714 sector_div(sector_nr, new_data_disks);
3715 *skipped = 1;
3716 return sector_nr;
3719 /* we update the metadata when there is more than 3Meg
3720 * in the block range (that is rather arbitrary, should
3721 * probably be time based) or when the data about to be
3722 * copied would over-write the source of the data at
3723 * the front of the range.
3724 * i.e. one new_stripe forward from expand_progress new_maps
3725 * to after where expand_lo old_maps to
3727 writepos = conf->expand_progress +
3728 conf->chunk_size/512*(new_data_disks);
3729 sector_div(writepos, new_data_disks);
3730 safepos = conf->expand_lo;
3731 sector_div(safepos, data_disks);
3732 gap = conf->expand_progress - conf->expand_lo;
3734 if (writepos >= safepos ||
3735 gap > (new_data_disks)*3000*2 /*3Meg*/) {
3736 /* Cannot proceed until we've updated the superblock... */
3737 wait_event(conf->wait_for_overlap,
3738 atomic_read(&conf->reshape_stripes)==0);
3739 mddev->reshape_position = conf->expand_progress;
3740 set_bit(MD_CHANGE_DEVS, &mddev->flags);
3741 md_wakeup_thread(mddev->thread);
3742 wait_event(mddev->sb_wait, mddev->flags == 0 ||
3743 kthread_should_stop());
3744 spin_lock_irq(&conf->device_lock);
3745 conf->expand_lo = mddev->reshape_position;
3746 spin_unlock_irq(&conf->device_lock);
3747 wake_up(&conf->wait_for_overlap);
3750 for (i=0; i < conf->chunk_size/512; i+= STRIPE_SECTORS) {
3751 int j;
3752 int skipped = 0;
3753 pd_idx = stripe_to_pdidx(sector_nr+i, conf, conf->raid_disks);
3754 sh = get_active_stripe(conf, sector_nr+i,
3755 conf->raid_disks, pd_idx, 0);
3756 set_bit(STRIPE_EXPANDING, &sh->state);
3757 atomic_inc(&conf->reshape_stripes);
3758 /* If any of this stripe is beyond the end of the old
3759 * array, then we need to zero those blocks
3761 for (j=sh->disks; j--;) {
3762 sector_t s;
3763 if (j == sh->pd_idx)
3764 continue;
3765 if (conf->level == 6 &&
3766 j == raid6_next_disk(sh->pd_idx, sh->disks))
3767 continue;
3768 s = compute_blocknr(sh, j);
3769 if (s < (mddev->array_size<<1)) {
3770 skipped = 1;
3771 continue;
3773 memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
3774 set_bit(R5_Expanded, &sh->dev[j].flags);
3775 set_bit(R5_UPTODATE, &sh->dev[j].flags);
3777 if (!skipped) {
3778 set_bit(STRIPE_EXPAND_READY, &sh->state);
3779 set_bit(STRIPE_HANDLE, &sh->state);
3781 release_stripe(sh);
3783 spin_lock_irq(&conf->device_lock);
3784 conf->expand_progress = (sector_nr + i) * new_data_disks;
3785 spin_unlock_irq(&conf->device_lock);
3786 /* Ok, those stripe are ready. We can start scheduling
3787 * reads on the source stripes.
3788 * The source stripes are determined by mapping the first and last
3789 * block on the destination stripes.
3791 first_sector =
3792 raid5_compute_sector(sector_nr*(new_data_disks),
3793 raid_disks, data_disks,
3794 &dd_idx, &pd_idx, conf);
3795 last_sector =
3796 raid5_compute_sector((sector_nr+conf->chunk_size/512)
3797 *(new_data_disks) -1,
3798 raid_disks, data_disks,
3799 &dd_idx, &pd_idx, conf);
3800 if (last_sector >= (mddev->size<<1))
3801 last_sector = (mddev->size<<1)-1;
3802 while (first_sector <= last_sector) {
3803 pd_idx = stripe_to_pdidx(first_sector, conf,
3804 conf->previous_raid_disks);
3805 sh = get_active_stripe(conf, first_sector,
3806 conf->previous_raid_disks, pd_idx, 0);
3807 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3808 set_bit(STRIPE_HANDLE, &sh->state);
3809 release_stripe(sh);
3810 first_sector += STRIPE_SECTORS;
3812 /* If this takes us to the resync_max point where we have to pause,
3813 * then we need to write out the superblock.
3815 sector_nr += conf->chunk_size>>9;
3816 if (sector_nr >= mddev->resync_max) {
3817 /* Cannot proceed until we've updated the superblock... */
3818 wait_event(conf->wait_for_overlap,
3819 atomic_read(&conf->reshape_stripes) == 0);
3820 mddev->reshape_position = conf->expand_progress;
3821 set_bit(MD_CHANGE_DEVS, &mddev->flags);
3822 md_wakeup_thread(mddev->thread);
3823 wait_event(mddev->sb_wait,
3824 !test_bit(MD_CHANGE_DEVS, &mddev->flags)
3825 || kthread_should_stop());
3826 spin_lock_irq(&conf->device_lock);
3827 conf->expand_lo = mddev->reshape_position;
3828 spin_unlock_irq(&conf->device_lock);
3829 wake_up(&conf->wait_for_overlap);
3831 return conf->chunk_size>>9;
3834 /* FIXME go_faster isn't used */
3835 static inline sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
3837 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
3838 struct stripe_head *sh;
3839 int pd_idx;
3840 int raid_disks = conf->raid_disks;
3841 sector_t max_sector = mddev->size << 1;
3842 int sync_blocks;
3843 int still_degraded = 0;
3844 int i;
3846 if (sector_nr >= max_sector) {
3847 /* just being told to finish up .. nothing much to do */
3848 unplug_slaves(mddev);
3849 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
3850 end_reshape(conf);
3851 return 0;
3854 if (mddev->curr_resync < max_sector) /* aborted */
3855 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
3856 &sync_blocks, 1);
3857 else /* completed sync */
3858 conf->fullsync = 0;
3859 bitmap_close_sync(mddev->bitmap);
3861 return 0;
3864 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3865 return reshape_request(mddev, sector_nr, skipped);
3867 /* No need to check resync_max as we never do more than one
3868 * stripe, and as resync_max will always be on a chunk boundary,
3869 * if the check in md_do_sync didn't fire, there is no chance
3870 * of overstepping resync_max here
3873 /* if there is too many failed drives and we are trying
3874 * to resync, then assert that we are finished, because there is
3875 * nothing we can do.
3877 if (mddev->degraded >= conf->max_degraded &&
3878 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3879 sector_t rv = (mddev->size << 1) - sector_nr;
3880 *skipped = 1;
3881 return rv;
3883 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
3884 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
3885 !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
3886 /* we can skip this block, and probably more */
3887 sync_blocks /= STRIPE_SECTORS;
3888 *skipped = 1;
3889 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
3893 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
3895 pd_idx = stripe_to_pdidx(sector_nr, conf, raid_disks);
3896 sh = get_active_stripe(conf, sector_nr, raid_disks, pd_idx, 1);
3897 if (sh == NULL) {
3898 sh = get_active_stripe(conf, sector_nr, raid_disks, pd_idx, 0);
3899 /* make sure we don't swamp the stripe cache if someone else
3900 * is trying to get access
3902 schedule_timeout_uninterruptible(1);
3904 /* Need to check if array will still be degraded after recovery/resync
3905 * We don't need to check the 'failed' flag as when that gets set,
3906 * recovery aborts.
3908 for (i=0; i<mddev->raid_disks; i++)
3909 if (conf->disks[i].rdev == NULL)
3910 still_degraded = 1;
3912 bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
3914 spin_lock(&sh->lock);
3915 set_bit(STRIPE_SYNCING, &sh->state);
3916 clear_bit(STRIPE_INSYNC, &sh->state);
3917 spin_unlock(&sh->lock);
3919 handle_stripe(sh, NULL);
3920 release_stripe(sh);
3922 return STRIPE_SECTORS;
3925 static int retry_aligned_read(raid5_conf_t *conf, struct bio *raid_bio)
3927 /* We may not be able to submit a whole bio at once as there
3928 * may not be enough stripe_heads available.
3929 * We cannot pre-allocate enough stripe_heads as we may need
3930 * more than exist in the cache (if we allow ever large chunks).
3931 * So we do one stripe head at a time and record in
3932 * ->bi_hw_segments how many have been done.
3934 * We *know* that this entire raid_bio is in one chunk, so
3935 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
3937 struct stripe_head *sh;
3938 int dd_idx, pd_idx;
3939 sector_t sector, logical_sector, last_sector;
3940 int scnt = 0;
3941 int remaining;
3942 int handled = 0;
3944 logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
3945 sector = raid5_compute_sector( logical_sector,
3946 conf->raid_disks,
3947 conf->raid_disks - conf->max_degraded,
3948 &dd_idx,
3949 &pd_idx,
3950 conf);
3951 last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);
3953 for (; logical_sector < last_sector;
3954 logical_sector += STRIPE_SECTORS,
3955 sector += STRIPE_SECTORS,
3956 scnt++) {
3958 if (scnt < raid_bio->bi_hw_segments)
3959 /* already done this stripe */
3960 continue;
3962 sh = get_active_stripe(conf, sector, conf->raid_disks, pd_idx, 1);
3964 if (!sh) {
3965 /* failed to get a stripe - must wait */
3966 raid_bio->bi_hw_segments = scnt;
3967 conf->retry_read_aligned = raid_bio;
3968 return handled;
3971 set_bit(R5_ReadError, &sh->dev[dd_idx].flags);
3972 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
3973 release_stripe(sh);
3974 raid_bio->bi_hw_segments = scnt;
3975 conf->retry_read_aligned = raid_bio;
3976 return handled;
3979 handle_stripe(sh, NULL);
3980 release_stripe(sh);
3981 handled++;
3983 spin_lock_irq(&conf->device_lock);
3984 remaining = --raid_bio->bi_phys_segments;
3985 spin_unlock_irq(&conf->device_lock);
3986 if (remaining == 0) {
3988 raid_bio->bi_end_io(raid_bio,
3989 test_bit(BIO_UPTODATE, &raid_bio->bi_flags)
3990 ? 0 : -EIO);
3992 if (atomic_dec_and_test(&conf->active_aligned_reads))
3993 wake_up(&conf->wait_for_stripe);
3994 return handled;
4000 * This is our raid5 kernel thread.
4002 * We scan the hash table for stripes which can be handled now.
4003 * During the scan, completed stripes are saved for us by the interrupt
4004 * handler, so that they will not have to wait for our next wakeup.
4006 static void raid5d(mddev_t *mddev)
4008 struct stripe_head *sh;
4009 raid5_conf_t *conf = mddev_to_conf(mddev);
4010 int handled;
4012 pr_debug("+++ raid5d active\n");
4014 md_check_recovery(mddev);
4016 handled = 0;
4017 spin_lock_irq(&conf->device_lock);
4018 while (1) {
4019 struct bio *bio;
4021 if (conf->seq_flush != conf->seq_write) {
4022 int seq = conf->seq_flush;
4023 spin_unlock_irq(&conf->device_lock);
4024 bitmap_unplug(mddev->bitmap);
4025 spin_lock_irq(&conf->device_lock);
4026 conf->seq_write = seq;
4027 activate_bit_delay(conf);
4030 while ((bio = remove_bio_from_retry(conf))) {
4031 int ok;
4032 spin_unlock_irq(&conf->device_lock);
4033 ok = retry_aligned_read(conf, bio);
4034 spin_lock_irq(&conf->device_lock);
4035 if (!ok)
4036 break;
4037 handled++;
4040 sh = __get_priority_stripe(conf);
4042 if (!sh) {
4043 async_tx_issue_pending_all();
4044 break;
4046 spin_unlock_irq(&conf->device_lock);
4048 handled++;
4049 handle_stripe(sh, conf->spare_page);
4050 release_stripe(sh);
4052 spin_lock_irq(&conf->device_lock);
4054 pr_debug("%d stripes handled\n", handled);
4056 spin_unlock_irq(&conf->device_lock);
4058 unplug_slaves(mddev);
4060 pr_debug("--- raid5d inactive\n");
4063 static ssize_t
4064 raid5_show_stripe_cache_size(mddev_t *mddev, char *page)
4066 raid5_conf_t *conf = mddev_to_conf(mddev);
4067 if (conf)
4068 return sprintf(page, "%d\n", conf->max_nr_stripes);
4069 else
4070 return 0;
4073 static ssize_t
4074 raid5_store_stripe_cache_size(mddev_t *mddev, const char *page, size_t len)
4076 raid5_conf_t *conf = mddev_to_conf(mddev);
4077 unsigned long new;
4078 if (len >= PAGE_SIZE)
4079 return -EINVAL;
4080 if (!conf)
4081 return -ENODEV;
4083 if (strict_strtoul(page, 10, &new))
4084 return -EINVAL;
4085 if (new <= 16 || new > 32768)
4086 return -EINVAL;
4087 while (new < conf->max_nr_stripes) {
4088 if (drop_one_stripe(conf))
4089 conf->max_nr_stripes--;
4090 else
4091 break;
4093 md_allow_write(mddev);
4094 while (new > conf->max_nr_stripes) {
4095 if (grow_one_stripe(conf))
4096 conf->max_nr_stripes++;
4097 else break;
4099 return len;
4102 static struct md_sysfs_entry
4103 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
4104 raid5_show_stripe_cache_size,
4105 raid5_store_stripe_cache_size);
4107 static ssize_t
4108 raid5_show_preread_threshold(mddev_t *mddev, char *page)
4110 raid5_conf_t *conf = mddev_to_conf(mddev);
4111 if (conf)
4112 return sprintf(page, "%d\n", conf->bypass_threshold);
4113 else
4114 return 0;
4117 static ssize_t
4118 raid5_store_preread_threshold(mddev_t *mddev, const char *page, size_t len)
4120 raid5_conf_t *conf = mddev_to_conf(mddev);
4121 unsigned long new;
4122 if (len >= PAGE_SIZE)
4123 return -EINVAL;
4124 if (!conf)
4125 return -ENODEV;
4127 if (strict_strtoul(page, 10, &new))
4128 return -EINVAL;
4129 if (new > conf->max_nr_stripes)
4130 return -EINVAL;
4131 conf->bypass_threshold = new;
4132 return len;
4135 static struct md_sysfs_entry
4136 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
4137 S_IRUGO | S_IWUSR,
4138 raid5_show_preread_threshold,
4139 raid5_store_preread_threshold);
4141 static ssize_t
4142 stripe_cache_active_show(mddev_t *mddev, char *page)
4144 raid5_conf_t *conf = mddev_to_conf(mddev);
4145 if (conf)
4146 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
4147 else
4148 return 0;
4151 static struct md_sysfs_entry
4152 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
4154 static struct attribute *raid5_attrs[] = {
4155 &raid5_stripecache_size.attr,
4156 &raid5_stripecache_active.attr,
4157 &raid5_preread_bypass_threshold.attr,
4158 NULL,
4160 static struct attribute_group raid5_attrs_group = {
4161 .name = NULL,
4162 .attrs = raid5_attrs,
4165 static int run(mddev_t *mddev)
4167 raid5_conf_t *conf;
4168 int raid_disk, memory;
4169 mdk_rdev_t *rdev;
4170 struct disk_info *disk;
4171 struct list_head *tmp;
4172 int working_disks = 0;
4174 if (mddev->level != 5 && mddev->level != 4 && mddev->level != 6) {
4175 printk(KERN_ERR "raid5: %s: raid level not set to 4/5/6 (%d)\n",
4176 mdname(mddev), mddev->level);
4177 return -EIO;
4180 if (mddev->reshape_position != MaxSector) {
4181 /* Check that we can continue the reshape.
4182 * Currently only disks can change, it must
4183 * increase, and we must be past the point where
4184 * a stripe over-writes itself
4186 sector_t here_new, here_old;
4187 int old_disks;
4188 int max_degraded = (mddev->level == 5 ? 1 : 2);
4190 if (mddev->new_level != mddev->level ||
4191 mddev->new_layout != mddev->layout ||
4192 mddev->new_chunk != mddev->chunk_size) {
4193 printk(KERN_ERR "raid5: %s: unsupported reshape "
4194 "required - aborting.\n",
4195 mdname(mddev));
4196 return -EINVAL;
4198 if (mddev->delta_disks <= 0) {
4199 printk(KERN_ERR "raid5: %s: unsupported reshape "
4200 "(reduce disks) required - aborting.\n",
4201 mdname(mddev));
4202 return -EINVAL;
4204 old_disks = mddev->raid_disks - mddev->delta_disks;
4205 /* reshape_position must be on a new-stripe boundary, and one
4206 * further up in new geometry must map after here in old
4207 * geometry.
4209 here_new = mddev->reshape_position;
4210 if (sector_div(here_new, (mddev->chunk_size>>9)*
4211 (mddev->raid_disks - max_degraded))) {
4212 printk(KERN_ERR "raid5: reshape_position not "
4213 "on a stripe boundary\n");
4214 return -EINVAL;
4216 /* here_new is the stripe we will write to */
4217 here_old = mddev->reshape_position;
4218 sector_div(here_old, (mddev->chunk_size>>9)*
4219 (old_disks-max_degraded));
4220 /* here_old is the first stripe that we might need to read
4221 * from */
4222 if (here_new >= here_old) {
4223 /* Reading from the same stripe as writing to - bad */
4224 printk(KERN_ERR "raid5: reshape_position too early for "
4225 "auto-recovery - aborting.\n");
4226 return -EINVAL;
4228 printk(KERN_INFO "raid5: reshape will continue\n");
4229 /* OK, we should be able to continue; */
4233 mddev->private = kzalloc(sizeof (raid5_conf_t), GFP_KERNEL);
4234 if ((conf = mddev->private) == NULL)
4235 goto abort;
4236 if (mddev->reshape_position == MaxSector) {
4237 conf->previous_raid_disks = conf->raid_disks = mddev->raid_disks;
4238 } else {
4239 conf->raid_disks = mddev->raid_disks;
4240 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
4243 conf->disks = kzalloc(conf->raid_disks * sizeof(struct disk_info),
4244 GFP_KERNEL);
4245 if (!conf->disks)
4246 goto abort;
4248 conf->mddev = mddev;
4250 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
4251 goto abort;
4253 if (mddev->level == 6) {
4254 conf->spare_page = alloc_page(GFP_KERNEL);
4255 if (!conf->spare_page)
4256 goto abort;
4258 spin_lock_init(&conf->device_lock);
4259 init_waitqueue_head(&conf->wait_for_stripe);
4260 init_waitqueue_head(&conf->wait_for_overlap);
4261 INIT_LIST_HEAD(&conf->handle_list);
4262 INIT_LIST_HEAD(&conf->hold_list);
4263 INIT_LIST_HEAD(&conf->delayed_list);
4264 INIT_LIST_HEAD(&conf->bitmap_list);
4265 INIT_LIST_HEAD(&conf->inactive_list);
4266 atomic_set(&conf->active_stripes, 0);
4267 atomic_set(&conf->preread_active_stripes, 0);
4268 atomic_set(&conf->active_aligned_reads, 0);
4269 conf->bypass_threshold = BYPASS_THRESHOLD;
4271 pr_debug("raid5: run(%s) called.\n", mdname(mddev));
4273 rdev_for_each(rdev, tmp, mddev) {
4274 raid_disk = rdev->raid_disk;
4275 if (raid_disk >= conf->raid_disks
4276 || raid_disk < 0)
4277 continue;
4278 disk = conf->disks + raid_disk;
4280 disk->rdev = rdev;
4282 if (test_bit(In_sync, &rdev->flags)) {
4283 char b[BDEVNAME_SIZE];
4284 printk(KERN_INFO "raid5: device %s operational as raid"
4285 " disk %d\n", bdevname(rdev->bdev,b),
4286 raid_disk);
4287 working_disks++;
4292 * 0 for a fully functional array, 1 or 2 for a degraded array.
4294 mddev->degraded = conf->raid_disks - working_disks;
4295 conf->mddev = mddev;
4296 conf->chunk_size = mddev->chunk_size;
4297 conf->level = mddev->level;
4298 if (conf->level == 6)
4299 conf->max_degraded = 2;
4300 else
4301 conf->max_degraded = 1;
4302 conf->algorithm = mddev->layout;
4303 conf->max_nr_stripes = NR_STRIPES;
4304 conf->expand_progress = mddev->reshape_position;
4306 /* device size must be a multiple of chunk size */
4307 mddev->size &= ~(mddev->chunk_size/1024 -1);
4308 mddev->resync_max_sectors = mddev->size << 1;
4310 if (conf->level == 6 && conf->raid_disks < 4) {
4311 printk(KERN_ERR "raid6: not enough configured devices for %s (%d, minimum 4)\n",
4312 mdname(mddev), conf->raid_disks);
4313 goto abort;
4315 if (!conf->chunk_size || conf->chunk_size % 4) {
4316 printk(KERN_ERR "raid5: invalid chunk size %d for %s\n",
4317 conf->chunk_size, mdname(mddev));
4318 goto abort;
4320 if (conf->algorithm > ALGORITHM_RIGHT_SYMMETRIC) {
4321 printk(KERN_ERR
4322 "raid5: unsupported parity algorithm %d for %s\n",
4323 conf->algorithm, mdname(mddev));
4324 goto abort;
4326 if (mddev->degraded > conf->max_degraded) {
4327 printk(KERN_ERR "raid5: not enough operational devices for %s"
4328 " (%d/%d failed)\n",
4329 mdname(mddev), mddev->degraded, conf->raid_disks);
4330 goto abort;
4333 if (mddev->degraded > 0 &&
4334 mddev->recovery_cp != MaxSector) {
4335 if (mddev->ok_start_degraded)
4336 printk(KERN_WARNING
4337 "raid5: starting dirty degraded array: %s"
4338 "- data corruption possible.\n",
4339 mdname(mddev));
4340 else {
4341 printk(KERN_ERR
4342 "raid5: cannot start dirty degraded array for %s\n",
4343 mdname(mddev));
4344 goto abort;
4349 mddev->thread = md_register_thread(raid5d, mddev, "%s_raid5");
4350 if (!mddev->thread) {
4351 printk(KERN_ERR
4352 "raid5: couldn't allocate thread for %s\n",
4353 mdname(mddev));
4354 goto abort;
4357 memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
4358 conf->raid_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
4359 if (grow_stripes(conf, conf->max_nr_stripes)) {
4360 printk(KERN_ERR
4361 "raid5: couldn't allocate %dkB for buffers\n", memory);
4362 shrink_stripes(conf);
4363 md_unregister_thread(mddev->thread);
4364 goto abort;
4365 } else
4366 printk(KERN_INFO "raid5: allocated %dkB for %s\n",
4367 memory, mdname(mddev));
4369 if (mddev->degraded == 0)
4370 printk("raid5: raid level %d set %s active with %d out of %d"
4371 " devices, algorithm %d\n", conf->level, mdname(mddev),
4372 mddev->raid_disks-mddev->degraded, mddev->raid_disks,
4373 conf->algorithm);
4374 else
4375 printk(KERN_ALERT "raid5: raid level %d set %s active with %d"
4376 " out of %d devices, algorithm %d\n", conf->level,
4377 mdname(mddev), mddev->raid_disks - mddev->degraded,
4378 mddev->raid_disks, conf->algorithm);
4380 print_raid5_conf(conf);
4382 if (conf->expand_progress != MaxSector) {
4383 printk("...ok start reshape thread\n");
4384 conf->expand_lo = conf->expand_progress;
4385 atomic_set(&conf->reshape_stripes, 0);
4386 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4387 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4388 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4389 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4390 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4391 "%s_reshape");
4394 /* read-ahead size must cover two whole stripes, which is
4395 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4398 int data_disks = conf->previous_raid_disks - conf->max_degraded;
4399 int stripe = data_disks *
4400 (mddev->chunk_size / PAGE_SIZE);
4401 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4402 mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4405 /* Ok, everything is just fine now */
4406 if (sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
4407 printk(KERN_WARNING
4408 "raid5: failed to create sysfs attributes for %s\n",
4409 mdname(mddev));
4411 mddev->queue->unplug_fn = raid5_unplug_device;
4412 mddev->queue->backing_dev_info.congested_data = mddev;
4413 mddev->queue->backing_dev_info.congested_fn = raid5_congested;
4415 mddev->array_size = mddev->size * (conf->previous_raid_disks -
4416 conf->max_degraded);
4418 blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
4420 return 0;
4421 abort:
4422 if (conf) {
4423 print_raid5_conf(conf);
4424 safe_put_page(conf->spare_page);
4425 kfree(conf->disks);
4426 kfree(conf->stripe_hashtbl);
4427 kfree(conf);
4429 mddev->private = NULL;
4430 printk(KERN_ALERT "raid5: failed to run raid set %s\n", mdname(mddev));
4431 return -EIO;
4436 static int stop(mddev_t *mddev)
4438 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
4440 md_unregister_thread(mddev->thread);
4441 mddev->thread = NULL;
4442 shrink_stripes(conf);
4443 kfree(conf->stripe_hashtbl);
4444 mddev->queue->backing_dev_info.congested_fn = NULL;
4445 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
4446 sysfs_remove_group(&mddev->kobj, &raid5_attrs_group);
4447 kfree(conf->disks);
4448 kfree(conf);
4449 mddev->private = NULL;
4450 return 0;
4453 #ifdef DEBUG
4454 static void print_sh (struct seq_file *seq, struct stripe_head *sh)
4456 int i;
4458 seq_printf(seq, "sh %llu, pd_idx %d, state %ld.\n",
4459 (unsigned long long)sh->sector, sh->pd_idx, sh->state);
4460 seq_printf(seq, "sh %llu, count %d.\n",
4461 (unsigned long long)sh->sector, atomic_read(&sh->count));
4462 seq_printf(seq, "sh %llu, ", (unsigned long long)sh->sector);
4463 for (i = 0; i < sh->disks; i++) {
4464 seq_printf(seq, "(cache%d: %p %ld) ",
4465 i, sh->dev[i].page, sh->dev[i].flags);
4467 seq_printf(seq, "\n");
4470 static void printall (struct seq_file *seq, raid5_conf_t *conf)
4472 struct stripe_head *sh;
4473 struct hlist_node *hn;
4474 int i;
4476 spin_lock_irq(&conf->device_lock);
4477 for (i = 0; i < NR_HASH; i++) {
4478 hlist_for_each_entry(sh, hn, &conf->stripe_hashtbl[i], hash) {
4479 if (sh->raid_conf != conf)
4480 continue;
4481 print_sh(seq, sh);
4484 spin_unlock_irq(&conf->device_lock);
4486 #endif
4488 static void status (struct seq_file *seq, mddev_t *mddev)
4490 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
4491 int i;
4493 seq_printf (seq, " level %d, %dk chunk, algorithm %d", mddev->level, mddev->chunk_size >> 10, mddev->layout);
4494 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
4495 for (i = 0; i < conf->raid_disks; i++)
4496 seq_printf (seq, "%s",
4497 conf->disks[i].rdev &&
4498 test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
4499 seq_printf (seq, "]");
4500 #ifdef DEBUG
4501 seq_printf (seq, "\n");
4502 printall(seq, conf);
4503 #endif
4506 static void print_raid5_conf (raid5_conf_t *conf)
4508 int i;
4509 struct disk_info *tmp;
4511 printk("RAID5 conf printout:\n");
4512 if (!conf) {
4513 printk("(conf==NULL)\n");
4514 return;
4516 printk(" --- rd:%d wd:%d\n", conf->raid_disks,
4517 conf->raid_disks - conf->mddev->degraded);
4519 for (i = 0; i < conf->raid_disks; i++) {
4520 char b[BDEVNAME_SIZE];
4521 tmp = conf->disks + i;
4522 if (tmp->rdev)
4523 printk(" disk %d, o:%d, dev:%s\n",
4524 i, !test_bit(Faulty, &tmp->rdev->flags),
4525 bdevname(tmp->rdev->bdev,b));
4529 static int raid5_spare_active(mddev_t *mddev)
4531 int i;
4532 raid5_conf_t *conf = mddev->private;
4533 struct disk_info *tmp;
4535 for (i = 0; i < conf->raid_disks; i++) {
4536 tmp = conf->disks + i;
4537 if (tmp->rdev
4538 && !test_bit(Faulty, &tmp->rdev->flags)
4539 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
4540 unsigned long flags;
4541 spin_lock_irqsave(&conf->device_lock, flags);
4542 mddev->degraded--;
4543 spin_unlock_irqrestore(&conf->device_lock, flags);
4546 print_raid5_conf(conf);
4547 return 0;
4550 static int raid5_remove_disk(mddev_t *mddev, int number)
4552 raid5_conf_t *conf = mddev->private;
4553 int err = 0;
4554 mdk_rdev_t *rdev;
4555 struct disk_info *p = conf->disks + number;
4557 print_raid5_conf(conf);
4558 rdev = p->rdev;
4559 if (rdev) {
4560 if (test_bit(In_sync, &rdev->flags) ||
4561 atomic_read(&rdev->nr_pending)) {
4562 err = -EBUSY;
4563 goto abort;
4565 p->rdev = NULL;
4566 synchronize_rcu();
4567 if (atomic_read(&rdev->nr_pending)) {
4568 /* lost the race, try later */
4569 err = -EBUSY;
4570 p->rdev = rdev;
4573 abort:
4575 print_raid5_conf(conf);
4576 return err;
4579 static int raid5_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
4581 raid5_conf_t *conf = mddev->private;
4582 int found = 0;
4583 int disk;
4584 struct disk_info *p;
4586 if (mddev->degraded > conf->max_degraded)
4587 /* no point adding a device */
4588 return 0;
4591 * find the disk ... but prefer rdev->saved_raid_disk
4592 * if possible.
4594 if (rdev->saved_raid_disk >= 0 &&
4595 conf->disks[rdev->saved_raid_disk].rdev == NULL)
4596 disk = rdev->saved_raid_disk;
4597 else
4598 disk = 0;
4599 for ( ; disk < conf->raid_disks; disk++)
4600 if ((p=conf->disks + disk)->rdev == NULL) {
4601 clear_bit(In_sync, &rdev->flags);
4602 rdev->raid_disk = disk;
4603 found = 1;
4604 if (rdev->saved_raid_disk != disk)
4605 conf->fullsync = 1;
4606 rcu_assign_pointer(p->rdev, rdev);
4607 break;
4609 print_raid5_conf(conf);
4610 return found;
4613 static int raid5_resize(mddev_t *mddev, sector_t sectors)
4615 /* no resync is happening, and there is enough space
4616 * on all devices, so we can resize.
4617 * We need to make sure resync covers any new space.
4618 * If the array is shrinking we should possibly wait until
4619 * any io in the removed space completes, but it hardly seems
4620 * worth it.
4622 raid5_conf_t *conf = mddev_to_conf(mddev);
4624 sectors &= ~((sector_t)mddev->chunk_size/512 - 1);
4625 mddev->array_size = (sectors * (mddev->raid_disks-conf->max_degraded))>>1;
4626 set_capacity(mddev->gendisk, mddev->array_size << 1);
4627 mddev->changed = 1;
4628 if (sectors/2 > mddev->size && mddev->recovery_cp == MaxSector) {
4629 mddev->recovery_cp = mddev->size << 1;
4630 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4632 mddev->size = sectors /2;
4633 mddev->resync_max_sectors = sectors;
4634 return 0;
4637 #ifdef CONFIG_MD_RAID5_RESHAPE
4638 static int raid5_check_reshape(mddev_t *mddev)
4640 raid5_conf_t *conf = mddev_to_conf(mddev);
4641 int err;
4643 if (mddev->delta_disks < 0 ||
4644 mddev->new_level != mddev->level)
4645 return -EINVAL; /* Cannot shrink array or change level yet */
4646 if (mddev->delta_disks == 0)
4647 return 0; /* nothing to do */
4649 /* Can only proceed if there are plenty of stripe_heads.
4650 * We need a minimum of one full stripe,, and for sensible progress
4651 * it is best to have about 4 times that.
4652 * If we require 4 times, then the default 256 4K stripe_heads will
4653 * allow for chunk sizes up to 256K, which is probably OK.
4654 * If the chunk size is greater, user-space should request more
4655 * stripe_heads first.
4657 if ((mddev->chunk_size / STRIPE_SIZE) * 4 > conf->max_nr_stripes ||
4658 (mddev->new_chunk / STRIPE_SIZE) * 4 > conf->max_nr_stripes) {
4659 printk(KERN_WARNING "raid5: reshape: not enough stripes. Needed %lu\n",
4660 (mddev->chunk_size / STRIPE_SIZE)*4);
4661 return -ENOSPC;
4664 err = resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
4665 if (err)
4666 return err;
4668 if (mddev->degraded > conf->max_degraded)
4669 return -EINVAL;
4670 /* looks like we might be able to manage this */
4671 return 0;
4674 static int raid5_start_reshape(mddev_t *mddev)
4676 raid5_conf_t *conf = mddev_to_conf(mddev);
4677 mdk_rdev_t *rdev;
4678 struct list_head *rtmp;
4679 int spares = 0;
4680 int added_devices = 0;
4681 unsigned long flags;
4683 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4684 return -EBUSY;
4686 rdev_for_each(rdev, rtmp, mddev)
4687 if (rdev->raid_disk < 0 &&
4688 !test_bit(Faulty, &rdev->flags))
4689 spares++;
4691 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
4692 /* Not enough devices even to make a degraded array
4693 * of that size
4695 return -EINVAL;
4697 atomic_set(&conf->reshape_stripes, 0);
4698 spin_lock_irq(&conf->device_lock);
4699 conf->previous_raid_disks = conf->raid_disks;
4700 conf->raid_disks += mddev->delta_disks;
4701 conf->expand_progress = 0;
4702 conf->expand_lo = 0;
4703 spin_unlock_irq(&conf->device_lock);
4705 /* Add some new drives, as many as will fit.
4706 * We know there are enough to make the newly sized array work.
4708 rdev_for_each(rdev, rtmp, mddev)
4709 if (rdev->raid_disk < 0 &&
4710 !test_bit(Faulty, &rdev->flags)) {
4711 if (raid5_add_disk(mddev, rdev)) {
4712 char nm[20];
4713 set_bit(In_sync, &rdev->flags);
4714 added_devices++;
4715 rdev->recovery_offset = 0;
4716 sprintf(nm, "rd%d", rdev->raid_disk);
4717 if (sysfs_create_link(&mddev->kobj,
4718 &rdev->kobj, nm))
4719 printk(KERN_WARNING
4720 "raid5: failed to create "
4721 " link %s for %s\n",
4722 nm, mdname(mddev));
4723 } else
4724 break;
4727 spin_lock_irqsave(&conf->device_lock, flags);
4728 mddev->degraded = (conf->raid_disks - conf->previous_raid_disks) - added_devices;
4729 spin_unlock_irqrestore(&conf->device_lock, flags);
4730 mddev->raid_disks = conf->raid_disks;
4731 mddev->reshape_position = 0;
4732 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4734 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4735 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4736 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4737 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4738 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4739 "%s_reshape");
4740 if (!mddev->sync_thread) {
4741 mddev->recovery = 0;
4742 spin_lock_irq(&conf->device_lock);
4743 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
4744 conf->expand_progress = MaxSector;
4745 spin_unlock_irq(&conf->device_lock);
4746 return -EAGAIN;
4748 md_wakeup_thread(mddev->sync_thread);
4749 md_new_event(mddev);
4750 return 0;
4752 #endif
4754 static void end_reshape(raid5_conf_t *conf)
4756 struct block_device *bdev;
4758 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
4759 conf->mddev->array_size = conf->mddev->size *
4760 (conf->raid_disks - conf->max_degraded);
4761 set_capacity(conf->mddev->gendisk, conf->mddev->array_size << 1);
4762 conf->mddev->changed = 1;
4764 bdev = bdget_disk(conf->mddev->gendisk, 0);
4765 if (bdev) {
4766 mutex_lock(&bdev->bd_inode->i_mutex);
4767 i_size_write(bdev->bd_inode, (loff_t)conf->mddev->array_size << 10);
4768 mutex_unlock(&bdev->bd_inode->i_mutex);
4769 bdput(bdev);
4771 spin_lock_irq(&conf->device_lock);
4772 conf->expand_progress = MaxSector;
4773 spin_unlock_irq(&conf->device_lock);
4774 conf->mddev->reshape_position = MaxSector;
4776 /* read-ahead size must cover two whole stripes, which is
4777 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4780 int data_disks = conf->previous_raid_disks - conf->max_degraded;
4781 int stripe = data_disks *
4782 (conf->mddev->chunk_size / PAGE_SIZE);
4783 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4784 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4789 static void raid5_quiesce(mddev_t *mddev, int state)
4791 raid5_conf_t *conf = mddev_to_conf(mddev);
4793 switch(state) {
4794 case 2: /* resume for a suspend */
4795 wake_up(&conf->wait_for_overlap);
4796 break;
4798 case 1: /* stop all writes */
4799 spin_lock_irq(&conf->device_lock);
4800 conf->quiesce = 1;
4801 wait_event_lock_irq(conf->wait_for_stripe,
4802 atomic_read(&conf->active_stripes) == 0 &&
4803 atomic_read(&conf->active_aligned_reads) == 0,
4804 conf->device_lock, /* nothing */);
4805 spin_unlock_irq(&conf->device_lock);
4806 break;
4808 case 0: /* re-enable writes */
4809 spin_lock_irq(&conf->device_lock);
4810 conf->quiesce = 0;
4811 wake_up(&conf->wait_for_stripe);
4812 wake_up(&conf->wait_for_overlap);
4813 spin_unlock_irq(&conf->device_lock);
4814 break;
4818 static struct mdk_personality raid6_personality =
4820 .name = "raid6",
4821 .level = 6,
4822 .owner = THIS_MODULE,
4823 .make_request = make_request,
4824 .run = run,
4825 .stop = stop,
4826 .status = status,
4827 .error_handler = error,
4828 .hot_add_disk = raid5_add_disk,
4829 .hot_remove_disk= raid5_remove_disk,
4830 .spare_active = raid5_spare_active,
4831 .sync_request = sync_request,
4832 .resize = raid5_resize,
4833 #ifdef CONFIG_MD_RAID5_RESHAPE
4834 .check_reshape = raid5_check_reshape,
4835 .start_reshape = raid5_start_reshape,
4836 #endif
4837 .quiesce = raid5_quiesce,
4839 static struct mdk_personality raid5_personality =
4841 .name = "raid5",
4842 .level = 5,
4843 .owner = THIS_MODULE,
4844 .make_request = make_request,
4845 .run = run,
4846 .stop = stop,
4847 .status = status,
4848 .error_handler = error,
4849 .hot_add_disk = raid5_add_disk,
4850 .hot_remove_disk= raid5_remove_disk,
4851 .spare_active = raid5_spare_active,
4852 .sync_request = sync_request,
4853 .resize = raid5_resize,
4854 #ifdef CONFIG_MD_RAID5_RESHAPE
4855 .check_reshape = raid5_check_reshape,
4856 .start_reshape = raid5_start_reshape,
4857 #endif
4858 .quiesce = raid5_quiesce,
4861 static struct mdk_personality raid4_personality =
4863 .name = "raid4",
4864 .level = 4,
4865 .owner = THIS_MODULE,
4866 .make_request = make_request,
4867 .run = run,
4868 .stop = stop,
4869 .status = status,
4870 .error_handler = error,
4871 .hot_add_disk = raid5_add_disk,
4872 .hot_remove_disk= raid5_remove_disk,
4873 .spare_active = raid5_spare_active,
4874 .sync_request = sync_request,
4875 .resize = raid5_resize,
4876 #ifdef CONFIG_MD_RAID5_RESHAPE
4877 .check_reshape = raid5_check_reshape,
4878 .start_reshape = raid5_start_reshape,
4879 #endif
4880 .quiesce = raid5_quiesce,
4883 static int __init raid5_init(void)
4885 int e;
4887 e = raid6_select_algo();
4888 if ( e )
4889 return e;
4890 register_md_personality(&raid6_personality);
4891 register_md_personality(&raid5_personality);
4892 register_md_personality(&raid4_personality);
4893 return 0;
4896 static void raid5_exit(void)
4898 unregister_md_personality(&raid6_personality);
4899 unregister_md_personality(&raid5_personality);
4900 unregister_md_personality(&raid4_personality);
4903 module_init(raid5_init);
4904 module_exit(raid5_exit);
4905 MODULE_LICENSE("GPL");
4906 MODULE_ALIAS("md-personality-4"); /* RAID5 */
4907 MODULE_ALIAS("md-raid5");
4908 MODULE_ALIAS("md-raid4");
4909 MODULE_ALIAS("md-level-5");
4910 MODULE_ALIAS("md-level-4");
4911 MODULE_ALIAS("md-personality-8"); /* RAID6 */
4912 MODULE_ALIAS("md-raid6");
4913 MODULE_ALIAS("md-level-6");
4915 /* This used to be two separate modules, they were: */
4916 MODULE_ALIAS("raid5");
4917 MODULE_ALIAS("raid6");