2 * raid5.c : Multiple Devices driver for Linux
3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 * Copyright (C) 1999, 2000 Ingo Molnar
5 * Copyright (C) 2002, 2003 H. Peter Anvin
7 * RAID-4/5/6 management functions.
8 * Thanks to Penguin Computing for making the RAID-6 development possible
9 * by donating a test server!
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
24 * The sequencing for updating the bitmap reliably is a little
25 * subtle (and I got it wrong the first time) so it deserves some
28 * We group bitmap updates into batches. Each batch has a number.
29 * We may write out several batches at once, but that isn't very important.
30 * conf->bm_write is the number of the last batch successfully written.
31 * conf->bm_flush is the number of the last batch that was closed to
33 * When we discover that we will need to write to any block in a stripe
34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35 * the number of the batch it will be in. This is bm_flush+1.
36 * When we are ready to do a write, if that batch hasn't been written yet,
37 * we plug the array and queue the stripe for later.
38 * When an unplug happens, we increment bm_flush, thus closing the current
40 * When we notice that bm_flush > bm_write, we write out all pending updates
41 * to the bitmap, and advance bm_write to where bm_flush was.
42 * This may occasionally write a bit out twice, but is sure never to
46 #include <linux/module.h>
47 #include <linux/slab.h>
48 #include <linux/highmem.h>
49 #include <linux/bitops.h>
50 #include <linux/kthread.h>
51 #include <asm/atomic.h>
54 #include <linux/raid/bitmap.h>
55 #include <linux/async_tx.h>
61 #define NR_STRIPES 256
62 #define STRIPE_SIZE PAGE_SIZE
63 #define STRIPE_SHIFT (PAGE_SHIFT - 9)
64 #define STRIPE_SECTORS (STRIPE_SIZE>>9)
65 #define IO_THRESHOLD 1
66 #define BYPASS_THRESHOLD 1
67 #define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head))
68 #define HASH_MASK (NR_HASH - 1)
70 #define stripe_hash(conf, sect) (&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
72 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
73 * order without overlap. There may be several bio's per stripe+device, and
74 * a bio could span several devices.
75 * When walking this list for a particular stripe+device, we must never proceed
76 * beyond a bio that extends past this device, as the next bio might no longer
78 * This macro is used to determine the 'next' bio in the list, given the sector
79 * of the current stripe+device
81 #define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
83 * The following can be used to debug the driver
85 #define RAID5_PARANOIA 1
86 #if RAID5_PARANOIA && defined(CONFIG_SMP)
87 # define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
89 # define CHECK_DEVLOCK()
97 #if !RAID6_USE_EMPTY_ZERO_PAGE
98 /* In .bss so it's zeroed */
99 const char raid6_empty_zero_page
[PAGE_SIZE
] __attribute__((aligned(256)));
102 static inline int raid6_next_disk(int disk
, int raid_disks
)
105 return (disk
< raid_disks
) ? disk
: 0;
108 static void return_io(struct bio
*return_bi
)
110 struct bio
*bi
= return_bi
;
113 return_bi
= bi
->bi_next
;
117 test_bit(BIO_UPTODATE
, &bi
->bi_flags
)
123 static void print_raid5_conf (raid5_conf_t
*conf
);
125 static void __release_stripe(raid5_conf_t
*conf
, struct stripe_head
*sh
)
127 if (atomic_dec_and_test(&sh
->count
)) {
128 BUG_ON(!list_empty(&sh
->lru
));
129 BUG_ON(atomic_read(&conf
->active_stripes
)==0);
130 if (test_bit(STRIPE_HANDLE
, &sh
->state
)) {
131 if (test_bit(STRIPE_DELAYED
, &sh
->state
)) {
132 list_add_tail(&sh
->lru
, &conf
->delayed_list
);
133 blk_plug_device(conf
->mddev
->queue
);
134 } else if (test_bit(STRIPE_BIT_DELAY
, &sh
->state
) &&
135 sh
->bm_seq
- conf
->seq_write
> 0) {
136 list_add_tail(&sh
->lru
, &conf
->bitmap_list
);
137 blk_plug_device(conf
->mddev
->queue
);
139 clear_bit(STRIPE_BIT_DELAY
, &sh
->state
);
140 list_add_tail(&sh
->lru
, &conf
->handle_list
);
142 md_wakeup_thread(conf
->mddev
->thread
);
144 BUG_ON(sh
->ops
.pending
);
145 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
)) {
146 atomic_dec(&conf
->preread_active_stripes
);
147 if (atomic_read(&conf
->preread_active_stripes
) < IO_THRESHOLD
)
148 md_wakeup_thread(conf
->mddev
->thread
);
150 atomic_dec(&conf
->active_stripes
);
151 if (!test_bit(STRIPE_EXPANDING
, &sh
->state
)) {
152 list_add_tail(&sh
->lru
, &conf
->inactive_list
);
153 wake_up(&conf
->wait_for_stripe
);
154 if (conf
->retry_read_aligned
)
155 md_wakeup_thread(conf
->mddev
->thread
);
160 static void release_stripe(struct stripe_head
*sh
)
162 raid5_conf_t
*conf
= sh
->raid_conf
;
165 spin_lock_irqsave(&conf
->device_lock
, flags
);
166 __release_stripe(conf
, sh
);
167 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
170 static inline void remove_hash(struct stripe_head
*sh
)
172 pr_debug("remove_hash(), stripe %llu\n",
173 (unsigned long long)sh
->sector
);
175 hlist_del_init(&sh
->hash
);
178 static inline void insert_hash(raid5_conf_t
*conf
, struct stripe_head
*sh
)
180 struct hlist_head
*hp
= stripe_hash(conf
, sh
->sector
);
182 pr_debug("insert_hash(), stripe %llu\n",
183 (unsigned long long)sh
->sector
);
186 hlist_add_head(&sh
->hash
, hp
);
190 /* find an idle stripe, make sure it is unhashed, and return it. */
191 static struct stripe_head
*get_free_stripe(raid5_conf_t
*conf
)
193 struct stripe_head
*sh
= NULL
;
194 struct list_head
*first
;
197 if (list_empty(&conf
->inactive_list
))
199 first
= conf
->inactive_list
.next
;
200 sh
= list_entry(first
, struct stripe_head
, lru
);
201 list_del_init(first
);
203 atomic_inc(&conf
->active_stripes
);
208 static void shrink_buffers(struct stripe_head
*sh
, int num
)
213 for (i
=0; i
<num
; i
++) {
217 sh
->dev
[i
].page
= NULL
;
222 static int grow_buffers(struct stripe_head
*sh
, int num
)
226 for (i
=0; i
<num
; i
++) {
229 if (!(page
= alloc_page(GFP_KERNEL
))) {
232 sh
->dev
[i
].page
= page
;
237 static void raid5_build_block (struct stripe_head
*sh
, int i
);
239 static void init_stripe(struct stripe_head
*sh
, sector_t sector
, int pd_idx
, int disks
)
241 raid5_conf_t
*conf
= sh
->raid_conf
;
244 BUG_ON(atomic_read(&sh
->count
) != 0);
245 BUG_ON(test_bit(STRIPE_HANDLE
, &sh
->state
));
246 BUG_ON(sh
->ops
.pending
|| sh
->ops
.ack
|| sh
->ops
.complete
);
249 pr_debug("init_stripe called, stripe %llu\n",
250 (unsigned long long)sh
->sector
);
260 for (i
= sh
->disks
; i
--; ) {
261 struct r5dev
*dev
= &sh
->dev
[i
];
263 if (dev
->toread
|| dev
->read
|| dev
->towrite
|| dev
->written
||
264 test_bit(R5_LOCKED
, &dev
->flags
)) {
265 printk(KERN_ERR
"sector=%llx i=%d %p %p %p %p %d\n",
266 (unsigned long long)sh
->sector
, i
, dev
->toread
,
267 dev
->read
, dev
->towrite
, dev
->written
,
268 test_bit(R5_LOCKED
, &dev
->flags
));
272 raid5_build_block(sh
, i
);
274 insert_hash(conf
, sh
);
277 static struct stripe_head
*__find_stripe(raid5_conf_t
*conf
, sector_t sector
, int disks
)
279 struct stripe_head
*sh
;
280 struct hlist_node
*hn
;
283 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector
);
284 hlist_for_each_entry(sh
, hn
, stripe_hash(conf
, sector
), hash
)
285 if (sh
->sector
== sector
&& sh
->disks
== disks
)
287 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector
);
291 static void unplug_slaves(mddev_t
*mddev
);
292 static void raid5_unplug_device(struct request_queue
*q
);
294 static struct stripe_head
*get_active_stripe(raid5_conf_t
*conf
, sector_t sector
, int disks
,
295 int pd_idx
, int noblock
)
297 struct stripe_head
*sh
;
299 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector
);
301 spin_lock_irq(&conf
->device_lock
);
304 wait_event_lock_irq(conf
->wait_for_stripe
,
306 conf
->device_lock
, /* nothing */);
307 sh
= __find_stripe(conf
, sector
, disks
);
309 if (!conf
->inactive_blocked
)
310 sh
= get_free_stripe(conf
);
311 if (noblock
&& sh
== NULL
)
314 conf
->inactive_blocked
= 1;
315 wait_event_lock_irq(conf
->wait_for_stripe
,
316 !list_empty(&conf
->inactive_list
) &&
317 (atomic_read(&conf
->active_stripes
)
318 < (conf
->max_nr_stripes
*3/4)
319 || !conf
->inactive_blocked
),
321 raid5_unplug_device(conf
->mddev
->queue
)
323 conf
->inactive_blocked
= 0;
325 init_stripe(sh
, sector
, pd_idx
, disks
);
327 if (atomic_read(&sh
->count
)) {
328 BUG_ON(!list_empty(&sh
->lru
));
330 if (!test_bit(STRIPE_HANDLE
, &sh
->state
))
331 atomic_inc(&conf
->active_stripes
);
332 if (list_empty(&sh
->lru
) &&
333 !test_bit(STRIPE_EXPANDING
, &sh
->state
))
335 list_del_init(&sh
->lru
);
338 } while (sh
== NULL
);
341 atomic_inc(&sh
->count
);
343 spin_unlock_irq(&conf
->device_lock
);
347 /* test_and_ack_op() ensures that we only dequeue an operation once */
348 #define test_and_ack_op(op, pend) \
350 if (test_bit(op, &sh->ops.pending) && \
351 !test_bit(op, &sh->ops.complete)) { \
352 if (test_and_set_bit(op, &sh->ops.ack)) \
353 clear_bit(op, &pend); \
357 clear_bit(op, &pend); \
360 /* find new work to run, do not resubmit work that is already
363 static unsigned long get_stripe_work(struct stripe_head
*sh
)
365 unsigned long pending
;
368 pending
= sh
->ops
.pending
;
370 test_and_ack_op(STRIPE_OP_BIOFILL
, pending
);
371 test_and_ack_op(STRIPE_OP_COMPUTE_BLK
, pending
);
372 test_and_ack_op(STRIPE_OP_PREXOR
, pending
);
373 test_and_ack_op(STRIPE_OP_BIODRAIN
, pending
);
374 test_and_ack_op(STRIPE_OP_POSTXOR
, pending
);
375 test_and_ack_op(STRIPE_OP_CHECK
, pending
);
376 if (test_and_clear_bit(STRIPE_OP_IO
, &sh
->ops
.pending
))
379 sh
->ops
.count
-= ack
;
380 if (unlikely(sh
->ops
.count
< 0)) {
381 printk(KERN_ERR
"pending: %#lx ops.pending: %#lx ops.ack: %#lx "
382 "ops.complete: %#lx\n", pending
, sh
->ops
.pending
,
383 sh
->ops
.ack
, sh
->ops
.complete
);
391 raid5_end_read_request(struct bio
*bi
, int error
);
393 raid5_end_write_request(struct bio
*bi
, int error
);
395 static void ops_run_io(struct stripe_head
*sh
)
397 raid5_conf_t
*conf
= sh
->raid_conf
;
398 int i
, disks
= sh
->disks
;
402 set_bit(STRIPE_IO_STARTED
, &sh
->state
);
403 for (i
= disks
; i
--; ) {
407 if (test_and_clear_bit(R5_Wantwrite
, &sh
->dev
[i
].flags
))
409 else if (test_and_clear_bit(R5_Wantread
, &sh
->dev
[i
].flags
))
414 bi
= &sh
->dev
[i
].req
;
418 bi
->bi_end_io
= raid5_end_write_request
;
420 bi
->bi_end_io
= raid5_end_read_request
;
423 rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
424 if (rdev
&& test_bit(Faulty
, &rdev
->flags
))
427 atomic_inc(&rdev
->nr_pending
);
431 if (test_bit(STRIPE_SYNCING
, &sh
->state
) ||
432 test_bit(STRIPE_EXPAND_SOURCE
, &sh
->state
) ||
433 test_bit(STRIPE_EXPAND_READY
, &sh
->state
))
434 md_sync_acct(rdev
->bdev
, STRIPE_SECTORS
);
436 bi
->bi_bdev
= rdev
->bdev
;
437 pr_debug("%s: for %llu schedule op %ld on disc %d\n",
438 __func__
, (unsigned long long)sh
->sector
,
440 atomic_inc(&sh
->count
);
441 bi
->bi_sector
= sh
->sector
+ rdev
->data_offset
;
442 bi
->bi_flags
= 1 << BIO_UPTODATE
;
446 bi
->bi_io_vec
= &sh
->dev
[i
].vec
;
447 bi
->bi_io_vec
[0].bv_len
= STRIPE_SIZE
;
448 bi
->bi_io_vec
[0].bv_offset
= 0;
449 bi
->bi_size
= STRIPE_SIZE
;
452 test_bit(R5_ReWrite
, &sh
->dev
[i
].flags
))
453 atomic_add(STRIPE_SECTORS
,
454 &rdev
->corrected_errors
);
455 generic_make_request(bi
);
458 set_bit(STRIPE_DEGRADED
, &sh
->state
);
459 pr_debug("skip op %ld on disc %d for sector %llu\n",
460 bi
->bi_rw
, i
, (unsigned long long)sh
->sector
);
461 clear_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
462 set_bit(STRIPE_HANDLE
, &sh
->state
);
467 static struct dma_async_tx_descriptor
*
468 async_copy_data(int frombio
, struct bio
*bio
, struct page
*page
,
469 sector_t sector
, struct dma_async_tx_descriptor
*tx
)
472 struct page
*bio_page
;
476 if (bio
->bi_sector
>= sector
)
477 page_offset
= (signed)(bio
->bi_sector
- sector
) * 512;
479 page_offset
= (signed)(sector
- bio
->bi_sector
) * -512;
480 bio_for_each_segment(bvl
, bio
, i
) {
481 int len
= bio_iovec_idx(bio
, i
)->bv_len
;
485 if (page_offset
< 0) {
486 b_offset
= -page_offset
;
487 page_offset
+= b_offset
;
491 if (len
> 0 && page_offset
+ len
> STRIPE_SIZE
)
492 clen
= STRIPE_SIZE
- page_offset
;
497 b_offset
+= bio_iovec_idx(bio
, i
)->bv_offset
;
498 bio_page
= bio_iovec_idx(bio
, i
)->bv_page
;
500 tx
= async_memcpy(page
, bio_page
, page_offset
,
505 tx
= async_memcpy(bio_page
, page
, b_offset
,
510 if (clen
< len
) /* hit end of page */
518 static void ops_complete_biofill(void *stripe_head_ref
)
520 struct stripe_head
*sh
= stripe_head_ref
;
521 struct bio
*return_bi
= NULL
;
522 raid5_conf_t
*conf
= sh
->raid_conf
;
525 pr_debug("%s: stripe %llu\n", __func__
,
526 (unsigned long long)sh
->sector
);
528 /* clear completed biofills */
529 for (i
= sh
->disks
; i
--; ) {
530 struct r5dev
*dev
= &sh
->dev
[i
];
532 /* acknowledge completion of a biofill operation */
533 /* and check if we need to reply to a read request,
534 * new R5_Wantfill requests are held off until
535 * !test_bit(STRIPE_OP_BIOFILL, &sh->ops.pending)
537 if (test_and_clear_bit(R5_Wantfill
, &dev
->flags
)) {
538 struct bio
*rbi
, *rbi2
;
540 /* The access to dev->read is outside of the
541 * spin_lock_irq(&conf->device_lock), but is protected
542 * by the STRIPE_OP_BIOFILL pending bit
547 while (rbi
&& rbi
->bi_sector
<
548 dev
->sector
+ STRIPE_SECTORS
) {
549 rbi2
= r5_next_bio(rbi
, dev
->sector
);
550 spin_lock_irq(&conf
->device_lock
);
551 if (--rbi
->bi_phys_segments
== 0) {
552 rbi
->bi_next
= return_bi
;
555 spin_unlock_irq(&conf
->device_lock
);
560 set_bit(STRIPE_OP_BIOFILL
, &sh
->ops
.complete
);
562 return_io(return_bi
);
564 set_bit(STRIPE_HANDLE
, &sh
->state
);
568 static void ops_run_biofill(struct stripe_head
*sh
)
570 struct dma_async_tx_descriptor
*tx
= NULL
;
571 raid5_conf_t
*conf
= sh
->raid_conf
;
574 pr_debug("%s: stripe %llu\n", __func__
,
575 (unsigned long long)sh
->sector
);
577 for (i
= sh
->disks
; i
--; ) {
578 struct r5dev
*dev
= &sh
->dev
[i
];
579 if (test_bit(R5_Wantfill
, &dev
->flags
)) {
581 spin_lock_irq(&conf
->device_lock
);
582 dev
->read
= rbi
= dev
->toread
;
584 spin_unlock_irq(&conf
->device_lock
);
585 while (rbi
&& rbi
->bi_sector
<
586 dev
->sector
+ STRIPE_SECTORS
) {
587 tx
= async_copy_data(0, rbi
, dev
->page
,
589 rbi
= r5_next_bio(rbi
, dev
->sector
);
594 atomic_inc(&sh
->count
);
595 async_trigger_callback(ASYNC_TX_DEP_ACK
| ASYNC_TX_ACK
, tx
,
596 ops_complete_biofill
, sh
);
599 static void ops_complete_compute5(void *stripe_head_ref
)
601 struct stripe_head
*sh
= stripe_head_ref
;
602 int target
= sh
->ops
.target
;
603 struct r5dev
*tgt
= &sh
->dev
[target
];
605 pr_debug("%s: stripe %llu\n", __func__
,
606 (unsigned long long)sh
->sector
);
608 set_bit(R5_UPTODATE
, &tgt
->flags
);
609 BUG_ON(!test_bit(R5_Wantcompute
, &tgt
->flags
));
610 clear_bit(R5_Wantcompute
, &tgt
->flags
);
611 set_bit(STRIPE_OP_COMPUTE_BLK
, &sh
->ops
.complete
);
612 set_bit(STRIPE_HANDLE
, &sh
->state
);
616 static struct dma_async_tx_descriptor
*
617 ops_run_compute5(struct stripe_head
*sh
, unsigned long pending
)
619 /* kernel stack size limits the total number of disks */
620 int disks
= sh
->disks
;
621 struct page
*xor_srcs
[disks
];
622 int target
= sh
->ops
.target
;
623 struct r5dev
*tgt
= &sh
->dev
[target
];
624 struct page
*xor_dest
= tgt
->page
;
626 struct dma_async_tx_descriptor
*tx
;
629 pr_debug("%s: stripe %llu block: %d\n",
630 __func__
, (unsigned long long)sh
->sector
, target
);
631 BUG_ON(!test_bit(R5_Wantcompute
, &tgt
->flags
));
633 for (i
= disks
; i
--; )
635 xor_srcs
[count
++] = sh
->dev
[i
].page
;
637 atomic_inc(&sh
->count
);
639 if (unlikely(count
== 1))
640 tx
= async_memcpy(xor_dest
, xor_srcs
[0], 0, 0, STRIPE_SIZE
,
641 0, NULL
, ops_complete_compute5
, sh
);
643 tx
= async_xor(xor_dest
, xor_srcs
, 0, count
, STRIPE_SIZE
,
644 ASYNC_TX_XOR_ZERO_DST
, NULL
,
645 ops_complete_compute5
, sh
);
647 /* ack now if postxor is not set to be run */
648 if (tx
&& !test_bit(STRIPE_OP_POSTXOR
, &pending
))
654 static void ops_complete_prexor(void *stripe_head_ref
)
656 struct stripe_head
*sh
= stripe_head_ref
;
658 pr_debug("%s: stripe %llu\n", __func__
,
659 (unsigned long long)sh
->sector
);
661 set_bit(STRIPE_OP_PREXOR
, &sh
->ops
.complete
);
664 static struct dma_async_tx_descriptor
*
665 ops_run_prexor(struct stripe_head
*sh
, struct dma_async_tx_descriptor
*tx
)
667 /* kernel stack size limits the total number of disks */
668 int disks
= sh
->disks
;
669 struct page
*xor_srcs
[disks
];
670 int count
= 0, pd_idx
= sh
->pd_idx
, i
;
672 /* existing parity data subtracted */
673 struct page
*xor_dest
= xor_srcs
[count
++] = sh
->dev
[pd_idx
].page
;
675 pr_debug("%s: stripe %llu\n", __func__
,
676 (unsigned long long)sh
->sector
);
678 for (i
= disks
; i
--; ) {
679 struct r5dev
*dev
= &sh
->dev
[i
];
680 /* Only process blocks that are known to be uptodate */
681 if (dev
->towrite
&& test_bit(R5_Wantprexor
, &dev
->flags
))
682 xor_srcs
[count
++] = dev
->page
;
685 tx
= async_xor(xor_dest
, xor_srcs
, 0, count
, STRIPE_SIZE
,
686 ASYNC_TX_DEP_ACK
| ASYNC_TX_XOR_DROP_DST
, tx
,
687 ops_complete_prexor
, sh
);
692 static struct dma_async_tx_descriptor
*
693 ops_run_biodrain(struct stripe_head
*sh
, struct dma_async_tx_descriptor
*tx
,
694 unsigned long pending
)
696 int disks
= sh
->disks
;
697 int pd_idx
= sh
->pd_idx
, i
;
699 /* check if prexor is active which means only process blocks
700 * that are part of a read-modify-write (Wantprexor)
702 int prexor
= test_bit(STRIPE_OP_PREXOR
, &pending
);
704 pr_debug("%s: stripe %llu\n", __func__
,
705 (unsigned long long)sh
->sector
);
707 for (i
= disks
; i
--; ) {
708 struct r5dev
*dev
= &sh
->dev
[i
];
713 if (prexor
) { /* rmw */
715 test_bit(R5_Wantprexor
, &dev
->flags
))
718 if (i
!= pd_idx
&& dev
->towrite
&&
719 test_bit(R5_LOCKED
, &dev
->flags
))
726 spin_lock(&sh
->lock
);
727 chosen
= dev
->towrite
;
729 BUG_ON(dev
->written
);
730 wbi
= dev
->written
= chosen
;
731 spin_unlock(&sh
->lock
);
733 while (wbi
&& wbi
->bi_sector
<
734 dev
->sector
+ STRIPE_SECTORS
) {
735 tx
= async_copy_data(1, wbi
, dev
->page
,
737 wbi
= r5_next_bio(wbi
, dev
->sector
);
745 static void ops_complete_postxor(void *stripe_head_ref
)
747 struct stripe_head
*sh
= stripe_head_ref
;
749 pr_debug("%s: stripe %llu\n", __func__
,
750 (unsigned long long)sh
->sector
);
752 set_bit(STRIPE_OP_POSTXOR
, &sh
->ops
.complete
);
753 set_bit(STRIPE_HANDLE
, &sh
->state
);
757 static void ops_complete_write(void *stripe_head_ref
)
759 struct stripe_head
*sh
= stripe_head_ref
;
760 int disks
= sh
->disks
, i
, pd_idx
= sh
->pd_idx
;
762 pr_debug("%s: stripe %llu\n", __func__
,
763 (unsigned long long)sh
->sector
);
765 for (i
= disks
; i
--; ) {
766 struct r5dev
*dev
= &sh
->dev
[i
];
767 if (dev
->written
|| i
== pd_idx
)
768 set_bit(R5_UPTODATE
, &dev
->flags
);
771 set_bit(STRIPE_OP_BIODRAIN
, &sh
->ops
.complete
);
772 set_bit(STRIPE_OP_POSTXOR
, &sh
->ops
.complete
);
774 set_bit(STRIPE_HANDLE
, &sh
->state
);
779 ops_run_postxor(struct stripe_head
*sh
, struct dma_async_tx_descriptor
*tx
,
780 unsigned long pending
)
782 /* kernel stack size limits the total number of disks */
783 int disks
= sh
->disks
;
784 struct page
*xor_srcs
[disks
];
786 int count
= 0, pd_idx
= sh
->pd_idx
, i
;
787 struct page
*xor_dest
;
788 int prexor
= test_bit(STRIPE_OP_PREXOR
, &pending
);
790 dma_async_tx_callback callback
;
792 pr_debug("%s: stripe %llu\n", __func__
,
793 (unsigned long long)sh
->sector
);
795 /* check if prexor is active which means only process blocks
796 * that are part of a read-modify-write (written)
799 xor_dest
= xor_srcs
[count
++] = sh
->dev
[pd_idx
].page
;
800 for (i
= disks
; i
--; ) {
801 struct r5dev
*dev
= &sh
->dev
[i
];
803 xor_srcs
[count
++] = dev
->page
;
806 xor_dest
= sh
->dev
[pd_idx
].page
;
807 for (i
= disks
; i
--; ) {
808 struct r5dev
*dev
= &sh
->dev
[i
];
810 xor_srcs
[count
++] = dev
->page
;
814 /* check whether this postxor is part of a write */
815 callback
= test_bit(STRIPE_OP_BIODRAIN
, &pending
) ?
816 ops_complete_write
: ops_complete_postxor
;
818 /* 1/ if we prexor'd then the dest is reused as a source
819 * 2/ if we did not prexor then we are redoing the parity
820 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
821 * for the synchronous xor case
823 flags
= ASYNC_TX_DEP_ACK
| ASYNC_TX_ACK
|
824 (prexor
? ASYNC_TX_XOR_DROP_DST
: ASYNC_TX_XOR_ZERO_DST
);
826 atomic_inc(&sh
->count
);
828 if (unlikely(count
== 1)) {
829 flags
&= ~(ASYNC_TX_XOR_DROP_DST
| ASYNC_TX_XOR_ZERO_DST
);
830 tx
= async_memcpy(xor_dest
, xor_srcs
[0], 0, 0, STRIPE_SIZE
,
831 flags
, tx
, callback
, sh
);
833 tx
= async_xor(xor_dest
, xor_srcs
, 0, count
, STRIPE_SIZE
,
834 flags
, tx
, callback
, sh
);
837 static void ops_complete_check(void *stripe_head_ref
)
839 struct stripe_head
*sh
= stripe_head_ref
;
840 int pd_idx
= sh
->pd_idx
;
842 pr_debug("%s: stripe %llu\n", __func__
,
843 (unsigned long long)sh
->sector
);
845 if (test_and_clear_bit(STRIPE_OP_MOD_DMA_CHECK
, &sh
->ops
.pending
) &&
846 sh
->ops
.zero_sum_result
== 0)
847 set_bit(R5_UPTODATE
, &sh
->dev
[pd_idx
].flags
);
849 set_bit(STRIPE_OP_CHECK
, &sh
->ops
.complete
);
850 set_bit(STRIPE_HANDLE
, &sh
->state
);
854 static void ops_run_check(struct stripe_head
*sh
)
856 /* kernel stack size limits the total number of disks */
857 int disks
= sh
->disks
;
858 struct page
*xor_srcs
[disks
];
859 struct dma_async_tx_descriptor
*tx
;
861 int count
= 0, pd_idx
= sh
->pd_idx
, i
;
862 struct page
*xor_dest
= xor_srcs
[count
++] = sh
->dev
[pd_idx
].page
;
864 pr_debug("%s: stripe %llu\n", __func__
,
865 (unsigned long long)sh
->sector
);
867 for (i
= disks
; i
--; ) {
868 struct r5dev
*dev
= &sh
->dev
[i
];
870 xor_srcs
[count
++] = dev
->page
;
873 tx
= async_xor_zero_sum(xor_dest
, xor_srcs
, 0, count
, STRIPE_SIZE
,
874 &sh
->ops
.zero_sum_result
, 0, NULL
, NULL
, NULL
);
877 set_bit(STRIPE_OP_MOD_DMA_CHECK
, &sh
->ops
.pending
);
879 clear_bit(STRIPE_OP_MOD_DMA_CHECK
, &sh
->ops
.pending
);
881 atomic_inc(&sh
->count
);
882 tx
= async_trigger_callback(ASYNC_TX_DEP_ACK
| ASYNC_TX_ACK
, tx
,
883 ops_complete_check
, sh
);
886 static void raid5_run_ops(struct stripe_head
*sh
, unsigned long pending
)
888 int overlap_clear
= 0, i
, disks
= sh
->disks
;
889 struct dma_async_tx_descriptor
*tx
= NULL
;
891 if (test_bit(STRIPE_OP_BIOFILL
, &pending
)) {
896 if (test_bit(STRIPE_OP_COMPUTE_BLK
, &pending
))
897 tx
= ops_run_compute5(sh
, pending
);
899 if (test_bit(STRIPE_OP_PREXOR
, &pending
))
900 tx
= ops_run_prexor(sh
, tx
);
902 if (test_bit(STRIPE_OP_BIODRAIN
, &pending
)) {
903 tx
= ops_run_biodrain(sh
, tx
, pending
);
907 if (test_bit(STRIPE_OP_POSTXOR
, &pending
))
908 ops_run_postxor(sh
, tx
, pending
);
910 if (test_bit(STRIPE_OP_CHECK
, &pending
))
913 if (test_bit(STRIPE_OP_IO
, &pending
))
917 for (i
= disks
; i
--; ) {
918 struct r5dev
*dev
= &sh
->dev
[i
];
919 if (test_and_clear_bit(R5_Overlap
, &dev
->flags
))
920 wake_up(&sh
->raid_conf
->wait_for_overlap
);
924 static int grow_one_stripe(raid5_conf_t
*conf
)
926 struct stripe_head
*sh
;
927 sh
= kmem_cache_alloc(conf
->slab_cache
, GFP_KERNEL
);
930 memset(sh
, 0, sizeof(*sh
) + (conf
->raid_disks
-1)*sizeof(struct r5dev
));
931 sh
->raid_conf
= conf
;
932 spin_lock_init(&sh
->lock
);
934 if (grow_buffers(sh
, conf
->raid_disks
)) {
935 shrink_buffers(sh
, conf
->raid_disks
);
936 kmem_cache_free(conf
->slab_cache
, sh
);
939 sh
->disks
= conf
->raid_disks
;
940 /* we just created an active stripe so... */
941 atomic_set(&sh
->count
, 1);
942 atomic_inc(&conf
->active_stripes
);
943 INIT_LIST_HEAD(&sh
->lru
);
948 static int grow_stripes(raid5_conf_t
*conf
, int num
)
950 struct kmem_cache
*sc
;
951 int devs
= conf
->raid_disks
;
953 sprintf(conf
->cache_name
[0], "raid5-%s", mdname(conf
->mddev
));
954 sprintf(conf
->cache_name
[1], "raid5-%s-alt", mdname(conf
->mddev
));
955 conf
->active_name
= 0;
956 sc
= kmem_cache_create(conf
->cache_name
[conf
->active_name
],
957 sizeof(struct stripe_head
)+(devs
-1)*sizeof(struct r5dev
),
961 conf
->slab_cache
= sc
;
962 conf
->pool_size
= devs
;
964 if (!grow_one_stripe(conf
))
969 #ifdef CONFIG_MD_RAID5_RESHAPE
970 static int resize_stripes(raid5_conf_t
*conf
, int newsize
)
972 /* Make all the stripes able to hold 'newsize' devices.
973 * New slots in each stripe get 'page' set to a new page.
975 * This happens in stages:
976 * 1/ create a new kmem_cache and allocate the required number of
978 * 2/ gather all the old stripe_heads and tranfer the pages across
979 * to the new stripe_heads. This will have the side effect of
980 * freezing the array as once all stripe_heads have been collected,
981 * no IO will be possible. Old stripe heads are freed once their
982 * pages have been transferred over, and the old kmem_cache is
983 * freed when all stripes are done.
984 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
985 * we simple return a failre status - no need to clean anything up.
986 * 4/ allocate new pages for the new slots in the new stripe_heads.
987 * If this fails, we don't bother trying the shrink the
988 * stripe_heads down again, we just leave them as they are.
989 * As each stripe_head is processed the new one is released into
992 * Once step2 is started, we cannot afford to wait for a write,
993 * so we use GFP_NOIO allocations.
995 struct stripe_head
*osh
, *nsh
;
996 LIST_HEAD(newstripes
);
997 struct disk_info
*ndisks
;
999 struct kmem_cache
*sc
;
1002 if (newsize
<= conf
->pool_size
)
1003 return 0; /* never bother to shrink */
1005 md_allow_write(conf
->mddev
);
1008 sc
= kmem_cache_create(conf
->cache_name
[1-conf
->active_name
],
1009 sizeof(struct stripe_head
)+(newsize
-1)*sizeof(struct r5dev
),
1014 for (i
= conf
->max_nr_stripes
; i
; i
--) {
1015 nsh
= kmem_cache_alloc(sc
, GFP_KERNEL
);
1019 memset(nsh
, 0, sizeof(*nsh
) + (newsize
-1)*sizeof(struct r5dev
));
1021 nsh
->raid_conf
= conf
;
1022 spin_lock_init(&nsh
->lock
);
1024 list_add(&nsh
->lru
, &newstripes
);
1027 /* didn't get enough, give up */
1028 while (!list_empty(&newstripes
)) {
1029 nsh
= list_entry(newstripes
.next
, struct stripe_head
, lru
);
1030 list_del(&nsh
->lru
);
1031 kmem_cache_free(sc
, nsh
);
1033 kmem_cache_destroy(sc
);
1036 /* Step 2 - Must use GFP_NOIO now.
1037 * OK, we have enough stripes, start collecting inactive
1038 * stripes and copying them over
1040 list_for_each_entry(nsh
, &newstripes
, lru
) {
1041 spin_lock_irq(&conf
->device_lock
);
1042 wait_event_lock_irq(conf
->wait_for_stripe
,
1043 !list_empty(&conf
->inactive_list
),
1045 unplug_slaves(conf
->mddev
)
1047 osh
= get_free_stripe(conf
);
1048 spin_unlock_irq(&conf
->device_lock
);
1049 atomic_set(&nsh
->count
, 1);
1050 for(i
=0; i
<conf
->pool_size
; i
++)
1051 nsh
->dev
[i
].page
= osh
->dev
[i
].page
;
1052 for( ; i
<newsize
; i
++)
1053 nsh
->dev
[i
].page
= NULL
;
1054 kmem_cache_free(conf
->slab_cache
, osh
);
1056 kmem_cache_destroy(conf
->slab_cache
);
1059 * At this point, we are holding all the stripes so the array
1060 * is completely stalled, so now is a good time to resize
1063 ndisks
= kzalloc(newsize
* sizeof(struct disk_info
), GFP_NOIO
);
1065 for (i
=0; i
<conf
->raid_disks
; i
++)
1066 ndisks
[i
] = conf
->disks
[i
];
1068 conf
->disks
= ndisks
;
1072 /* Step 4, return new stripes to service */
1073 while(!list_empty(&newstripes
)) {
1074 nsh
= list_entry(newstripes
.next
, struct stripe_head
, lru
);
1075 list_del_init(&nsh
->lru
);
1076 for (i
=conf
->raid_disks
; i
< newsize
; i
++)
1077 if (nsh
->dev
[i
].page
== NULL
) {
1078 struct page
*p
= alloc_page(GFP_NOIO
);
1079 nsh
->dev
[i
].page
= p
;
1083 release_stripe(nsh
);
1085 /* critical section pass, GFP_NOIO no longer needed */
1087 conf
->slab_cache
= sc
;
1088 conf
->active_name
= 1-conf
->active_name
;
1089 conf
->pool_size
= newsize
;
1094 static int drop_one_stripe(raid5_conf_t
*conf
)
1096 struct stripe_head
*sh
;
1098 spin_lock_irq(&conf
->device_lock
);
1099 sh
= get_free_stripe(conf
);
1100 spin_unlock_irq(&conf
->device_lock
);
1103 BUG_ON(atomic_read(&sh
->count
));
1104 shrink_buffers(sh
, conf
->pool_size
);
1105 kmem_cache_free(conf
->slab_cache
, sh
);
1106 atomic_dec(&conf
->active_stripes
);
1110 static void shrink_stripes(raid5_conf_t
*conf
)
1112 while (drop_one_stripe(conf
))
1115 if (conf
->slab_cache
)
1116 kmem_cache_destroy(conf
->slab_cache
);
1117 conf
->slab_cache
= NULL
;
1120 static void raid5_end_read_request(struct bio
* bi
, int error
)
1122 struct stripe_head
*sh
= bi
->bi_private
;
1123 raid5_conf_t
*conf
= sh
->raid_conf
;
1124 int disks
= sh
->disks
, i
;
1125 int uptodate
= test_bit(BIO_UPTODATE
, &bi
->bi_flags
);
1126 char b
[BDEVNAME_SIZE
];
1130 for (i
=0 ; i
<disks
; i
++)
1131 if (bi
== &sh
->dev
[i
].req
)
1134 pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1135 (unsigned long long)sh
->sector
, i
, atomic_read(&sh
->count
),
1143 set_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
);
1144 if (test_bit(R5_ReadError
, &sh
->dev
[i
].flags
)) {
1145 rdev
= conf
->disks
[i
].rdev
;
1146 printk(KERN_INFO
"raid5:%s: read error corrected (%lu sectors at %llu on %s)\n",
1147 mdname(conf
->mddev
), STRIPE_SECTORS
,
1148 (unsigned long long)(sh
->sector
+ rdev
->data_offset
),
1149 bdevname(rdev
->bdev
, b
));
1150 clear_bit(R5_ReadError
, &sh
->dev
[i
].flags
);
1151 clear_bit(R5_ReWrite
, &sh
->dev
[i
].flags
);
1153 if (atomic_read(&conf
->disks
[i
].rdev
->read_errors
))
1154 atomic_set(&conf
->disks
[i
].rdev
->read_errors
, 0);
1156 const char *bdn
= bdevname(conf
->disks
[i
].rdev
->bdev
, b
);
1158 rdev
= conf
->disks
[i
].rdev
;
1160 clear_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
);
1161 atomic_inc(&rdev
->read_errors
);
1162 if (conf
->mddev
->degraded
)
1163 printk(KERN_WARNING
"raid5:%s: read error not correctable (sector %llu on %s).\n",
1164 mdname(conf
->mddev
),
1165 (unsigned long long)(sh
->sector
+ rdev
->data_offset
),
1167 else if (test_bit(R5_ReWrite
, &sh
->dev
[i
].flags
))
1169 printk(KERN_WARNING
"raid5:%s: read error NOT corrected!! (sector %llu on %s).\n",
1170 mdname(conf
->mddev
),
1171 (unsigned long long)(sh
->sector
+ rdev
->data_offset
),
1173 else if (atomic_read(&rdev
->read_errors
)
1174 > conf
->max_nr_stripes
)
1176 "raid5:%s: Too many read errors, failing device %s.\n",
1177 mdname(conf
->mddev
), bdn
);
1181 set_bit(R5_ReadError
, &sh
->dev
[i
].flags
);
1183 clear_bit(R5_ReadError
, &sh
->dev
[i
].flags
);
1184 clear_bit(R5_ReWrite
, &sh
->dev
[i
].flags
);
1185 md_error(conf
->mddev
, rdev
);
1188 rdev_dec_pending(conf
->disks
[i
].rdev
, conf
->mddev
);
1189 clear_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
1190 set_bit(STRIPE_HANDLE
, &sh
->state
);
1194 static void raid5_end_write_request (struct bio
*bi
, int error
)
1196 struct stripe_head
*sh
= bi
->bi_private
;
1197 raid5_conf_t
*conf
= sh
->raid_conf
;
1198 int disks
= sh
->disks
, i
;
1199 int uptodate
= test_bit(BIO_UPTODATE
, &bi
->bi_flags
);
1201 for (i
=0 ; i
<disks
; i
++)
1202 if (bi
== &sh
->dev
[i
].req
)
1205 pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1206 (unsigned long long)sh
->sector
, i
, atomic_read(&sh
->count
),
1214 md_error(conf
->mddev
, conf
->disks
[i
].rdev
);
1216 rdev_dec_pending(conf
->disks
[i
].rdev
, conf
->mddev
);
1218 clear_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
1219 set_bit(STRIPE_HANDLE
, &sh
->state
);
1224 static sector_t
compute_blocknr(struct stripe_head
*sh
, int i
);
1226 static void raid5_build_block (struct stripe_head
*sh
, int i
)
1228 struct r5dev
*dev
= &sh
->dev
[i
];
1230 bio_init(&dev
->req
);
1231 dev
->req
.bi_io_vec
= &dev
->vec
;
1233 dev
->req
.bi_max_vecs
++;
1234 dev
->vec
.bv_page
= dev
->page
;
1235 dev
->vec
.bv_len
= STRIPE_SIZE
;
1236 dev
->vec
.bv_offset
= 0;
1238 dev
->req
.bi_sector
= sh
->sector
;
1239 dev
->req
.bi_private
= sh
;
1242 dev
->sector
= compute_blocknr(sh
, i
);
1245 static void error(mddev_t
*mddev
, mdk_rdev_t
*rdev
)
1247 char b
[BDEVNAME_SIZE
];
1248 raid5_conf_t
*conf
= (raid5_conf_t
*) mddev
->private;
1249 pr_debug("raid5: error called\n");
1251 if (!test_bit(Faulty
, &rdev
->flags
)) {
1252 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
1253 if (test_and_clear_bit(In_sync
, &rdev
->flags
)) {
1254 unsigned long flags
;
1255 spin_lock_irqsave(&conf
->device_lock
, flags
);
1257 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1259 * if recovery was running, make sure it aborts.
1261 set_bit(MD_RECOVERY_ERR
, &mddev
->recovery
);
1263 set_bit(Faulty
, &rdev
->flags
);
1265 "raid5: Disk failure on %s, disabling device.\n"
1266 "raid5: Operation continuing on %d devices.\n",
1267 bdevname(rdev
->bdev
,b
), conf
->raid_disks
- mddev
->degraded
);
1272 * Input: a 'big' sector number,
1273 * Output: index of the data and parity disk, and the sector # in them.
1275 static sector_t
raid5_compute_sector(sector_t r_sector
, unsigned int raid_disks
,
1276 unsigned int data_disks
, unsigned int * dd_idx
,
1277 unsigned int * pd_idx
, raid5_conf_t
*conf
)
1280 unsigned long chunk_number
;
1281 unsigned int chunk_offset
;
1282 sector_t new_sector
;
1283 int sectors_per_chunk
= conf
->chunk_size
>> 9;
1285 /* First compute the information on this sector */
1288 * Compute the chunk number and the sector offset inside the chunk
1290 chunk_offset
= sector_div(r_sector
, sectors_per_chunk
);
1291 chunk_number
= r_sector
;
1292 BUG_ON(r_sector
!= chunk_number
);
1295 * Compute the stripe number
1297 stripe
= chunk_number
/ data_disks
;
1300 * Compute the data disk and parity disk indexes inside the stripe
1302 *dd_idx
= chunk_number
% data_disks
;
1305 * Select the parity disk based on the user selected algorithm.
1307 switch(conf
->level
) {
1309 *pd_idx
= data_disks
;
1312 switch (conf
->algorithm
) {
1313 case ALGORITHM_LEFT_ASYMMETRIC
:
1314 *pd_idx
= data_disks
- stripe
% raid_disks
;
1315 if (*dd_idx
>= *pd_idx
)
1318 case ALGORITHM_RIGHT_ASYMMETRIC
:
1319 *pd_idx
= stripe
% raid_disks
;
1320 if (*dd_idx
>= *pd_idx
)
1323 case ALGORITHM_LEFT_SYMMETRIC
:
1324 *pd_idx
= data_disks
- stripe
% raid_disks
;
1325 *dd_idx
= (*pd_idx
+ 1 + *dd_idx
) % raid_disks
;
1327 case ALGORITHM_RIGHT_SYMMETRIC
:
1328 *pd_idx
= stripe
% raid_disks
;
1329 *dd_idx
= (*pd_idx
+ 1 + *dd_idx
) % raid_disks
;
1332 printk(KERN_ERR
"raid5: unsupported algorithm %d\n",
1338 /**** FIX THIS ****/
1339 switch (conf
->algorithm
) {
1340 case ALGORITHM_LEFT_ASYMMETRIC
:
1341 *pd_idx
= raid_disks
- 1 - (stripe
% raid_disks
);
1342 if (*pd_idx
== raid_disks
-1)
1343 (*dd_idx
)++; /* Q D D D P */
1344 else if (*dd_idx
>= *pd_idx
)
1345 (*dd_idx
) += 2; /* D D P Q D */
1347 case ALGORITHM_RIGHT_ASYMMETRIC
:
1348 *pd_idx
= stripe
% raid_disks
;
1349 if (*pd_idx
== raid_disks
-1)
1350 (*dd_idx
)++; /* Q D D D P */
1351 else if (*dd_idx
>= *pd_idx
)
1352 (*dd_idx
) += 2; /* D D P Q D */
1354 case ALGORITHM_LEFT_SYMMETRIC
:
1355 *pd_idx
= raid_disks
- 1 - (stripe
% raid_disks
);
1356 *dd_idx
= (*pd_idx
+ 2 + *dd_idx
) % raid_disks
;
1358 case ALGORITHM_RIGHT_SYMMETRIC
:
1359 *pd_idx
= stripe
% raid_disks
;
1360 *dd_idx
= (*pd_idx
+ 2 + *dd_idx
) % raid_disks
;
1363 printk (KERN_CRIT
"raid6: unsupported algorithm %d\n",
1370 * Finally, compute the new sector number
1372 new_sector
= (sector_t
)stripe
* sectors_per_chunk
+ chunk_offset
;
1377 static sector_t
compute_blocknr(struct stripe_head
*sh
, int i
)
1379 raid5_conf_t
*conf
= sh
->raid_conf
;
1380 int raid_disks
= sh
->disks
;
1381 int data_disks
= raid_disks
- conf
->max_degraded
;
1382 sector_t new_sector
= sh
->sector
, check
;
1383 int sectors_per_chunk
= conf
->chunk_size
>> 9;
1386 int chunk_number
, dummy1
, dummy2
, dd_idx
= i
;
1390 chunk_offset
= sector_div(new_sector
, sectors_per_chunk
);
1391 stripe
= new_sector
;
1392 BUG_ON(new_sector
!= stripe
);
1394 if (i
== sh
->pd_idx
)
1396 switch(conf
->level
) {
1399 switch (conf
->algorithm
) {
1400 case ALGORITHM_LEFT_ASYMMETRIC
:
1401 case ALGORITHM_RIGHT_ASYMMETRIC
:
1405 case ALGORITHM_LEFT_SYMMETRIC
:
1406 case ALGORITHM_RIGHT_SYMMETRIC
:
1409 i
-= (sh
->pd_idx
+ 1);
1412 printk(KERN_ERR
"raid5: unsupported algorithm %d\n",
1417 if (i
== raid6_next_disk(sh
->pd_idx
, raid_disks
))
1418 return 0; /* It is the Q disk */
1419 switch (conf
->algorithm
) {
1420 case ALGORITHM_LEFT_ASYMMETRIC
:
1421 case ALGORITHM_RIGHT_ASYMMETRIC
:
1422 if (sh
->pd_idx
== raid_disks
-1)
1423 i
--; /* Q D D D P */
1424 else if (i
> sh
->pd_idx
)
1425 i
-= 2; /* D D P Q D */
1427 case ALGORITHM_LEFT_SYMMETRIC
:
1428 case ALGORITHM_RIGHT_SYMMETRIC
:
1429 if (sh
->pd_idx
== raid_disks
-1)
1430 i
--; /* Q D D D P */
1435 i
-= (sh
->pd_idx
+ 2);
1439 printk (KERN_CRIT
"raid6: unsupported algorithm %d\n",
1445 chunk_number
= stripe
* data_disks
+ i
;
1446 r_sector
= (sector_t
)chunk_number
* sectors_per_chunk
+ chunk_offset
;
1448 check
= raid5_compute_sector (r_sector
, raid_disks
, data_disks
, &dummy1
, &dummy2
, conf
);
1449 if (check
!= sh
->sector
|| dummy1
!= dd_idx
|| dummy2
!= sh
->pd_idx
) {
1450 printk(KERN_ERR
"compute_blocknr: map not correct\n");
1459 * Copy data between a page in the stripe cache, and one or more bion
1460 * The page could align with the middle of the bio, or there could be
1461 * several bion, each with several bio_vecs, which cover part of the page
1462 * Multiple bion are linked together on bi_next. There may be extras
1463 * at the end of this list. We ignore them.
1465 static void copy_data(int frombio
, struct bio
*bio
,
1469 char *pa
= page_address(page
);
1470 struct bio_vec
*bvl
;
1474 if (bio
->bi_sector
>= sector
)
1475 page_offset
= (signed)(bio
->bi_sector
- sector
) * 512;
1477 page_offset
= (signed)(sector
- bio
->bi_sector
) * -512;
1478 bio_for_each_segment(bvl
, bio
, i
) {
1479 int len
= bio_iovec_idx(bio
,i
)->bv_len
;
1483 if (page_offset
< 0) {
1484 b_offset
= -page_offset
;
1485 page_offset
+= b_offset
;
1489 if (len
> 0 && page_offset
+ len
> STRIPE_SIZE
)
1490 clen
= STRIPE_SIZE
- page_offset
;
1494 char *ba
= __bio_kmap_atomic(bio
, i
, KM_USER0
);
1496 memcpy(pa
+page_offset
, ba
+b_offset
, clen
);
1498 memcpy(ba
+b_offset
, pa
+page_offset
, clen
);
1499 __bio_kunmap_atomic(ba
, KM_USER0
);
1501 if (clen
< len
) /* hit end of page */
1507 #define check_xor() do { \
1508 if (count == MAX_XOR_BLOCKS) { \
1509 xor_blocks(count, STRIPE_SIZE, dest, ptr);\
1514 static void compute_parity6(struct stripe_head
*sh
, int method
)
1516 raid6_conf_t
*conf
= sh
->raid_conf
;
1517 int i
, pd_idx
= sh
->pd_idx
, qd_idx
, d0_idx
, disks
= sh
->disks
, count
;
1519 /**** FIX THIS: This could be very bad if disks is close to 256 ****/
1522 qd_idx
= raid6_next_disk(pd_idx
, disks
);
1523 d0_idx
= raid6_next_disk(qd_idx
, disks
);
1525 pr_debug("compute_parity, stripe %llu, method %d\n",
1526 (unsigned long long)sh
->sector
, method
);
1529 case READ_MODIFY_WRITE
:
1530 BUG(); /* READ_MODIFY_WRITE N/A for RAID-6 */
1531 case RECONSTRUCT_WRITE
:
1532 for (i
= disks
; i
-- ;)
1533 if ( i
!= pd_idx
&& i
!= qd_idx
&& sh
->dev
[i
].towrite
) {
1534 chosen
= sh
->dev
[i
].towrite
;
1535 sh
->dev
[i
].towrite
= NULL
;
1537 if (test_and_clear_bit(R5_Overlap
, &sh
->dev
[i
].flags
))
1538 wake_up(&conf
->wait_for_overlap
);
1540 BUG_ON(sh
->dev
[i
].written
);
1541 sh
->dev
[i
].written
= chosen
;
1545 BUG(); /* Not implemented yet */
1548 for (i
= disks
; i
--;)
1549 if (sh
->dev
[i
].written
) {
1550 sector_t sector
= sh
->dev
[i
].sector
;
1551 struct bio
*wbi
= sh
->dev
[i
].written
;
1552 while (wbi
&& wbi
->bi_sector
< sector
+ STRIPE_SECTORS
) {
1553 copy_data(1, wbi
, sh
->dev
[i
].page
, sector
);
1554 wbi
= r5_next_bio(wbi
, sector
);
1557 set_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
1558 set_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
);
1562 // case RECONSTRUCT_WRITE:
1563 // case CHECK_PARITY:
1564 // case UPDATE_PARITY:
1565 /* Note that unlike RAID-5, the ordering of the disks matters greatly. */
1566 /* FIX: Is this ordering of drives even remotely optimal? */
1570 ptrs
[count
++] = page_address(sh
->dev
[i
].page
);
1571 if (count
<= disks
-2 && !test_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
))
1572 printk("block %d/%d not uptodate on parity calc\n", i
,count
);
1573 i
= raid6_next_disk(i
, disks
);
1574 } while ( i
!= d0_idx
);
1578 raid6_call
.gen_syndrome(disks
, STRIPE_SIZE
, ptrs
);
1581 case RECONSTRUCT_WRITE
:
1582 set_bit(R5_UPTODATE
, &sh
->dev
[pd_idx
].flags
);
1583 set_bit(R5_UPTODATE
, &sh
->dev
[qd_idx
].flags
);
1584 set_bit(R5_LOCKED
, &sh
->dev
[pd_idx
].flags
);
1585 set_bit(R5_LOCKED
, &sh
->dev
[qd_idx
].flags
);
1588 set_bit(R5_UPTODATE
, &sh
->dev
[pd_idx
].flags
);
1589 set_bit(R5_UPTODATE
, &sh
->dev
[qd_idx
].flags
);
1595 /* Compute one missing block */
1596 static void compute_block_1(struct stripe_head
*sh
, int dd_idx
, int nozero
)
1598 int i
, count
, disks
= sh
->disks
;
1599 void *ptr
[MAX_XOR_BLOCKS
], *dest
, *p
;
1600 int pd_idx
= sh
->pd_idx
;
1601 int qd_idx
= raid6_next_disk(pd_idx
, disks
);
1603 pr_debug("compute_block_1, stripe %llu, idx %d\n",
1604 (unsigned long long)sh
->sector
, dd_idx
);
1606 if ( dd_idx
== qd_idx
) {
1607 /* We're actually computing the Q drive */
1608 compute_parity6(sh
, UPDATE_PARITY
);
1610 dest
= page_address(sh
->dev
[dd_idx
].page
);
1611 if (!nozero
) memset(dest
, 0, STRIPE_SIZE
);
1613 for (i
= disks
; i
--; ) {
1614 if (i
== dd_idx
|| i
== qd_idx
)
1616 p
= page_address(sh
->dev
[i
].page
);
1617 if (test_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
))
1620 printk("compute_block() %d, stripe %llu, %d"
1621 " not present\n", dd_idx
,
1622 (unsigned long long)sh
->sector
, i
);
1627 xor_blocks(count
, STRIPE_SIZE
, dest
, ptr
);
1628 if (!nozero
) set_bit(R5_UPTODATE
, &sh
->dev
[dd_idx
].flags
);
1629 else clear_bit(R5_UPTODATE
, &sh
->dev
[dd_idx
].flags
);
1633 /* Compute two missing blocks */
1634 static void compute_block_2(struct stripe_head
*sh
, int dd_idx1
, int dd_idx2
)
1636 int i
, count
, disks
= sh
->disks
;
1637 int pd_idx
= sh
->pd_idx
;
1638 int qd_idx
= raid6_next_disk(pd_idx
, disks
);
1639 int d0_idx
= raid6_next_disk(qd_idx
, disks
);
1642 /* faila and failb are disk numbers relative to d0_idx */
1643 /* pd_idx become disks-2 and qd_idx become disks-1 */
1644 faila
= (dd_idx1
< d0_idx
) ? dd_idx1
+(disks
-d0_idx
) : dd_idx1
-d0_idx
;
1645 failb
= (dd_idx2
< d0_idx
) ? dd_idx2
+(disks
-d0_idx
) : dd_idx2
-d0_idx
;
1647 BUG_ON(faila
== failb
);
1648 if ( failb
< faila
) { int tmp
= faila
; faila
= failb
; failb
= tmp
; }
1650 pr_debug("compute_block_2, stripe %llu, idx %d,%d (%d,%d)\n",
1651 (unsigned long long)sh
->sector
, dd_idx1
, dd_idx2
, faila
, failb
);
1653 if ( failb
== disks
-1 ) {
1654 /* Q disk is one of the missing disks */
1655 if ( faila
== disks
-2 ) {
1656 /* Missing P+Q, just recompute */
1657 compute_parity6(sh
, UPDATE_PARITY
);
1660 /* We're missing D+Q; recompute D from P */
1661 compute_block_1(sh
, (dd_idx1
== qd_idx
) ? dd_idx2
: dd_idx1
, 0);
1662 compute_parity6(sh
, UPDATE_PARITY
); /* Is this necessary? */
1667 /* We're missing D+P or D+D; build pointer table */
1669 /**** FIX THIS: This could be very bad if disks is close to 256 ****/
1675 ptrs
[count
++] = page_address(sh
->dev
[i
].page
);
1676 i
= raid6_next_disk(i
, disks
);
1677 if (i
!= dd_idx1
&& i
!= dd_idx2
&&
1678 !test_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
))
1679 printk("compute_2 with missing block %d/%d\n", count
, i
);
1680 } while ( i
!= d0_idx
);
1682 if ( failb
== disks
-2 ) {
1683 /* We're missing D+P. */
1684 raid6_datap_recov(disks
, STRIPE_SIZE
, faila
, ptrs
);
1686 /* We're missing D+D. */
1687 raid6_2data_recov(disks
, STRIPE_SIZE
, faila
, failb
, ptrs
);
1690 /* Both the above update both missing blocks */
1691 set_bit(R5_UPTODATE
, &sh
->dev
[dd_idx1
].flags
);
1692 set_bit(R5_UPTODATE
, &sh
->dev
[dd_idx2
].flags
);
1697 handle_write_operations5(struct stripe_head
*sh
, int rcw
, int expand
)
1699 int i
, pd_idx
= sh
->pd_idx
, disks
= sh
->disks
;
1703 /* if we are not expanding this is a proper write request, and
1704 * there will be bios with new data to be drained into the
1708 set_bit(STRIPE_OP_BIODRAIN
, &sh
->ops
.pending
);
1712 set_bit(STRIPE_OP_POSTXOR
, &sh
->ops
.pending
);
1715 for (i
= disks
; i
--; ) {
1716 struct r5dev
*dev
= &sh
->dev
[i
];
1719 set_bit(R5_LOCKED
, &dev
->flags
);
1721 clear_bit(R5_UPTODATE
, &dev
->flags
);
1725 if (locked
+ 1 == disks
)
1726 if (!test_and_set_bit(STRIPE_FULL_WRITE
, &sh
->state
))
1727 atomic_inc(&sh
->raid_conf
->pending_full_writes
);
1729 BUG_ON(!(test_bit(R5_UPTODATE
, &sh
->dev
[pd_idx
].flags
) ||
1730 test_bit(R5_Wantcompute
, &sh
->dev
[pd_idx
].flags
)));
1732 set_bit(STRIPE_OP_PREXOR
, &sh
->ops
.pending
);
1733 set_bit(STRIPE_OP_BIODRAIN
, &sh
->ops
.pending
);
1734 set_bit(STRIPE_OP_POSTXOR
, &sh
->ops
.pending
);
1738 for (i
= disks
; i
--; ) {
1739 struct r5dev
*dev
= &sh
->dev
[i
];
1743 /* For a read-modify write there may be blocks that are
1744 * locked for reading while others are ready to be
1745 * written so we distinguish these blocks by the
1749 (test_bit(R5_UPTODATE
, &dev
->flags
) ||
1750 test_bit(R5_Wantcompute
, &dev
->flags
))) {
1751 set_bit(R5_Wantprexor
, &dev
->flags
);
1752 set_bit(R5_LOCKED
, &dev
->flags
);
1753 clear_bit(R5_UPTODATE
, &dev
->flags
);
1759 /* keep the parity disk locked while asynchronous operations
1762 set_bit(R5_LOCKED
, &sh
->dev
[pd_idx
].flags
);
1763 clear_bit(R5_UPTODATE
, &sh
->dev
[pd_idx
].flags
);
1766 pr_debug("%s: stripe %llu locked: %d pending: %lx\n",
1767 __func__
, (unsigned long long)sh
->sector
,
1768 locked
, sh
->ops
.pending
);
1774 * Each stripe/dev can have one or more bion attached.
1775 * toread/towrite point to the first in a chain.
1776 * The bi_next chain must be in order.
1778 static int add_stripe_bio(struct stripe_head
*sh
, struct bio
*bi
, int dd_idx
, int forwrite
)
1781 raid5_conf_t
*conf
= sh
->raid_conf
;
1784 pr_debug("adding bh b#%llu to stripe s#%llu\n",
1785 (unsigned long long)bi
->bi_sector
,
1786 (unsigned long long)sh
->sector
);
1789 spin_lock(&sh
->lock
);
1790 spin_lock_irq(&conf
->device_lock
);
1792 bip
= &sh
->dev
[dd_idx
].towrite
;
1793 if (*bip
== NULL
&& sh
->dev
[dd_idx
].written
== NULL
)
1796 bip
= &sh
->dev
[dd_idx
].toread
;
1797 while (*bip
&& (*bip
)->bi_sector
< bi
->bi_sector
) {
1798 if ((*bip
)->bi_sector
+ ((*bip
)->bi_size
>> 9) > bi
->bi_sector
)
1800 bip
= & (*bip
)->bi_next
;
1802 if (*bip
&& (*bip
)->bi_sector
< bi
->bi_sector
+ ((bi
->bi_size
)>>9))
1805 BUG_ON(*bip
&& bi
->bi_next
&& (*bip
) != bi
->bi_next
);
1809 bi
->bi_phys_segments
++;
1810 spin_unlock_irq(&conf
->device_lock
);
1811 spin_unlock(&sh
->lock
);
1813 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
1814 (unsigned long long)bi
->bi_sector
,
1815 (unsigned long long)sh
->sector
, dd_idx
);
1817 if (conf
->mddev
->bitmap
&& firstwrite
) {
1818 bitmap_startwrite(conf
->mddev
->bitmap
, sh
->sector
,
1820 sh
->bm_seq
= conf
->seq_flush
+1;
1821 set_bit(STRIPE_BIT_DELAY
, &sh
->state
);
1825 /* check if page is covered */
1826 sector_t sector
= sh
->dev
[dd_idx
].sector
;
1827 for (bi
=sh
->dev
[dd_idx
].towrite
;
1828 sector
< sh
->dev
[dd_idx
].sector
+ STRIPE_SECTORS
&&
1829 bi
&& bi
->bi_sector
<= sector
;
1830 bi
= r5_next_bio(bi
, sh
->dev
[dd_idx
].sector
)) {
1831 if (bi
->bi_sector
+ (bi
->bi_size
>>9) >= sector
)
1832 sector
= bi
->bi_sector
+ (bi
->bi_size
>>9);
1834 if (sector
>= sh
->dev
[dd_idx
].sector
+ STRIPE_SECTORS
)
1835 set_bit(R5_OVERWRITE
, &sh
->dev
[dd_idx
].flags
);
1840 set_bit(R5_Overlap
, &sh
->dev
[dd_idx
].flags
);
1841 spin_unlock_irq(&conf
->device_lock
);
1842 spin_unlock(&sh
->lock
);
1846 static void end_reshape(raid5_conf_t
*conf
);
1848 static int page_is_zero(struct page
*p
)
1850 char *a
= page_address(p
);
1851 return ((*(u32
*)a
) == 0 &&
1852 memcmp(a
, a
+4, STRIPE_SIZE
-4)==0);
1855 static int stripe_to_pdidx(sector_t stripe
, raid5_conf_t
*conf
, int disks
)
1857 int sectors_per_chunk
= conf
->chunk_size
>> 9;
1859 int chunk_offset
= sector_div(stripe
, sectors_per_chunk
);
1861 raid5_compute_sector(stripe
* (disks
- conf
->max_degraded
)
1862 *sectors_per_chunk
+ chunk_offset
,
1863 disks
, disks
- conf
->max_degraded
,
1864 &dd_idx
, &pd_idx
, conf
);
1869 handle_requests_to_failed_array(raid5_conf_t
*conf
, struct stripe_head
*sh
,
1870 struct stripe_head_state
*s
, int disks
,
1871 struct bio
**return_bi
)
1874 for (i
= disks
; i
--; ) {
1878 if (test_bit(R5_ReadError
, &sh
->dev
[i
].flags
)) {
1881 rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
1882 if (rdev
&& test_bit(In_sync
, &rdev
->flags
))
1883 /* multiple read failures in one stripe */
1884 md_error(conf
->mddev
, rdev
);
1887 spin_lock_irq(&conf
->device_lock
);
1888 /* fail all writes first */
1889 bi
= sh
->dev
[i
].towrite
;
1890 sh
->dev
[i
].towrite
= NULL
;
1896 if (test_and_clear_bit(R5_Overlap
, &sh
->dev
[i
].flags
))
1897 wake_up(&conf
->wait_for_overlap
);
1899 while (bi
&& bi
->bi_sector
<
1900 sh
->dev
[i
].sector
+ STRIPE_SECTORS
) {
1901 struct bio
*nextbi
= r5_next_bio(bi
, sh
->dev
[i
].sector
);
1902 clear_bit(BIO_UPTODATE
, &bi
->bi_flags
);
1903 if (--bi
->bi_phys_segments
== 0) {
1904 md_write_end(conf
->mddev
);
1905 bi
->bi_next
= *return_bi
;
1910 /* and fail all 'written' */
1911 bi
= sh
->dev
[i
].written
;
1912 sh
->dev
[i
].written
= NULL
;
1913 if (bi
) bitmap_end
= 1;
1914 while (bi
&& bi
->bi_sector
<
1915 sh
->dev
[i
].sector
+ STRIPE_SECTORS
) {
1916 struct bio
*bi2
= r5_next_bio(bi
, sh
->dev
[i
].sector
);
1917 clear_bit(BIO_UPTODATE
, &bi
->bi_flags
);
1918 if (--bi
->bi_phys_segments
== 0) {
1919 md_write_end(conf
->mddev
);
1920 bi
->bi_next
= *return_bi
;
1926 /* fail any reads if this device is non-operational and
1927 * the data has not reached the cache yet.
1929 if (!test_bit(R5_Wantfill
, &sh
->dev
[i
].flags
) &&
1930 (!test_bit(R5_Insync
, &sh
->dev
[i
].flags
) ||
1931 test_bit(R5_ReadError
, &sh
->dev
[i
].flags
))) {
1932 bi
= sh
->dev
[i
].toread
;
1933 sh
->dev
[i
].toread
= NULL
;
1934 if (test_and_clear_bit(R5_Overlap
, &sh
->dev
[i
].flags
))
1935 wake_up(&conf
->wait_for_overlap
);
1936 if (bi
) s
->to_read
--;
1937 while (bi
&& bi
->bi_sector
<
1938 sh
->dev
[i
].sector
+ STRIPE_SECTORS
) {
1939 struct bio
*nextbi
=
1940 r5_next_bio(bi
, sh
->dev
[i
].sector
);
1941 clear_bit(BIO_UPTODATE
, &bi
->bi_flags
);
1942 if (--bi
->bi_phys_segments
== 0) {
1943 bi
->bi_next
= *return_bi
;
1949 spin_unlock_irq(&conf
->device_lock
);
1951 bitmap_endwrite(conf
->mddev
->bitmap
, sh
->sector
,
1952 STRIPE_SECTORS
, 0, 0);
1955 if (test_and_clear_bit(STRIPE_FULL_WRITE
, &sh
->state
))
1956 if (atomic_dec_and_test(&conf
->pending_full_writes
))
1957 md_wakeup_thread(conf
->mddev
->thread
);
1960 /* __handle_issuing_new_read_requests5 - returns 0 if there are no more disks
1963 static int __handle_issuing_new_read_requests5(struct stripe_head
*sh
,
1964 struct stripe_head_state
*s
, int disk_idx
, int disks
)
1966 struct r5dev
*dev
= &sh
->dev
[disk_idx
];
1967 struct r5dev
*failed_dev
= &sh
->dev
[s
->failed_num
];
1969 /* don't schedule compute operations or reads on the parity block while
1970 * a check is in flight
1972 if ((disk_idx
== sh
->pd_idx
) &&
1973 test_bit(STRIPE_OP_CHECK
, &sh
->ops
.pending
))
1976 /* is the data in this block needed, and can we get it? */
1977 if (!test_bit(R5_LOCKED
, &dev
->flags
) &&
1978 !test_bit(R5_UPTODATE
, &dev
->flags
) && (dev
->toread
||
1979 (dev
->towrite
&& !test_bit(R5_OVERWRITE
, &dev
->flags
)) ||
1980 s
->syncing
|| s
->expanding
|| (s
->failed
&&
1981 (failed_dev
->toread
|| (failed_dev
->towrite
&&
1982 !test_bit(R5_OVERWRITE
, &failed_dev
->flags
)
1984 /* 1/ We would like to get this block, possibly by computing it,
1985 * but we might not be able to.
1987 * 2/ Since parity check operations potentially make the parity
1988 * block !uptodate it will need to be refreshed before any
1989 * compute operations on data disks are scheduled.
1991 * 3/ We hold off parity block re-reads until check operations
1994 if ((s
->uptodate
== disks
- 1) &&
1995 !test_bit(STRIPE_OP_CHECK
, &sh
->ops
.pending
)) {
1996 set_bit(STRIPE_OP_COMPUTE_BLK
, &sh
->ops
.pending
);
1997 set_bit(R5_Wantcompute
, &dev
->flags
);
1998 sh
->ops
.target
= disk_idx
;
2001 /* Careful: from this point on 'uptodate' is in the eye
2002 * of raid5_run_ops which services 'compute' operations
2003 * before writes. R5_Wantcompute flags a block that will
2004 * be R5_UPTODATE by the time it is needed for a
2005 * subsequent operation.
2008 return 0; /* uptodate + compute == disks */
2009 } else if ((s
->uptodate
< disks
- 1) &&
2010 test_bit(R5_Insync
, &dev
->flags
)) {
2011 /* Note: we hold off compute operations while checks are
2012 * in flight, but we still prefer 'compute' over 'read'
2013 * hence we only read if (uptodate < * disks-1)
2015 set_bit(R5_LOCKED
, &dev
->flags
);
2016 set_bit(R5_Wantread
, &dev
->flags
);
2017 if (!test_and_set_bit(STRIPE_OP_IO
, &sh
->ops
.pending
))
2020 pr_debug("Reading block %d (sync=%d)\n", disk_idx
,
2028 static void handle_issuing_new_read_requests5(struct stripe_head
*sh
,
2029 struct stripe_head_state
*s
, int disks
)
2033 /* Clear completed compute operations. Parity recovery
2034 * (STRIPE_OP_MOD_REPAIR_PD) implies a write-back which is handled
2035 * later on in this routine
2037 if (test_bit(STRIPE_OP_COMPUTE_BLK
, &sh
->ops
.complete
) &&
2038 !test_bit(STRIPE_OP_MOD_REPAIR_PD
, &sh
->ops
.pending
)) {
2039 clear_bit(STRIPE_OP_COMPUTE_BLK
, &sh
->ops
.complete
);
2040 clear_bit(STRIPE_OP_COMPUTE_BLK
, &sh
->ops
.ack
);
2041 clear_bit(STRIPE_OP_COMPUTE_BLK
, &sh
->ops
.pending
);
2044 /* look for blocks to read/compute, skip this if a compute
2045 * is already in flight, or if the stripe contents are in the
2046 * midst of changing due to a write
2048 if (!test_bit(STRIPE_OP_COMPUTE_BLK
, &sh
->ops
.pending
) &&
2049 !test_bit(STRIPE_OP_PREXOR
, &sh
->ops
.pending
) &&
2050 !test_bit(STRIPE_OP_POSTXOR
, &sh
->ops
.pending
)) {
2051 for (i
= disks
; i
--; )
2052 if (__handle_issuing_new_read_requests5(
2053 sh
, s
, i
, disks
) == 0)
2056 set_bit(STRIPE_HANDLE
, &sh
->state
);
2059 static void handle_issuing_new_read_requests6(struct stripe_head
*sh
,
2060 struct stripe_head_state
*s
, struct r6_state
*r6s
,
2064 for (i
= disks
; i
--; ) {
2065 struct r5dev
*dev
= &sh
->dev
[i
];
2066 if (!test_bit(R5_LOCKED
, &dev
->flags
) &&
2067 !test_bit(R5_UPTODATE
, &dev
->flags
) &&
2068 (dev
->toread
|| (dev
->towrite
&&
2069 !test_bit(R5_OVERWRITE
, &dev
->flags
)) ||
2070 s
->syncing
|| s
->expanding
||
2072 (sh
->dev
[r6s
->failed_num
[0]].toread
||
2075 (sh
->dev
[r6s
->failed_num
[1]].toread
||
2077 /* we would like to get this block, possibly
2078 * by computing it, but we might not be able to
2080 if (s
->uptodate
== disks
-1) {
2081 pr_debug("Computing stripe %llu block %d\n",
2082 (unsigned long long)sh
->sector
, i
);
2083 compute_block_1(sh
, i
, 0);
2085 } else if ( s
->uptodate
== disks
-2 && s
->failed
>= 2 ) {
2086 /* Computing 2-failure is *very* expensive; only
2087 * do it if failed >= 2
2090 for (other
= disks
; other
--; ) {
2093 if (!test_bit(R5_UPTODATE
,
2094 &sh
->dev
[other
].flags
))
2098 pr_debug("Computing stripe %llu blocks %d,%d\n",
2099 (unsigned long long)sh
->sector
,
2101 compute_block_2(sh
, i
, other
);
2103 } else if (test_bit(R5_Insync
, &dev
->flags
)) {
2104 set_bit(R5_LOCKED
, &dev
->flags
);
2105 set_bit(R5_Wantread
, &dev
->flags
);
2107 pr_debug("Reading block %d (sync=%d)\n",
2112 set_bit(STRIPE_HANDLE
, &sh
->state
);
2116 /* handle_completed_write_requests
2117 * any written block on an uptodate or failed drive can be returned.
2118 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2119 * never LOCKED, so we don't need to test 'failed' directly.
2121 static void handle_completed_write_requests(raid5_conf_t
*conf
,
2122 struct stripe_head
*sh
, int disks
, struct bio
**return_bi
)
2127 for (i
= disks
; i
--; )
2128 if (sh
->dev
[i
].written
) {
2130 if (!test_bit(R5_LOCKED
, &dev
->flags
) &&
2131 test_bit(R5_UPTODATE
, &dev
->flags
)) {
2132 /* We can return any write requests */
2133 struct bio
*wbi
, *wbi2
;
2135 pr_debug("Return write for disc %d\n", i
);
2136 spin_lock_irq(&conf
->device_lock
);
2138 dev
->written
= NULL
;
2139 while (wbi
&& wbi
->bi_sector
<
2140 dev
->sector
+ STRIPE_SECTORS
) {
2141 wbi2
= r5_next_bio(wbi
, dev
->sector
);
2142 if (--wbi
->bi_phys_segments
== 0) {
2143 md_write_end(conf
->mddev
);
2144 wbi
->bi_next
= *return_bi
;
2149 if (dev
->towrite
== NULL
)
2151 spin_unlock_irq(&conf
->device_lock
);
2153 bitmap_endwrite(conf
->mddev
->bitmap
,
2156 !test_bit(STRIPE_DEGRADED
, &sh
->state
),
2161 if (test_and_clear_bit(STRIPE_FULL_WRITE
, &sh
->state
))
2162 if (atomic_dec_and_test(&conf
->pending_full_writes
))
2163 md_wakeup_thread(conf
->mddev
->thread
);
2166 static void handle_issuing_new_write_requests5(raid5_conf_t
*conf
,
2167 struct stripe_head
*sh
, struct stripe_head_state
*s
, int disks
)
2169 int rmw
= 0, rcw
= 0, i
;
2170 for (i
= disks
; i
--; ) {
2171 /* would I have to read this buffer for read_modify_write */
2172 struct r5dev
*dev
= &sh
->dev
[i
];
2173 if ((dev
->towrite
|| i
== sh
->pd_idx
) &&
2174 !test_bit(R5_LOCKED
, &dev
->flags
) &&
2175 !(test_bit(R5_UPTODATE
, &dev
->flags
) ||
2176 test_bit(R5_Wantcompute
, &dev
->flags
))) {
2177 if (test_bit(R5_Insync
, &dev
->flags
))
2180 rmw
+= 2*disks
; /* cannot read it */
2182 /* Would I have to read this buffer for reconstruct_write */
2183 if (!test_bit(R5_OVERWRITE
, &dev
->flags
) && i
!= sh
->pd_idx
&&
2184 !test_bit(R5_LOCKED
, &dev
->flags
) &&
2185 !(test_bit(R5_UPTODATE
, &dev
->flags
) ||
2186 test_bit(R5_Wantcompute
, &dev
->flags
))) {
2187 if (test_bit(R5_Insync
, &dev
->flags
)) rcw
++;
2192 pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2193 (unsigned long long)sh
->sector
, rmw
, rcw
);
2194 set_bit(STRIPE_HANDLE
, &sh
->state
);
2195 if (rmw
< rcw
&& rmw
> 0)
2196 /* prefer read-modify-write, but need to get some data */
2197 for (i
= disks
; i
--; ) {
2198 struct r5dev
*dev
= &sh
->dev
[i
];
2199 if ((dev
->towrite
|| i
== sh
->pd_idx
) &&
2200 !test_bit(R5_LOCKED
, &dev
->flags
) &&
2201 !(test_bit(R5_UPTODATE
, &dev
->flags
) ||
2202 test_bit(R5_Wantcompute
, &dev
->flags
)) &&
2203 test_bit(R5_Insync
, &dev
->flags
)) {
2205 test_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
)) {
2206 pr_debug("Read_old block "
2207 "%d for r-m-w\n", i
);
2208 set_bit(R5_LOCKED
, &dev
->flags
);
2209 set_bit(R5_Wantread
, &dev
->flags
);
2210 if (!test_and_set_bit(
2211 STRIPE_OP_IO
, &sh
->ops
.pending
))
2215 set_bit(STRIPE_DELAYED
, &sh
->state
);
2216 set_bit(STRIPE_HANDLE
, &sh
->state
);
2220 if (rcw
<= rmw
&& rcw
> 0)
2221 /* want reconstruct write, but need to get some data */
2222 for (i
= disks
; i
--; ) {
2223 struct r5dev
*dev
= &sh
->dev
[i
];
2224 if (!test_bit(R5_OVERWRITE
, &dev
->flags
) &&
2226 !test_bit(R5_LOCKED
, &dev
->flags
) &&
2227 !(test_bit(R5_UPTODATE
, &dev
->flags
) ||
2228 test_bit(R5_Wantcompute
, &dev
->flags
)) &&
2229 test_bit(R5_Insync
, &dev
->flags
)) {
2231 test_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
)) {
2232 pr_debug("Read_old block "
2233 "%d for Reconstruct\n", i
);
2234 set_bit(R5_LOCKED
, &dev
->flags
);
2235 set_bit(R5_Wantread
, &dev
->flags
);
2236 if (!test_and_set_bit(
2237 STRIPE_OP_IO
, &sh
->ops
.pending
))
2241 set_bit(STRIPE_DELAYED
, &sh
->state
);
2242 set_bit(STRIPE_HANDLE
, &sh
->state
);
2246 /* now if nothing is locked, and if we have enough data,
2247 * we can start a write request
2249 /* since handle_stripe can be called at any time we need to handle the
2250 * case where a compute block operation has been submitted and then a
2251 * subsequent call wants to start a write request. raid5_run_ops only
2252 * handles the case where compute block and postxor are requested
2253 * simultaneously. If this is not the case then new writes need to be
2254 * held off until the compute completes.
2256 if ((s
->req_compute
||
2257 !test_bit(STRIPE_OP_COMPUTE_BLK
, &sh
->ops
.pending
)) &&
2258 (s
->locked
== 0 && (rcw
== 0 || rmw
== 0) &&
2259 !test_bit(STRIPE_BIT_DELAY
, &sh
->state
)))
2260 s
->locked
+= handle_write_operations5(sh
, rcw
== 0, 0);
2263 static void handle_issuing_new_write_requests6(raid5_conf_t
*conf
,
2264 struct stripe_head
*sh
, struct stripe_head_state
*s
,
2265 struct r6_state
*r6s
, int disks
)
2267 int rcw
= 0, must_compute
= 0, pd_idx
= sh
->pd_idx
, i
;
2268 int qd_idx
= r6s
->qd_idx
;
2269 for (i
= disks
; i
--; ) {
2270 struct r5dev
*dev
= &sh
->dev
[i
];
2271 /* Would I have to read this buffer for reconstruct_write */
2272 if (!test_bit(R5_OVERWRITE
, &dev
->flags
)
2273 && i
!= pd_idx
&& i
!= qd_idx
2274 && (!test_bit(R5_LOCKED
, &dev
->flags
)
2276 !test_bit(R5_UPTODATE
, &dev
->flags
)) {
2277 if (test_bit(R5_Insync
, &dev
->flags
)) rcw
++;
2279 pr_debug("raid6: must_compute: "
2280 "disk %d flags=%#lx\n", i
, dev
->flags
);
2285 pr_debug("for sector %llu, rcw=%d, must_compute=%d\n",
2286 (unsigned long long)sh
->sector
, rcw
, must_compute
);
2287 set_bit(STRIPE_HANDLE
, &sh
->state
);
2290 /* want reconstruct write, but need to get some data */
2291 for (i
= disks
; i
--; ) {
2292 struct r5dev
*dev
= &sh
->dev
[i
];
2293 if (!test_bit(R5_OVERWRITE
, &dev
->flags
)
2294 && !(s
->failed
== 0 && (i
== pd_idx
|| i
== qd_idx
))
2295 && !test_bit(R5_LOCKED
, &dev
->flags
) &&
2296 !test_bit(R5_UPTODATE
, &dev
->flags
) &&
2297 test_bit(R5_Insync
, &dev
->flags
)) {
2299 test_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
)) {
2300 pr_debug("Read_old stripe %llu "
2301 "block %d for Reconstruct\n",
2302 (unsigned long long)sh
->sector
, i
);
2303 set_bit(R5_LOCKED
, &dev
->flags
);
2304 set_bit(R5_Wantread
, &dev
->flags
);
2307 pr_debug("Request delayed stripe %llu "
2308 "block %d for Reconstruct\n",
2309 (unsigned long long)sh
->sector
, i
);
2310 set_bit(STRIPE_DELAYED
, &sh
->state
);
2311 set_bit(STRIPE_HANDLE
, &sh
->state
);
2315 /* now if nothing is locked, and if we have enough data, we can start a
2318 if (s
->locked
== 0 && rcw
== 0 &&
2319 !test_bit(STRIPE_BIT_DELAY
, &sh
->state
)) {
2320 if (must_compute
> 0) {
2321 /* We have failed blocks and need to compute them */
2322 switch (s
->failed
) {
2326 compute_block_1(sh
, r6s
->failed_num
[0], 0);
2329 compute_block_2(sh
, r6s
->failed_num
[0],
2330 r6s
->failed_num
[1]);
2332 default: /* This request should have been failed? */
2337 pr_debug("Computing parity for stripe %llu\n",
2338 (unsigned long long)sh
->sector
);
2339 compute_parity6(sh
, RECONSTRUCT_WRITE
);
2340 /* now every locked buffer is ready to be written */
2341 for (i
= disks
; i
--; )
2342 if (test_bit(R5_LOCKED
, &sh
->dev
[i
].flags
)) {
2343 pr_debug("Writing stripe %llu block %d\n",
2344 (unsigned long long)sh
->sector
, i
);
2346 set_bit(R5_Wantwrite
, &sh
->dev
[i
].flags
);
2348 if (s
->locked
== disks
)
2349 if (!test_and_set_bit(STRIPE_FULL_WRITE
, &sh
->state
))
2350 atomic_inc(&conf
->pending_full_writes
);
2351 /* after a RECONSTRUCT_WRITE, the stripe MUST be in-sync */
2352 set_bit(STRIPE_INSYNC
, &sh
->state
);
2354 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
)) {
2355 atomic_dec(&conf
->preread_active_stripes
);
2356 if (atomic_read(&conf
->preread_active_stripes
) <
2358 md_wakeup_thread(conf
->mddev
->thread
);
2363 static void handle_parity_checks5(raid5_conf_t
*conf
, struct stripe_head
*sh
,
2364 struct stripe_head_state
*s
, int disks
)
2366 int canceled_check
= 0;
2368 set_bit(STRIPE_HANDLE
, &sh
->state
);
2370 /* complete a check operation */
2371 if (test_and_clear_bit(STRIPE_OP_CHECK
, &sh
->ops
.complete
)) {
2372 clear_bit(STRIPE_OP_CHECK
, &sh
->ops
.ack
);
2373 clear_bit(STRIPE_OP_CHECK
, &sh
->ops
.pending
);
2374 if (s
->failed
== 0) {
2375 if (sh
->ops
.zero_sum_result
== 0)
2376 /* parity is correct (on disc,
2377 * not in buffer any more)
2379 set_bit(STRIPE_INSYNC
, &sh
->state
);
2381 conf
->mddev
->resync_mismatches
+=
2384 MD_RECOVERY_CHECK
, &conf
->mddev
->recovery
))
2385 /* don't try to repair!! */
2386 set_bit(STRIPE_INSYNC
, &sh
->state
);
2388 set_bit(STRIPE_OP_COMPUTE_BLK
,
2390 set_bit(STRIPE_OP_MOD_REPAIR_PD
,
2392 set_bit(R5_Wantcompute
,
2393 &sh
->dev
[sh
->pd_idx
].flags
);
2394 sh
->ops
.target
= sh
->pd_idx
;
2400 canceled_check
= 1; /* STRIPE_INSYNC is not set */
2403 /* check if we can clear a parity disk reconstruct */
2404 if (test_bit(STRIPE_OP_COMPUTE_BLK
, &sh
->ops
.complete
) &&
2405 test_bit(STRIPE_OP_MOD_REPAIR_PD
, &sh
->ops
.pending
)) {
2407 clear_bit(STRIPE_OP_MOD_REPAIR_PD
, &sh
->ops
.pending
);
2408 clear_bit(STRIPE_OP_COMPUTE_BLK
, &sh
->ops
.complete
);
2409 clear_bit(STRIPE_OP_COMPUTE_BLK
, &sh
->ops
.ack
);
2410 clear_bit(STRIPE_OP_COMPUTE_BLK
, &sh
->ops
.pending
);
2413 /* start a new check operation if there are no failures, the stripe is
2414 * not insync, and a repair is not in flight
2416 if (s
->failed
== 0 &&
2417 !test_bit(STRIPE_INSYNC
, &sh
->state
) &&
2418 !test_bit(STRIPE_OP_MOD_REPAIR_PD
, &sh
->ops
.pending
)) {
2419 if (!test_and_set_bit(STRIPE_OP_CHECK
, &sh
->ops
.pending
)) {
2420 BUG_ON(s
->uptodate
!= disks
);
2421 clear_bit(R5_UPTODATE
, &sh
->dev
[sh
->pd_idx
].flags
);
2427 /* Wait for check parity and compute block operations to complete
2428 * before write-back. If a failure occurred while the check operation
2429 * was in flight we need to cycle this stripe through handle_stripe
2430 * since the parity block may not be uptodate
2432 if (!canceled_check
&& !test_bit(STRIPE_INSYNC
, &sh
->state
) &&
2433 !test_bit(STRIPE_OP_CHECK
, &sh
->ops
.pending
) &&
2434 !test_bit(STRIPE_OP_COMPUTE_BLK
, &sh
->ops
.pending
)) {
2436 /* either failed parity check, or recovery is happening */
2438 s
->failed_num
= sh
->pd_idx
;
2439 dev
= &sh
->dev
[s
->failed_num
];
2440 BUG_ON(!test_bit(R5_UPTODATE
, &dev
->flags
));
2441 BUG_ON(s
->uptodate
!= disks
);
2443 set_bit(R5_LOCKED
, &dev
->flags
);
2444 set_bit(R5_Wantwrite
, &dev
->flags
);
2445 if (!test_and_set_bit(STRIPE_OP_IO
, &sh
->ops
.pending
))
2448 clear_bit(STRIPE_DEGRADED
, &sh
->state
);
2450 set_bit(STRIPE_INSYNC
, &sh
->state
);
2455 static void handle_parity_checks6(raid5_conf_t
*conf
, struct stripe_head
*sh
,
2456 struct stripe_head_state
*s
,
2457 struct r6_state
*r6s
, struct page
*tmp_page
,
2460 int update_p
= 0, update_q
= 0;
2462 int pd_idx
= sh
->pd_idx
;
2463 int qd_idx
= r6s
->qd_idx
;
2465 set_bit(STRIPE_HANDLE
, &sh
->state
);
2467 BUG_ON(s
->failed
> 2);
2468 BUG_ON(s
->uptodate
< disks
);
2469 /* Want to check and possibly repair P and Q.
2470 * However there could be one 'failed' device, in which
2471 * case we can only check one of them, possibly using the
2472 * other to generate missing data
2475 /* If !tmp_page, we cannot do the calculations,
2476 * but as we have set STRIPE_HANDLE, we will soon be called
2477 * by stripe_handle with a tmp_page - just wait until then.
2480 if (s
->failed
== r6s
->q_failed
) {
2481 /* The only possible failed device holds 'Q', so it
2482 * makes sense to check P (If anything else were failed,
2483 * we would have used P to recreate it).
2485 compute_block_1(sh
, pd_idx
, 1);
2486 if (!page_is_zero(sh
->dev
[pd_idx
].page
)) {
2487 compute_block_1(sh
, pd_idx
, 0);
2491 if (!r6s
->q_failed
&& s
->failed
< 2) {
2492 /* q is not failed, and we didn't use it to generate
2493 * anything, so it makes sense to check it
2495 memcpy(page_address(tmp_page
),
2496 page_address(sh
->dev
[qd_idx
].page
),
2498 compute_parity6(sh
, UPDATE_PARITY
);
2499 if (memcmp(page_address(tmp_page
),
2500 page_address(sh
->dev
[qd_idx
].page
),
2501 STRIPE_SIZE
) != 0) {
2502 clear_bit(STRIPE_INSYNC
, &sh
->state
);
2506 if (update_p
|| update_q
) {
2507 conf
->mddev
->resync_mismatches
+= STRIPE_SECTORS
;
2508 if (test_bit(MD_RECOVERY_CHECK
, &conf
->mddev
->recovery
))
2509 /* don't try to repair!! */
2510 update_p
= update_q
= 0;
2513 /* now write out any block on a failed drive,
2514 * or P or Q if they need it
2517 if (s
->failed
== 2) {
2518 dev
= &sh
->dev
[r6s
->failed_num
[1]];
2520 set_bit(R5_LOCKED
, &dev
->flags
);
2521 set_bit(R5_Wantwrite
, &dev
->flags
);
2523 if (s
->failed
>= 1) {
2524 dev
= &sh
->dev
[r6s
->failed_num
[0]];
2526 set_bit(R5_LOCKED
, &dev
->flags
);
2527 set_bit(R5_Wantwrite
, &dev
->flags
);
2531 dev
= &sh
->dev
[pd_idx
];
2533 set_bit(R5_LOCKED
, &dev
->flags
);
2534 set_bit(R5_Wantwrite
, &dev
->flags
);
2537 dev
= &sh
->dev
[qd_idx
];
2539 set_bit(R5_LOCKED
, &dev
->flags
);
2540 set_bit(R5_Wantwrite
, &dev
->flags
);
2542 clear_bit(STRIPE_DEGRADED
, &sh
->state
);
2544 set_bit(STRIPE_INSYNC
, &sh
->state
);
2548 static void handle_stripe_expansion(raid5_conf_t
*conf
, struct stripe_head
*sh
,
2549 struct r6_state
*r6s
)
2553 /* We have read all the blocks in this stripe and now we need to
2554 * copy some of them into a target stripe for expand.
2556 struct dma_async_tx_descriptor
*tx
= NULL
;
2557 clear_bit(STRIPE_EXPAND_SOURCE
, &sh
->state
);
2558 for (i
= 0; i
< sh
->disks
; i
++)
2559 if (i
!= sh
->pd_idx
&& (!r6s
|| i
!= r6s
->qd_idx
)) {
2560 int dd_idx
, pd_idx
, j
;
2561 struct stripe_head
*sh2
;
2563 sector_t bn
= compute_blocknr(sh
, i
);
2564 sector_t s
= raid5_compute_sector(bn
, conf
->raid_disks
,
2566 conf
->max_degraded
, &dd_idx
,
2568 sh2
= get_active_stripe(conf
, s
, conf
->raid_disks
,
2571 /* so far only the early blocks of this stripe
2572 * have been requested. When later blocks
2573 * get requested, we will try again
2576 if (!test_bit(STRIPE_EXPANDING
, &sh2
->state
) ||
2577 test_bit(R5_Expanded
, &sh2
->dev
[dd_idx
].flags
)) {
2578 /* must have already done this block */
2579 release_stripe(sh2
);
2583 /* place all the copies on one channel */
2584 tx
= async_memcpy(sh2
->dev
[dd_idx
].page
,
2585 sh
->dev
[i
].page
, 0, 0, STRIPE_SIZE
,
2586 ASYNC_TX_DEP_ACK
, tx
, NULL
, NULL
);
2588 set_bit(R5_Expanded
, &sh2
->dev
[dd_idx
].flags
);
2589 set_bit(R5_UPTODATE
, &sh2
->dev
[dd_idx
].flags
);
2590 for (j
= 0; j
< conf
->raid_disks
; j
++)
2591 if (j
!= sh2
->pd_idx
&&
2592 (!r6s
|| j
!= raid6_next_disk(sh2
->pd_idx
,
2594 !test_bit(R5_Expanded
, &sh2
->dev
[j
].flags
))
2596 if (j
== conf
->raid_disks
) {
2597 set_bit(STRIPE_EXPAND_READY
, &sh2
->state
);
2598 set_bit(STRIPE_HANDLE
, &sh2
->state
);
2600 release_stripe(sh2
);
2603 /* done submitting copies, wait for them to complete */
2606 dma_wait_for_async_tx(tx
);
2612 * handle_stripe - do things to a stripe.
2614 * We lock the stripe and then examine the state of various bits
2615 * to see what needs to be done.
2617 * return some read request which now have data
2618 * return some write requests which are safely on disc
2619 * schedule a read on some buffers
2620 * schedule a write of some buffers
2621 * return confirmation of parity correctness
2623 * buffers are taken off read_list or write_list, and bh_cache buffers
2624 * get BH_Lock set before the stripe lock is released.
2628 static void handle_stripe5(struct stripe_head
*sh
)
2630 raid5_conf_t
*conf
= sh
->raid_conf
;
2631 int disks
= sh
->disks
, i
;
2632 struct bio
*return_bi
= NULL
;
2633 struct stripe_head_state s
;
2635 unsigned long pending
= 0;
2636 mdk_rdev_t
*blocked_rdev
= NULL
;
2638 memset(&s
, 0, sizeof(s
));
2639 pr_debug("handling stripe %llu, state=%#lx cnt=%d, pd_idx=%d "
2640 "ops=%lx:%lx:%lx\n", (unsigned long long)sh
->sector
, sh
->state
,
2641 atomic_read(&sh
->count
), sh
->pd_idx
,
2642 sh
->ops
.pending
, sh
->ops
.ack
, sh
->ops
.complete
);
2644 spin_lock(&sh
->lock
);
2645 clear_bit(STRIPE_HANDLE
, &sh
->state
);
2646 clear_bit(STRIPE_DELAYED
, &sh
->state
);
2648 s
.syncing
= test_bit(STRIPE_SYNCING
, &sh
->state
);
2649 s
.expanding
= test_bit(STRIPE_EXPAND_SOURCE
, &sh
->state
);
2650 s
.expanded
= test_bit(STRIPE_EXPAND_READY
, &sh
->state
);
2651 /* Now to look around and see what can be done */
2653 /* clean-up completed biofill operations */
2654 if (test_bit(STRIPE_OP_BIOFILL
, &sh
->ops
.complete
)) {
2655 clear_bit(STRIPE_OP_BIOFILL
, &sh
->ops
.pending
);
2656 clear_bit(STRIPE_OP_BIOFILL
, &sh
->ops
.ack
);
2657 clear_bit(STRIPE_OP_BIOFILL
, &sh
->ops
.complete
);
2661 for (i
=disks
; i
--; ) {
2663 struct r5dev
*dev
= &sh
->dev
[i
];
2664 clear_bit(R5_Insync
, &dev
->flags
);
2666 pr_debug("check %d: state 0x%lx toread %p read %p write %p "
2667 "written %p\n", i
, dev
->flags
, dev
->toread
, dev
->read
,
2668 dev
->towrite
, dev
->written
);
2670 /* maybe we can request a biofill operation
2672 * new wantfill requests are only permitted while
2673 * STRIPE_OP_BIOFILL is clear
2675 if (test_bit(R5_UPTODATE
, &dev
->flags
) && dev
->toread
&&
2676 !test_bit(STRIPE_OP_BIOFILL
, &sh
->ops
.pending
))
2677 set_bit(R5_Wantfill
, &dev
->flags
);
2679 /* now count some things */
2680 if (test_bit(R5_LOCKED
, &dev
->flags
)) s
.locked
++;
2681 if (test_bit(R5_UPTODATE
, &dev
->flags
)) s
.uptodate
++;
2682 if (test_bit(R5_Wantcompute
, &dev
->flags
)) s
.compute
++;
2684 if (test_bit(R5_Wantfill
, &dev
->flags
))
2686 else if (dev
->toread
)
2690 if (!test_bit(R5_OVERWRITE
, &dev
->flags
))
2695 rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
2696 if (rdev
&& unlikely(test_bit(Blocked
, &rdev
->flags
))) {
2697 blocked_rdev
= rdev
;
2698 atomic_inc(&rdev
->nr_pending
);
2701 if (!rdev
|| !test_bit(In_sync
, &rdev
->flags
)) {
2702 /* The ReadError flag will just be confusing now */
2703 clear_bit(R5_ReadError
, &dev
->flags
);
2704 clear_bit(R5_ReWrite
, &dev
->flags
);
2706 if (!rdev
|| !test_bit(In_sync
, &rdev
->flags
)
2707 || test_bit(R5_ReadError
, &dev
->flags
)) {
2711 set_bit(R5_Insync
, &dev
->flags
);
2715 if (unlikely(blocked_rdev
)) {
2716 set_bit(STRIPE_HANDLE
, &sh
->state
);
2720 if (s
.to_fill
&& !test_and_set_bit(STRIPE_OP_BIOFILL
, &sh
->ops
.pending
))
2723 pr_debug("locked=%d uptodate=%d to_read=%d"
2724 " to_write=%d failed=%d failed_num=%d\n",
2725 s
.locked
, s
.uptodate
, s
.to_read
, s
.to_write
,
2726 s
.failed
, s
.failed_num
);
2727 /* check if the array has lost two devices and, if so, some requests might
2730 if (s
.failed
> 1 && s
.to_read
+s
.to_write
+s
.written
)
2731 handle_requests_to_failed_array(conf
, sh
, &s
, disks
,
2733 if (s
.failed
> 1 && s
.syncing
) {
2734 md_done_sync(conf
->mddev
, STRIPE_SECTORS
,0);
2735 clear_bit(STRIPE_SYNCING
, &sh
->state
);
2739 /* might be able to return some write requests if the parity block
2740 * is safe, or on a failed drive
2742 dev
= &sh
->dev
[sh
->pd_idx
];
2744 ((test_bit(R5_Insync
, &dev
->flags
) &&
2745 !test_bit(R5_LOCKED
, &dev
->flags
) &&
2746 test_bit(R5_UPTODATE
, &dev
->flags
)) ||
2747 (s
.failed
== 1 && s
.failed_num
== sh
->pd_idx
)))
2748 handle_completed_write_requests(conf
, sh
, disks
, &return_bi
);
2750 /* Now we might consider reading some blocks, either to check/generate
2751 * parity, or to satisfy requests
2752 * or to load a block that is being partially written.
2754 if (s
.to_read
|| s
.non_overwrite
||
2755 (s
.syncing
&& (s
.uptodate
+ s
.compute
< disks
)) || s
.expanding
||
2756 test_bit(STRIPE_OP_COMPUTE_BLK
, &sh
->ops
.pending
))
2757 handle_issuing_new_read_requests5(sh
, &s
, disks
);
2759 /* Now we check to see if any write operations have recently
2763 /* leave prexor set until postxor is done, allows us to distinguish
2764 * a rmw from a rcw during biodrain
2766 if (test_bit(STRIPE_OP_PREXOR
, &sh
->ops
.complete
) &&
2767 test_bit(STRIPE_OP_POSTXOR
, &sh
->ops
.complete
)) {
2769 clear_bit(STRIPE_OP_PREXOR
, &sh
->ops
.complete
);
2770 clear_bit(STRIPE_OP_PREXOR
, &sh
->ops
.ack
);
2771 clear_bit(STRIPE_OP_PREXOR
, &sh
->ops
.pending
);
2773 for (i
= disks
; i
--; )
2774 clear_bit(R5_Wantprexor
, &sh
->dev
[i
].flags
);
2777 /* if only POSTXOR is set then this is an 'expand' postxor */
2778 if (test_bit(STRIPE_OP_BIODRAIN
, &sh
->ops
.complete
) &&
2779 test_bit(STRIPE_OP_POSTXOR
, &sh
->ops
.complete
)) {
2781 clear_bit(STRIPE_OP_BIODRAIN
, &sh
->ops
.complete
);
2782 clear_bit(STRIPE_OP_BIODRAIN
, &sh
->ops
.ack
);
2783 clear_bit(STRIPE_OP_BIODRAIN
, &sh
->ops
.pending
);
2785 clear_bit(STRIPE_OP_POSTXOR
, &sh
->ops
.complete
);
2786 clear_bit(STRIPE_OP_POSTXOR
, &sh
->ops
.ack
);
2787 clear_bit(STRIPE_OP_POSTXOR
, &sh
->ops
.pending
);
2789 /* All the 'written' buffers and the parity block are ready to
2790 * be written back to disk
2792 BUG_ON(!test_bit(R5_UPTODATE
, &sh
->dev
[sh
->pd_idx
].flags
));
2793 for (i
= disks
; i
--; ) {
2795 if (test_bit(R5_LOCKED
, &dev
->flags
) &&
2796 (i
== sh
->pd_idx
|| dev
->written
)) {
2797 pr_debug("Writing block %d\n", i
);
2798 set_bit(R5_Wantwrite
, &dev
->flags
);
2799 if (!test_and_set_bit(
2800 STRIPE_OP_IO
, &sh
->ops
.pending
))
2802 if (!test_bit(R5_Insync
, &dev
->flags
) ||
2803 (i
== sh
->pd_idx
&& s
.failed
== 0))
2804 set_bit(STRIPE_INSYNC
, &sh
->state
);
2807 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
)) {
2808 atomic_dec(&conf
->preread_active_stripes
);
2809 if (atomic_read(&conf
->preread_active_stripes
) <
2811 md_wakeup_thread(conf
->mddev
->thread
);
2815 /* Now to consider new write requests and what else, if anything
2816 * should be read. We do not handle new writes when:
2817 * 1/ A 'write' operation (copy+xor) is already in flight.
2818 * 2/ A 'check' operation is in flight, as it may clobber the parity
2821 if (s
.to_write
&& !test_bit(STRIPE_OP_POSTXOR
, &sh
->ops
.pending
) &&
2822 !test_bit(STRIPE_OP_CHECK
, &sh
->ops
.pending
))
2823 handle_issuing_new_write_requests5(conf
, sh
, &s
, disks
);
2825 /* maybe we need to check and possibly fix the parity for this stripe
2826 * Any reads will already have been scheduled, so we just see if enough
2827 * data is available. The parity check is held off while parity
2828 * dependent operations are in flight.
2830 if ((s
.syncing
&& s
.locked
== 0 &&
2831 !test_bit(STRIPE_OP_COMPUTE_BLK
, &sh
->ops
.pending
) &&
2832 !test_bit(STRIPE_INSYNC
, &sh
->state
)) ||
2833 test_bit(STRIPE_OP_CHECK
, &sh
->ops
.pending
) ||
2834 test_bit(STRIPE_OP_MOD_REPAIR_PD
, &sh
->ops
.pending
))
2835 handle_parity_checks5(conf
, sh
, &s
, disks
);
2837 if (s
.syncing
&& s
.locked
== 0 && test_bit(STRIPE_INSYNC
, &sh
->state
)) {
2838 md_done_sync(conf
->mddev
, STRIPE_SECTORS
,1);
2839 clear_bit(STRIPE_SYNCING
, &sh
->state
);
2842 /* If the failed drive is just a ReadError, then we might need to progress
2843 * the repair/check process
2845 if (s
.failed
== 1 && !conf
->mddev
->ro
&&
2846 test_bit(R5_ReadError
, &sh
->dev
[s
.failed_num
].flags
)
2847 && !test_bit(R5_LOCKED
, &sh
->dev
[s
.failed_num
].flags
)
2848 && test_bit(R5_UPTODATE
, &sh
->dev
[s
.failed_num
].flags
)
2850 dev
= &sh
->dev
[s
.failed_num
];
2851 if (!test_bit(R5_ReWrite
, &dev
->flags
)) {
2852 set_bit(R5_Wantwrite
, &dev
->flags
);
2853 if (!test_and_set_bit(STRIPE_OP_IO
, &sh
->ops
.pending
))
2855 set_bit(R5_ReWrite
, &dev
->flags
);
2856 set_bit(R5_LOCKED
, &dev
->flags
);
2859 /* let's read it back */
2860 set_bit(R5_Wantread
, &dev
->flags
);
2861 if (!test_and_set_bit(STRIPE_OP_IO
, &sh
->ops
.pending
))
2863 set_bit(R5_LOCKED
, &dev
->flags
);
2868 /* Finish postxor operations initiated by the expansion
2871 if (test_bit(STRIPE_OP_POSTXOR
, &sh
->ops
.complete
) &&
2872 !test_bit(STRIPE_OP_BIODRAIN
, &sh
->ops
.pending
)) {
2874 clear_bit(STRIPE_EXPANDING
, &sh
->state
);
2876 clear_bit(STRIPE_OP_POSTXOR
, &sh
->ops
.pending
);
2877 clear_bit(STRIPE_OP_POSTXOR
, &sh
->ops
.ack
);
2878 clear_bit(STRIPE_OP_POSTXOR
, &sh
->ops
.complete
);
2880 for (i
= conf
->raid_disks
; i
--; ) {
2881 set_bit(R5_Wantwrite
, &sh
->dev
[i
].flags
);
2882 if (!test_and_set_bit(STRIPE_OP_IO
, &sh
->ops
.pending
))
2887 if (s
.expanded
&& test_bit(STRIPE_EXPANDING
, &sh
->state
) &&
2888 !test_bit(STRIPE_OP_POSTXOR
, &sh
->ops
.pending
)) {
2889 /* Need to write out all blocks after computing parity */
2890 sh
->disks
= conf
->raid_disks
;
2891 sh
->pd_idx
= stripe_to_pdidx(sh
->sector
, conf
,
2893 s
.locked
+= handle_write_operations5(sh
, 1, 1);
2894 } else if (s
.expanded
&&
2895 !test_bit(STRIPE_OP_POSTXOR
, &sh
->ops
.pending
)) {
2896 clear_bit(STRIPE_EXPAND_READY
, &sh
->state
);
2897 atomic_dec(&conf
->reshape_stripes
);
2898 wake_up(&conf
->wait_for_overlap
);
2899 md_done_sync(conf
->mddev
, STRIPE_SECTORS
, 1);
2902 if (s
.expanding
&& s
.locked
== 0 &&
2903 !test_bit(STRIPE_OP_COMPUTE_BLK
, &sh
->ops
.pending
))
2904 handle_stripe_expansion(conf
, sh
, NULL
);
2907 pending
= get_stripe_work(sh
);
2910 spin_unlock(&sh
->lock
);
2912 /* wait for this device to become unblocked */
2913 if (unlikely(blocked_rdev
))
2914 md_wait_for_blocked_rdev(blocked_rdev
, conf
->mddev
);
2917 raid5_run_ops(sh
, pending
);
2919 return_io(return_bi
);
2923 static void handle_stripe6(struct stripe_head
*sh
, struct page
*tmp_page
)
2925 raid6_conf_t
*conf
= sh
->raid_conf
;
2926 int disks
= sh
->disks
;
2927 struct bio
*return_bi
= NULL
;
2928 int i
, pd_idx
= sh
->pd_idx
;
2929 struct stripe_head_state s
;
2930 struct r6_state r6s
;
2931 struct r5dev
*dev
, *pdev
, *qdev
;
2932 mdk_rdev_t
*blocked_rdev
= NULL
;
2934 r6s
.qd_idx
= raid6_next_disk(pd_idx
, disks
);
2935 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
2936 "pd_idx=%d, qd_idx=%d\n",
2937 (unsigned long long)sh
->sector
, sh
->state
,
2938 atomic_read(&sh
->count
), pd_idx
, r6s
.qd_idx
);
2939 memset(&s
, 0, sizeof(s
));
2941 spin_lock(&sh
->lock
);
2942 clear_bit(STRIPE_HANDLE
, &sh
->state
);
2943 clear_bit(STRIPE_DELAYED
, &sh
->state
);
2945 s
.syncing
= test_bit(STRIPE_SYNCING
, &sh
->state
);
2946 s
.expanding
= test_bit(STRIPE_EXPAND_SOURCE
, &sh
->state
);
2947 s
.expanded
= test_bit(STRIPE_EXPAND_READY
, &sh
->state
);
2948 /* Now to look around and see what can be done */
2951 for (i
=disks
; i
--; ) {
2954 clear_bit(R5_Insync
, &dev
->flags
);
2956 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
2957 i
, dev
->flags
, dev
->toread
, dev
->towrite
, dev
->written
);
2958 /* maybe we can reply to a read */
2959 if (test_bit(R5_UPTODATE
, &dev
->flags
) && dev
->toread
) {
2960 struct bio
*rbi
, *rbi2
;
2961 pr_debug("Return read for disc %d\n", i
);
2962 spin_lock_irq(&conf
->device_lock
);
2965 if (test_and_clear_bit(R5_Overlap
, &dev
->flags
))
2966 wake_up(&conf
->wait_for_overlap
);
2967 spin_unlock_irq(&conf
->device_lock
);
2968 while (rbi
&& rbi
->bi_sector
< dev
->sector
+ STRIPE_SECTORS
) {
2969 copy_data(0, rbi
, dev
->page
, dev
->sector
);
2970 rbi2
= r5_next_bio(rbi
, dev
->sector
);
2971 spin_lock_irq(&conf
->device_lock
);
2972 if (--rbi
->bi_phys_segments
== 0) {
2973 rbi
->bi_next
= return_bi
;
2976 spin_unlock_irq(&conf
->device_lock
);
2981 /* now count some things */
2982 if (test_bit(R5_LOCKED
, &dev
->flags
)) s
.locked
++;
2983 if (test_bit(R5_UPTODATE
, &dev
->flags
)) s
.uptodate
++;
2990 if (!test_bit(R5_OVERWRITE
, &dev
->flags
))
2995 rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
2996 if (rdev
&& unlikely(test_bit(Blocked
, &rdev
->flags
))) {
2997 blocked_rdev
= rdev
;
2998 atomic_inc(&rdev
->nr_pending
);
3001 if (!rdev
|| !test_bit(In_sync
, &rdev
->flags
)) {
3002 /* The ReadError flag will just be confusing now */
3003 clear_bit(R5_ReadError
, &dev
->flags
);
3004 clear_bit(R5_ReWrite
, &dev
->flags
);
3006 if (!rdev
|| !test_bit(In_sync
, &rdev
->flags
)
3007 || test_bit(R5_ReadError
, &dev
->flags
)) {
3009 r6s
.failed_num
[s
.failed
] = i
;
3012 set_bit(R5_Insync
, &dev
->flags
);
3016 if (unlikely(blocked_rdev
)) {
3017 set_bit(STRIPE_HANDLE
, &sh
->state
);
3020 pr_debug("locked=%d uptodate=%d to_read=%d"
3021 " to_write=%d failed=%d failed_num=%d,%d\n",
3022 s
.locked
, s
.uptodate
, s
.to_read
, s
.to_write
, s
.failed
,
3023 r6s
.failed_num
[0], r6s
.failed_num
[1]);
3024 /* check if the array has lost >2 devices and, if so, some requests
3025 * might need to be failed
3027 if (s
.failed
> 2 && s
.to_read
+s
.to_write
+s
.written
)
3028 handle_requests_to_failed_array(conf
, sh
, &s
, disks
,
3030 if (s
.failed
> 2 && s
.syncing
) {
3031 md_done_sync(conf
->mddev
, STRIPE_SECTORS
,0);
3032 clear_bit(STRIPE_SYNCING
, &sh
->state
);
3037 * might be able to return some write requests if the parity blocks
3038 * are safe, or on a failed drive
3040 pdev
= &sh
->dev
[pd_idx
];
3041 r6s
.p_failed
= (s
.failed
>= 1 && r6s
.failed_num
[0] == pd_idx
)
3042 || (s
.failed
>= 2 && r6s
.failed_num
[1] == pd_idx
);
3043 qdev
= &sh
->dev
[r6s
.qd_idx
];
3044 r6s
.q_failed
= (s
.failed
>= 1 && r6s
.failed_num
[0] == r6s
.qd_idx
)
3045 || (s
.failed
>= 2 && r6s
.failed_num
[1] == r6s
.qd_idx
);
3048 ( r6s
.p_failed
|| ((test_bit(R5_Insync
, &pdev
->flags
)
3049 && !test_bit(R5_LOCKED
, &pdev
->flags
)
3050 && test_bit(R5_UPTODATE
, &pdev
->flags
)))) &&
3051 ( r6s
.q_failed
|| ((test_bit(R5_Insync
, &qdev
->flags
)
3052 && !test_bit(R5_LOCKED
, &qdev
->flags
)
3053 && test_bit(R5_UPTODATE
, &qdev
->flags
)))))
3054 handle_completed_write_requests(conf
, sh
, disks
, &return_bi
);
3056 /* Now we might consider reading some blocks, either to check/generate
3057 * parity, or to satisfy requests
3058 * or to load a block that is being partially written.
3060 if (s
.to_read
|| s
.non_overwrite
|| (s
.to_write
&& s
.failed
) ||
3061 (s
.syncing
&& (s
.uptodate
< disks
)) || s
.expanding
)
3062 handle_issuing_new_read_requests6(sh
, &s
, &r6s
, disks
);
3064 /* now to consider writing and what else, if anything should be read */
3066 handle_issuing_new_write_requests6(conf
, sh
, &s
, &r6s
, disks
);
3068 /* maybe we need to check and possibly fix the parity for this stripe
3069 * Any reads will already have been scheduled, so we just see if enough
3072 if (s
.syncing
&& s
.locked
== 0 && !test_bit(STRIPE_INSYNC
, &sh
->state
))
3073 handle_parity_checks6(conf
, sh
, &s
, &r6s
, tmp_page
, disks
);
3075 if (s
.syncing
&& s
.locked
== 0 && test_bit(STRIPE_INSYNC
, &sh
->state
)) {
3076 md_done_sync(conf
->mddev
, STRIPE_SECTORS
,1);
3077 clear_bit(STRIPE_SYNCING
, &sh
->state
);
3080 /* If the failed drives are just a ReadError, then we might need
3081 * to progress the repair/check process
3083 if (s
.failed
<= 2 && !conf
->mddev
->ro
)
3084 for (i
= 0; i
< s
.failed
; i
++) {
3085 dev
= &sh
->dev
[r6s
.failed_num
[i
]];
3086 if (test_bit(R5_ReadError
, &dev
->flags
)
3087 && !test_bit(R5_LOCKED
, &dev
->flags
)
3088 && test_bit(R5_UPTODATE
, &dev
->flags
)
3090 if (!test_bit(R5_ReWrite
, &dev
->flags
)) {
3091 set_bit(R5_Wantwrite
, &dev
->flags
);
3092 set_bit(R5_ReWrite
, &dev
->flags
);
3093 set_bit(R5_LOCKED
, &dev
->flags
);
3095 /* let's read it back */
3096 set_bit(R5_Wantread
, &dev
->flags
);
3097 set_bit(R5_LOCKED
, &dev
->flags
);
3102 if (s
.expanded
&& test_bit(STRIPE_EXPANDING
, &sh
->state
)) {
3103 /* Need to write out all blocks after computing P&Q */
3104 sh
->disks
= conf
->raid_disks
;
3105 sh
->pd_idx
= stripe_to_pdidx(sh
->sector
, conf
,
3107 compute_parity6(sh
, RECONSTRUCT_WRITE
);
3108 for (i
= conf
->raid_disks
; i
-- ; ) {
3109 set_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
3111 set_bit(R5_Wantwrite
, &sh
->dev
[i
].flags
);
3113 clear_bit(STRIPE_EXPANDING
, &sh
->state
);
3114 } else if (s
.expanded
) {
3115 clear_bit(STRIPE_EXPAND_READY
, &sh
->state
);
3116 atomic_dec(&conf
->reshape_stripes
);
3117 wake_up(&conf
->wait_for_overlap
);
3118 md_done_sync(conf
->mddev
, STRIPE_SECTORS
, 1);
3121 if (s
.expanding
&& s
.locked
== 0 &&
3122 !test_bit(STRIPE_OP_COMPUTE_BLK
, &sh
->ops
.pending
))
3123 handle_stripe_expansion(conf
, sh
, &r6s
);
3126 spin_unlock(&sh
->lock
);
3128 /* wait for this device to become unblocked */
3129 if (unlikely(blocked_rdev
))
3130 md_wait_for_blocked_rdev(blocked_rdev
, conf
->mddev
);
3132 return_io(return_bi
);
3134 for (i
=disks
; i
-- ;) {
3138 if (test_and_clear_bit(R5_Wantwrite
, &sh
->dev
[i
].flags
))
3140 else if (test_and_clear_bit(R5_Wantread
, &sh
->dev
[i
].flags
))
3145 set_bit(STRIPE_IO_STARTED
, &sh
->state
);
3147 bi
= &sh
->dev
[i
].req
;
3151 bi
->bi_end_io
= raid5_end_write_request
;
3153 bi
->bi_end_io
= raid5_end_read_request
;
3156 rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
3157 if (rdev
&& test_bit(Faulty
, &rdev
->flags
))
3160 atomic_inc(&rdev
->nr_pending
);
3164 if (s
.syncing
|| s
.expanding
|| s
.expanded
)
3165 md_sync_acct(rdev
->bdev
, STRIPE_SECTORS
);
3167 bi
->bi_bdev
= rdev
->bdev
;
3168 pr_debug("for %llu schedule op %ld on disc %d\n",
3169 (unsigned long long)sh
->sector
, bi
->bi_rw
, i
);
3170 atomic_inc(&sh
->count
);
3171 bi
->bi_sector
= sh
->sector
+ rdev
->data_offset
;
3172 bi
->bi_flags
= 1 << BIO_UPTODATE
;
3174 bi
->bi_max_vecs
= 1;
3176 bi
->bi_io_vec
= &sh
->dev
[i
].vec
;
3177 bi
->bi_io_vec
[0].bv_len
= STRIPE_SIZE
;
3178 bi
->bi_io_vec
[0].bv_offset
= 0;
3179 bi
->bi_size
= STRIPE_SIZE
;
3182 test_bit(R5_ReWrite
, &sh
->dev
[i
].flags
))
3183 atomic_add(STRIPE_SECTORS
, &rdev
->corrected_errors
);
3184 generic_make_request(bi
);
3187 set_bit(STRIPE_DEGRADED
, &sh
->state
);
3188 pr_debug("skip op %ld on disc %d for sector %llu\n",
3189 bi
->bi_rw
, i
, (unsigned long long)sh
->sector
);
3190 clear_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
3191 set_bit(STRIPE_HANDLE
, &sh
->state
);
3196 static void handle_stripe(struct stripe_head
*sh
, struct page
*tmp_page
)
3198 if (sh
->raid_conf
->level
== 6)
3199 handle_stripe6(sh
, tmp_page
);
3206 static void raid5_activate_delayed(raid5_conf_t
*conf
)
3208 if (atomic_read(&conf
->preread_active_stripes
) < IO_THRESHOLD
) {
3209 while (!list_empty(&conf
->delayed_list
)) {
3210 struct list_head
*l
= conf
->delayed_list
.next
;
3211 struct stripe_head
*sh
;
3212 sh
= list_entry(l
, struct stripe_head
, lru
);
3214 clear_bit(STRIPE_DELAYED
, &sh
->state
);
3215 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
))
3216 atomic_inc(&conf
->preread_active_stripes
);
3217 list_add_tail(&sh
->lru
, &conf
->hold_list
);
3220 blk_plug_device(conf
->mddev
->queue
);
3223 static void activate_bit_delay(raid5_conf_t
*conf
)
3225 /* device_lock is held */
3226 struct list_head head
;
3227 list_add(&head
, &conf
->bitmap_list
);
3228 list_del_init(&conf
->bitmap_list
);
3229 while (!list_empty(&head
)) {
3230 struct stripe_head
*sh
= list_entry(head
.next
, struct stripe_head
, lru
);
3231 list_del_init(&sh
->lru
);
3232 atomic_inc(&sh
->count
);
3233 __release_stripe(conf
, sh
);
3237 static void unplug_slaves(mddev_t
*mddev
)
3239 raid5_conf_t
*conf
= mddev_to_conf(mddev
);
3243 for (i
=0; i
<mddev
->raid_disks
; i
++) {
3244 mdk_rdev_t
*rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
3245 if (rdev
&& !test_bit(Faulty
, &rdev
->flags
) && atomic_read(&rdev
->nr_pending
)) {
3246 struct request_queue
*r_queue
= bdev_get_queue(rdev
->bdev
);
3248 atomic_inc(&rdev
->nr_pending
);
3251 blk_unplug(r_queue
);
3253 rdev_dec_pending(rdev
, mddev
);
3260 static void raid5_unplug_device(struct request_queue
*q
)
3262 mddev_t
*mddev
= q
->queuedata
;
3263 raid5_conf_t
*conf
= mddev_to_conf(mddev
);
3264 unsigned long flags
;
3266 spin_lock_irqsave(&conf
->device_lock
, flags
);
3268 if (blk_remove_plug(q
)) {
3270 raid5_activate_delayed(conf
);
3272 md_wakeup_thread(mddev
->thread
);
3274 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
3276 unplug_slaves(mddev
);
3279 static int raid5_congested(void *data
, int bits
)
3281 mddev_t
*mddev
= data
;
3282 raid5_conf_t
*conf
= mddev_to_conf(mddev
);
3284 /* No difference between reads and writes. Just check
3285 * how busy the stripe_cache is
3287 if (conf
->inactive_blocked
)
3291 if (list_empty_careful(&conf
->inactive_list
))
3297 /* We want read requests to align with chunks where possible,
3298 * but write requests don't need to.
3300 static int raid5_mergeable_bvec(struct request_queue
*q
, struct bio
*bio
, struct bio_vec
*biovec
)
3302 mddev_t
*mddev
= q
->queuedata
;
3303 sector_t sector
= bio
->bi_sector
+ get_start_sect(bio
->bi_bdev
);
3305 unsigned int chunk_sectors
= mddev
->chunk_size
>> 9;
3306 unsigned int bio_sectors
= bio
->bi_size
>> 9;
3308 if (bio_data_dir(bio
) == WRITE
)
3309 return biovec
->bv_len
; /* always allow writes to be mergeable */
3311 max
= (chunk_sectors
- ((sector
& (chunk_sectors
- 1)) + bio_sectors
)) << 9;
3312 if (max
< 0) max
= 0;
3313 if (max
<= biovec
->bv_len
&& bio_sectors
== 0)
3314 return biovec
->bv_len
;
3320 static int in_chunk_boundary(mddev_t
*mddev
, struct bio
*bio
)
3322 sector_t sector
= bio
->bi_sector
+ get_start_sect(bio
->bi_bdev
);
3323 unsigned int chunk_sectors
= mddev
->chunk_size
>> 9;
3324 unsigned int bio_sectors
= bio
->bi_size
>> 9;
3326 return chunk_sectors
>=
3327 ((sector
& (chunk_sectors
- 1)) + bio_sectors
);
3331 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
3332 * later sampled by raid5d.
3334 static void add_bio_to_retry(struct bio
*bi
,raid5_conf_t
*conf
)
3336 unsigned long flags
;
3338 spin_lock_irqsave(&conf
->device_lock
, flags
);
3340 bi
->bi_next
= conf
->retry_read_aligned_list
;
3341 conf
->retry_read_aligned_list
= bi
;
3343 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
3344 md_wakeup_thread(conf
->mddev
->thread
);
3348 static struct bio
*remove_bio_from_retry(raid5_conf_t
*conf
)
3352 bi
= conf
->retry_read_aligned
;
3354 conf
->retry_read_aligned
= NULL
;
3357 bi
= conf
->retry_read_aligned_list
;
3359 conf
->retry_read_aligned_list
= bi
->bi_next
;
3361 bi
->bi_phys_segments
= 1; /* biased count of active stripes */
3362 bi
->bi_hw_segments
= 0; /* count of processed stripes */
3370 * The "raid5_align_endio" should check if the read succeeded and if it
3371 * did, call bio_endio on the original bio (having bio_put the new bio
3373 * If the read failed..
3375 static void raid5_align_endio(struct bio
*bi
, int error
)
3377 struct bio
* raid_bi
= bi
->bi_private
;
3380 int uptodate
= test_bit(BIO_UPTODATE
, &bi
->bi_flags
);
3385 mddev
= raid_bi
->bi_bdev
->bd_disk
->queue
->queuedata
;
3386 conf
= mddev_to_conf(mddev
);
3387 rdev
= (void*)raid_bi
->bi_next
;
3388 raid_bi
->bi_next
= NULL
;
3390 rdev_dec_pending(rdev
, conf
->mddev
);
3392 if (!error
&& uptodate
) {
3393 bio_endio(raid_bi
, 0);
3394 if (atomic_dec_and_test(&conf
->active_aligned_reads
))
3395 wake_up(&conf
->wait_for_stripe
);
3400 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3402 add_bio_to_retry(raid_bi
, conf
);
3405 static int bio_fits_rdev(struct bio
*bi
)
3407 struct request_queue
*q
= bdev_get_queue(bi
->bi_bdev
);
3409 if ((bi
->bi_size
>>9) > q
->max_sectors
)
3411 blk_recount_segments(q
, bi
);
3412 if (bi
->bi_phys_segments
> q
->max_phys_segments
||
3413 bi
->bi_hw_segments
> q
->max_hw_segments
)
3416 if (q
->merge_bvec_fn
)
3417 /* it's too hard to apply the merge_bvec_fn at this stage,
3426 static int chunk_aligned_read(struct request_queue
*q
, struct bio
* raid_bio
)
3428 mddev_t
*mddev
= q
->queuedata
;
3429 raid5_conf_t
*conf
= mddev_to_conf(mddev
);
3430 const unsigned int raid_disks
= conf
->raid_disks
;
3431 const unsigned int data_disks
= raid_disks
- conf
->max_degraded
;
3432 unsigned int dd_idx
, pd_idx
;
3433 struct bio
* align_bi
;
3436 if (!in_chunk_boundary(mddev
, raid_bio
)) {
3437 pr_debug("chunk_aligned_read : non aligned\n");
3441 * use bio_clone to make a copy of the bio
3443 align_bi
= bio_clone(raid_bio
, GFP_NOIO
);
3447 * set bi_end_io to a new function, and set bi_private to the
3450 align_bi
->bi_end_io
= raid5_align_endio
;
3451 align_bi
->bi_private
= raid_bio
;
3455 align_bi
->bi_sector
= raid5_compute_sector(raid_bio
->bi_sector
,
3463 rdev
= rcu_dereference(conf
->disks
[dd_idx
].rdev
);
3464 if (rdev
&& test_bit(In_sync
, &rdev
->flags
)) {
3465 atomic_inc(&rdev
->nr_pending
);
3467 raid_bio
->bi_next
= (void*)rdev
;
3468 align_bi
->bi_bdev
= rdev
->bdev
;
3469 align_bi
->bi_flags
&= ~(1 << BIO_SEG_VALID
);
3470 align_bi
->bi_sector
+= rdev
->data_offset
;
3472 if (!bio_fits_rdev(align_bi
)) {
3473 /* too big in some way */
3475 rdev_dec_pending(rdev
, mddev
);
3479 spin_lock_irq(&conf
->device_lock
);
3480 wait_event_lock_irq(conf
->wait_for_stripe
,
3482 conf
->device_lock
, /* nothing */);
3483 atomic_inc(&conf
->active_aligned_reads
);
3484 spin_unlock_irq(&conf
->device_lock
);
3486 generic_make_request(align_bi
);
3495 /* __get_priority_stripe - get the next stripe to process
3497 * Full stripe writes are allowed to pass preread active stripes up until
3498 * the bypass_threshold is exceeded. In general the bypass_count
3499 * increments when the handle_list is handled before the hold_list; however, it
3500 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
3501 * stripe with in flight i/o. The bypass_count will be reset when the
3502 * head of the hold_list has changed, i.e. the head was promoted to the
3505 static struct stripe_head
*__get_priority_stripe(raid5_conf_t
*conf
)
3507 struct stripe_head
*sh
;
3509 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
3511 list_empty(&conf
->handle_list
) ? "empty" : "busy",
3512 list_empty(&conf
->hold_list
) ? "empty" : "busy",
3513 atomic_read(&conf
->pending_full_writes
), conf
->bypass_count
);
3515 if (!list_empty(&conf
->handle_list
)) {
3516 sh
= list_entry(conf
->handle_list
.next
, typeof(*sh
), lru
);
3518 if (list_empty(&conf
->hold_list
))
3519 conf
->bypass_count
= 0;
3520 else if (!test_bit(STRIPE_IO_STARTED
, &sh
->state
)) {
3521 if (conf
->hold_list
.next
== conf
->last_hold
)
3522 conf
->bypass_count
++;
3524 conf
->last_hold
= conf
->hold_list
.next
;
3525 conf
->bypass_count
-= conf
->bypass_threshold
;
3526 if (conf
->bypass_count
< 0)
3527 conf
->bypass_count
= 0;
3530 } else if (!list_empty(&conf
->hold_list
) &&
3531 ((conf
->bypass_threshold
&&
3532 conf
->bypass_count
> conf
->bypass_threshold
) ||
3533 atomic_read(&conf
->pending_full_writes
) == 0)) {
3534 sh
= list_entry(conf
->hold_list
.next
,
3536 conf
->bypass_count
-= conf
->bypass_threshold
;
3537 if (conf
->bypass_count
< 0)
3538 conf
->bypass_count
= 0;
3542 list_del_init(&sh
->lru
);
3543 atomic_inc(&sh
->count
);
3544 BUG_ON(atomic_read(&sh
->count
) != 1);
3548 static int make_request(struct request_queue
*q
, struct bio
* bi
)
3550 mddev_t
*mddev
= q
->queuedata
;
3551 raid5_conf_t
*conf
= mddev_to_conf(mddev
);
3552 unsigned int dd_idx
, pd_idx
;
3553 sector_t new_sector
;
3554 sector_t logical_sector
, last_sector
;
3555 struct stripe_head
*sh
;
3556 const int rw
= bio_data_dir(bi
);
3559 if (unlikely(bio_barrier(bi
))) {
3560 bio_endio(bi
, -EOPNOTSUPP
);
3564 md_write_start(mddev
, bi
);
3566 disk_stat_inc(mddev
->gendisk
, ios
[rw
]);
3567 disk_stat_add(mddev
->gendisk
, sectors
[rw
], bio_sectors(bi
));
3570 mddev
->reshape_position
== MaxSector
&&
3571 chunk_aligned_read(q
,bi
))
3574 logical_sector
= bi
->bi_sector
& ~((sector_t
)STRIPE_SECTORS
-1);
3575 last_sector
= bi
->bi_sector
+ (bi
->bi_size
>>9);
3577 bi
->bi_phys_segments
= 1; /* over-loaded to count active stripes */
3579 for (;logical_sector
< last_sector
; logical_sector
+= STRIPE_SECTORS
) {
3581 int disks
, data_disks
;
3584 prepare_to_wait(&conf
->wait_for_overlap
, &w
, TASK_UNINTERRUPTIBLE
);
3585 if (likely(conf
->expand_progress
== MaxSector
))
3586 disks
= conf
->raid_disks
;
3588 /* spinlock is needed as expand_progress may be
3589 * 64bit on a 32bit platform, and so it might be
3590 * possible to see a half-updated value
3591 * Ofcourse expand_progress could change after
3592 * the lock is dropped, so once we get a reference
3593 * to the stripe that we think it is, we will have
3596 spin_lock_irq(&conf
->device_lock
);
3597 disks
= conf
->raid_disks
;
3598 if (logical_sector
>= conf
->expand_progress
)
3599 disks
= conf
->previous_raid_disks
;
3601 if (logical_sector
>= conf
->expand_lo
) {
3602 spin_unlock_irq(&conf
->device_lock
);
3607 spin_unlock_irq(&conf
->device_lock
);
3609 data_disks
= disks
- conf
->max_degraded
;
3611 new_sector
= raid5_compute_sector(logical_sector
, disks
, data_disks
,
3612 &dd_idx
, &pd_idx
, conf
);
3613 pr_debug("raid5: make_request, sector %llu logical %llu\n",
3614 (unsigned long long)new_sector
,
3615 (unsigned long long)logical_sector
);
3617 sh
= get_active_stripe(conf
, new_sector
, disks
, pd_idx
, (bi
->bi_rw
&RWA_MASK
));
3619 if (unlikely(conf
->expand_progress
!= MaxSector
)) {
3620 /* expansion might have moved on while waiting for a
3621 * stripe, so we must do the range check again.
3622 * Expansion could still move past after this
3623 * test, but as we are holding a reference to
3624 * 'sh', we know that if that happens,
3625 * STRIPE_EXPANDING will get set and the expansion
3626 * won't proceed until we finish with the stripe.
3629 spin_lock_irq(&conf
->device_lock
);
3630 if (logical_sector
< conf
->expand_progress
&&
3631 disks
== conf
->previous_raid_disks
)
3632 /* mismatch, need to try again */
3634 spin_unlock_irq(&conf
->device_lock
);
3640 /* FIXME what if we get a false positive because these
3641 * are being updated.
3643 if (logical_sector
>= mddev
->suspend_lo
&&
3644 logical_sector
< mddev
->suspend_hi
) {
3650 if (test_bit(STRIPE_EXPANDING
, &sh
->state
) ||
3651 !add_stripe_bio(sh
, bi
, dd_idx
, (bi
->bi_rw
&RW_MASK
))) {
3652 /* Stripe is busy expanding or
3653 * add failed due to overlap. Flush everything
3656 raid5_unplug_device(mddev
->queue
);
3661 finish_wait(&conf
->wait_for_overlap
, &w
);
3662 set_bit(STRIPE_HANDLE
, &sh
->state
);
3663 clear_bit(STRIPE_DELAYED
, &sh
->state
);
3666 /* cannot get stripe for read-ahead, just give-up */
3667 clear_bit(BIO_UPTODATE
, &bi
->bi_flags
);
3668 finish_wait(&conf
->wait_for_overlap
, &w
);
3673 spin_lock_irq(&conf
->device_lock
);
3674 remaining
= --bi
->bi_phys_segments
;
3675 spin_unlock_irq(&conf
->device_lock
);
3676 if (remaining
== 0) {
3679 md_write_end(mddev
);
3682 test_bit(BIO_UPTODATE
, &bi
->bi_flags
)
3688 static sector_t
reshape_request(mddev_t
*mddev
, sector_t sector_nr
, int *skipped
)
3690 /* reshaping is quite different to recovery/resync so it is
3691 * handled quite separately ... here.
3693 * On each call to sync_request, we gather one chunk worth of
3694 * destination stripes and flag them as expanding.
3695 * Then we find all the source stripes and request reads.
3696 * As the reads complete, handle_stripe will copy the data
3697 * into the destination stripe and release that stripe.
3699 raid5_conf_t
*conf
= (raid5_conf_t
*) mddev
->private;
3700 struct stripe_head
*sh
;
3702 sector_t first_sector
, last_sector
;
3703 int raid_disks
= conf
->previous_raid_disks
;
3704 int data_disks
= raid_disks
- conf
->max_degraded
;
3705 int new_data_disks
= conf
->raid_disks
- conf
->max_degraded
;
3708 sector_t writepos
, safepos
, gap
;
3710 if (sector_nr
== 0 &&
3711 conf
->expand_progress
!= 0) {
3712 /* restarting in the middle, skip the initial sectors */
3713 sector_nr
= conf
->expand_progress
;
3714 sector_div(sector_nr
, new_data_disks
);
3719 /* we update the metadata when there is more than 3Meg
3720 * in the block range (that is rather arbitrary, should
3721 * probably be time based) or when the data about to be
3722 * copied would over-write the source of the data at
3723 * the front of the range.
3724 * i.e. one new_stripe forward from expand_progress new_maps
3725 * to after where expand_lo old_maps to
3727 writepos
= conf
->expand_progress
+
3728 conf
->chunk_size
/512*(new_data_disks
);
3729 sector_div(writepos
, new_data_disks
);
3730 safepos
= conf
->expand_lo
;
3731 sector_div(safepos
, data_disks
);
3732 gap
= conf
->expand_progress
- conf
->expand_lo
;
3734 if (writepos
>= safepos
||
3735 gap
> (new_data_disks
)*3000*2 /*3Meg*/) {
3736 /* Cannot proceed until we've updated the superblock... */
3737 wait_event(conf
->wait_for_overlap
,
3738 atomic_read(&conf
->reshape_stripes
)==0);
3739 mddev
->reshape_position
= conf
->expand_progress
;
3740 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
3741 md_wakeup_thread(mddev
->thread
);
3742 wait_event(mddev
->sb_wait
, mddev
->flags
== 0 ||
3743 kthread_should_stop());
3744 spin_lock_irq(&conf
->device_lock
);
3745 conf
->expand_lo
= mddev
->reshape_position
;
3746 spin_unlock_irq(&conf
->device_lock
);
3747 wake_up(&conf
->wait_for_overlap
);
3750 for (i
=0; i
< conf
->chunk_size
/512; i
+= STRIPE_SECTORS
) {
3753 pd_idx
= stripe_to_pdidx(sector_nr
+i
, conf
, conf
->raid_disks
);
3754 sh
= get_active_stripe(conf
, sector_nr
+i
,
3755 conf
->raid_disks
, pd_idx
, 0);
3756 set_bit(STRIPE_EXPANDING
, &sh
->state
);
3757 atomic_inc(&conf
->reshape_stripes
);
3758 /* If any of this stripe is beyond the end of the old
3759 * array, then we need to zero those blocks
3761 for (j
=sh
->disks
; j
--;) {
3763 if (j
== sh
->pd_idx
)
3765 if (conf
->level
== 6 &&
3766 j
== raid6_next_disk(sh
->pd_idx
, sh
->disks
))
3768 s
= compute_blocknr(sh
, j
);
3769 if (s
< (mddev
->array_size
<<1)) {
3773 memset(page_address(sh
->dev
[j
].page
), 0, STRIPE_SIZE
);
3774 set_bit(R5_Expanded
, &sh
->dev
[j
].flags
);
3775 set_bit(R5_UPTODATE
, &sh
->dev
[j
].flags
);
3778 set_bit(STRIPE_EXPAND_READY
, &sh
->state
);
3779 set_bit(STRIPE_HANDLE
, &sh
->state
);
3783 spin_lock_irq(&conf
->device_lock
);
3784 conf
->expand_progress
= (sector_nr
+ i
) * new_data_disks
;
3785 spin_unlock_irq(&conf
->device_lock
);
3786 /* Ok, those stripe are ready. We can start scheduling
3787 * reads on the source stripes.
3788 * The source stripes are determined by mapping the first and last
3789 * block on the destination stripes.
3792 raid5_compute_sector(sector_nr
*(new_data_disks
),
3793 raid_disks
, data_disks
,
3794 &dd_idx
, &pd_idx
, conf
);
3796 raid5_compute_sector((sector_nr
+conf
->chunk_size
/512)
3797 *(new_data_disks
) -1,
3798 raid_disks
, data_disks
,
3799 &dd_idx
, &pd_idx
, conf
);
3800 if (last_sector
>= (mddev
->size
<<1))
3801 last_sector
= (mddev
->size
<<1)-1;
3802 while (first_sector
<= last_sector
) {
3803 pd_idx
= stripe_to_pdidx(first_sector
, conf
,
3804 conf
->previous_raid_disks
);
3805 sh
= get_active_stripe(conf
, first_sector
,
3806 conf
->previous_raid_disks
, pd_idx
, 0);
3807 set_bit(STRIPE_EXPAND_SOURCE
, &sh
->state
);
3808 set_bit(STRIPE_HANDLE
, &sh
->state
);
3810 first_sector
+= STRIPE_SECTORS
;
3812 /* If this takes us to the resync_max point where we have to pause,
3813 * then we need to write out the superblock.
3815 sector_nr
+= conf
->chunk_size
>>9;
3816 if (sector_nr
>= mddev
->resync_max
) {
3817 /* Cannot proceed until we've updated the superblock... */
3818 wait_event(conf
->wait_for_overlap
,
3819 atomic_read(&conf
->reshape_stripes
) == 0);
3820 mddev
->reshape_position
= conf
->expand_progress
;
3821 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
3822 md_wakeup_thread(mddev
->thread
);
3823 wait_event(mddev
->sb_wait
,
3824 !test_bit(MD_CHANGE_DEVS
, &mddev
->flags
)
3825 || kthread_should_stop());
3826 spin_lock_irq(&conf
->device_lock
);
3827 conf
->expand_lo
= mddev
->reshape_position
;
3828 spin_unlock_irq(&conf
->device_lock
);
3829 wake_up(&conf
->wait_for_overlap
);
3831 return conf
->chunk_size
>>9;
3834 /* FIXME go_faster isn't used */
3835 static inline sector_t
sync_request(mddev_t
*mddev
, sector_t sector_nr
, int *skipped
, int go_faster
)
3837 raid5_conf_t
*conf
= (raid5_conf_t
*) mddev
->private;
3838 struct stripe_head
*sh
;
3840 int raid_disks
= conf
->raid_disks
;
3841 sector_t max_sector
= mddev
->size
<< 1;
3843 int still_degraded
= 0;
3846 if (sector_nr
>= max_sector
) {
3847 /* just being told to finish up .. nothing much to do */
3848 unplug_slaves(mddev
);
3849 if (test_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
)) {
3854 if (mddev
->curr_resync
< max_sector
) /* aborted */
3855 bitmap_end_sync(mddev
->bitmap
, mddev
->curr_resync
,
3857 else /* completed sync */
3859 bitmap_close_sync(mddev
->bitmap
);
3864 if (test_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
))
3865 return reshape_request(mddev
, sector_nr
, skipped
);
3867 /* No need to check resync_max as we never do more than one
3868 * stripe, and as resync_max will always be on a chunk boundary,
3869 * if the check in md_do_sync didn't fire, there is no chance
3870 * of overstepping resync_max here
3873 /* if there is too many failed drives and we are trying
3874 * to resync, then assert that we are finished, because there is
3875 * nothing we can do.
3877 if (mddev
->degraded
>= conf
->max_degraded
&&
3878 test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
)) {
3879 sector_t rv
= (mddev
->size
<< 1) - sector_nr
;
3883 if (!bitmap_start_sync(mddev
->bitmap
, sector_nr
, &sync_blocks
, 1) &&
3884 !test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
) &&
3885 !conf
->fullsync
&& sync_blocks
>= STRIPE_SECTORS
) {
3886 /* we can skip this block, and probably more */
3887 sync_blocks
/= STRIPE_SECTORS
;
3889 return sync_blocks
* STRIPE_SECTORS
; /* keep things rounded to whole stripes */
3893 bitmap_cond_end_sync(mddev
->bitmap
, sector_nr
);
3895 pd_idx
= stripe_to_pdidx(sector_nr
, conf
, raid_disks
);
3896 sh
= get_active_stripe(conf
, sector_nr
, raid_disks
, pd_idx
, 1);
3898 sh
= get_active_stripe(conf
, sector_nr
, raid_disks
, pd_idx
, 0);
3899 /* make sure we don't swamp the stripe cache if someone else
3900 * is trying to get access
3902 schedule_timeout_uninterruptible(1);
3904 /* Need to check if array will still be degraded after recovery/resync
3905 * We don't need to check the 'failed' flag as when that gets set,
3908 for (i
=0; i
<mddev
->raid_disks
; i
++)
3909 if (conf
->disks
[i
].rdev
== NULL
)
3912 bitmap_start_sync(mddev
->bitmap
, sector_nr
, &sync_blocks
, still_degraded
);
3914 spin_lock(&sh
->lock
);
3915 set_bit(STRIPE_SYNCING
, &sh
->state
);
3916 clear_bit(STRIPE_INSYNC
, &sh
->state
);
3917 spin_unlock(&sh
->lock
);
3919 handle_stripe(sh
, NULL
);
3922 return STRIPE_SECTORS
;
3925 static int retry_aligned_read(raid5_conf_t
*conf
, struct bio
*raid_bio
)
3927 /* We may not be able to submit a whole bio at once as there
3928 * may not be enough stripe_heads available.
3929 * We cannot pre-allocate enough stripe_heads as we may need
3930 * more than exist in the cache (if we allow ever large chunks).
3931 * So we do one stripe head at a time and record in
3932 * ->bi_hw_segments how many have been done.
3934 * We *know* that this entire raid_bio is in one chunk, so
3935 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
3937 struct stripe_head
*sh
;
3939 sector_t sector
, logical_sector
, last_sector
;
3944 logical_sector
= raid_bio
->bi_sector
& ~((sector_t
)STRIPE_SECTORS
-1);
3945 sector
= raid5_compute_sector( logical_sector
,
3947 conf
->raid_disks
- conf
->max_degraded
,
3951 last_sector
= raid_bio
->bi_sector
+ (raid_bio
->bi_size
>>9);
3953 for (; logical_sector
< last_sector
;
3954 logical_sector
+= STRIPE_SECTORS
,
3955 sector
+= STRIPE_SECTORS
,
3958 if (scnt
< raid_bio
->bi_hw_segments
)
3959 /* already done this stripe */
3962 sh
= get_active_stripe(conf
, sector
, conf
->raid_disks
, pd_idx
, 1);
3965 /* failed to get a stripe - must wait */
3966 raid_bio
->bi_hw_segments
= scnt
;
3967 conf
->retry_read_aligned
= raid_bio
;
3971 set_bit(R5_ReadError
, &sh
->dev
[dd_idx
].flags
);
3972 if (!add_stripe_bio(sh
, raid_bio
, dd_idx
, 0)) {
3974 raid_bio
->bi_hw_segments
= scnt
;
3975 conf
->retry_read_aligned
= raid_bio
;
3979 handle_stripe(sh
, NULL
);
3983 spin_lock_irq(&conf
->device_lock
);
3984 remaining
= --raid_bio
->bi_phys_segments
;
3985 spin_unlock_irq(&conf
->device_lock
);
3986 if (remaining
== 0) {
3988 raid_bio
->bi_end_io(raid_bio
,
3989 test_bit(BIO_UPTODATE
, &raid_bio
->bi_flags
)
3992 if (atomic_dec_and_test(&conf
->active_aligned_reads
))
3993 wake_up(&conf
->wait_for_stripe
);
4000 * This is our raid5 kernel thread.
4002 * We scan the hash table for stripes which can be handled now.
4003 * During the scan, completed stripes are saved for us by the interrupt
4004 * handler, so that they will not have to wait for our next wakeup.
4006 static void raid5d(mddev_t
*mddev
)
4008 struct stripe_head
*sh
;
4009 raid5_conf_t
*conf
= mddev_to_conf(mddev
);
4012 pr_debug("+++ raid5d active\n");
4014 md_check_recovery(mddev
);
4017 spin_lock_irq(&conf
->device_lock
);
4021 if (conf
->seq_flush
!= conf
->seq_write
) {
4022 int seq
= conf
->seq_flush
;
4023 spin_unlock_irq(&conf
->device_lock
);
4024 bitmap_unplug(mddev
->bitmap
);
4025 spin_lock_irq(&conf
->device_lock
);
4026 conf
->seq_write
= seq
;
4027 activate_bit_delay(conf
);
4030 while ((bio
= remove_bio_from_retry(conf
))) {
4032 spin_unlock_irq(&conf
->device_lock
);
4033 ok
= retry_aligned_read(conf
, bio
);
4034 spin_lock_irq(&conf
->device_lock
);
4040 sh
= __get_priority_stripe(conf
);
4043 async_tx_issue_pending_all();
4046 spin_unlock_irq(&conf
->device_lock
);
4049 handle_stripe(sh
, conf
->spare_page
);
4052 spin_lock_irq(&conf
->device_lock
);
4054 pr_debug("%d stripes handled\n", handled
);
4056 spin_unlock_irq(&conf
->device_lock
);
4058 unplug_slaves(mddev
);
4060 pr_debug("--- raid5d inactive\n");
4064 raid5_show_stripe_cache_size(mddev_t
*mddev
, char *page
)
4066 raid5_conf_t
*conf
= mddev_to_conf(mddev
);
4068 return sprintf(page
, "%d\n", conf
->max_nr_stripes
);
4074 raid5_store_stripe_cache_size(mddev_t
*mddev
, const char *page
, size_t len
)
4076 raid5_conf_t
*conf
= mddev_to_conf(mddev
);
4078 if (len
>= PAGE_SIZE
)
4083 if (strict_strtoul(page
, 10, &new))
4085 if (new <= 16 || new > 32768)
4087 while (new < conf
->max_nr_stripes
) {
4088 if (drop_one_stripe(conf
))
4089 conf
->max_nr_stripes
--;
4093 md_allow_write(mddev
);
4094 while (new > conf
->max_nr_stripes
) {
4095 if (grow_one_stripe(conf
))
4096 conf
->max_nr_stripes
++;
4102 static struct md_sysfs_entry
4103 raid5_stripecache_size
= __ATTR(stripe_cache_size
, S_IRUGO
| S_IWUSR
,
4104 raid5_show_stripe_cache_size
,
4105 raid5_store_stripe_cache_size
);
4108 raid5_show_preread_threshold(mddev_t
*mddev
, char *page
)
4110 raid5_conf_t
*conf
= mddev_to_conf(mddev
);
4112 return sprintf(page
, "%d\n", conf
->bypass_threshold
);
4118 raid5_store_preread_threshold(mddev_t
*mddev
, const char *page
, size_t len
)
4120 raid5_conf_t
*conf
= mddev_to_conf(mddev
);
4122 if (len
>= PAGE_SIZE
)
4127 if (strict_strtoul(page
, 10, &new))
4129 if (new > conf
->max_nr_stripes
)
4131 conf
->bypass_threshold
= new;
4135 static struct md_sysfs_entry
4136 raid5_preread_bypass_threshold
= __ATTR(preread_bypass_threshold
,
4138 raid5_show_preread_threshold
,
4139 raid5_store_preread_threshold
);
4142 stripe_cache_active_show(mddev_t
*mddev
, char *page
)
4144 raid5_conf_t
*conf
= mddev_to_conf(mddev
);
4146 return sprintf(page
, "%d\n", atomic_read(&conf
->active_stripes
));
4151 static struct md_sysfs_entry
4152 raid5_stripecache_active
= __ATTR_RO(stripe_cache_active
);
4154 static struct attribute
*raid5_attrs
[] = {
4155 &raid5_stripecache_size
.attr
,
4156 &raid5_stripecache_active
.attr
,
4157 &raid5_preread_bypass_threshold
.attr
,
4160 static struct attribute_group raid5_attrs_group
= {
4162 .attrs
= raid5_attrs
,
4165 static int run(mddev_t
*mddev
)
4168 int raid_disk
, memory
;
4170 struct disk_info
*disk
;
4171 struct list_head
*tmp
;
4172 int working_disks
= 0;
4174 if (mddev
->level
!= 5 && mddev
->level
!= 4 && mddev
->level
!= 6) {
4175 printk(KERN_ERR
"raid5: %s: raid level not set to 4/5/6 (%d)\n",
4176 mdname(mddev
), mddev
->level
);
4180 if (mddev
->reshape_position
!= MaxSector
) {
4181 /* Check that we can continue the reshape.
4182 * Currently only disks can change, it must
4183 * increase, and we must be past the point where
4184 * a stripe over-writes itself
4186 sector_t here_new
, here_old
;
4188 int max_degraded
= (mddev
->level
== 5 ? 1 : 2);
4190 if (mddev
->new_level
!= mddev
->level
||
4191 mddev
->new_layout
!= mddev
->layout
||
4192 mddev
->new_chunk
!= mddev
->chunk_size
) {
4193 printk(KERN_ERR
"raid5: %s: unsupported reshape "
4194 "required - aborting.\n",
4198 if (mddev
->delta_disks
<= 0) {
4199 printk(KERN_ERR
"raid5: %s: unsupported reshape "
4200 "(reduce disks) required - aborting.\n",
4204 old_disks
= mddev
->raid_disks
- mddev
->delta_disks
;
4205 /* reshape_position must be on a new-stripe boundary, and one
4206 * further up in new geometry must map after here in old
4209 here_new
= mddev
->reshape_position
;
4210 if (sector_div(here_new
, (mddev
->chunk_size
>>9)*
4211 (mddev
->raid_disks
- max_degraded
))) {
4212 printk(KERN_ERR
"raid5: reshape_position not "
4213 "on a stripe boundary\n");
4216 /* here_new is the stripe we will write to */
4217 here_old
= mddev
->reshape_position
;
4218 sector_div(here_old
, (mddev
->chunk_size
>>9)*
4219 (old_disks
-max_degraded
));
4220 /* here_old is the first stripe that we might need to read
4222 if (here_new
>= here_old
) {
4223 /* Reading from the same stripe as writing to - bad */
4224 printk(KERN_ERR
"raid5: reshape_position too early for "
4225 "auto-recovery - aborting.\n");
4228 printk(KERN_INFO
"raid5: reshape will continue\n");
4229 /* OK, we should be able to continue; */
4233 mddev
->private = kzalloc(sizeof (raid5_conf_t
), GFP_KERNEL
);
4234 if ((conf
= mddev
->private) == NULL
)
4236 if (mddev
->reshape_position
== MaxSector
) {
4237 conf
->previous_raid_disks
= conf
->raid_disks
= mddev
->raid_disks
;
4239 conf
->raid_disks
= mddev
->raid_disks
;
4240 conf
->previous_raid_disks
= mddev
->raid_disks
- mddev
->delta_disks
;
4243 conf
->disks
= kzalloc(conf
->raid_disks
* sizeof(struct disk_info
),
4248 conf
->mddev
= mddev
;
4250 if ((conf
->stripe_hashtbl
= kzalloc(PAGE_SIZE
, GFP_KERNEL
)) == NULL
)
4253 if (mddev
->level
== 6) {
4254 conf
->spare_page
= alloc_page(GFP_KERNEL
);
4255 if (!conf
->spare_page
)
4258 spin_lock_init(&conf
->device_lock
);
4259 init_waitqueue_head(&conf
->wait_for_stripe
);
4260 init_waitqueue_head(&conf
->wait_for_overlap
);
4261 INIT_LIST_HEAD(&conf
->handle_list
);
4262 INIT_LIST_HEAD(&conf
->hold_list
);
4263 INIT_LIST_HEAD(&conf
->delayed_list
);
4264 INIT_LIST_HEAD(&conf
->bitmap_list
);
4265 INIT_LIST_HEAD(&conf
->inactive_list
);
4266 atomic_set(&conf
->active_stripes
, 0);
4267 atomic_set(&conf
->preread_active_stripes
, 0);
4268 atomic_set(&conf
->active_aligned_reads
, 0);
4269 conf
->bypass_threshold
= BYPASS_THRESHOLD
;
4271 pr_debug("raid5: run(%s) called.\n", mdname(mddev
));
4273 rdev_for_each(rdev
, tmp
, mddev
) {
4274 raid_disk
= rdev
->raid_disk
;
4275 if (raid_disk
>= conf
->raid_disks
4278 disk
= conf
->disks
+ raid_disk
;
4282 if (test_bit(In_sync
, &rdev
->flags
)) {
4283 char b
[BDEVNAME_SIZE
];
4284 printk(KERN_INFO
"raid5: device %s operational as raid"
4285 " disk %d\n", bdevname(rdev
->bdev
,b
),
4292 * 0 for a fully functional array, 1 or 2 for a degraded array.
4294 mddev
->degraded
= conf
->raid_disks
- working_disks
;
4295 conf
->mddev
= mddev
;
4296 conf
->chunk_size
= mddev
->chunk_size
;
4297 conf
->level
= mddev
->level
;
4298 if (conf
->level
== 6)
4299 conf
->max_degraded
= 2;
4301 conf
->max_degraded
= 1;
4302 conf
->algorithm
= mddev
->layout
;
4303 conf
->max_nr_stripes
= NR_STRIPES
;
4304 conf
->expand_progress
= mddev
->reshape_position
;
4306 /* device size must be a multiple of chunk size */
4307 mddev
->size
&= ~(mddev
->chunk_size
/1024 -1);
4308 mddev
->resync_max_sectors
= mddev
->size
<< 1;
4310 if (conf
->level
== 6 && conf
->raid_disks
< 4) {
4311 printk(KERN_ERR
"raid6: not enough configured devices for %s (%d, minimum 4)\n",
4312 mdname(mddev
), conf
->raid_disks
);
4315 if (!conf
->chunk_size
|| conf
->chunk_size
% 4) {
4316 printk(KERN_ERR
"raid5: invalid chunk size %d for %s\n",
4317 conf
->chunk_size
, mdname(mddev
));
4320 if (conf
->algorithm
> ALGORITHM_RIGHT_SYMMETRIC
) {
4322 "raid5: unsupported parity algorithm %d for %s\n",
4323 conf
->algorithm
, mdname(mddev
));
4326 if (mddev
->degraded
> conf
->max_degraded
) {
4327 printk(KERN_ERR
"raid5: not enough operational devices for %s"
4328 " (%d/%d failed)\n",
4329 mdname(mddev
), mddev
->degraded
, conf
->raid_disks
);
4333 if (mddev
->degraded
> 0 &&
4334 mddev
->recovery_cp
!= MaxSector
) {
4335 if (mddev
->ok_start_degraded
)
4337 "raid5: starting dirty degraded array: %s"
4338 "- data corruption possible.\n",
4342 "raid5: cannot start dirty degraded array for %s\n",
4349 mddev
->thread
= md_register_thread(raid5d
, mddev
, "%s_raid5");
4350 if (!mddev
->thread
) {
4352 "raid5: couldn't allocate thread for %s\n",
4357 memory
= conf
->max_nr_stripes
* (sizeof(struct stripe_head
) +
4358 conf
->raid_disks
* ((sizeof(struct bio
) + PAGE_SIZE
))) / 1024;
4359 if (grow_stripes(conf
, conf
->max_nr_stripes
)) {
4361 "raid5: couldn't allocate %dkB for buffers\n", memory
);
4362 shrink_stripes(conf
);
4363 md_unregister_thread(mddev
->thread
);
4366 printk(KERN_INFO
"raid5: allocated %dkB for %s\n",
4367 memory
, mdname(mddev
));
4369 if (mddev
->degraded
== 0)
4370 printk("raid5: raid level %d set %s active with %d out of %d"
4371 " devices, algorithm %d\n", conf
->level
, mdname(mddev
),
4372 mddev
->raid_disks
-mddev
->degraded
, mddev
->raid_disks
,
4375 printk(KERN_ALERT
"raid5: raid level %d set %s active with %d"
4376 " out of %d devices, algorithm %d\n", conf
->level
,
4377 mdname(mddev
), mddev
->raid_disks
- mddev
->degraded
,
4378 mddev
->raid_disks
, conf
->algorithm
);
4380 print_raid5_conf(conf
);
4382 if (conf
->expand_progress
!= MaxSector
) {
4383 printk("...ok start reshape thread\n");
4384 conf
->expand_lo
= conf
->expand_progress
;
4385 atomic_set(&conf
->reshape_stripes
, 0);
4386 clear_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
);
4387 clear_bit(MD_RECOVERY_CHECK
, &mddev
->recovery
);
4388 set_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
);
4389 set_bit(MD_RECOVERY_RUNNING
, &mddev
->recovery
);
4390 mddev
->sync_thread
= md_register_thread(md_do_sync
, mddev
,
4394 /* read-ahead size must cover two whole stripes, which is
4395 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4398 int data_disks
= conf
->previous_raid_disks
- conf
->max_degraded
;
4399 int stripe
= data_disks
*
4400 (mddev
->chunk_size
/ PAGE_SIZE
);
4401 if (mddev
->queue
->backing_dev_info
.ra_pages
< 2 * stripe
)
4402 mddev
->queue
->backing_dev_info
.ra_pages
= 2 * stripe
;
4405 /* Ok, everything is just fine now */
4406 if (sysfs_create_group(&mddev
->kobj
, &raid5_attrs_group
))
4408 "raid5: failed to create sysfs attributes for %s\n",
4411 mddev
->queue
->unplug_fn
= raid5_unplug_device
;
4412 mddev
->queue
->backing_dev_info
.congested_data
= mddev
;
4413 mddev
->queue
->backing_dev_info
.congested_fn
= raid5_congested
;
4415 mddev
->array_size
= mddev
->size
* (conf
->previous_raid_disks
-
4416 conf
->max_degraded
);
4418 blk_queue_merge_bvec(mddev
->queue
, raid5_mergeable_bvec
);
4423 print_raid5_conf(conf
);
4424 safe_put_page(conf
->spare_page
);
4426 kfree(conf
->stripe_hashtbl
);
4429 mddev
->private = NULL
;
4430 printk(KERN_ALERT
"raid5: failed to run raid set %s\n", mdname(mddev
));
4436 static int stop(mddev_t
*mddev
)
4438 raid5_conf_t
*conf
= (raid5_conf_t
*) mddev
->private;
4440 md_unregister_thread(mddev
->thread
);
4441 mddev
->thread
= NULL
;
4442 shrink_stripes(conf
);
4443 kfree(conf
->stripe_hashtbl
);
4444 mddev
->queue
->backing_dev_info
.congested_fn
= NULL
;
4445 blk_sync_queue(mddev
->queue
); /* the unplug fn references 'conf'*/
4446 sysfs_remove_group(&mddev
->kobj
, &raid5_attrs_group
);
4449 mddev
->private = NULL
;
4454 static void print_sh (struct seq_file
*seq
, struct stripe_head
*sh
)
4458 seq_printf(seq
, "sh %llu, pd_idx %d, state %ld.\n",
4459 (unsigned long long)sh
->sector
, sh
->pd_idx
, sh
->state
);
4460 seq_printf(seq
, "sh %llu, count %d.\n",
4461 (unsigned long long)sh
->sector
, atomic_read(&sh
->count
));
4462 seq_printf(seq
, "sh %llu, ", (unsigned long long)sh
->sector
);
4463 for (i
= 0; i
< sh
->disks
; i
++) {
4464 seq_printf(seq
, "(cache%d: %p %ld) ",
4465 i
, sh
->dev
[i
].page
, sh
->dev
[i
].flags
);
4467 seq_printf(seq
, "\n");
4470 static void printall (struct seq_file
*seq
, raid5_conf_t
*conf
)
4472 struct stripe_head
*sh
;
4473 struct hlist_node
*hn
;
4476 spin_lock_irq(&conf
->device_lock
);
4477 for (i
= 0; i
< NR_HASH
; i
++) {
4478 hlist_for_each_entry(sh
, hn
, &conf
->stripe_hashtbl
[i
], hash
) {
4479 if (sh
->raid_conf
!= conf
)
4484 spin_unlock_irq(&conf
->device_lock
);
4488 static void status (struct seq_file
*seq
, mddev_t
*mddev
)
4490 raid5_conf_t
*conf
= (raid5_conf_t
*) mddev
->private;
4493 seq_printf (seq
, " level %d, %dk chunk, algorithm %d", mddev
->level
, mddev
->chunk_size
>> 10, mddev
->layout
);
4494 seq_printf (seq
, " [%d/%d] [", conf
->raid_disks
, conf
->raid_disks
- mddev
->degraded
);
4495 for (i
= 0; i
< conf
->raid_disks
; i
++)
4496 seq_printf (seq
, "%s",
4497 conf
->disks
[i
].rdev
&&
4498 test_bit(In_sync
, &conf
->disks
[i
].rdev
->flags
) ? "U" : "_");
4499 seq_printf (seq
, "]");
4501 seq_printf (seq
, "\n");
4502 printall(seq
, conf
);
4506 static void print_raid5_conf (raid5_conf_t
*conf
)
4509 struct disk_info
*tmp
;
4511 printk("RAID5 conf printout:\n");
4513 printk("(conf==NULL)\n");
4516 printk(" --- rd:%d wd:%d\n", conf
->raid_disks
,
4517 conf
->raid_disks
- conf
->mddev
->degraded
);
4519 for (i
= 0; i
< conf
->raid_disks
; i
++) {
4520 char b
[BDEVNAME_SIZE
];
4521 tmp
= conf
->disks
+ i
;
4523 printk(" disk %d, o:%d, dev:%s\n",
4524 i
, !test_bit(Faulty
, &tmp
->rdev
->flags
),
4525 bdevname(tmp
->rdev
->bdev
,b
));
4529 static int raid5_spare_active(mddev_t
*mddev
)
4532 raid5_conf_t
*conf
= mddev
->private;
4533 struct disk_info
*tmp
;
4535 for (i
= 0; i
< conf
->raid_disks
; i
++) {
4536 tmp
= conf
->disks
+ i
;
4538 && !test_bit(Faulty
, &tmp
->rdev
->flags
)
4539 && !test_and_set_bit(In_sync
, &tmp
->rdev
->flags
)) {
4540 unsigned long flags
;
4541 spin_lock_irqsave(&conf
->device_lock
, flags
);
4543 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
4546 print_raid5_conf(conf
);
4550 static int raid5_remove_disk(mddev_t
*mddev
, int number
)
4552 raid5_conf_t
*conf
= mddev
->private;
4555 struct disk_info
*p
= conf
->disks
+ number
;
4557 print_raid5_conf(conf
);
4560 if (test_bit(In_sync
, &rdev
->flags
) ||
4561 atomic_read(&rdev
->nr_pending
)) {
4567 if (atomic_read(&rdev
->nr_pending
)) {
4568 /* lost the race, try later */
4575 print_raid5_conf(conf
);
4579 static int raid5_add_disk(mddev_t
*mddev
, mdk_rdev_t
*rdev
)
4581 raid5_conf_t
*conf
= mddev
->private;
4584 struct disk_info
*p
;
4586 if (mddev
->degraded
> conf
->max_degraded
)
4587 /* no point adding a device */
4591 * find the disk ... but prefer rdev->saved_raid_disk
4594 if (rdev
->saved_raid_disk
>= 0 &&
4595 conf
->disks
[rdev
->saved_raid_disk
].rdev
== NULL
)
4596 disk
= rdev
->saved_raid_disk
;
4599 for ( ; disk
< conf
->raid_disks
; disk
++)
4600 if ((p
=conf
->disks
+ disk
)->rdev
== NULL
) {
4601 clear_bit(In_sync
, &rdev
->flags
);
4602 rdev
->raid_disk
= disk
;
4604 if (rdev
->saved_raid_disk
!= disk
)
4606 rcu_assign_pointer(p
->rdev
, rdev
);
4609 print_raid5_conf(conf
);
4613 static int raid5_resize(mddev_t
*mddev
, sector_t sectors
)
4615 /* no resync is happening, and there is enough space
4616 * on all devices, so we can resize.
4617 * We need to make sure resync covers any new space.
4618 * If the array is shrinking we should possibly wait until
4619 * any io in the removed space completes, but it hardly seems
4622 raid5_conf_t
*conf
= mddev_to_conf(mddev
);
4624 sectors
&= ~((sector_t
)mddev
->chunk_size
/512 - 1);
4625 mddev
->array_size
= (sectors
* (mddev
->raid_disks
-conf
->max_degraded
))>>1;
4626 set_capacity(mddev
->gendisk
, mddev
->array_size
<< 1);
4628 if (sectors
/2 > mddev
->size
&& mddev
->recovery_cp
== MaxSector
) {
4629 mddev
->recovery_cp
= mddev
->size
<< 1;
4630 set_bit(MD_RECOVERY_NEEDED
, &mddev
->recovery
);
4632 mddev
->size
= sectors
/2;
4633 mddev
->resync_max_sectors
= sectors
;
4637 #ifdef CONFIG_MD_RAID5_RESHAPE
4638 static int raid5_check_reshape(mddev_t
*mddev
)
4640 raid5_conf_t
*conf
= mddev_to_conf(mddev
);
4643 if (mddev
->delta_disks
< 0 ||
4644 mddev
->new_level
!= mddev
->level
)
4645 return -EINVAL
; /* Cannot shrink array or change level yet */
4646 if (mddev
->delta_disks
== 0)
4647 return 0; /* nothing to do */
4649 /* Can only proceed if there are plenty of stripe_heads.
4650 * We need a minimum of one full stripe,, and for sensible progress
4651 * it is best to have about 4 times that.
4652 * If we require 4 times, then the default 256 4K stripe_heads will
4653 * allow for chunk sizes up to 256K, which is probably OK.
4654 * If the chunk size is greater, user-space should request more
4655 * stripe_heads first.
4657 if ((mddev
->chunk_size
/ STRIPE_SIZE
) * 4 > conf
->max_nr_stripes
||
4658 (mddev
->new_chunk
/ STRIPE_SIZE
) * 4 > conf
->max_nr_stripes
) {
4659 printk(KERN_WARNING
"raid5: reshape: not enough stripes. Needed %lu\n",
4660 (mddev
->chunk_size
/ STRIPE_SIZE
)*4);
4664 err
= resize_stripes(conf
, conf
->raid_disks
+ mddev
->delta_disks
);
4668 if (mddev
->degraded
> conf
->max_degraded
)
4670 /* looks like we might be able to manage this */
4674 static int raid5_start_reshape(mddev_t
*mddev
)
4676 raid5_conf_t
*conf
= mddev_to_conf(mddev
);
4678 struct list_head
*rtmp
;
4680 int added_devices
= 0;
4681 unsigned long flags
;
4683 if (test_bit(MD_RECOVERY_RUNNING
, &mddev
->recovery
))
4686 rdev_for_each(rdev
, rtmp
, mddev
)
4687 if (rdev
->raid_disk
< 0 &&
4688 !test_bit(Faulty
, &rdev
->flags
))
4691 if (spares
- mddev
->degraded
< mddev
->delta_disks
- conf
->max_degraded
)
4692 /* Not enough devices even to make a degraded array
4697 atomic_set(&conf
->reshape_stripes
, 0);
4698 spin_lock_irq(&conf
->device_lock
);
4699 conf
->previous_raid_disks
= conf
->raid_disks
;
4700 conf
->raid_disks
+= mddev
->delta_disks
;
4701 conf
->expand_progress
= 0;
4702 conf
->expand_lo
= 0;
4703 spin_unlock_irq(&conf
->device_lock
);
4705 /* Add some new drives, as many as will fit.
4706 * We know there are enough to make the newly sized array work.
4708 rdev_for_each(rdev
, rtmp
, mddev
)
4709 if (rdev
->raid_disk
< 0 &&
4710 !test_bit(Faulty
, &rdev
->flags
)) {
4711 if (raid5_add_disk(mddev
, rdev
)) {
4713 set_bit(In_sync
, &rdev
->flags
);
4715 rdev
->recovery_offset
= 0;
4716 sprintf(nm
, "rd%d", rdev
->raid_disk
);
4717 if (sysfs_create_link(&mddev
->kobj
,
4720 "raid5: failed to create "
4721 " link %s for %s\n",
4727 spin_lock_irqsave(&conf
->device_lock
, flags
);
4728 mddev
->degraded
= (conf
->raid_disks
- conf
->previous_raid_disks
) - added_devices
;
4729 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
4730 mddev
->raid_disks
= conf
->raid_disks
;
4731 mddev
->reshape_position
= 0;
4732 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
4734 clear_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
);
4735 clear_bit(MD_RECOVERY_CHECK
, &mddev
->recovery
);
4736 set_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
);
4737 set_bit(MD_RECOVERY_RUNNING
, &mddev
->recovery
);
4738 mddev
->sync_thread
= md_register_thread(md_do_sync
, mddev
,
4740 if (!mddev
->sync_thread
) {
4741 mddev
->recovery
= 0;
4742 spin_lock_irq(&conf
->device_lock
);
4743 mddev
->raid_disks
= conf
->raid_disks
= conf
->previous_raid_disks
;
4744 conf
->expand_progress
= MaxSector
;
4745 spin_unlock_irq(&conf
->device_lock
);
4748 md_wakeup_thread(mddev
->sync_thread
);
4749 md_new_event(mddev
);
4754 static void end_reshape(raid5_conf_t
*conf
)
4756 struct block_device
*bdev
;
4758 if (!test_bit(MD_RECOVERY_INTR
, &conf
->mddev
->recovery
)) {
4759 conf
->mddev
->array_size
= conf
->mddev
->size
*
4760 (conf
->raid_disks
- conf
->max_degraded
);
4761 set_capacity(conf
->mddev
->gendisk
, conf
->mddev
->array_size
<< 1);
4762 conf
->mddev
->changed
= 1;
4764 bdev
= bdget_disk(conf
->mddev
->gendisk
, 0);
4766 mutex_lock(&bdev
->bd_inode
->i_mutex
);
4767 i_size_write(bdev
->bd_inode
, (loff_t
)conf
->mddev
->array_size
<< 10);
4768 mutex_unlock(&bdev
->bd_inode
->i_mutex
);
4771 spin_lock_irq(&conf
->device_lock
);
4772 conf
->expand_progress
= MaxSector
;
4773 spin_unlock_irq(&conf
->device_lock
);
4774 conf
->mddev
->reshape_position
= MaxSector
;
4776 /* read-ahead size must cover two whole stripes, which is
4777 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4780 int data_disks
= conf
->previous_raid_disks
- conf
->max_degraded
;
4781 int stripe
= data_disks
*
4782 (conf
->mddev
->chunk_size
/ PAGE_SIZE
);
4783 if (conf
->mddev
->queue
->backing_dev_info
.ra_pages
< 2 * stripe
)
4784 conf
->mddev
->queue
->backing_dev_info
.ra_pages
= 2 * stripe
;
4789 static void raid5_quiesce(mddev_t
*mddev
, int state
)
4791 raid5_conf_t
*conf
= mddev_to_conf(mddev
);
4794 case 2: /* resume for a suspend */
4795 wake_up(&conf
->wait_for_overlap
);
4798 case 1: /* stop all writes */
4799 spin_lock_irq(&conf
->device_lock
);
4801 wait_event_lock_irq(conf
->wait_for_stripe
,
4802 atomic_read(&conf
->active_stripes
) == 0 &&
4803 atomic_read(&conf
->active_aligned_reads
) == 0,
4804 conf
->device_lock
, /* nothing */);
4805 spin_unlock_irq(&conf
->device_lock
);
4808 case 0: /* re-enable writes */
4809 spin_lock_irq(&conf
->device_lock
);
4811 wake_up(&conf
->wait_for_stripe
);
4812 wake_up(&conf
->wait_for_overlap
);
4813 spin_unlock_irq(&conf
->device_lock
);
4818 static struct mdk_personality raid6_personality
=
4822 .owner
= THIS_MODULE
,
4823 .make_request
= make_request
,
4827 .error_handler
= error
,
4828 .hot_add_disk
= raid5_add_disk
,
4829 .hot_remove_disk
= raid5_remove_disk
,
4830 .spare_active
= raid5_spare_active
,
4831 .sync_request
= sync_request
,
4832 .resize
= raid5_resize
,
4833 #ifdef CONFIG_MD_RAID5_RESHAPE
4834 .check_reshape
= raid5_check_reshape
,
4835 .start_reshape
= raid5_start_reshape
,
4837 .quiesce
= raid5_quiesce
,
4839 static struct mdk_personality raid5_personality
=
4843 .owner
= THIS_MODULE
,
4844 .make_request
= make_request
,
4848 .error_handler
= error
,
4849 .hot_add_disk
= raid5_add_disk
,
4850 .hot_remove_disk
= raid5_remove_disk
,
4851 .spare_active
= raid5_spare_active
,
4852 .sync_request
= sync_request
,
4853 .resize
= raid5_resize
,
4854 #ifdef CONFIG_MD_RAID5_RESHAPE
4855 .check_reshape
= raid5_check_reshape
,
4856 .start_reshape
= raid5_start_reshape
,
4858 .quiesce
= raid5_quiesce
,
4861 static struct mdk_personality raid4_personality
=
4865 .owner
= THIS_MODULE
,
4866 .make_request
= make_request
,
4870 .error_handler
= error
,
4871 .hot_add_disk
= raid5_add_disk
,
4872 .hot_remove_disk
= raid5_remove_disk
,
4873 .spare_active
= raid5_spare_active
,
4874 .sync_request
= sync_request
,
4875 .resize
= raid5_resize
,
4876 #ifdef CONFIG_MD_RAID5_RESHAPE
4877 .check_reshape
= raid5_check_reshape
,
4878 .start_reshape
= raid5_start_reshape
,
4880 .quiesce
= raid5_quiesce
,
4883 static int __init
raid5_init(void)
4887 e
= raid6_select_algo();
4890 register_md_personality(&raid6_personality
);
4891 register_md_personality(&raid5_personality
);
4892 register_md_personality(&raid4_personality
);
4896 static void raid5_exit(void)
4898 unregister_md_personality(&raid6_personality
);
4899 unregister_md_personality(&raid5_personality
);
4900 unregister_md_personality(&raid4_personality
);
4903 module_init(raid5_init
);
4904 module_exit(raid5_exit
);
4905 MODULE_LICENSE("GPL");
4906 MODULE_ALIAS("md-personality-4"); /* RAID5 */
4907 MODULE_ALIAS("md-raid5");
4908 MODULE_ALIAS("md-raid4");
4909 MODULE_ALIAS("md-level-5");
4910 MODULE_ALIAS("md-level-4");
4911 MODULE_ALIAS("md-personality-8"); /* RAID6 */
4912 MODULE_ALIAS("md-raid6");
4913 MODULE_ALIAS("md-level-6");
4915 /* This used to be two separate modules, they were: */
4916 MODULE_ALIAS("raid5");
4917 MODULE_ALIAS("raid6");