Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux-2.6
[linux-2.6/linux-mips/linux-dm7025.git] / drivers / net / cassini.c
blob93e13636f8dda2fef5667cc544b99fb068f2ca17
1 /* cassini.c: Sun Microsystems Cassini(+) ethernet driver.
3 * Copyright (C) 2004 Sun Microsystems Inc.
4 * Copyright (C) 2003 Adrian Sun (asun@darksunrising.com)
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License as
8 * published by the Free Software Foundation; either version 2 of the
9 * License, or (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
19 * 02111-1307, USA.
21 * This driver uses the sungem driver (c) David Miller
22 * (davem@redhat.com) as its basis.
24 * The cassini chip has a number of features that distinguish it from
25 * the gem chip:
26 * 4 transmit descriptor rings that are used for either QoS (VLAN) or
27 * load balancing (non-VLAN mode)
28 * batching of multiple packets
29 * multiple CPU dispatching
30 * page-based RX descriptor engine with separate completion rings
31 * Gigabit support (GMII and PCS interface)
32 * MIF link up/down detection works
34 * RX is handled by page sized buffers that are attached as fragments to
35 * the skb. here's what's done:
36 * -- driver allocates pages at a time and keeps reference counts
37 * on them.
38 * -- the upper protocol layers assume that the header is in the skb
39 * itself. as a result, cassini will copy a small amount (64 bytes)
40 * to make them happy.
41 * -- driver appends the rest of the data pages as frags to skbuffs
42 * and increments the reference count
43 * -- on page reclamation, the driver swaps the page with a spare page.
44 * if that page is still in use, it frees its reference to that page,
45 * and allocates a new page for use. otherwise, it just recycles the
46 * the page.
48 * NOTE: cassini can parse the header. however, it's not worth it
49 * as long as the network stack requires a header copy.
51 * TX has 4 queues. currently these queues are used in a round-robin
52 * fashion for load balancing. They can also be used for QoS. for that
53 * to work, however, QoS information needs to be exposed down to the driver
54 * level so that subqueues get targetted to particular transmit rings.
55 * alternatively, the queues can be configured via use of the all-purpose
56 * ioctl.
58 * RX DATA: the rx completion ring has all the info, but the rx desc
59 * ring has all of the data. RX can conceivably come in under multiple
60 * interrupts, but the INT# assignment needs to be set up properly by
61 * the BIOS and conveyed to the driver. PCI BIOSes don't know how to do
62 * that. also, the two descriptor rings are designed to distinguish between
63 * encrypted and non-encrypted packets, but we use them for buffering
64 * instead.
66 * by default, the selective clear mask is set up to process rx packets.
70 #include <linux/module.h>
71 #include <linux/kernel.h>
72 #include <linux/types.h>
73 #include <linux/compiler.h>
74 #include <linux/slab.h>
75 #include <linux/delay.h>
76 #include <linux/init.h>
77 #include <linux/ioport.h>
78 #include <linux/pci.h>
79 #include <linux/mm.h>
80 #include <linux/highmem.h>
81 #include <linux/list.h>
82 #include <linux/dma-mapping.h>
84 #include <linux/netdevice.h>
85 #include <linux/etherdevice.h>
86 #include <linux/skbuff.h>
87 #include <linux/ethtool.h>
88 #include <linux/crc32.h>
89 #include <linux/random.h>
90 #include <linux/mii.h>
91 #include <linux/ip.h>
92 #include <linux/tcp.h>
93 #include <linux/mutex.h>
95 #include <net/checksum.h>
97 #include <asm/atomic.h>
98 #include <asm/system.h>
99 #include <asm/io.h>
100 #include <asm/byteorder.h>
101 #include <asm/uaccess.h>
103 #define cas_page_map(x) kmap_atomic((x), KM_SKB_DATA_SOFTIRQ)
104 #define cas_page_unmap(x) kunmap_atomic((x), KM_SKB_DATA_SOFTIRQ)
105 #define CAS_NCPUS num_online_cpus()
107 #if defined(CONFIG_CASSINI_NAPI) && defined(HAVE_NETDEV_POLL)
108 #define USE_NAPI
109 #define cas_skb_release(x) netif_receive_skb(x)
110 #else
111 #define cas_skb_release(x) netif_rx(x)
112 #endif
114 /* select which firmware to use */
115 #define USE_HP_WORKAROUND
116 #define HP_WORKAROUND_DEFAULT /* select which firmware to use as default */
117 #define CAS_HP_ALT_FIRMWARE cas_prog_null /* alternate firmware */
119 #include "cassini.h"
121 #define USE_TX_COMPWB /* use completion writeback registers */
122 #define USE_CSMA_CD_PROTO /* standard CSMA/CD */
123 #define USE_RX_BLANK /* hw interrupt mitigation */
124 #undef USE_ENTROPY_DEV /* don't test for entropy device */
126 /* NOTE: these aren't useable unless PCI interrupts can be assigned.
127 * also, we need to make cp->lock finer-grained.
129 #undef USE_PCI_INTB
130 #undef USE_PCI_INTC
131 #undef USE_PCI_INTD
132 #undef USE_QOS
134 #undef USE_VPD_DEBUG /* debug vpd information if defined */
136 /* rx processing options */
137 #define USE_PAGE_ORDER /* specify to allocate large rx pages */
138 #define RX_DONT_BATCH 0 /* if 1, don't batch flows */
139 #define RX_COPY_ALWAYS 0 /* if 0, use frags */
140 #define RX_COPY_MIN 64 /* copy a little to make upper layers happy */
141 #undef RX_COUNT_BUFFERS /* define to calculate RX buffer stats */
143 #define DRV_MODULE_NAME "cassini"
144 #define PFX DRV_MODULE_NAME ": "
145 #define DRV_MODULE_VERSION "1.5"
146 #define DRV_MODULE_RELDATE "4 Jan 2008"
148 #define CAS_DEF_MSG_ENABLE \
149 (NETIF_MSG_DRV | \
150 NETIF_MSG_PROBE | \
151 NETIF_MSG_LINK | \
152 NETIF_MSG_TIMER | \
153 NETIF_MSG_IFDOWN | \
154 NETIF_MSG_IFUP | \
155 NETIF_MSG_RX_ERR | \
156 NETIF_MSG_TX_ERR)
158 /* length of time before we decide the hardware is borked,
159 * and dev->tx_timeout() should be called to fix the problem
161 #define CAS_TX_TIMEOUT (HZ)
162 #define CAS_LINK_TIMEOUT (22*HZ/10)
163 #define CAS_LINK_FAST_TIMEOUT (1)
165 /* timeout values for state changing. these specify the number
166 * of 10us delays to be used before giving up.
168 #define STOP_TRIES_PHY 1000
169 #define STOP_TRIES 5000
171 /* specify a minimum frame size to deal with some fifo issues
172 * max mtu == 2 * page size - ethernet header - 64 - swivel =
173 * 2 * page_size - 0x50
175 #define CAS_MIN_FRAME 97
176 #define CAS_1000MB_MIN_FRAME 255
177 #define CAS_MIN_MTU 60
178 #define CAS_MAX_MTU min(((cp->page_size << 1) - 0x50), 9000)
180 #if 1
182 * Eliminate these and use separate atomic counters for each, to
183 * avoid a race condition.
185 #else
186 #define CAS_RESET_MTU 1
187 #define CAS_RESET_ALL 2
188 #define CAS_RESET_SPARE 3
189 #endif
191 static char version[] __devinitdata =
192 DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
194 static int cassini_debug = -1; /* -1 == use CAS_DEF_MSG_ENABLE as value */
195 static int link_mode;
197 MODULE_AUTHOR("Adrian Sun (asun@darksunrising.com)");
198 MODULE_DESCRIPTION("Sun Cassini(+) ethernet driver");
199 MODULE_LICENSE("GPL");
200 module_param(cassini_debug, int, 0);
201 MODULE_PARM_DESC(cassini_debug, "Cassini bitmapped debugging message enable value");
202 module_param(link_mode, int, 0);
203 MODULE_PARM_DESC(link_mode, "default link mode");
206 * Work around for a PCS bug in which the link goes down due to the chip
207 * being confused and never showing a link status of "up."
209 #define DEFAULT_LINKDOWN_TIMEOUT 5
211 * Value in seconds, for user input.
213 static int linkdown_timeout = DEFAULT_LINKDOWN_TIMEOUT;
214 module_param(linkdown_timeout, int, 0);
215 MODULE_PARM_DESC(linkdown_timeout,
216 "min reset interval in sec. for PCS linkdown issue; disabled if not positive");
219 * value in 'ticks' (units used by jiffies). Set when we init the
220 * module because 'HZ' in actually a function call on some flavors of
221 * Linux. This will default to DEFAULT_LINKDOWN_TIMEOUT * HZ.
223 static int link_transition_timeout;
227 static u16 link_modes[] __devinitdata = {
228 BMCR_ANENABLE, /* 0 : autoneg */
229 0, /* 1 : 10bt half duplex */
230 BMCR_SPEED100, /* 2 : 100bt half duplex */
231 BMCR_FULLDPLX, /* 3 : 10bt full duplex */
232 BMCR_SPEED100|BMCR_FULLDPLX, /* 4 : 100bt full duplex */
233 CAS_BMCR_SPEED1000|BMCR_FULLDPLX /* 5 : 1000bt full duplex */
236 static struct pci_device_id cas_pci_tbl[] __devinitdata = {
237 { PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_CASSINI,
238 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
239 { PCI_VENDOR_ID_NS, PCI_DEVICE_ID_NS_SATURN,
240 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
241 { 0, }
244 MODULE_DEVICE_TABLE(pci, cas_pci_tbl);
246 static void cas_set_link_modes(struct cas *cp);
248 static inline void cas_lock_tx(struct cas *cp)
250 int i;
252 for (i = 0; i < N_TX_RINGS; i++)
253 spin_lock(&cp->tx_lock[i]);
256 static inline void cas_lock_all(struct cas *cp)
258 spin_lock_irq(&cp->lock);
259 cas_lock_tx(cp);
262 /* WTZ: QA was finding deadlock problems with the previous
263 * versions after long test runs with multiple cards per machine.
264 * See if replacing cas_lock_all with safer versions helps. The
265 * symptoms QA is reporting match those we'd expect if interrupts
266 * aren't being properly restored, and we fixed a previous deadlock
267 * with similar symptoms by using save/restore versions in other
268 * places.
270 #define cas_lock_all_save(cp, flags) \
271 do { \
272 struct cas *xxxcp = (cp); \
273 spin_lock_irqsave(&xxxcp->lock, flags); \
274 cas_lock_tx(xxxcp); \
275 } while (0)
277 static inline void cas_unlock_tx(struct cas *cp)
279 int i;
281 for (i = N_TX_RINGS; i > 0; i--)
282 spin_unlock(&cp->tx_lock[i - 1]);
285 static inline void cas_unlock_all(struct cas *cp)
287 cas_unlock_tx(cp);
288 spin_unlock_irq(&cp->lock);
291 #define cas_unlock_all_restore(cp, flags) \
292 do { \
293 struct cas *xxxcp = (cp); \
294 cas_unlock_tx(xxxcp); \
295 spin_unlock_irqrestore(&xxxcp->lock, flags); \
296 } while (0)
298 static void cas_disable_irq(struct cas *cp, const int ring)
300 /* Make sure we won't get any more interrupts */
301 if (ring == 0) {
302 writel(0xFFFFFFFF, cp->regs + REG_INTR_MASK);
303 return;
306 /* disable completion interrupts and selectively mask */
307 if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
308 switch (ring) {
309 #if defined (USE_PCI_INTB) || defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
310 #ifdef USE_PCI_INTB
311 case 1:
312 #endif
313 #ifdef USE_PCI_INTC
314 case 2:
315 #endif
316 #ifdef USE_PCI_INTD
317 case 3:
318 #endif
319 writel(INTRN_MASK_CLEAR_ALL | INTRN_MASK_RX_EN,
320 cp->regs + REG_PLUS_INTRN_MASK(ring));
321 break;
322 #endif
323 default:
324 writel(INTRN_MASK_CLEAR_ALL, cp->regs +
325 REG_PLUS_INTRN_MASK(ring));
326 break;
331 static inline void cas_mask_intr(struct cas *cp)
333 int i;
335 for (i = 0; i < N_RX_COMP_RINGS; i++)
336 cas_disable_irq(cp, i);
339 static void cas_enable_irq(struct cas *cp, const int ring)
341 if (ring == 0) { /* all but TX_DONE */
342 writel(INTR_TX_DONE, cp->regs + REG_INTR_MASK);
343 return;
346 if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
347 switch (ring) {
348 #if defined (USE_PCI_INTB) || defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
349 #ifdef USE_PCI_INTB
350 case 1:
351 #endif
352 #ifdef USE_PCI_INTC
353 case 2:
354 #endif
355 #ifdef USE_PCI_INTD
356 case 3:
357 #endif
358 writel(INTRN_MASK_RX_EN, cp->regs +
359 REG_PLUS_INTRN_MASK(ring));
360 break;
361 #endif
362 default:
363 break;
368 static inline void cas_unmask_intr(struct cas *cp)
370 int i;
372 for (i = 0; i < N_RX_COMP_RINGS; i++)
373 cas_enable_irq(cp, i);
376 static inline void cas_entropy_gather(struct cas *cp)
378 #ifdef USE_ENTROPY_DEV
379 if ((cp->cas_flags & CAS_FLAG_ENTROPY_DEV) == 0)
380 return;
382 batch_entropy_store(readl(cp->regs + REG_ENTROPY_IV),
383 readl(cp->regs + REG_ENTROPY_IV),
384 sizeof(uint64_t)*8);
385 #endif
388 static inline void cas_entropy_reset(struct cas *cp)
390 #ifdef USE_ENTROPY_DEV
391 if ((cp->cas_flags & CAS_FLAG_ENTROPY_DEV) == 0)
392 return;
394 writel(BIM_LOCAL_DEV_PAD | BIM_LOCAL_DEV_PROM | BIM_LOCAL_DEV_EXT,
395 cp->regs + REG_BIM_LOCAL_DEV_EN);
396 writeb(ENTROPY_RESET_STC_MODE, cp->regs + REG_ENTROPY_RESET);
397 writeb(0x55, cp->regs + REG_ENTROPY_RAND_REG);
399 /* if we read back 0x0, we don't have an entropy device */
400 if (readb(cp->regs + REG_ENTROPY_RAND_REG) == 0)
401 cp->cas_flags &= ~CAS_FLAG_ENTROPY_DEV;
402 #endif
405 /* access to the phy. the following assumes that we've initialized the MIF to
406 * be in frame rather than bit-bang mode
408 static u16 cas_phy_read(struct cas *cp, int reg)
410 u32 cmd;
411 int limit = STOP_TRIES_PHY;
413 cmd = MIF_FRAME_ST | MIF_FRAME_OP_READ;
414 cmd |= CAS_BASE(MIF_FRAME_PHY_ADDR, cp->phy_addr);
415 cmd |= CAS_BASE(MIF_FRAME_REG_ADDR, reg);
416 cmd |= MIF_FRAME_TURN_AROUND_MSB;
417 writel(cmd, cp->regs + REG_MIF_FRAME);
419 /* poll for completion */
420 while (limit-- > 0) {
421 udelay(10);
422 cmd = readl(cp->regs + REG_MIF_FRAME);
423 if (cmd & MIF_FRAME_TURN_AROUND_LSB)
424 return (cmd & MIF_FRAME_DATA_MASK);
426 return 0xFFFF; /* -1 */
429 static int cas_phy_write(struct cas *cp, int reg, u16 val)
431 int limit = STOP_TRIES_PHY;
432 u32 cmd;
434 cmd = MIF_FRAME_ST | MIF_FRAME_OP_WRITE;
435 cmd |= CAS_BASE(MIF_FRAME_PHY_ADDR, cp->phy_addr);
436 cmd |= CAS_BASE(MIF_FRAME_REG_ADDR, reg);
437 cmd |= MIF_FRAME_TURN_AROUND_MSB;
438 cmd |= val & MIF_FRAME_DATA_MASK;
439 writel(cmd, cp->regs + REG_MIF_FRAME);
441 /* poll for completion */
442 while (limit-- > 0) {
443 udelay(10);
444 cmd = readl(cp->regs + REG_MIF_FRAME);
445 if (cmd & MIF_FRAME_TURN_AROUND_LSB)
446 return 0;
448 return -1;
451 static void cas_phy_powerup(struct cas *cp)
453 u16 ctl = cas_phy_read(cp, MII_BMCR);
455 if ((ctl & BMCR_PDOWN) == 0)
456 return;
457 ctl &= ~BMCR_PDOWN;
458 cas_phy_write(cp, MII_BMCR, ctl);
461 static void cas_phy_powerdown(struct cas *cp)
463 u16 ctl = cas_phy_read(cp, MII_BMCR);
465 if (ctl & BMCR_PDOWN)
466 return;
467 ctl |= BMCR_PDOWN;
468 cas_phy_write(cp, MII_BMCR, ctl);
471 /* cp->lock held. note: the last put_page will free the buffer */
472 static int cas_page_free(struct cas *cp, cas_page_t *page)
474 pci_unmap_page(cp->pdev, page->dma_addr, cp->page_size,
475 PCI_DMA_FROMDEVICE);
476 __free_pages(page->buffer, cp->page_order);
477 kfree(page);
478 return 0;
481 #ifdef RX_COUNT_BUFFERS
482 #define RX_USED_ADD(x, y) ((x)->used += (y))
483 #define RX_USED_SET(x, y) ((x)->used = (y))
484 #else
485 #define RX_USED_ADD(x, y)
486 #define RX_USED_SET(x, y)
487 #endif
489 /* local page allocation routines for the receive buffers. jumbo pages
490 * require at least 8K contiguous and 8K aligned buffers.
492 static cas_page_t *cas_page_alloc(struct cas *cp, const gfp_t flags)
494 cas_page_t *page;
496 page = kmalloc(sizeof(cas_page_t), flags);
497 if (!page)
498 return NULL;
500 INIT_LIST_HEAD(&page->list);
501 RX_USED_SET(page, 0);
502 page->buffer = alloc_pages(flags, cp->page_order);
503 if (!page->buffer)
504 goto page_err;
505 page->dma_addr = pci_map_page(cp->pdev, page->buffer, 0,
506 cp->page_size, PCI_DMA_FROMDEVICE);
507 return page;
509 page_err:
510 kfree(page);
511 return NULL;
514 /* initialize spare pool of rx buffers, but allocate during the open */
515 static void cas_spare_init(struct cas *cp)
517 spin_lock(&cp->rx_inuse_lock);
518 INIT_LIST_HEAD(&cp->rx_inuse_list);
519 spin_unlock(&cp->rx_inuse_lock);
521 spin_lock(&cp->rx_spare_lock);
522 INIT_LIST_HEAD(&cp->rx_spare_list);
523 cp->rx_spares_needed = RX_SPARE_COUNT;
524 spin_unlock(&cp->rx_spare_lock);
527 /* used on close. free all the spare buffers. */
528 static void cas_spare_free(struct cas *cp)
530 struct list_head list, *elem, *tmp;
532 /* free spare buffers */
533 INIT_LIST_HEAD(&list);
534 spin_lock(&cp->rx_spare_lock);
535 list_splice_init(&cp->rx_spare_list, &list);
536 spin_unlock(&cp->rx_spare_lock);
537 list_for_each_safe(elem, tmp, &list) {
538 cas_page_free(cp, list_entry(elem, cas_page_t, list));
541 INIT_LIST_HEAD(&list);
542 #if 1
544 * Looks like Adrian had protected this with a different
545 * lock than used everywhere else to manipulate this list.
547 spin_lock(&cp->rx_inuse_lock);
548 list_splice_init(&cp->rx_inuse_list, &list);
549 spin_unlock(&cp->rx_inuse_lock);
550 #else
551 spin_lock(&cp->rx_spare_lock);
552 list_splice_init(&cp->rx_inuse_list, &list);
553 spin_unlock(&cp->rx_spare_lock);
554 #endif
555 list_for_each_safe(elem, tmp, &list) {
556 cas_page_free(cp, list_entry(elem, cas_page_t, list));
560 /* replenish spares if needed */
561 static void cas_spare_recover(struct cas *cp, const gfp_t flags)
563 struct list_head list, *elem, *tmp;
564 int needed, i;
566 /* check inuse list. if we don't need any more free buffers,
567 * just free it
570 /* make a local copy of the list */
571 INIT_LIST_HEAD(&list);
572 spin_lock(&cp->rx_inuse_lock);
573 list_splice_init(&cp->rx_inuse_list, &list);
574 spin_unlock(&cp->rx_inuse_lock);
576 list_for_each_safe(elem, tmp, &list) {
577 cas_page_t *page = list_entry(elem, cas_page_t, list);
579 if (page_count(page->buffer) > 1)
580 continue;
582 list_del(elem);
583 spin_lock(&cp->rx_spare_lock);
584 if (cp->rx_spares_needed > 0) {
585 list_add(elem, &cp->rx_spare_list);
586 cp->rx_spares_needed--;
587 spin_unlock(&cp->rx_spare_lock);
588 } else {
589 spin_unlock(&cp->rx_spare_lock);
590 cas_page_free(cp, page);
594 /* put any inuse buffers back on the list */
595 if (!list_empty(&list)) {
596 spin_lock(&cp->rx_inuse_lock);
597 list_splice(&list, &cp->rx_inuse_list);
598 spin_unlock(&cp->rx_inuse_lock);
601 spin_lock(&cp->rx_spare_lock);
602 needed = cp->rx_spares_needed;
603 spin_unlock(&cp->rx_spare_lock);
604 if (!needed)
605 return;
607 /* we still need spares, so try to allocate some */
608 INIT_LIST_HEAD(&list);
609 i = 0;
610 while (i < needed) {
611 cas_page_t *spare = cas_page_alloc(cp, flags);
612 if (!spare)
613 break;
614 list_add(&spare->list, &list);
615 i++;
618 spin_lock(&cp->rx_spare_lock);
619 list_splice(&list, &cp->rx_spare_list);
620 cp->rx_spares_needed -= i;
621 spin_unlock(&cp->rx_spare_lock);
624 /* pull a page from the list. */
625 static cas_page_t *cas_page_dequeue(struct cas *cp)
627 struct list_head *entry;
628 int recover;
630 spin_lock(&cp->rx_spare_lock);
631 if (list_empty(&cp->rx_spare_list)) {
632 /* try to do a quick recovery */
633 spin_unlock(&cp->rx_spare_lock);
634 cas_spare_recover(cp, GFP_ATOMIC);
635 spin_lock(&cp->rx_spare_lock);
636 if (list_empty(&cp->rx_spare_list)) {
637 if (netif_msg_rx_err(cp))
638 printk(KERN_ERR "%s: no spare buffers "
639 "available.\n", cp->dev->name);
640 spin_unlock(&cp->rx_spare_lock);
641 return NULL;
645 entry = cp->rx_spare_list.next;
646 list_del(entry);
647 recover = ++cp->rx_spares_needed;
648 spin_unlock(&cp->rx_spare_lock);
650 /* trigger the timer to do the recovery */
651 if ((recover & (RX_SPARE_RECOVER_VAL - 1)) == 0) {
652 #if 1
653 atomic_inc(&cp->reset_task_pending);
654 atomic_inc(&cp->reset_task_pending_spare);
655 schedule_work(&cp->reset_task);
656 #else
657 atomic_set(&cp->reset_task_pending, CAS_RESET_SPARE);
658 schedule_work(&cp->reset_task);
659 #endif
661 return list_entry(entry, cas_page_t, list);
665 static void cas_mif_poll(struct cas *cp, const int enable)
667 u32 cfg;
669 cfg = readl(cp->regs + REG_MIF_CFG);
670 cfg &= (MIF_CFG_MDIO_0 | MIF_CFG_MDIO_1);
672 if (cp->phy_type & CAS_PHY_MII_MDIO1)
673 cfg |= MIF_CFG_PHY_SELECT;
675 /* poll and interrupt on link status change. */
676 if (enable) {
677 cfg |= MIF_CFG_POLL_EN;
678 cfg |= CAS_BASE(MIF_CFG_POLL_REG, MII_BMSR);
679 cfg |= CAS_BASE(MIF_CFG_POLL_PHY, cp->phy_addr);
681 writel((enable) ? ~(BMSR_LSTATUS | BMSR_ANEGCOMPLETE) : 0xFFFF,
682 cp->regs + REG_MIF_MASK);
683 writel(cfg, cp->regs + REG_MIF_CFG);
686 /* Must be invoked under cp->lock */
687 static void cas_begin_auto_negotiation(struct cas *cp, struct ethtool_cmd *ep)
689 u16 ctl;
690 #if 1
691 int lcntl;
692 int changed = 0;
693 int oldstate = cp->lstate;
694 int link_was_not_down = !(oldstate == link_down);
695 #endif
696 /* Setup link parameters */
697 if (!ep)
698 goto start_aneg;
699 lcntl = cp->link_cntl;
700 if (ep->autoneg == AUTONEG_ENABLE)
701 cp->link_cntl = BMCR_ANENABLE;
702 else {
703 cp->link_cntl = 0;
704 if (ep->speed == SPEED_100)
705 cp->link_cntl |= BMCR_SPEED100;
706 else if (ep->speed == SPEED_1000)
707 cp->link_cntl |= CAS_BMCR_SPEED1000;
708 if (ep->duplex == DUPLEX_FULL)
709 cp->link_cntl |= BMCR_FULLDPLX;
711 #if 1
712 changed = (lcntl != cp->link_cntl);
713 #endif
714 start_aneg:
715 if (cp->lstate == link_up) {
716 printk(KERN_INFO "%s: PCS link down.\n",
717 cp->dev->name);
718 } else {
719 if (changed) {
720 printk(KERN_INFO "%s: link configuration changed\n",
721 cp->dev->name);
724 cp->lstate = link_down;
725 cp->link_transition = LINK_TRANSITION_LINK_DOWN;
726 if (!cp->hw_running)
727 return;
728 #if 1
730 * WTZ: If the old state was link_up, we turn off the carrier
731 * to replicate everything we do elsewhere on a link-down
732 * event when we were already in a link-up state..
734 if (oldstate == link_up)
735 netif_carrier_off(cp->dev);
736 if (changed && link_was_not_down) {
738 * WTZ: This branch will simply schedule a full reset after
739 * we explicitly changed link modes in an ioctl. See if this
740 * fixes the link-problems we were having for forced mode.
742 atomic_inc(&cp->reset_task_pending);
743 atomic_inc(&cp->reset_task_pending_all);
744 schedule_work(&cp->reset_task);
745 cp->timer_ticks = 0;
746 mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT);
747 return;
749 #endif
750 if (cp->phy_type & CAS_PHY_SERDES) {
751 u32 val = readl(cp->regs + REG_PCS_MII_CTRL);
753 if (cp->link_cntl & BMCR_ANENABLE) {
754 val |= (PCS_MII_RESTART_AUTONEG | PCS_MII_AUTONEG_EN);
755 cp->lstate = link_aneg;
756 } else {
757 if (cp->link_cntl & BMCR_FULLDPLX)
758 val |= PCS_MII_CTRL_DUPLEX;
759 val &= ~PCS_MII_AUTONEG_EN;
760 cp->lstate = link_force_ok;
762 cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
763 writel(val, cp->regs + REG_PCS_MII_CTRL);
765 } else {
766 cas_mif_poll(cp, 0);
767 ctl = cas_phy_read(cp, MII_BMCR);
768 ctl &= ~(BMCR_FULLDPLX | BMCR_SPEED100 |
769 CAS_BMCR_SPEED1000 | BMCR_ANENABLE);
770 ctl |= cp->link_cntl;
771 if (ctl & BMCR_ANENABLE) {
772 ctl |= BMCR_ANRESTART;
773 cp->lstate = link_aneg;
774 } else {
775 cp->lstate = link_force_ok;
777 cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
778 cas_phy_write(cp, MII_BMCR, ctl);
779 cas_mif_poll(cp, 1);
782 cp->timer_ticks = 0;
783 mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT);
786 /* Must be invoked under cp->lock. */
787 static int cas_reset_mii_phy(struct cas *cp)
789 int limit = STOP_TRIES_PHY;
790 u16 val;
792 cas_phy_write(cp, MII_BMCR, BMCR_RESET);
793 udelay(100);
794 while (limit--) {
795 val = cas_phy_read(cp, MII_BMCR);
796 if ((val & BMCR_RESET) == 0)
797 break;
798 udelay(10);
800 return (limit <= 0);
803 static void cas_saturn_firmware_load(struct cas *cp)
805 cas_saturn_patch_t *patch = cas_saturn_patch;
807 cas_phy_powerdown(cp);
809 /* expanded memory access mode */
810 cas_phy_write(cp, DP83065_MII_MEM, 0x0);
812 /* pointer configuration for new firmware */
813 cas_phy_write(cp, DP83065_MII_REGE, 0x8ff9);
814 cas_phy_write(cp, DP83065_MII_REGD, 0xbd);
815 cas_phy_write(cp, DP83065_MII_REGE, 0x8ffa);
816 cas_phy_write(cp, DP83065_MII_REGD, 0x82);
817 cas_phy_write(cp, DP83065_MII_REGE, 0x8ffb);
818 cas_phy_write(cp, DP83065_MII_REGD, 0x0);
819 cas_phy_write(cp, DP83065_MII_REGE, 0x8ffc);
820 cas_phy_write(cp, DP83065_MII_REGD, 0x39);
822 /* download new firmware */
823 cas_phy_write(cp, DP83065_MII_MEM, 0x1);
824 cas_phy_write(cp, DP83065_MII_REGE, patch->addr);
825 while (patch->addr) {
826 cas_phy_write(cp, DP83065_MII_REGD, patch->val);
827 patch++;
830 /* enable firmware */
831 cas_phy_write(cp, DP83065_MII_REGE, 0x8ff8);
832 cas_phy_write(cp, DP83065_MII_REGD, 0x1);
836 /* phy initialization */
837 static void cas_phy_init(struct cas *cp)
839 u16 val;
841 /* if we're in MII/GMII mode, set up phy */
842 if (CAS_PHY_MII(cp->phy_type)) {
843 writel(PCS_DATAPATH_MODE_MII,
844 cp->regs + REG_PCS_DATAPATH_MODE);
846 cas_mif_poll(cp, 0);
847 cas_reset_mii_phy(cp); /* take out of isolate mode */
849 if (PHY_LUCENT_B0 == cp->phy_id) {
850 /* workaround link up/down issue with lucent */
851 cas_phy_write(cp, LUCENT_MII_REG, 0x8000);
852 cas_phy_write(cp, MII_BMCR, 0x00f1);
853 cas_phy_write(cp, LUCENT_MII_REG, 0x0);
855 } else if (PHY_BROADCOM_B0 == (cp->phy_id & 0xFFFFFFFC)) {
856 /* workarounds for broadcom phy */
857 cas_phy_write(cp, BROADCOM_MII_REG8, 0x0C20);
858 cas_phy_write(cp, BROADCOM_MII_REG7, 0x0012);
859 cas_phy_write(cp, BROADCOM_MII_REG5, 0x1804);
860 cas_phy_write(cp, BROADCOM_MII_REG7, 0x0013);
861 cas_phy_write(cp, BROADCOM_MII_REG5, 0x1204);
862 cas_phy_write(cp, BROADCOM_MII_REG7, 0x8006);
863 cas_phy_write(cp, BROADCOM_MII_REG5, 0x0132);
864 cas_phy_write(cp, BROADCOM_MII_REG7, 0x8006);
865 cas_phy_write(cp, BROADCOM_MII_REG5, 0x0232);
866 cas_phy_write(cp, BROADCOM_MII_REG7, 0x201F);
867 cas_phy_write(cp, BROADCOM_MII_REG5, 0x0A20);
869 } else if (PHY_BROADCOM_5411 == cp->phy_id) {
870 val = cas_phy_read(cp, BROADCOM_MII_REG4);
871 val = cas_phy_read(cp, BROADCOM_MII_REG4);
872 if (val & 0x0080) {
873 /* link workaround */
874 cas_phy_write(cp, BROADCOM_MII_REG4,
875 val & ~0x0080);
878 } else if (cp->cas_flags & CAS_FLAG_SATURN) {
879 writel((cp->phy_type & CAS_PHY_MII_MDIO0) ?
880 SATURN_PCFG_FSI : 0x0,
881 cp->regs + REG_SATURN_PCFG);
883 /* load firmware to address 10Mbps auto-negotiation
884 * issue. NOTE: this will need to be changed if the
885 * default firmware gets fixed.
887 if (PHY_NS_DP83065 == cp->phy_id) {
888 cas_saturn_firmware_load(cp);
890 cas_phy_powerup(cp);
893 /* advertise capabilities */
894 val = cas_phy_read(cp, MII_BMCR);
895 val &= ~BMCR_ANENABLE;
896 cas_phy_write(cp, MII_BMCR, val);
897 udelay(10);
899 cas_phy_write(cp, MII_ADVERTISE,
900 cas_phy_read(cp, MII_ADVERTISE) |
901 (ADVERTISE_10HALF | ADVERTISE_10FULL |
902 ADVERTISE_100HALF | ADVERTISE_100FULL |
903 CAS_ADVERTISE_PAUSE |
904 CAS_ADVERTISE_ASYM_PAUSE));
906 if (cp->cas_flags & CAS_FLAG_1000MB_CAP) {
907 /* make sure that we don't advertise half
908 * duplex to avoid a chip issue
910 val = cas_phy_read(cp, CAS_MII_1000_CTRL);
911 val &= ~CAS_ADVERTISE_1000HALF;
912 val |= CAS_ADVERTISE_1000FULL;
913 cas_phy_write(cp, CAS_MII_1000_CTRL, val);
916 } else {
917 /* reset pcs for serdes */
918 u32 val;
919 int limit;
921 writel(PCS_DATAPATH_MODE_SERDES,
922 cp->regs + REG_PCS_DATAPATH_MODE);
924 /* enable serdes pins on saturn */
925 if (cp->cas_flags & CAS_FLAG_SATURN)
926 writel(0, cp->regs + REG_SATURN_PCFG);
928 /* Reset PCS unit. */
929 val = readl(cp->regs + REG_PCS_MII_CTRL);
930 val |= PCS_MII_RESET;
931 writel(val, cp->regs + REG_PCS_MII_CTRL);
933 limit = STOP_TRIES;
934 while (limit-- > 0) {
935 udelay(10);
936 if ((readl(cp->regs + REG_PCS_MII_CTRL) &
937 PCS_MII_RESET) == 0)
938 break;
940 if (limit <= 0)
941 printk(KERN_WARNING "%s: PCS reset bit would not "
942 "clear [%08x].\n", cp->dev->name,
943 readl(cp->regs + REG_PCS_STATE_MACHINE));
945 /* Make sure PCS is disabled while changing advertisement
946 * configuration.
948 writel(0x0, cp->regs + REG_PCS_CFG);
950 /* Advertise all capabilities except half-duplex. */
951 val = readl(cp->regs + REG_PCS_MII_ADVERT);
952 val &= ~PCS_MII_ADVERT_HD;
953 val |= (PCS_MII_ADVERT_FD | PCS_MII_ADVERT_SYM_PAUSE |
954 PCS_MII_ADVERT_ASYM_PAUSE);
955 writel(val, cp->regs + REG_PCS_MII_ADVERT);
957 /* enable PCS */
958 writel(PCS_CFG_EN, cp->regs + REG_PCS_CFG);
960 /* pcs workaround: enable sync detect */
961 writel(PCS_SERDES_CTRL_SYNCD_EN,
962 cp->regs + REG_PCS_SERDES_CTRL);
967 static int cas_pcs_link_check(struct cas *cp)
969 u32 stat, state_machine;
970 int retval = 0;
972 /* The link status bit latches on zero, so you must
973 * read it twice in such a case to see a transition
974 * to the link being up.
976 stat = readl(cp->regs + REG_PCS_MII_STATUS);
977 if ((stat & PCS_MII_STATUS_LINK_STATUS) == 0)
978 stat = readl(cp->regs + REG_PCS_MII_STATUS);
980 /* The remote-fault indication is only valid
981 * when autoneg has completed.
983 if ((stat & (PCS_MII_STATUS_AUTONEG_COMP |
984 PCS_MII_STATUS_REMOTE_FAULT)) ==
985 (PCS_MII_STATUS_AUTONEG_COMP | PCS_MII_STATUS_REMOTE_FAULT)) {
986 if (netif_msg_link(cp))
987 printk(KERN_INFO "%s: PCS RemoteFault\n",
988 cp->dev->name);
991 /* work around link detection issue by querying the PCS state
992 * machine directly.
994 state_machine = readl(cp->regs + REG_PCS_STATE_MACHINE);
995 if ((state_machine & PCS_SM_LINK_STATE_MASK) != SM_LINK_STATE_UP) {
996 stat &= ~PCS_MII_STATUS_LINK_STATUS;
997 } else if (state_machine & PCS_SM_WORD_SYNC_STATE_MASK) {
998 stat |= PCS_MII_STATUS_LINK_STATUS;
1001 if (stat & PCS_MII_STATUS_LINK_STATUS) {
1002 if (cp->lstate != link_up) {
1003 if (cp->opened) {
1004 cp->lstate = link_up;
1005 cp->link_transition = LINK_TRANSITION_LINK_UP;
1007 cas_set_link_modes(cp);
1008 netif_carrier_on(cp->dev);
1011 } else if (cp->lstate == link_up) {
1012 cp->lstate = link_down;
1013 if (link_transition_timeout != 0 &&
1014 cp->link_transition != LINK_TRANSITION_REQUESTED_RESET &&
1015 !cp->link_transition_jiffies_valid) {
1017 * force a reset, as a workaround for the
1018 * link-failure problem. May want to move this to a
1019 * point a bit earlier in the sequence. If we had
1020 * generated a reset a short time ago, we'll wait for
1021 * the link timer to check the status until a
1022 * timer expires (link_transistion_jiffies_valid is
1023 * true when the timer is running.) Instead of using
1024 * a system timer, we just do a check whenever the
1025 * link timer is running - this clears the flag after
1026 * a suitable delay.
1028 retval = 1;
1029 cp->link_transition = LINK_TRANSITION_REQUESTED_RESET;
1030 cp->link_transition_jiffies = jiffies;
1031 cp->link_transition_jiffies_valid = 1;
1032 } else {
1033 cp->link_transition = LINK_TRANSITION_ON_FAILURE;
1035 netif_carrier_off(cp->dev);
1036 if (cp->opened && netif_msg_link(cp)) {
1037 printk(KERN_INFO "%s: PCS link down.\n",
1038 cp->dev->name);
1041 /* Cassini only: if you force a mode, there can be
1042 * sync problems on link down. to fix that, the following
1043 * things need to be checked:
1044 * 1) read serialink state register
1045 * 2) read pcs status register to verify link down.
1046 * 3) if link down and serial link == 0x03, then you need
1047 * to global reset the chip.
1049 if ((cp->cas_flags & CAS_FLAG_REG_PLUS) == 0) {
1050 /* should check to see if we're in a forced mode */
1051 stat = readl(cp->regs + REG_PCS_SERDES_STATE);
1052 if (stat == 0x03)
1053 return 1;
1055 } else if (cp->lstate == link_down) {
1056 if (link_transition_timeout != 0 &&
1057 cp->link_transition != LINK_TRANSITION_REQUESTED_RESET &&
1058 !cp->link_transition_jiffies_valid) {
1059 /* force a reset, as a workaround for the
1060 * link-failure problem. May want to move
1061 * this to a point a bit earlier in the
1062 * sequence.
1064 retval = 1;
1065 cp->link_transition = LINK_TRANSITION_REQUESTED_RESET;
1066 cp->link_transition_jiffies = jiffies;
1067 cp->link_transition_jiffies_valid = 1;
1068 } else {
1069 cp->link_transition = LINK_TRANSITION_STILL_FAILED;
1073 return retval;
1076 static int cas_pcs_interrupt(struct net_device *dev,
1077 struct cas *cp, u32 status)
1079 u32 stat = readl(cp->regs + REG_PCS_INTR_STATUS);
1081 if ((stat & PCS_INTR_STATUS_LINK_CHANGE) == 0)
1082 return 0;
1083 return cas_pcs_link_check(cp);
1086 static int cas_txmac_interrupt(struct net_device *dev,
1087 struct cas *cp, u32 status)
1089 u32 txmac_stat = readl(cp->regs + REG_MAC_TX_STATUS);
1091 if (!txmac_stat)
1092 return 0;
1094 if (netif_msg_intr(cp))
1095 printk(KERN_DEBUG "%s: txmac interrupt, txmac_stat: 0x%x\n",
1096 cp->dev->name, txmac_stat);
1098 /* Defer timer expiration is quite normal,
1099 * don't even log the event.
1101 if ((txmac_stat & MAC_TX_DEFER_TIMER) &&
1102 !(txmac_stat & ~MAC_TX_DEFER_TIMER))
1103 return 0;
1105 spin_lock(&cp->stat_lock[0]);
1106 if (txmac_stat & MAC_TX_UNDERRUN) {
1107 printk(KERN_ERR "%s: TX MAC xmit underrun.\n",
1108 dev->name);
1109 cp->net_stats[0].tx_fifo_errors++;
1112 if (txmac_stat & MAC_TX_MAX_PACKET_ERR) {
1113 printk(KERN_ERR "%s: TX MAC max packet size error.\n",
1114 dev->name);
1115 cp->net_stats[0].tx_errors++;
1118 /* The rest are all cases of one of the 16-bit TX
1119 * counters expiring.
1121 if (txmac_stat & MAC_TX_COLL_NORMAL)
1122 cp->net_stats[0].collisions += 0x10000;
1124 if (txmac_stat & MAC_TX_COLL_EXCESS) {
1125 cp->net_stats[0].tx_aborted_errors += 0x10000;
1126 cp->net_stats[0].collisions += 0x10000;
1129 if (txmac_stat & MAC_TX_COLL_LATE) {
1130 cp->net_stats[0].tx_aborted_errors += 0x10000;
1131 cp->net_stats[0].collisions += 0x10000;
1133 spin_unlock(&cp->stat_lock[0]);
1135 /* We do not keep track of MAC_TX_COLL_FIRST and
1136 * MAC_TX_PEAK_ATTEMPTS events.
1138 return 0;
1141 static void cas_load_firmware(struct cas *cp, cas_hp_inst_t *firmware)
1143 cas_hp_inst_t *inst;
1144 u32 val;
1145 int i;
1147 i = 0;
1148 while ((inst = firmware) && inst->note) {
1149 writel(i, cp->regs + REG_HP_INSTR_RAM_ADDR);
1151 val = CAS_BASE(HP_INSTR_RAM_HI_VAL, inst->val);
1152 val |= CAS_BASE(HP_INSTR_RAM_HI_MASK, inst->mask);
1153 writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_HI);
1155 val = CAS_BASE(HP_INSTR_RAM_MID_OUTARG, inst->outarg >> 10);
1156 val |= CAS_BASE(HP_INSTR_RAM_MID_OUTOP, inst->outop);
1157 val |= CAS_BASE(HP_INSTR_RAM_MID_FNEXT, inst->fnext);
1158 val |= CAS_BASE(HP_INSTR_RAM_MID_FOFF, inst->foff);
1159 val |= CAS_BASE(HP_INSTR_RAM_MID_SNEXT, inst->snext);
1160 val |= CAS_BASE(HP_INSTR_RAM_MID_SOFF, inst->soff);
1161 val |= CAS_BASE(HP_INSTR_RAM_MID_OP, inst->op);
1162 writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_MID);
1164 val = CAS_BASE(HP_INSTR_RAM_LOW_OUTMASK, inst->outmask);
1165 val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTSHIFT, inst->outshift);
1166 val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTEN, inst->outenab);
1167 val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTARG, inst->outarg);
1168 writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_LOW);
1169 ++firmware;
1170 ++i;
1174 static void cas_init_rx_dma(struct cas *cp)
1176 u64 desc_dma = cp->block_dvma;
1177 u32 val;
1178 int i, size;
1180 /* rx free descriptors */
1181 val = CAS_BASE(RX_CFG_SWIVEL, RX_SWIVEL_OFF_VAL);
1182 val |= CAS_BASE(RX_CFG_DESC_RING, RX_DESC_RINGN_INDEX(0));
1183 val |= CAS_BASE(RX_CFG_COMP_RING, RX_COMP_RINGN_INDEX(0));
1184 if ((N_RX_DESC_RINGS > 1) &&
1185 (cp->cas_flags & CAS_FLAG_REG_PLUS)) /* do desc 2 */
1186 val |= CAS_BASE(RX_CFG_DESC_RING1, RX_DESC_RINGN_INDEX(1));
1187 writel(val, cp->regs + REG_RX_CFG);
1189 val = (unsigned long) cp->init_rxds[0] -
1190 (unsigned long) cp->init_block;
1191 writel((desc_dma + val) >> 32, cp->regs + REG_RX_DB_HI);
1192 writel((desc_dma + val) & 0xffffffff, cp->regs + REG_RX_DB_LOW);
1193 writel(RX_DESC_RINGN_SIZE(0) - 4, cp->regs + REG_RX_KICK);
1195 if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1196 /* rx desc 2 is for IPSEC packets. however,
1197 * we don't it that for that purpose.
1199 val = (unsigned long) cp->init_rxds[1] -
1200 (unsigned long) cp->init_block;
1201 writel((desc_dma + val) >> 32, cp->regs + REG_PLUS_RX_DB1_HI);
1202 writel((desc_dma + val) & 0xffffffff, cp->regs +
1203 REG_PLUS_RX_DB1_LOW);
1204 writel(RX_DESC_RINGN_SIZE(1) - 4, cp->regs +
1205 REG_PLUS_RX_KICK1);
1208 /* rx completion registers */
1209 val = (unsigned long) cp->init_rxcs[0] -
1210 (unsigned long) cp->init_block;
1211 writel((desc_dma + val) >> 32, cp->regs + REG_RX_CB_HI);
1212 writel((desc_dma + val) & 0xffffffff, cp->regs + REG_RX_CB_LOW);
1214 if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1215 /* rx comp 2-4 */
1216 for (i = 1; i < MAX_RX_COMP_RINGS; i++) {
1217 val = (unsigned long) cp->init_rxcs[i] -
1218 (unsigned long) cp->init_block;
1219 writel((desc_dma + val) >> 32, cp->regs +
1220 REG_PLUS_RX_CBN_HI(i));
1221 writel((desc_dma + val) & 0xffffffff, cp->regs +
1222 REG_PLUS_RX_CBN_LOW(i));
1226 /* read selective clear regs to prevent spurious interrupts
1227 * on reset because complete == kick.
1228 * selective clear set up to prevent interrupts on resets
1230 readl(cp->regs + REG_INTR_STATUS_ALIAS);
1231 writel(INTR_RX_DONE | INTR_RX_BUF_UNAVAIL, cp->regs + REG_ALIAS_CLEAR);
1232 if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1233 for (i = 1; i < N_RX_COMP_RINGS; i++)
1234 readl(cp->regs + REG_PLUS_INTRN_STATUS_ALIAS(i));
1236 /* 2 is different from 3 and 4 */
1237 if (N_RX_COMP_RINGS > 1)
1238 writel(INTR_RX_DONE_ALT | INTR_RX_BUF_UNAVAIL_1,
1239 cp->regs + REG_PLUS_ALIASN_CLEAR(1));
1241 for (i = 2; i < N_RX_COMP_RINGS; i++)
1242 writel(INTR_RX_DONE_ALT,
1243 cp->regs + REG_PLUS_ALIASN_CLEAR(i));
1246 /* set up pause thresholds */
1247 val = CAS_BASE(RX_PAUSE_THRESH_OFF,
1248 cp->rx_pause_off / RX_PAUSE_THRESH_QUANTUM);
1249 val |= CAS_BASE(RX_PAUSE_THRESH_ON,
1250 cp->rx_pause_on / RX_PAUSE_THRESH_QUANTUM);
1251 writel(val, cp->regs + REG_RX_PAUSE_THRESH);
1253 /* zero out dma reassembly buffers */
1254 for (i = 0; i < 64; i++) {
1255 writel(i, cp->regs + REG_RX_TABLE_ADDR);
1256 writel(0x0, cp->regs + REG_RX_TABLE_DATA_LOW);
1257 writel(0x0, cp->regs + REG_RX_TABLE_DATA_MID);
1258 writel(0x0, cp->regs + REG_RX_TABLE_DATA_HI);
1261 /* make sure address register is 0 for normal operation */
1262 writel(0x0, cp->regs + REG_RX_CTRL_FIFO_ADDR);
1263 writel(0x0, cp->regs + REG_RX_IPP_FIFO_ADDR);
1265 /* interrupt mitigation */
1266 #ifdef USE_RX_BLANK
1267 val = CAS_BASE(RX_BLANK_INTR_TIME, RX_BLANK_INTR_TIME_VAL);
1268 val |= CAS_BASE(RX_BLANK_INTR_PKT, RX_BLANK_INTR_PKT_VAL);
1269 writel(val, cp->regs + REG_RX_BLANK);
1270 #else
1271 writel(0x0, cp->regs + REG_RX_BLANK);
1272 #endif
1274 /* interrupt generation as a function of low water marks for
1275 * free desc and completion entries. these are used to trigger
1276 * housekeeping for rx descs. we don't use the free interrupt
1277 * as it's not very useful
1279 /* val = CAS_BASE(RX_AE_THRESH_FREE, RX_AE_FREEN_VAL(0)); */
1280 val = CAS_BASE(RX_AE_THRESH_COMP, RX_AE_COMP_VAL);
1281 writel(val, cp->regs + REG_RX_AE_THRESH);
1282 if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1283 val = CAS_BASE(RX_AE1_THRESH_FREE, RX_AE_FREEN_VAL(1));
1284 writel(val, cp->regs + REG_PLUS_RX_AE1_THRESH);
1287 /* Random early detect registers. useful for congestion avoidance.
1288 * this should be tunable.
1290 writel(0x0, cp->regs + REG_RX_RED);
1292 /* receive page sizes. default == 2K (0x800) */
1293 val = 0;
1294 if (cp->page_size == 0x1000)
1295 val = 0x1;
1296 else if (cp->page_size == 0x2000)
1297 val = 0x2;
1298 else if (cp->page_size == 0x4000)
1299 val = 0x3;
1301 /* round mtu + offset. constrain to page size. */
1302 size = cp->dev->mtu + 64;
1303 if (size > cp->page_size)
1304 size = cp->page_size;
1306 if (size <= 0x400)
1307 i = 0x0;
1308 else if (size <= 0x800)
1309 i = 0x1;
1310 else if (size <= 0x1000)
1311 i = 0x2;
1312 else
1313 i = 0x3;
1315 cp->mtu_stride = 1 << (i + 10);
1316 val = CAS_BASE(RX_PAGE_SIZE, val);
1317 val |= CAS_BASE(RX_PAGE_SIZE_MTU_STRIDE, i);
1318 val |= CAS_BASE(RX_PAGE_SIZE_MTU_COUNT, cp->page_size >> (i + 10));
1319 val |= CAS_BASE(RX_PAGE_SIZE_MTU_OFF, 0x1);
1320 writel(val, cp->regs + REG_RX_PAGE_SIZE);
1322 /* enable the header parser if desired */
1323 if (CAS_HP_FIRMWARE == cas_prog_null)
1324 return;
1326 val = CAS_BASE(HP_CFG_NUM_CPU, CAS_NCPUS > 63 ? 0 : CAS_NCPUS);
1327 val |= HP_CFG_PARSE_EN | HP_CFG_SYN_INC_MASK;
1328 val |= CAS_BASE(HP_CFG_TCP_THRESH, HP_TCP_THRESH_VAL);
1329 writel(val, cp->regs + REG_HP_CFG);
1332 static inline void cas_rxc_init(struct cas_rx_comp *rxc)
1334 memset(rxc, 0, sizeof(*rxc));
1335 rxc->word4 = cpu_to_le64(RX_COMP4_ZERO);
1338 /* NOTE: we use the ENC RX DESC ring for spares. the rx_page[0,1]
1339 * flipping is protected by the fact that the chip will not
1340 * hand back the same page index while it's being processed.
1342 static inline cas_page_t *cas_page_spare(struct cas *cp, const int index)
1344 cas_page_t *page = cp->rx_pages[1][index];
1345 cas_page_t *new;
1347 if (page_count(page->buffer) == 1)
1348 return page;
1350 new = cas_page_dequeue(cp);
1351 if (new) {
1352 spin_lock(&cp->rx_inuse_lock);
1353 list_add(&page->list, &cp->rx_inuse_list);
1354 spin_unlock(&cp->rx_inuse_lock);
1356 return new;
1359 /* this needs to be changed if we actually use the ENC RX DESC ring */
1360 static cas_page_t *cas_page_swap(struct cas *cp, const int ring,
1361 const int index)
1363 cas_page_t **page0 = cp->rx_pages[0];
1364 cas_page_t **page1 = cp->rx_pages[1];
1366 /* swap if buffer is in use */
1367 if (page_count(page0[index]->buffer) > 1) {
1368 cas_page_t *new = cas_page_spare(cp, index);
1369 if (new) {
1370 page1[index] = page0[index];
1371 page0[index] = new;
1374 RX_USED_SET(page0[index], 0);
1375 return page0[index];
1378 static void cas_clean_rxds(struct cas *cp)
1380 /* only clean ring 0 as ring 1 is used for spare buffers */
1381 struct cas_rx_desc *rxd = cp->init_rxds[0];
1382 int i, size;
1384 /* release all rx flows */
1385 for (i = 0; i < N_RX_FLOWS; i++) {
1386 struct sk_buff *skb;
1387 while ((skb = __skb_dequeue(&cp->rx_flows[i]))) {
1388 cas_skb_release(skb);
1392 /* initialize descriptors */
1393 size = RX_DESC_RINGN_SIZE(0);
1394 for (i = 0; i < size; i++) {
1395 cas_page_t *page = cas_page_swap(cp, 0, i);
1396 rxd[i].buffer = cpu_to_le64(page->dma_addr);
1397 rxd[i].index = cpu_to_le64(CAS_BASE(RX_INDEX_NUM, i) |
1398 CAS_BASE(RX_INDEX_RING, 0));
1401 cp->rx_old[0] = RX_DESC_RINGN_SIZE(0) - 4;
1402 cp->rx_last[0] = 0;
1403 cp->cas_flags &= ~CAS_FLAG_RXD_POST(0);
1406 static void cas_clean_rxcs(struct cas *cp)
1408 int i, j;
1410 /* take ownership of rx comp descriptors */
1411 memset(cp->rx_cur, 0, sizeof(*cp->rx_cur)*N_RX_COMP_RINGS);
1412 memset(cp->rx_new, 0, sizeof(*cp->rx_new)*N_RX_COMP_RINGS);
1413 for (i = 0; i < N_RX_COMP_RINGS; i++) {
1414 struct cas_rx_comp *rxc = cp->init_rxcs[i];
1415 for (j = 0; j < RX_COMP_RINGN_SIZE(i); j++) {
1416 cas_rxc_init(rxc + j);
1421 #if 0
1422 /* When we get a RX fifo overflow, the RX unit is probably hung
1423 * so we do the following.
1425 * If any part of the reset goes wrong, we return 1 and that causes the
1426 * whole chip to be reset.
1428 static int cas_rxmac_reset(struct cas *cp)
1430 struct net_device *dev = cp->dev;
1431 int limit;
1432 u32 val;
1434 /* First, reset MAC RX. */
1435 writel(cp->mac_rx_cfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
1436 for (limit = 0; limit < STOP_TRIES; limit++) {
1437 if (!(readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_EN))
1438 break;
1439 udelay(10);
1441 if (limit == STOP_TRIES) {
1442 printk(KERN_ERR "%s: RX MAC will not disable, resetting whole "
1443 "chip.\n", dev->name);
1444 return 1;
1447 /* Second, disable RX DMA. */
1448 writel(0, cp->regs + REG_RX_CFG);
1449 for (limit = 0; limit < STOP_TRIES; limit++) {
1450 if (!(readl(cp->regs + REG_RX_CFG) & RX_CFG_DMA_EN))
1451 break;
1452 udelay(10);
1454 if (limit == STOP_TRIES) {
1455 printk(KERN_ERR "%s: RX DMA will not disable, resetting whole "
1456 "chip.\n", dev->name);
1457 return 1;
1460 mdelay(5);
1462 /* Execute RX reset command. */
1463 writel(SW_RESET_RX, cp->regs + REG_SW_RESET);
1464 for (limit = 0; limit < STOP_TRIES; limit++) {
1465 if (!(readl(cp->regs + REG_SW_RESET) & SW_RESET_RX))
1466 break;
1467 udelay(10);
1469 if (limit == STOP_TRIES) {
1470 printk(KERN_ERR "%s: RX reset command will not execute, "
1471 "resetting whole chip.\n", dev->name);
1472 return 1;
1475 /* reset driver rx state */
1476 cas_clean_rxds(cp);
1477 cas_clean_rxcs(cp);
1479 /* Now, reprogram the rest of RX unit. */
1480 cas_init_rx_dma(cp);
1482 /* re-enable */
1483 val = readl(cp->regs + REG_RX_CFG);
1484 writel(val | RX_CFG_DMA_EN, cp->regs + REG_RX_CFG);
1485 writel(MAC_RX_FRAME_RECV, cp->regs + REG_MAC_RX_MASK);
1486 val = readl(cp->regs + REG_MAC_RX_CFG);
1487 writel(val | MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
1488 return 0;
1490 #endif
1492 static int cas_rxmac_interrupt(struct net_device *dev, struct cas *cp,
1493 u32 status)
1495 u32 stat = readl(cp->regs + REG_MAC_RX_STATUS);
1497 if (!stat)
1498 return 0;
1500 if (netif_msg_intr(cp))
1501 printk(KERN_DEBUG "%s: rxmac interrupt, stat: 0x%x\n",
1502 cp->dev->name, stat);
1504 /* these are all rollovers */
1505 spin_lock(&cp->stat_lock[0]);
1506 if (stat & MAC_RX_ALIGN_ERR)
1507 cp->net_stats[0].rx_frame_errors += 0x10000;
1509 if (stat & MAC_RX_CRC_ERR)
1510 cp->net_stats[0].rx_crc_errors += 0x10000;
1512 if (stat & MAC_RX_LEN_ERR)
1513 cp->net_stats[0].rx_length_errors += 0x10000;
1515 if (stat & MAC_RX_OVERFLOW) {
1516 cp->net_stats[0].rx_over_errors++;
1517 cp->net_stats[0].rx_fifo_errors++;
1520 /* We do not track MAC_RX_FRAME_COUNT and MAC_RX_VIOL_ERR
1521 * events.
1523 spin_unlock(&cp->stat_lock[0]);
1524 return 0;
1527 static int cas_mac_interrupt(struct net_device *dev, struct cas *cp,
1528 u32 status)
1530 u32 stat = readl(cp->regs + REG_MAC_CTRL_STATUS);
1532 if (!stat)
1533 return 0;
1535 if (netif_msg_intr(cp))
1536 printk(KERN_DEBUG "%s: mac interrupt, stat: 0x%x\n",
1537 cp->dev->name, stat);
1539 /* This interrupt is just for pause frame and pause
1540 * tracking. It is useful for diagnostics and debug
1541 * but probably by default we will mask these events.
1543 if (stat & MAC_CTRL_PAUSE_STATE)
1544 cp->pause_entered++;
1546 if (stat & MAC_CTRL_PAUSE_RECEIVED)
1547 cp->pause_last_time_recvd = (stat >> 16);
1549 return 0;
1553 /* Must be invoked under cp->lock. */
1554 static inline int cas_mdio_link_not_up(struct cas *cp)
1556 u16 val;
1558 switch (cp->lstate) {
1559 case link_force_ret:
1560 if (netif_msg_link(cp))
1561 printk(KERN_INFO "%s: Autoneg failed again, keeping"
1562 " forced mode\n", cp->dev->name);
1563 cas_phy_write(cp, MII_BMCR, cp->link_fcntl);
1564 cp->timer_ticks = 5;
1565 cp->lstate = link_force_ok;
1566 cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
1567 break;
1569 case link_aneg:
1570 val = cas_phy_read(cp, MII_BMCR);
1572 /* Try forced modes. we try things in the following order:
1573 * 1000 full -> 100 full/half -> 10 half
1575 val &= ~(BMCR_ANRESTART | BMCR_ANENABLE);
1576 val |= BMCR_FULLDPLX;
1577 val |= (cp->cas_flags & CAS_FLAG_1000MB_CAP) ?
1578 CAS_BMCR_SPEED1000 : BMCR_SPEED100;
1579 cas_phy_write(cp, MII_BMCR, val);
1580 cp->timer_ticks = 5;
1581 cp->lstate = link_force_try;
1582 cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
1583 break;
1585 case link_force_try:
1586 /* Downgrade from 1000 to 100 to 10 Mbps if necessary. */
1587 val = cas_phy_read(cp, MII_BMCR);
1588 cp->timer_ticks = 5;
1589 if (val & CAS_BMCR_SPEED1000) { /* gigabit */
1590 val &= ~CAS_BMCR_SPEED1000;
1591 val |= (BMCR_SPEED100 | BMCR_FULLDPLX);
1592 cas_phy_write(cp, MII_BMCR, val);
1593 break;
1596 if (val & BMCR_SPEED100) {
1597 if (val & BMCR_FULLDPLX) /* fd failed */
1598 val &= ~BMCR_FULLDPLX;
1599 else { /* 100Mbps failed */
1600 val &= ~BMCR_SPEED100;
1602 cas_phy_write(cp, MII_BMCR, val);
1603 break;
1605 default:
1606 break;
1608 return 0;
1612 /* must be invoked with cp->lock held */
1613 static int cas_mii_link_check(struct cas *cp, const u16 bmsr)
1615 int restart;
1617 if (bmsr & BMSR_LSTATUS) {
1618 /* Ok, here we got a link. If we had it due to a forced
1619 * fallback, and we were configured for autoneg, we
1620 * retry a short autoneg pass. If you know your hub is
1621 * broken, use ethtool ;)
1623 if ((cp->lstate == link_force_try) &&
1624 (cp->link_cntl & BMCR_ANENABLE)) {
1625 cp->lstate = link_force_ret;
1626 cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
1627 cas_mif_poll(cp, 0);
1628 cp->link_fcntl = cas_phy_read(cp, MII_BMCR);
1629 cp->timer_ticks = 5;
1630 if (cp->opened && netif_msg_link(cp))
1631 printk(KERN_INFO "%s: Got link after fallback, retrying"
1632 " autoneg once...\n", cp->dev->name);
1633 cas_phy_write(cp, MII_BMCR,
1634 cp->link_fcntl | BMCR_ANENABLE |
1635 BMCR_ANRESTART);
1636 cas_mif_poll(cp, 1);
1638 } else if (cp->lstate != link_up) {
1639 cp->lstate = link_up;
1640 cp->link_transition = LINK_TRANSITION_LINK_UP;
1642 if (cp->opened) {
1643 cas_set_link_modes(cp);
1644 netif_carrier_on(cp->dev);
1647 return 0;
1650 /* link not up. if the link was previously up, we restart the
1651 * whole process
1653 restart = 0;
1654 if (cp->lstate == link_up) {
1655 cp->lstate = link_down;
1656 cp->link_transition = LINK_TRANSITION_LINK_DOWN;
1658 netif_carrier_off(cp->dev);
1659 if (cp->opened && netif_msg_link(cp))
1660 printk(KERN_INFO "%s: Link down\n",
1661 cp->dev->name);
1662 restart = 1;
1664 } else if (++cp->timer_ticks > 10)
1665 cas_mdio_link_not_up(cp);
1667 return restart;
1670 static int cas_mif_interrupt(struct net_device *dev, struct cas *cp,
1671 u32 status)
1673 u32 stat = readl(cp->regs + REG_MIF_STATUS);
1674 u16 bmsr;
1676 /* check for a link change */
1677 if (CAS_VAL(MIF_STATUS_POLL_STATUS, stat) == 0)
1678 return 0;
1680 bmsr = CAS_VAL(MIF_STATUS_POLL_DATA, stat);
1681 return cas_mii_link_check(cp, bmsr);
1684 static int cas_pci_interrupt(struct net_device *dev, struct cas *cp,
1685 u32 status)
1687 u32 stat = readl(cp->regs + REG_PCI_ERR_STATUS);
1689 if (!stat)
1690 return 0;
1692 printk(KERN_ERR "%s: PCI error [%04x:%04x] ", dev->name, stat,
1693 readl(cp->regs + REG_BIM_DIAG));
1695 /* cassini+ has this reserved */
1696 if ((stat & PCI_ERR_BADACK) &&
1697 ((cp->cas_flags & CAS_FLAG_REG_PLUS) == 0))
1698 printk("<No ACK64# during ABS64 cycle> ");
1700 if (stat & PCI_ERR_DTRTO)
1701 printk("<Delayed transaction timeout> ");
1702 if (stat & PCI_ERR_OTHER)
1703 printk("<other> ");
1704 if (stat & PCI_ERR_BIM_DMA_WRITE)
1705 printk("<BIM DMA 0 write req> ");
1706 if (stat & PCI_ERR_BIM_DMA_READ)
1707 printk("<BIM DMA 0 read req> ");
1708 printk("\n");
1710 if (stat & PCI_ERR_OTHER) {
1711 u16 cfg;
1713 /* Interrogate PCI config space for the
1714 * true cause.
1716 pci_read_config_word(cp->pdev, PCI_STATUS, &cfg);
1717 printk(KERN_ERR "%s: Read PCI cfg space status [%04x]\n",
1718 dev->name, cfg);
1719 if (cfg & PCI_STATUS_PARITY)
1720 printk(KERN_ERR "%s: PCI parity error detected.\n",
1721 dev->name);
1722 if (cfg & PCI_STATUS_SIG_TARGET_ABORT)
1723 printk(KERN_ERR "%s: PCI target abort.\n",
1724 dev->name);
1725 if (cfg & PCI_STATUS_REC_TARGET_ABORT)
1726 printk(KERN_ERR "%s: PCI master acks target abort.\n",
1727 dev->name);
1728 if (cfg & PCI_STATUS_REC_MASTER_ABORT)
1729 printk(KERN_ERR "%s: PCI master abort.\n", dev->name);
1730 if (cfg & PCI_STATUS_SIG_SYSTEM_ERROR)
1731 printk(KERN_ERR "%s: PCI system error SERR#.\n",
1732 dev->name);
1733 if (cfg & PCI_STATUS_DETECTED_PARITY)
1734 printk(KERN_ERR "%s: PCI parity error.\n",
1735 dev->name);
1737 /* Write the error bits back to clear them. */
1738 cfg &= (PCI_STATUS_PARITY |
1739 PCI_STATUS_SIG_TARGET_ABORT |
1740 PCI_STATUS_REC_TARGET_ABORT |
1741 PCI_STATUS_REC_MASTER_ABORT |
1742 PCI_STATUS_SIG_SYSTEM_ERROR |
1743 PCI_STATUS_DETECTED_PARITY);
1744 pci_write_config_word(cp->pdev, PCI_STATUS, cfg);
1747 /* For all PCI errors, we should reset the chip. */
1748 return 1;
1751 /* All non-normal interrupt conditions get serviced here.
1752 * Returns non-zero if we should just exit the interrupt
1753 * handler right now (ie. if we reset the card which invalidates
1754 * all of the other original irq status bits).
1756 static int cas_abnormal_irq(struct net_device *dev, struct cas *cp,
1757 u32 status)
1759 if (status & INTR_RX_TAG_ERROR) {
1760 /* corrupt RX tag framing */
1761 if (netif_msg_rx_err(cp))
1762 printk(KERN_DEBUG "%s: corrupt rx tag framing\n",
1763 cp->dev->name);
1764 spin_lock(&cp->stat_lock[0]);
1765 cp->net_stats[0].rx_errors++;
1766 spin_unlock(&cp->stat_lock[0]);
1767 goto do_reset;
1770 if (status & INTR_RX_LEN_MISMATCH) {
1771 /* length mismatch. */
1772 if (netif_msg_rx_err(cp))
1773 printk(KERN_DEBUG "%s: length mismatch for rx frame\n",
1774 cp->dev->name);
1775 spin_lock(&cp->stat_lock[0]);
1776 cp->net_stats[0].rx_errors++;
1777 spin_unlock(&cp->stat_lock[0]);
1778 goto do_reset;
1781 if (status & INTR_PCS_STATUS) {
1782 if (cas_pcs_interrupt(dev, cp, status))
1783 goto do_reset;
1786 if (status & INTR_TX_MAC_STATUS) {
1787 if (cas_txmac_interrupt(dev, cp, status))
1788 goto do_reset;
1791 if (status & INTR_RX_MAC_STATUS) {
1792 if (cas_rxmac_interrupt(dev, cp, status))
1793 goto do_reset;
1796 if (status & INTR_MAC_CTRL_STATUS) {
1797 if (cas_mac_interrupt(dev, cp, status))
1798 goto do_reset;
1801 if (status & INTR_MIF_STATUS) {
1802 if (cas_mif_interrupt(dev, cp, status))
1803 goto do_reset;
1806 if (status & INTR_PCI_ERROR_STATUS) {
1807 if (cas_pci_interrupt(dev, cp, status))
1808 goto do_reset;
1810 return 0;
1812 do_reset:
1813 #if 1
1814 atomic_inc(&cp->reset_task_pending);
1815 atomic_inc(&cp->reset_task_pending_all);
1816 printk(KERN_ERR "%s:reset called in cas_abnormal_irq [0x%x]\n",
1817 dev->name, status);
1818 schedule_work(&cp->reset_task);
1819 #else
1820 atomic_set(&cp->reset_task_pending, CAS_RESET_ALL);
1821 printk(KERN_ERR "reset called in cas_abnormal_irq\n");
1822 schedule_work(&cp->reset_task);
1823 #endif
1824 return 1;
1827 /* NOTE: CAS_TABORT returns 1 or 2 so that it can be used when
1828 * determining whether to do a netif_stop/wakeup
1830 #define CAS_TABORT(x) (((x)->cas_flags & CAS_FLAG_TARGET_ABORT) ? 2 : 1)
1831 #define CAS_ROUND_PAGE(x) (((x) + PAGE_SIZE - 1) & PAGE_MASK)
1832 static inline int cas_calc_tabort(struct cas *cp, const unsigned long addr,
1833 const int len)
1835 unsigned long off = addr + len;
1837 if (CAS_TABORT(cp) == 1)
1838 return 0;
1839 if ((CAS_ROUND_PAGE(off) - off) > TX_TARGET_ABORT_LEN)
1840 return 0;
1841 return TX_TARGET_ABORT_LEN;
1844 static inline void cas_tx_ringN(struct cas *cp, int ring, int limit)
1846 struct cas_tx_desc *txds;
1847 struct sk_buff **skbs;
1848 struct net_device *dev = cp->dev;
1849 int entry, count;
1851 spin_lock(&cp->tx_lock[ring]);
1852 txds = cp->init_txds[ring];
1853 skbs = cp->tx_skbs[ring];
1854 entry = cp->tx_old[ring];
1856 count = TX_BUFF_COUNT(ring, entry, limit);
1857 while (entry != limit) {
1858 struct sk_buff *skb = skbs[entry];
1859 dma_addr_t daddr;
1860 u32 dlen;
1861 int frag;
1863 if (!skb) {
1864 /* this should never occur */
1865 entry = TX_DESC_NEXT(ring, entry);
1866 continue;
1869 /* however, we might get only a partial skb release. */
1870 count -= skb_shinfo(skb)->nr_frags +
1871 + cp->tx_tiny_use[ring][entry].nbufs + 1;
1872 if (count < 0)
1873 break;
1875 if (netif_msg_tx_done(cp))
1876 printk(KERN_DEBUG "%s: tx[%d] done, slot %d\n",
1877 cp->dev->name, ring, entry);
1879 skbs[entry] = NULL;
1880 cp->tx_tiny_use[ring][entry].nbufs = 0;
1882 for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
1883 struct cas_tx_desc *txd = txds + entry;
1885 daddr = le64_to_cpu(txd->buffer);
1886 dlen = CAS_VAL(TX_DESC_BUFLEN,
1887 le64_to_cpu(txd->control));
1888 pci_unmap_page(cp->pdev, daddr, dlen,
1889 PCI_DMA_TODEVICE);
1890 entry = TX_DESC_NEXT(ring, entry);
1892 /* tiny buffer may follow */
1893 if (cp->tx_tiny_use[ring][entry].used) {
1894 cp->tx_tiny_use[ring][entry].used = 0;
1895 entry = TX_DESC_NEXT(ring, entry);
1899 spin_lock(&cp->stat_lock[ring]);
1900 cp->net_stats[ring].tx_packets++;
1901 cp->net_stats[ring].tx_bytes += skb->len;
1902 spin_unlock(&cp->stat_lock[ring]);
1903 dev_kfree_skb_irq(skb);
1905 cp->tx_old[ring] = entry;
1907 /* this is wrong for multiple tx rings. the net device needs
1908 * multiple queues for this to do the right thing. we wait
1909 * for 2*packets to be available when using tiny buffers
1911 if (netif_queue_stopped(dev) &&
1912 (TX_BUFFS_AVAIL(cp, ring) > CAS_TABORT(cp)*(MAX_SKB_FRAGS + 1)))
1913 netif_wake_queue(dev);
1914 spin_unlock(&cp->tx_lock[ring]);
1917 static void cas_tx(struct net_device *dev, struct cas *cp,
1918 u32 status)
1920 int limit, ring;
1921 #ifdef USE_TX_COMPWB
1922 u64 compwb = le64_to_cpu(cp->init_block->tx_compwb);
1923 #endif
1924 if (netif_msg_intr(cp))
1925 printk(KERN_DEBUG "%s: tx interrupt, status: 0x%x, %llx\n",
1926 cp->dev->name, status, (unsigned long long)compwb);
1927 /* process all the rings */
1928 for (ring = 0; ring < N_TX_RINGS; ring++) {
1929 #ifdef USE_TX_COMPWB
1930 /* use the completion writeback registers */
1931 limit = (CAS_VAL(TX_COMPWB_MSB, compwb) << 8) |
1932 CAS_VAL(TX_COMPWB_LSB, compwb);
1933 compwb = TX_COMPWB_NEXT(compwb);
1934 #else
1935 limit = readl(cp->regs + REG_TX_COMPN(ring));
1936 #endif
1937 if (cp->tx_old[ring] != limit)
1938 cas_tx_ringN(cp, ring, limit);
1943 static int cas_rx_process_pkt(struct cas *cp, struct cas_rx_comp *rxc,
1944 int entry, const u64 *words,
1945 struct sk_buff **skbref)
1947 int dlen, hlen, len, i, alloclen;
1948 int off, swivel = RX_SWIVEL_OFF_VAL;
1949 struct cas_page *page;
1950 struct sk_buff *skb;
1951 void *addr, *crcaddr;
1952 __sum16 csum;
1953 char *p;
1955 hlen = CAS_VAL(RX_COMP2_HDR_SIZE, words[1]);
1956 dlen = CAS_VAL(RX_COMP1_DATA_SIZE, words[0]);
1957 len = hlen + dlen;
1959 if (RX_COPY_ALWAYS || (words[2] & RX_COMP3_SMALL_PKT))
1960 alloclen = len;
1961 else
1962 alloclen = max(hlen, RX_COPY_MIN);
1964 skb = dev_alloc_skb(alloclen + swivel + cp->crc_size);
1965 if (skb == NULL)
1966 return -1;
1968 *skbref = skb;
1969 skb_reserve(skb, swivel);
1971 p = skb->data;
1972 addr = crcaddr = NULL;
1973 if (hlen) { /* always copy header pages */
1974 i = CAS_VAL(RX_COMP2_HDR_INDEX, words[1]);
1975 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
1976 off = CAS_VAL(RX_COMP2_HDR_OFF, words[1]) * 0x100 +
1977 swivel;
1979 i = hlen;
1980 if (!dlen) /* attach FCS */
1981 i += cp->crc_size;
1982 pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr + off, i,
1983 PCI_DMA_FROMDEVICE);
1984 addr = cas_page_map(page->buffer);
1985 memcpy(p, addr + off, i);
1986 pci_dma_sync_single_for_device(cp->pdev, page->dma_addr + off, i,
1987 PCI_DMA_FROMDEVICE);
1988 cas_page_unmap(addr);
1989 RX_USED_ADD(page, 0x100);
1990 p += hlen;
1991 swivel = 0;
1995 if (alloclen < (hlen + dlen)) {
1996 skb_frag_t *frag = skb_shinfo(skb)->frags;
1998 /* normal or jumbo packets. we use frags */
1999 i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]);
2000 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2001 off = CAS_VAL(RX_COMP1_DATA_OFF, words[0]) + swivel;
2003 hlen = min(cp->page_size - off, dlen);
2004 if (hlen < 0) {
2005 if (netif_msg_rx_err(cp)) {
2006 printk(KERN_DEBUG "%s: rx page overflow: "
2007 "%d\n", cp->dev->name, hlen);
2009 dev_kfree_skb_irq(skb);
2010 return -1;
2012 i = hlen;
2013 if (i == dlen) /* attach FCS */
2014 i += cp->crc_size;
2015 pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr + off, i,
2016 PCI_DMA_FROMDEVICE);
2018 /* make sure we always copy a header */
2019 swivel = 0;
2020 if (p == (char *) skb->data) { /* not split */
2021 addr = cas_page_map(page->buffer);
2022 memcpy(p, addr + off, RX_COPY_MIN);
2023 pci_dma_sync_single_for_device(cp->pdev, page->dma_addr + off, i,
2024 PCI_DMA_FROMDEVICE);
2025 cas_page_unmap(addr);
2026 off += RX_COPY_MIN;
2027 swivel = RX_COPY_MIN;
2028 RX_USED_ADD(page, cp->mtu_stride);
2029 } else {
2030 RX_USED_ADD(page, hlen);
2032 skb_put(skb, alloclen);
2034 skb_shinfo(skb)->nr_frags++;
2035 skb->data_len += hlen - swivel;
2036 skb->truesize += hlen - swivel;
2037 skb->len += hlen - swivel;
2039 get_page(page->buffer);
2040 frag->page = page->buffer;
2041 frag->page_offset = off;
2042 frag->size = hlen - swivel;
2044 /* any more data? */
2045 if ((words[0] & RX_COMP1_SPLIT_PKT) && ((dlen -= hlen) > 0)) {
2046 hlen = dlen;
2047 off = 0;
2049 i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]);
2050 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2051 pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr,
2052 hlen + cp->crc_size,
2053 PCI_DMA_FROMDEVICE);
2054 pci_dma_sync_single_for_device(cp->pdev, page->dma_addr,
2055 hlen + cp->crc_size,
2056 PCI_DMA_FROMDEVICE);
2058 skb_shinfo(skb)->nr_frags++;
2059 skb->data_len += hlen;
2060 skb->len += hlen;
2061 frag++;
2063 get_page(page->buffer);
2064 frag->page = page->buffer;
2065 frag->page_offset = 0;
2066 frag->size = hlen;
2067 RX_USED_ADD(page, hlen + cp->crc_size);
2070 if (cp->crc_size) {
2071 addr = cas_page_map(page->buffer);
2072 crcaddr = addr + off + hlen;
2075 } else {
2076 /* copying packet */
2077 if (!dlen)
2078 goto end_copy_pkt;
2080 i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]);
2081 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2082 off = CAS_VAL(RX_COMP1_DATA_OFF, words[0]) + swivel;
2083 hlen = min(cp->page_size - off, dlen);
2084 if (hlen < 0) {
2085 if (netif_msg_rx_err(cp)) {
2086 printk(KERN_DEBUG "%s: rx page overflow: "
2087 "%d\n", cp->dev->name, hlen);
2089 dev_kfree_skb_irq(skb);
2090 return -1;
2092 i = hlen;
2093 if (i == dlen) /* attach FCS */
2094 i += cp->crc_size;
2095 pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr + off, i,
2096 PCI_DMA_FROMDEVICE);
2097 addr = cas_page_map(page->buffer);
2098 memcpy(p, addr + off, i);
2099 pci_dma_sync_single_for_device(cp->pdev, page->dma_addr + off, i,
2100 PCI_DMA_FROMDEVICE);
2101 cas_page_unmap(addr);
2102 if (p == (char *) skb->data) /* not split */
2103 RX_USED_ADD(page, cp->mtu_stride);
2104 else
2105 RX_USED_ADD(page, i);
2107 /* any more data? */
2108 if ((words[0] & RX_COMP1_SPLIT_PKT) && ((dlen -= hlen) > 0)) {
2109 p += hlen;
2110 i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]);
2111 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2112 pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr,
2113 dlen + cp->crc_size,
2114 PCI_DMA_FROMDEVICE);
2115 addr = cas_page_map(page->buffer);
2116 memcpy(p, addr, dlen + cp->crc_size);
2117 pci_dma_sync_single_for_device(cp->pdev, page->dma_addr,
2118 dlen + cp->crc_size,
2119 PCI_DMA_FROMDEVICE);
2120 cas_page_unmap(addr);
2121 RX_USED_ADD(page, dlen + cp->crc_size);
2123 end_copy_pkt:
2124 if (cp->crc_size) {
2125 addr = NULL;
2126 crcaddr = skb->data + alloclen;
2128 skb_put(skb, alloclen);
2131 csum = (__force __sum16)htons(CAS_VAL(RX_COMP4_TCP_CSUM, words[3]));
2132 if (cp->crc_size) {
2133 /* checksum includes FCS. strip it out. */
2134 csum = csum_fold(csum_partial(crcaddr, cp->crc_size,
2135 csum_unfold(csum)));
2136 if (addr)
2137 cas_page_unmap(addr);
2139 skb->csum = csum_unfold(~csum);
2140 skb->ip_summed = CHECKSUM_COMPLETE;
2141 skb->protocol = eth_type_trans(skb, cp->dev);
2142 return len;
2146 /* we can handle up to 64 rx flows at a time. we do the same thing
2147 * as nonreassm except that we batch up the buffers.
2148 * NOTE: we currently just treat each flow as a bunch of packets that
2149 * we pass up. a better way would be to coalesce the packets
2150 * into a jumbo packet. to do that, we need to do the following:
2151 * 1) the first packet will have a clean split between header and
2152 * data. save both.
2153 * 2) each time the next flow packet comes in, extend the
2154 * data length and merge the checksums.
2155 * 3) on flow release, fix up the header.
2156 * 4) make sure the higher layer doesn't care.
2157 * because packets get coalesced, we shouldn't run into fragment count
2158 * issues.
2160 static inline void cas_rx_flow_pkt(struct cas *cp, const u64 *words,
2161 struct sk_buff *skb)
2163 int flowid = CAS_VAL(RX_COMP3_FLOWID, words[2]) & (N_RX_FLOWS - 1);
2164 struct sk_buff_head *flow = &cp->rx_flows[flowid];
2166 /* this is protected at a higher layer, so no need to
2167 * do any additional locking here. stick the buffer
2168 * at the end.
2170 __skb_insert(skb, flow->prev, (struct sk_buff *) flow, flow);
2171 if (words[0] & RX_COMP1_RELEASE_FLOW) {
2172 while ((skb = __skb_dequeue(flow))) {
2173 cas_skb_release(skb);
2178 /* put rx descriptor back on ring. if a buffer is in use by a higher
2179 * layer, this will need to put in a replacement.
2181 static void cas_post_page(struct cas *cp, const int ring, const int index)
2183 cas_page_t *new;
2184 int entry;
2186 entry = cp->rx_old[ring];
2188 new = cas_page_swap(cp, ring, index);
2189 cp->init_rxds[ring][entry].buffer = cpu_to_le64(new->dma_addr);
2190 cp->init_rxds[ring][entry].index =
2191 cpu_to_le64(CAS_BASE(RX_INDEX_NUM, index) |
2192 CAS_BASE(RX_INDEX_RING, ring));
2194 entry = RX_DESC_ENTRY(ring, entry + 1);
2195 cp->rx_old[ring] = entry;
2197 if (entry % 4)
2198 return;
2200 if (ring == 0)
2201 writel(entry, cp->regs + REG_RX_KICK);
2202 else if ((N_RX_DESC_RINGS > 1) &&
2203 (cp->cas_flags & CAS_FLAG_REG_PLUS))
2204 writel(entry, cp->regs + REG_PLUS_RX_KICK1);
2208 /* only when things are bad */
2209 static int cas_post_rxds_ringN(struct cas *cp, int ring, int num)
2211 unsigned int entry, last, count, released;
2212 int cluster;
2213 cas_page_t **page = cp->rx_pages[ring];
2215 entry = cp->rx_old[ring];
2217 if (netif_msg_intr(cp))
2218 printk(KERN_DEBUG "%s: rxd[%d] interrupt, done: %d\n",
2219 cp->dev->name, ring, entry);
2221 cluster = -1;
2222 count = entry & 0x3;
2223 last = RX_DESC_ENTRY(ring, num ? entry + num - 4: entry - 4);
2224 released = 0;
2225 while (entry != last) {
2226 /* make a new buffer if it's still in use */
2227 if (page_count(page[entry]->buffer) > 1) {
2228 cas_page_t *new = cas_page_dequeue(cp);
2229 if (!new) {
2230 /* let the timer know that we need to
2231 * do this again
2233 cp->cas_flags |= CAS_FLAG_RXD_POST(ring);
2234 if (!timer_pending(&cp->link_timer))
2235 mod_timer(&cp->link_timer, jiffies +
2236 CAS_LINK_FAST_TIMEOUT);
2237 cp->rx_old[ring] = entry;
2238 cp->rx_last[ring] = num ? num - released : 0;
2239 return -ENOMEM;
2241 spin_lock(&cp->rx_inuse_lock);
2242 list_add(&page[entry]->list, &cp->rx_inuse_list);
2243 spin_unlock(&cp->rx_inuse_lock);
2244 cp->init_rxds[ring][entry].buffer =
2245 cpu_to_le64(new->dma_addr);
2246 page[entry] = new;
2250 if (++count == 4) {
2251 cluster = entry;
2252 count = 0;
2254 released++;
2255 entry = RX_DESC_ENTRY(ring, entry + 1);
2257 cp->rx_old[ring] = entry;
2259 if (cluster < 0)
2260 return 0;
2262 if (ring == 0)
2263 writel(cluster, cp->regs + REG_RX_KICK);
2264 else if ((N_RX_DESC_RINGS > 1) &&
2265 (cp->cas_flags & CAS_FLAG_REG_PLUS))
2266 writel(cluster, cp->regs + REG_PLUS_RX_KICK1);
2267 return 0;
2271 /* process a completion ring. packets are set up in three basic ways:
2272 * small packets: should be copied header + data in single buffer.
2273 * large packets: header and data in a single buffer.
2274 * split packets: header in a separate buffer from data.
2275 * data may be in multiple pages. data may be > 256
2276 * bytes but in a single page.
2278 * NOTE: RX page posting is done in this routine as well. while there's
2279 * the capability of using multiple RX completion rings, it isn't
2280 * really worthwhile due to the fact that the page posting will
2281 * force serialization on the single descriptor ring.
2283 static int cas_rx_ringN(struct cas *cp, int ring, int budget)
2285 struct cas_rx_comp *rxcs = cp->init_rxcs[ring];
2286 int entry, drops;
2287 int npackets = 0;
2289 if (netif_msg_intr(cp))
2290 printk(KERN_DEBUG "%s: rx[%d] interrupt, done: %d/%d\n",
2291 cp->dev->name, ring,
2292 readl(cp->regs + REG_RX_COMP_HEAD),
2293 cp->rx_new[ring]);
2295 entry = cp->rx_new[ring];
2296 drops = 0;
2297 while (1) {
2298 struct cas_rx_comp *rxc = rxcs + entry;
2299 struct sk_buff *skb;
2300 int type, len;
2301 u64 words[4];
2302 int i, dring;
2304 words[0] = le64_to_cpu(rxc->word1);
2305 words[1] = le64_to_cpu(rxc->word2);
2306 words[2] = le64_to_cpu(rxc->word3);
2307 words[3] = le64_to_cpu(rxc->word4);
2309 /* don't touch if still owned by hw */
2310 type = CAS_VAL(RX_COMP1_TYPE, words[0]);
2311 if (type == 0)
2312 break;
2314 /* hw hasn't cleared the zero bit yet */
2315 if (words[3] & RX_COMP4_ZERO) {
2316 break;
2319 /* get info on the packet */
2320 if (words[3] & (RX_COMP4_LEN_MISMATCH | RX_COMP4_BAD)) {
2321 spin_lock(&cp->stat_lock[ring]);
2322 cp->net_stats[ring].rx_errors++;
2323 if (words[3] & RX_COMP4_LEN_MISMATCH)
2324 cp->net_stats[ring].rx_length_errors++;
2325 if (words[3] & RX_COMP4_BAD)
2326 cp->net_stats[ring].rx_crc_errors++;
2327 spin_unlock(&cp->stat_lock[ring]);
2329 /* We'll just return it to Cassini. */
2330 drop_it:
2331 spin_lock(&cp->stat_lock[ring]);
2332 ++cp->net_stats[ring].rx_dropped;
2333 spin_unlock(&cp->stat_lock[ring]);
2334 goto next;
2337 len = cas_rx_process_pkt(cp, rxc, entry, words, &skb);
2338 if (len < 0) {
2339 ++drops;
2340 goto drop_it;
2343 /* see if it's a flow re-assembly or not. the driver
2344 * itself handles release back up.
2346 if (RX_DONT_BATCH || (type == 0x2)) {
2347 /* non-reassm: these always get released */
2348 cas_skb_release(skb);
2349 } else {
2350 cas_rx_flow_pkt(cp, words, skb);
2353 spin_lock(&cp->stat_lock[ring]);
2354 cp->net_stats[ring].rx_packets++;
2355 cp->net_stats[ring].rx_bytes += len;
2356 spin_unlock(&cp->stat_lock[ring]);
2357 cp->dev->last_rx = jiffies;
2359 next:
2360 npackets++;
2362 /* should it be released? */
2363 if (words[0] & RX_COMP1_RELEASE_HDR) {
2364 i = CAS_VAL(RX_COMP2_HDR_INDEX, words[1]);
2365 dring = CAS_VAL(RX_INDEX_RING, i);
2366 i = CAS_VAL(RX_INDEX_NUM, i);
2367 cas_post_page(cp, dring, i);
2370 if (words[0] & RX_COMP1_RELEASE_DATA) {
2371 i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]);
2372 dring = CAS_VAL(RX_INDEX_RING, i);
2373 i = CAS_VAL(RX_INDEX_NUM, i);
2374 cas_post_page(cp, dring, i);
2377 if (words[0] & RX_COMP1_RELEASE_NEXT) {
2378 i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]);
2379 dring = CAS_VAL(RX_INDEX_RING, i);
2380 i = CAS_VAL(RX_INDEX_NUM, i);
2381 cas_post_page(cp, dring, i);
2384 /* skip to the next entry */
2385 entry = RX_COMP_ENTRY(ring, entry + 1 +
2386 CAS_VAL(RX_COMP1_SKIP, words[0]));
2387 #ifdef USE_NAPI
2388 if (budget && (npackets >= budget))
2389 break;
2390 #endif
2392 cp->rx_new[ring] = entry;
2394 if (drops)
2395 printk(KERN_INFO "%s: Memory squeeze, deferring packet.\n",
2396 cp->dev->name);
2397 return npackets;
2401 /* put completion entries back on the ring */
2402 static void cas_post_rxcs_ringN(struct net_device *dev,
2403 struct cas *cp, int ring)
2405 struct cas_rx_comp *rxc = cp->init_rxcs[ring];
2406 int last, entry;
2408 last = cp->rx_cur[ring];
2409 entry = cp->rx_new[ring];
2410 if (netif_msg_intr(cp))
2411 printk(KERN_DEBUG "%s: rxc[%d] interrupt, done: %d/%d\n",
2412 dev->name, ring, readl(cp->regs + REG_RX_COMP_HEAD),
2413 entry);
2415 /* zero and re-mark descriptors */
2416 while (last != entry) {
2417 cas_rxc_init(rxc + last);
2418 last = RX_COMP_ENTRY(ring, last + 1);
2420 cp->rx_cur[ring] = last;
2422 if (ring == 0)
2423 writel(last, cp->regs + REG_RX_COMP_TAIL);
2424 else if (cp->cas_flags & CAS_FLAG_REG_PLUS)
2425 writel(last, cp->regs + REG_PLUS_RX_COMPN_TAIL(ring));
2430 /* cassini can use all four PCI interrupts for the completion ring.
2431 * rings 3 and 4 are identical
2433 #if defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
2434 static inline void cas_handle_irqN(struct net_device *dev,
2435 struct cas *cp, const u32 status,
2436 const int ring)
2438 if (status & (INTR_RX_COMP_FULL_ALT | INTR_RX_COMP_AF_ALT))
2439 cas_post_rxcs_ringN(dev, cp, ring);
2442 static irqreturn_t cas_interruptN(int irq, void *dev_id)
2444 struct net_device *dev = dev_id;
2445 struct cas *cp = netdev_priv(dev);
2446 unsigned long flags;
2447 int ring;
2448 u32 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(ring));
2450 /* check for shared irq */
2451 if (status == 0)
2452 return IRQ_NONE;
2454 ring = (irq == cp->pci_irq_INTC) ? 2 : 3;
2455 spin_lock_irqsave(&cp->lock, flags);
2456 if (status & INTR_RX_DONE_ALT) { /* handle rx separately */
2457 #ifdef USE_NAPI
2458 cas_mask_intr(cp);
2459 netif_rx_schedule(dev, &cp->napi);
2460 #else
2461 cas_rx_ringN(cp, ring, 0);
2462 #endif
2463 status &= ~INTR_RX_DONE_ALT;
2466 if (status)
2467 cas_handle_irqN(dev, cp, status, ring);
2468 spin_unlock_irqrestore(&cp->lock, flags);
2469 return IRQ_HANDLED;
2471 #endif
2473 #ifdef USE_PCI_INTB
2474 /* everything but rx packets */
2475 static inline void cas_handle_irq1(struct cas *cp, const u32 status)
2477 if (status & INTR_RX_BUF_UNAVAIL_1) {
2478 /* Frame arrived, no free RX buffers available.
2479 * NOTE: we can get this on a link transition. */
2480 cas_post_rxds_ringN(cp, 1, 0);
2481 spin_lock(&cp->stat_lock[1]);
2482 cp->net_stats[1].rx_dropped++;
2483 spin_unlock(&cp->stat_lock[1]);
2486 if (status & INTR_RX_BUF_AE_1)
2487 cas_post_rxds_ringN(cp, 1, RX_DESC_RINGN_SIZE(1) -
2488 RX_AE_FREEN_VAL(1));
2490 if (status & (INTR_RX_COMP_AF | INTR_RX_COMP_FULL))
2491 cas_post_rxcs_ringN(cp, 1);
2494 /* ring 2 handles a few more events than 3 and 4 */
2495 static irqreturn_t cas_interrupt1(int irq, void *dev_id)
2497 struct net_device *dev = dev_id;
2498 struct cas *cp = netdev_priv(dev);
2499 unsigned long flags;
2500 u32 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(1));
2502 /* check for shared interrupt */
2503 if (status == 0)
2504 return IRQ_NONE;
2506 spin_lock_irqsave(&cp->lock, flags);
2507 if (status & INTR_RX_DONE_ALT) { /* handle rx separately */
2508 #ifdef USE_NAPI
2509 cas_mask_intr(cp);
2510 netif_rx_schedule(dev, &cp->napi);
2511 #else
2512 cas_rx_ringN(cp, 1, 0);
2513 #endif
2514 status &= ~INTR_RX_DONE_ALT;
2516 if (status)
2517 cas_handle_irq1(cp, status);
2518 spin_unlock_irqrestore(&cp->lock, flags);
2519 return IRQ_HANDLED;
2521 #endif
2523 static inline void cas_handle_irq(struct net_device *dev,
2524 struct cas *cp, const u32 status)
2526 /* housekeeping interrupts */
2527 if (status & INTR_ERROR_MASK)
2528 cas_abnormal_irq(dev, cp, status);
2530 if (status & INTR_RX_BUF_UNAVAIL) {
2531 /* Frame arrived, no free RX buffers available.
2532 * NOTE: we can get this on a link transition.
2534 cas_post_rxds_ringN(cp, 0, 0);
2535 spin_lock(&cp->stat_lock[0]);
2536 cp->net_stats[0].rx_dropped++;
2537 spin_unlock(&cp->stat_lock[0]);
2538 } else if (status & INTR_RX_BUF_AE) {
2539 cas_post_rxds_ringN(cp, 0, RX_DESC_RINGN_SIZE(0) -
2540 RX_AE_FREEN_VAL(0));
2543 if (status & (INTR_RX_COMP_AF | INTR_RX_COMP_FULL))
2544 cas_post_rxcs_ringN(dev, cp, 0);
2547 static irqreturn_t cas_interrupt(int irq, void *dev_id)
2549 struct net_device *dev = dev_id;
2550 struct cas *cp = netdev_priv(dev);
2551 unsigned long flags;
2552 u32 status = readl(cp->regs + REG_INTR_STATUS);
2554 if (status == 0)
2555 return IRQ_NONE;
2557 spin_lock_irqsave(&cp->lock, flags);
2558 if (status & (INTR_TX_ALL | INTR_TX_INTME)) {
2559 cas_tx(dev, cp, status);
2560 status &= ~(INTR_TX_ALL | INTR_TX_INTME);
2563 if (status & INTR_RX_DONE) {
2564 #ifdef USE_NAPI
2565 cas_mask_intr(cp);
2566 netif_rx_schedule(dev, &cp->napi);
2567 #else
2568 cas_rx_ringN(cp, 0, 0);
2569 #endif
2570 status &= ~INTR_RX_DONE;
2573 if (status)
2574 cas_handle_irq(dev, cp, status);
2575 spin_unlock_irqrestore(&cp->lock, flags);
2576 return IRQ_HANDLED;
2580 #ifdef USE_NAPI
2581 static int cas_poll(struct napi_struct *napi, int budget)
2583 struct cas *cp = container_of(napi, struct cas, napi);
2584 struct net_device *dev = cp->dev;
2585 int i, enable_intr, credits;
2586 u32 status = readl(cp->regs + REG_INTR_STATUS);
2587 unsigned long flags;
2589 spin_lock_irqsave(&cp->lock, flags);
2590 cas_tx(dev, cp, status);
2591 spin_unlock_irqrestore(&cp->lock, flags);
2593 /* NAPI rx packets. we spread the credits across all of the
2594 * rxc rings
2596 * to make sure we're fair with the work we loop through each
2597 * ring N_RX_COMP_RING times with a request of
2598 * budget / N_RX_COMP_RINGS
2600 enable_intr = 1;
2601 credits = 0;
2602 for (i = 0; i < N_RX_COMP_RINGS; i++) {
2603 int j;
2604 for (j = 0; j < N_RX_COMP_RINGS; j++) {
2605 credits += cas_rx_ringN(cp, j, budget / N_RX_COMP_RINGS);
2606 if (credits >= budget) {
2607 enable_intr = 0;
2608 goto rx_comp;
2613 rx_comp:
2614 /* final rx completion */
2615 spin_lock_irqsave(&cp->lock, flags);
2616 if (status)
2617 cas_handle_irq(dev, cp, status);
2619 #ifdef USE_PCI_INTB
2620 if (N_RX_COMP_RINGS > 1) {
2621 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(1));
2622 if (status)
2623 cas_handle_irq1(dev, cp, status);
2625 #endif
2627 #ifdef USE_PCI_INTC
2628 if (N_RX_COMP_RINGS > 2) {
2629 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(2));
2630 if (status)
2631 cas_handle_irqN(dev, cp, status, 2);
2633 #endif
2635 #ifdef USE_PCI_INTD
2636 if (N_RX_COMP_RINGS > 3) {
2637 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(3));
2638 if (status)
2639 cas_handle_irqN(dev, cp, status, 3);
2641 #endif
2642 spin_unlock_irqrestore(&cp->lock, flags);
2643 if (enable_intr) {
2644 netif_rx_complete(dev, napi);
2645 cas_unmask_intr(cp);
2647 return credits;
2649 #endif
2651 #ifdef CONFIG_NET_POLL_CONTROLLER
2652 static void cas_netpoll(struct net_device *dev)
2654 struct cas *cp = netdev_priv(dev);
2656 cas_disable_irq(cp, 0);
2657 cas_interrupt(cp->pdev->irq, dev);
2658 cas_enable_irq(cp, 0);
2660 #ifdef USE_PCI_INTB
2661 if (N_RX_COMP_RINGS > 1) {
2662 /* cas_interrupt1(); */
2664 #endif
2665 #ifdef USE_PCI_INTC
2666 if (N_RX_COMP_RINGS > 2) {
2667 /* cas_interruptN(); */
2669 #endif
2670 #ifdef USE_PCI_INTD
2671 if (N_RX_COMP_RINGS > 3) {
2672 /* cas_interruptN(); */
2674 #endif
2676 #endif
2678 static void cas_tx_timeout(struct net_device *dev)
2680 struct cas *cp = netdev_priv(dev);
2682 printk(KERN_ERR "%s: transmit timed out, resetting\n", dev->name);
2683 if (!cp->hw_running) {
2684 printk("%s: hrm.. hw not running!\n", dev->name);
2685 return;
2688 printk(KERN_ERR "%s: MIF_STATE[%08x]\n",
2689 dev->name, readl(cp->regs + REG_MIF_STATE_MACHINE));
2691 printk(KERN_ERR "%s: MAC_STATE[%08x]\n",
2692 dev->name, readl(cp->regs + REG_MAC_STATE_MACHINE));
2694 printk(KERN_ERR "%s: TX_STATE[%08x:%08x:%08x] "
2695 "FIFO[%08x:%08x:%08x] SM1[%08x] SM2[%08x]\n",
2696 dev->name,
2697 readl(cp->regs + REG_TX_CFG),
2698 readl(cp->regs + REG_MAC_TX_STATUS),
2699 readl(cp->regs + REG_MAC_TX_CFG),
2700 readl(cp->regs + REG_TX_FIFO_PKT_CNT),
2701 readl(cp->regs + REG_TX_FIFO_WRITE_PTR),
2702 readl(cp->regs + REG_TX_FIFO_READ_PTR),
2703 readl(cp->regs + REG_TX_SM_1),
2704 readl(cp->regs + REG_TX_SM_2));
2706 printk(KERN_ERR "%s: RX_STATE[%08x:%08x:%08x]\n",
2707 dev->name,
2708 readl(cp->regs + REG_RX_CFG),
2709 readl(cp->regs + REG_MAC_RX_STATUS),
2710 readl(cp->regs + REG_MAC_RX_CFG));
2712 printk(KERN_ERR "%s: HP_STATE[%08x:%08x:%08x:%08x]\n",
2713 dev->name,
2714 readl(cp->regs + REG_HP_STATE_MACHINE),
2715 readl(cp->regs + REG_HP_STATUS0),
2716 readl(cp->regs + REG_HP_STATUS1),
2717 readl(cp->regs + REG_HP_STATUS2));
2719 #if 1
2720 atomic_inc(&cp->reset_task_pending);
2721 atomic_inc(&cp->reset_task_pending_all);
2722 schedule_work(&cp->reset_task);
2723 #else
2724 atomic_set(&cp->reset_task_pending, CAS_RESET_ALL);
2725 schedule_work(&cp->reset_task);
2726 #endif
2729 static inline int cas_intme(int ring, int entry)
2731 /* Algorithm: IRQ every 1/2 of descriptors. */
2732 if (!(entry & ((TX_DESC_RINGN_SIZE(ring) >> 1) - 1)))
2733 return 1;
2734 return 0;
2738 static void cas_write_txd(struct cas *cp, int ring, int entry,
2739 dma_addr_t mapping, int len, u64 ctrl, int last)
2741 struct cas_tx_desc *txd = cp->init_txds[ring] + entry;
2743 ctrl |= CAS_BASE(TX_DESC_BUFLEN, len);
2744 if (cas_intme(ring, entry))
2745 ctrl |= TX_DESC_INTME;
2746 if (last)
2747 ctrl |= TX_DESC_EOF;
2748 txd->control = cpu_to_le64(ctrl);
2749 txd->buffer = cpu_to_le64(mapping);
2752 static inline void *tx_tiny_buf(struct cas *cp, const int ring,
2753 const int entry)
2755 return cp->tx_tiny_bufs[ring] + TX_TINY_BUF_LEN*entry;
2758 static inline dma_addr_t tx_tiny_map(struct cas *cp, const int ring,
2759 const int entry, const int tentry)
2761 cp->tx_tiny_use[ring][tentry].nbufs++;
2762 cp->tx_tiny_use[ring][entry].used = 1;
2763 return cp->tx_tiny_dvma[ring] + TX_TINY_BUF_LEN*entry;
2766 static inline int cas_xmit_tx_ringN(struct cas *cp, int ring,
2767 struct sk_buff *skb)
2769 struct net_device *dev = cp->dev;
2770 int entry, nr_frags, frag, tabort, tentry;
2771 dma_addr_t mapping;
2772 unsigned long flags;
2773 u64 ctrl;
2774 u32 len;
2776 spin_lock_irqsave(&cp->tx_lock[ring], flags);
2778 /* This is a hard error, log it. */
2779 if (TX_BUFFS_AVAIL(cp, ring) <=
2780 CAS_TABORT(cp)*(skb_shinfo(skb)->nr_frags + 1)) {
2781 netif_stop_queue(dev);
2782 spin_unlock_irqrestore(&cp->tx_lock[ring], flags);
2783 printk(KERN_ERR PFX "%s: BUG! Tx Ring full when "
2784 "queue awake!\n", dev->name);
2785 return 1;
2788 ctrl = 0;
2789 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2790 const u64 csum_start_off = skb_transport_offset(skb);
2791 const u64 csum_stuff_off = csum_start_off + skb->csum_offset;
2793 ctrl = TX_DESC_CSUM_EN |
2794 CAS_BASE(TX_DESC_CSUM_START, csum_start_off) |
2795 CAS_BASE(TX_DESC_CSUM_STUFF, csum_stuff_off);
2798 entry = cp->tx_new[ring];
2799 cp->tx_skbs[ring][entry] = skb;
2801 nr_frags = skb_shinfo(skb)->nr_frags;
2802 len = skb_headlen(skb);
2803 mapping = pci_map_page(cp->pdev, virt_to_page(skb->data),
2804 offset_in_page(skb->data), len,
2805 PCI_DMA_TODEVICE);
2807 tentry = entry;
2808 tabort = cas_calc_tabort(cp, (unsigned long) skb->data, len);
2809 if (unlikely(tabort)) {
2810 /* NOTE: len is always > tabort */
2811 cas_write_txd(cp, ring, entry, mapping, len - tabort,
2812 ctrl | TX_DESC_SOF, 0);
2813 entry = TX_DESC_NEXT(ring, entry);
2815 skb_copy_from_linear_data_offset(skb, len - tabort,
2816 tx_tiny_buf(cp, ring, entry), tabort);
2817 mapping = tx_tiny_map(cp, ring, entry, tentry);
2818 cas_write_txd(cp, ring, entry, mapping, tabort, ctrl,
2819 (nr_frags == 0));
2820 } else {
2821 cas_write_txd(cp, ring, entry, mapping, len, ctrl |
2822 TX_DESC_SOF, (nr_frags == 0));
2824 entry = TX_DESC_NEXT(ring, entry);
2826 for (frag = 0; frag < nr_frags; frag++) {
2827 skb_frag_t *fragp = &skb_shinfo(skb)->frags[frag];
2829 len = fragp->size;
2830 mapping = pci_map_page(cp->pdev, fragp->page,
2831 fragp->page_offset, len,
2832 PCI_DMA_TODEVICE);
2834 tabort = cas_calc_tabort(cp, fragp->page_offset, len);
2835 if (unlikely(tabort)) {
2836 void *addr;
2838 /* NOTE: len is always > tabort */
2839 cas_write_txd(cp, ring, entry, mapping, len - tabort,
2840 ctrl, 0);
2841 entry = TX_DESC_NEXT(ring, entry);
2843 addr = cas_page_map(fragp->page);
2844 memcpy(tx_tiny_buf(cp, ring, entry),
2845 addr + fragp->page_offset + len - tabort,
2846 tabort);
2847 cas_page_unmap(addr);
2848 mapping = tx_tiny_map(cp, ring, entry, tentry);
2849 len = tabort;
2852 cas_write_txd(cp, ring, entry, mapping, len, ctrl,
2853 (frag + 1 == nr_frags));
2854 entry = TX_DESC_NEXT(ring, entry);
2857 cp->tx_new[ring] = entry;
2858 if (TX_BUFFS_AVAIL(cp, ring) <= CAS_TABORT(cp)*(MAX_SKB_FRAGS + 1))
2859 netif_stop_queue(dev);
2861 if (netif_msg_tx_queued(cp))
2862 printk(KERN_DEBUG "%s: tx[%d] queued, slot %d, skblen %d, "
2863 "avail %d\n",
2864 dev->name, ring, entry, skb->len,
2865 TX_BUFFS_AVAIL(cp, ring));
2866 writel(entry, cp->regs + REG_TX_KICKN(ring));
2867 spin_unlock_irqrestore(&cp->tx_lock[ring], flags);
2868 return 0;
2871 static int cas_start_xmit(struct sk_buff *skb, struct net_device *dev)
2873 struct cas *cp = netdev_priv(dev);
2875 /* this is only used as a load-balancing hint, so it doesn't
2876 * need to be SMP safe
2878 static int ring;
2880 if (skb_padto(skb, cp->min_frame_size))
2881 return 0;
2883 /* XXX: we need some higher-level QoS hooks to steer packets to
2884 * individual queues.
2886 if (cas_xmit_tx_ringN(cp, ring++ & N_TX_RINGS_MASK, skb))
2887 return 1;
2888 dev->trans_start = jiffies;
2889 return 0;
2892 static void cas_init_tx_dma(struct cas *cp)
2894 u64 desc_dma = cp->block_dvma;
2895 unsigned long off;
2896 u32 val;
2897 int i;
2899 /* set up tx completion writeback registers. must be 8-byte aligned */
2900 #ifdef USE_TX_COMPWB
2901 off = offsetof(struct cas_init_block, tx_compwb);
2902 writel((desc_dma + off) >> 32, cp->regs + REG_TX_COMPWB_DB_HI);
2903 writel((desc_dma + off) & 0xffffffff, cp->regs + REG_TX_COMPWB_DB_LOW);
2904 #endif
2906 /* enable completion writebacks, enable paced mode,
2907 * disable read pipe, and disable pre-interrupt compwbs
2909 val = TX_CFG_COMPWB_Q1 | TX_CFG_COMPWB_Q2 |
2910 TX_CFG_COMPWB_Q3 | TX_CFG_COMPWB_Q4 |
2911 TX_CFG_DMA_RDPIPE_DIS | TX_CFG_PACED_MODE |
2912 TX_CFG_INTR_COMPWB_DIS;
2914 /* write out tx ring info and tx desc bases */
2915 for (i = 0; i < MAX_TX_RINGS; i++) {
2916 off = (unsigned long) cp->init_txds[i] -
2917 (unsigned long) cp->init_block;
2919 val |= CAS_TX_RINGN_BASE(i);
2920 writel((desc_dma + off) >> 32, cp->regs + REG_TX_DBN_HI(i));
2921 writel((desc_dma + off) & 0xffffffff, cp->regs +
2922 REG_TX_DBN_LOW(i));
2923 /* don't zero out the kick register here as the system
2924 * will wedge
2927 writel(val, cp->regs + REG_TX_CFG);
2929 /* program max burst sizes. these numbers should be different
2930 * if doing QoS.
2932 #ifdef USE_QOS
2933 writel(0x800, cp->regs + REG_TX_MAXBURST_0);
2934 writel(0x1600, cp->regs + REG_TX_MAXBURST_1);
2935 writel(0x2400, cp->regs + REG_TX_MAXBURST_2);
2936 writel(0x4800, cp->regs + REG_TX_MAXBURST_3);
2937 #else
2938 writel(0x800, cp->regs + REG_TX_MAXBURST_0);
2939 writel(0x800, cp->regs + REG_TX_MAXBURST_1);
2940 writel(0x800, cp->regs + REG_TX_MAXBURST_2);
2941 writel(0x800, cp->regs + REG_TX_MAXBURST_3);
2942 #endif
2945 /* Must be invoked under cp->lock. */
2946 static inline void cas_init_dma(struct cas *cp)
2948 cas_init_tx_dma(cp);
2949 cas_init_rx_dma(cp);
2952 /* Must be invoked under cp->lock. */
2953 static u32 cas_setup_multicast(struct cas *cp)
2955 u32 rxcfg = 0;
2956 int i;
2958 if (cp->dev->flags & IFF_PROMISC) {
2959 rxcfg |= MAC_RX_CFG_PROMISC_EN;
2961 } else if (cp->dev->flags & IFF_ALLMULTI) {
2962 for (i=0; i < 16; i++)
2963 writel(0xFFFF, cp->regs + REG_MAC_HASH_TABLEN(i));
2964 rxcfg |= MAC_RX_CFG_HASH_FILTER_EN;
2966 } else {
2967 u16 hash_table[16];
2968 u32 crc;
2969 struct dev_mc_list *dmi = cp->dev->mc_list;
2970 int i;
2972 /* use the alternate mac address registers for the
2973 * first 15 multicast addresses
2975 for (i = 1; i <= CAS_MC_EXACT_MATCH_SIZE; i++) {
2976 if (!dmi) {
2977 writel(0x0, cp->regs + REG_MAC_ADDRN(i*3 + 0));
2978 writel(0x0, cp->regs + REG_MAC_ADDRN(i*3 + 1));
2979 writel(0x0, cp->regs + REG_MAC_ADDRN(i*3 + 2));
2980 continue;
2982 writel((dmi->dmi_addr[4] << 8) | dmi->dmi_addr[5],
2983 cp->regs + REG_MAC_ADDRN(i*3 + 0));
2984 writel((dmi->dmi_addr[2] << 8) | dmi->dmi_addr[3],
2985 cp->regs + REG_MAC_ADDRN(i*3 + 1));
2986 writel((dmi->dmi_addr[0] << 8) | dmi->dmi_addr[1],
2987 cp->regs + REG_MAC_ADDRN(i*3 + 2));
2988 dmi = dmi->next;
2991 /* use hw hash table for the next series of
2992 * multicast addresses
2994 memset(hash_table, 0, sizeof(hash_table));
2995 while (dmi) {
2996 crc = ether_crc_le(ETH_ALEN, dmi->dmi_addr);
2997 crc >>= 24;
2998 hash_table[crc >> 4] |= 1 << (15 - (crc & 0xf));
2999 dmi = dmi->next;
3001 for (i=0; i < 16; i++)
3002 writel(hash_table[i], cp->regs +
3003 REG_MAC_HASH_TABLEN(i));
3004 rxcfg |= MAC_RX_CFG_HASH_FILTER_EN;
3007 return rxcfg;
3010 /* must be invoked under cp->stat_lock[N_TX_RINGS] */
3011 static void cas_clear_mac_err(struct cas *cp)
3013 writel(0, cp->regs + REG_MAC_COLL_NORMAL);
3014 writel(0, cp->regs + REG_MAC_COLL_FIRST);
3015 writel(0, cp->regs + REG_MAC_COLL_EXCESS);
3016 writel(0, cp->regs + REG_MAC_COLL_LATE);
3017 writel(0, cp->regs + REG_MAC_TIMER_DEFER);
3018 writel(0, cp->regs + REG_MAC_ATTEMPTS_PEAK);
3019 writel(0, cp->regs + REG_MAC_RECV_FRAME);
3020 writel(0, cp->regs + REG_MAC_LEN_ERR);
3021 writel(0, cp->regs + REG_MAC_ALIGN_ERR);
3022 writel(0, cp->regs + REG_MAC_FCS_ERR);
3023 writel(0, cp->regs + REG_MAC_RX_CODE_ERR);
3027 static void cas_mac_reset(struct cas *cp)
3029 int i;
3031 /* do both TX and RX reset */
3032 writel(0x1, cp->regs + REG_MAC_TX_RESET);
3033 writel(0x1, cp->regs + REG_MAC_RX_RESET);
3035 /* wait for TX */
3036 i = STOP_TRIES;
3037 while (i-- > 0) {
3038 if (readl(cp->regs + REG_MAC_TX_RESET) == 0)
3039 break;
3040 udelay(10);
3043 /* wait for RX */
3044 i = STOP_TRIES;
3045 while (i-- > 0) {
3046 if (readl(cp->regs + REG_MAC_RX_RESET) == 0)
3047 break;
3048 udelay(10);
3051 if (readl(cp->regs + REG_MAC_TX_RESET) |
3052 readl(cp->regs + REG_MAC_RX_RESET))
3053 printk(KERN_ERR "%s: mac tx[%d]/rx[%d] reset failed [%08x]\n",
3054 cp->dev->name, readl(cp->regs + REG_MAC_TX_RESET),
3055 readl(cp->regs + REG_MAC_RX_RESET),
3056 readl(cp->regs + REG_MAC_STATE_MACHINE));
3060 /* Must be invoked under cp->lock. */
3061 static void cas_init_mac(struct cas *cp)
3063 unsigned char *e = &cp->dev->dev_addr[0];
3064 int i;
3065 #ifdef CONFIG_CASSINI_MULTICAST_REG_WRITE
3066 u32 rxcfg;
3067 #endif
3068 cas_mac_reset(cp);
3070 /* setup core arbitration weight register */
3071 writel(CAWR_RR_DIS, cp->regs + REG_CAWR);
3073 /* XXX Use pci_dma_burst_advice() */
3074 #if !defined(CONFIG_SPARC64) && !defined(CONFIG_ALPHA)
3075 /* set the infinite burst register for chips that don't have
3076 * pci issues.
3078 if ((cp->cas_flags & CAS_FLAG_TARGET_ABORT) == 0)
3079 writel(INF_BURST_EN, cp->regs + REG_INF_BURST);
3080 #endif
3082 writel(0x1BF0, cp->regs + REG_MAC_SEND_PAUSE);
3084 writel(0x00, cp->regs + REG_MAC_IPG0);
3085 writel(0x08, cp->regs + REG_MAC_IPG1);
3086 writel(0x04, cp->regs + REG_MAC_IPG2);
3088 /* change later for 802.3z */
3089 writel(0x40, cp->regs + REG_MAC_SLOT_TIME);
3091 /* min frame + FCS */
3092 writel(ETH_ZLEN + 4, cp->regs + REG_MAC_FRAMESIZE_MIN);
3094 /* Ethernet payload + header + FCS + optional VLAN tag. NOTE: we
3095 * specify the maximum frame size to prevent RX tag errors on
3096 * oversized frames.
3098 writel(CAS_BASE(MAC_FRAMESIZE_MAX_BURST, 0x2000) |
3099 CAS_BASE(MAC_FRAMESIZE_MAX_FRAME,
3100 (CAS_MAX_MTU + ETH_HLEN + 4 + 4)),
3101 cp->regs + REG_MAC_FRAMESIZE_MAX);
3103 /* NOTE: crc_size is used as a surrogate for half-duplex.
3104 * workaround saturn half-duplex issue by increasing preamble
3105 * size to 65 bytes.
3107 if ((cp->cas_flags & CAS_FLAG_SATURN) && cp->crc_size)
3108 writel(0x41, cp->regs + REG_MAC_PA_SIZE);
3109 else
3110 writel(0x07, cp->regs + REG_MAC_PA_SIZE);
3111 writel(0x04, cp->regs + REG_MAC_JAM_SIZE);
3112 writel(0x10, cp->regs + REG_MAC_ATTEMPT_LIMIT);
3113 writel(0x8808, cp->regs + REG_MAC_CTRL_TYPE);
3115 writel((e[5] | (e[4] << 8)) & 0x3ff, cp->regs + REG_MAC_RANDOM_SEED);
3117 writel(0, cp->regs + REG_MAC_ADDR_FILTER0);
3118 writel(0, cp->regs + REG_MAC_ADDR_FILTER1);
3119 writel(0, cp->regs + REG_MAC_ADDR_FILTER2);
3120 writel(0, cp->regs + REG_MAC_ADDR_FILTER2_1_MASK);
3121 writel(0, cp->regs + REG_MAC_ADDR_FILTER0_MASK);
3123 /* setup mac address in perfect filter array */
3124 for (i = 0; i < 45; i++)
3125 writel(0x0, cp->regs + REG_MAC_ADDRN(i));
3127 writel((e[4] << 8) | e[5], cp->regs + REG_MAC_ADDRN(0));
3128 writel((e[2] << 8) | e[3], cp->regs + REG_MAC_ADDRN(1));
3129 writel((e[0] << 8) | e[1], cp->regs + REG_MAC_ADDRN(2));
3131 writel(0x0001, cp->regs + REG_MAC_ADDRN(42));
3132 writel(0xc200, cp->regs + REG_MAC_ADDRN(43));
3133 writel(0x0180, cp->regs + REG_MAC_ADDRN(44));
3135 #ifndef CONFIG_CASSINI_MULTICAST_REG_WRITE
3136 cp->mac_rx_cfg = cas_setup_multicast(cp);
3137 #else
3138 /* WTZ: Do what Adrian did in cas_set_multicast. Doing
3139 * a writel does not seem to be necessary because Cassini
3140 * seems to preserve the configuration when we do the reset.
3141 * If the chip is in trouble, though, it is not clear if we
3142 * can really count on this behavior. cas_set_multicast uses
3143 * spin_lock_irqsave, but we are called only in cas_init_hw and
3144 * cas_init_hw is protected by cas_lock_all, which calls
3145 * spin_lock_irq (so it doesn't need to save the flags, and
3146 * we should be OK for the writel, as that is the only
3147 * difference).
3149 cp->mac_rx_cfg = rxcfg = cas_setup_multicast(cp);
3150 writel(rxcfg, cp->regs + REG_MAC_RX_CFG);
3151 #endif
3152 spin_lock(&cp->stat_lock[N_TX_RINGS]);
3153 cas_clear_mac_err(cp);
3154 spin_unlock(&cp->stat_lock[N_TX_RINGS]);
3156 /* Setup MAC interrupts. We want to get all of the interesting
3157 * counter expiration events, but we do not want to hear about
3158 * normal rx/tx as the DMA engine tells us that.
3160 writel(MAC_TX_FRAME_XMIT, cp->regs + REG_MAC_TX_MASK);
3161 writel(MAC_RX_FRAME_RECV, cp->regs + REG_MAC_RX_MASK);
3163 /* Don't enable even the PAUSE interrupts for now, we
3164 * make no use of those events other than to record them.
3166 writel(0xffffffff, cp->regs + REG_MAC_CTRL_MASK);
3169 /* Must be invoked under cp->lock. */
3170 static void cas_init_pause_thresholds(struct cas *cp)
3172 /* Calculate pause thresholds. Setting the OFF threshold to the
3173 * full RX fifo size effectively disables PAUSE generation
3175 if (cp->rx_fifo_size <= (2 * 1024)) {
3176 cp->rx_pause_off = cp->rx_pause_on = cp->rx_fifo_size;
3177 } else {
3178 int max_frame = (cp->dev->mtu + ETH_HLEN + 4 + 4 + 64) & ~63;
3179 if (max_frame * 3 > cp->rx_fifo_size) {
3180 cp->rx_pause_off = 7104;
3181 cp->rx_pause_on = 960;
3182 } else {
3183 int off = (cp->rx_fifo_size - (max_frame * 2));
3184 int on = off - max_frame;
3185 cp->rx_pause_off = off;
3186 cp->rx_pause_on = on;
3191 static int cas_vpd_match(const void __iomem *p, const char *str)
3193 int len = strlen(str) + 1;
3194 int i;
3196 for (i = 0; i < len; i++) {
3197 if (readb(p + i) != str[i])
3198 return 0;
3200 return 1;
3204 /* get the mac address by reading the vpd information in the rom.
3205 * also get the phy type and determine if there's an entropy generator.
3206 * NOTE: this is a bit convoluted for the following reasons:
3207 * 1) vpd info has order-dependent mac addresses for multinic cards
3208 * 2) the only way to determine the nic order is to use the slot
3209 * number.
3210 * 3) fiber cards don't have bridges, so their slot numbers don't
3211 * mean anything.
3212 * 4) we don't actually know we have a fiber card until after
3213 * the mac addresses are parsed.
3215 static int cas_get_vpd_info(struct cas *cp, unsigned char *dev_addr,
3216 const int offset)
3218 void __iomem *p = cp->regs + REG_EXPANSION_ROM_RUN_START;
3219 void __iomem *base, *kstart;
3220 int i, len;
3221 int found = 0;
3222 #define VPD_FOUND_MAC 0x01
3223 #define VPD_FOUND_PHY 0x02
3225 int phy_type = CAS_PHY_MII_MDIO0; /* default phy type */
3226 int mac_off = 0;
3228 /* give us access to the PROM */
3229 writel(BIM_LOCAL_DEV_PROM | BIM_LOCAL_DEV_PAD,
3230 cp->regs + REG_BIM_LOCAL_DEV_EN);
3232 /* check for an expansion rom */
3233 if (readb(p) != 0x55 || readb(p + 1) != 0xaa)
3234 goto use_random_mac_addr;
3236 /* search for beginning of vpd */
3237 base = NULL;
3238 for (i = 2; i < EXPANSION_ROM_SIZE; i++) {
3239 /* check for PCIR */
3240 if ((readb(p + i + 0) == 0x50) &&
3241 (readb(p + i + 1) == 0x43) &&
3242 (readb(p + i + 2) == 0x49) &&
3243 (readb(p + i + 3) == 0x52)) {
3244 base = p + (readb(p + i + 8) |
3245 (readb(p + i + 9) << 8));
3246 break;
3250 if (!base || (readb(base) != 0x82))
3251 goto use_random_mac_addr;
3253 i = (readb(base + 1) | (readb(base + 2) << 8)) + 3;
3254 while (i < EXPANSION_ROM_SIZE) {
3255 if (readb(base + i) != 0x90) /* no vpd found */
3256 goto use_random_mac_addr;
3258 /* found a vpd field */
3259 len = readb(base + i + 1) | (readb(base + i + 2) << 8);
3261 /* extract keywords */
3262 kstart = base + i + 3;
3263 p = kstart;
3264 while ((p - kstart) < len) {
3265 int klen = readb(p + 2);
3266 int j;
3267 char type;
3269 p += 3;
3271 /* look for the following things:
3272 * -- correct length == 29
3273 * 3 (type) + 2 (size) +
3274 * 18 (strlen("local-mac-address") + 1) +
3275 * 6 (mac addr)
3276 * -- VPD Instance 'I'
3277 * -- VPD Type Bytes 'B'
3278 * -- VPD data length == 6
3279 * -- property string == local-mac-address
3281 * -- correct length == 24
3282 * 3 (type) + 2 (size) +
3283 * 12 (strlen("entropy-dev") + 1) +
3284 * 7 (strlen("vms110") + 1)
3285 * -- VPD Instance 'I'
3286 * -- VPD Type String 'B'
3287 * -- VPD data length == 7
3288 * -- property string == entropy-dev
3290 * -- correct length == 18
3291 * 3 (type) + 2 (size) +
3292 * 9 (strlen("phy-type") + 1) +
3293 * 4 (strlen("pcs") + 1)
3294 * -- VPD Instance 'I'
3295 * -- VPD Type String 'S'
3296 * -- VPD data length == 4
3297 * -- property string == phy-type
3299 * -- correct length == 23
3300 * 3 (type) + 2 (size) +
3301 * 14 (strlen("phy-interface") + 1) +
3302 * 4 (strlen("pcs") + 1)
3303 * -- VPD Instance 'I'
3304 * -- VPD Type String 'S'
3305 * -- VPD data length == 4
3306 * -- property string == phy-interface
3308 if (readb(p) != 'I')
3309 goto next;
3311 /* finally, check string and length */
3312 type = readb(p + 3);
3313 if (type == 'B') {
3314 if ((klen == 29) && readb(p + 4) == 6 &&
3315 cas_vpd_match(p + 5,
3316 "local-mac-address")) {
3317 if (mac_off++ > offset)
3318 goto next;
3320 /* set mac address */
3321 for (j = 0; j < 6; j++)
3322 dev_addr[j] =
3323 readb(p + 23 + j);
3324 goto found_mac;
3328 if (type != 'S')
3329 goto next;
3331 #ifdef USE_ENTROPY_DEV
3332 if ((klen == 24) &&
3333 cas_vpd_match(p + 5, "entropy-dev") &&
3334 cas_vpd_match(p + 17, "vms110")) {
3335 cp->cas_flags |= CAS_FLAG_ENTROPY_DEV;
3336 goto next;
3338 #endif
3340 if (found & VPD_FOUND_PHY)
3341 goto next;
3343 if ((klen == 18) && readb(p + 4) == 4 &&
3344 cas_vpd_match(p + 5, "phy-type")) {
3345 if (cas_vpd_match(p + 14, "pcs")) {
3346 phy_type = CAS_PHY_SERDES;
3347 goto found_phy;
3351 if ((klen == 23) && readb(p + 4) == 4 &&
3352 cas_vpd_match(p + 5, "phy-interface")) {
3353 if (cas_vpd_match(p + 19, "pcs")) {
3354 phy_type = CAS_PHY_SERDES;
3355 goto found_phy;
3358 found_mac:
3359 found |= VPD_FOUND_MAC;
3360 goto next;
3362 found_phy:
3363 found |= VPD_FOUND_PHY;
3365 next:
3366 p += klen;
3368 i += len + 3;
3371 use_random_mac_addr:
3372 if (found & VPD_FOUND_MAC)
3373 goto done;
3375 /* Sun MAC prefix then 3 random bytes. */
3376 printk(PFX "MAC address not found in ROM VPD\n");
3377 dev_addr[0] = 0x08;
3378 dev_addr[1] = 0x00;
3379 dev_addr[2] = 0x20;
3380 get_random_bytes(dev_addr + 3, 3);
3382 done:
3383 writel(0, cp->regs + REG_BIM_LOCAL_DEV_EN);
3384 return phy_type;
3387 /* check pci invariants */
3388 static void cas_check_pci_invariants(struct cas *cp)
3390 struct pci_dev *pdev = cp->pdev;
3392 cp->cas_flags = 0;
3393 if ((pdev->vendor == PCI_VENDOR_ID_SUN) &&
3394 (pdev->device == PCI_DEVICE_ID_SUN_CASSINI)) {
3395 if (pdev->revision >= CAS_ID_REVPLUS)
3396 cp->cas_flags |= CAS_FLAG_REG_PLUS;
3397 if (pdev->revision < CAS_ID_REVPLUS02u)
3398 cp->cas_flags |= CAS_FLAG_TARGET_ABORT;
3400 /* Original Cassini supports HW CSUM, but it's not
3401 * enabled by default as it can trigger TX hangs.
3403 if (pdev->revision < CAS_ID_REV2)
3404 cp->cas_flags |= CAS_FLAG_NO_HW_CSUM;
3405 } else {
3406 /* Only sun has original cassini chips. */
3407 cp->cas_flags |= CAS_FLAG_REG_PLUS;
3409 /* We use a flag because the same phy might be externally
3410 * connected.
3412 if ((pdev->vendor == PCI_VENDOR_ID_NS) &&
3413 (pdev->device == PCI_DEVICE_ID_NS_SATURN))
3414 cp->cas_flags |= CAS_FLAG_SATURN;
3419 static int cas_check_invariants(struct cas *cp)
3421 struct pci_dev *pdev = cp->pdev;
3422 u32 cfg;
3423 int i;
3425 /* get page size for rx buffers. */
3426 cp->page_order = 0;
3427 #ifdef USE_PAGE_ORDER
3428 if (PAGE_SHIFT < CAS_JUMBO_PAGE_SHIFT) {
3429 /* see if we can allocate larger pages */
3430 struct page *page = alloc_pages(GFP_ATOMIC,
3431 CAS_JUMBO_PAGE_SHIFT -
3432 PAGE_SHIFT);
3433 if (page) {
3434 __free_pages(page, CAS_JUMBO_PAGE_SHIFT - PAGE_SHIFT);
3435 cp->page_order = CAS_JUMBO_PAGE_SHIFT - PAGE_SHIFT;
3436 } else {
3437 printk(PFX "MTU limited to %d bytes\n", CAS_MAX_MTU);
3440 #endif
3441 cp->page_size = (PAGE_SIZE << cp->page_order);
3443 /* Fetch the FIFO configurations. */
3444 cp->tx_fifo_size = readl(cp->regs + REG_TX_FIFO_SIZE) * 64;
3445 cp->rx_fifo_size = RX_FIFO_SIZE;
3447 /* finish phy determination. MDIO1 takes precedence over MDIO0 if
3448 * they're both connected.
3450 cp->phy_type = cas_get_vpd_info(cp, cp->dev->dev_addr,
3451 PCI_SLOT(pdev->devfn));
3452 if (cp->phy_type & CAS_PHY_SERDES) {
3453 cp->cas_flags |= CAS_FLAG_1000MB_CAP;
3454 return 0; /* no more checking needed */
3457 /* MII */
3458 cfg = readl(cp->regs + REG_MIF_CFG);
3459 if (cfg & MIF_CFG_MDIO_1) {
3460 cp->phy_type = CAS_PHY_MII_MDIO1;
3461 } else if (cfg & MIF_CFG_MDIO_0) {
3462 cp->phy_type = CAS_PHY_MII_MDIO0;
3465 cas_mif_poll(cp, 0);
3466 writel(PCS_DATAPATH_MODE_MII, cp->regs + REG_PCS_DATAPATH_MODE);
3468 for (i = 0; i < 32; i++) {
3469 u32 phy_id;
3470 int j;
3472 for (j = 0; j < 3; j++) {
3473 cp->phy_addr = i;
3474 phy_id = cas_phy_read(cp, MII_PHYSID1) << 16;
3475 phy_id |= cas_phy_read(cp, MII_PHYSID2);
3476 if (phy_id && (phy_id != 0xFFFFFFFF)) {
3477 cp->phy_id = phy_id;
3478 goto done;
3482 printk(KERN_ERR PFX "MII phy did not respond [%08x]\n",
3483 readl(cp->regs + REG_MIF_STATE_MACHINE));
3484 return -1;
3486 done:
3487 /* see if we can do gigabit */
3488 cfg = cas_phy_read(cp, MII_BMSR);
3489 if ((cfg & CAS_BMSR_1000_EXTEND) &&
3490 cas_phy_read(cp, CAS_MII_1000_EXTEND))
3491 cp->cas_flags |= CAS_FLAG_1000MB_CAP;
3492 return 0;
3495 /* Must be invoked under cp->lock. */
3496 static inline void cas_start_dma(struct cas *cp)
3498 int i;
3499 u32 val;
3500 int txfailed = 0;
3502 /* enable dma */
3503 val = readl(cp->regs + REG_TX_CFG) | TX_CFG_DMA_EN;
3504 writel(val, cp->regs + REG_TX_CFG);
3505 val = readl(cp->regs + REG_RX_CFG) | RX_CFG_DMA_EN;
3506 writel(val, cp->regs + REG_RX_CFG);
3508 /* enable the mac */
3509 val = readl(cp->regs + REG_MAC_TX_CFG) | MAC_TX_CFG_EN;
3510 writel(val, cp->regs + REG_MAC_TX_CFG);
3511 val = readl(cp->regs + REG_MAC_RX_CFG) | MAC_RX_CFG_EN;
3512 writel(val, cp->regs + REG_MAC_RX_CFG);
3514 i = STOP_TRIES;
3515 while (i-- > 0) {
3516 val = readl(cp->regs + REG_MAC_TX_CFG);
3517 if ((val & MAC_TX_CFG_EN))
3518 break;
3519 udelay(10);
3521 if (i < 0) txfailed = 1;
3522 i = STOP_TRIES;
3523 while (i-- > 0) {
3524 val = readl(cp->regs + REG_MAC_RX_CFG);
3525 if ((val & MAC_RX_CFG_EN)) {
3526 if (txfailed) {
3527 printk(KERN_ERR
3528 "%s: enabling mac failed [tx:%08x:%08x].\n",
3529 cp->dev->name,
3530 readl(cp->regs + REG_MIF_STATE_MACHINE),
3531 readl(cp->regs + REG_MAC_STATE_MACHINE));
3533 goto enable_rx_done;
3535 udelay(10);
3537 printk(KERN_ERR "%s: enabling mac failed [%s:%08x:%08x].\n",
3538 cp->dev->name,
3539 (txfailed? "tx,rx":"rx"),
3540 readl(cp->regs + REG_MIF_STATE_MACHINE),
3541 readl(cp->regs + REG_MAC_STATE_MACHINE));
3543 enable_rx_done:
3544 cas_unmask_intr(cp); /* enable interrupts */
3545 writel(RX_DESC_RINGN_SIZE(0) - 4, cp->regs + REG_RX_KICK);
3546 writel(0, cp->regs + REG_RX_COMP_TAIL);
3548 if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
3549 if (N_RX_DESC_RINGS > 1)
3550 writel(RX_DESC_RINGN_SIZE(1) - 4,
3551 cp->regs + REG_PLUS_RX_KICK1);
3553 for (i = 1; i < N_RX_COMP_RINGS; i++)
3554 writel(0, cp->regs + REG_PLUS_RX_COMPN_TAIL(i));
3558 /* Must be invoked under cp->lock. */
3559 static void cas_read_pcs_link_mode(struct cas *cp, int *fd, int *spd,
3560 int *pause)
3562 u32 val = readl(cp->regs + REG_PCS_MII_LPA);
3563 *fd = (val & PCS_MII_LPA_FD) ? 1 : 0;
3564 *pause = (val & PCS_MII_LPA_SYM_PAUSE) ? 0x01 : 0x00;
3565 if (val & PCS_MII_LPA_ASYM_PAUSE)
3566 *pause |= 0x10;
3567 *spd = 1000;
3570 /* Must be invoked under cp->lock. */
3571 static void cas_read_mii_link_mode(struct cas *cp, int *fd, int *spd,
3572 int *pause)
3574 u32 val;
3576 *fd = 0;
3577 *spd = 10;
3578 *pause = 0;
3580 /* use GMII registers */
3581 val = cas_phy_read(cp, MII_LPA);
3582 if (val & CAS_LPA_PAUSE)
3583 *pause = 0x01;
3585 if (val & CAS_LPA_ASYM_PAUSE)
3586 *pause |= 0x10;
3588 if (val & LPA_DUPLEX)
3589 *fd = 1;
3590 if (val & LPA_100)
3591 *spd = 100;
3593 if (cp->cas_flags & CAS_FLAG_1000MB_CAP) {
3594 val = cas_phy_read(cp, CAS_MII_1000_STATUS);
3595 if (val & (CAS_LPA_1000FULL | CAS_LPA_1000HALF))
3596 *spd = 1000;
3597 if (val & CAS_LPA_1000FULL)
3598 *fd = 1;
3602 /* A link-up condition has occurred, initialize and enable the
3603 * rest of the chip.
3605 * Must be invoked under cp->lock.
3607 static void cas_set_link_modes(struct cas *cp)
3609 u32 val;
3610 int full_duplex, speed, pause;
3612 full_duplex = 0;
3613 speed = 10;
3614 pause = 0;
3616 if (CAS_PHY_MII(cp->phy_type)) {
3617 cas_mif_poll(cp, 0);
3618 val = cas_phy_read(cp, MII_BMCR);
3619 if (val & BMCR_ANENABLE) {
3620 cas_read_mii_link_mode(cp, &full_duplex, &speed,
3621 &pause);
3622 } else {
3623 if (val & BMCR_FULLDPLX)
3624 full_duplex = 1;
3626 if (val & BMCR_SPEED100)
3627 speed = 100;
3628 else if (val & CAS_BMCR_SPEED1000)
3629 speed = (cp->cas_flags & CAS_FLAG_1000MB_CAP) ?
3630 1000 : 100;
3632 cas_mif_poll(cp, 1);
3634 } else {
3635 val = readl(cp->regs + REG_PCS_MII_CTRL);
3636 cas_read_pcs_link_mode(cp, &full_duplex, &speed, &pause);
3637 if ((val & PCS_MII_AUTONEG_EN) == 0) {
3638 if (val & PCS_MII_CTRL_DUPLEX)
3639 full_duplex = 1;
3643 if (netif_msg_link(cp))
3644 printk(KERN_INFO "%s: Link up at %d Mbps, %s-duplex.\n",
3645 cp->dev->name, speed, (full_duplex ? "full" : "half"));
3647 val = MAC_XIF_TX_MII_OUTPUT_EN | MAC_XIF_LINK_LED;
3648 if (CAS_PHY_MII(cp->phy_type)) {
3649 val |= MAC_XIF_MII_BUFFER_OUTPUT_EN;
3650 if (!full_duplex)
3651 val |= MAC_XIF_DISABLE_ECHO;
3653 if (full_duplex)
3654 val |= MAC_XIF_FDPLX_LED;
3655 if (speed == 1000)
3656 val |= MAC_XIF_GMII_MODE;
3657 writel(val, cp->regs + REG_MAC_XIF_CFG);
3659 /* deal with carrier and collision detect. */
3660 val = MAC_TX_CFG_IPG_EN;
3661 if (full_duplex) {
3662 val |= MAC_TX_CFG_IGNORE_CARRIER;
3663 val |= MAC_TX_CFG_IGNORE_COLL;
3664 } else {
3665 #ifndef USE_CSMA_CD_PROTO
3666 val |= MAC_TX_CFG_NEVER_GIVE_UP_EN;
3667 val |= MAC_TX_CFG_NEVER_GIVE_UP_LIM;
3668 #endif
3670 /* val now set up for REG_MAC_TX_CFG */
3672 /* If gigabit and half-duplex, enable carrier extension
3673 * mode. increase slot time to 512 bytes as well.
3674 * else, disable it and make sure slot time is 64 bytes.
3675 * also activate checksum bug workaround
3677 if ((speed == 1000) && !full_duplex) {
3678 writel(val | MAC_TX_CFG_CARRIER_EXTEND,
3679 cp->regs + REG_MAC_TX_CFG);
3681 val = readl(cp->regs + REG_MAC_RX_CFG);
3682 val &= ~MAC_RX_CFG_STRIP_FCS; /* checksum workaround */
3683 writel(val | MAC_RX_CFG_CARRIER_EXTEND,
3684 cp->regs + REG_MAC_RX_CFG);
3686 writel(0x200, cp->regs + REG_MAC_SLOT_TIME);
3688 cp->crc_size = 4;
3689 /* minimum size gigabit frame at half duplex */
3690 cp->min_frame_size = CAS_1000MB_MIN_FRAME;
3692 } else {
3693 writel(val, cp->regs + REG_MAC_TX_CFG);
3695 /* checksum bug workaround. don't strip FCS when in
3696 * half-duplex mode
3698 val = readl(cp->regs + REG_MAC_RX_CFG);
3699 if (full_duplex) {
3700 val |= MAC_RX_CFG_STRIP_FCS;
3701 cp->crc_size = 0;
3702 cp->min_frame_size = CAS_MIN_MTU;
3703 } else {
3704 val &= ~MAC_RX_CFG_STRIP_FCS;
3705 cp->crc_size = 4;
3706 cp->min_frame_size = CAS_MIN_FRAME;
3708 writel(val & ~MAC_RX_CFG_CARRIER_EXTEND,
3709 cp->regs + REG_MAC_RX_CFG);
3710 writel(0x40, cp->regs + REG_MAC_SLOT_TIME);
3713 if (netif_msg_link(cp)) {
3714 if (pause & 0x01) {
3715 printk(KERN_INFO "%s: Pause is enabled "
3716 "(rxfifo: %d off: %d on: %d)\n",
3717 cp->dev->name,
3718 cp->rx_fifo_size,
3719 cp->rx_pause_off,
3720 cp->rx_pause_on);
3721 } else if (pause & 0x10) {
3722 printk(KERN_INFO "%s: TX pause enabled\n",
3723 cp->dev->name);
3724 } else {
3725 printk(KERN_INFO "%s: Pause is disabled\n",
3726 cp->dev->name);
3730 val = readl(cp->regs + REG_MAC_CTRL_CFG);
3731 val &= ~(MAC_CTRL_CFG_SEND_PAUSE_EN | MAC_CTRL_CFG_RECV_PAUSE_EN);
3732 if (pause) { /* symmetric or asymmetric pause */
3733 val |= MAC_CTRL_CFG_SEND_PAUSE_EN;
3734 if (pause & 0x01) { /* symmetric pause */
3735 val |= MAC_CTRL_CFG_RECV_PAUSE_EN;
3738 writel(val, cp->regs + REG_MAC_CTRL_CFG);
3739 cas_start_dma(cp);
3742 /* Must be invoked under cp->lock. */
3743 static void cas_init_hw(struct cas *cp, int restart_link)
3745 if (restart_link)
3746 cas_phy_init(cp);
3748 cas_init_pause_thresholds(cp);
3749 cas_init_mac(cp);
3750 cas_init_dma(cp);
3752 if (restart_link) {
3753 /* Default aneg parameters */
3754 cp->timer_ticks = 0;
3755 cas_begin_auto_negotiation(cp, NULL);
3756 } else if (cp->lstate == link_up) {
3757 cas_set_link_modes(cp);
3758 netif_carrier_on(cp->dev);
3762 /* Must be invoked under cp->lock. on earlier cassini boards,
3763 * SOFT_0 is tied to PCI reset. we use this to force a pci reset,
3764 * let it settle out, and then restore pci state.
3766 static void cas_hard_reset(struct cas *cp)
3768 writel(BIM_LOCAL_DEV_SOFT_0, cp->regs + REG_BIM_LOCAL_DEV_EN);
3769 udelay(20);
3770 pci_restore_state(cp->pdev);
3774 static void cas_global_reset(struct cas *cp, int blkflag)
3776 int limit;
3778 /* issue a global reset. don't use RSTOUT. */
3779 if (blkflag && !CAS_PHY_MII(cp->phy_type)) {
3780 /* For PCS, when the blkflag is set, we should set the
3781 * SW_REST_BLOCK_PCS_SLINK bit to prevent the results of
3782 * the last autonegotiation from being cleared. We'll
3783 * need some special handling if the chip is set into a
3784 * loopback mode.
3786 writel((SW_RESET_TX | SW_RESET_RX | SW_RESET_BLOCK_PCS_SLINK),
3787 cp->regs + REG_SW_RESET);
3788 } else {
3789 writel(SW_RESET_TX | SW_RESET_RX, cp->regs + REG_SW_RESET);
3792 /* need to wait at least 3ms before polling register */
3793 mdelay(3);
3795 limit = STOP_TRIES;
3796 while (limit-- > 0) {
3797 u32 val = readl(cp->regs + REG_SW_RESET);
3798 if ((val & (SW_RESET_TX | SW_RESET_RX)) == 0)
3799 goto done;
3800 udelay(10);
3802 printk(KERN_ERR "%s: sw reset failed.\n", cp->dev->name);
3804 done:
3805 /* enable various BIM interrupts */
3806 writel(BIM_CFG_DPAR_INTR_ENABLE | BIM_CFG_RMA_INTR_ENABLE |
3807 BIM_CFG_RTA_INTR_ENABLE, cp->regs + REG_BIM_CFG);
3809 /* clear out pci error status mask for handled errors.
3810 * we don't deal with DMA counter overflows as they happen
3811 * all the time.
3813 writel(0xFFFFFFFFU & ~(PCI_ERR_BADACK | PCI_ERR_DTRTO |
3814 PCI_ERR_OTHER | PCI_ERR_BIM_DMA_WRITE |
3815 PCI_ERR_BIM_DMA_READ), cp->regs +
3816 REG_PCI_ERR_STATUS_MASK);
3818 /* set up for MII by default to address mac rx reset timeout
3819 * issue
3821 writel(PCS_DATAPATH_MODE_MII, cp->regs + REG_PCS_DATAPATH_MODE);
3824 static void cas_reset(struct cas *cp, int blkflag)
3826 u32 val;
3828 cas_mask_intr(cp);
3829 cas_global_reset(cp, blkflag);
3830 cas_mac_reset(cp);
3831 cas_entropy_reset(cp);
3833 /* disable dma engines. */
3834 val = readl(cp->regs + REG_TX_CFG);
3835 val &= ~TX_CFG_DMA_EN;
3836 writel(val, cp->regs + REG_TX_CFG);
3838 val = readl(cp->regs + REG_RX_CFG);
3839 val &= ~RX_CFG_DMA_EN;
3840 writel(val, cp->regs + REG_RX_CFG);
3842 /* program header parser */
3843 if ((cp->cas_flags & CAS_FLAG_TARGET_ABORT) ||
3844 (CAS_HP_ALT_FIRMWARE == cas_prog_null)) {
3845 cas_load_firmware(cp, CAS_HP_FIRMWARE);
3846 } else {
3847 cas_load_firmware(cp, CAS_HP_ALT_FIRMWARE);
3850 /* clear out error registers */
3851 spin_lock(&cp->stat_lock[N_TX_RINGS]);
3852 cas_clear_mac_err(cp);
3853 spin_unlock(&cp->stat_lock[N_TX_RINGS]);
3856 /* Shut down the chip, must be called with pm_mutex held. */
3857 static void cas_shutdown(struct cas *cp)
3859 unsigned long flags;
3861 /* Make us not-running to avoid timers respawning */
3862 cp->hw_running = 0;
3864 del_timer_sync(&cp->link_timer);
3866 /* Stop the reset task */
3867 #if 0
3868 while (atomic_read(&cp->reset_task_pending_mtu) ||
3869 atomic_read(&cp->reset_task_pending_spare) ||
3870 atomic_read(&cp->reset_task_pending_all))
3871 schedule();
3873 #else
3874 while (atomic_read(&cp->reset_task_pending))
3875 schedule();
3876 #endif
3877 /* Actually stop the chip */
3878 cas_lock_all_save(cp, flags);
3879 cas_reset(cp, 0);
3880 if (cp->cas_flags & CAS_FLAG_SATURN)
3881 cas_phy_powerdown(cp);
3882 cas_unlock_all_restore(cp, flags);
3885 static int cas_change_mtu(struct net_device *dev, int new_mtu)
3887 struct cas *cp = netdev_priv(dev);
3889 if (new_mtu < CAS_MIN_MTU || new_mtu > CAS_MAX_MTU)
3890 return -EINVAL;
3892 dev->mtu = new_mtu;
3893 if (!netif_running(dev) || !netif_device_present(dev))
3894 return 0;
3896 /* let the reset task handle it */
3897 #if 1
3898 atomic_inc(&cp->reset_task_pending);
3899 if ((cp->phy_type & CAS_PHY_SERDES)) {
3900 atomic_inc(&cp->reset_task_pending_all);
3901 } else {
3902 atomic_inc(&cp->reset_task_pending_mtu);
3904 schedule_work(&cp->reset_task);
3905 #else
3906 atomic_set(&cp->reset_task_pending, (cp->phy_type & CAS_PHY_SERDES) ?
3907 CAS_RESET_ALL : CAS_RESET_MTU);
3908 printk(KERN_ERR "reset called in cas_change_mtu\n");
3909 schedule_work(&cp->reset_task);
3910 #endif
3912 flush_scheduled_work();
3913 return 0;
3916 static void cas_clean_txd(struct cas *cp, int ring)
3918 struct cas_tx_desc *txd = cp->init_txds[ring];
3919 struct sk_buff *skb, **skbs = cp->tx_skbs[ring];
3920 u64 daddr, dlen;
3921 int i, size;
3923 size = TX_DESC_RINGN_SIZE(ring);
3924 for (i = 0; i < size; i++) {
3925 int frag;
3927 if (skbs[i] == NULL)
3928 continue;
3930 skb = skbs[i];
3931 skbs[i] = NULL;
3933 for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
3934 int ent = i & (size - 1);
3936 /* first buffer is never a tiny buffer and so
3937 * needs to be unmapped.
3939 daddr = le64_to_cpu(txd[ent].buffer);
3940 dlen = CAS_VAL(TX_DESC_BUFLEN,
3941 le64_to_cpu(txd[ent].control));
3942 pci_unmap_page(cp->pdev, daddr, dlen,
3943 PCI_DMA_TODEVICE);
3945 if (frag != skb_shinfo(skb)->nr_frags) {
3946 i++;
3948 /* next buffer might by a tiny buffer.
3949 * skip past it.
3951 ent = i & (size - 1);
3952 if (cp->tx_tiny_use[ring][ent].used)
3953 i++;
3956 dev_kfree_skb_any(skb);
3959 /* zero out tiny buf usage */
3960 memset(cp->tx_tiny_use[ring], 0, size*sizeof(*cp->tx_tiny_use[ring]));
3963 /* freed on close */
3964 static inline void cas_free_rx_desc(struct cas *cp, int ring)
3966 cas_page_t **page = cp->rx_pages[ring];
3967 int i, size;
3969 size = RX_DESC_RINGN_SIZE(ring);
3970 for (i = 0; i < size; i++) {
3971 if (page[i]) {
3972 cas_page_free(cp, page[i]);
3973 page[i] = NULL;
3978 static void cas_free_rxds(struct cas *cp)
3980 int i;
3982 for (i = 0; i < N_RX_DESC_RINGS; i++)
3983 cas_free_rx_desc(cp, i);
3986 /* Must be invoked under cp->lock. */
3987 static void cas_clean_rings(struct cas *cp)
3989 int i;
3991 /* need to clean all tx rings */
3992 memset(cp->tx_old, 0, sizeof(*cp->tx_old)*N_TX_RINGS);
3993 memset(cp->tx_new, 0, sizeof(*cp->tx_new)*N_TX_RINGS);
3994 for (i = 0; i < N_TX_RINGS; i++)
3995 cas_clean_txd(cp, i);
3997 /* zero out init block */
3998 memset(cp->init_block, 0, sizeof(struct cas_init_block));
3999 cas_clean_rxds(cp);
4000 cas_clean_rxcs(cp);
4003 /* allocated on open */
4004 static inline int cas_alloc_rx_desc(struct cas *cp, int ring)
4006 cas_page_t **page = cp->rx_pages[ring];
4007 int size, i = 0;
4009 size = RX_DESC_RINGN_SIZE(ring);
4010 for (i = 0; i < size; i++) {
4011 if ((page[i] = cas_page_alloc(cp, GFP_KERNEL)) == NULL)
4012 return -1;
4014 return 0;
4017 static int cas_alloc_rxds(struct cas *cp)
4019 int i;
4021 for (i = 0; i < N_RX_DESC_RINGS; i++) {
4022 if (cas_alloc_rx_desc(cp, i) < 0) {
4023 cas_free_rxds(cp);
4024 return -1;
4027 return 0;
4030 static void cas_reset_task(struct work_struct *work)
4032 struct cas *cp = container_of(work, struct cas, reset_task);
4033 #if 0
4034 int pending = atomic_read(&cp->reset_task_pending);
4035 #else
4036 int pending_all = atomic_read(&cp->reset_task_pending_all);
4037 int pending_spare = atomic_read(&cp->reset_task_pending_spare);
4038 int pending_mtu = atomic_read(&cp->reset_task_pending_mtu);
4040 if (pending_all == 0 && pending_spare == 0 && pending_mtu == 0) {
4041 /* We can have more tasks scheduled than actually
4042 * needed.
4044 atomic_dec(&cp->reset_task_pending);
4045 return;
4047 #endif
4048 /* The link went down, we reset the ring, but keep
4049 * DMA stopped. Use this function for reset
4050 * on error as well.
4052 if (cp->hw_running) {
4053 unsigned long flags;
4055 /* Make sure we don't get interrupts or tx packets */
4056 netif_device_detach(cp->dev);
4057 cas_lock_all_save(cp, flags);
4059 if (cp->opened) {
4060 /* We call cas_spare_recover when we call cas_open.
4061 * but we do not initialize the lists cas_spare_recover
4062 * uses until cas_open is called.
4064 cas_spare_recover(cp, GFP_ATOMIC);
4066 #if 1
4067 /* test => only pending_spare set */
4068 if (!pending_all && !pending_mtu)
4069 goto done;
4070 #else
4071 if (pending == CAS_RESET_SPARE)
4072 goto done;
4073 #endif
4074 /* when pending == CAS_RESET_ALL, the following
4075 * call to cas_init_hw will restart auto negotiation.
4076 * Setting the second argument of cas_reset to
4077 * !(pending == CAS_RESET_ALL) will set this argument
4078 * to 1 (avoiding reinitializing the PHY for the normal
4079 * PCS case) when auto negotiation is not restarted.
4081 #if 1
4082 cas_reset(cp, !(pending_all > 0));
4083 if (cp->opened)
4084 cas_clean_rings(cp);
4085 cas_init_hw(cp, (pending_all > 0));
4086 #else
4087 cas_reset(cp, !(pending == CAS_RESET_ALL));
4088 if (cp->opened)
4089 cas_clean_rings(cp);
4090 cas_init_hw(cp, pending == CAS_RESET_ALL);
4091 #endif
4093 done:
4094 cas_unlock_all_restore(cp, flags);
4095 netif_device_attach(cp->dev);
4097 #if 1
4098 atomic_sub(pending_all, &cp->reset_task_pending_all);
4099 atomic_sub(pending_spare, &cp->reset_task_pending_spare);
4100 atomic_sub(pending_mtu, &cp->reset_task_pending_mtu);
4101 atomic_dec(&cp->reset_task_pending);
4102 #else
4103 atomic_set(&cp->reset_task_pending, 0);
4104 #endif
4107 static void cas_link_timer(unsigned long data)
4109 struct cas *cp = (struct cas *) data;
4110 int mask, pending = 0, reset = 0;
4111 unsigned long flags;
4113 if (link_transition_timeout != 0 &&
4114 cp->link_transition_jiffies_valid &&
4115 ((jiffies - cp->link_transition_jiffies) >
4116 (link_transition_timeout))) {
4117 /* One-second counter so link-down workaround doesn't
4118 * cause resets to occur so fast as to fool the switch
4119 * into thinking the link is down.
4121 cp->link_transition_jiffies_valid = 0;
4124 if (!cp->hw_running)
4125 return;
4127 spin_lock_irqsave(&cp->lock, flags);
4128 cas_lock_tx(cp);
4129 cas_entropy_gather(cp);
4131 /* If the link task is still pending, we just
4132 * reschedule the link timer
4134 #if 1
4135 if (atomic_read(&cp->reset_task_pending_all) ||
4136 atomic_read(&cp->reset_task_pending_spare) ||
4137 atomic_read(&cp->reset_task_pending_mtu))
4138 goto done;
4139 #else
4140 if (atomic_read(&cp->reset_task_pending))
4141 goto done;
4142 #endif
4144 /* check for rx cleaning */
4145 if ((mask = (cp->cas_flags & CAS_FLAG_RXD_POST_MASK))) {
4146 int i, rmask;
4148 for (i = 0; i < MAX_RX_DESC_RINGS; i++) {
4149 rmask = CAS_FLAG_RXD_POST(i);
4150 if ((mask & rmask) == 0)
4151 continue;
4153 /* post_rxds will do a mod_timer */
4154 if (cas_post_rxds_ringN(cp, i, cp->rx_last[i]) < 0) {
4155 pending = 1;
4156 continue;
4158 cp->cas_flags &= ~rmask;
4162 if (CAS_PHY_MII(cp->phy_type)) {
4163 u16 bmsr;
4164 cas_mif_poll(cp, 0);
4165 bmsr = cas_phy_read(cp, MII_BMSR);
4166 /* WTZ: Solaris driver reads this twice, but that
4167 * may be due to the PCS case and the use of a
4168 * common implementation. Read it twice here to be
4169 * safe.
4171 bmsr = cas_phy_read(cp, MII_BMSR);
4172 cas_mif_poll(cp, 1);
4173 readl(cp->regs + REG_MIF_STATUS); /* avoid dups */
4174 reset = cas_mii_link_check(cp, bmsr);
4175 } else {
4176 reset = cas_pcs_link_check(cp);
4179 if (reset)
4180 goto done;
4182 /* check for tx state machine confusion */
4183 if ((readl(cp->regs + REG_MAC_TX_STATUS) & MAC_TX_FRAME_XMIT) == 0) {
4184 u32 val = readl(cp->regs + REG_MAC_STATE_MACHINE);
4185 u32 wptr, rptr;
4186 int tlm = CAS_VAL(MAC_SM_TLM, val);
4188 if (((tlm == 0x5) || (tlm == 0x3)) &&
4189 (CAS_VAL(MAC_SM_ENCAP_SM, val) == 0)) {
4190 if (netif_msg_tx_err(cp))
4191 printk(KERN_DEBUG "%s: tx err: "
4192 "MAC_STATE[%08x]\n",
4193 cp->dev->name, val);
4194 reset = 1;
4195 goto done;
4198 val = readl(cp->regs + REG_TX_FIFO_PKT_CNT);
4199 wptr = readl(cp->regs + REG_TX_FIFO_WRITE_PTR);
4200 rptr = readl(cp->regs + REG_TX_FIFO_READ_PTR);
4201 if ((val == 0) && (wptr != rptr)) {
4202 if (netif_msg_tx_err(cp))
4203 printk(KERN_DEBUG "%s: tx err: "
4204 "TX_FIFO[%08x:%08x:%08x]\n",
4205 cp->dev->name, val, wptr, rptr);
4206 reset = 1;
4209 if (reset)
4210 cas_hard_reset(cp);
4213 done:
4214 if (reset) {
4215 #if 1
4216 atomic_inc(&cp->reset_task_pending);
4217 atomic_inc(&cp->reset_task_pending_all);
4218 schedule_work(&cp->reset_task);
4219 #else
4220 atomic_set(&cp->reset_task_pending, CAS_RESET_ALL);
4221 printk(KERN_ERR "reset called in cas_link_timer\n");
4222 schedule_work(&cp->reset_task);
4223 #endif
4226 if (!pending)
4227 mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT);
4228 cas_unlock_tx(cp);
4229 spin_unlock_irqrestore(&cp->lock, flags);
4232 /* tiny buffers are used to avoid target abort issues with
4233 * older cassini's
4235 static void cas_tx_tiny_free(struct cas *cp)
4237 struct pci_dev *pdev = cp->pdev;
4238 int i;
4240 for (i = 0; i < N_TX_RINGS; i++) {
4241 if (!cp->tx_tiny_bufs[i])
4242 continue;
4244 pci_free_consistent(pdev, TX_TINY_BUF_BLOCK,
4245 cp->tx_tiny_bufs[i],
4246 cp->tx_tiny_dvma[i]);
4247 cp->tx_tiny_bufs[i] = NULL;
4251 static int cas_tx_tiny_alloc(struct cas *cp)
4253 struct pci_dev *pdev = cp->pdev;
4254 int i;
4256 for (i = 0; i < N_TX_RINGS; i++) {
4257 cp->tx_tiny_bufs[i] =
4258 pci_alloc_consistent(pdev, TX_TINY_BUF_BLOCK,
4259 &cp->tx_tiny_dvma[i]);
4260 if (!cp->tx_tiny_bufs[i]) {
4261 cas_tx_tiny_free(cp);
4262 return -1;
4265 return 0;
4269 static int cas_open(struct net_device *dev)
4271 struct cas *cp = netdev_priv(dev);
4272 int hw_was_up, err;
4273 unsigned long flags;
4275 mutex_lock(&cp->pm_mutex);
4277 hw_was_up = cp->hw_running;
4279 /* The power-management mutex protects the hw_running
4280 * etc. state so it is safe to do this bit without cp->lock
4282 if (!cp->hw_running) {
4283 /* Reset the chip */
4284 cas_lock_all_save(cp, flags);
4285 /* We set the second arg to cas_reset to zero
4286 * because cas_init_hw below will have its second
4287 * argument set to non-zero, which will force
4288 * autonegotiation to start.
4290 cas_reset(cp, 0);
4291 cp->hw_running = 1;
4292 cas_unlock_all_restore(cp, flags);
4295 if (cas_tx_tiny_alloc(cp) < 0)
4296 return -ENOMEM;
4298 /* alloc rx descriptors */
4299 err = -ENOMEM;
4300 if (cas_alloc_rxds(cp) < 0)
4301 goto err_tx_tiny;
4303 /* allocate spares */
4304 cas_spare_init(cp);
4305 cas_spare_recover(cp, GFP_KERNEL);
4307 /* We can now request the interrupt as we know it's masked
4308 * on the controller. cassini+ has up to 4 interrupts
4309 * that can be used, but you need to do explicit pci interrupt
4310 * mapping to expose them
4312 if (request_irq(cp->pdev->irq, cas_interrupt,
4313 IRQF_SHARED, dev->name, (void *) dev)) {
4314 printk(KERN_ERR "%s: failed to request irq !\n",
4315 cp->dev->name);
4316 err = -EAGAIN;
4317 goto err_spare;
4320 #ifdef USE_NAPI
4321 napi_enable(&cp->napi);
4322 #endif
4323 /* init hw */
4324 cas_lock_all_save(cp, flags);
4325 cas_clean_rings(cp);
4326 cas_init_hw(cp, !hw_was_up);
4327 cp->opened = 1;
4328 cas_unlock_all_restore(cp, flags);
4330 netif_start_queue(dev);
4331 mutex_unlock(&cp->pm_mutex);
4332 return 0;
4334 err_spare:
4335 cas_spare_free(cp);
4336 cas_free_rxds(cp);
4337 err_tx_tiny:
4338 cas_tx_tiny_free(cp);
4339 mutex_unlock(&cp->pm_mutex);
4340 return err;
4343 static int cas_close(struct net_device *dev)
4345 unsigned long flags;
4346 struct cas *cp = netdev_priv(dev);
4348 #ifdef USE_NAPI
4349 napi_disable(&cp->napi);
4350 #endif
4351 /* Make sure we don't get distracted by suspend/resume */
4352 mutex_lock(&cp->pm_mutex);
4354 netif_stop_queue(dev);
4356 /* Stop traffic, mark us closed */
4357 cas_lock_all_save(cp, flags);
4358 cp->opened = 0;
4359 cas_reset(cp, 0);
4360 cas_phy_init(cp);
4361 cas_begin_auto_negotiation(cp, NULL);
4362 cas_clean_rings(cp);
4363 cas_unlock_all_restore(cp, flags);
4365 free_irq(cp->pdev->irq, (void *) dev);
4366 cas_spare_free(cp);
4367 cas_free_rxds(cp);
4368 cas_tx_tiny_free(cp);
4369 mutex_unlock(&cp->pm_mutex);
4370 return 0;
4373 static struct {
4374 const char name[ETH_GSTRING_LEN];
4375 } ethtool_cassini_statnames[] = {
4376 {"collisions"},
4377 {"rx_bytes"},
4378 {"rx_crc_errors"},
4379 {"rx_dropped"},
4380 {"rx_errors"},
4381 {"rx_fifo_errors"},
4382 {"rx_frame_errors"},
4383 {"rx_length_errors"},
4384 {"rx_over_errors"},
4385 {"rx_packets"},
4386 {"tx_aborted_errors"},
4387 {"tx_bytes"},
4388 {"tx_dropped"},
4389 {"tx_errors"},
4390 {"tx_fifo_errors"},
4391 {"tx_packets"}
4393 #define CAS_NUM_STAT_KEYS ARRAY_SIZE(ethtool_cassini_statnames)
4395 static struct {
4396 const int offsets; /* neg. values for 2nd arg to cas_read_phy */
4397 } ethtool_register_table[] = {
4398 {-MII_BMSR},
4399 {-MII_BMCR},
4400 {REG_CAWR},
4401 {REG_INF_BURST},
4402 {REG_BIM_CFG},
4403 {REG_RX_CFG},
4404 {REG_HP_CFG},
4405 {REG_MAC_TX_CFG},
4406 {REG_MAC_RX_CFG},
4407 {REG_MAC_CTRL_CFG},
4408 {REG_MAC_XIF_CFG},
4409 {REG_MIF_CFG},
4410 {REG_PCS_CFG},
4411 {REG_SATURN_PCFG},
4412 {REG_PCS_MII_STATUS},
4413 {REG_PCS_STATE_MACHINE},
4414 {REG_MAC_COLL_EXCESS},
4415 {REG_MAC_COLL_LATE}
4417 #define CAS_REG_LEN ARRAY_SIZE(ethtool_register_table)
4418 #define CAS_MAX_REGS (sizeof (u32)*CAS_REG_LEN)
4420 static void cas_read_regs(struct cas *cp, u8 *ptr, int len)
4422 u8 *p;
4423 int i;
4424 unsigned long flags;
4426 spin_lock_irqsave(&cp->lock, flags);
4427 for (i = 0, p = ptr; i < len ; i ++, p += sizeof(u32)) {
4428 u16 hval;
4429 u32 val;
4430 if (ethtool_register_table[i].offsets < 0) {
4431 hval = cas_phy_read(cp,
4432 -ethtool_register_table[i].offsets);
4433 val = hval;
4434 } else {
4435 val= readl(cp->regs+ethtool_register_table[i].offsets);
4437 memcpy(p, (u8 *)&val, sizeof(u32));
4439 spin_unlock_irqrestore(&cp->lock, flags);
4442 static struct net_device_stats *cas_get_stats(struct net_device *dev)
4444 struct cas *cp = netdev_priv(dev);
4445 struct net_device_stats *stats = cp->net_stats;
4446 unsigned long flags;
4447 int i;
4448 unsigned long tmp;
4450 /* we collate all of the stats into net_stats[N_TX_RING] */
4451 if (!cp->hw_running)
4452 return stats + N_TX_RINGS;
4454 /* collect outstanding stats */
4455 /* WTZ: the Cassini spec gives these as 16 bit counters but
4456 * stored in 32-bit words. Added a mask of 0xffff to be safe,
4457 * in case the chip somehow puts any garbage in the other bits.
4458 * Also, counter usage didn't seem to mach what Adrian did
4459 * in the parts of the code that set these quantities. Made
4460 * that consistent.
4462 spin_lock_irqsave(&cp->stat_lock[N_TX_RINGS], flags);
4463 stats[N_TX_RINGS].rx_crc_errors +=
4464 readl(cp->regs + REG_MAC_FCS_ERR) & 0xffff;
4465 stats[N_TX_RINGS].rx_frame_errors +=
4466 readl(cp->regs + REG_MAC_ALIGN_ERR) &0xffff;
4467 stats[N_TX_RINGS].rx_length_errors +=
4468 readl(cp->regs + REG_MAC_LEN_ERR) & 0xffff;
4469 #if 1
4470 tmp = (readl(cp->regs + REG_MAC_COLL_EXCESS) & 0xffff) +
4471 (readl(cp->regs + REG_MAC_COLL_LATE) & 0xffff);
4472 stats[N_TX_RINGS].tx_aborted_errors += tmp;
4473 stats[N_TX_RINGS].collisions +=
4474 tmp + (readl(cp->regs + REG_MAC_COLL_NORMAL) & 0xffff);
4475 #else
4476 stats[N_TX_RINGS].tx_aborted_errors +=
4477 readl(cp->regs + REG_MAC_COLL_EXCESS);
4478 stats[N_TX_RINGS].collisions += readl(cp->regs + REG_MAC_COLL_EXCESS) +
4479 readl(cp->regs + REG_MAC_COLL_LATE);
4480 #endif
4481 cas_clear_mac_err(cp);
4483 /* saved bits that are unique to ring 0 */
4484 spin_lock(&cp->stat_lock[0]);
4485 stats[N_TX_RINGS].collisions += stats[0].collisions;
4486 stats[N_TX_RINGS].rx_over_errors += stats[0].rx_over_errors;
4487 stats[N_TX_RINGS].rx_frame_errors += stats[0].rx_frame_errors;
4488 stats[N_TX_RINGS].rx_fifo_errors += stats[0].rx_fifo_errors;
4489 stats[N_TX_RINGS].tx_aborted_errors += stats[0].tx_aborted_errors;
4490 stats[N_TX_RINGS].tx_fifo_errors += stats[0].tx_fifo_errors;
4491 spin_unlock(&cp->stat_lock[0]);
4493 for (i = 0; i < N_TX_RINGS; i++) {
4494 spin_lock(&cp->stat_lock[i]);
4495 stats[N_TX_RINGS].rx_length_errors +=
4496 stats[i].rx_length_errors;
4497 stats[N_TX_RINGS].rx_crc_errors += stats[i].rx_crc_errors;
4498 stats[N_TX_RINGS].rx_packets += stats[i].rx_packets;
4499 stats[N_TX_RINGS].tx_packets += stats[i].tx_packets;
4500 stats[N_TX_RINGS].rx_bytes += stats[i].rx_bytes;
4501 stats[N_TX_RINGS].tx_bytes += stats[i].tx_bytes;
4502 stats[N_TX_RINGS].rx_errors += stats[i].rx_errors;
4503 stats[N_TX_RINGS].tx_errors += stats[i].tx_errors;
4504 stats[N_TX_RINGS].rx_dropped += stats[i].rx_dropped;
4505 stats[N_TX_RINGS].tx_dropped += stats[i].tx_dropped;
4506 memset(stats + i, 0, sizeof(struct net_device_stats));
4507 spin_unlock(&cp->stat_lock[i]);
4509 spin_unlock_irqrestore(&cp->stat_lock[N_TX_RINGS], flags);
4510 return stats + N_TX_RINGS;
4514 static void cas_set_multicast(struct net_device *dev)
4516 struct cas *cp = netdev_priv(dev);
4517 u32 rxcfg, rxcfg_new;
4518 unsigned long flags;
4519 int limit = STOP_TRIES;
4521 if (!cp->hw_running)
4522 return;
4524 spin_lock_irqsave(&cp->lock, flags);
4525 rxcfg = readl(cp->regs + REG_MAC_RX_CFG);
4527 /* disable RX MAC and wait for completion */
4528 writel(rxcfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
4529 while (readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_EN) {
4530 if (!limit--)
4531 break;
4532 udelay(10);
4535 /* disable hash filter and wait for completion */
4536 limit = STOP_TRIES;
4537 rxcfg &= ~(MAC_RX_CFG_PROMISC_EN | MAC_RX_CFG_HASH_FILTER_EN);
4538 writel(rxcfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
4539 while (readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_HASH_FILTER_EN) {
4540 if (!limit--)
4541 break;
4542 udelay(10);
4545 /* program hash filters */
4546 cp->mac_rx_cfg = rxcfg_new = cas_setup_multicast(cp);
4547 rxcfg |= rxcfg_new;
4548 writel(rxcfg, cp->regs + REG_MAC_RX_CFG);
4549 spin_unlock_irqrestore(&cp->lock, flags);
4552 static void cas_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
4554 struct cas *cp = netdev_priv(dev);
4555 strncpy(info->driver, DRV_MODULE_NAME, ETHTOOL_BUSINFO_LEN);
4556 strncpy(info->version, DRV_MODULE_VERSION, ETHTOOL_BUSINFO_LEN);
4557 info->fw_version[0] = '\0';
4558 strncpy(info->bus_info, pci_name(cp->pdev), ETHTOOL_BUSINFO_LEN);
4559 info->regdump_len = cp->casreg_len < CAS_MAX_REGS ?
4560 cp->casreg_len : CAS_MAX_REGS;
4561 info->n_stats = CAS_NUM_STAT_KEYS;
4564 static int cas_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
4566 struct cas *cp = netdev_priv(dev);
4567 u16 bmcr;
4568 int full_duplex, speed, pause;
4569 unsigned long flags;
4570 enum link_state linkstate = link_up;
4572 cmd->advertising = 0;
4573 cmd->supported = SUPPORTED_Autoneg;
4574 if (cp->cas_flags & CAS_FLAG_1000MB_CAP) {
4575 cmd->supported |= SUPPORTED_1000baseT_Full;
4576 cmd->advertising |= ADVERTISED_1000baseT_Full;
4579 /* Record PHY settings if HW is on. */
4580 spin_lock_irqsave(&cp->lock, flags);
4581 bmcr = 0;
4582 linkstate = cp->lstate;
4583 if (CAS_PHY_MII(cp->phy_type)) {
4584 cmd->port = PORT_MII;
4585 cmd->transceiver = (cp->cas_flags & CAS_FLAG_SATURN) ?
4586 XCVR_INTERNAL : XCVR_EXTERNAL;
4587 cmd->phy_address = cp->phy_addr;
4588 cmd->advertising |= ADVERTISED_TP | ADVERTISED_MII |
4589 ADVERTISED_10baseT_Half |
4590 ADVERTISED_10baseT_Full |
4591 ADVERTISED_100baseT_Half |
4592 ADVERTISED_100baseT_Full;
4594 cmd->supported |=
4595 (SUPPORTED_10baseT_Half |
4596 SUPPORTED_10baseT_Full |
4597 SUPPORTED_100baseT_Half |
4598 SUPPORTED_100baseT_Full |
4599 SUPPORTED_TP | SUPPORTED_MII);
4601 if (cp->hw_running) {
4602 cas_mif_poll(cp, 0);
4603 bmcr = cas_phy_read(cp, MII_BMCR);
4604 cas_read_mii_link_mode(cp, &full_duplex,
4605 &speed, &pause);
4606 cas_mif_poll(cp, 1);
4609 } else {
4610 cmd->port = PORT_FIBRE;
4611 cmd->transceiver = XCVR_INTERNAL;
4612 cmd->phy_address = 0;
4613 cmd->supported |= SUPPORTED_FIBRE;
4614 cmd->advertising |= ADVERTISED_FIBRE;
4616 if (cp->hw_running) {
4617 /* pcs uses the same bits as mii */
4618 bmcr = readl(cp->regs + REG_PCS_MII_CTRL);
4619 cas_read_pcs_link_mode(cp, &full_duplex,
4620 &speed, &pause);
4623 spin_unlock_irqrestore(&cp->lock, flags);
4625 if (bmcr & BMCR_ANENABLE) {
4626 cmd->advertising |= ADVERTISED_Autoneg;
4627 cmd->autoneg = AUTONEG_ENABLE;
4628 cmd->speed = ((speed == 10) ?
4629 SPEED_10 :
4630 ((speed == 1000) ?
4631 SPEED_1000 : SPEED_100));
4632 cmd->duplex = full_duplex ? DUPLEX_FULL : DUPLEX_HALF;
4633 } else {
4634 cmd->autoneg = AUTONEG_DISABLE;
4635 cmd->speed =
4636 (bmcr & CAS_BMCR_SPEED1000) ?
4637 SPEED_1000 :
4638 ((bmcr & BMCR_SPEED100) ? SPEED_100:
4639 SPEED_10);
4640 cmd->duplex =
4641 (bmcr & BMCR_FULLDPLX) ?
4642 DUPLEX_FULL : DUPLEX_HALF;
4644 if (linkstate != link_up) {
4645 /* Force these to "unknown" if the link is not up and
4646 * autonogotiation in enabled. We can set the link
4647 * speed to 0, but not cmd->duplex,
4648 * because its legal values are 0 and 1. Ethtool will
4649 * print the value reported in parentheses after the
4650 * word "Unknown" for unrecognized values.
4652 * If in forced mode, we report the speed and duplex
4653 * settings that we configured.
4655 if (cp->link_cntl & BMCR_ANENABLE) {
4656 cmd->speed = 0;
4657 cmd->duplex = 0xff;
4658 } else {
4659 cmd->speed = SPEED_10;
4660 if (cp->link_cntl & BMCR_SPEED100) {
4661 cmd->speed = SPEED_100;
4662 } else if (cp->link_cntl & CAS_BMCR_SPEED1000) {
4663 cmd->speed = SPEED_1000;
4665 cmd->duplex = (cp->link_cntl & BMCR_FULLDPLX)?
4666 DUPLEX_FULL : DUPLEX_HALF;
4669 return 0;
4672 static int cas_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
4674 struct cas *cp = netdev_priv(dev);
4675 unsigned long flags;
4677 /* Verify the settings we care about. */
4678 if (cmd->autoneg != AUTONEG_ENABLE &&
4679 cmd->autoneg != AUTONEG_DISABLE)
4680 return -EINVAL;
4682 if (cmd->autoneg == AUTONEG_DISABLE &&
4683 ((cmd->speed != SPEED_1000 &&
4684 cmd->speed != SPEED_100 &&
4685 cmd->speed != SPEED_10) ||
4686 (cmd->duplex != DUPLEX_HALF &&
4687 cmd->duplex != DUPLEX_FULL)))
4688 return -EINVAL;
4690 /* Apply settings and restart link process. */
4691 spin_lock_irqsave(&cp->lock, flags);
4692 cas_begin_auto_negotiation(cp, cmd);
4693 spin_unlock_irqrestore(&cp->lock, flags);
4694 return 0;
4697 static int cas_nway_reset(struct net_device *dev)
4699 struct cas *cp = netdev_priv(dev);
4700 unsigned long flags;
4702 if ((cp->link_cntl & BMCR_ANENABLE) == 0)
4703 return -EINVAL;
4705 /* Restart link process. */
4706 spin_lock_irqsave(&cp->lock, flags);
4707 cas_begin_auto_negotiation(cp, NULL);
4708 spin_unlock_irqrestore(&cp->lock, flags);
4710 return 0;
4713 static u32 cas_get_link(struct net_device *dev)
4715 struct cas *cp = netdev_priv(dev);
4716 return cp->lstate == link_up;
4719 static u32 cas_get_msglevel(struct net_device *dev)
4721 struct cas *cp = netdev_priv(dev);
4722 return cp->msg_enable;
4725 static void cas_set_msglevel(struct net_device *dev, u32 value)
4727 struct cas *cp = netdev_priv(dev);
4728 cp->msg_enable = value;
4731 static int cas_get_regs_len(struct net_device *dev)
4733 struct cas *cp = netdev_priv(dev);
4734 return cp->casreg_len < CAS_MAX_REGS ? cp->casreg_len: CAS_MAX_REGS;
4737 static void cas_get_regs(struct net_device *dev, struct ethtool_regs *regs,
4738 void *p)
4740 struct cas *cp = netdev_priv(dev);
4741 regs->version = 0;
4742 /* cas_read_regs handles locks (cp->lock). */
4743 cas_read_regs(cp, p, regs->len / sizeof(u32));
4746 static int cas_get_sset_count(struct net_device *dev, int sset)
4748 switch (sset) {
4749 case ETH_SS_STATS:
4750 return CAS_NUM_STAT_KEYS;
4751 default:
4752 return -EOPNOTSUPP;
4756 static void cas_get_strings(struct net_device *dev, u32 stringset, u8 *data)
4758 memcpy(data, &ethtool_cassini_statnames,
4759 CAS_NUM_STAT_KEYS * ETH_GSTRING_LEN);
4762 static void cas_get_ethtool_stats(struct net_device *dev,
4763 struct ethtool_stats *estats, u64 *data)
4765 struct cas *cp = netdev_priv(dev);
4766 struct net_device_stats *stats = cas_get_stats(cp->dev);
4767 int i = 0;
4768 data[i++] = stats->collisions;
4769 data[i++] = stats->rx_bytes;
4770 data[i++] = stats->rx_crc_errors;
4771 data[i++] = stats->rx_dropped;
4772 data[i++] = stats->rx_errors;
4773 data[i++] = stats->rx_fifo_errors;
4774 data[i++] = stats->rx_frame_errors;
4775 data[i++] = stats->rx_length_errors;
4776 data[i++] = stats->rx_over_errors;
4777 data[i++] = stats->rx_packets;
4778 data[i++] = stats->tx_aborted_errors;
4779 data[i++] = stats->tx_bytes;
4780 data[i++] = stats->tx_dropped;
4781 data[i++] = stats->tx_errors;
4782 data[i++] = stats->tx_fifo_errors;
4783 data[i++] = stats->tx_packets;
4784 BUG_ON(i != CAS_NUM_STAT_KEYS);
4787 static const struct ethtool_ops cas_ethtool_ops = {
4788 .get_drvinfo = cas_get_drvinfo,
4789 .get_settings = cas_get_settings,
4790 .set_settings = cas_set_settings,
4791 .nway_reset = cas_nway_reset,
4792 .get_link = cas_get_link,
4793 .get_msglevel = cas_get_msglevel,
4794 .set_msglevel = cas_set_msglevel,
4795 .get_regs_len = cas_get_regs_len,
4796 .get_regs = cas_get_regs,
4797 .get_sset_count = cas_get_sset_count,
4798 .get_strings = cas_get_strings,
4799 .get_ethtool_stats = cas_get_ethtool_stats,
4802 static int cas_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
4804 struct cas *cp = netdev_priv(dev);
4805 struct mii_ioctl_data *data = if_mii(ifr);
4806 unsigned long flags;
4807 int rc = -EOPNOTSUPP;
4809 /* Hold the PM mutex while doing ioctl's or we may collide
4810 * with open/close and power management and oops.
4812 mutex_lock(&cp->pm_mutex);
4813 switch (cmd) {
4814 case SIOCGMIIPHY: /* Get address of MII PHY in use. */
4815 data->phy_id = cp->phy_addr;
4816 /* Fallthrough... */
4818 case SIOCGMIIREG: /* Read MII PHY register. */
4819 spin_lock_irqsave(&cp->lock, flags);
4820 cas_mif_poll(cp, 0);
4821 data->val_out = cas_phy_read(cp, data->reg_num & 0x1f);
4822 cas_mif_poll(cp, 1);
4823 spin_unlock_irqrestore(&cp->lock, flags);
4824 rc = 0;
4825 break;
4827 case SIOCSMIIREG: /* Write MII PHY register. */
4828 if (!capable(CAP_NET_ADMIN)) {
4829 rc = -EPERM;
4830 break;
4832 spin_lock_irqsave(&cp->lock, flags);
4833 cas_mif_poll(cp, 0);
4834 rc = cas_phy_write(cp, data->reg_num & 0x1f, data->val_in);
4835 cas_mif_poll(cp, 1);
4836 spin_unlock_irqrestore(&cp->lock, flags);
4837 break;
4838 default:
4839 break;
4842 mutex_unlock(&cp->pm_mutex);
4843 return rc;
4846 /* When this chip sits underneath an Intel 31154 bridge, it is the
4847 * only subordinate device and we can tweak the bridge settings to
4848 * reflect that fact.
4850 static void __devinit cas_program_bridge(struct pci_dev *cas_pdev)
4852 struct pci_dev *pdev = cas_pdev->bus->self;
4853 u32 val;
4855 if (!pdev)
4856 return;
4858 if (pdev->vendor != 0x8086 || pdev->device != 0x537c)
4859 return;
4861 /* Clear bit 10 (Bus Parking Control) in the Secondary
4862 * Arbiter Control/Status Register which lives at offset
4863 * 0x41. Using a 32-bit word read/modify/write at 0x40
4864 * is much simpler so that's how we do this.
4866 pci_read_config_dword(pdev, 0x40, &val);
4867 val &= ~0x00040000;
4868 pci_write_config_dword(pdev, 0x40, val);
4870 /* Max out the Multi-Transaction Timer settings since
4871 * Cassini is the only device present.
4873 * The register is 16-bit and lives at 0x50. When the
4874 * settings are enabled, it extends the GRANT# signal
4875 * for a requestor after a transaction is complete. This
4876 * allows the next request to run without first needing
4877 * to negotiate the GRANT# signal back.
4879 * Bits 12:10 define the grant duration:
4881 * 1 -- 16 clocks
4882 * 2 -- 32 clocks
4883 * 3 -- 64 clocks
4884 * 4 -- 128 clocks
4885 * 5 -- 256 clocks
4887 * All other values are illegal.
4889 * Bits 09:00 define which REQ/GNT signal pairs get the
4890 * GRANT# signal treatment. We set them all.
4892 pci_write_config_word(pdev, 0x50, (5 << 10) | 0x3ff);
4894 /* The Read Prefecth Policy register is 16-bit and sits at
4895 * offset 0x52. It enables a "smart" pre-fetch policy. We
4896 * enable it and max out all of the settings since only one
4897 * device is sitting underneath and thus bandwidth sharing is
4898 * not an issue.
4900 * The register has several 3 bit fields, which indicates a
4901 * multiplier applied to the base amount of prefetching the
4902 * chip would do. These fields are at:
4904 * 15:13 --- ReRead Primary Bus
4905 * 12:10 --- FirstRead Primary Bus
4906 * 09:07 --- ReRead Secondary Bus
4907 * 06:04 --- FirstRead Secondary Bus
4909 * Bits 03:00 control which REQ/GNT pairs the prefetch settings
4910 * get enabled on. Bit 3 is a grouped enabler which controls
4911 * all of the REQ/GNT pairs from [8:3]. Bits 2 to 0 control
4912 * the individual REQ/GNT pairs [2:0].
4914 pci_write_config_word(pdev, 0x52,
4915 (0x7 << 13) |
4916 (0x7 << 10) |
4917 (0x7 << 7) |
4918 (0x7 << 4) |
4919 (0xf << 0));
4921 /* Force cacheline size to 0x8 */
4922 pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, 0x08);
4924 /* Force latency timer to maximum setting so Cassini can
4925 * sit on the bus as long as it likes.
4927 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0xff);
4930 static int __devinit cas_init_one(struct pci_dev *pdev,
4931 const struct pci_device_id *ent)
4933 static int cas_version_printed = 0;
4934 unsigned long casreg_len;
4935 struct net_device *dev;
4936 struct cas *cp;
4937 int i, err, pci_using_dac;
4938 u16 pci_cmd;
4939 u8 orig_cacheline_size = 0, cas_cacheline_size = 0;
4940 DECLARE_MAC_BUF(mac);
4942 if (cas_version_printed++ == 0)
4943 printk(KERN_INFO "%s", version);
4945 err = pci_enable_device(pdev);
4946 if (err) {
4947 dev_err(&pdev->dev, "Cannot enable PCI device, aborting.\n");
4948 return err;
4951 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
4952 dev_err(&pdev->dev, "Cannot find proper PCI device "
4953 "base address, aborting.\n");
4954 err = -ENODEV;
4955 goto err_out_disable_pdev;
4958 dev = alloc_etherdev(sizeof(*cp));
4959 if (!dev) {
4960 dev_err(&pdev->dev, "Etherdev alloc failed, aborting.\n");
4961 err = -ENOMEM;
4962 goto err_out_disable_pdev;
4964 SET_NETDEV_DEV(dev, &pdev->dev);
4966 err = pci_request_regions(pdev, dev->name);
4967 if (err) {
4968 dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting.\n");
4969 goto err_out_free_netdev;
4971 pci_set_master(pdev);
4973 /* we must always turn on parity response or else parity
4974 * doesn't get generated properly. disable SERR/PERR as well.
4975 * in addition, we want to turn MWI on.
4977 pci_read_config_word(pdev, PCI_COMMAND, &pci_cmd);
4978 pci_cmd &= ~PCI_COMMAND_SERR;
4979 pci_cmd |= PCI_COMMAND_PARITY;
4980 pci_write_config_word(pdev, PCI_COMMAND, pci_cmd);
4981 if (pci_try_set_mwi(pdev))
4982 printk(KERN_WARNING PFX "Could not enable MWI for %s\n",
4983 pci_name(pdev));
4985 cas_program_bridge(pdev);
4988 * On some architectures, the default cache line size set
4989 * by pci_try_set_mwi reduces perforamnce. We have to increase
4990 * it for this case. To start, we'll print some configuration
4991 * data.
4993 #if 1
4994 pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE,
4995 &orig_cacheline_size);
4996 if (orig_cacheline_size < CAS_PREF_CACHELINE_SIZE) {
4997 cas_cacheline_size =
4998 (CAS_PREF_CACHELINE_SIZE < SMP_CACHE_BYTES) ?
4999 CAS_PREF_CACHELINE_SIZE : SMP_CACHE_BYTES;
5000 if (pci_write_config_byte(pdev,
5001 PCI_CACHE_LINE_SIZE,
5002 cas_cacheline_size)) {
5003 dev_err(&pdev->dev, "Could not set PCI cache "
5004 "line size\n");
5005 goto err_write_cacheline;
5008 #endif
5011 /* Configure DMA attributes. */
5012 if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
5013 pci_using_dac = 1;
5014 err = pci_set_consistent_dma_mask(pdev,
5015 DMA_64BIT_MASK);
5016 if (err < 0) {
5017 dev_err(&pdev->dev, "Unable to obtain 64-bit DMA "
5018 "for consistent allocations\n");
5019 goto err_out_free_res;
5022 } else {
5023 err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
5024 if (err) {
5025 dev_err(&pdev->dev, "No usable DMA configuration, "
5026 "aborting.\n");
5027 goto err_out_free_res;
5029 pci_using_dac = 0;
5032 casreg_len = pci_resource_len(pdev, 0);
5034 cp = netdev_priv(dev);
5035 cp->pdev = pdev;
5036 #if 1
5037 /* A value of 0 indicates we never explicitly set it */
5038 cp->orig_cacheline_size = cas_cacheline_size ? orig_cacheline_size: 0;
5039 #endif
5040 cp->dev = dev;
5041 cp->msg_enable = (cassini_debug < 0) ? CAS_DEF_MSG_ENABLE :
5042 cassini_debug;
5044 cp->link_transition = LINK_TRANSITION_UNKNOWN;
5045 cp->link_transition_jiffies_valid = 0;
5047 spin_lock_init(&cp->lock);
5048 spin_lock_init(&cp->rx_inuse_lock);
5049 spin_lock_init(&cp->rx_spare_lock);
5050 for (i = 0; i < N_TX_RINGS; i++) {
5051 spin_lock_init(&cp->stat_lock[i]);
5052 spin_lock_init(&cp->tx_lock[i]);
5054 spin_lock_init(&cp->stat_lock[N_TX_RINGS]);
5055 mutex_init(&cp->pm_mutex);
5057 init_timer(&cp->link_timer);
5058 cp->link_timer.function = cas_link_timer;
5059 cp->link_timer.data = (unsigned long) cp;
5061 #if 1
5062 /* Just in case the implementation of atomic operations
5063 * change so that an explicit initialization is necessary.
5065 atomic_set(&cp->reset_task_pending, 0);
5066 atomic_set(&cp->reset_task_pending_all, 0);
5067 atomic_set(&cp->reset_task_pending_spare, 0);
5068 atomic_set(&cp->reset_task_pending_mtu, 0);
5069 #endif
5070 INIT_WORK(&cp->reset_task, cas_reset_task);
5072 /* Default link parameters */
5073 if (link_mode >= 0 && link_mode <= 6)
5074 cp->link_cntl = link_modes[link_mode];
5075 else
5076 cp->link_cntl = BMCR_ANENABLE;
5077 cp->lstate = link_down;
5078 cp->link_transition = LINK_TRANSITION_LINK_DOWN;
5079 netif_carrier_off(cp->dev);
5080 cp->timer_ticks = 0;
5082 /* give us access to cassini registers */
5083 cp->regs = pci_iomap(pdev, 0, casreg_len);
5084 if (!cp->regs) {
5085 dev_err(&pdev->dev, "Cannot map device registers, aborting.\n");
5086 goto err_out_free_res;
5088 cp->casreg_len = casreg_len;
5090 pci_save_state(pdev);
5091 cas_check_pci_invariants(cp);
5092 cas_hard_reset(cp);
5093 cas_reset(cp, 0);
5094 if (cas_check_invariants(cp))
5095 goto err_out_iounmap;
5097 cp->init_block = (struct cas_init_block *)
5098 pci_alloc_consistent(pdev, sizeof(struct cas_init_block),
5099 &cp->block_dvma);
5100 if (!cp->init_block) {
5101 dev_err(&pdev->dev, "Cannot allocate init block, aborting.\n");
5102 goto err_out_iounmap;
5105 for (i = 0; i < N_TX_RINGS; i++)
5106 cp->init_txds[i] = cp->init_block->txds[i];
5108 for (i = 0; i < N_RX_DESC_RINGS; i++)
5109 cp->init_rxds[i] = cp->init_block->rxds[i];
5111 for (i = 0; i < N_RX_COMP_RINGS; i++)
5112 cp->init_rxcs[i] = cp->init_block->rxcs[i];
5114 for (i = 0; i < N_RX_FLOWS; i++)
5115 skb_queue_head_init(&cp->rx_flows[i]);
5117 dev->open = cas_open;
5118 dev->stop = cas_close;
5119 dev->hard_start_xmit = cas_start_xmit;
5120 dev->get_stats = cas_get_stats;
5121 dev->set_multicast_list = cas_set_multicast;
5122 dev->do_ioctl = cas_ioctl;
5123 dev->ethtool_ops = &cas_ethtool_ops;
5124 dev->tx_timeout = cas_tx_timeout;
5125 dev->watchdog_timeo = CAS_TX_TIMEOUT;
5126 dev->change_mtu = cas_change_mtu;
5127 #ifdef USE_NAPI
5128 netif_napi_add(dev, &cp->napi, cas_poll, 64);
5129 #endif
5130 #ifdef CONFIG_NET_POLL_CONTROLLER
5131 dev->poll_controller = cas_netpoll;
5132 #endif
5133 dev->irq = pdev->irq;
5134 dev->dma = 0;
5136 /* Cassini features. */
5137 if ((cp->cas_flags & CAS_FLAG_NO_HW_CSUM) == 0)
5138 dev->features |= NETIF_F_HW_CSUM | NETIF_F_SG;
5140 if (pci_using_dac)
5141 dev->features |= NETIF_F_HIGHDMA;
5143 if (register_netdev(dev)) {
5144 dev_err(&pdev->dev, "Cannot register net device, aborting.\n");
5145 goto err_out_free_consistent;
5148 i = readl(cp->regs + REG_BIM_CFG);
5149 printk(KERN_INFO "%s: Sun Cassini%s (%sbit/%sMHz PCI/%s) "
5150 "Ethernet[%d] %s\n", dev->name,
5151 (cp->cas_flags & CAS_FLAG_REG_PLUS) ? "+" : "",
5152 (i & BIM_CFG_32BIT) ? "32" : "64",
5153 (i & BIM_CFG_66MHZ) ? "66" : "33",
5154 (cp->phy_type == CAS_PHY_SERDES) ? "Fi" : "Cu", pdev->irq,
5155 print_mac(mac, dev->dev_addr));
5157 pci_set_drvdata(pdev, dev);
5158 cp->hw_running = 1;
5159 cas_entropy_reset(cp);
5160 cas_phy_init(cp);
5161 cas_begin_auto_negotiation(cp, NULL);
5162 return 0;
5164 err_out_free_consistent:
5165 pci_free_consistent(pdev, sizeof(struct cas_init_block),
5166 cp->init_block, cp->block_dvma);
5168 err_out_iounmap:
5169 mutex_lock(&cp->pm_mutex);
5170 if (cp->hw_running)
5171 cas_shutdown(cp);
5172 mutex_unlock(&cp->pm_mutex);
5174 pci_iounmap(pdev, cp->regs);
5177 err_out_free_res:
5178 pci_release_regions(pdev);
5180 err_write_cacheline:
5181 /* Try to restore it in case the error occured after we
5182 * set it.
5184 pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, orig_cacheline_size);
5186 err_out_free_netdev:
5187 free_netdev(dev);
5189 err_out_disable_pdev:
5190 pci_disable_device(pdev);
5191 pci_set_drvdata(pdev, NULL);
5192 return -ENODEV;
5195 static void __devexit cas_remove_one(struct pci_dev *pdev)
5197 struct net_device *dev = pci_get_drvdata(pdev);
5198 struct cas *cp;
5199 if (!dev)
5200 return;
5202 cp = netdev_priv(dev);
5203 unregister_netdev(dev);
5205 mutex_lock(&cp->pm_mutex);
5206 flush_scheduled_work();
5207 if (cp->hw_running)
5208 cas_shutdown(cp);
5209 mutex_unlock(&cp->pm_mutex);
5211 #if 1
5212 if (cp->orig_cacheline_size) {
5213 /* Restore the cache line size if we had modified
5214 * it.
5216 pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE,
5217 cp->orig_cacheline_size);
5219 #endif
5220 pci_free_consistent(pdev, sizeof(struct cas_init_block),
5221 cp->init_block, cp->block_dvma);
5222 pci_iounmap(pdev, cp->regs);
5223 free_netdev(dev);
5224 pci_release_regions(pdev);
5225 pci_disable_device(pdev);
5226 pci_set_drvdata(pdev, NULL);
5229 #ifdef CONFIG_PM
5230 static int cas_suspend(struct pci_dev *pdev, pm_message_t state)
5232 struct net_device *dev = pci_get_drvdata(pdev);
5233 struct cas *cp = netdev_priv(dev);
5234 unsigned long flags;
5236 mutex_lock(&cp->pm_mutex);
5238 /* If the driver is opened, we stop the DMA */
5239 if (cp->opened) {
5240 netif_device_detach(dev);
5242 cas_lock_all_save(cp, flags);
5244 /* We can set the second arg of cas_reset to 0
5245 * because on resume, we'll call cas_init_hw with
5246 * its second arg set so that autonegotiation is
5247 * restarted.
5249 cas_reset(cp, 0);
5250 cas_clean_rings(cp);
5251 cas_unlock_all_restore(cp, flags);
5254 if (cp->hw_running)
5255 cas_shutdown(cp);
5256 mutex_unlock(&cp->pm_mutex);
5258 return 0;
5261 static int cas_resume(struct pci_dev *pdev)
5263 struct net_device *dev = pci_get_drvdata(pdev);
5264 struct cas *cp = netdev_priv(dev);
5266 printk(KERN_INFO "%s: resuming\n", dev->name);
5268 mutex_lock(&cp->pm_mutex);
5269 cas_hard_reset(cp);
5270 if (cp->opened) {
5271 unsigned long flags;
5272 cas_lock_all_save(cp, flags);
5273 cas_reset(cp, 0);
5274 cp->hw_running = 1;
5275 cas_clean_rings(cp);
5276 cas_init_hw(cp, 1);
5277 cas_unlock_all_restore(cp, flags);
5279 netif_device_attach(dev);
5281 mutex_unlock(&cp->pm_mutex);
5282 return 0;
5284 #endif /* CONFIG_PM */
5286 static struct pci_driver cas_driver = {
5287 .name = DRV_MODULE_NAME,
5288 .id_table = cas_pci_tbl,
5289 .probe = cas_init_one,
5290 .remove = __devexit_p(cas_remove_one),
5291 #ifdef CONFIG_PM
5292 .suspend = cas_suspend,
5293 .resume = cas_resume
5294 #endif
5297 static int __init cas_init(void)
5299 if (linkdown_timeout > 0)
5300 link_transition_timeout = linkdown_timeout * HZ;
5301 else
5302 link_transition_timeout = 0;
5304 return pci_register_driver(&cas_driver);
5307 static void __exit cas_cleanup(void)
5309 pci_unregister_driver(&cas_driver);
5312 module_init(cas_init);
5313 module_exit(cas_cleanup);