Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux-2.6
[linux-2.6/linux-mips/linux-dm7025.git] / drivers / net / s2io.c
blob523478ebfd6922096cd8d9de828a9e8dd6903f9b
1 /************************************************************************
2 * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC
3 * Copyright(c) 2002-2007 Neterion Inc.
5 * This software may be used and distributed according to the terms of
6 * the GNU General Public License (GPL), incorporated herein by reference.
7 * Drivers based on or derived from this code fall under the GPL and must
8 * retain the authorship, copyright and license notice. This file is not
9 * a complete program and may only be used when the entire operating
10 * system is licensed under the GPL.
11 * See the file COPYING in this distribution for more information.
13 * Credits:
14 * Jeff Garzik : For pointing out the improper error condition
15 * check in the s2io_xmit routine and also some
16 * issues in the Tx watch dog function. Also for
17 * patiently answering all those innumerable
18 * questions regaring the 2.6 porting issues.
19 * Stephen Hemminger : Providing proper 2.6 porting mechanism for some
20 * macros available only in 2.6 Kernel.
21 * Francois Romieu : For pointing out all code part that were
22 * deprecated and also styling related comments.
23 * Grant Grundler : For helping me get rid of some Architecture
24 * dependent code.
25 * Christopher Hellwig : Some more 2.6 specific issues in the driver.
27 * The module loadable parameters that are supported by the driver and a brief
28 * explaination of all the variables.
30 * rx_ring_num : This can be used to program the number of receive rings used
31 * in the driver.
32 * rx_ring_sz: This defines the number of receive blocks each ring can have.
33 * This is also an array of size 8.
34 * rx_ring_mode: This defines the operation mode of all 8 rings. The valid
35 * values are 1, 2.
36 * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver.
37 * tx_fifo_len: This too is an array of 8. Each element defines the number of
38 * Tx descriptors that can be associated with each corresponding FIFO.
39 * intr_type: This defines the type of interrupt. The values can be 0(INTA),
40 * 2(MSI_X). Default value is '2(MSI_X)'
41 * lro_enable: Specifies whether to enable Large Receive Offload (LRO) or not.
42 * Possible values '1' for enable '0' for disable. Default is '0'
43 * lro_max_pkts: This parameter defines maximum number of packets can be
44 * aggregated as a single large packet
45 * napi: This parameter used to enable/disable NAPI (polling Rx)
46 * Possible values '1' for enable and '0' for disable. Default is '1'
47 * ufo: This parameter used to enable/disable UDP Fragmentation Offload(UFO)
48 * Possible values '1' for enable and '0' for disable. Default is '0'
49 * vlan_tag_strip: This can be used to enable or disable vlan stripping.
50 * Possible values '1' for enable , '0' for disable.
51 * Default is '2' - which means disable in promisc mode
52 * and enable in non-promiscuous mode.
53 * multiq: This parameter used to enable/disable MULTIQUEUE support.
54 * Possible values '1' for enable and '0' for disable. Default is '0'
55 ************************************************************************/
57 #include <linux/module.h>
58 #include <linux/types.h>
59 #include <linux/errno.h>
60 #include <linux/ioport.h>
61 #include <linux/pci.h>
62 #include <linux/dma-mapping.h>
63 #include <linux/kernel.h>
64 #include <linux/netdevice.h>
65 #include <linux/etherdevice.h>
66 #include <linux/skbuff.h>
67 #include <linux/init.h>
68 #include <linux/delay.h>
69 #include <linux/stddef.h>
70 #include <linux/ioctl.h>
71 #include <linux/timex.h>
72 #include <linux/ethtool.h>
73 #include <linux/workqueue.h>
74 #include <linux/if_vlan.h>
75 #include <linux/ip.h>
76 #include <linux/tcp.h>
77 #include <net/tcp.h>
79 #include <asm/system.h>
80 #include <asm/uaccess.h>
81 #include <asm/io.h>
82 #include <asm/div64.h>
83 #include <asm/irq.h>
85 /* local include */
86 #include "s2io.h"
87 #include "s2io-regs.h"
89 #define DRV_VERSION "2.0.26.23"
91 /* S2io Driver name & version. */
92 static char s2io_driver_name[] = "Neterion";
93 static char s2io_driver_version[] = DRV_VERSION;
95 static int rxd_size[2] = {32,48};
96 static int rxd_count[2] = {127,85};
98 static inline int RXD_IS_UP2DT(struct RxD_t *rxdp)
100 int ret;
102 ret = ((!(rxdp->Control_1 & RXD_OWN_XENA)) &&
103 (GET_RXD_MARKER(rxdp->Control_2) != THE_RXD_MARK));
105 return ret;
109 * Cards with following subsystem_id have a link state indication
110 * problem, 600B, 600C, 600D, 640B, 640C and 640D.
111 * macro below identifies these cards given the subsystem_id.
113 #define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid) \
114 (dev_type == XFRAME_I_DEVICE) ? \
115 ((((subid >= 0x600B) && (subid <= 0x600D)) || \
116 ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0
118 #define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \
119 ADAPTER_STATUS_RMAC_LOCAL_FAULT)))
121 static inline int is_s2io_card_up(const struct s2io_nic * sp)
123 return test_bit(__S2IO_STATE_CARD_UP, &sp->state);
126 /* Ethtool related variables and Macros. */
127 static char s2io_gstrings[][ETH_GSTRING_LEN] = {
128 "Register test\t(offline)",
129 "Eeprom test\t(offline)",
130 "Link test\t(online)",
131 "RLDRAM test\t(offline)",
132 "BIST Test\t(offline)"
135 static char ethtool_xena_stats_keys[][ETH_GSTRING_LEN] = {
136 {"tmac_frms"},
137 {"tmac_data_octets"},
138 {"tmac_drop_frms"},
139 {"tmac_mcst_frms"},
140 {"tmac_bcst_frms"},
141 {"tmac_pause_ctrl_frms"},
142 {"tmac_ttl_octets"},
143 {"tmac_ucst_frms"},
144 {"tmac_nucst_frms"},
145 {"tmac_any_err_frms"},
146 {"tmac_ttl_less_fb_octets"},
147 {"tmac_vld_ip_octets"},
148 {"tmac_vld_ip"},
149 {"tmac_drop_ip"},
150 {"tmac_icmp"},
151 {"tmac_rst_tcp"},
152 {"tmac_tcp"},
153 {"tmac_udp"},
154 {"rmac_vld_frms"},
155 {"rmac_data_octets"},
156 {"rmac_fcs_err_frms"},
157 {"rmac_drop_frms"},
158 {"rmac_vld_mcst_frms"},
159 {"rmac_vld_bcst_frms"},
160 {"rmac_in_rng_len_err_frms"},
161 {"rmac_out_rng_len_err_frms"},
162 {"rmac_long_frms"},
163 {"rmac_pause_ctrl_frms"},
164 {"rmac_unsup_ctrl_frms"},
165 {"rmac_ttl_octets"},
166 {"rmac_accepted_ucst_frms"},
167 {"rmac_accepted_nucst_frms"},
168 {"rmac_discarded_frms"},
169 {"rmac_drop_events"},
170 {"rmac_ttl_less_fb_octets"},
171 {"rmac_ttl_frms"},
172 {"rmac_usized_frms"},
173 {"rmac_osized_frms"},
174 {"rmac_frag_frms"},
175 {"rmac_jabber_frms"},
176 {"rmac_ttl_64_frms"},
177 {"rmac_ttl_65_127_frms"},
178 {"rmac_ttl_128_255_frms"},
179 {"rmac_ttl_256_511_frms"},
180 {"rmac_ttl_512_1023_frms"},
181 {"rmac_ttl_1024_1518_frms"},
182 {"rmac_ip"},
183 {"rmac_ip_octets"},
184 {"rmac_hdr_err_ip"},
185 {"rmac_drop_ip"},
186 {"rmac_icmp"},
187 {"rmac_tcp"},
188 {"rmac_udp"},
189 {"rmac_err_drp_udp"},
190 {"rmac_xgmii_err_sym"},
191 {"rmac_frms_q0"},
192 {"rmac_frms_q1"},
193 {"rmac_frms_q2"},
194 {"rmac_frms_q3"},
195 {"rmac_frms_q4"},
196 {"rmac_frms_q5"},
197 {"rmac_frms_q6"},
198 {"rmac_frms_q7"},
199 {"rmac_full_q0"},
200 {"rmac_full_q1"},
201 {"rmac_full_q2"},
202 {"rmac_full_q3"},
203 {"rmac_full_q4"},
204 {"rmac_full_q5"},
205 {"rmac_full_q6"},
206 {"rmac_full_q7"},
207 {"rmac_pause_cnt"},
208 {"rmac_xgmii_data_err_cnt"},
209 {"rmac_xgmii_ctrl_err_cnt"},
210 {"rmac_accepted_ip"},
211 {"rmac_err_tcp"},
212 {"rd_req_cnt"},
213 {"new_rd_req_cnt"},
214 {"new_rd_req_rtry_cnt"},
215 {"rd_rtry_cnt"},
216 {"wr_rtry_rd_ack_cnt"},
217 {"wr_req_cnt"},
218 {"new_wr_req_cnt"},
219 {"new_wr_req_rtry_cnt"},
220 {"wr_rtry_cnt"},
221 {"wr_disc_cnt"},
222 {"rd_rtry_wr_ack_cnt"},
223 {"txp_wr_cnt"},
224 {"txd_rd_cnt"},
225 {"txd_wr_cnt"},
226 {"rxd_rd_cnt"},
227 {"rxd_wr_cnt"},
228 {"txf_rd_cnt"},
229 {"rxf_wr_cnt"}
232 static char ethtool_enhanced_stats_keys[][ETH_GSTRING_LEN] = {
233 {"rmac_ttl_1519_4095_frms"},
234 {"rmac_ttl_4096_8191_frms"},
235 {"rmac_ttl_8192_max_frms"},
236 {"rmac_ttl_gt_max_frms"},
237 {"rmac_osized_alt_frms"},
238 {"rmac_jabber_alt_frms"},
239 {"rmac_gt_max_alt_frms"},
240 {"rmac_vlan_frms"},
241 {"rmac_len_discard"},
242 {"rmac_fcs_discard"},
243 {"rmac_pf_discard"},
244 {"rmac_da_discard"},
245 {"rmac_red_discard"},
246 {"rmac_rts_discard"},
247 {"rmac_ingm_full_discard"},
248 {"link_fault_cnt"}
251 static char ethtool_driver_stats_keys[][ETH_GSTRING_LEN] = {
252 {"\n DRIVER STATISTICS"},
253 {"single_bit_ecc_errs"},
254 {"double_bit_ecc_errs"},
255 {"parity_err_cnt"},
256 {"serious_err_cnt"},
257 {"soft_reset_cnt"},
258 {"fifo_full_cnt"},
259 {"ring_0_full_cnt"},
260 {"ring_1_full_cnt"},
261 {"ring_2_full_cnt"},
262 {"ring_3_full_cnt"},
263 {"ring_4_full_cnt"},
264 {"ring_5_full_cnt"},
265 {"ring_6_full_cnt"},
266 {"ring_7_full_cnt"},
267 {"alarm_transceiver_temp_high"},
268 {"alarm_transceiver_temp_low"},
269 {"alarm_laser_bias_current_high"},
270 {"alarm_laser_bias_current_low"},
271 {"alarm_laser_output_power_high"},
272 {"alarm_laser_output_power_low"},
273 {"warn_transceiver_temp_high"},
274 {"warn_transceiver_temp_low"},
275 {"warn_laser_bias_current_high"},
276 {"warn_laser_bias_current_low"},
277 {"warn_laser_output_power_high"},
278 {"warn_laser_output_power_low"},
279 {"lro_aggregated_pkts"},
280 {"lro_flush_both_count"},
281 {"lro_out_of_sequence_pkts"},
282 {"lro_flush_due_to_max_pkts"},
283 {"lro_avg_aggr_pkts"},
284 {"mem_alloc_fail_cnt"},
285 {"pci_map_fail_cnt"},
286 {"watchdog_timer_cnt"},
287 {"mem_allocated"},
288 {"mem_freed"},
289 {"link_up_cnt"},
290 {"link_down_cnt"},
291 {"link_up_time"},
292 {"link_down_time"},
293 {"tx_tcode_buf_abort_cnt"},
294 {"tx_tcode_desc_abort_cnt"},
295 {"tx_tcode_parity_err_cnt"},
296 {"tx_tcode_link_loss_cnt"},
297 {"tx_tcode_list_proc_err_cnt"},
298 {"rx_tcode_parity_err_cnt"},
299 {"rx_tcode_abort_cnt"},
300 {"rx_tcode_parity_abort_cnt"},
301 {"rx_tcode_rda_fail_cnt"},
302 {"rx_tcode_unkn_prot_cnt"},
303 {"rx_tcode_fcs_err_cnt"},
304 {"rx_tcode_buf_size_err_cnt"},
305 {"rx_tcode_rxd_corrupt_cnt"},
306 {"rx_tcode_unkn_err_cnt"},
307 {"tda_err_cnt"},
308 {"pfc_err_cnt"},
309 {"pcc_err_cnt"},
310 {"tti_err_cnt"},
311 {"tpa_err_cnt"},
312 {"sm_err_cnt"},
313 {"lso_err_cnt"},
314 {"mac_tmac_err_cnt"},
315 {"mac_rmac_err_cnt"},
316 {"xgxs_txgxs_err_cnt"},
317 {"xgxs_rxgxs_err_cnt"},
318 {"rc_err_cnt"},
319 {"prc_pcix_err_cnt"},
320 {"rpa_err_cnt"},
321 {"rda_err_cnt"},
322 {"rti_err_cnt"},
323 {"mc_err_cnt"}
326 #define S2IO_XENA_STAT_LEN ARRAY_SIZE(ethtool_xena_stats_keys)
327 #define S2IO_ENHANCED_STAT_LEN ARRAY_SIZE(ethtool_enhanced_stats_keys)
328 #define S2IO_DRIVER_STAT_LEN ARRAY_SIZE(ethtool_driver_stats_keys)
330 #define XFRAME_I_STAT_LEN (S2IO_XENA_STAT_LEN + S2IO_DRIVER_STAT_LEN )
331 #define XFRAME_II_STAT_LEN (XFRAME_I_STAT_LEN + S2IO_ENHANCED_STAT_LEN )
333 #define XFRAME_I_STAT_STRINGS_LEN ( XFRAME_I_STAT_LEN * ETH_GSTRING_LEN )
334 #define XFRAME_II_STAT_STRINGS_LEN ( XFRAME_II_STAT_LEN * ETH_GSTRING_LEN )
336 #define S2IO_TEST_LEN ARRAY_SIZE(s2io_gstrings)
337 #define S2IO_STRINGS_LEN S2IO_TEST_LEN * ETH_GSTRING_LEN
339 #define S2IO_TIMER_CONF(timer, handle, arg, exp) \
340 init_timer(&timer); \
341 timer.function = handle; \
342 timer.data = (unsigned long) arg; \
343 mod_timer(&timer, (jiffies + exp)) \
345 /* copy mac addr to def_mac_addr array */
346 static void do_s2io_copy_mac_addr(struct s2io_nic *sp, int offset, u64 mac_addr)
348 sp->def_mac_addr[offset].mac_addr[5] = (u8) (mac_addr);
349 sp->def_mac_addr[offset].mac_addr[4] = (u8) (mac_addr >> 8);
350 sp->def_mac_addr[offset].mac_addr[3] = (u8) (mac_addr >> 16);
351 sp->def_mac_addr[offset].mac_addr[2] = (u8) (mac_addr >> 24);
352 sp->def_mac_addr[offset].mac_addr[1] = (u8) (mac_addr >> 32);
353 sp->def_mac_addr[offset].mac_addr[0] = (u8) (mac_addr >> 40);
355 /* Add the vlan */
356 static void s2io_vlan_rx_register(struct net_device *dev,
357 struct vlan_group *grp)
359 int i;
360 struct s2io_nic *nic = dev->priv;
361 unsigned long flags[MAX_TX_FIFOS];
362 struct mac_info *mac_control = &nic->mac_control;
363 struct config_param *config = &nic->config;
365 for (i = 0; i < config->tx_fifo_num; i++)
366 spin_lock_irqsave(&mac_control->fifos[i].tx_lock, flags[i]);
368 nic->vlgrp = grp;
369 for (i = config->tx_fifo_num - 1; i >= 0; i--)
370 spin_unlock_irqrestore(&mac_control->fifos[i].tx_lock,
371 flags[i]);
374 /* A flag indicating whether 'RX_PA_CFG_STRIP_VLAN_TAG' bit is set or not */
375 static int vlan_strip_flag;
377 /* Unregister the vlan */
378 static void s2io_vlan_rx_kill_vid(struct net_device *dev, unsigned long vid)
380 int i;
381 struct s2io_nic *nic = dev->priv;
382 unsigned long flags[MAX_TX_FIFOS];
383 struct mac_info *mac_control = &nic->mac_control;
384 struct config_param *config = &nic->config;
386 for (i = 0; i < config->tx_fifo_num; i++)
387 spin_lock_irqsave(&mac_control->fifos[i].tx_lock, flags[i]);
389 if (nic->vlgrp)
390 vlan_group_set_device(nic->vlgrp, vid, NULL);
392 for (i = config->tx_fifo_num - 1; i >= 0; i--)
393 spin_unlock_irqrestore(&mac_control->fifos[i].tx_lock,
394 flags[i]);
398 * Constants to be programmed into the Xena's registers, to configure
399 * the XAUI.
402 #define END_SIGN 0x0
403 static const u64 herc_act_dtx_cfg[] = {
404 /* Set address */
405 0x8000051536750000ULL, 0x80000515367500E0ULL,
406 /* Write data */
407 0x8000051536750004ULL, 0x80000515367500E4ULL,
408 /* Set address */
409 0x80010515003F0000ULL, 0x80010515003F00E0ULL,
410 /* Write data */
411 0x80010515003F0004ULL, 0x80010515003F00E4ULL,
412 /* Set address */
413 0x801205150D440000ULL, 0x801205150D4400E0ULL,
414 /* Write data */
415 0x801205150D440004ULL, 0x801205150D4400E4ULL,
416 /* Set address */
417 0x80020515F2100000ULL, 0x80020515F21000E0ULL,
418 /* Write data */
419 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
420 /* Done */
421 END_SIGN
424 static const u64 xena_dtx_cfg[] = {
425 /* Set address */
426 0x8000051500000000ULL, 0x80000515000000E0ULL,
427 /* Write data */
428 0x80000515D9350004ULL, 0x80000515D93500E4ULL,
429 /* Set address */
430 0x8001051500000000ULL, 0x80010515000000E0ULL,
431 /* Write data */
432 0x80010515001E0004ULL, 0x80010515001E00E4ULL,
433 /* Set address */
434 0x8002051500000000ULL, 0x80020515000000E0ULL,
435 /* Write data */
436 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
437 END_SIGN
441 * Constants for Fixing the MacAddress problem seen mostly on
442 * Alpha machines.
444 static const u64 fix_mac[] = {
445 0x0060000000000000ULL, 0x0060600000000000ULL,
446 0x0040600000000000ULL, 0x0000600000000000ULL,
447 0x0020600000000000ULL, 0x0060600000000000ULL,
448 0x0020600000000000ULL, 0x0060600000000000ULL,
449 0x0020600000000000ULL, 0x0060600000000000ULL,
450 0x0020600000000000ULL, 0x0060600000000000ULL,
451 0x0020600000000000ULL, 0x0060600000000000ULL,
452 0x0020600000000000ULL, 0x0060600000000000ULL,
453 0x0020600000000000ULL, 0x0060600000000000ULL,
454 0x0020600000000000ULL, 0x0060600000000000ULL,
455 0x0020600000000000ULL, 0x0060600000000000ULL,
456 0x0020600000000000ULL, 0x0060600000000000ULL,
457 0x0020600000000000ULL, 0x0000600000000000ULL,
458 0x0040600000000000ULL, 0x0060600000000000ULL,
459 END_SIGN
462 MODULE_LICENSE("GPL");
463 MODULE_VERSION(DRV_VERSION);
466 /* Module Loadable parameters. */
467 S2IO_PARM_INT(tx_fifo_num, FIFO_DEFAULT_NUM);
468 S2IO_PARM_INT(rx_ring_num, 1);
469 S2IO_PARM_INT(multiq, 0);
470 S2IO_PARM_INT(rx_ring_mode, 1);
471 S2IO_PARM_INT(use_continuous_tx_intrs, 1);
472 S2IO_PARM_INT(rmac_pause_time, 0x100);
473 S2IO_PARM_INT(mc_pause_threshold_q0q3, 187);
474 S2IO_PARM_INT(mc_pause_threshold_q4q7, 187);
475 S2IO_PARM_INT(shared_splits, 0);
476 S2IO_PARM_INT(tmac_util_period, 5);
477 S2IO_PARM_INT(rmac_util_period, 5);
478 S2IO_PARM_INT(l3l4hdr_size, 128);
479 /* 0 is no steering, 1 is Priority steering, 2 is Default steering */
480 S2IO_PARM_INT(tx_steering_type, TX_DEFAULT_STEERING);
481 /* Frequency of Rx desc syncs expressed as power of 2 */
482 S2IO_PARM_INT(rxsync_frequency, 3);
483 /* Interrupt type. Values can be 0(INTA), 2(MSI_X) */
484 S2IO_PARM_INT(intr_type, 2);
485 /* Large receive offload feature */
486 static unsigned int lro_enable;
487 module_param_named(lro, lro_enable, uint, 0);
489 /* Max pkts to be aggregated by LRO at one time. If not specified,
490 * aggregation happens until we hit max IP pkt size(64K)
492 S2IO_PARM_INT(lro_max_pkts, 0xFFFF);
493 S2IO_PARM_INT(indicate_max_pkts, 0);
495 S2IO_PARM_INT(napi, 1);
496 S2IO_PARM_INT(ufo, 0);
497 S2IO_PARM_INT(vlan_tag_strip, NO_STRIP_IN_PROMISC);
499 static unsigned int tx_fifo_len[MAX_TX_FIFOS] =
500 {DEFAULT_FIFO_0_LEN, [1 ...(MAX_TX_FIFOS - 1)] = DEFAULT_FIFO_1_7_LEN};
501 static unsigned int rx_ring_sz[MAX_RX_RINGS] =
502 {[0 ...(MAX_RX_RINGS - 1)] = SMALL_BLK_CNT};
503 static unsigned int rts_frm_len[MAX_RX_RINGS] =
504 {[0 ...(MAX_RX_RINGS - 1)] = 0 };
506 module_param_array(tx_fifo_len, uint, NULL, 0);
507 module_param_array(rx_ring_sz, uint, NULL, 0);
508 module_param_array(rts_frm_len, uint, NULL, 0);
511 * S2IO device table.
512 * This table lists all the devices that this driver supports.
514 static struct pci_device_id s2io_tbl[] __devinitdata = {
515 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_WIN,
516 PCI_ANY_ID, PCI_ANY_ID},
517 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_UNI,
518 PCI_ANY_ID, PCI_ANY_ID},
519 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_WIN,
520 PCI_ANY_ID, PCI_ANY_ID},
521 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_UNI,
522 PCI_ANY_ID, PCI_ANY_ID},
523 {0,}
526 MODULE_DEVICE_TABLE(pci, s2io_tbl);
528 static struct pci_error_handlers s2io_err_handler = {
529 .error_detected = s2io_io_error_detected,
530 .slot_reset = s2io_io_slot_reset,
531 .resume = s2io_io_resume,
534 static struct pci_driver s2io_driver = {
535 .name = "S2IO",
536 .id_table = s2io_tbl,
537 .probe = s2io_init_nic,
538 .remove = __devexit_p(s2io_rem_nic),
539 .err_handler = &s2io_err_handler,
542 /* A simplifier macro used both by init and free shared_mem Fns(). */
543 #define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each)
545 /* netqueue manipulation helper functions */
546 static inline void s2io_stop_all_tx_queue(struct s2io_nic *sp)
548 int i;
549 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
550 if (sp->config.multiq) {
551 for (i = 0; i < sp->config.tx_fifo_num; i++)
552 netif_stop_subqueue(sp->dev, i);
553 } else
554 #endif
556 for (i = 0; i < sp->config.tx_fifo_num; i++)
557 sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_STOP;
558 netif_stop_queue(sp->dev);
562 static inline void s2io_stop_tx_queue(struct s2io_nic *sp, int fifo_no)
564 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
565 if (sp->config.multiq)
566 netif_stop_subqueue(sp->dev, fifo_no);
567 else
568 #endif
570 sp->mac_control.fifos[fifo_no].queue_state =
571 FIFO_QUEUE_STOP;
572 netif_stop_queue(sp->dev);
576 static inline void s2io_start_all_tx_queue(struct s2io_nic *sp)
578 int i;
579 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
580 if (sp->config.multiq) {
581 for (i = 0; i < sp->config.tx_fifo_num; i++)
582 netif_start_subqueue(sp->dev, i);
583 } else
584 #endif
586 for (i = 0; i < sp->config.tx_fifo_num; i++)
587 sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_START;
588 netif_start_queue(sp->dev);
592 static inline void s2io_start_tx_queue(struct s2io_nic *sp, int fifo_no)
594 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
595 if (sp->config.multiq)
596 netif_start_subqueue(sp->dev, fifo_no);
597 else
598 #endif
600 sp->mac_control.fifos[fifo_no].queue_state =
601 FIFO_QUEUE_START;
602 netif_start_queue(sp->dev);
606 static inline void s2io_wake_all_tx_queue(struct s2io_nic *sp)
608 int i;
609 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
610 if (sp->config.multiq) {
611 for (i = 0; i < sp->config.tx_fifo_num; i++)
612 netif_wake_subqueue(sp->dev, i);
613 } else
614 #endif
616 for (i = 0; i < sp->config.tx_fifo_num; i++)
617 sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_START;
618 netif_wake_queue(sp->dev);
622 static inline void s2io_wake_tx_queue(
623 struct fifo_info *fifo, int cnt, u8 multiq)
626 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
627 if (multiq) {
628 if (cnt && __netif_subqueue_stopped(fifo->dev, fifo->fifo_no))
629 netif_wake_subqueue(fifo->dev, fifo->fifo_no);
630 } else
631 #endif
632 if (cnt && (fifo->queue_state == FIFO_QUEUE_STOP)) {
633 if (netif_queue_stopped(fifo->dev)) {
634 fifo->queue_state = FIFO_QUEUE_START;
635 netif_wake_queue(fifo->dev);
641 * init_shared_mem - Allocation and Initialization of Memory
642 * @nic: Device private variable.
643 * Description: The function allocates all the memory areas shared
644 * between the NIC and the driver. This includes Tx descriptors,
645 * Rx descriptors and the statistics block.
648 static int init_shared_mem(struct s2io_nic *nic)
650 u32 size;
651 void *tmp_v_addr, *tmp_v_addr_next;
652 dma_addr_t tmp_p_addr, tmp_p_addr_next;
653 struct RxD_block *pre_rxd_blk = NULL;
654 int i, j, blk_cnt;
655 int lst_size, lst_per_page;
656 struct net_device *dev = nic->dev;
657 unsigned long tmp;
658 struct buffAdd *ba;
660 struct mac_info *mac_control;
661 struct config_param *config;
662 unsigned long long mem_allocated = 0;
664 mac_control = &nic->mac_control;
665 config = &nic->config;
668 /* Allocation and initialization of TXDLs in FIOFs */
669 size = 0;
670 for (i = 0; i < config->tx_fifo_num; i++) {
671 size += config->tx_cfg[i].fifo_len;
673 if (size > MAX_AVAILABLE_TXDS) {
674 DBG_PRINT(ERR_DBG, "s2io: Requested TxDs too high, ");
675 DBG_PRINT(ERR_DBG, "Requested: %d, max supported: 8192\n", size);
676 return -EINVAL;
679 size = 0;
680 for (i = 0; i < config->tx_fifo_num; i++) {
681 size = config->tx_cfg[i].fifo_len;
683 * Legal values are from 2 to 8192
685 if (size < 2) {
686 DBG_PRINT(ERR_DBG, "s2io: Invalid fifo len (%d)", size);
687 DBG_PRINT(ERR_DBG, "for fifo %d\n", i);
688 DBG_PRINT(ERR_DBG, "s2io: Legal values for fifo len"
689 "are 2 to 8192\n");
690 return -EINVAL;
694 lst_size = (sizeof(struct TxD) * config->max_txds);
695 lst_per_page = PAGE_SIZE / lst_size;
697 for (i = 0; i < config->tx_fifo_num; i++) {
698 int fifo_len = config->tx_cfg[i].fifo_len;
699 int list_holder_size = fifo_len * sizeof(struct list_info_hold);
700 mac_control->fifos[i].list_info = kzalloc(list_holder_size,
701 GFP_KERNEL);
702 if (!mac_control->fifos[i].list_info) {
703 DBG_PRINT(INFO_DBG,
704 "Malloc failed for list_info\n");
705 return -ENOMEM;
707 mem_allocated += list_holder_size;
709 for (i = 0; i < config->tx_fifo_num; i++) {
710 int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
711 lst_per_page);
712 mac_control->fifos[i].tx_curr_put_info.offset = 0;
713 mac_control->fifos[i].tx_curr_put_info.fifo_len =
714 config->tx_cfg[i].fifo_len - 1;
715 mac_control->fifos[i].tx_curr_get_info.offset = 0;
716 mac_control->fifos[i].tx_curr_get_info.fifo_len =
717 config->tx_cfg[i].fifo_len - 1;
718 mac_control->fifos[i].fifo_no = i;
719 mac_control->fifos[i].nic = nic;
720 mac_control->fifos[i].max_txds = MAX_SKB_FRAGS + 2;
721 mac_control->fifos[i].dev = dev;
723 for (j = 0; j < page_num; j++) {
724 int k = 0;
725 dma_addr_t tmp_p;
726 void *tmp_v;
727 tmp_v = pci_alloc_consistent(nic->pdev,
728 PAGE_SIZE, &tmp_p);
729 if (!tmp_v) {
730 DBG_PRINT(INFO_DBG,
731 "pci_alloc_consistent ");
732 DBG_PRINT(INFO_DBG, "failed for TxDL\n");
733 return -ENOMEM;
735 /* If we got a zero DMA address(can happen on
736 * certain platforms like PPC), reallocate.
737 * Store virtual address of page we don't want,
738 * to be freed later.
740 if (!tmp_p) {
741 mac_control->zerodma_virt_addr = tmp_v;
742 DBG_PRINT(INIT_DBG,
743 "%s: Zero DMA address for TxDL. ", dev->name);
744 DBG_PRINT(INIT_DBG,
745 "Virtual address %p\n", tmp_v);
746 tmp_v = pci_alloc_consistent(nic->pdev,
747 PAGE_SIZE, &tmp_p);
748 if (!tmp_v) {
749 DBG_PRINT(INFO_DBG,
750 "pci_alloc_consistent ");
751 DBG_PRINT(INFO_DBG, "failed for TxDL\n");
752 return -ENOMEM;
754 mem_allocated += PAGE_SIZE;
756 while (k < lst_per_page) {
757 int l = (j * lst_per_page) + k;
758 if (l == config->tx_cfg[i].fifo_len)
759 break;
760 mac_control->fifos[i].list_info[l].list_virt_addr =
761 tmp_v + (k * lst_size);
762 mac_control->fifos[i].list_info[l].list_phy_addr =
763 tmp_p + (k * lst_size);
764 k++;
769 for (i = 0; i < config->tx_fifo_num; i++) {
770 size = config->tx_cfg[i].fifo_len;
771 mac_control->fifos[i].ufo_in_band_v
772 = kcalloc(size, sizeof(u64), GFP_KERNEL);
773 if (!mac_control->fifos[i].ufo_in_band_v)
774 return -ENOMEM;
775 mem_allocated += (size * sizeof(u64));
778 /* Allocation and initialization of RXDs in Rings */
779 size = 0;
780 for (i = 0; i < config->rx_ring_num; i++) {
781 if (config->rx_cfg[i].num_rxd %
782 (rxd_count[nic->rxd_mode] + 1)) {
783 DBG_PRINT(ERR_DBG, "%s: RxD count of ", dev->name);
784 DBG_PRINT(ERR_DBG, "Ring%d is not a multiple of ",
786 DBG_PRINT(ERR_DBG, "RxDs per Block");
787 return FAILURE;
789 size += config->rx_cfg[i].num_rxd;
790 mac_control->rings[i].block_count =
791 config->rx_cfg[i].num_rxd /
792 (rxd_count[nic->rxd_mode] + 1 );
793 mac_control->rings[i].pkt_cnt = config->rx_cfg[i].num_rxd -
794 mac_control->rings[i].block_count;
796 if (nic->rxd_mode == RXD_MODE_1)
797 size = (size * (sizeof(struct RxD1)));
798 else
799 size = (size * (sizeof(struct RxD3)));
801 for (i = 0; i < config->rx_ring_num; i++) {
802 mac_control->rings[i].rx_curr_get_info.block_index = 0;
803 mac_control->rings[i].rx_curr_get_info.offset = 0;
804 mac_control->rings[i].rx_curr_get_info.ring_len =
805 config->rx_cfg[i].num_rxd - 1;
806 mac_control->rings[i].rx_curr_put_info.block_index = 0;
807 mac_control->rings[i].rx_curr_put_info.offset = 0;
808 mac_control->rings[i].rx_curr_put_info.ring_len =
809 config->rx_cfg[i].num_rxd - 1;
810 mac_control->rings[i].nic = nic;
811 mac_control->rings[i].ring_no = i;
812 mac_control->rings[i].lro = lro_enable;
814 blk_cnt = config->rx_cfg[i].num_rxd /
815 (rxd_count[nic->rxd_mode] + 1);
816 /* Allocating all the Rx blocks */
817 for (j = 0; j < blk_cnt; j++) {
818 struct rx_block_info *rx_blocks;
819 int l;
821 rx_blocks = &mac_control->rings[i].rx_blocks[j];
822 size = SIZE_OF_BLOCK; //size is always page size
823 tmp_v_addr = pci_alloc_consistent(nic->pdev, size,
824 &tmp_p_addr);
825 if (tmp_v_addr == NULL) {
827 * In case of failure, free_shared_mem()
828 * is called, which should free any
829 * memory that was alloced till the
830 * failure happened.
832 rx_blocks->block_virt_addr = tmp_v_addr;
833 return -ENOMEM;
835 mem_allocated += size;
836 memset(tmp_v_addr, 0, size);
837 rx_blocks->block_virt_addr = tmp_v_addr;
838 rx_blocks->block_dma_addr = tmp_p_addr;
839 rx_blocks->rxds = kmalloc(sizeof(struct rxd_info)*
840 rxd_count[nic->rxd_mode],
841 GFP_KERNEL);
842 if (!rx_blocks->rxds)
843 return -ENOMEM;
844 mem_allocated +=
845 (sizeof(struct rxd_info)* rxd_count[nic->rxd_mode]);
846 for (l=0; l<rxd_count[nic->rxd_mode];l++) {
847 rx_blocks->rxds[l].virt_addr =
848 rx_blocks->block_virt_addr +
849 (rxd_size[nic->rxd_mode] * l);
850 rx_blocks->rxds[l].dma_addr =
851 rx_blocks->block_dma_addr +
852 (rxd_size[nic->rxd_mode] * l);
855 /* Interlinking all Rx Blocks */
856 for (j = 0; j < blk_cnt; j++) {
857 tmp_v_addr =
858 mac_control->rings[i].rx_blocks[j].block_virt_addr;
859 tmp_v_addr_next =
860 mac_control->rings[i].rx_blocks[(j + 1) %
861 blk_cnt].block_virt_addr;
862 tmp_p_addr =
863 mac_control->rings[i].rx_blocks[j].block_dma_addr;
864 tmp_p_addr_next =
865 mac_control->rings[i].rx_blocks[(j + 1) %
866 blk_cnt].block_dma_addr;
868 pre_rxd_blk = (struct RxD_block *) tmp_v_addr;
869 pre_rxd_blk->reserved_2_pNext_RxD_block =
870 (unsigned long) tmp_v_addr_next;
871 pre_rxd_blk->pNext_RxD_Blk_physical =
872 (u64) tmp_p_addr_next;
875 if (nic->rxd_mode == RXD_MODE_3B) {
877 * Allocation of Storages for buffer addresses in 2BUFF mode
878 * and the buffers as well.
880 for (i = 0; i < config->rx_ring_num; i++) {
881 blk_cnt = config->rx_cfg[i].num_rxd /
882 (rxd_count[nic->rxd_mode]+ 1);
883 mac_control->rings[i].ba =
884 kmalloc((sizeof(struct buffAdd *) * blk_cnt),
885 GFP_KERNEL);
886 if (!mac_control->rings[i].ba)
887 return -ENOMEM;
888 mem_allocated +=(sizeof(struct buffAdd *) * blk_cnt);
889 for (j = 0; j < blk_cnt; j++) {
890 int k = 0;
891 mac_control->rings[i].ba[j] =
892 kmalloc((sizeof(struct buffAdd) *
893 (rxd_count[nic->rxd_mode] + 1)),
894 GFP_KERNEL);
895 if (!mac_control->rings[i].ba[j])
896 return -ENOMEM;
897 mem_allocated += (sizeof(struct buffAdd) * \
898 (rxd_count[nic->rxd_mode] + 1));
899 while (k != rxd_count[nic->rxd_mode]) {
900 ba = &mac_control->rings[i].ba[j][k];
902 ba->ba_0_org = (void *) kmalloc
903 (BUF0_LEN + ALIGN_SIZE, GFP_KERNEL);
904 if (!ba->ba_0_org)
905 return -ENOMEM;
906 mem_allocated +=
907 (BUF0_LEN + ALIGN_SIZE);
908 tmp = (unsigned long)ba->ba_0_org;
909 tmp += ALIGN_SIZE;
910 tmp &= ~((unsigned long) ALIGN_SIZE);
911 ba->ba_0 = (void *) tmp;
913 ba->ba_1_org = (void *) kmalloc
914 (BUF1_LEN + ALIGN_SIZE, GFP_KERNEL);
915 if (!ba->ba_1_org)
916 return -ENOMEM;
917 mem_allocated
918 += (BUF1_LEN + ALIGN_SIZE);
919 tmp = (unsigned long) ba->ba_1_org;
920 tmp += ALIGN_SIZE;
921 tmp &= ~((unsigned long) ALIGN_SIZE);
922 ba->ba_1 = (void *) tmp;
923 k++;
929 /* Allocation and initialization of Statistics block */
930 size = sizeof(struct stat_block);
931 mac_control->stats_mem = pci_alloc_consistent
932 (nic->pdev, size, &mac_control->stats_mem_phy);
934 if (!mac_control->stats_mem) {
936 * In case of failure, free_shared_mem() is called, which
937 * should free any memory that was alloced till the
938 * failure happened.
940 return -ENOMEM;
942 mem_allocated += size;
943 mac_control->stats_mem_sz = size;
945 tmp_v_addr = mac_control->stats_mem;
946 mac_control->stats_info = (struct stat_block *) tmp_v_addr;
947 memset(tmp_v_addr, 0, size);
948 DBG_PRINT(INIT_DBG, "%s:Ring Mem PHY: 0x%llx\n", dev->name,
949 (unsigned long long) tmp_p_addr);
950 mac_control->stats_info->sw_stat.mem_allocated += mem_allocated;
951 return SUCCESS;
955 * free_shared_mem - Free the allocated Memory
956 * @nic: Device private variable.
957 * Description: This function is to free all memory locations allocated by
958 * the init_shared_mem() function and return it to the kernel.
961 static void free_shared_mem(struct s2io_nic *nic)
963 int i, j, blk_cnt, size;
964 void *tmp_v_addr;
965 dma_addr_t tmp_p_addr;
966 struct mac_info *mac_control;
967 struct config_param *config;
968 int lst_size, lst_per_page;
969 struct net_device *dev;
970 int page_num = 0;
972 if (!nic)
973 return;
975 dev = nic->dev;
977 mac_control = &nic->mac_control;
978 config = &nic->config;
980 lst_size = (sizeof(struct TxD) * config->max_txds);
981 lst_per_page = PAGE_SIZE / lst_size;
983 for (i = 0; i < config->tx_fifo_num; i++) {
984 page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
985 lst_per_page);
986 for (j = 0; j < page_num; j++) {
987 int mem_blks = (j * lst_per_page);
988 if (!mac_control->fifos[i].list_info)
989 return;
990 if (!mac_control->fifos[i].list_info[mem_blks].
991 list_virt_addr)
992 break;
993 pci_free_consistent(nic->pdev, PAGE_SIZE,
994 mac_control->fifos[i].
995 list_info[mem_blks].
996 list_virt_addr,
997 mac_control->fifos[i].
998 list_info[mem_blks].
999 list_phy_addr);
1000 nic->mac_control.stats_info->sw_stat.mem_freed
1001 += PAGE_SIZE;
1003 /* If we got a zero DMA address during allocation,
1004 * free the page now
1006 if (mac_control->zerodma_virt_addr) {
1007 pci_free_consistent(nic->pdev, PAGE_SIZE,
1008 mac_control->zerodma_virt_addr,
1009 (dma_addr_t)0);
1010 DBG_PRINT(INIT_DBG,
1011 "%s: Freeing TxDL with zero DMA addr. ",
1012 dev->name);
1013 DBG_PRINT(INIT_DBG, "Virtual address %p\n",
1014 mac_control->zerodma_virt_addr);
1015 nic->mac_control.stats_info->sw_stat.mem_freed
1016 += PAGE_SIZE;
1018 kfree(mac_control->fifos[i].list_info);
1019 nic->mac_control.stats_info->sw_stat.mem_freed +=
1020 (nic->config.tx_cfg[i].fifo_len *sizeof(struct list_info_hold));
1023 size = SIZE_OF_BLOCK;
1024 for (i = 0; i < config->rx_ring_num; i++) {
1025 blk_cnt = mac_control->rings[i].block_count;
1026 for (j = 0; j < blk_cnt; j++) {
1027 tmp_v_addr = mac_control->rings[i].rx_blocks[j].
1028 block_virt_addr;
1029 tmp_p_addr = mac_control->rings[i].rx_blocks[j].
1030 block_dma_addr;
1031 if (tmp_v_addr == NULL)
1032 break;
1033 pci_free_consistent(nic->pdev, size,
1034 tmp_v_addr, tmp_p_addr);
1035 nic->mac_control.stats_info->sw_stat.mem_freed += size;
1036 kfree(mac_control->rings[i].rx_blocks[j].rxds);
1037 nic->mac_control.stats_info->sw_stat.mem_freed +=
1038 ( sizeof(struct rxd_info)* rxd_count[nic->rxd_mode]);
1042 if (nic->rxd_mode == RXD_MODE_3B) {
1043 /* Freeing buffer storage addresses in 2BUFF mode. */
1044 for (i = 0; i < config->rx_ring_num; i++) {
1045 blk_cnt = config->rx_cfg[i].num_rxd /
1046 (rxd_count[nic->rxd_mode] + 1);
1047 for (j = 0; j < blk_cnt; j++) {
1048 int k = 0;
1049 if (!mac_control->rings[i].ba[j])
1050 continue;
1051 while (k != rxd_count[nic->rxd_mode]) {
1052 struct buffAdd *ba =
1053 &mac_control->rings[i].ba[j][k];
1054 kfree(ba->ba_0_org);
1055 nic->mac_control.stats_info->sw_stat.\
1056 mem_freed += (BUF0_LEN + ALIGN_SIZE);
1057 kfree(ba->ba_1_org);
1058 nic->mac_control.stats_info->sw_stat.\
1059 mem_freed += (BUF1_LEN + ALIGN_SIZE);
1060 k++;
1062 kfree(mac_control->rings[i].ba[j]);
1063 nic->mac_control.stats_info->sw_stat.mem_freed +=
1064 (sizeof(struct buffAdd) *
1065 (rxd_count[nic->rxd_mode] + 1));
1067 kfree(mac_control->rings[i].ba);
1068 nic->mac_control.stats_info->sw_stat.mem_freed +=
1069 (sizeof(struct buffAdd *) * blk_cnt);
1073 for (i = 0; i < nic->config.tx_fifo_num; i++) {
1074 if (mac_control->fifos[i].ufo_in_band_v) {
1075 nic->mac_control.stats_info->sw_stat.mem_freed
1076 += (config->tx_cfg[i].fifo_len * sizeof(u64));
1077 kfree(mac_control->fifos[i].ufo_in_band_v);
1081 if (mac_control->stats_mem) {
1082 nic->mac_control.stats_info->sw_stat.mem_freed +=
1083 mac_control->stats_mem_sz;
1084 pci_free_consistent(nic->pdev,
1085 mac_control->stats_mem_sz,
1086 mac_control->stats_mem,
1087 mac_control->stats_mem_phy);
1092 * s2io_verify_pci_mode -
1095 static int s2io_verify_pci_mode(struct s2io_nic *nic)
1097 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1098 register u64 val64 = 0;
1099 int mode;
1101 val64 = readq(&bar0->pci_mode);
1102 mode = (u8)GET_PCI_MODE(val64);
1104 if ( val64 & PCI_MODE_UNKNOWN_MODE)
1105 return -1; /* Unknown PCI mode */
1106 return mode;
1109 #define NEC_VENID 0x1033
1110 #define NEC_DEVID 0x0125
1111 static int s2io_on_nec_bridge(struct pci_dev *s2io_pdev)
1113 struct pci_dev *tdev = NULL;
1114 while ((tdev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, tdev)) != NULL) {
1115 if (tdev->vendor == NEC_VENID && tdev->device == NEC_DEVID) {
1116 if (tdev->bus == s2io_pdev->bus->parent)
1117 pci_dev_put(tdev);
1118 return 1;
1121 return 0;
1124 static int bus_speed[8] = {33, 133, 133, 200, 266, 133, 200, 266};
1126 * s2io_print_pci_mode -
1128 static int s2io_print_pci_mode(struct s2io_nic *nic)
1130 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1131 register u64 val64 = 0;
1132 int mode;
1133 struct config_param *config = &nic->config;
1135 val64 = readq(&bar0->pci_mode);
1136 mode = (u8)GET_PCI_MODE(val64);
1138 if ( val64 & PCI_MODE_UNKNOWN_MODE)
1139 return -1; /* Unknown PCI mode */
1141 config->bus_speed = bus_speed[mode];
1143 if (s2io_on_nec_bridge(nic->pdev)) {
1144 DBG_PRINT(ERR_DBG, "%s: Device is on PCI-E bus\n",
1145 nic->dev->name);
1146 return mode;
1149 if (val64 & PCI_MODE_32_BITS) {
1150 DBG_PRINT(ERR_DBG, "%s: Device is on 32 bit ", nic->dev->name);
1151 } else {
1152 DBG_PRINT(ERR_DBG, "%s: Device is on 64 bit ", nic->dev->name);
1155 switch(mode) {
1156 case PCI_MODE_PCI_33:
1157 DBG_PRINT(ERR_DBG, "33MHz PCI bus\n");
1158 break;
1159 case PCI_MODE_PCI_66:
1160 DBG_PRINT(ERR_DBG, "66MHz PCI bus\n");
1161 break;
1162 case PCI_MODE_PCIX_M1_66:
1163 DBG_PRINT(ERR_DBG, "66MHz PCIX(M1) bus\n");
1164 break;
1165 case PCI_MODE_PCIX_M1_100:
1166 DBG_PRINT(ERR_DBG, "100MHz PCIX(M1) bus\n");
1167 break;
1168 case PCI_MODE_PCIX_M1_133:
1169 DBG_PRINT(ERR_DBG, "133MHz PCIX(M1) bus\n");
1170 break;
1171 case PCI_MODE_PCIX_M2_66:
1172 DBG_PRINT(ERR_DBG, "133MHz PCIX(M2) bus\n");
1173 break;
1174 case PCI_MODE_PCIX_M2_100:
1175 DBG_PRINT(ERR_DBG, "200MHz PCIX(M2) bus\n");
1176 break;
1177 case PCI_MODE_PCIX_M2_133:
1178 DBG_PRINT(ERR_DBG, "266MHz PCIX(M2) bus\n");
1179 break;
1180 default:
1181 return -1; /* Unsupported bus speed */
1184 return mode;
1188 * init_tti - Initialization transmit traffic interrupt scheme
1189 * @nic: device private variable
1190 * @link: link status (UP/DOWN) used to enable/disable continuous
1191 * transmit interrupts
1192 * Description: The function configures transmit traffic interrupts
1193 * Return Value: SUCCESS on success and
1194 * '-1' on failure
1197 static int init_tti(struct s2io_nic *nic, int link)
1199 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1200 register u64 val64 = 0;
1201 int i;
1202 struct config_param *config;
1204 config = &nic->config;
1206 for (i = 0; i < config->tx_fifo_num; i++) {
1208 * TTI Initialization. Default Tx timer gets us about
1209 * 250 interrupts per sec. Continuous interrupts are enabled
1210 * by default.
1212 if (nic->device_type == XFRAME_II_DEVICE) {
1213 int count = (nic->config.bus_speed * 125)/2;
1214 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(count);
1215 } else
1216 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(0x2078);
1218 val64 |= TTI_DATA1_MEM_TX_URNG_A(0xA) |
1219 TTI_DATA1_MEM_TX_URNG_B(0x10) |
1220 TTI_DATA1_MEM_TX_URNG_C(0x30) |
1221 TTI_DATA1_MEM_TX_TIMER_AC_EN;
1223 if (use_continuous_tx_intrs && (link == LINK_UP))
1224 val64 |= TTI_DATA1_MEM_TX_TIMER_CI_EN;
1225 writeq(val64, &bar0->tti_data1_mem);
1227 val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1228 TTI_DATA2_MEM_TX_UFC_B(0x20) |
1229 TTI_DATA2_MEM_TX_UFC_C(0x40) |
1230 TTI_DATA2_MEM_TX_UFC_D(0x80);
1232 writeq(val64, &bar0->tti_data2_mem);
1234 val64 = TTI_CMD_MEM_WE | TTI_CMD_MEM_STROBE_NEW_CMD |
1235 TTI_CMD_MEM_OFFSET(i);
1236 writeq(val64, &bar0->tti_command_mem);
1238 if (wait_for_cmd_complete(&bar0->tti_command_mem,
1239 TTI_CMD_MEM_STROBE_NEW_CMD, S2IO_BIT_RESET) != SUCCESS)
1240 return FAILURE;
1243 return SUCCESS;
1247 * init_nic - Initialization of hardware
1248 * @nic: device private variable
1249 * Description: The function sequentially configures every block
1250 * of the H/W from their reset values.
1251 * Return Value: SUCCESS on success and
1252 * '-1' on failure (endian settings incorrect).
1255 static int init_nic(struct s2io_nic *nic)
1257 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1258 struct net_device *dev = nic->dev;
1259 register u64 val64 = 0;
1260 void __iomem *add;
1261 u32 time;
1262 int i, j;
1263 struct mac_info *mac_control;
1264 struct config_param *config;
1265 int dtx_cnt = 0;
1266 unsigned long long mem_share;
1267 int mem_size;
1269 mac_control = &nic->mac_control;
1270 config = &nic->config;
1272 /* to set the swapper controle on the card */
1273 if(s2io_set_swapper(nic)) {
1274 DBG_PRINT(ERR_DBG,"ERROR: Setting Swapper failed\n");
1275 return -EIO;
1279 * Herc requires EOI to be removed from reset before XGXS, so..
1281 if (nic->device_type & XFRAME_II_DEVICE) {
1282 val64 = 0xA500000000ULL;
1283 writeq(val64, &bar0->sw_reset);
1284 msleep(500);
1285 val64 = readq(&bar0->sw_reset);
1288 /* Remove XGXS from reset state */
1289 val64 = 0;
1290 writeq(val64, &bar0->sw_reset);
1291 msleep(500);
1292 val64 = readq(&bar0->sw_reset);
1294 /* Ensure that it's safe to access registers by checking
1295 * RIC_RUNNING bit is reset. Check is valid only for XframeII.
1297 if (nic->device_type == XFRAME_II_DEVICE) {
1298 for (i = 0; i < 50; i++) {
1299 val64 = readq(&bar0->adapter_status);
1300 if (!(val64 & ADAPTER_STATUS_RIC_RUNNING))
1301 break;
1302 msleep(10);
1304 if (i == 50)
1305 return -ENODEV;
1308 /* Enable Receiving broadcasts */
1309 add = &bar0->mac_cfg;
1310 val64 = readq(&bar0->mac_cfg);
1311 val64 |= MAC_RMAC_BCAST_ENABLE;
1312 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1313 writel((u32) val64, add);
1314 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1315 writel((u32) (val64 >> 32), (add + 4));
1317 /* Read registers in all blocks */
1318 val64 = readq(&bar0->mac_int_mask);
1319 val64 = readq(&bar0->mc_int_mask);
1320 val64 = readq(&bar0->xgxs_int_mask);
1322 /* Set MTU */
1323 val64 = dev->mtu;
1324 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
1326 if (nic->device_type & XFRAME_II_DEVICE) {
1327 while (herc_act_dtx_cfg[dtx_cnt] != END_SIGN) {
1328 SPECIAL_REG_WRITE(herc_act_dtx_cfg[dtx_cnt],
1329 &bar0->dtx_control, UF);
1330 if (dtx_cnt & 0x1)
1331 msleep(1); /* Necessary!! */
1332 dtx_cnt++;
1334 } else {
1335 while (xena_dtx_cfg[dtx_cnt] != END_SIGN) {
1336 SPECIAL_REG_WRITE(xena_dtx_cfg[dtx_cnt],
1337 &bar0->dtx_control, UF);
1338 val64 = readq(&bar0->dtx_control);
1339 dtx_cnt++;
1343 /* Tx DMA Initialization */
1344 val64 = 0;
1345 writeq(val64, &bar0->tx_fifo_partition_0);
1346 writeq(val64, &bar0->tx_fifo_partition_1);
1347 writeq(val64, &bar0->tx_fifo_partition_2);
1348 writeq(val64, &bar0->tx_fifo_partition_3);
1351 for (i = 0, j = 0; i < config->tx_fifo_num; i++) {
1352 val64 |=
1353 vBIT(config->tx_cfg[i].fifo_len - 1, ((j * 32) + 19),
1354 13) | vBIT(config->tx_cfg[i].fifo_priority,
1355 ((j * 32) + 5), 3);
1357 if (i == (config->tx_fifo_num - 1)) {
1358 if (i % 2 == 0)
1359 i++;
1362 switch (i) {
1363 case 1:
1364 writeq(val64, &bar0->tx_fifo_partition_0);
1365 val64 = 0;
1366 j = 0;
1367 break;
1368 case 3:
1369 writeq(val64, &bar0->tx_fifo_partition_1);
1370 val64 = 0;
1371 j = 0;
1372 break;
1373 case 5:
1374 writeq(val64, &bar0->tx_fifo_partition_2);
1375 val64 = 0;
1376 j = 0;
1377 break;
1378 case 7:
1379 writeq(val64, &bar0->tx_fifo_partition_3);
1380 val64 = 0;
1381 j = 0;
1382 break;
1383 default:
1384 j++;
1385 break;
1390 * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug
1391 * SXE-008 TRANSMIT DMA ARBITRATION ISSUE.
1393 if ((nic->device_type == XFRAME_I_DEVICE) &&
1394 (nic->pdev->revision < 4))
1395 writeq(PCC_ENABLE_FOUR, &bar0->pcc_enable);
1397 val64 = readq(&bar0->tx_fifo_partition_0);
1398 DBG_PRINT(INIT_DBG, "Fifo partition at: 0x%p is: 0x%llx\n",
1399 &bar0->tx_fifo_partition_0, (unsigned long long) val64);
1402 * Initialization of Tx_PA_CONFIG register to ignore packet
1403 * integrity checking.
1405 val64 = readq(&bar0->tx_pa_cfg);
1406 val64 |= TX_PA_CFG_IGNORE_FRM_ERR | TX_PA_CFG_IGNORE_SNAP_OUI |
1407 TX_PA_CFG_IGNORE_LLC_CTRL | TX_PA_CFG_IGNORE_L2_ERR;
1408 writeq(val64, &bar0->tx_pa_cfg);
1410 /* Rx DMA intialization. */
1411 val64 = 0;
1412 for (i = 0; i < config->rx_ring_num; i++) {
1413 val64 |=
1414 vBIT(config->rx_cfg[i].ring_priority, (5 + (i * 8)),
1417 writeq(val64, &bar0->rx_queue_priority);
1420 * Allocating equal share of memory to all the
1421 * configured Rings.
1423 val64 = 0;
1424 if (nic->device_type & XFRAME_II_DEVICE)
1425 mem_size = 32;
1426 else
1427 mem_size = 64;
1429 for (i = 0; i < config->rx_ring_num; i++) {
1430 switch (i) {
1431 case 0:
1432 mem_share = (mem_size / config->rx_ring_num +
1433 mem_size % config->rx_ring_num);
1434 val64 |= RX_QUEUE_CFG_Q0_SZ(mem_share);
1435 continue;
1436 case 1:
1437 mem_share = (mem_size / config->rx_ring_num);
1438 val64 |= RX_QUEUE_CFG_Q1_SZ(mem_share);
1439 continue;
1440 case 2:
1441 mem_share = (mem_size / config->rx_ring_num);
1442 val64 |= RX_QUEUE_CFG_Q2_SZ(mem_share);
1443 continue;
1444 case 3:
1445 mem_share = (mem_size / config->rx_ring_num);
1446 val64 |= RX_QUEUE_CFG_Q3_SZ(mem_share);
1447 continue;
1448 case 4:
1449 mem_share = (mem_size / config->rx_ring_num);
1450 val64 |= RX_QUEUE_CFG_Q4_SZ(mem_share);
1451 continue;
1452 case 5:
1453 mem_share = (mem_size / config->rx_ring_num);
1454 val64 |= RX_QUEUE_CFG_Q5_SZ(mem_share);
1455 continue;
1456 case 6:
1457 mem_share = (mem_size / config->rx_ring_num);
1458 val64 |= RX_QUEUE_CFG_Q6_SZ(mem_share);
1459 continue;
1460 case 7:
1461 mem_share = (mem_size / config->rx_ring_num);
1462 val64 |= RX_QUEUE_CFG_Q7_SZ(mem_share);
1463 continue;
1466 writeq(val64, &bar0->rx_queue_cfg);
1469 * Filling Tx round robin registers
1470 * as per the number of FIFOs for equal scheduling priority
1472 switch (config->tx_fifo_num) {
1473 case 1:
1474 val64 = 0x0;
1475 writeq(val64, &bar0->tx_w_round_robin_0);
1476 writeq(val64, &bar0->tx_w_round_robin_1);
1477 writeq(val64, &bar0->tx_w_round_robin_2);
1478 writeq(val64, &bar0->tx_w_round_robin_3);
1479 writeq(val64, &bar0->tx_w_round_robin_4);
1480 break;
1481 case 2:
1482 val64 = 0x0001000100010001ULL;
1483 writeq(val64, &bar0->tx_w_round_robin_0);
1484 writeq(val64, &bar0->tx_w_round_robin_1);
1485 writeq(val64, &bar0->tx_w_round_robin_2);
1486 writeq(val64, &bar0->tx_w_round_robin_3);
1487 val64 = 0x0001000100000000ULL;
1488 writeq(val64, &bar0->tx_w_round_robin_4);
1489 break;
1490 case 3:
1491 val64 = 0x0001020001020001ULL;
1492 writeq(val64, &bar0->tx_w_round_robin_0);
1493 val64 = 0x0200010200010200ULL;
1494 writeq(val64, &bar0->tx_w_round_robin_1);
1495 val64 = 0x0102000102000102ULL;
1496 writeq(val64, &bar0->tx_w_round_robin_2);
1497 val64 = 0x0001020001020001ULL;
1498 writeq(val64, &bar0->tx_w_round_robin_3);
1499 val64 = 0x0200010200000000ULL;
1500 writeq(val64, &bar0->tx_w_round_robin_4);
1501 break;
1502 case 4:
1503 val64 = 0x0001020300010203ULL;
1504 writeq(val64, &bar0->tx_w_round_robin_0);
1505 writeq(val64, &bar0->tx_w_round_robin_1);
1506 writeq(val64, &bar0->tx_w_round_robin_2);
1507 writeq(val64, &bar0->tx_w_round_robin_3);
1508 val64 = 0x0001020300000000ULL;
1509 writeq(val64, &bar0->tx_w_round_robin_4);
1510 break;
1511 case 5:
1512 val64 = 0x0001020304000102ULL;
1513 writeq(val64, &bar0->tx_w_round_robin_0);
1514 val64 = 0x0304000102030400ULL;
1515 writeq(val64, &bar0->tx_w_round_robin_1);
1516 val64 = 0x0102030400010203ULL;
1517 writeq(val64, &bar0->tx_w_round_robin_2);
1518 val64 = 0x0400010203040001ULL;
1519 writeq(val64, &bar0->tx_w_round_robin_3);
1520 val64 = 0x0203040000000000ULL;
1521 writeq(val64, &bar0->tx_w_round_robin_4);
1522 break;
1523 case 6:
1524 val64 = 0x0001020304050001ULL;
1525 writeq(val64, &bar0->tx_w_round_robin_0);
1526 val64 = 0x0203040500010203ULL;
1527 writeq(val64, &bar0->tx_w_round_robin_1);
1528 val64 = 0x0405000102030405ULL;
1529 writeq(val64, &bar0->tx_w_round_robin_2);
1530 val64 = 0x0001020304050001ULL;
1531 writeq(val64, &bar0->tx_w_round_robin_3);
1532 val64 = 0x0203040500000000ULL;
1533 writeq(val64, &bar0->tx_w_round_robin_4);
1534 break;
1535 case 7:
1536 val64 = 0x0001020304050600ULL;
1537 writeq(val64, &bar0->tx_w_round_robin_0);
1538 val64 = 0x0102030405060001ULL;
1539 writeq(val64, &bar0->tx_w_round_robin_1);
1540 val64 = 0x0203040506000102ULL;
1541 writeq(val64, &bar0->tx_w_round_robin_2);
1542 val64 = 0x0304050600010203ULL;
1543 writeq(val64, &bar0->tx_w_round_robin_3);
1544 val64 = 0x0405060000000000ULL;
1545 writeq(val64, &bar0->tx_w_round_robin_4);
1546 break;
1547 case 8:
1548 val64 = 0x0001020304050607ULL;
1549 writeq(val64, &bar0->tx_w_round_robin_0);
1550 writeq(val64, &bar0->tx_w_round_robin_1);
1551 writeq(val64, &bar0->tx_w_round_robin_2);
1552 writeq(val64, &bar0->tx_w_round_robin_3);
1553 val64 = 0x0001020300000000ULL;
1554 writeq(val64, &bar0->tx_w_round_robin_4);
1555 break;
1558 /* Enable all configured Tx FIFO partitions */
1559 val64 = readq(&bar0->tx_fifo_partition_0);
1560 val64 |= (TX_FIFO_PARTITION_EN);
1561 writeq(val64, &bar0->tx_fifo_partition_0);
1563 /* Filling the Rx round robin registers as per the
1564 * number of Rings and steering based on QoS with
1565 * equal priority.
1567 switch (config->rx_ring_num) {
1568 case 1:
1569 val64 = 0x0;
1570 writeq(val64, &bar0->rx_w_round_robin_0);
1571 writeq(val64, &bar0->rx_w_round_robin_1);
1572 writeq(val64, &bar0->rx_w_round_robin_2);
1573 writeq(val64, &bar0->rx_w_round_robin_3);
1574 writeq(val64, &bar0->rx_w_round_robin_4);
1576 val64 = 0x8080808080808080ULL;
1577 writeq(val64, &bar0->rts_qos_steering);
1578 break;
1579 case 2:
1580 val64 = 0x0001000100010001ULL;
1581 writeq(val64, &bar0->rx_w_round_robin_0);
1582 writeq(val64, &bar0->rx_w_round_robin_1);
1583 writeq(val64, &bar0->rx_w_round_robin_2);
1584 writeq(val64, &bar0->rx_w_round_robin_3);
1585 val64 = 0x0001000100000000ULL;
1586 writeq(val64, &bar0->rx_w_round_robin_4);
1588 val64 = 0x8080808040404040ULL;
1589 writeq(val64, &bar0->rts_qos_steering);
1590 break;
1591 case 3:
1592 val64 = 0x0001020001020001ULL;
1593 writeq(val64, &bar0->rx_w_round_robin_0);
1594 val64 = 0x0200010200010200ULL;
1595 writeq(val64, &bar0->rx_w_round_robin_1);
1596 val64 = 0x0102000102000102ULL;
1597 writeq(val64, &bar0->rx_w_round_robin_2);
1598 val64 = 0x0001020001020001ULL;
1599 writeq(val64, &bar0->rx_w_round_robin_3);
1600 val64 = 0x0200010200000000ULL;
1601 writeq(val64, &bar0->rx_w_round_robin_4);
1603 val64 = 0x8080804040402020ULL;
1604 writeq(val64, &bar0->rts_qos_steering);
1605 break;
1606 case 4:
1607 val64 = 0x0001020300010203ULL;
1608 writeq(val64, &bar0->rx_w_round_robin_0);
1609 writeq(val64, &bar0->rx_w_round_robin_1);
1610 writeq(val64, &bar0->rx_w_round_robin_2);
1611 writeq(val64, &bar0->rx_w_round_robin_3);
1612 val64 = 0x0001020300000000ULL;
1613 writeq(val64, &bar0->rx_w_round_robin_4);
1615 val64 = 0x8080404020201010ULL;
1616 writeq(val64, &bar0->rts_qos_steering);
1617 break;
1618 case 5:
1619 val64 = 0x0001020304000102ULL;
1620 writeq(val64, &bar0->rx_w_round_robin_0);
1621 val64 = 0x0304000102030400ULL;
1622 writeq(val64, &bar0->rx_w_round_robin_1);
1623 val64 = 0x0102030400010203ULL;
1624 writeq(val64, &bar0->rx_w_round_robin_2);
1625 val64 = 0x0400010203040001ULL;
1626 writeq(val64, &bar0->rx_w_round_robin_3);
1627 val64 = 0x0203040000000000ULL;
1628 writeq(val64, &bar0->rx_w_round_robin_4);
1630 val64 = 0x8080404020201008ULL;
1631 writeq(val64, &bar0->rts_qos_steering);
1632 break;
1633 case 6:
1634 val64 = 0x0001020304050001ULL;
1635 writeq(val64, &bar0->rx_w_round_robin_0);
1636 val64 = 0x0203040500010203ULL;
1637 writeq(val64, &bar0->rx_w_round_robin_1);
1638 val64 = 0x0405000102030405ULL;
1639 writeq(val64, &bar0->rx_w_round_robin_2);
1640 val64 = 0x0001020304050001ULL;
1641 writeq(val64, &bar0->rx_w_round_robin_3);
1642 val64 = 0x0203040500000000ULL;
1643 writeq(val64, &bar0->rx_w_round_robin_4);
1645 val64 = 0x8080404020100804ULL;
1646 writeq(val64, &bar0->rts_qos_steering);
1647 break;
1648 case 7:
1649 val64 = 0x0001020304050600ULL;
1650 writeq(val64, &bar0->rx_w_round_robin_0);
1651 val64 = 0x0102030405060001ULL;
1652 writeq(val64, &bar0->rx_w_round_robin_1);
1653 val64 = 0x0203040506000102ULL;
1654 writeq(val64, &bar0->rx_w_round_robin_2);
1655 val64 = 0x0304050600010203ULL;
1656 writeq(val64, &bar0->rx_w_round_robin_3);
1657 val64 = 0x0405060000000000ULL;
1658 writeq(val64, &bar0->rx_w_round_robin_4);
1660 val64 = 0x8080402010080402ULL;
1661 writeq(val64, &bar0->rts_qos_steering);
1662 break;
1663 case 8:
1664 val64 = 0x0001020304050607ULL;
1665 writeq(val64, &bar0->rx_w_round_robin_0);
1666 writeq(val64, &bar0->rx_w_round_robin_1);
1667 writeq(val64, &bar0->rx_w_round_robin_2);
1668 writeq(val64, &bar0->rx_w_round_robin_3);
1669 val64 = 0x0001020300000000ULL;
1670 writeq(val64, &bar0->rx_w_round_robin_4);
1672 val64 = 0x8040201008040201ULL;
1673 writeq(val64, &bar0->rts_qos_steering);
1674 break;
1677 /* UDP Fix */
1678 val64 = 0;
1679 for (i = 0; i < 8; i++)
1680 writeq(val64, &bar0->rts_frm_len_n[i]);
1682 /* Set the default rts frame length for the rings configured */
1683 val64 = MAC_RTS_FRM_LEN_SET(dev->mtu+22);
1684 for (i = 0 ; i < config->rx_ring_num ; i++)
1685 writeq(val64, &bar0->rts_frm_len_n[i]);
1687 /* Set the frame length for the configured rings
1688 * desired by the user
1690 for (i = 0; i < config->rx_ring_num; i++) {
1691 /* If rts_frm_len[i] == 0 then it is assumed that user not
1692 * specified frame length steering.
1693 * If the user provides the frame length then program
1694 * the rts_frm_len register for those values or else
1695 * leave it as it is.
1697 if (rts_frm_len[i] != 0) {
1698 writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len[i]),
1699 &bar0->rts_frm_len_n[i]);
1703 /* Disable differentiated services steering logic */
1704 for (i = 0; i < 64; i++) {
1705 if (rts_ds_steer(nic, i, 0) == FAILURE) {
1706 DBG_PRINT(ERR_DBG, "%s: failed rts ds steering",
1707 dev->name);
1708 DBG_PRINT(ERR_DBG, "set on codepoint %d\n", i);
1709 return -ENODEV;
1713 /* Program statistics memory */
1714 writeq(mac_control->stats_mem_phy, &bar0->stat_addr);
1716 if (nic->device_type == XFRAME_II_DEVICE) {
1717 val64 = STAT_BC(0x320);
1718 writeq(val64, &bar0->stat_byte_cnt);
1722 * Initializing the sampling rate for the device to calculate the
1723 * bandwidth utilization.
1725 val64 = MAC_TX_LINK_UTIL_VAL(tmac_util_period) |
1726 MAC_RX_LINK_UTIL_VAL(rmac_util_period);
1727 writeq(val64, &bar0->mac_link_util);
1730 * Initializing the Transmit and Receive Traffic Interrupt
1731 * Scheme.
1734 /* Initialize TTI */
1735 if (SUCCESS != init_tti(nic, nic->last_link_state))
1736 return -ENODEV;
1738 /* RTI Initialization */
1739 if (nic->device_type == XFRAME_II_DEVICE) {
1741 * Programmed to generate Apprx 500 Intrs per
1742 * second
1744 int count = (nic->config.bus_speed * 125)/4;
1745 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(count);
1746 } else
1747 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF);
1748 val64 |= RTI_DATA1_MEM_RX_URNG_A(0xA) |
1749 RTI_DATA1_MEM_RX_URNG_B(0x10) |
1750 RTI_DATA1_MEM_RX_URNG_C(0x30) | RTI_DATA1_MEM_RX_TIMER_AC_EN;
1752 writeq(val64, &bar0->rti_data1_mem);
1754 val64 = RTI_DATA2_MEM_RX_UFC_A(0x1) |
1755 RTI_DATA2_MEM_RX_UFC_B(0x2) ;
1756 if (nic->config.intr_type == MSI_X)
1757 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x20) | \
1758 RTI_DATA2_MEM_RX_UFC_D(0x40));
1759 else
1760 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x40) | \
1761 RTI_DATA2_MEM_RX_UFC_D(0x80));
1762 writeq(val64, &bar0->rti_data2_mem);
1764 for (i = 0; i < config->rx_ring_num; i++) {
1765 val64 = RTI_CMD_MEM_WE | RTI_CMD_MEM_STROBE_NEW_CMD
1766 | RTI_CMD_MEM_OFFSET(i);
1767 writeq(val64, &bar0->rti_command_mem);
1770 * Once the operation completes, the Strobe bit of the
1771 * command register will be reset. We poll for this
1772 * particular condition. We wait for a maximum of 500ms
1773 * for the operation to complete, if it's not complete
1774 * by then we return error.
1776 time = 0;
1777 while (TRUE) {
1778 val64 = readq(&bar0->rti_command_mem);
1779 if (!(val64 & RTI_CMD_MEM_STROBE_NEW_CMD))
1780 break;
1782 if (time > 10) {
1783 DBG_PRINT(ERR_DBG, "%s: RTI init Failed\n",
1784 dev->name);
1785 return -ENODEV;
1787 time++;
1788 msleep(50);
1793 * Initializing proper values as Pause threshold into all
1794 * the 8 Queues on Rx side.
1796 writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q0q3);
1797 writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q4q7);
1799 /* Disable RMAC PAD STRIPPING */
1800 add = &bar0->mac_cfg;
1801 val64 = readq(&bar0->mac_cfg);
1802 val64 &= ~(MAC_CFG_RMAC_STRIP_PAD);
1803 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1804 writel((u32) (val64), add);
1805 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1806 writel((u32) (val64 >> 32), (add + 4));
1807 val64 = readq(&bar0->mac_cfg);
1809 /* Enable FCS stripping by adapter */
1810 add = &bar0->mac_cfg;
1811 val64 = readq(&bar0->mac_cfg);
1812 val64 |= MAC_CFG_RMAC_STRIP_FCS;
1813 if (nic->device_type == XFRAME_II_DEVICE)
1814 writeq(val64, &bar0->mac_cfg);
1815 else {
1816 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1817 writel((u32) (val64), add);
1818 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1819 writel((u32) (val64 >> 32), (add + 4));
1823 * Set the time value to be inserted in the pause frame
1824 * generated by xena.
1826 val64 = readq(&bar0->rmac_pause_cfg);
1827 val64 &= ~(RMAC_PAUSE_HG_PTIME(0xffff));
1828 val64 |= RMAC_PAUSE_HG_PTIME(nic->mac_control.rmac_pause_time);
1829 writeq(val64, &bar0->rmac_pause_cfg);
1832 * Set the Threshold Limit for Generating the pause frame
1833 * If the amount of data in any Queue exceeds ratio of
1834 * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256
1835 * pause frame is generated
1837 val64 = 0;
1838 for (i = 0; i < 4; i++) {
1839 val64 |=
1840 (((u64) 0xFF00 | nic->mac_control.
1841 mc_pause_threshold_q0q3)
1842 << (i * 2 * 8));
1844 writeq(val64, &bar0->mc_pause_thresh_q0q3);
1846 val64 = 0;
1847 for (i = 0; i < 4; i++) {
1848 val64 |=
1849 (((u64) 0xFF00 | nic->mac_control.
1850 mc_pause_threshold_q4q7)
1851 << (i * 2 * 8));
1853 writeq(val64, &bar0->mc_pause_thresh_q4q7);
1856 * TxDMA will stop Read request if the number of read split has
1857 * exceeded the limit pointed by shared_splits
1859 val64 = readq(&bar0->pic_control);
1860 val64 |= PIC_CNTL_SHARED_SPLITS(shared_splits);
1861 writeq(val64, &bar0->pic_control);
1863 if (nic->config.bus_speed == 266) {
1864 writeq(TXREQTO_VAL(0x7f) | TXREQTO_EN, &bar0->txreqtimeout);
1865 writeq(0x0, &bar0->read_retry_delay);
1866 writeq(0x0, &bar0->write_retry_delay);
1870 * Programming the Herc to split every write transaction
1871 * that does not start on an ADB to reduce disconnects.
1873 if (nic->device_type == XFRAME_II_DEVICE) {
1874 val64 = FAULT_BEHAVIOUR | EXT_REQ_EN |
1875 MISC_LINK_STABILITY_PRD(3);
1876 writeq(val64, &bar0->misc_control);
1877 val64 = readq(&bar0->pic_control2);
1878 val64 &= ~(s2BIT(13)|s2BIT(14)|s2BIT(15));
1879 writeq(val64, &bar0->pic_control2);
1881 if (strstr(nic->product_name, "CX4")) {
1882 val64 = TMAC_AVG_IPG(0x17);
1883 writeq(val64, &bar0->tmac_avg_ipg);
1886 return SUCCESS;
1888 #define LINK_UP_DOWN_INTERRUPT 1
1889 #define MAC_RMAC_ERR_TIMER 2
1891 static int s2io_link_fault_indication(struct s2io_nic *nic)
1893 if (nic->config.intr_type != INTA)
1894 return MAC_RMAC_ERR_TIMER;
1895 if (nic->device_type == XFRAME_II_DEVICE)
1896 return LINK_UP_DOWN_INTERRUPT;
1897 else
1898 return MAC_RMAC_ERR_TIMER;
1902 * do_s2io_write_bits - update alarm bits in alarm register
1903 * @value: alarm bits
1904 * @flag: interrupt status
1905 * @addr: address value
1906 * Description: update alarm bits in alarm register
1907 * Return Value:
1908 * NONE.
1910 static void do_s2io_write_bits(u64 value, int flag, void __iomem *addr)
1912 u64 temp64;
1914 temp64 = readq(addr);
1916 if(flag == ENABLE_INTRS)
1917 temp64 &= ~((u64) value);
1918 else
1919 temp64 |= ((u64) value);
1920 writeq(temp64, addr);
1923 static void en_dis_err_alarms(struct s2io_nic *nic, u16 mask, int flag)
1925 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1926 register u64 gen_int_mask = 0;
1928 if (mask & TX_DMA_INTR) {
1930 gen_int_mask |= TXDMA_INT_M;
1932 do_s2io_write_bits(TXDMA_TDA_INT | TXDMA_PFC_INT |
1933 TXDMA_PCC_INT | TXDMA_TTI_INT |
1934 TXDMA_LSO_INT | TXDMA_TPA_INT |
1935 TXDMA_SM_INT, flag, &bar0->txdma_int_mask);
1937 do_s2io_write_bits(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM |
1938 PFC_MISC_0_ERR | PFC_MISC_1_ERR |
1939 PFC_PCIX_ERR | PFC_ECC_SG_ERR, flag,
1940 &bar0->pfc_err_mask);
1942 do_s2io_write_bits(TDA_Fn_ECC_DB_ERR | TDA_SM0_ERR_ALARM |
1943 TDA_SM1_ERR_ALARM | TDA_Fn_ECC_SG_ERR |
1944 TDA_PCIX_ERR, flag, &bar0->tda_err_mask);
1946 do_s2io_write_bits(PCC_FB_ECC_DB_ERR | PCC_TXB_ECC_DB_ERR |
1947 PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM |
1948 PCC_N_SERR | PCC_6_COF_OV_ERR |
1949 PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR |
1950 PCC_7_LSO_OV_ERR | PCC_FB_ECC_SG_ERR |
1951 PCC_TXB_ECC_SG_ERR, flag, &bar0->pcc_err_mask);
1953 do_s2io_write_bits(TTI_SM_ERR_ALARM | TTI_ECC_SG_ERR |
1954 TTI_ECC_DB_ERR, flag, &bar0->tti_err_mask);
1956 do_s2io_write_bits(LSO6_ABORT | LSO7_ABORT |
1957 LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM |
1958 LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
1959 flag, &bar0->lso_err_mask);
1961 do_s2io_write_bits(TPA_SM_ERR_ALARM | TPA_TX_FRM_DROP,
1962 flag, &bar0->tpa_err_mask);
1964 do_s2io_write_bits(SM_SM_ERR_ALARM, flag, &bar0->sm_err_mask);
1968 if (mask & TX_MAC_INTR) {
1969 gen_int_mask |= TXMAC_INT_M;
1970 do_s2io_write_bits(MAC_INT_STATUS_TMAC_INT, flag,
1971 &bar0->mac_int_mask);
1972 do_s2io_write_bits(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR |
1973 TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR |
1974 TMAC_DESC_ECC_SG_ERR | TMAC_DESC_ECC_DB_ERR,
1975 flag, &bar0->mac_tmac_err_mask);
1978 if (mask & TX_XGXS_INTR) {
1979 gen_int_mask |= TXXGXS_INT_M;
1980 do_s2io_write_bits(XGXS_INT_STATUS_TXGXS, flag,
1981 &bar0->xgxs_int_mask);
1982 do_s2io_write_bits(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR |
1983 TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
1984 flag, &bar0->xgxs_txgxs_err_mask);
1987 if (mask & RX_DMA_INTR) {
1988 gen_int_mask |= RXDMA_INT_M;
1989 do_s2io_write_bits(RXDMA_INT_RC_INT_M | RXDMA_INT_RPA_INT_M |
1990 RXDMA_INT_RDA_INT_M | RXDMA_INT_RTI_INT_M,
1991 flag, &bar0->rxdma_int_mask);
1992 do_s2io_write_bits(RC_PRCn_ECC_DB_ERR | RC_FTC_ECC_DB_ERR |
1993 RC_PRCn_SM_ERR_ALARM | RC_FTC_SM_ERR_ALARM |
1994 RC_PRCn_ECC_SG_ERR | RC_FTC_ECC_SG_ERR |
1995 RC_RDA_FAIL_WR_Rn, flag, &bar0->rc_err_mask);
1996 do_s2io_write_bits(PRC_PCI_AB_RD_Rn | PRC_PCI_AB_WR_Rn |
1997 PRC_PCI_AB_F_WR_Rn | PRC_PCI_DP_RD_Rn |
1998 PRC_PCI_DP_WR_Rn | PRC_PCI_DP_F_WR_Rn, flag,
1999 &bar0->prc_pcix_err_mask);
2000 do_s2io_write_bits(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR |
2001 RPA_ECC_SG_ERR | RPA_ECC_DB_ERR, flag,
2002 &bar0->rpa_err_mask);
2003 do_s2io_write_bits(RDA_RXDn_ECC_DB_ERR | RDA_FRM_ECC_DB_N_AERR |
2004 RDA_SM1_ERR_ALARM | RDA_SM0_ERR_ALARM |
2005 RDA_RXD_ECC_DB_SERR | RDA_RXDn_ECC_SG_ERR |
2006 RDA_FRM_ECC_SG_ERR | RDA_MISC_ERR|RDA_PCIX_ERR,
2007 flag, &bar0->rda_err_mask);
2008 do_s2io_write_bits(RTI_SM_ERR_ALARM |
2009 RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
2010 flag, &bar0->rti_err_mask);
2013 if (mask & RX_MAC_INTR) {
2014 gen_int_mask |= RXMAC_INT_M;
2015 do_s2io_write_bits(MAC_INT_STATUS_RMAC_INT, flag,
2016 &bar0->mac_int_mask);
2017 do_s2io_write_bits(RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR |
2018 RMAC_UNUSED_INT | RMAC_SINGLE_ECC_ERR |
2019 RMAC_DOUBLE_ECC_ERR |
2020 RMAC_LINK_STATE_CHANGE_INT,
2021 flag, &bar0->mac_rmac_err_mask);
2024 if (mask & RX_XGXS_INTR)
2026 gen_int_mask |= RXXGXS_INT_M;
2027 do_s2io_write_bits(XGXS_INT_STATUS_RXGXS, flag,
2028 &bar0->xgxs_int_mask);
2029 do_s2io_write_bits(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR, flag,
2030 &bar0->xgxs_rxgxs_err_mask);
2033 if (mask & MC_INTR) {
2034 gen_int_mask |= MC_INT_M;
2035 do_s2io_write_bits(MC_INT_MASK_MC_INT, flag, &bar0->mc_int_mask);
2036 do_s2io_write_bits(MC_ERR_REG_SM_ERR | MC_ERR_REG_ECC_ALL_SNG |
2037 MC_ERR_REG_ECC_ALL_DBL | PLL_LOCK_N, flag,
2038 &bar0->mc_err_mask);
2040 nic->general_int_mask = gen_int_mask;
2042 /* Remove this line when alarm interrupts are enabled */
2043 nic->general_int_mask = 0;
2046 * en_dis_able_nic_intrs - Enable or Disable the interrupts
2047 * @nic: device private variable,
2048 * @mask: A mask indicating which Intr block must be modified and,
2049 * @flag: A flag indicating whether to enable or disable the Intrs.
2050 * Description: This function will either disable or enable the interrupts
2051 * depending on the flag argument. The mask argument can be used to
2052 * enable/disable any Intr block.
2053 * Return Value: NONE.
2056 static void en_dis_able_nic_intrs(struct s2io_nic *nic, u16 mask, int flag)
2058 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2059 register u64 temp64 = 0, intr_mask = 0;
2061 intr_mask = nic->general_int_mask;
2063 /* Top level interrupt classification */
2064 /* PIC Interrupts */
2065 if (mask & TX_PIC_INTR) {
2066 /* Enable PIC Intrs in the general intr mask register */
2067 intr_mask |= TXPIC_INT_M;
2068 if (flag == ENABLE_INTRS) {
2070 * If Hercules adapter enable GPIO otherwise
2071 * disable all PCIX, Flash, MDIO, IIC and GPIO
2072 * interrupts for now.
2073 * TODO
2075 if (s2io_link_fault_indication(nic) ==
2076 LINK_UP_DOWN_INTERRUPT ) {
2077 do_s2io_write_bits(PIC_INT_GPIO, flag,
2078 &bar0->pic_int_mask);
2079 do_s2io_write_bits(GPIO_INT_MASK_LINK_UP, flag,
2080 &bar0->gpio_int_mask);
2081 } else
2082 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
2083 } else if (flag == DISABLE_INTRS) {
2085 * Disable PIC Intrs in the general
2086 * intr mask register
2088 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
2092 /* Tx traffic interrupts */
2093 if (mask & TX_TRAFFIC_INTR) {
2094 intr_mask |= TXTRAFFIC_INT_M;
2095 if (flag == ENABLE_INTRS) {
2097 * Enable all the Tx side interrupts
2098 * writing 0 Enables all 64 TX interrupt levels
2100 writeq(0x0, &bar0->tx_traffic_mask);
2101 } else if (flag == DISABLE_INTRS) {
2103 * Disable Tx Traffic Intrs in the general intr mask
2104 * register.
2106 writeq(DISABLE_ALL_INTRS, &bar0->tx_traffic_mask);
2110 /* Rx traffic interrupts */
2111 if (mask & RX_TRAFFIC_INTR) {
2112 intr_mask |= RXTRAFFIC_INT_M;
2113 if (flag == ENABLE_INTRS) {
2114 /* writing 0 Enables all 8 RX interrupt levels */
2115 writeq(0x0, &bar0->rx_traffic_mask);
2116 } else if (flag == DISABLE_INTRS) {
2118 * Disable Rx Traffic Intrs in the general intr mask
2119 * register.
2121 writeq(DISABLE_ALL_INTRS, &bar0->rx_traffic_mask);
2125 temp64 = readq(&bar0->general_int_mask);
2126 if (flag == ENABLE_INTRS)
2127 temp64 &= ~((u64) intr_mask);
2128 else
2129 temp64 = DISABLE_ALL_INTRS;
2130 writeq(temp64, &bar0->general_int_mask);
2132 nic->general_int_mask = readq(&bar0->general_int_mask);
2136 * verify_pcc_quiescent- Checks for PCC quiescent state
2137 * Return: 1 If PCC is quiescence
2138 * 0 If PCC is not quiescence
2140 static int verify_pcc_quiescent(struct s2io_nic *sp, int flag)
2142 int ret = 0, herc;
2143 struct XENA_dev_config __iomem *bar0 = sp->bar0;
2144 u64 val64 = readq(&bar0->adapter_status);
2146 herc = (sp->device_type == XFRAME_II_DEVICE);
2148 if (flag == FALSE) {
2149 if ((!herc && (sp->pdev->revision >= 4)) || herc) {
2150 if (!(val64 & ADAPTER_STATUS_RMAC_PCC_IDLE))
2151 ret = 1;
2152 } else {
2153 if (!(val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
2154 ret = 1;
2156 } else {
2157 if ((!herc && (sp->pdev->revision >= 4)) || herc) {
2158 if (((val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) ==
2159 ADAPTER_STATUS_RMAC_PCC_IDLE))
2160 ret = 1;
2161 } else {
2162 if (((val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) ==
2163 ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
2164 ret = 1;
2168 return ret;
2171 * verify_xena_quiescence - Checks whether the H/W is ready
2172 * Description: Returns whether the H/W is ready to go or not. Depending
2173 * on whether adapter enable bit was written or not the comparison
2174 * differs and the calling function passes the input argument flag to
2175 * indicate this.
2176 * Return: 1 If xena is quiescence
2177 * 0 If Xena is not quiescence
2180 static int verify_xena_quiescence(struct s2io_nic *sp)
2182 int mode;
2183 struct XENA_dev_config __iomem *bar0 = sp->bar0;
2184 u64 val64 = readq(&bar0->adapter_status);
2185 mode = s2io_verify_pci_mode(sp);
2187 if (!(val64 & ADAPTER_STATUS_TDMA_READY)) {
2188 DBG_PRINT(ERR_DBG, "%s", "TDMA is not ready!");
2189 return 0;
2191 if (!(val64 & ADAPTER_STATUS_RDMA_READY)) {
2192 DBG_PRINT(ERR_DBG, "%s", "RDMA is not ready!");
2193 return 0;
2195 if (!(val64 & ADAPTER_STATUS_PFC_READY)) {
2196 DBG_PRINT(ERR_DBG, "%s", "PFC is not ready!");
2197 return 0;
2199 if (!(val64 & ADAPTER_STATUS_TMAC_BUF_EMPTY)) {
2200 DBG_PRINT(ERR_DBG, "%s", "TMAC BUF is not empty!");
2201 return 0;
2203 if (!(val64 & ADAPTER_STATUS_PIC_QUIESCENT)) {
2204 DBG_PRINT(ERR_DBG, "%s", "PIC is not QUIESCENT!");
2205 return 0;
2207 if (!(val64 & ADAPTER_STATUS_MC_DRAM_READY)) {
2208 DBG_PRINT(ERR_DBG, "%s", "MC_DRAM is not ready!");
2209 return 0;
2211 if (!(val64 & ADAPTER_STATUS_MC_QUEUES_READY)) {
2212 DBG_PRINT(ERR_DBG, "%s", "MC_QUEUES is not ready!");
2213 return 0;
2215 if (!(val64 & ADAPTER_STATUS_M_PLL_LOCK)) {
2216 DBG_PRINT(ERR_DBG, "%s", "M_PLL is not locked!");
2217 return 0;
2221 * In PCI 33 mode, the P_PLL is not used, and therefore,
2222 * the the P_PLL_LOCK bit in the adapter_status register will
2223 * not be asserted.
2225 if (!(val64 & ADAPTER_STATUS_P_PLL_LOCK) &&
2226 sp->device_type == XFRAME_II_DEVICE && mode !=
2227 PCI_MODE_PCI_33) {
2228 DBG_PRINT(ERR_DBG, "%s", "P_PLL is not locked!");
2229 return 0;
2231 if (!((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
2232 ADAPTER_STATUS_RC_PRC_QUIESCENT)) {
2233 DBG_PRINT(ERR_DBG, "%s", "RC_PRC is not QUIESCENT!");
2234 return 0;
2236 return 1;
2240 * fix_mac_address - Fix for Mac addr problem on Alpha platforms
2241 * @sp: Pointer to device specifc structure
2242 * Description :
2243 * New procedure to clear mac address reading problems on Alpha platforms
2247 static void fix_mac_address(struct s2io_nic * sp)
2249 struct XENA_dev_config __iomem *bar0 = sp->bar0;
2250 u64 val64;
2251 int i = 0;
2253 while (fix_mac[i] != END_SIGN) {
2254 writeq(fix_mac[i++], &bar0->gpio_control);
2255 udelay(10);
2256 val64 = readq(&bar0->gpio_control);
2261 * start_nic - Turns the device on
2262 * @nic : device private variable.
2263 * Description:
2264 * This function actually turns the device on. Before this function is
2265 * called,all Registers are configured from their reset states
2266 * and shared memory is allocated but the NIC is still quiescent. On
2267 * calling this function, the device interrupts are cleared and the NIC is
2268 * literally switched on by writing into the adapter control register.
2269 * Return Value:
2270 * SUCCESS on success and -1 on failure.
2273 static int start_nic(struct s2io_nic *nic)
2275 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2276 struct net_device *dev = nic->dev;
2277 register u64 val64 = 0;
2278 u16 subid, i;
2279 struct mac_info *mac_control;
2280 struct config_param *config;
2282 mac_control = &nic->mac_control;
2283 config = &nic->config;
2285 /* PRC Initialization and configuration */
2286 for (i = 0; i < config->rx_ring_num; i++) {
2287 writeq((u64) mac_control->rings[i].rx_blocks[0].block_dma_addr,
2288 &bar0->prc_rxd0_n[i]);
2290 val64 = readq(&bar0->prc_ctrl_n[i]);
2291 if (nic->rxd_mode == RXD_MODE_1)
2292 val64 |= PRC_CTRL_RC_ENABLED;
2293 else
2294 val64 |= PRC_CTRL_RC_ENABLED | PRC_CTRL_RING_MODE_3;
2295 if (nic->device_type == XFRAME_II_DEVICE)
2296 val64 |= PRC_CTRL_GROUP_READS;
2297 val64 &= ~PRC_CTRL_RXD_BACKOFF_INTERVAL(0xFFFFFF);
2298 val64 |= PRC_CTRL_RXD_BACKOFF_INTERVAL(0x1000);
2299 writeq(val64, &bar0->prc_ctrl_n[i]);
2302 if (nic->rxd_mode == RXD_MODE_3B) {
2303 /* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */
2304 val64 = readq(&bar0->rx_pa_cfg);
2305 val64 |= RX_PA_CFG_IGNORE_L2_ERR;
2306 writeq(val64, &bar0->rx_pa_cfg);
2309 if (vlan_tag_strip == 0) {
2310 val64 = readq(&bar0->rx_pa_cfg);
2311 val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
2312 writeq(val64, &bar0->rx_pa_cfg);
2313 vlan_strip_flag = 0;
2317 * Enabling MC-RLDRAM. After enabling the device, we timeout
2318 * for around 100ms, which is approximately the time required
2319 * for the device to be ready for operation.
2321 val64 = readq(&bar0->mc_rldram_mrs);
2322 val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE | MC_RLDRAM_MRS_ENABLE;
2323 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
2324 val64 = readq(&bar0->mc_rldram_mrs);
2326 msleep(100); /* Delay by around 100 ms. */
2328 /* Enabling ECC Protection. */
2329 val64 = readq(&bar0->adapter_control);
2330 val64 &= ~ADAPTER_ECC_EN;
2331 writeq(val64, &bar0->adapter_control);
2334 * Verify if the device is ready to be enabled, if so enable
2335 * it.
2337 val64 = readq(&bar0->adapter_status);
2338 if (!verify_xena_quiescence(nic)) {
2339 DBG_PRINT(ERR_DBG, "%s: device is not ready, ", dev->name);
2340 DBG_PRINT(ERR_DBG, "Adapter status reads: 0x%llx\n",
2341 (unsigned long long) val64);
2342 return FAILURE;
2346 * With some switches, link might be already up at this point.
2347 * Because of this weird behavior, when we enable laser,
2348 * we may not get link. We need to handle this. We cannot
2349 * figure out which switch is misbehaving. So we are forced to
2350 * make a global change.
2353 /* Enabling Laser. */
2354 val64 = readq(&bar0->adapter_control);
2355 val64 |= ADAPTER_EOI_TX_ON;
2356 writeq(val64, &bar0->adapter_control);
2358 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
2360 * Dont see link state interrupts initally on some switches,
2361 * so directly scheduling the link state task here.
2363 schedule_work(&nic->set_link_task);
2365 /* SXE-002: Initialize link and activity LED */
2366 subid = nic->pdev->subsystem_device;
2367 if (((subid & 0xFF) >= 0x07) &&
2368 (nic->device_type == XFRAME_I_DEVICE)) {
2369 val64 = readq(&bar0->gpio_control);
2370 val64 |= 0x0000800000000000ULL;
2371 writeq(val64, &bar0->gpio_control);
2372 val64 = 0x0411040400000000ULL;
2373 writeq(val64, (void __iomem *)bar0 + 0x2700);
2376 return SUCCESS;
2379 * s2io_txdl_getskb - Get the skb from txdl, unmap and return skb
2381 static struct sk_buff *s2io_txdl_getskb(struct fifo_info *fifo_data, struct \
2382 TxD *txdlp, int get_off)
2384 struct s2io_nic *nic = fifo_data->nic;
2385 struct sk_buff *skb;
2386 struct TxD *txds;
2387 u16 j, frg_cnt;
2389 txds = txdlp;
2390 if (txds->Host_Control == (u64)(long)fifo_data->ufo_in_band_v) {
2391 pci_unmap_single(nic->pdev, (dma_addr_t)
2392 txds->Buffer_Pointer, sizeof(u64),
2393 PCI_DMA_TODEVICE);
2394 txds++;
2397 skb = (struct sk_buff *) ((unsigned long)
2398 txds->Host_Control);
2399 if (!skb) {
2400 memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds));
2401 return NULL;
2403 pci_unmap_single(nic->pdev, (dma_addr_t)
2404 txds->Buffer_Pointer,
2405 skb->len - skb->data_len,
2406 PCI_DMA_TODEVICE);
2407 frg_cnt = skb_shinfo(skb)->nr_frags;
2408 if (frg_cnt) {
2409 txds++;
2410 for (j = 0; j < frg_cnt; j++, txds++) {
2411 skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
2412 if (!txds->Buffer_Pointer)
2413 break;
2414 pci_unmap_page(nic->pdev, (dma_addr_t)
2415 txds->Buffer_Pointer,
2416 frag->size, PCI_DMA_TODEVICE);
2419 memset(txdlp,0, (sizeof(struct TxD) * fifo_data->max_txds));
2420 return(skb);
2424 * free_tx_buffers - Free all queued Tx buffers
2425 * @nic : device private variable.
2426 * Description:
2427 * Free all queued Tx buffers.
2428 * Return Value: void
2431 static void free_tx_buffers(struct s2io_nic *nic)
2433 struct net_device *dev = nic->dev;
2434 struct sk_buff *skb;
2435 struct TxD *txdp;
2436 int i, j;
2437 struct mac_info *mac_control;
2438 struct config_param *config;
2439 int cnt = 0;
2441 mac_control = &nic->mac_control;
2442 config = &nic->config;
2444 for (i = 0; i < config->tx_fifo_num; i++) {
2445 unsigned long flags;
2446 spin_lock_irqsave(&mac_control->fifos[i].tx_lock, flags);
2447 for (j = 0; j < config->tx_cfg[i].fifo_len; j++) {
2448 txdp = (struct TxD *) \
2449 mac_control->fifos[i].list_info[j].list_virt_addr;
2450 skb = s2io_txdl_getskb(&mac_control->fifos[i], txdp, j);
2451 if (skb) {
2452 nic->mac_control.stats_info->sw_stat.mem_freed
2453 += skb->truesize;
2454 dev_kfree_skb(skb);
2455 cnt++;
2458 DBG_PRINT(INTR_DBG,
2459 "%s:forcibly freeing %d skbs on FIFO%d\n",
2460 dev->name, cnt, i);
2461 mac_control->fifos[i].tx_curr_get_info.offset = 0;
2462 mac_control->fifos[i].tx_curr_put_info.offset = 0;
2463 spin_unlock_irqrestore(&mac_control->fifos[i].tx_lock, flags);
2468 * stop_nic - To stop the nic
2469 * @nic ; device private variable.
2470 * Description:
2471 * This function does exactly the opposite of what the start_nic()
2472 * function does. This function is called to stop the device.
2473 * Return Value:
2474 * void.
2477 static void stop_nic(struct s2io_nic *nic)
2479 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2480 register u64 val64 = 0;
2481 u16 interruptible;
2482 struct mac_info *mac_control;
2483 struct config_param *config;
2485 mac_control = &nic->mac_control;
2486 config = &nic->config;
2488 /* Disable all interrupts */
2489 en_dis_err_alarms(nic, ENA_ALL_INTRS, DISABLE_INTRS);
2490 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
2491 interruptible |= TX_PIC_INTR;
2492 en_dis_able_nic_intrs(nic, interruptible, DISABLE_INTRS);
2494 /* Clearing Adapter_En bit of ADAPTER_CONTROL Register */
2495 val64 = readq(&bar0->adapter_control);
2496 val64 &= ~(ADAPTER_CNTL_EN);
2497 writeq(val64, &bar0->adapter_control);
2501 * fill_rx_buffers - Allocates the Rx side skbs
2502 * @ring_info: per ring structure
2503 * Description:
2504 * The function allocates Rx side skbs and puts the physical
2505 * address of these buffers into the RxD buffer pointers, so that the NIC
2506 * can DMA the received frame into these locations.
2507 * The NIC supports 3 receive modes, viz
2508 * 1. single buffer,
2509 * 2. three buffer and
2510 * 3. Five buffer modes.
2511 * Each mode defines how many fragments the received frame will be split
2512 * up into by the NIC. The frame is split into L3 header, L4 Header,
2513 * L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself
2514 * is split into 3 fragments. As of now only single buffer mode is
2515 * supported.
2516 * Return Value:
2517 * SUCCESS on success or an appropriate -ve value on failure.
2520 static int fill_rx_buffers(struct ring_info *ring)
2522 struct sk_buff *skb;
2523 struct RxD_t *rxdp;
2524 int off, size, block_no, block_no1;
2525 u32 alloc_tab = 0;
2526 u32 alloc_cnt;
2527 u64 tmp;
2528 struct buffAdd *ba;
2529 struct RxD_t *first_rxdp = NULL;
2530 u64 Buffer0_ptr = 0, Buffer1_ptr = 0;
2531 int rxd_index = 0;
2532 struct RxD1 *rxdp1;
2533 struct RxD3 *rxdp3;
2534 struct swStat *stats = &ring->nic->mac_control.stats_info->sw_stat;
2536 alloc_cnt = ring->pkt_cnt - ring->rx_bufs_left;
2538 block_no1 = ring->rx_curr_get_info.block_index;
2539 while (alloc_tab < alloc_cnt) {
2540 block_no = ring->rx_curr_put_info.block_index;
2542 off = ring->rx_curr_put_info.offset;
2544 rxdp = ring->rx_blocks[block_no].rxds[off].virt_addr;
2546 rxd_index = off + 1;
2547 if (block_no)
2548 rxd_index += (block_no * ring->rxd_count);
2550 if ((block_no == block_no1) &&
2551 (off == ring->rx_curr_get_info.offset) &&
2552 (rxdp->Host_Control)) {
2553 DBG_PRINT(INTR_DBG, "%s: Get and Put",
2554 ring->dev->name);
2555 DBG_PRINT(INTR_DBG, " info equated\n");
2556 goto end;
2558 if (off && (off == ring->rxd_count)) {
2559 ring->rx_curr_put_info.block_index++;
2560 if (ring->rx_curr_put_info.block_index ==
2561 ring->block_count)
2562 ring->rx_curr_put_info.block_index = 0;
2563 block_no = ring->rx_curr_put_info.block_index;
2564 off = 0;
2565 ring->rx_curr_put_info.offset = off;
2566 rxdp = ring->rx_blocks[block_no].block_virt_addr;
2567 DBG_PRINT(INTR_DBG, "%s: Next block at: %p\n",
2568 ring->dev->name, rxdp);
2572 if ((rxdp->Control_1 & RXD_OWN_XENA) &&
2573 ((ring->rxd_mode == RXD_MODE_3B) &&
2574 (rxdp->Control_2 & s2BIT(0)))) {
2575 ring->rx_curr_put_info.offset = off;
2576 goto end;
2578 /* calculate size of skb based on ring mode */
2579 size = ring->mtu + HEADER_ETHERNET_II_802_3_SIZE +
2580 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
2581 if (ring->rxd_mode == RXD_MODE_1)
2582 size += NET_IP_ALIGN;
2583 else
2584 size = ring->mtu + ALIGN_SIZE + BUF0_LEN + 4;
2586 /* allocate skb */
2587 skb = dev_alloc_skb(size);
2588 if(!skb) {
2589 DBG_PRINT(INFO_DBG, "%s: Out of ", ring->dev->name);
2590 DBG_PRINT(INFO_DBG, "memory to allocate SKBs\n");
2591 if (first_rxdp) {
2592 wmb();
2593 first_rxdp->Control_1 |= RXD_OWN_XENA;
2595 stats->mem_alloc_fail_cnt++;
2597 return -ENOMEM ;
2599 stats->mem_allocated += skb->truesize;
2601 if (ring->rxd_mode == RXD_MODE_1) {
2602 /* 1 buffer mode - normal operation mode */
2603 rxdp1 = (struct RxD1*)rxdp;
2604 memset(rxdp, 0, sizeof(struct RxD1));
2605 skb_reserve(skb, NET_IP_ALIGN);
2606 rxdp1->Buffer0_ptr = pci_map_single
2607 (ring->pdev, skb->data, size - NET_IP_ALIGN,
2608 PCI_DMA_FROMDEVICE);
2609 if( (rxdp1->Buffer0_ptr == 0) ||
2610 (rxdp1->Buffer0_ptr ==
2611 DMA_ERROR_CODE))
2612 goto pci_map_failed;
2614 rxdp->Control_2 =
2615 SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
2616 rxdp->Host_Control = (unsigned long) (skb);
2617 } else if (ring->rxd_mode == RXD_MODE_3B) {
2619 * 2 buffer mode -
2620 * 2 buffer mode provides 128
2621 * byte aligned receive buffers.
2624 rxdp3 = (struct RxD3*)rxdp;
2625 /* save buffer pointers to avoid frequent dma mapping */
2626 Buffer0_ptr = rxdp3->Buffer0_ptr;
2627 Buffer1_ptr = rxdp3->Buffer1_ptr;
2628 memset(rxdp, 0, sizeof(struct RxD3));
2629 /* restore the buffer pointers for dma sync*/
2630 rxdp3->Buffer0_ptr = Buffer0_ptr;
2631 rxdp3->Buffer1_ptr = Buffer1_ptr;
2633 ba = &ring->ba[block_no][off];
2634 skb_reserve(skb, BUF0_LEN);
2635 tmp = (u64)(unsigned long) skb->data;
2636 tmp += ALIGN_SIZE;
2637 tmp &= ~ALIGN_SIZE;
2638 skb->data = (void *) (unsigned long)tmp;
2639 skb_reset_tail_pointer(skb);
2641 if (!(rxdp3->Buffer0_ptr))
2642 rxdp3->Buffer0_ptr =
2643 pci_map_single(ring->pdev, ba->ba_0,
2644 BUF0_LEN, PCI_DMA_FROMDEVICE);
2645 else
2646 pci_dma_sync_single_for_device(ring->pdev,
2647 (dma_addr_t) rxdp3->Buffer0_ptr,
2648 BUF0_LEN, PCI_DMA_FROMDEVICE);
2649 if( (rxdp3->Buffer0_ptr == 0) ||
2650 (rxdp3->Buffer0_ptr == DMA_ERROR_CODE))
2651 goto pci_map_failed;
2653 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
2654 if (ring->rxd_mode == RXD_MODE_3B) {
2655 /* Two buffer mode */
2658 * Buffer2 will have L3/L4 header plus
2659 * L4 payload
2661 rxdp3->Buffer2_ptr = pci_map_single
2662 (ring->pdev, skb->data, ring->mtu + 4,
2663 PCI_DMA_FROMDEVICE);
2665 if( (rxdp3->Buffer2_ptr == 0) ||
2666 (rxdp3->Buffer2_ptr == DMA_ERROR_CODE))
2667 goto pci_map_failed;
2669 if (!rxdp3->Buffer1_ptr)
2670 rxdp3->Buffer1_ptr =
2671 pci_map_single(ring->pdev,
2672 ba->ba_1, BUF1_LEN,
2673 PCI_DMA_FROMDEVICE);
2675 if( (rxdp3->Buffer1_ptr == 0) ||
2676 (rxdp3->Buffer1_ptr == DMA_ERROR_CODE)) {
2677 pci_unmap_single
2678 (ring->pdev,
2679 (dma_addr_t)(unsigned long)
2680 skb->data,
2681 ring->mtu + 4,
2682 PCI_DMA_FROMDEVICE);
2683 goto pci_map_failed;
2685 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
2686 rxdp->Control_2 |= SET_BUFFER2_SIZE_3
2687 (ring->mtu + 4);
2689 rxdp->Control_2 |= s2BIT(0);
2690 rxdp->Host_Control = (unsigned long) (skb);
2692 if (alloc_tab & ((1 << rxsync_frequency) - 1))
2693 rxdp->Control_1 |= RXD_OWN_XENA;
2694 off++;
2695 if (off == (ring->rxd_count + 1))
2696 off = 0;
2697 ring->rx_curr_put_info.offset = off;
2699 rxdp->Control_2 |= SET_RXD_MARKER;
2700 if (!(alloc_tab & ((1 << rxsync_frequency) - 1))) {
2701 if (first_rxdp) {
2702 wmb();
2703 first_rxdp->Control_1 |= RXD_OWN_XENA;
2705 first_rxdp = rxdp;
2707 ring->rx_bufs_left += 1;
2708 alloc_tab++;
2711 end:
2712 /* Transfer ownership of first descriptor to adapter just before
2713 * exiting. Before that, use memory barrier so that ownership
2714 * and other fields are seen by adapter correctly.
2716 if (first_rxdp) {
2717 wmb();
2718 first_rxdp->Control_1 |= RXD_OWN_XENA;
2721 return SUCCESS;
2722 pci_map_failed:
2723 stats->pci_map_fail_cnt++;
2724 stats->mem_freed += skb->truesize;
2725 dev_kfree_skb_irq(skb);
2726 return -ENOMEM;
2729 static void free_rxd_blk(struct s2io_nic *sp, int ring_no, int blk)
2731 struct net_device *dev = sp->dev;
2732 int j;
2733 struct sk_buff *skb;
2734 struct RxD_t *rxdp;
2735 struct mac_info *mac_control;
2736 struct buffAdd *ba;
2737 struct RxD1 *rxdp1;
2738 struct RxD3 *rxdp3;
2740 mac_control = &sp->mac_control;
2741 for (j = 0 ; j < rxd_count[sp->rxd_mode]; j++) {
2742 rxdp = mac_control->rings[ring_no].
2743 rx_blocks[blk].rxds[j].virt_addr;
2744 skb = (struct sk_buff *)
2745 ((unsigned long) rxdp->Host_Control);
2746 if (!skb) {
2747 continue;
2749 if (sp->rxd_mode == RXD_MODE_1) {
2750 rxdp1 = (struct RxD1*)rxdp;
2751 pci_unmap_single(sp->pdev, (dma_addr_t)
2752 rxdp1->Buffer0_ptr,
2753 dev->mtu +
2754 HEADER_ETHERNET_II_802_3_SIZE
2755 + HEADER_802_2_SIZE +
2756 HEADER_SNAP_SIZE,
2757 PCI_DMA_FROMDEVICE);
2758 memset(rxdp, 0, sizeof(struct RxD1));
2759 } else if(sp->rxd_mode == RXD_MODE_3B) {
2760 rxdp3 = (struct RxD3*)rxdp;
2761 ba = &mac_control->rings[ring_no].
2762 ba[blk][j];
2763 pci_unmap_single(sp->pdev, (dma_addr_t)
2764 rxdp3->Buffer0_ptr,
2765 BUF0_LEN,
2766 PCI_DMA_FROMDEVICE);
2767 pci_unmap_single(sp->pdev, (dma_addr_t)
2768 rxdp3->Buffer1_ptr,
2769 BUF1_LEN,
2770 PCI_DMA_FROMDEVICE);
2771 pci_unmap_single(sp->pdev, (dma_addr_t)
2772 rxdp3->Buffer2_ptr,
2773 dev->mtu + 4,
2774 PCI_DMA_FROMDEVICE);
2775 memset(rxdp, 0, sizeof(struct RxD3));
2777 sp->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
2778 dev_kfree_skb(skb);
2779 mac_control->rings[ring_no].rx_bufs_left -= 1;
2784 * free_rx_buffers - Frees all Rx buffers
2785 * @sp: device private variable.
2786 * Description:
2787 * This function will free all Rx buffers allocated by host.
2788 * Return Value:
2789 * NONE.
2792 static void free_rx_buffers(struct s2io_nic *sp)
2794 struct net_device *dev = sp->dev;
2795 int i, blk = 0, buf_cnt = 0;
2796 struct mac_info *mac_control;
2797 struct config_param *config;
2799 mac_control = &sp->mac_control;
2800 config = &sp->config;
2802 for (i = 0; i < config->rx_ring_num; i++) {
2803 for (blk = 0; blk < rx_ring_sz[i]; blk++)
2804 free_rxd_blk(sp,i,blk);
2806 mac_control->rings[i].rx_curr_put_info.block_index = 0;
2807 mac_control->rings[i].rx_curr_get_info.block_index = 0;
2808 mac_control->rings[i].rx_curr_put_info.offset = 0;
2809 mac_control->rings[i].rx_curr_get_info.offset = 0;
2810 mac_control->rings[i].rx_bufs_left = 0;
2811 DBG_PRINT(INIT_DBG, "%s:Freed 0x%x Rx Buffers on ring%d\n",
2812 dev->name, buf_cnt, i);
2817 * s2io_poll - Rx interrupt handler for NAPI support
2818 * @napi : pointer to the napi structure.
2819 * @budget : The number of packets that were budgeted to be processed
2820 * during one pass through the 'Poll" function.
2821 * Description:
2822 * Comes into picture only if NAPI support has been incorporated. It does
2823 * the same thing that rx_intr_handler does, but not in a interrupt context
2824 * also It will process only a given number of packets.
2825 * Return value:
2826 * 0 on success and 1 if there are No Rx packets to be processed.
2829 static int s2io_poll(struct napi_struct *napi, int budget)
2831 struct s2io_nic *nic = container_of(napi, struct s2io_nic, napi);
2832 struct net_device *dev = nic->dev;
2833 int pkt_cnt = 0, org_pkts_to_process;
2834 struct mac_info *mac_control;
2835 struct config_param *config;
2836 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2837 int i;
2839 mac_control = &nic->mac_control;
2840 config = &nic->config;
2842 nic->pkts_to_process = budget;
2843 org_pkts_to_process = nic->pkts_to_process;
2845 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
2846 readl(&bar0->rx_traffic_int);
2848 for (i = 0; i < config->rx_ring_num; i++) {
2849 rx_intr_handler(&mac_control->rings[i]);
2850 pkt_cnt = org_pkts_to_process - nic->pkts_to_process;
2851 if (!nic->pkts_to_process) {
2852 /* Quota for the current iteration has been met */
2853 goto no_rx;
2857 netif_rx_complete(dev, napi);
2859 for (i = 0; i < config->rx_ring_num; i++) {
2860 if (fill_rx_buffers(&mac_control->rings[i]) == -ENOMEM) {
2861 DBG_PRINT(INFO_DBG, "%s:Out of memory", dev->name);
2862 DBG_PRINT(INFO_DBG, " in Rx Poll!!\n");
2863 break;
2866 /* Re enable the Rx interrupts. */
2867 writeq(0x0, &bar0->rx_traffic_mask);
2868 readl(&bar0->rx_traffic_mask);
2869 return pkt_cnt;
2871 no_rx:
2872 for (i = 0; i < config->rx_ring_num; i++) {
2873 if (fill_rx_buffers(&mac_control->rings[i]) == -ENOMEM) {
2874 DBG_PRINT(INFO_DBG, "%s:Out of memory", dev->name);
2875 DBG_PRINT(INFO_DBG, " in Rx Poll!!\n");
2876 break;
2879 return pkt_cnt;
2882 #ifdef CONFIG_NET_POLL_CONTROLLER
2884 * s2io_netpoll - netpoll event handler entry point
2885 * @dev : pointer to the device structure.
2886 * Description:
2887 * This function will be called by upper layer to check for events on the
2888 * interface in situations where interrupts are disabled. It is used for
2889 * specific in-kernel networking tasks, such as remote consoles and kernel
2890 * debugging over the network (example netdump in RedHat).
2892 static void s2io_netpoll(struct net_device *dev)
2894 struct s2io_nic *nic = dev->priv;
2895 struct mac_info *mac_control;
2896 struct config_param *config;
2897 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2898 u64 val64 = 0xFFFFFFFFFFFFFFFFULL;
2899 int i;
2901 if (pci_channel_offline(nic->pdev))
2902 return;
2904 disable_irq(dev->irq);
2906 mac_control = &nic->mac_control;
2907 config = &nic->config;
2909 writeq(val64, &bar0->rx_traffic_int);
2910 writeq(val64, &bar0->tx_traffic_int);
2912 /* we need to free up the transmitted skbufs or else netpoll will
2913 * run out of skbs and will fail and eventually netpoll application such
2914 * as netdump will fail.
2916 for (i = 0; i < config->tx_fifo_num; i++)
2917 tx_intr_handler(&mac_control->fifos[i]);
2919 /* check for received packet and indicate up to network */
2920 for (i = 0; i < config->rx_ring_num; i++)
2921 rx_intr_handler(&mac_control->rings[i]);
2923 for (i = 0; i < config->rx_ring_num; i++) {
2924 if (fill_rx_buffers(&mac_control->rings[i]) == -ENOMEM) {
2925 DBG_PRINT(INFO_DBG, "%s:Out of memory", dev->name);
2926 DBG_PRINT(INFO_DBG, " in Rx Netpoll!!\n");
2927 break;
2930 enable_irq(dev->irq);
2931 return;
2933 #endif
2936 * rx_intr_handler - Rx interrupt handler
2937 * @nic: device private variable.
2938 * Description:
2939 * If the interrupt is because of a received frame or if the
2940 * receive ring contains fresh as yet un-processed frames,this function is
2941 * called. It picks out the RxD at which place the last Rx processing had
2942 * stopped and sends the skb to the OSM's Rx handler and then increments
2943 * the offset.
2944 * Return Value:
2945 * NONE.
2947 static void rx_intr_handler(struct ring_info *ring_data)
2949 int get_block, put_block;
2950 struct rx_curr_get_info get_info, put_info;
2951 struct RxD_t *rxdp;
2952 struct sk_buff *skb;
2953 int pkt_cnt = 0;
2954 int i;
2955 struct RxD1* rxdp1;
2956 struct RxD3* rxdp3;
2958 get_info = ring_data->rx_curr_get_info;
2959 get_block = get_info.block_index;
2960 memcpy(&put_info, &ring_data->rx_curr_put_info, sizeof(put_info));
2961 put_block = put_info.block_index;
2962 rxdp = ring_data->rx_blocks[get_block].rxds[get_info.offset].virt_addr;
2964 while (RXD_IS_UP2DT(rxdp)) {
2966 * If your are next to put index then it's
2967 * FIFO full condition
2969 if ((get_block == put_block) &&
2970 (get_info.offset + 1) == put_info.offset) {
2971 DBG_PRINT(INTR_DBG, "%s: Ring Full\n",
2972 ring_data->dev->name);
2973 break;
2975 skb = (struct sk_buff *) ((unsigned long)rxdp->Host_Control);
2976 if (skb == NULL) {
2977 DBG_PRINT(ERR_DBG, "%s: The skb is ",
2978 ring_data->dev->name);
2979 DBG_PRINT(ERR_DBG, "Null in Rx Intr\n");
2980 return;
2982 if (ring_data->rxd_mode == RXD_MODE_1) {
2983 rxdp1 = (struct RxD1*)rxdp;
2984 pci_unmap_single(ring_data->pdev, (dma_addr_t)
2985 rxdp1->Buffer0_ptr,
2986 ring_data->mtu +
2987 HEADER_ETHERNET_II_802_3_SIZE +
2988 HEADER_802_2_SIZE +
2989 HEADER_SNAP_SIZE,
2990 PCI_DMA_FROMDEVICE);
2991 } else if (ring_data->rxd_mode == RXD_MODE_3B) {
2992 rxdp3 = (struct RxD3*)rxdp;
2993 pci_dma_sync_single_for_cpu(ring_data->pdev, (dma_addr_t)
2994 rxdp3->Buffer0_ptr,
2995 BUF0_LEN, PCI_DMA_FROMDEVICE);
2996 pci_unmap_single(ring_data->pdev, (dma_addr_t)
2997 rxdp3->Buffer2_ptr,
2998 ring_data->mtu + 4,
2999 PCI_DMA_FROMDEVICE);
3001 prefetch(skb->data);
3002 rx_osm_handler(ring_data, rxdp);
3003 get_info.offset++;
3004 ring_data->rx_curr_get_info.offset = get_info.offset;
3005 rxdp = ring_data->rx_blocks[get_block].
3006 rxds[get_info.offset].virt_addr;
3007 if (get_info.offset == rxd_count[ring_data->rxd_mode]) {
3008 get_info.offset = 0;
3009 ring_data->rx_curr_get_info.offset = get_info.offset;
3010 get_block++;
3011 if (get_block == ring_data->block_count)
3012 get_block = 0;
3013 ring_data->rx_curr_get_info.block_index = get_block;
3014 rxdp = ring_data->rx_blocks[get_block].block_virt_addr;
3017 if(ring_data->nic->config.napi){
3018 ring_data->nic->pkts_to_process -= 1;
3019 if (!ring_data->nic->pkts_to_process)
3020 break;
3022 pkt_cnt++;
3023 if ((indicate_max_pkts) && (pkt_cnt > indicate_max_pkts))
3024 break;
3026 if (ring_data->lro) {
3027 /* Clear all LRO sessions before exiting */
3028 for (i=0; i<MAX_LRO_SESSIONS; i++) {
3029 struct lro *lro = &ring_data->lro0_n[i];
3030 if (lro->in_use) {
3031 update_L3L4_header(ring_data->nic, lro);
3032 queue_rx_frame(lro->parent, lro->vlan_tag);
3033 clear_lro_session(lro);
3040 * tx_intr_handler - Transmit interrupt handler
3041 * @nic : device private variable
3042 * Description:
3043 * If an interrupt was raised to indicate DMA complete of the
3044 * Tx packet, this function is called. It identifies the last TxD
3045 * whose buffer was freed and frees all skbs whose data have already
3046 * DMA'ed into the NICs internal memory.
3047 * Return Value:
3048 * NONE
3051 static void tx_intr_handler(struct fifo_info *fifo_data)
3053 struct s2io_nic *nic = fifo_data->nic;
3054 struct tx_curr_get_info get_info, put_info;
3055 struct sk_buff *skb = NULL;
3056 struct TxD *txdlp;
3057 int pkt_cnt = 0;
3058 unsigned long flags = 0;
3059 u8 err_mask;
3061 if (!spin_trylock_irqsave(&fifo_data->tx_lock, flags))
3062 return;
3064 get_info = fifo_data->tx_curr_get_info;
3065 memcpy(&put_info, &fifo_data->tx_curr_put_info, sizeof(put_info));
3066 txdlp = (struct TxD *) fifo_data->list_info[get_info.offset].
3067 list_virt_addr;
3068 while ((!(txdlp->Control_1 & TXD_LIST_OWN_XENA)) &&
3069 (get_info.offset != put_info.offset) &&
3070 (txdlp->Host_Control)) {
3071 /* Check for TxD errors */
3072 if (txdlp->Control_1 & TXD_T_CODE) {
3073 unsigned long long err;
3074 err = txdlp->Control_1 & TXD_T_CODE;
3075 if (err & 0x1) {
3076 nic->mac_control.stats_info->sw_stat.
3077 parity_err_cnt++;
3080 /* update t_code statistics */
3081 err_mask = err >> 48;
3082 switch(err_mask) {
3083 case 2:
3084 nic->mac_control.stats_info->sw_stat.
3085 tx_buf_abort_cnt++;
3086 break;
3088 case 3:
3089 nic->mac_control.stats_info->sw_stat.
3090 tx_desc_abort_cnt++;
3091 break;
3093 case 7:
3094 nic->mac_control.stats_info->sw_stat.
3095 tx_parity_err_cnt++;
3096 break;
3098 case 10:
3099 nic->mac_control.stats_info->sw_stat.
3100 tx_link_loss_cnt++;
3101 break;
3103 case 15:
3104 nic->mac_control.stats_info->sw_stat.
3105 tx_list_proc_err_cnt++;
3106 break;
3110 skb = s2io_txdl_getskb(fifo_data, txdlp, get_info.offset);
3111 if (skb == NULL) {
3112 spin_unlock_irqrestore(&fifo_data->tx_lock, flags);
3113 DBG_PRINT(ERR_DBG, "%s: Null skb ",
3114 __FUNCTION__);
3115 DBG_PRINT(ERR_DBG, "in Tx Free Intr\n");
3116 return;
3118 pkt_cnt++;
3120 /* Updating the statistics block */
3121 nic->stats.tx_bytes += skb->len;
3122 nic->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
3123 dev_kfree_skb_irq(skb);
3125 get_info.offset++;
3126 if (get_info.offset == get_info.fifo_len + 1)
3127 get_info.offset = 0;
3128 txdlp = (struct TxD *) fifo_data->list_info
3129 [get_info.offset].list_virt_addr;
3130 fifo_data->tx_curr_get_info.offset =
3131 get_info.offset;
3134 s2io_wake_tx_queue(fifo_data, pkt_cnt, nic->config.multiq);
3136 spin_unlock_irqrestore(&fifo_data->tx_lock, flags);
3140 * s2io_mdio_write - Function to write in to MDIO registers
3141 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3142 * @addr : address value
3143 * @value : data value
3144 * @dev : pointer to net_device structure
3145 * Description:
3146 * This function is used to write values to the MDIO registers
3147 * NONE
3149 static void s2io_mdio_write(u32 mmd_type, u64 addr, u16 value, struct net_device *dev)
3151 u64 val64 = 0x0;
3152 struct s2io_nic *sp = dev->priv;
3153 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3155 //address transaction
3156 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3157 | MDIO_MMD_DEV_ADDR(mmd_type)
3158 | MDIO_MMS_PRT_ADDR(0x0);
3159 writeq(val64, &bar0->mdio_control);
3160 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3161 writeq(val64, &bar0->mdio_control);
3162 udelay(100);
3164 //Data transaction
3165 val64 = 0x0;
3166 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3167 | MDIO_MMD_DEV_ADDR(mmd_type)
3168 | MDIO_MMS_PRT_ADDR(0x0)
3169 | MDIO_MDIO_DATA(value)
3170 | MDIO_OP(MDIO_OP_WRITE_TRANS);
3171 writeq(val64, &bar0->mdio_control);
3172 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3173 writeq(val64, &bar0->mdio_control);
3174 udelay(100);
3176 val64 = 0x0;
3177 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3178 | MDIO_MMD_DEV_ADDR(mmd_type)
3179 | MDIO_MMS_PRT_ADDR(0x0)
3180 | MDIO_OP(MDIO_OP_READ_TRANS);
3181 writeq(val64, &bar0->mdio_control);
3182 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3183 writeq(val64, &bar0->mdio_control);
3184 udelay(100);
3189 * s2io_mdio_read - Function to write in to MDIO registers
3190 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3191 * @addr : address value
3192 * @dev : pointer to net_device structure
3193 * Description:
3194 * This function is used to read values to the MDIO registers
3195 * NONE
3197 static u64 s2io_mdio_read(u32 mmd_type, u64 addr, struct net_device *dev)
3199 u64 val64 = 0x0;
3200 u64 rval64 = 0x0;
3201 struct s2io_nic *sp = dev->priv;
3202 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3204 /* address transaction */
3205 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3206 | MDIO_MMD_DEV_ADDR(mmd_type)
3207 | MDIO_MMS_PRT_ADDR(0x0);
3208 writeq(val64, &bar0->mdio_control);
3209 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3210 writeq(val64, &bar0->mdio_control);
3211 udelay(100);
3213 /* Data transaction */
3214 val64 = 0x0;
3215 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3216 | MDIO_MMD_DEV_ADDR(mmd_type)
3217 | MDIO_MMS_PRT_ADDR(0x0)
3218 | MDIO_OP(MDIO_OP_READ_TRANS);
3219 writeq(val64, &bar0->mdio_control);
3220 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3221 writeq(val64, &bar0->mdio_control);
3222 udelay(100);
3224 /* Read the value from regs */
3225 rval64 = readq(&bar0->mdio_control);
3226 rval64 = rval64 & 0xFFFF0000;
3227 rval64 = rval64 >> 16;
3228 return rval64;
3231 * s2io_chk_xpak_counter - Function to check the status of the xpak counters
3232 * @counter : couter value to be updated
3233 * @flag : flag to indicate the status
3234 * @type : counter type
3235 * Description:
3236 * This function is to check the status of the xpak counters value
3237 * NONE
3240 static void s2io_chk_xpak_counter(u64 *counter, u64 * regs_stat, u32 index, u16 flag, u16 type)
3242 u64 mask = 0x3;
3243 u64 val64;
3244 int i;
3245 for(i = 0; i <index; i++)
3246 mask = mask << 0x2;
3248 if(flag > 0)
3250 *counter = *counter + 1;
3251 val64 = *regs_stat & mask;
3252 val64 = val64 >> (index * 0x2);
3253 val64 = val64 + 1;
3254 if(val64 == 3)
3256 switch(type)
3258 case 1:
3259 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3260 "service. Excessive temperatures may "
3261 "result in premature transceiver "
3262 "failure \n");
3263 break;
3264 case 2:
3265 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3266 "service Excessive bias currents may "
3267 "indicate imminent laser diode "
3268 "failure \n");
3269 break;
3270 case 3:
3271 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3272 "service Excessive laser output "
3273 "power may saturate far-end "
3274 "receiver\n");
3275 break;
3276 default:
3277 DBG_PRINT(ERR_DBG, "Incorrect XPAK Alarm "
3278 "type \n");
3280 val64 = 0x0;
3282 val64 = val64 << (index * 0x2);
3283 *regs_stat = (*regs_stat & (~mask)) | (val64);
3285 } else {
3286 *regs_stat = *regs_stat & (~mask);
3291 * s2io_updt_xpak_counter - Function to update the xpak counters
3292 * @dev : pointer to net_device struct
3293 * Description:
3294 * This function is to upate the status of the xpak counters value
3295 * NONE
3297 static void s2io_updt_xpak_counter(struct net_device *dev)
3299 u16 flag = 0x0;
3300 u16 type = 0x0;
3301 u16 val16 = 0x0;
3302 u64 val64 = 0x0;
3303 u64 addr = 0x0;
3305 struct s2io_nic *sp = dev->priv;
3306 struct stat_block *stat_info = sp->mac_control.stats_info;
3308 /* Check the communication with the MDIO slave */
3309 addr = 0x0000;
3310 val64 = 0x0;
3311 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3312 if((val64 == 0xFFFF) || (val64 == 0x0000))
3314 DBG_PRINT(ERR_DBG, "ERR: MDIO slave access failed - "
3315 "Returned %llx\n", (unsigned long long)val64);
3316 return;
3319 /* Check for the expecte value of 2040 at PMA address 0x0000 */
3320 if(val64 != 0x2040)
3322 DBG_PRINT(ERR_DBG, "Incorrect value at PMA address 0x0000 - ");
3323 DBG_PRINT(ERR_DBG, "Returned: %llx- Expected: 0x2040\n",
3324 (unsigned long long)val64);
3325 return;
3328 /* Loading the DOM register to MDIO register */
3329 addr = 0xA100;
3330 s2io_mdio_write(MDIO_MMD_PMA_DEV_ADDR, addr, val16, dev);
3331 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3333 /* Reading the Alarm flags */
3334 addr = 0xA070;
3335 val64 = 0x0;
3336 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3338 flag = CHECKBIT(val64, 0x7);
3339 type = 1;
3340 s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_transceiver_temp_high,
3341 &stat_info->xpak_stat.xpak_regs_stat,
3342 0x0, flag, type);
3344 if(CHECKBIT(val64, 0x6))
3345 stat_info->xpak_stat.alarm_transceiver_temp_low++;
3347 flag = CHECKBIT(val64, 0x3);
3348 type = 2;
3349 s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_bias_current_high,
3350 &stat_info->xpak_stat.xpak_regs_stat,
3351 0x2, flag, type);
3353 if(CHECKBIT(val64, 0x2))
3354 stat_info->xpak_stat.alarm_laser_bias_current_low++;
3356 flag = CHECKBIT(val64, 0x1);
3357 type = 3;
3358 s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_output_power_high,
3359 &stat_info->xpak_stat.xpak_regs_stat,
3360 0x4, flag, type);
3362 if(CHECKBIT(val64, 0x0))
3363 stat_info->xpak_stat.alarm_laser_output_power_low++;
3365 /* Reading the Warning flags */
3366 addr = 0xA074;
3367 val64 = 0x0;
3368 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3370 if(CHECKBIT(val64, 0x7))
3371 stat_info->xpak_stat.warn_transceiver_temp_high++;
3373 if(CHECKBIT(val64, 0x6))
3374 stat_info->xpak_stat.warn_transceiver_temp_low++;
3376 if(CHECKBIT(val64, 0x3))
3377 stat_info->xpak_stat.warn_laser_bias_current_high++;
3379 if(CHECKBIT(val64, 0x2))
3380 stat_info->xpak_stat.warn_laser_bias_current_low++;
3382 if(CHECKBIT(val64, 0x1))
3383 stat_info->xpak_stat.warn_laser_output_power_high++;
3385 if(CHECKBIT(val64, 0x0))
3386 stat_info->xpak_stat.warn_laser_output_power_low++;
3390 * wait_for_cmd_complete - waits for a command to complete.
3391 * @sp : private member of the device structure, which is a pointer to the
3392 * s2io_nic structure.
3393 * Description: Function that waits for a command to Write into RMAC
3394 * ADDR DATA registers to be completed and returns either success or
3395 * error depending on whether the command was complete or not.
3396 * Return value:
3397 * SUCCESS on success and FAILURE on failure.
3400 static int wait_for_cmd_complete(void __iomem *addr, u64 busy_bit,
3401 int bit_state)
3403 int ret = FAILURE, cnt = 0, delay = 1;
3404 u64 val64;
3406 if ((bit_state != S2IO_BIT_RESET) && (bit_state != S2IO_BIT_SET))
3407 return FAILURE;
3409 do {
3410 val64 = readq(addr);
3411 if (bit_state == S2IO_BIT_RESET) {
3412 if (!(val64 & busy_bit)) {
3413 ret = SUCCESS;
3414 break;
3416 } else {
3417 if (!(val64 & busy_bit)) {
3418 ret = SUCCESS;
3419 break;
3423 if(in_interrupt())
3424 mdelay(delay);
3425 else
3426 msleep(delay);
3428 if (++cnt >= 10)
3429 delay = 50;
3430 } while (cnt < 20);
3431 return ret;
3434 * check_pci_device_id - Checks if the device id is supported
3435 * @id : device id
3436 * Description: Function to check if the pci device id is supported by driver.
3437 * Return value: Actual device id if supported else PCI_ANY_ID
3439 static u16 check_pci_device_id(u16 id)
3441 switch (id) {
3442 case PCI_DEVICE_ID_HERC_WIN:
3443 case PCI_DEVICE_ID_HERC_UNI:
3444 return XFRAME_II_DEVICE;
3445 case PCI_DEVICE_ID_S2IO_UNI:
3446 case PCI_DEVICE_ID_S2IO_WIN:
3447 return XFRAME_I_DEVICE;
3448 default:
3449 return PCI_ANY_ID;
3454 * s2io_reset - Resets the card.
3455 * @sp : private member of the device structure.
3456 * Description: Function to Reset the card. This function then also
3457 * restores the previously saved PCI configuration space registers as
3458 * the card reset also resets the configuration space.
3459 * Return value:
3460 * void.
3463 static void s2io_reset(struct s2io_nic * sp)
3465 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3466 u64 val64;
3467 u16 subid, pci_cmd;
3468 int i;
3469 u16 val16;
3470 unsigned long long up_cnt, down_cnt, up_time, down_time, reset_cnt;
3471 unsigned long long mem_alloc_cnt, mem_free_cnt, watchdog_cnt;
3473 DBG_PRINT(INIT_DBG,"%s - Resetting XFrame card %s\n",
3474 __FUNCTION__, sp->dev->name);
3476 /* Back up the PCI-X CMD reg, dont want to lose MMRBC, OST settings */
3477 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, &(pci_cmd));
3479 val64 = SW_RESET_ALL;
3480 writeq(val64, &bar0->sw_reset);
3481 if (strstr(sp->product_name, "CX4")) {
3482 msleep(750);
3484 msleep(250);
3485 for (i = 0; i < S2IO_MAX_PCI_CONFIG_SPACE_REINIT; i++) {
3487 /* Restore the PCI state saved during initialization. */
3488 pci_restore_state(sp->pdev);
3489 pci_read_config_word(sp->pdev, 0x2, &val16);
3490 if (check_pci_device_id(val16) != (u16)PCI_ANY_ID)
3491 break;
3492 msleep(200);
3495 if (check_pci_device_id(val16) == (u16)PCI_ANY_ID) {
3496 DBG_PRINT(ERR_DBG,"%s SW_Reset failed!\n", __FUNCTION__);
3499 pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER, pci_cmd);
3501 s2io_init_pci(sp);
3503 /* Set swapper to enable I/O register access */
3504 s2io_set_swapper(sp);
3506 /* restore mac_addr entries */
3507 do_s2io_restore_unicast_mc(sp);
3509 /* Restore the MSIX table entries from local variables */
3510 restore_xmsi_data(sp);
3512 /* Clear certain PCI/PCI-X fields after reset */
3513 if (sp->device_type == XFRAME_II_DEVICE) {
3514 /* Clear "detected parity error" bit */
3515 pci_write_config_word(sp->pdev, PCI_STATUS, 0x8000);
3517 /* Clearing PCIX Ecc status register */
3518 pci_write_config_dword(sp->pdev, 0x68, 0x7C);
3520 /* Clearing PCI_STATUS error reflected here */
3521 writeq(s2BIT(62), &bar0->txpic_int_reg);
3524 /* Reset device statistics maintained by OS */
3525 memset(&sp->stats, 0, sizeof (struct net_device_stats));
3527 up_cnt = sp->mac_control.stats_info->sw_stat.link_up_cnt;
3528 down_cnt = sp->mac_control.stats_info->sw_stat.link_down_cnt;
3529 up_time = sp->mac_control.stats_info->sw_stat.link_up_time;
3530 down_time = sp->mac_control.stats_info->sw_stat.link_down_time;
3531 reset_cnt = sp->mac_control.stats_info->sw_stat.soft_reset_cnt;
3532 mem_alloc_cnt = sp->mac_control.stats_info->sw_stat.mem_allocated;
3533 mem_free_cnt = sp->mac_control.stats_info->sw_stat.mem_freed;
3534 watchdog_cnt = sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt;
3535 /* save link up/down time/cnt, reset/memory/watchdog cnt */
3536 memset(sp->mac_control.stats_info, 0, sizeof(struct stat_block));
3537 /* restore link up/down time/cnt, reset/memory/watchdog cnt */
3538 sp->mac_control.stats_info->sw_stat.link_up_cnt = up_cnt;
3539 sp->mac_control.stats_info->sw_stat.link_down_cnt = down_cnt;
3540 sp->mac_control.stats_info->sw_stat.link_up_time = up_time;
3541 sp->mac_control.stats_info->sw_stat.link_down_time = down_time;
3542 sp->mac_control.stats_info->sw_stat.soft_reset_cnt = reset_cnt;
3543 sp->mac_control.stats_info->sw_stat.mem_allocated = mem_alloc_cnt;
3544 sp->mac_control.stats_info->sw_stat.mem_freed = mem_free_cnt;
3545 sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt = watchdog_cnt;
3547 /* SXE-002: Configure link and activity LED to turn it off */
3548 subid = sp->pdev->subsystem_device;
3549 if (((subid & 0xFF) >= 0x07) &&
3550 (sp->device_type == XFRAME_I_DEVICE)) {
3551 val64 = readq(&bar0->gpio_control);
3552 val64 |= 0x0000800000000000ULL;
3553 writeq(val64, &bar0->gpio_control);
3554 val64 = 0x0411040400000000ULL;
3555 writeq(val64, (void __iomem *)bar0 + 0x2700);
3559 * Clear spurious ECC interrupts that would have occured on
3560 * XFRAME II cards after reset.
3562 if (sp->device_type == XFRAME_II_DEVICE) {
3563 val64 = readq(&bar0->pcc_err_reg);
3564 writeq(val64, &bar0->pcc_err_reg);
3567 sp->device_enabled_once = FALSE;
3571 * s2io_set_swapper - to set the swapper controle on the card
3572 * @sp : private member of the device structure,
3573 * pointer to the s2io_nic structure.
3574 * Description: Function to set the swapper control on the card
3575 * correctly depending on the 'endianness' of the system.
3576 * Return value:
3577 * SUCCESS on success and FAILURE on failure.
3580 static int s2io_set_swapper(struct s2io_nic * sp)
3582 struct net_device *dev = sp->dev;
3583 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3584 u64 val64, valt, valr;
3587 * Set proper endian settings and verify the same by reading
3588 * the PIF Feed-back register.
3591 val64 = readq(&bar0->pif_rd_swapper_fb);
3592 if (val64 != 0x0123456789ABCDEFULL) {
3593 int i = 0;
3594 u64 value[] = { 0xC30000C3C30000C3ULL, /* FE=1, SE=1 */
3595 0x8100008181000081ULL, /* FE=1, SE=0 */
3596 0x4200004242000042ULL, /* FE=0, SE=1 */
3597 0}; /* FE=0, SE=0 */
3599 while(i<4) {
3600 writeq(value[i], &bar0->swapper_ctrl);
3601 val64 = readq(&bar0->pif_rd_swapper_fb);
3602 if (val64 == 0x0123456789ABCDEFULL)
3603 break;
3604 i++;
3606 if (i == 4) {
3607 DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
3608 dev->name);
3609 DBG_PRINT(ERR_DBG, "feedback read %llx\n",
3610 (unsigned long long) val64);
3611 return FAILURE;
3613 valr = value[i];
3614 } else {
3615 valr = readq(&bar0->swapper_ctrl);
3618 valt = 0x0123456789ABCDEFULL;
3619 writeq(valt, &bar0->xmsi_address);
3620 val64 = readq(&bar0->xmsi_address);
3622 if(val64 != valt) {
3623 int i = 0;
3624 u64 value[] = { 0x00C3C30000C3C300ULL, /* FE=1, SE=1 */
3625 0x0081810000818100ULL, /* FE=1, SE=0 */
3626 0x0042420000424200ULL, /* FE=0, SE=1 */
3627 0}; /* FE=0, SE=0 */
3629 while(i<4) {
3630 writeq((value[i] | valr), &bar0->swapper_ctrl);
3631 writeq(valt, &bar0->xmsi_address);
3632 val64 = readq(&bar0->xmsi_address);
3633 if(val64 == valt)
3634 break;
3635 i++;
3637 if(i == 4) {
3638 unsigned long long x = val64;
3639 DBG_PRINT(ERR_DBG, "Write failed, Xmsi_addr ");
3640 DBG_PRINT(ERR_DBG, "reads:0x%llx\n", x);
3641 return FAILURE;
3644 val64 = readq(&bar0->swapper_ctrl);
3645 val64 &= 0xFFFF000000000000ULL;
3647 #ifdef __BIG_ENDIAN
3649 * The device by default set to a big endian format, so a
3650 * big endian driver need not set anything.
3652 val64 |= (SWAPPER_CTRL_TXP_FE |
3653 SWAPPER_CTRL_TXP_SE |
3654 SWAPPER_CTRL_TXD_R_FE |
3655 SWAPPER_CTRL_TXD_W_FE |
3656 SWAPPER_CTRL_TXF_R_FE |
3657 SWAPPER_CTRL_RXD_R_FE |
3658 SWAPPER_CTRL_RXD_W_FE |
3659 SWAPPER_CTRL_RXF_W_FE |
3660 SWAPPER_CTRL_XMSI_FE |
3661 SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
3662 if (sp->config.intr_type == INTA)
3663 val64 |= SWAPPER_CTRL_XMSI_SE;
3664 writeq(val64, &bar0->swapper_ctrl);
3665 #else
3667 * Initially we enable all bits to make it accessible by the
3668 * driver, then we selectively enable only those bits that
3669 * we want to set.
3671 val64 |= (SWAPPER_CTRL_TXP_FE |
3672 SWAPPER_CTRL_TXP_SE |
3673 SWAPPER_CTRL_TXD_R_FE |
3674 SWAPPER_CTRL_TXD_R_SE |
3675 SWAPPER_CTRL_TXD_W_FE |
3676 SWAPPER_CTRL_TXD_W_SE |
3677 SWAPPER_CTRL_TXF_R_FE |
3678 SWAPPER_CTRL_RXD_R_FE |
3679 SWAPPER_CTRL_RXD_R_SE |
3680 SWAPPER_CTRL_RXD_W_FE |
3681 SWAPPER_CTRL_RXD_W_SE |
3682 SWAPPER_CTRL_RXF_W_FE |
3683 SWAPPER_CTRL_XMSI_FE |
3684 SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
3685 if (sp->config.intr_type == INTA)
3686 val64 |= SWAPPER_CTRL_XMSI_SE;
3687 writeq(val64, &bar0->swapper_ctrl);
3688 #endif
3689 val64 = readq(&bar0->swapper_ctrl);
3692 * Verifying if endian settings are accurate by reading a
3693 * feedback register.
3695 val64 = readq(&bar0->pif_rd_swapper_fb);
3696 if (val64 != 0x0123456789ABCDEFULL) {
3697 /* Endian settings are incorrect, calls for another dekko. */
3698 DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
3699 dev->name);
3700 DBG_PRINT(ERR_DBG, "feedback read %llx\n",
3701 (unsigned long long) val64);
3702 return FAILURE;
3705 return SUCCESS;
3708 static int wait_for_msix_trans(struct s2io_nic *nic, int i)
3710 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3711 u64 val64;
3712 int ret = 0, cnt = 0;
3714 do {
3715 val64 = readq(&bar0->xmsi_access);
3716 if (!(val64 & s2BIT(15)))
3717 break;
3718 mdelay(1);
3719 cnt++;
3720 } while(cnt < 5);
3721 if (cnt == 5) {
3722 DBG_PRINT(ERR_DBG, "XMSI # %d Access failed\n", i);
3723 ret = 1;
3726 return ret;
3729 static void restore_xmsi_data(struct s2io_nic *nic)
3731 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3732 u64 val64;
3733 int i;
3735 for (i=0; i < MAX_REQUESTED_MSI_X; i++) {
3736 writeq(nic->msix_info[i].addr, &bar0->xmsi_address);
3737 writeq(nic->msix_info[i].data, &bar0->xmsi_data);
3738 val64 = (s2BIT(7) | s2BIT(15) | vBIT(i, 26, 6));
3739 writeq(val64, &bar0->xmsi_access);
3740 if (wait_for_msix_trans(nic, i)) {
3741 DBG_PRINT(ERR_DBG, "failed in %s\n", __FUNCTION__);
3742 continue;
3747 static void store_xmsi_data(struct s2io_nic *nic)
3749 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3750 u64 val64, addr, data;
3751 int i;
3753 /* Store and display */
3754 for (i=0; i < MAX_REQUESTED_MSI_X; i++) {
3755 val64 = (s2BIT(15) | vBIT(i, 26, 6));
3756 writeq(val64, &bar0->xmsi_access);
3757 if (wait_for_msix_trans(nic, i)) {
3758 DBG_PRINT(ERR_DBG, "failed in %s\n", __FUNCTION__);
3759 continue;
3761 addr = readq(&bar0->xmsi_address);
3762 data = readq(&bar0->xmsi_data);
3763 if (addr && data) {
3764 nic->msix_info[i].addr = addr;
3765 nic->msix_info[i].data = data;
3770 static int s2io_enable_msi_x(struct s2io_nic *nic)
3772 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3773 u64 tx_mat, rx_mat;
3774 u16 msi_control; /* Temp variable */
3775 int ret, i, j, msix_indx = 1;
3777 nic->entries = kcalloc(MAX_REQUESTED_MSI_X, sizeof(struct msix_entry),
3778 GFP_KERNEL);
3779 if (!nic->entries) {
3780 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n", \
3781 __FUNCTION__);
3782 nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
3783 return -ENOMEM;
3785 nic->mac_control.stats_info->sw_stat.mem_allocated
3786 += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
3788 nic->s2io_entries =
3789 kcalloc(MAX_REQUESTED_MSI_X, sizeof(struct s2io_msix_entry),
3790 GFP_KERNEL);
3791 if (!nic->s2io_entries) {
3792 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n",
3793 __FUNCTION__);
3794 nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
3795 kfree(nic->entries);
3796 nic->mac_control.stats_info->sw_stat.mem_freed
3797 += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
3798 return -ENOMEM;
3800 nic->mac_control.stats_info->sw_stat.mem_allocated
3801 += (MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
3803 for (i=0; i< MAX_REQUESTED_MSI_X; i++) {
3804 nic->entries[i].entry = i;
3805 nic->s2io_entries[i].entry = i;
3806 nic->s2io_entries[i].arg = NULL;
3807 nic->s2io_entries[i].in_use = 0;
3810 tx_mat = readq(&bar0->tx_mat0_n[0]);
3811 for (i=0; i<nic->config.tx_fifo_num; i++, msix_indx++) {
3812 tx_mat |= TX_MAT_SET(i, msix_indx);
3813 nic->s2io_entries[msix_indx].arg = &nic->mac_control.fifos[i];
3814 nic->s2io_entries[msix_indx].type = MSIX_FIFO_TYPE;
3815 nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
3817 writeq(tx_mat, &bar0->tx_mat0_n[0]);
3819 rx_mat = readq(&bar0->rx_mat);
3820 for (j = 0; j < nic->config.rx_ring_num; j++, msix_indx++) {
3821 rx_mat |= RX_MAT_SET(j, msix_indx);
3822 nic->s2io_entries[msix_indx].arg
3823 = &nic->mac_control.rings[j];
3824 nic->s2io_entries[msix_indx].type = MSIX_RING_TYPE;
3825 nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
3827 writeq(rx_mat, &bar0->rx_mat);
3829 nic->avail_msix_vectors = 0;
3830 ret = pci_enable_msix(nic->pdev, nic->entries, MAX_REQUESTED_MSI_X);
3831 /* We fail init if error or we get less vectors than min required */
3832 if (ret >= (nic->config.tx_fifo_num + nic->config.rx_ring_num + 1)) {
3833 nic->avail_msix_vectors = ret;
3834 ret = pci_enable_msix(nic->pdev, nic->entries, ret);
3836 if (ret) {
3837 DBG_PRINT(ERR_DBG, "%s: Enabling MSIX failed\n", nic->dev->name);
3838 kfree(nic->entries);
3839 nic->mac_control.stats_info->sw_stat.mem_freed
3840 += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
3841 kfree(nic->s2io_entries);
3842 nic->mac_control.stats_info->sw_stat.mem_freed
3843 += (MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
3844 nic->entries = NULL;
3845 nic->s2io_entries = NULL;
3846 nic->avail_msix_vectors = 0;
3847 return -ENOMEM;
3849 if (!nic->avail_msix_vectors)
3850 nic->avail_msix_vectors = MAX_REQUESTED_MSI_X;
3853 * To enable MSI-X, MSI also needs to be enabled, due to a bug
3854 * in the herc NIC. (Temp change, needs to be removed later)
3856 pci_read_config_word(nic->pdev, 0x42, &msi_control);
3857 msi_control |= 0x1; /* Enable MSI */
3858 pci_write_config_word(nic->pdev, 0x42, msi_control);
3860 return 0;
3863 /* Handle software interrupt used during MSI(X) test */
3864 static irqreturn_t s2io_test_intr(int irq, void *dev_id)
3866 struct s2io_nic *sp = dev_id;
3868 sp->msi_detected = 1;
3869 wake_up(&sp->msi_wait);
3871 return IRQ_HANDLED;
3874 /* Test interrupt path by forcing a a software IRQ */
3875 static int s2io_test_msi(struct s2io_nic *sp)
3877 struct pci_dev *pdev = sp->pdev;
3878 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3879 int err;
3880 u64 val64, saved64;
3882 err = request_irq(sp->entries[1].vector, s2io_test_intr, 0,
3883 sp->name, sp);
3884 if (err) {
3885 DBG_PRINT(ERR_DBG, "%s: PCI %s: cannot assign irq %d\n",
3886 sp->dev->name, pci_name(pdev), pdev->irq);
3887 return err;
3890 init_waitqueue_head (&sp->msi_wait);
3891 sp->msi_detected = 0;
3893 saved64 = val64 = readq(&bar0->scheduled_int_ctrl);
3894 val64 |= SCHED_INT_CTRL_ONE_SHOT;
3895 val64 |= SCHED_INT_CTRL_TIMER_EN;
3896 val64 |= SCHED_INT_CTRL_INT2MSI(1);
3897 writeq(val64, &bar0->scheduled_int_ctrl);
3899 wait_event_timeout(sp->msi_wait, sp->msi_detected, HZ/10);
3901 if (!sp->msi_detected) {
3902 /* MSI(X) test failed, go back to INTx mode */
3903 DBG_PRINT(ERR_DBG, "%s: PCI %s: No interrupt was generated "
3904 "using MSI(X) during test\n", sp->dev->name,
3905 pci_name(pdev));
3907 err = -EOPNOTSUPP;
3910 free_irq(sp->entries[1].vector, sp);
3912 writeq(saved64, &bar0->scheduled_int_ctrl);
3914 return err;
3917 static void remove_msix_isr(struct s2io_nic *sp)
3919 int i;
3920 u16 msi_control;
3922 for (i = 0; i < MAX_REQUESTED_MSI_X; i++) {
3923 if (sp->s2io_entries[i].in_use ==
3924 MSIX_REGISTERED_SUCCESS) {
3925 int vector = sp->entries[i].vector;
3926 void *arg = sp->s2io_entries[i].arg;
3927 free_irq(vector, arg);
3931 kfree(sp->entries);
3932 kfree(sp->s2io_entries);
3933 sp->entries = NULL;
3934 sp->s2io_entries = NULL;
3936 pci_read_config_word(sp->pdev, 0x42, &msi_control);
3937 msi_control &= 0xFFFE; /* Disable MSI */
3938 pci_write_config_word(sp->pdev, 0x42, msi_control);
3940 pci_disable_msix(sp->pdev);
3943 static void remove_inta_isr(struct s2io_nic *sp)
3945 struct net_device *dev = sp->dev;
3947 free_irq(sp->pdev->irq, dev);
3950 /* ********************************************************* *
3951 * Functions defined below concern the OS part of the driver *
3952 * ********************************************************* */
3955 * s2io_open - open entry point of the driver
3956 * @dev : pointer to the device structure.
3957 * Description:
3958 * This function is the open entry point of the driver. It mainly calls a
3959 * function to allocate Rx buffers and inserts them into the buffer
3960 * descriptors and then enables the Rx part of the NIC.
3961 * Return value:
3962 * 0 on success and an appropriate (-)ve integer as defined in errno.h
3963 * file on failure.
3966 static int s2io_open(struct net_device *dev)
3968 struct s2io_nic *sp = dev->priv;
3969 int err = 0;
3972 * Make sure you have link off by default every time
3973 * Nic is initialized
3975 netif_carrier_off(dev);
3976 sp->last_link_state = 0;
3978 if (sp->config.intr_type == MSI_X) {
3979 int ret = s2io_enable_msi_x(sp);
3981 if (!ret) {
3982 ret = s2io_test_msi(sp);
3983 /* rollback MSI-X, will re-enable during add_isr() */
3984 remove_msix_isr(sp);
3986 if (ret) {
3988 DBG_PRINT(ERR_DBG,
3989 "%s: MSI-X requested but failed to enable\n",
3990 dev->name);
3991 sp->config.intr_type = INTA;
3995 /* NAPI doesn't work well with MSI(X) */
3996 if (sp->config.intr_type != INTA) {
3997 if(sp->config.napi)
3998 sp->config.napi = 0;
4001 /* Initialize H/W and enable interrupts */
4002 err = s2io_card_up(sp);
4003 if (err) {
4004 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
4005 dev->name);
4006 goto hw_init_failed;
4009 if (do_s2io_prog_unicast(dev, dev->dev_addr) == FAILURE) {
4010 DBG_PRINT(ERR_DBG, "Set Mac Address Failed\n");
4011 s2io_card_down(sp);
4012 err = -ENODEV;
4013 goto hw_init_failed;
4015 s2io_start_all_tx_queue(sp);
4016 return 0;
4018 hw_init_failed:
4019 if (sp->config.intr_type == MSI_X) {
4020 if (sp->entries) {
4021 kfree(sp->entries);
4022 sp->mac_control.stats_info->sw_stat.mem_freed
4023 += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
4025 if (sp->s2io_entries) {
4026 kfree(sp->s2io_entries);
4027 sp->mac_control.stats_info->sw_stat.mem_freed
4028 += (MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
4031 return err;
4035 * s2io_close -close entry point of the driver
4036 * @dev : device pointer.
4037 * Description:
4038 * This is the stop entry point of the driver. It needs to undo exactly
4039 * whatever was done by the open entry point,thus it's usually referred to
4040 * as the close function.Among other things this function mainly stops the
4041 * Rx side of the NIC and frees all the Rx buffers in the Rx rings.
4042 * Return value:
4043 * 0 on success and an appropriate (-)ve integer as defined in errno.h
4044 * file on failure.
4047 static int s2io_close(struct net_device *dev)
4049 struct s2io_nic *sp = dev->priv;
4050 struct config_param *config = &sp->config;
4051 u64 tmp64;
4052 int offset;
4054 /* Return if the device is already closed *
4055 * Can happen when s2io_card_up failed in change_mtu *
4057 if (!is_s2io_card_up(sp))
4058 return 0;
4060 s2io_stop_all_tx_queue(sp);
4061 /* delete all populated mac entries */
4062 for (offset = 1; offset < config->max_mc_addr; offset++) {
4063 tmp64 = do_s2io_read_unicast_mc(sp, offset);
4064 if (tmp64 != S2IO_DISABLE_MAC_ENTRY)
4065 do_s2io_delete_unicast_mc(sp, tmp64);
4068 s2io_card_down(sp);
4070 return 0;
4074 * s2io_xmit - Tx entry point of te driver
4075 * @skb : the socket buffer containing the Tx data.
4076 * @dev : device pointer.
4077 * Description :
4078 * This function is the Tx entry point of the driver. S2IO NIC supports
4079 * certain protocol assist features on Tx side, namely CSO, S/G, LSO.
4080 * NOTE: when device cant queue the pkt,just the trans_start variable will
4081 * not be upadted.
4082 * Return value:
4083 * 0 on success & 1 on failure.
4086 static int s2io_xmit(struct sk_buff *skb, struct net_device *dev)
4088 struct s2io_nic *sp = dev->priv;
4089 u16 frg_cnt, frg_len, i, queue, queue_len, put_off, get_off;
4090 register u64 val64;
4091 struct TxD *txdp;
4092 struct TxFIFO_element __iomem *tx_fifo;
4093 unsigned long flags = 0;
4094 u16 vlan_tag = 0;
4095 struct fifo_info *fifo = NULL;
4096 struct mac_info *mac_control;
4097 struct config_param *config;
4098 int do_spin_lock = 1;
4099 int offload_type;
4100 int enable_per_list_interrupt = 0;
4101 struct swStat *stats = &sp->mac_control.stats_info->sw_stat;
4103 mac_control = &sp->mac_control;
4104 config = &sp->config;
4106 DBG_PRINT(TX_DBG, "%s: In Neterion Tx routine\n", dev->name);
4108 if (unlikely(skb->len <= 0)) {
4109 DBG_PRINT(TX_DBG, "%s:Buffer has no data..\n", dev->name);
4110 dev_kfree_skb_any(skb);
4111 return 0;
4114 if (!is_s2io_card_up(sp)) {
4115 DBG_PRINT(TX_DBG, "%s: Card going down for reset\n",
4116 dev->name);
4117 dev_kfree_skb(skb);
4118 return 0;
4121 queue = 0;
4122 if (sp->vlgrp && vlan_tx_tag_present(skb))
4123 vlan_tag = vlan_tx_tag_get(skb);
4124 if (sp->config.tx_steering_type == TX_DEFAULT_STEERING) {
4125 if (skb->protocol == htons(ETH_P_IP)) {
4126 struct iphdr *ip;
4127 struct tcphdr *th;
4128 ip = ip_hdr(skb);
4130 if ((ip->frag_off & htons(IP_OFFSET|IP_MF)) == 0) {
4131 th = (struct tcphdr *)(((unsigned char *)ip) +
4132 ip->ihl*4);
4134 if (ip->protocol == IPPROTO_TCP) {
4135 queue_len = sp->total_tcp_fifos;
4136 queue = (ntohs(th->source) +
4137 ntohs(th->dest)) &
4138 sp->fifo_selector[queue_len - 1];
4139 if (queue >= queue_len)
4140 queue = queue_len - 1;
4141 } else if (ip->protocol == IPPROTO_UDP) {
4142 queue_len = sp->total_udp_fifos;
4143 queue = (ntohs(th->source) +
4144 ntohs(th->dest)) &
4145 sp->fifo_selector[queue_len - 1];
4146 if (queue >= queue_len)
4147 queue = queue_len - 1;
4148 queue += sp->udp_fifo_idx;
4149 if (skb->len > 1024)
4150 enable_per_list_interrupt = 1;
4151 do_spin_lock = 0;
4155 } else if (sp->config.tx_steering_type == TX_PRIORITY_STEERING)
4156 /* get fifo number based on skb->priority value */
4157 queue = config->fifo_mapping
4158 [skb->priority & (MAX_TX_FIFOS - 1)];
4159 fifo = &mac_control->fifos[queue];
4161 if (do_spin_lock)
4162 spin_lock_irqsave(&fifo->tx_lock, flags);
4163 else {
4164 if (unlikely(!spin_trylock_irqsave(&fifo->tx_lock, flags)))
4165 return NETDEV_TX_LOCKED;
4168 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
4169 if (sp->config.multiq) {
4170 if (__netif_subqueue_stopped(dev, fifo->fifo_no)) {
4171 spin_unlock_irqrestore(&fifo->tx_lock, flags);
4172 return NETDEV_TX_BUSY;
4174 } else
4175 #endif
4176 if (unlikely(fifo->queue_state == FIFO_QUEUE_STOP)) {
4177 if (netif_queue_stopped(dev)) {
4178 spin_unlock_irqrestore(&fifo->tx_lock, flags);
4179 return NETDEV_TX_BUSY;
4183 put_off = (u16) fifo->tx_curr_put_info.offset;
4184 get_off = (u16) fifo->tx_curr_get_info.offset;
4185 txdp = (struct TxD *) fifo->list_info[put_off].list_virt_addr;
4187 queue_len = fifo->tx_curr_put_info.fifo_len + 1;
4188 /* Avoid "put" pointer going beyond "get" pointer */
4189 if (txdp->Host_Control ||
4190 ((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
4191 DBG_PRINT(TX_DBG, "Error in xmit, No free TXDs.\n");
4192 s2io_stop_tx_queue(sp, fifo->fifo_no);
4193 dev_kfree_skb(skb);
4194 spin_unlock_irqrestore(&fifo->tx_lock, flags);
4195 return 0;
4198 offload_type = s2io_offload_type(skb);
4199 if (offload_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) {
4200 txdp->Control_1 |= TXD_TCP_LSO_EN;
4201 txdp->Control_1 |= TXD_TCP_LSO_MSS(s2io_tcp_mss(skb));
4203 if (skb->ip_summed == CHECKSUM_PARTIAL) {
4204 txdp->Control_2 |=
4205 (TXD_TX_CKO_IPV4_EN | TXD_TX_CKO_TCP_EN |
4206 TXD_TX_CKO_UDP_EN);
4208 txdp->Control_1 |= TXD_GATHER_CODE_FIRST;
4209 txdp->Control_1 |= TXD_LIST_OWN_XENA;
4210 txdp->Control_2 |= TXD_INT_NUMBER(fifo->fifo_no);
4211 if (enable_per_list_interrupt)
4212 if (put_off & (queue_len >> 5))
4213 txdp->Control_2 |= TXD_INT_TYPE_PER_LIST;
4214 if (vlan_tag) {
4215 txdp->Control_2 |= TXD_VLAN_ENABLE;
4216 txdp->Control_2 |= TXD_VLAN_TAG(vlan_tag);
4219 frg_len = skb->len - skb->data_len;
4220 if (offload_type == SKB_GSO_UDP) {
4221 int ufo_size;
4223 ufo_size = s2io_udp_mss(skb);
4224 ufo_size &= ~7;
4225 txdp->Control_1 |= TXD_UFO_EN;
4226 txdp->Control_1 |= TXD_UFO_MSS(ufo_size);
4227 txdp->Control_1 |= TXD_BUFFER0_SIZE(8);
4228 #ifdef __BIG_ENDIAN
4229 /* both variants do cpu_to_be64(be32_to_cpu(...)) */
4230 fifo->ufo_in_band_v[put_off] =
4231 (__force u64)skb_shinfo(skb)->ip6_frag_id;
4232 #else
4233 fifo->ufo_in_band_v[put_off] =
4234 (__force u64)skb_shinfo(skb)->ip6_frag_id << 32;
4235 #endif
4236 txdp->Host_Control = (unsigned long)fifo->ufo_in_band_v;
4237 txdp->Buffer_Pointer = pci_map_single(sp->pdev,
4238 fifo->ufo_in_band_v,
4239 sizeof(u64), PCI_DMA_TODEVICE);
4240 if((txdp->Buffer_Pointer == 0) ||
4241 (txdp->Buffer_Pointer == DMA_ERROR_CODE))
4242 goto pci_map_failed;
4243 txdp++;
4246 txdp->Buffer_Pointer = pci_map_single
4247 (sp->pdev, skb->data, frg_len, PCI_DMA_TODEVICE);
4248 if((txdp->Buffer_Pointer == 0) ||
4249 (txdp->Buffer_Pointer == DMA_ERROR_CODE))
4250 goto pci_map_failed;
4252 txdp->Host_Control = (unsigned long) skb;
4253 txdp->Control_1 |= TXD_BUFFER0_SIZE(frg_len);
4254 if (offload_type == SKB_GSO_UDP)
4255 txdp->Control_1 |= TXD_UFO_EN;
4257 frg_cnt = skb_shinfo(skb)->nr_frags;
4258 /* For fragmented SKB. */
4259 for (i = 0; i < frg_cnt; i++) {
4260 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4261 /* A '0' length fragment will be ignored */
4262 if (!frag->size)
4263 continue;
4264 txdp++;
4265 txdp->Buffer_Pointer = (u64) pci_map_page
4266 (sp->pdev, frag->page, frag->page_offset,
4267 frag->size, PCI_DMA_TODEVICE);
4268 txdp->Control_1 = TXD_BUFFER0_SIZE(frag->size);
4269 if (offload_type == SKB_GSO_UDP)
4270 txdp->Control_1 |= TXD_UFO_EN;
4272 txdp->Control_1 |= TXD_GATHER_CODE_LAST;
4274 if (offload_type == SKB_GSO_UDP)
4275 frg_cnt++; /* as Txd0 was used for inband header */
4277 tx_fifo = mac_control->tx_FIFO_start[queue];
4278 val64 = fifo->list_info[put_off].list_phy_addr;
4279 writeq(val64, &tx_fifo->TxDL_Pointer);
4281 val64 = (TX_FIFO_LAST_TXD_NUM(frg_cnt) | TX_FIFO_FIRST_LIST |
4282 TX_FIFO_LAST_LIST);
4283 if (offload_type)
4284 val64 |= TX_FIFO_SPECIAL_FUNC;
4286 writeq(val64, &tx_fifo->List_Control);
4288 mmiowb();
4290 put_off++;
4291 if (put_off == fifo->tx_curr_put_info.fifo_len + 1)
4292 put_off = 0;
4293 fifo->tx_curr_put_info.offset = put_off;
4295 /* Avoid "put" pointer going beyond "get" pointer */
4296 if (((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
4297 sp->mac_control.stats_info->sw_stat.fifo_full_cnt++;
4298 DBG_PRINT(TX_DBG,
4299 "No free TxDs for xmit, Put: 0x%x Get:0x%x\n",
4300 put_off, get_off);
4301 s2io_stop_tx_queue(sp, fifo->fifo_no);
4303 mac_control->stats_info->sw_stat.mem_allocated += skb->truesize;
4304 dev->trans_start = jiffies;
4305 spin_unlock_irqrestore(&fifo->tx_lock, flags);
4307 if (sp->config.intr_type == MSI_X)
4308 tx_intr_handler(fifo);
4310 return 0;
4311 pci_map_failed:
4312 stats->pci_map_fail_cnt++;
4313 s2io_stop_tx_queue(sp, fifo->fifo_no);
4314 stats->mem_freed += skb->truesize;
4315 dev_kfree_skb(skb);
4316 spin_unlock_irqrestore(&fifo->tx_lock, flags);
4317 return 0;
4320 static void
4321 s2io_alarm_handle(unsigned long data)
4323 struct s2io_nic *sp = (struct s2io_nic *)data;
4324 struct net_device *dev = sp->dev;
4326 s2io_handle_errors(dev);
4327 mod_timer(&sp->alarm_timer, jiffies + HZ / 2);
4330 static int s2io_chk_rx_buffers(struct ring_info *ring)
4332 if (fill_rx_buffers(ring) == -ENOMEM) {
4333 DBG_PRINT(INFO_DBG, "%s:Out of memory", ring->dev->name);
4334 DBG_PRINT(INFO_DBG, " in Rx Intr!!\n");
4336 return 0;
4339 static irqreturn_t s2io_msix_ring_handle(int irq, void *dev_id)
4341 struct ring_info *ring = (struct ring_info *)dev_id;
4342 struct s2io_nic *sp = ring->nic;
4344 if (!is_s2io_card_up(sp))
4345 return IRQ_HANDLED;
4347 rx_intr_handler(ring);
4348 s2io_chk_rx_buffers(ring);
4350 return IRQ_HANDLED;
4353 static irqreturn_t s2io_msix_fifo_handle(int irq, void *dev_id)
4355 struct fifo_info *fifo = (struct fifo_info *)dev_id;
4356 struct s2io_nic *sp = fifo->nic;
4358 if (!is_s2io_card_up(sp))
4359 return IRQ_HANDLED;
4361 tx_intr_handler(fifo);
4362 return IRQ_HANDLED;
4364 static void s2io_txpic_intr_handle(struct s2io_nic *sp)
4366 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4367 u64 val64;
4369 val64 = readq(&bar0->pic_int_status);
4370 if (val64 & PIC_INT_GPIO) {
4371 val64 = readq(&bar0->gpio_int_reg);
4372 if ((val64 & GPIO_INT_REG_LINK_DOWN) &&
4373 (val64 & GPIO_INT_REG_LINK_UP)) {
4375 * This is unstable state so clear both up/down
4376 * interrupt and adapter to re-evaluate the link state.
4378 val64 |= GPIO_INT_REG_LINK_DOWN;
4379 val64 |= GPIO_INT_REG_LINK_UP;
4380 writeq(val64, &bar0->gpio_int_reg);
4381 val64 = readq(&bar0->gpio_int_mask);
4382 val64 &= ~(GPIO_INT_MASK_LINK_UP |
4383 GPIO_INT_MASK_LINK_DOWN);
4384 writeq(val64, &bar0->gpio_int_mask);
4386 else if (val64 & GPIO_INT_REG_LINK_UP) {
4387 val64 = readq(&bar0->adapter_status);
4388 /* Enable Adapter */
4389 val64 = readq(&bar0->adapter_control);
4390 val64 |= ADAPTER_CNTL_EN;
4391 writeq(val64, &bar0->adapter_control);
4392 val64 |= ADAPTER_LED_ON;
4393 writeq(val64, &bar0->adapter_control);
4394 if (!sp->device_enabled_once)
4395 sp->device_enabled_once = 1;
4397 s2io_link(sp, LINK_UP);
4399 * unmask link down interrupt and mask link-up
4400 * intr
4402 val64 = readq(&bar0->gpio_int_mask);
4403 val64 &= ~GPIO_INT_MASK_LINK_DOWN;
4404 val64 |= GPIO_INT_MASK_LINK_UP;
4405 writeq(val64, &bar0->gpio_int_mask);
4407 }else if (val64 & GPIO_INT_REG_LINK_DOWN) {
4408 val64 = readq(&bar0->adapter_status);
4409 s2io_link(sp, LINK_DOWN);
4410 /* Link is down so unmaks link up interrupt */
4411 val64 = readq(&bar0->gpio_int_mask);
4412 val64 &= ~GPIO_INT_MASK_LINK_UP;
4413 val64 |= GPIO_INT_MASK_LINK_DOWN;
4414 writeq(val64, &bar0->gpio_int_mask);
4416 /* turn off LED */
4417 val64 = readq(&bar0->adapter_control);
4418 val64 = val64 &(~ADAPTER_LED_ON);
4419 writeq(val64, &bar0->adapter_control);
4422 val64 = readq(&bar0->gpio_int_mask);
4426 * do_s2io_chk_alarm_bit - Check for alarm and incrment the counter
4427 * @value: alarm bits
4428 * @addr: address value
4429 * @cnt: counter variable
4430 * Description: Check for alarm and increment the counter
4431 * Return Value:
4432 * 1 - if alarm bit set
4433 * 0 - if alarm bit is not set
4435 static int do_s2io_chk_alarm_bit(u64 value, void __iomem * addr,
4436 unsigned long long *cnt)
4438 u64 val64;
4439 val64 = readq(addr);
4440 if ( val64 & value ) {
4441 writeq(val64, addr);
4442 (*cnt)++;
4443 return 1;
4445 return 0;
4450 * s2io_handle_errors - Xframe error indication handler
4451 * @nic: device private variable
4452 * Description: Handle alarms such as loss of link, single or
4453 * double ECC errors, critical and serious errors.
4454 * Return Value:
4455 * NONE
4457 static void s2io_handle_errors(void * dev_id)
4459 struct net_device *dev = (struct net_device *) dev_id;
4460 struct s2io_nic *sp = dev->priv;
4461 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4462 u64 temp64 = 0,val64=0;
4463 int i = 0;
4465 struct swStat *sw_stat = &sp->mac_control.stats_info->sw_stat;
4466 struct xpakStat *stats = &sp->mac_control.stats_info->xpak_stat;
4468 if (!is_s2io_card_up(sp))
4469 return;
4471 if (pci_channel_offline(sp->pdev))
4472 return;
4474 memset(&sw_stat->ring_full_cnt, 0,
4475 sizeof(sw_stat->ring_full_cnt));
4477 /* Handling the XPAK counters update */
4478 if(stats->xpak_timer_count < 72000) {
4479 /* waiting for an hour */
4480 stats->xpak_timer_count++;
4481 } else {
4482 s2io_updt_xpak_counter(dev);
4483 /* reset the count to zero */
4484 stats->xpak_timer_count = 0;
4487 /* Handling link status change error Intr */
4488 if (s2io_link_fault_indication(sp) == MAC_RMAC_ERR_TIMER) {
4489 val64 = readq(&bar0->mac_rmac_err_reg);
4490 writeq(val64, &bar0->mac_rmac_err_reg);
4491 if (val64 & RMAC_LINK_STATE_CHANGE_INT)
4492 schedule_work(&sp->set_link_task);
4495 /* In case of a serious error, the device will be Reset. */
4496 if (do_s2io_chk_alarm_bit(SERR_SOURCE_ANY, &bar0->serr_source,
4497 &sw_stat->serious_err_cnt))
4498 goto reset;
4500 /* Check for data parity error */
4501 if (do_s2io_chk_alarm_bit(GPIO_INT_REG_DP_ERR_INT, &bar0->gpio_int_reg,
4502 &sw_stat->parity_err_cnt))
4503 goto reset;
4505 /* Check for ring full counter */
4506 if (sp->device_type == XFRAME_II_DEVICE) {
4507 val64 = readq(&bar0->ring_bump_counter1);
4508 for (i=0; i<4; i++) {
4509 temp64 = ( val64 & vBIT(0xFFFF,(i*16),16));
4510 temp64 >>= 64 - ((i+1)*16);
4511 sw_stat->ring_full_cnt[i] += temp64;
4514 val64 = readq(&bar0->ring_bump_counter2);
4515 for (i=0; i<4; i++) {
4516 temp64 = ( val64 & vBIT(0xFFFF,(i*16),16));
4517 temp64 >>= 64 - ((i+1)*16);
4518 sw_stat->ring_full_cnt[i+4] += temp64;
4522 val64 = readq(&bar0->txdma_int_status);
4523 /*check for pfc_err*/
4524 if (val64 & TXDMA_PFC_INT) {
4525 if (do_s2io_chk_alarm_bit(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM|
4526 PFC_MISC_0_ERR | PFC_MISC_1_ERR|
4527 PFC_PCIX_ERR, &bar0->pfc_err_reg,
4528 &sw_stat->pfc_err_cnt))
4529 goto reset;
4530 do_s2io_chk_alarm_bit(PFC_ECC_SG_ERR, &bar0->pfc_err_reg,
4531 &sw_stat->pfc_err_cnt);
4534 /*check for tda_err*/
4535 if (val64 & TXDMA_TDA_INT) {
4536 if(do_s2io_chk_alarm_bit(TDA_Fn_ECC_DB_ERR | TDA_SM0_ERR_ALARM |
4537 TDA_SM1_ERR_ALARM, &bar0->tda_err_reg,
4538 &sw_stat->tda_err_cnt))
4539 goto reset;
4540 do_s2io_chk_alarm_bit(TDA_Fn_ECC_SG_ERR | TDA_PCIX_ERR,
4541 &bar0->tda_err_reg, &sw_stat->tda_err_cnt);
4543 /*check for pcc_err*/
4544 if (val64 & TXDMA_PCC_INT) {
4545 if (do_s2io_chk_alarm_bit(PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM
4546 | PCC_N_SERR | PCC_6_COF_OV_ERR
4547 | PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR
4548 | PCC_7_LSO_OV_ERR | PCC_FB_ECC_DB_ERR
4549 | PCC_TXB_ECC_DB_ERR, &bar0->pcc_err_reg,
4550 &sw_stat->pcc_err_cnt))
4551 goto reset;
4552 do_s2io_chk_alarm_bit(PCC_FB_ECC_SG_ERR | PCC_TXB_ECC_SG_ERR,
4553 &bar0->pcc_err_reg, &sw_stat->pcc_err_cnt);
4556 /*check for tti_err*/
4557 if (val64 & TXDMA_TTI_INT) {
4558 if (do_s2io_chk_alarm_bit(TTI_SM_ERR_ALARM, &bar0->tti_err_reg,
4559 &sw_stat->tti_err_cnt))
4560 goto reset;
4561 do_s2io_chk_alarm_bit(TTI_ECC_SG_ERR | TTI_ECC_DB_ERR,
4562 &bar0->tti_err_reg, &sw_stat->tti_err_cnt);
4565 /*check for lso_err*/
4566 if (val64 & TXDMA_LSO_INT) {
4567 if (do_s2io_chk_alarm_bit(LSO6_ABORT | LSO7_ABORT
4568 | LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM,
4569 &bar0->lso_err_reg, &sw_stat->lso_err_cnt))
4570 goto reset;
4571 do_s2io_chk_alarm_bit(LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
4572 &bar0->lso_err_reg, &sw_stat->lso_err_cnt);
4575 /*check for tpa_err*/
4576 if (val64 & TXDMA_TPA_INT) {
4577 if (do_s2io_chk_alarm_bit(TPA_SM_ERR_ALARM, &bar0->tpa_err_reg,
4578 &sw_stat->tpa_err_cnt))
4579 goto reset;
4580 do_s2io_chk_alarm_bit(TPA_TX_FRM_DROP, &bar0->tpa_err_reg,
4581 &sw_stat->tpa_err_cnt);
4584 /*check for sm_err*/
4585 if (val64 & TXDMA_SM_INT) {
4586 if (do_s2io_chk_alarm_bit(SM_SM_ERR_ALARM, &bar0->sm_err_reg,
4587 &sw_stat->sm_err_cnt))
4588 goto reset;
4591 val64 = readq(&bar0->mac_int_status);
4592 if (val64 & MAC_INT_STATUS_TMAC_INT) {
4593 if (do_s2io_chk_alarm_bit(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR,
4594 &bar0->mac_tmac_err_reg,
4595 &sw_stat->mac_tmac_err_cnt))
4596 goto reset;
4597 do_s2io_chk_alarm_bit(TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR
4598 | TMAC_DESC_ECC_SG_ERR | TMAC_DESC_ECC_DB_ERR,
4599 &bar0->mac_tmac_err_reg,
4600 &sw_stat->mac_tmac_err_cnt);
4603 val64 = readq(&bar0->xgxs_int_status);
4604 if (val64 & XGXS_INT_STATUS_TXGXS) {
4605 if (do_s2io_chk_alarm_bit(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR,
4606 &bar0->xgxs_txgxs_err_reg,
4607 &sw_stat->xgxs_txgxs_err_cnt))
4608 goto reset;
4609 do_s2io_chk_alarm_bit(TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
4610 &bar0->xgxs_txgxs_err_reg,
4611 &sw_stat->xgxs_txgxs_err_cnt);
4614 val64 = readq(&bar0->rxdma_int_status);
4615 if (val64 & RXDMA_INT_RC_INT_M) {
4616 if (do_s2io_chk_alarm_bit(RC_PRCn_ECC_DB_ERR | RC_FTC_ECC_DB_ERR
4617 | RC_PRCn_SM_ERR_ALARM |RC_FTC_SM_ERR_ALARM,
4618 &bar0->rc_err_reg, &sw_stat->rc_err_cnt))
4619 goto reset;
4620 do_s2io_chk_alarm_bit(RC_PRCn_ECC_SG_ERR | RC_FTC_ECC_SG_ERR
4621 | RC_RDA_FAIL_WR_Rn, &bar0->rc_err_reg,
4622 &sw_stat->rc_err_cnt);
4623 if (do_s2io_chk_alarm_bit(PRC_PCI_AB_RD_Rn | PRC_PCI_AB_WR_Rn
4624 | PRC_PCI_AB_F_WR_Rn, &bar0->prc_pcix_err_reg,
4625 &sw_stat->prc_pcix_err_cnt))
4626 goto reset;
4627 do_s2io_chk_alarm_bit(PRC_PCI_DP_RD_Rn | PRC_PCI_DP_WR_Rn
4628 | PRC_PCI_DP_F_WR_Rn, &bar0->prc_pcix_err_reg,
4629 &sw_stat->prc_pcix_err_cnt);
4632 if (val64 & RXDMA_INT_RPA_INT_M) {
4633 if (do_s2io_chk_alarm_bit(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR,
4634 &bar0->rpa_err_reg, &sw_stat->rpa_err_cnt))
4635 goto reset;
4636 do_s2io_chk_alarm_bit(RPA_ECC_SG_ERR | RPA_ECC_DB_ERR,
4637 &bar0->rpa_err_reg, &sw_stat->rpa_err_cnt);
4640 if (val64 & RXDMA_INT_RDA_INT_M) {
4641 if (do_s2io_chk_alarm_bit(RDA_RXDn_ECC_DB_ERR
4642 | RDA_FRM_ECC_DB_N_AERR | RDA_SM1_ERR_ALARM
4643 | RDA_SM0_ERR_ALARM | RDA_RXD_ECC_DB_SERR,
4644 &bar0->rda_err_reg, &sw_stat->rda_err_cnt))
4645 goto reset;
4646 do_s2io_chk_alarm_bit(RDA_RXDn_ECC_SG_ERR | RDA_FRM_ECC_SG_ERR
4647 | RDA_MISC_ERR | RDA_PCIX_ERR,
4648 &bar0->rda_err_reg, &sw_stat->rda_err_cnt);
4651 if (val64 & RXDMA_INT_RTI_INT_M) {
4652 if (do_s2io_chk_alarm_bit(RTI_SM_ERR_ALARM, &bar0->rti_err_reg,
4653 &sw_stat->rti_err_cnt))
4654 goto reset;
4655 do_s2io_chk_alarm_bit(RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
4656 &bar0->rti_err_reg, &sw_stat->rti_err_cnt);
4659 val64 = readq(&bar0->mac_int_status);
4660 if (val64 & MAC_INT_STATUS_RMAC_INT) {
4661 if (do_s2io_chk_alarm_bit(RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR,
4662 &bar0->mac_rmac_err_reg,
4663 &sw_stat->mac_rmac_err_cnt))
4664 goto reset;
4665 do_s2io_chk_alarm_bit(RMAC_UNUSED_INT|RMAC_SINGLE_ECC_ERR|
4666 RMAC_DOUBLE_ECC_ERR, &bar0->mac_rmac_err_reg,
4667 &sw_stat->mac_rmac_err_cnt);
4670 val64 = readq(&bar0->xgxs_int_status);
4671 if (val64 & XGXS_INT_STATUS_RXGXS) {
4672 if (do_s2io_chk_alarm_bit(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR,
4673 &bar0->xgxs_rxgxs_err_reg,
4674 &sw_stat->xgxs_rxgxs_err_cnt))
4675 goto reset;
4678 val64 = readq(&bar0->mc_int_status);
4679 if(val64 & MC_INT_STATUS_MC_INT) {
4680 if (do_s2io_chk_alarm_bit(MC_ERR_REG_SM_ERR, &bar0->mc_err_reg,
4681 &sw_stat->mc_err_cnt))
4682 goto reset;
4684 /* Handling Ecc errors */
4685 if (val64 & (MC_ERR_REG_ECC_ALL_SNG | MC_ERR_REG_ECC_ALL_DBL)) {
4686 writeq(val64, &bar0->mc_err_reg);
4687 if (val64 & MC_ERR_REG_ECC_ALL_DBL) {
4688 sw_stat->double_ecc_errs++;
4689 if (sp->device_type != XFRAME_II_DEVICE) {
4691 * Reset XframeI only if critical error
4693 if (val64 &
4694 (MC_ERR_REG_MIRI_ECC_DB_ERR_0 |
4695 MC_ERR_REG_MIRI_ECC_DB_ERR_1))
4696 goto reset;
4698 } else
4699 sw_stat->single_ecc_errs++;
4702 return;
4704 reset:
4705 s2io_stop_all_tx_queue(sp);
4706 schedule_work(&sp->rst_timer_task);
4707 sw_stat->soft_reset_cnt++;
4708 return;
4712 * s2io_isr - ISR handler of the device .
4713 * @irq: the irq of the device.
4714 * @dev_id: a void pointer to the dev structure of the NIC.
4715 * Description: This function is the ISR handler of the device. It
4716 * identifies the reason for the interrupt and calls the relevant
4717 * service routines. As a contongency measure, this ISR allocates the
4718 * recv buffers, if their numbers are below the panic value which is
4719 * presently set to 25% of the original number of rcv buffers allocated.
4720 * Return value:
4721 * IRQ_HANDLED: will be returned if IRQ was handled by this routine
4722 * IRQ_NONE: will be returned if interrupt is not from our device
4724 static irqreturn_t s2io_isr(int irq, void *dev_id)
4726 struct net_device *dev = (struct net_device *) dev_id;
4727 struct s2io_nic *sp = dev->priv;
4728 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4729 int i;
4730 u64 reason = 0;
4731 struct mac_info *mac_control;
4732 struct config_param *config;
4734 /* Pretend we handled any irq's from a disconnected card */
4735 if (pci_channel_offline(sp->pdev))
4736 return IRQ_NONE;
4738 if (!is_s2io_card_up(sp))
4739 return IRQ_NONE;
4741 mac_control = &sp->mac_control;
4742 config = &sp->config;
4745 * Identify the cause for interrupt and call the appropriate
4746 * interrupt handler. Causes for the interrupt could be;
4747 * 1. Rx of packet.
4748 * 2. Tx complete.
4749 * 3. Link down.
4751 reason = readq(&bar0->general_int_status);
4753 if (unlikely(reason == S2IO_MINUS_ONE) ) {
4754 /* Nothing much can be done. Get out */
4755 return IRQ_HANDLED;
4758 if (reason & (GEN_INTR_RXTRAFFIC |
4759 GEN_INTR_TXTRAFFIC | GEN_INTR_TXPIC))
4761 writeq(S2IO_MINUS_ONE, &bar0->general_int_mask);
4763 if (config->napi) {
4764 if (reason & GEN_INTR_RXTRAFFIC) {
4765 if (likely(netif_rx_schedule_prep(dev,
4766 &sp->napi))) {
4767 __netif_rx_schedule(dev, &sp->napi);
4768 writeq(S2IO_MINUS_ONE,
4769 &bar0->rx_traffic_mask);
4770 } else
4771 writeq(S2IO_MINUS_ONE,
4772 &bar0->rx_traffic_int);
4774 } else {
4776 * rx_traffic_int reg is an R1 register, writing all 1's
4777 * will ensure that the actual interrupt causing bit
4778 * get's cleared and hence a read can be avoided.
4780 if (reason & GEN_INTR_RXTRAFFIC)
4781 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
4783 for (i = 0; i < config->rx_ring_num; i++)
4784 rx_intr_handler(&mac_control->rings[i]);
4788 * tx_traffic_int reg is an R1 register, writing all 1's
4789 * will ensure that the actual interrupt causing bit get's
4790 * cleared and hence a read can be avoided.
4792 if (reason & GEN_INTR_TXTRAFFIC)
4793 writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
4795 for (i = 0; i < config->tx_fifo_num; i++)
4796 tx_intr_handler(&mac_control->fifos[i]);
4798 if (reason & GEN_INTR_TXPIC)
4799 s2io_txpic_intr_handle(sp);
4802 * Reallocate the buffers from the interrupt handler itself.
4804 if (!config->napi) {
4805 for (i = 0; i < config->rx_ring_num; i++)
4806 s2io_chk_rx_buffers(&mac_control->rings[i]);
4808 writeq(sp->general_int_mask, &bar0->general_int_mask);
4809 readl(&bar0->general_int_status);
4811 return IRQ_HANDLED;
4814 else if (!reason) {
4815 /* The interrupt was not raised by us */
4816 return IRQ_NONE;
4819 return IRQ_HANDLED;
4823 * s2io_updt_stats -
4825 static void s2io_updt_stats(struct s2io_nic *sp)
4827 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4828 u64 val64;
4829 int cnt = 0;
4831 if (is_s2io_card_up(sp)) {
4832 /* Apprx 30us on a 133 MHz bus */
4833 val64 = SET_UPDT_CLICKS(10) |
4834 STAT_CFG_ONE_SHOT_EN | STAT_CFG_STAT_EN;
4835 writeq(val64, &bar0->stat_cfg);
4836 do {
4837 udelay(100);
4838 val64 = readq(&bar0->stat_cfg);
4839 if (!(val64 & s2BIT(0)))
4840 break;
4841 cnt++;
4842 if (cnt == 5)
4843 break; /* Updt failed */
4844 } while(1);
4849 * s2io_get_stats - Updates the device statistics structure.
4850 * @dev : pointer to the device structure.
4851 * Description:
4852 * This function updates the device statistics structure in the s2io_nic
4853 * structure and returns a pointer to the same.
4854 * Return value:
4855 * pointer to the updated net_device_stats structure.
4858 static struct net_device_stats *s2io_get_stats(struct net_device *dev)
4860 struct s2io_nic *sp = dev->priv;
4861 struct mac_info *mac_control;
4862 struct config_param *config;
4863 int i;
4866 mac_control = &sp->mac_control;
4867 config = &sp->config;
4869 /* Configure Stats for immediate updt */
4870 s2io_updt_stats(sp);
4872 sp->stats.tx_packets =
4873 le32_to_cpu(mac_control->stats_info->tmac_frms);
4874 sp->stats.tx_errors =
4875 le32_to_cpu(mac_control->stats_info->tmac_any_err_frms);
4876 sp->stats.rx_errors =
4877 le64_to_cpu(mac_control->stats_info->rmac_drop_frms);
4878 sp->stats.multicast =
4879 le32_to_cpu(mac_control->stats_info->rmac_vld_mcst_frms);
4880 sp->stats.rx_length_errors =
4881 le64_to_cpu(mac_control->stats_info->rmac_long_frms);
4883 /* collect per-ring rx_packets and rx_bytes */
4884 sp->stats.rx_packets = sp->stats.rx_bytes = 0;
4885 for (i = 0; i < config->rx_ring_num; i++) {
4886 sp->stats.rx_packets += mac_control->rings[i].rx_packets;
4887 sp->stats.rx_bytes += mac_control->rings[i].rx_bytes;
4890 return (&sp->stats);
4894 * s2io_set_multicast - entry point for multicast address enable/disable.
4895 * @dev : pointer to the device structure
4896 * Description:
4897 * This function is a driver entry point which gets called by the kernel
4898 * whenever multicast addresses must be enabled/disabled. This also gets
4899 * called to set/reset promiscuous mode. Depending on the deivce flag, we
4900 * determine, if multicast address must be enabled or if promiscuous mode
4901 * is to be disabled etc.
4902 * Return value:
4903 * void.
4906 static void s2io_set_multicast(struct net_device *dev)
4908 int i, j, prev_cnt;
4909 struct dev_mc_list *mclist;
4910 struct s2io_nic *sp = dev->priv;
4911 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4912 u64 val64 = 0, multi_mac = 0x010203040506ULL, mask =
4913 0xfeffffffffffULL;
4914 u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, mac_addr = 0;
4915 void __iomem *add;
4916 struct config_param *config = &sp->config;
4918 if ((dev->flags & IFF_ALLMULTI) && (!sp->m_cast_flg)) {
4919 /* Enable all Multicast addresses */
4920 writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac),
4921 &bar0->rmac_addr_data0_mem);
4922 writeq(RMAC_ADDR_DATA1_MEM_MASK(mask),
4923 &bar0->rmac_addr_data1_mem);
4924 val64 = RMAC_ADDR_CMD_MEM_WE |
4925 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4926 RMAC_ADDR_CMD_MEM_OFFSET(config->max_mc_addr - 1);
4927 writeq(val64, &bar0->rmac_addr_cmd_mem);
4928 /* Wait till command completes */
4929 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4930 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4931 S2IO_BIT_RESET);
4933 sp->m_cast_flg = 1;
4934 sp->all_multi_pos = config->max_mc_addr - 1;
4935 } else if ((dev->flags & IFF_ALLMULTI) && (sp->m_cast_flg)) {
4936 /* Disable all Multicast addresses */
4937 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
4938 &bar0->rmac_addr_data0_mem);
4939 writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0),
4940 &bar0->rmac_addr_data1_mem);
4941 val64 = RMAC_ADDR_CMD_MEM_WE |
4942 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4943 RMAC_ADDR_CMD_MEM_OFFSET(sp->all_multi_pos);
4944 writeq(val64, &bar0->rmac_addr_cmd_mem);
4945 /* Wait till command completes */
4946 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4947 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4948 S2IO_BIT_RESET);
4950 sp->m_cast_flg = 0;
4951 sp->all_multi_pos = 0;
4954 if ((dev->flags & IFF_PROMISC) && (!sp->promisc_flg)) {
4955 /* Put the NIC into promiscuous mode */
4956 add = &bar0->mac_cfg;
4957 val64 = readq(&bar0->mac_cfg);
4958 val64 |= MAC_CFG_RMAC_PROM_ENABLE;
4960 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4961 writel((u32) val64, add);
4962 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4963 writel((u32) (val64 >> 32), (add + 4));
4965 if (vlan_tag_strip != 1) {
4966 val64 = readq(&bar0->rx_pa_cfg);
4967 val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
4968 writeq(val64, &bar0->rx_pa_cfg);
4969 vlan_strip_flag = 0;
4972 val64 = readq(&bar0->mac_cfg);
4973 sp->promisc_flg = 1;
4974 DBG_PRINT(INFO_DBG, "%s: entered promiscuous mode\n",
4975 dev->name);
4976 } else if (!(dev->flags & IFF_PROMISC) && (sp->promisc_flg)) {
4977 /* Remove the NIC from promiscuous mode */
4978 add = &bar0->mac_cfg;
4979 val64 = readq(&bar0->mac_cfg);
4980 val64 &= ~MAC_CFG_RMAC_PROM_ENABLE;
4982 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4983 writel((u32) val64, add);
4984 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4985 writel((u32) (val64 >> 32), (add + 4));
4987 if (vlan_tag_strip != 0) {
4988 val64 = readq(&bar0->rx_pa_cfg);
4989 val64 |= RX_PA_CFG_STRIP_VLAN_TAG;
4990 writeq(val64, &bar0->rx_pa_cfg);
4991 vlan_strip_flag = 1;
4994 val64 = readq(&bar0->mac_cfg);
4995 sp->promisc_flg = 0;
4996 DBG_PRINT(INFO_DBG, "%s: left promiscuous mode\n",
4997 dev->name);
5000 /* Update individual M_CAST address list */
5001 if ((!sp->m_cast_flg) && dev->mc_count) {
5002 if (dev->mc_count >
5003 (config->max_mc_addr - config->max_mac_addr)) {
5004 DBG_PRINT(ERR_DBG, "%s: No more Rx filters ",
5005 dev->name);
5006 DBG_PRINT(ERR_DBG, "can be added, please enable ");
5007 DBG_PRINT(ERR_DBG, "ALL_MULTI instead\n");
5008 return;
5011 prev_cnt = sp->mc_addr_count;
5012 sp->mc_addr_count = dev->mc_count;
5014 /* Clear out the previous list of Mc in the H/W. */
5015 for (i = 0; i < prev_cnt; i++) {
5016 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
5017 &bar0->rmac_addr_data0_mem);
5018 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
5019 &bar0->rmac_addr_data1_mem);
5020 val64 = RMAC_ADDR_CMD_MEM_WE |
5021 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5022 RMAC_ADDR_CMD_MEM_OFFSET
5023 (config->mc_start_offset + i);
5024 writeq(val64, &bar0->rmac_addr_cmd_mem);
5026 /* Wait for command completes */
5027 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5028 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5029 S2IO_BIT_RESET)) {
5030 DBG_PRINT(ERR_DBG, "%s: Adding ",
5031 dev->name);
5032 DBG_PRINT(ERR_DBG, "Multicasts failed\n");
5033 return;
5037 /* Create the new Rx filter list and update the same in H/W. */
5038 for (i = 0, mclist = dev->mc_list; i < dev->mc_count;
5039 i++, mclist = mclist->next) {
5040 memcpy(sp->usr_addrs[i].addr, mclist->dmi_addr,
5041 ETH_ALEN);
5042 mac_addr = 0;
5043 for (j = 0; j < ETH_ALEN; j++) {
5044 mac_addr |= mclist->dmi_addr[j];
5045 mac_addr <<= 8;
5047 mac_addr >>= 8;
5048 writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
5049 &bar0->rmac_addr_data0_mem);
5050 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
5051 &bar0->rmac_addr_data1_mem);
5052 val64 = RMAC_ADDR_CMD_MEM_WE |
5053 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5054 RMAC_ADDR_CMD_MEM_OFFSET
5055 (i + config->mc_start_offset);
5056 writeq(val64, &bar0->rmac_addr_cmd_mem);
5058 /* Wait for command completes */
5059 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5060 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5061 S2IO_BIT_RESET)) {
5062 DBG_PRINT(ERR_DBG, "%s: Adding ",
5063 dev->name);
5064 DBG_PRINT(ERR_DBG, "Multicasts failed\n");
5065 return;
5071 /* read from CAM unicast & multicast addresses and store it in
5072 * def_mac_addr structure
5074 void do_s2io_store_unicast_mc(struct s2io_nic *sp)
5076 int offset;
5077 u64 mac_addr = 0x0;
5078 struct config_param *config = &sp->config;
5080 /* store unicast & multicast mac addresses */
5081 for (offset = 0; offset < config->max_mc_addr; offset++) {
5082 mac_addr = do_s2io_read_unicast_mc(sp, offset);
5083 /* if read fails disable the entry */
5084 if (mac_addr == FAILURE)
5085 mac_addr = S2IO_DISABLE_MAC_ENTRY;
5086 do_s2io_copy_mac_addr(sp, offset, mac_addr);
5090 /* restore unicast & multicast MAC to CAM from def_mac_addr structure */
5091 static void do_s2io_restore_unicast_mc(struct s2io_nic *sp)
5093 int offset;
5094 struct config_param *config = &sp->config;
5095 /* restore unicast mac address */
5096 for (offset = 0; offset < config->max_mac_addr; offset++)
5097 do_s2io_prog_unicast(sp->dev,
5098 sp->def_mac_addr[offset].mac_addr);
5100 /* restore multicast mac address */
5101 for (offset = config->mc_start_offset;
5102 offset < config->max_mc_addr; offset++)
5103 do_s2io_add_mc(sp, sp->def_mac_addr[offset].mac_addr);
5106 /* add a multicast MAC address to CAM */
5107 static int do_s2io_add_mc(struct s2io_nic *sp, u8 *addr)
5109 int i;
5110 u64 mac_addr = 0;
5111 struct config_param *config = &sp->config;
5113 for (i = 0; i < ETH_ALEN; i++) {
5114 mac_addr <<= 8;
5115 mac_addr |= addr[i];
5117 if ((0ULL == mac_addr) || (mac_addr == S2IO_DISABLE_MAC_ENTRY))
5118 return SUCCESS;
5120 /* check if the multicast mac already preset in CAM */
5121 for (i = config->mc_start_offset; i < config->max_mc_addr; i++) {
5122 u64 tmp64;
5123 tmp64 = do_s2io_read_unicast_mc(sp, i);
5124 if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */
5125 break;
5127 if (tmp64 == mac_addr)
5128 return SUCCESS;
5130 if (i == config->max_mc_addr) {
5131 DBG_PRINT(ERR_DBG,
5132 "CAM full no space left for multicast MAC\n");
5133 return FAILURE;
5135 /* Update the internal structure with this new mac address */
5136 do_s2io_copy_mac_addr(sp, i, mac_addr);
5138 return (do_s2io_add_mac(sp, mac_addr, i));
5141 /* add MAC address to CAM */
5142 static int do_s2io_add_mac(struct s2io_nic *sp, u64 addr, int off)
5144 u64 val64;
5145 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5147 writeq(RMAC_ADDR_DATA0_MEM_ADDR(addr),
5148 &bar0->rmac_addr_data0_mem);
5150 val64 =
5151 RMAC_ADDR_CMD_MEM_WE | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5152 RMAC_ADDR_CMD_MEM_OFFSET(off);
5153 writeq(val64, &bar0->rmac_addr_cmd_mem);
5155 /* Wait till command completes */
5156 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5157 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5158 S2IO_BIT_RESET)) {
5159 DBG_PRINT(INFO_DBG, "do_s2io_add_mac failed\n");
5160 return FAILURE;
5162 return SUCCESS;
5164 /* deletes a specified unicast/multicast mac entry from CAM */
5165 static int do_s2io_delete_unicast_mc(struct s2io_nic *sp, u64 addr)
5167 int offset;
5168 u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, tmp64;
5169 struct config_param *config = &sp->config;
5171 for (offset = 1;
5172 offset < config->max_mc_addr; offset++) {
5173 tmp64 = do_s2io_read_unicast_mc(sp, offset);
5174 if (tmp64 == addr) {
5175 /* disable the entry by writing 0xffffffffffffULL */
5176 if (do_s2io_add_mac(sp, dis_addr, offset) == FAILURE)
5177 return FAILURE;
5178 /* store the new mac list from CAM */
5179 do_s2io_store_unicast_mc(sp);
5180 return SUCCESS;
5183 DBG_PRINT(ERR_DBG, "MAC address 0x%llx not found in CAM\n",
5184 (unsigned long long)addr);
5185 return FAILURE;
5188 /* read mac entries from CAM */
5189 static u64 do_s2io_read_unicast_mc(struct s2io_nic *sp, int offset)
5191 u64 tmp64 = 0xffffffffffff0000ULL, val64;
5192 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5194 /* read mac addr */
5195 val64 =
5196 RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5197 RMAC_ADDR_CMD_MEM_OFFSET(offset);
5198 writeq(val64, &bar0->rmac_addr_cmd_mem);
5200 /* Wait till command completes */
5201 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5202 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5203 S2IO_BIT_RESET)) {
5204 DBG_PRINT(INFO_DBG, "do_s2io_read_unicast_mc failed\n");
5205 return FAILURE;
5207 tmp64 = readq(&bar0->rmac_addr_data0_mem);
5208 return (tmp64 >> 16);
5212 * s2io_set_mac_addr driver entry point
5215 static int s2io_set_mac_addr(struct net_device *dev, void *p)
5217 struct sockaddr *addr = p;
5219 if (!is_valid_ether_addr(addr->sa_data))
5220 return -EINVAL;
5222 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
5224 /* store the MAC address in CAM */
5225 return (do_s2io_prog_unicast(dev, dev->dev_addr));
5228 * do_s2io_prog_unicast - Programs the Xframe mac address
5229 * @dev : pointer to the device structure.
5230 * @addr: a uchar pointer to the new mac address which is to be set.
5231 * Description : This procedure will program the Xframe to receive
5232 * frames with new Mac Address
5233 * Return value: SUCCESS on success and an appropriate (-)ve integer
5234 * as defined in errno.h file on failure.
5237 static int do_s2io_prog_unicast(struct net_device *dev, u8 *addr)
5239 struct s2io_nic *sp = dev->priv;
5240 register u64 mac_addr = 0, perm_addr = 0;
5241 int i;
5242 u64 tmp64;
5243 struct config_param *config = &sp->config;
5246 * Set the new MAC address as the new unicast filter and reflect this
5247 * change on the device address registered with the OS. It will be
5248 * at offset 0.
5250 for (i = 0; i < ETH_ALEN; i++) {
5251 mac_addr <<= 8;
5252 mac_addr |= addr[i];
5253 perm_addr <<= 8;
5254 perm_addr |= sp->def_mac_addr[0].mac_addr[i];
5257 /* check if the dev_addr is different than perm_addr */
5258 if (mac_addr == perm_addr)
5259 return SUCCESS;
5261 /* check if the mac already preset in CAM */
5262 for (i = 1; i < config->max_mac_addr; i++) {
5263 tmp64 = do_s2io_read_unicast_mc(sp, i);
5264 if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */
5265 break;
5267 if (tmp64 == mac_addr) {
5268 DBG_PRINT(INFO_DBG,
5269 "MAC addr:0x%llx already present in CAM\n",
5270 (unsigned long long)mac_addr);
5271 return SUCCESS;
5274 if (i == config->max_mac_addr) {
5275 DBG_PRINT(ERR_DBG, "CAM full no space left for Unicast MAC\n");
5276 return FAILURE;
5278 /* Update the internal structure with this new mac address */
5279 do_s2io_copy_mac_addr(sp, i, mac_addr);
5280 return (do_s2io_add_mac(sp, mac_addr, i));
5284 * s2io_ethtool_sset - Sets different link parameters.
5285 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
5286 * @info: pointer to the structure with parameters given by ethtool to set
5287 * link information.
5288 * Description:
5289 * The function sets different link parameters provided by the user onto
5290 * the NIC.
5291 * Return value:
5292 * 0 on success.
5295 static int s2io_ethtool_sset(struct net_device *dev,
5296 struct ethtool_cmd *info)
5298 struct s2io_nic *sp = dev->priv;
5299 if ((info->autoneg == AUTONEG_ENABLE) ||
5300 (info->speed != SPEED_10000) || (info->duplex != DUPLEX_FULL))
5301 return -EINVAL;
5302 else {
5303 s2io_close(sp->dev);
5304 s2io_open(sp->dev);
5307 return 0;
5311 * s2io_ethtol_gset - Return link specific information.
5312 * @sp : private member of the device structure, pointer to the
5313 * s2io_nic structure.
5314 * @info : pointer to the structure with parameters given by ethtool
5315 * to return link information.
5316 * Description:
5317 * Returns link specific information like speed, duplex etc.. to ethtool.
5318 * Return value :
5319 * return 0 on success.
5322 static int s2io_ethtool_gset(struct net_device *dev, struct ethtool_cmd *info)
5324 struct s2io_nic *sp = dev->priv;
5325 info->supported = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
5326 info->advertising = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
5327 info->port = PORT_FIBRE;
5329 /* info->transceiver */
5330 info->transceiver = XCVR_EXTERNAL;
5332 if (netif_carrier_ok(sp->dev)) {
5333 info->speed = 10000;
5334 info->duplex = DUPLEX_FULL;
5335 } else {
5336 info->speed = -1;
5337 info->duplex = -1;
5340 info->autoneg = AUTONEG_DISABLE;
5341 return 0;
5345 * s2io_ethtool_gdrvinfo - Returns driver specific information.
5346 * @sp : private member of the device structure, which is a pointer to the
5347 * s2io_nic structure.
5348 * @info : pointer to the structure with parameters given by ethtool to
5349 * return driver information.
5350 * Description:
5351 * Returns driver specefic information like name, version etc.. to ethtool.
5352 * Return value:
5353 * void
5356 static void s2io_ethtool_gdrvinfo(struct net_device *dev,
5357 struct ethtool_drvinfo *info)
5359 struct s2io_nic *sp = dev->priv;
5361 strncpy(info->driver, s2io_driver_name, sizeof(info->driver));
5362 strncpy(info->version, s2io_driver_version, sizeof(info->version));
5363 strncpy(info->fw_version, "", sizeof(info->fw_version));
5364 strncpy(info->bus_info, pci_name(sp->pdev), sizeof(info->bus_info));
5365 info->regdump_len = XENA_REG_SPACE;
5366 info->eedump_len = XENA_EEPROM_SPACE;
5370 * s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer.
5371 * @sp: private member of the device structure, which is a pointer to the
5372 * s2io_nic structure.
5373 * @regs : pointer to the structure with parameters given by ethtool for
5374 * dumping the registers.
5375 * @reg_space: The input argumnet into which all the registers are dumped.
5376 * Description:
5377 * Dumps the entire register space of xFrame NIC into the user given
5378 * buffer area.
5379 * Return value :
5380 * void .
5383 static void s2io_ethtool_gregs(struct net_device *dev,
5384 struct ethtool_regs *regs, void *space)
5386 int i;
5387 u64 reg;
5388 u8 *reg_space = (u8 *) space;
5389 struct s2io_nic *sp = dev->priv;
5391 regs->len = XENA_REG_SPACE;
5392 regs->version = sp->pdev->subsystem_device;
5394 for (i = 0; i < regs->len; i += 8) {
5395 reg = readq(sp->bar0 + i);
5396 memcpy((reg_space + i), &reg, 8);
5401 * s2io_phy_id - timer function that alternates adapter LED.
5402 * @data : address of the private member of the device structure, which
5403 * is a pointer to the s2io_nic structure, provided as an u32.
5404 * Description: This is actually the timer function that alternates the
5405 * adapter LED bit of the adapter control bit to set/reset every time on
5406 * invocation. The timer is set for 1/2 a second, hence tha NIC blinks
5407 * once every second.
5409 static void s2io_phy_id(unsigned long data)
5411 struct s2io_nic *sp = (struct s2io_nic *) data;
5412 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5413 u64 val64 = 0;
5414 u16 subid;
5416 subid = sp->pdev->subsystem_device;
5417 if ((sp->device_type == XFRAME_II_DEVICE) ||
5418 ((subid & 0xFF) >= 0x07)) {
5419 val64 = readq(&bar0->gpio_control);
5420 val64 ^= GPIO_CTRL_GPIO_0;
5421 writeq(val64, &bar0->gpio_control);
5422 } else {
5423 val64 = readq(&bar0->adapter_control);
5424 val64 ^= ADAPTER_LED_ON;
5425 writeq(val64, &bar0->adapter_control);
5428 mod_timer(&sp->id_timer, jiffies + HZ / 2);
5432 * s2io_ethtool_idnic - To physically identify the nic on the system.
5433 * @sp : private member of the device structure, which is a pointer to the
5434 * s2io_nic structure.
5435 * @id : pointer to the structure with identification parameters given by
5436 * ethtool.
5437 * Description: Used to physically identify the NIC on the system.
5438 * The Link LED will blink for a time specified by the user for
5439 * identification.
5440 * NOTE: The Link has to be Up to be able to blink the LED. Hence
5441 * identification is possible only if it's link is up.
5442 * Return value:
5443 * int , returns 0 on success
5446 static int s2io_ethtool_idnic(struct net_device *dev, u32 data)
5448 u64 val64 = 0, last_gpio_ctrl_val;
5449 struct s2io_nic *sp = dev->priv;
5450 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5451 u16 subid;
5453 subid = sp->pdev->subsystem_device;
5454 last_gpio_ctrl_val = readq(&bar0->gpio_control);
5455 if ((sp->device_type == XFRAME_I_DEVICE) &&
5456 ((subid & 0xFF) < 0x07)) {
5457 val64 = readq(&bar0->adapter_control);
5458 if (!(val64 & ADAPTER_CNTL_EN)) {
5459 printk(KERN_ERR
5460 "Adapter Link down, cannot blink LED\n");
5461 return -EFAULT;
5464 if (sp->id_timer.function == NULL) {
5465 init_timer(&sp->id_timer);
5466 sp->id_timer.function = s2io_phy_id;
5467 sp->id_timer.data = (unsigned long) sp;
5469 mod_timer(&sp->id_timer, jiffies);
5470 if (data)
5471 msleep_interruptible(data * HZ);
5472 else
5473 msleep_interruptible(MAX_FLICKER_TIME);
5474 del_timer_sync(&sp->id_timer);
5476 if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp->device_type, subid)) {
5477 writeq(last_gpio_ctrl_val, &bar0->gpio_control);
5478 last_gpio_ctrl_val = readq(&bar0->gpio_control);
5481 return 0;
5484 static void s2io_ethtool_gringparam(struct net_device *dev,
5485 struct ethtool_ringparam *ering)
5487 struct s2io_nic *sp = dev->priv;
5488 int i,tx_desc_count=0,rx_desc_count=0;
5490 if (sp->rxd_mode == RXD_MODE_1)
5491 ering->rx_max_pending = MAX_RX_DESC_1;
5492 else if (sp->rxd_mode == RXD_MODE_3B)
5493 ering->rx_max_pending = MAX_RX_DESC_2;
5495 ering->tx_max_pending = MAX_TX_DESC;
5496 for (i = 0 ; i < sp->config.tx_fifo_num ; i++)
5497 tx_desc_count += sp->config.tx_cfg[i].fifo_len;
5499 DBG_PRINT(INFO_DBG,"\nmax txds : %d\n",sp->config.max_txds);
5500 ering->tx_pending = tx_desc_count;
5501 rx_desc_count = 0;
5502 for (i = 0 ; i < sp->config.rx_ring_num ; i++)
5503 rx_desc_count += sp->config.rx_cfg[i].num_rxd;
5505 ering->rx_pending = rx_desc_count;
5507 ering->rx_mini_max_pending = 0;
5508 ering->rx_mini_pending = 0;
5509 if(sp->rxd_mode == RXD_MODE_1)
5510 ering->rx_jumbo_max_pending = MAX_RX_DESC_1;
5511 else if (sp->rxd_mode == RXD_MODE_3B)
5512 ering->rx_jumbo_max_pending = MAX_RX_DESC_2;
5513 ering->rx_jumbo_pending = rx_desc_count;
5517 * s2io_ethtool_getpause_data -Pause frame frame generation and reception.
5518 * @sp : private member of the device structure, which is a pointer to the
5519 * s2io_nic structure.
5520 * @ep : pointer to the structure with pause parameters given by ethtool.
5521 * Description:
5522 * Returns the Pause frame generation and reception capability of the NIC.
5523 * Return value:
5524 * void
5526 static void s2io_ethtool_getpause_data(struct net_device *dev,
5527 struct ethtool_pauseparam *ep)
5529 u64 val64;
5530 struct s2io_nic *sp = dev->priv;
5531 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5533 val64 = readq(&bar0->rmac_pause_cfg);
5534 if (val64 & RMAC_PAUSE_GEN_ENABLE)
5535 ep->tx_pause = TRUE;
5536 if (val64 & RMAC_PAUSE_RX_ENABLE)
5537 ep->rx_pause = TRUE;
5538 ep->autoneg = FALSE;
5542 * s2io_ethtool_setpause_data - set/reset pause frame generation.
5543 * @sp : private member of the device structure, which is a pointer to the
5544 * s2io_nic structure.
5545 * @ep : pointer to the structure with pause parameters given by ethtool.
5546 * Description:
5547 * It can be used to set or reset Pause frame generation or reception
5548 * support of the NIC.
5549 * Return value:
5550 * int, returns 0 on Success
5553 static int s2io_ethtool_setpause_data(struct net_device *dev,
5554 struct ethtool_pauseparam *ep)
5556 u64 val64;
5557 struct s2io_nic *sp = dev->priv;
5558 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5560 val64 = readq(&bar0->rmac_pause_cfg);
5561 if (ep->tx_pause)
5562 val64 |= RMAC_PAUSE_GEN_ENABLE;
5563 else
5564 val64 &= ~RMAC_PAUSE_GEN_ENABLE;
5565 if (ep->rx_pause)
5566 val64 |= RMAC_PAUSE_RX_ENABLE;
5567 else
5568 val64 &= ~RMAC_PAUSE_RX_ENABLE;
5569 writeq(val64, &bar0->rmac_pause_cfg);
5570 return 0;
5574 * read_eeprom - reads 4 bytes of data from user given offset.
5575 * @sp : private member of the device structure, which is a pointer to the
5576 * s2io_nic structure.
5577 * @off : offset at which the data must be written
5578 * @data : Its an output parameter where the data read at the given
5579 * offset is stored.
5580 * Description:
5581 * Will read 4 bytes of data from the user given offset and return the
5582 * read data.
5583 * NOTE: Will allow to read only part of the EEPROM visible through the
5584 * I2C bus.
5585 * Return value:
5586 * -1 on failure and 0 on success.
5589 #define S2IO_DEV_ID 5
5590 static int read_eeprom(struct s2io_nic * sp, int off, u64 * data)
5592 int ret = -1;
5593 u32 exit_cnt = 0;
5594 u64 val64;
5595 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5597 if (sp->device_type == XFRAME_I_DEVICE) {
5598 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
5599 I2C_CONTROL_BYTE_CNT(0x3) | I2C_CONTROL_READ |
5600 I2C_CONTROL_CNTL_START;
5601 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
5603 while (exit_cnt < 5) {
5604 val64 = readq(&bar0->i2c_control);
5605 if (I2C_CONTROL_CNTL_END(val64)) {
5606 *data = I2C_CONTROL_GET_DATA(val64);
5607 ret = 0;
5608 break;
5610 msleep(50);
5611 exit_cnt++;
5615 if (sp->device_type == XFRAME_II_DEVICE) {
5616 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
5617 SPI_CONTROL_BYTECNT(0x3) |
5618 SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off);
5619 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5620 val64 |= SPI_CONTROL_REQ;
5621 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5622 while (exit_cnt < 5) {
5623 val64 = readq(&bar0->spi_control);
5624 if (val64 & SPI_CONTROL_NACK) {
5625 ret = 1;
5626 break;
5627 } else if (val64 & SPI_CONTROL_DONE) {
5628 *data = readq(&bar0->spi_data);
5629 *data &= 0xffffff;
5630 ret = 0;
5631 break;
5633 msleep(50);
5634 exit_cnt++;
5637 return ret;
5641 * write_eeprom - actually writes the relevant part of the data value.
5642 * @sp : private member of the device structure, which is a pointer to the
5643 * s2io_nic structure.
5644 * @off : offset at which the data must be written
5645 * @data : The data that is to be written
5646 * @cnt : Number of bytes of the data that are actually to be written into
5647 * the Eeprom. (max of 3)
5648 * Description:
5649 * Actually writes the relevant part of the data value into the Eeprom
5650 * through the I2C bus.
5651 * Return value:
5652 * 0 on success, -1 on failure.
5655 static int write_eeprom(struct s2io_nic * sp, int off, u64 data, int cnt)
5657 int exit_cnt = 0, ret = -1;
5658 u64 val64;
5659 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5661 if (sp->device_type == XFRAME_I_DEVICE) {
5662 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
5663 I2C_CONTROL_BYTE_CNT(cnt) | I2C_CONTROL_SET_DATA((u32)data) |
5664 I2C_CONTROL_CNTL_START;
5665 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
5667 while (exit_cnt < 5) {
5668 val64 = readq(&bar0->i2c_control);
5669 if (I2C_CONTROL_CNTL_END(val64)) {
5670 if (!(val64 & I2C_CONTROL_NACK))
5671 ret = 0;
5672 break;
5674 msleep(50);
5675 exit_cnt++;
5679 if (sp->device_type == XFRAME_II_DEVICE) {
5680 int write_cnt = (cnt == 8) ? 0 : cnt;
5681 writeq(SPI_DATA_WRITE(data,(cnt<<3)), &bar0->spi_data);
5683 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
5684 SPI_CONTROL_BYTECNT(write_cnt) |
5685 SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off);
5686 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5687 val64 |= SPI_CONTROL_REQ;
5688 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5689 while (exit_cnt < 5) {
5690 val64 = readq(&bar0->spi_control);
5691 if (val64 & SPI_CONTROL_NACK) {
5692 ret = 1;
5693 break;
5694 } else if (val64 & SPI_CONTROL_DONE) {
5695 ret = 0;
5696 break;
5698 msleep(50);
5699 exit_cnt++;
5702 return ret;
5704 static void s2io_vpd_read(struct s2io_nic *nic)
5706 u8 *vpd_data;
5707 u8 data;
5708 int i=0, cnt, fail = 0;
5709 int vpd_addr = 0x80;
5711 if (nic->device_type == XFRAME_II_DEVICE) {
5712 strcpy(nic->product_name, "Xframe II 10GbE network adapter");
5713 vpd_addr = 0x80;
5715 else {
5716 strcpy(nic->product_name, "Xframe I 10GbE network adapter");
5717 vpd_addr = 0x50;
5719 strcpy(nic->serial_num, "NOT AVAILABLE");
5721 vpd_data = kmalloc(256, GFP_KERNEL);
5722 if (!vpd_data) {
5723 nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
5724 return;
5726 nic->mac_control.stats_info->sw_stat.mem_allocated += 256;
5728 for (i = 0; i < 256; i +=4 ) {
5729 pci_write_config_byte(nic->pdev, (vpd_addr + 2), i);
5730 pci_read_config_byte(nic->pdev, (vpd_addr + 2), &data);
5731 pci_write_config_byte(nic->pdev, (vpd_addr + 3), 0);
5732 for (cnt = 0; cnt <5; cnt++) {
5733 msleep(2);
5734 pci_read_config_byte(nic->pdev, (vpd_addr + 3), &data);
5735 if (data == 0x80)
5736 break;
5738 if (cnt >= 5) {
5739 DBG_PRINT(ERR_DBG, "Read of VPD data failed\n");
5740 fail = 1;
5741 break;
5743 pci_read_config_dword(nic->pdev, (vpd_addr + 4),
5744 (u32 *)&vpd_data[i]);
5747 if(!fail) {
5748 /* read serial number of adapter */
5749 for (cnt = 0; cnt < 256; cnt++) {
5750 if ((vpd_data[cnt] == 'S') &&
5751 (vpd_data[cnt+1] == 'N') &&
5752 (vpd_data[cnt+2] < VPD_STRING_LEN)) {
5753 memset(nic->serial_num, 0, VPD_STRING_LEN);
5754 memcpy(nic->serial_num, &vpd_data[cnt + 3],
5755 vpd_data[cnt+2]);
5756 break;
5761 if ((!fail) && (vpd_data[1] < VPD_STRING_LEN)) {
5762 memset(nic->product_name, 0, vpd_data[1]);
5763 memcpy(nic->product_name, &vpd_data[3], vpd_data[1]);
5765 kfree(vpd_data);
5766 nic->mac_control.stats_info->sw_stat.mem_freed += 256;
5770 * s2io_ethtool_geeprom - reads the value stored in the Eeprom.
5771 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
5772 * @eeprom : pointer to the user level structure provided by ethtool,
5773 * containing all relevant information.
5774 * @data_buf : user defined value to be written into Eeprom.
5775 * Description: Reads the values stored in the Eeprom at given offset
5776 * for a given length. Stores these values int the input argument data
5777 * buffer 'data_buf' and returns these to the caller (ethtool.)
5778 * Return value:
5779 * int 0 on success
5782 static int s2io_ethtool_geeprom(struct net_device *dev,
5783 struct ethtool_eeprom *eeprom, u8 * data_buf)
5785 u32 i, valid;
5786 u64 data;
5787 struct s2io_nic *sp = dev->priv;
5789 eeprom->magic = sp->pdev->vendor | (sp->pdev->device << 16);
5791 if ((eeprom->offset + eeprom->len) > (XENA_EEPROM_SPACE))
5792 eeprom->len = XENA_EEPROM_SPACE - eeprom->offset;
5794 for (i = 0; i < eeprom->len; i += 4) {
5795 if (read_eeprom(sp, (eeprom->offset + i), &data)) {
5796 DBG_PRINT(ERR_DBG, "Read of EEPROM failed\n");
5797 return -EFAULT;
5799 valid = INV(data);
5800 memcpy((data_buf + i), &valid, 4);
5802 return 0;
5806 * s2io_ethtool_seeprom - tries to write the user provided value in Eeprom
5807 * @sp : private member of the device structure, which is a pointer to the
5808 * s2io_nic structure.
5809 * @eeprom : pointer to the user level structure provided by ethtool,
5810 * containing all relevant information.
5811 * @data_buf ; user defined value to be written into Eeprom.
5812 * Description:
5813 * Tries to write the user provided value in the Eeprom, at the offset
5814 * given by the user.
5815 * Return value:
5816 * 0 on success, -EFAULT on failure.
5819 static int s2io_ethtool_seeprom(struct net_device *dev,
5820 struct ethtool_eeprom *eeprom,
5821 u8 * data_buf)
5823 int len = eeprom->len, cnt = 0;
5824 u64 valid = 0, data;
5825 struct s2io_nic *sp = dev->priv;
5827 if (eeprom->magic != (sp->pdev->vendor | (sp->pdev->device << 16))) {
5828 DBG_PRINT(ERR_DBG,
5829 "ETHTOOL_WRITE_EEPROM Err: Magic value ");
5830 DBG_PRINT(ERR_DBG, "is wrong, Its not 0x%x\n",
5831 eeprom->magic);
5832 return -EFAULT;
5835 while (len) {
5836 data = (u32) data_buf[cnt] & 0x000000FF;
5837 if (data) {
5838 valid = (u32) (data << 24);
5839 } else
5840 valid = data;
5842 if (write_eeprom(sp, (eeprom->offset + cnt), valid, 0)) {
5843 DBG_PRINT(ERR_DBG,
5844 "ETHTOOL_WRITE_EEPROM Err: Cannot ");
5845 DBG_PRINT(ERR_DBG,
5846 "write into the specified offset\n");
5847 return -EFAULT;
5849 cnt++;
5850 len--;
5853 return 0;
5857 * s2io_register_test - reads and writes into all clock domains.
5858 * @sp : private member of the device structure, which is a pointer to the
5859 * s2io_nic structure.
5860 * @data : variable that returns the result of each of the test conducted b
5861 * by the driver.
5862 * Description:
5863 * Read and write into all clock domains. The NIC has 3 clock domains,
5864 * see that registers in all the three regions are accessible.
5865 * Return value:
5866 * 0 on success.
5869 static int s2io_register_test(struct s2io_nic * sp, uint64_t * data)
5871 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5872 u64 val64 = 0, exp_val;
5873 int fail = 0;
5875 val64 = readq(&bar0->pif_rd_swapper_fb);
5876 if (val64 != 0x123456789abcdefULL) {
5877 fail = 1;
5878 DBG_PRINT(INFO_DBG, "Read Test level 1 fails\n");
5881 val64 = readq(&bar0->rmac_pause_cfg);
5882 if (val64 != 0xc000ffff00000000ULL) {
5883 fail = 1;
5884 DBG_PRINT(INFO_DBG, "Read Test level 2 fails\n");
5887 val64 = readq(&bar0->rx_queue_cfg);
5888 if (sp->device_type == XFRAME_II_DEVICE)
5889 exp_val = 0x0404040404040404ULL;
5890 else
5891 exp_val = 0x0808080808080808ULL;
5892 if (val64 != exp_val) {
5893 fail = 1;
5894 DBG_PRINT(INFO_DBG, "Read Test level 3 fails\n");
5897 val64 = readq(&bar0->xgxs_efifo_cfg);
5898 if (val64 != 0x000000001923141EULL) {
5899 fail = 1;
5900 DBG_PRINT(INFO_DBG, "Read Test level 4 fails\n");
5903 val64 = 0x5A5A5A5A5A5A5A5AULL;
5904 writeq(val64, &bar0->xmsi_data);
5905 val64 = readq(&bar0->xmsi_data);
5906 if (val64 != 0x5A5A5A5A5A5A5A5AULL) {
5907 fail = 1;
5908 DBG_PRINT(ERR_DBG, "Write Test level 1 fails\n");
5911 val64 = 0xA5A5A5A5A5A5A5A5ULL;
5912 writeq(val64, &bar0->xmsi_data);
5913 val64 = readq(&bar0->xmsi_data);
5914 if (val64 != 0xA5A5A5A5A5A5A5A5ULL) {
5915 fail = 1;
5916 DBG_PRINT(ERR_DBG, "Write Test level 2 fails\n");
5919 *data = fail;
5920 return fail;
5924 * s2io_eeprom_test - to verify that EEprom in the xena can be programmed.
5925 * @sp : private member of the device structure, which is a pointer to the
5926 * s2io_nic structure.
5927 * @data:variable that returns the result of each of the test conducted by
5928 * the driver.
5929 * Description:
5930 * Verify that EEPROM in the xena can be programmed using I2C_CONTROL
5931 * register.
5932 * Return value:
5933 * 0 on success.
5936 static int s2io_eeprom_test(struct s2io_nic * sp, uint64_t * data)
5938 int fail = 0;
5939 u64 ret_data, org_4F0, org_7F0;
5940 u8 saved_4F0 = 0, saved_7F0 = 0;
5941 struct net_device *dev = sp->dev;
5943 /* Test Write Error at offset 0 */
5944 /* Note that SPI interface allows write access to all areas
5945 * of EEPROM. Hence doing all negative testing only for Xframe I.
5947 if (sp->device_type == XFRAME_I_DEVICE)
5948 if (!write_eeprom(sp, 0, 0, 3))
5949 fail = 1;
5951 /* Save current values at offsets 0x4F0 and 0x7F0 */
5952 if (!read_eeprom(sp, 0x4F0, &org_4F0))
5953 saved_4F0 = 1;
5954 if (!read_eeprom(sp, 0x7F0, &org_7F0))
5955 saved_7F0 = 1;
5957 /* Test Write at offset 4f0 */
5958 if (write_eeprom(sp, 0x4F0, 0x012345, 3))
5959 fail = 1;
5960 if (read_eeprom(sp, 0x4F0, &ret_data))
5961 fail = 1;
5963 if (ret_data != 0x012345) {
5964 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x4F0. "
5965 "Data written %llx Data read %llx\n",
5966 dev->name, (unsigned long long)0x12345,
5967 (unsigned long long)ret_data);
5968 fail = 1;
5971 /* Reset the EEPROM data go FFFF */
5972 write_eeprom(sp, 0x4F0, 0xFFFFFF, 3);
5974 /* Test Write Request Error at offset 0x7c */
5975 if (sp->device_type == XFRAME_I_DEVICE)
5976 if (!write_eeprom(sp, 0x07C, 0, 3))
5977 fail = 1;
5979 /* Test Write Request at offset 0x7f0 */
5980 if (write_eeprom(sp, 0x7F0, 0x012345, 3))
5981 fail = 1;
5982 if (read_eeprom(sp, 0x7F0, &ret_data))
5983 fail = 1;
5985 if (ret_data != 0x012345) {
5986 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x7F0. "
5987 "Data written %llx Data read %llx\n",
5988 dev->name, (unsigned long long)0x12345,
5989 (unsigned long long)ret_data);
5990 fail = 1;
5993 /* Reset the EEPROM data go FFFF */
5994 write_eeprom(sp, 0x7F0, 0xFFFFFF, 3);
5996 if (sp->device_type == XFRAME_I_DEVICE) {
5997 /* Test Write Error at offset 0x80 */
5998 if (!write_eeprom(sp, 0x080, 0, 3))
5999 fail = 1;
6001 /* Test Write Error at offset 0xfc */
6002 if (!write_eeprom(sp, 0x0FC, 0, 3))
6003 fail = 1;
6005 /* Test Write Error at offset 0x100 */
6006 if (!write_eeprom(sp, 0x100, 0, 3))
6007 fail = 1;
6009 /* Test Write Error at offset 4ec */
6010 if (!write_eeprom(sp, 0x4EC, 0, 3))
6011 fail = 1;
6014 /* Restore values at offsets 0x4F0 and 0x7F0 */
6015 if (saved_4F0)
6016 write_eeprom(sp, 0x4F0, org_4F0, 3);
6017 if (saved_7F0)
6018 write_eeprom(sp, 0x7F0, org_7F0, 3);
6020 *data = fail;
6021 return fail;
6025 * s2io_bist_test - invokes the MemBist test of the card .
6026 * @sp : private member of the device structure, which is a pointer to the
6027 * s2io_nic structure.
6028 * @data:variable that returns the result of each of the test conducted by
6029 * the driver.
6030 * Description:
6031 * This invokes the MemBist test of the card. We give around
6032 * 2 secs time for the Test to complete. If it's still not complete
6033 * within this peiod, we consider that the test failed.
6034 * Return value:
6035 * 0 on success and -1 on failure.
6038 static int s2io_bist_test(struct s2io_nic * sp, uint64_t * data)
6040 u8 bist = 0;
6041 int cnt = 0, ret = -1;
6043 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
6044 bist |= PCI_BIST_START;
6045 pci_write_config_word(sp->pdev, PCI_BIST, bist);
6047 while (cnt < 20) {
6048 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
6049 if (!(bist & PCI_BIST_START)) {
6050 *data = (bist & PCI_BIST_CODE_MASK);
6051 ret = 0;
6052 break;
6054 msleep(100);
6055 cnt++;
6058 return ret;
6062 * s2io-link_test - verifies the link state of the nic
6063 * @sp ; private member of the device structure, which is a pointer to the
6064 * s2io_nic structure.
6065 * @data: variable that returns the result of each of the test conducted by
6066 * the driver.
6067 * Description:
6068 * The function verifies the link state of the NIC and updates the input
6069 * argument 'data' appropriately.
6070 * Return value:
6071 * 0 on success.
6074 static int s2io_link_test(struct s2io_nic * sp, uint64_t * data)
6076 struct XENA_dev_config __iomem *bar0 = sp->bar0;
6077 u64 val64;
6079 val64 = readq(&bar0->adapter_status);
6080 if(!(LINK_IS_UP(val64)))
6081 *data = 1;
6082 else
6083 *data = 0;
6085 return *data;
6089 * s2io_rldram_test - offline test for access to the RldRam chip on the NIC
6090 * @sp - private member of the device structure, which is a pointer to the
6091 * s2io_nic structure.
6092 * @data - variable that returns the result of each of the test
6093 * conducted by the driver.
6094 * Description:
6095 * This is one of the offline test that tests the read and write
6096 * access to the RldRam chip on the NIC.
6097 * Return value:
6098 * 0 on success.
6101 static int s2io_rldram_test(struct s2io_nic * sp, uint64_t * data)
6103 struct XENA_dev_config __iomem *bar0 = sp->bar0;
6104 u64 val64;
6105 int cnt, iteration = 0, test_fail = 0;
6107 val64 = readq(&bar0->adapter_control);
6108 val64 &= ~ADAPTER_ECC_EN;
6109 writeq(val64, &bar0->adapter_control);
6111 val64 = readq(&bar0->mc_rldram_test_ctrl);
6112 val64 |= MC_RLDRAM_TEST_MODE;
6113 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
6115 val64 = readq(&bar0->mc_rldram_mrs);
6116 val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE;
6117 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
6119 val64 |= MC_RLDRAM_MRS_ENABLE;
6120 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
6122 while (iteration < 2) {
6123 val64 = 0x55555555aaaa0000ULL;
6124 if (iteration == 1) {
6125 val64 ^= 0xFFFFFFFFFFFF0000ULL;
6127 writeq(val64, &bar0->mc_rldram_test_d0);
6129 val64 = 0xaaaa5a5555550000ULL;
6130 if (iteration == 1) {
6131 val64 ^= 0xFFFFFFFFFFFF0000ULL;
6133 writeq(val64, &bar0->mc_rldram_test_d1);
6135 val64 = 0x55aaaaaaaa5a0000ULL;
6136 if (iteration == 1) {
6137 val64 ^= 0xFFFFFFFFFFFF0000ULL;
6139 writeq(val64, &bar0->mc_rldram_test_d2);
6141 val64 = (u64) (0x0000003ffffe0100ULL);
6142 writeq(val64, &bar0->mc_rldram_test_add);
6144 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_WRITE |
6145 MC_RLDRAM_TEST_GO;
6146 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
6148 for (cnt = 0; cnt < 5; cnt++) {
6149 val64 = readq(&bar0->mc_rldram_test_ctrl);
6150 if (val64 & MC_RLDRAM_TEST_DONE)
6151 break;
6152 msleep(200);
6155 if (cnt == 5)
6156 break;
6158 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_GO;
6159 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
6161 for (cnt = 0; cnt < 5; cnt++) {
6162 val64 = readq(&bar0->mc_rldram_test_ctrl);
6163 if (val64 & MC_RLDRAM_TEST_DONE)
6164 break;
6165 msleep(500);
6168 if (cnt == 5)
6169 break;
6171 val64 = readq(&bar0->mc_rldram_test_ctrl);
6172 if (!(val64 & MC_RLDRAM_TEST_PASS))
6173 test_fail = 1;
6175 iteration++;
6178 *data = test_fail;
6180 /* Bring the adapter out of test mode */
6181 SPECIAL_REG_WRITE(0, &bar0->mc_rldram_test_ctrl, LF);
6183 return test_fail;
6187 * s2io_ethtool_test - conducts 6 tsets to determine the health of card.
6188 * @sp : private member of the device structure, which is a pointer to the
6189 * s2io_nic structure.
6190 * @ethtest : pointer to a ethtool command specific structure that will be
6191 * returned to the user.
6192 * @data : variable that returns the result of each of the test
6193 * conducted by the driver.
6194 * Description:
6195 * This function conducts 6 tests ( 4 offline and 2 online) to determine
6196 * the health of the card.
6197 * Return value:
6198 * void
6201 static void s2io_ethtool_test(struct net_device *dev,
6202 struct ethtool_test *ethtest,
6203 uint64_t * data)
6205 struct s2io_nic *sp = dev->priv;
6206 int orig_state = netif_running(sp->dev);
6208 if (ethtest->flags == ETH_TEST_FL_OFFLINE) {
6209 /* Offline Tests. */
6210 if (orig_state)
6211 s2io_close(sp->dev);
6213 if (s2io_register_test(sp, &data[0]))
6214 ethtest->flags |= ETH_TEST_FL_FAILED;
6216 s2io_reset(sp);
6218 if (s2io_rldram_test(sp, &data[3]))
6219 ethtest->flags |= ETH_TEST_FL_FAILED;
6221 s2io_reset(sp);
6223 if (s2io_eeprom_test(sp, &data[1]))
6224 ethtest->flags |= ETH_TEST_FL_FAILED;
6226 if (s2io_bist_test(sp, &data[4]))
6227 ethtest->flags |= ETH_TEST_FL_FAILED;
6229 if (orig_state)
6230 s2io_open(sp->dev);
6232 data[2] = 0;
6233 } else {
6234 /* Online Tests. */
6235 if (!orig_state) {
6236 DBG_PRINT(ERR_DBG,
6237 "%s: is not up, cannot run test\n",
6238 dev->name);
6239 data[0] = -1;
6240 data[1] = -1;
6241 data[2] = -1;
6242 data[3] = -1;
6243 data[4] = -1;
6246 if (s2io_link_test(sp, &data[2]))
6247 ethtest->flags |= ETH_TEST_FL_FAILED;
6249 data[0] = 0;
6250 data[1] = 0;
6251 data[3] = 0;
6252 data[4] = 0;
6256 static void s2io_get_ethtool_stats(struct net_device *dev,
6257 struct ethtool_stats *estats,
6258 u64 * tmp_stats)
6260 int i = 0, k;
6261 struct s2io_nic *sp = dev->priv;
6262 struct stat_block *stat_info = sp->mac_control.stats_info;
6264 s2io_updt_stats(sp);
6265 tmp_stats[i++] =
6266 (u64)le32_to_cpu(stat_info->tmac_frms_oflow) << 32 |
6267 le32_to_cpu(stat_info->tmac_frms);
6268 tmp_stats[i++] =
6269 (u64)le32_to_cpu(stat_info->tmac_data_octets_oflow) << 32 |
6270 le32_to_cpu(stat_info->tmac_data_octets);
6271 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_drop_frms);
6272 tmp_stats[i++] =
6273 (u64)le32_to_cpu(stat_info->tmac_mcst_frms_oflow) << 32 |
6274 le32_to_cpu(stat_info->tmac_mcst_frms);
6275 tmp_stats[i++] =
6276 (u64)le32_to_cpu(stat_info->tmac_bcst_frms_oflow) << 32 |
6277 le32_to_cpu(stat_info->tmac_bcst_frms);
6278 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_pause_ctrl_frms);
6279 tmp_stats[i++] =
6280 (u64)le32_to_cpu(stat_info->tmac_ttl_octets_oflow) << 32 |
6281 le32_to_cpu(stat_info->tmac_ttl_octets);
6282 tmp_stats[i++] =
6283 (u64)le32_to_cpu(stat_info->tmac_ucst_frms_oflow) << 32 |
6284 le32_to_cpu(stat_info->tmac_ucst_frms);
6285 tmp_stats[i++] =
6286 (u64)le32_to_cpu(stat_info->tmac_nucst_frms_oflow) << 32 |
6287 le32_to_cpu(stat_info->tmac_nucst_frms);
6288 tmp_stats[i++] =
6289 (u64)le32_to_cpu(stat_info->tmac_any_err_frms_oflow) << 32 |
6290 le32_to_cpu(stat_info->tmac_any_err_frms);
6291 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_ttl_less_fb_octets);
6292 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_vld_ip_octets);
6293 tmp_stats[i++] =
6294 (u64)le32_to_cpu(stat_info->tmac_vld_ip_oflow) << 32 |
6295 le32_to_cpu(stat_info->tmac_vld_ip);
6296 tmp_stats[i++] =
6297 (u64)le32_to_cpu(stat_info->tmac_drop_ip_oflow) << 32 |
6298 le32_to_cpu(stat_info->tmac_drop_ip);
6299 tmp_stats[i++] =
6300 (u64)le32_to_cpu(stat_info->tmac_icmp_oflow) << 32 |
6301 le32_to_cpu(stat_info->tmac_icmp);
6302 tmp_stats[i++] =
6303 (u64)le32_to_cpu(stat_info->tmac_rst_tcp_oflow) << 32 |
6304 le32_to_cpu(stat_info->tmac_rst_tcp);
6305 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_tcp);
6306 tmp_stats[i++] = (u64)le32_to_cpu(stat_info->tmac_udp_oflow) << 32 |
6307 le32_to_cpu(stat_info->tmac_udp);
6308 tmp_stats[i++] =
6309 (u64)le32_to_cpu(stat_info->rmac_vld_frms_oflow) << 32 |
6310 le32_to_cpu(stat_info->rmac_vld_frms);
6311 tmp_stats[i++] =
6312 (u64)le32_to_cpu(stat_info->rmac_data_octets_oflow) << 32 |
6313 le32_to_cpu(stat_info->rmac_data_octets);
6314 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_fcs_err_frms);
6315 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_drop_frms);
6316 tmp_stats[i++] =
6317 (u64)le32_to_cpu(stat_info->rmac_vld_mcst_frms_oflow) << 32 |
6318 le32_to_cpu(stat_info->rmac_vld_mcst_frms);
6319 tmp_stats[i++] =
6320 (u64)le32_to_cpu(stat_info->rmac_vld_bcst_frms_oflow) << 32 |
6321 le32_to_cpu(stat_info->rmac_vld_bcst_frms);
6322 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_in_rng_len_err_frms);
6323 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_out_rng_len_err_frms);
6324 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_long_frms);
6325 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_pause_ctrl_frms);
6326 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_unsup_ctrl_frms);
6327 tmp_stats[i++] =
6328 (u64)le32_to_cpu(stat_info->rmac_ttl_octets_oflow) << 32 |
6329 le32_to_cpu(stat_info->rmac_ttl_octets);
6330 tmp_stats[i++] =
6331 (u64)le32_to_cpu(stat_info->rmac_accepted_ucst_frms_oflow)
6332 << 32 | le32_to_cpu(stat_info->rmac_accepted_ucst_frms);
6333 tmp_stats[i++] =
6334 (u64)le32_to_cpu(stat_info->rmac_accepted_nucst_frms_oflow)
6335 << 32 | le32_to_cpu(stat_info->rmac_accepted_nucst_frms);
6336 tmp_stats[i++] =
6337 (u64)le32_to_cpu(stat_info->rmac_discarded_frms_oflow) << 32 |
6338 le32_to_cpu(stat_info->rmac_discarded_frms);
6339 tmp_stats[i++] =
6340 (u64)le32_to_cpu(stat_info->rmac_drop_events_oflow)
6341 << 32 | le32_to_cpu(stat_info->rmac_drop_events);
6342 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_less_fb_octets);
6343 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_frms);
6344 tmp_stats[i++] =
6345 (u64)le32_to_cpu(stat_info->rmac_usized_frms_oflow) << 32 |
6346 le32_to_cpu(stat_info->rmac_usized_frms);
6347 tmp_stats[i++] =
6348 (u64)le32_to_cpu(stat_info->rmac_osized_frms_oflow) << 32 |
6349 le32_to_cpu(stat_info->rmac_osized_frms);
6350 tmp_stats[i++] =
6351 (u64)le32_to_cpu(stat_info->rmac_frag_frms_oflow) << 32 |
6352 le32_to_cpu(stat_info->rmac_frag_frms);
6353 tmp_stats[i++] =
6354 (u64)le32_to_cpu(stat_info->rmac_jabber_frms_oflow) << 32 |
6355 le32_to_cpu(stat_info->rmac_jabber_frms);
6356 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_64_frms);
6357 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_65_127_frms);
6358 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_128_255_frms);
6359 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_256_511_frms);
6360 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_512_1023_frms);
6361 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_1024_1518_frms);
6362 tmp_stats[i++] =
6363 (u64)le32_to_cpu(stat_info->rmac_ip_oflow) << 32 |
6364 le32_to_cpu(stat_info->rmac_ip);
6365 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ip_octets);
6366 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_hdr_err_ip);
6367 tmp_stats[i++] =
6368 (u64)le32_to_cpu(stat_info->rmac_drop_ip_oflow) << 32 |
6369 le32_to_cpu(stat_info->rmac_drop_ip);
6370 tmp_stats[i++] =
6371 (u64)le32_to_cpu(stat_info->rmac_icmp_oflow) << 32 |
6372 le32_to_cpu(stat_info->rmac_icmp);
6373 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_tcp);
6374 tmp_stats[i++] =
6375 (u64)le32_to_cpu(stat_info->rmac_udp_oflow) << 32 |
6376 le32_to_cpu(stat_info->rmac_udp);
6377 tmp_stats[i++] =
6378 (u64)le32_to_cpu(stat_info->rmac_err_drp_udp_oflow) << 32 |
6379 le32_to_cpu(stat_info->rmac_err_drp_udp);
6380 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_err_sym);
6381 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q0);
6382 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q1);
6383 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q2);
6384 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q3);
6385 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q4);
6386 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q5);
6387 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q6);
6388 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q7);
6389 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q0);
6390 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q1);
6391 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q2);
6392 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q3);
6393 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q4);
6394 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q5);
6395 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q6);
6396 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q7);
6397 tmp_stats[i++] =
6398 (u64)le32_to_cpu(stat_info->rmac_pause_cnt_oflow) << 32 |
6399 le32_to_cpu(stat_info->rmac_pause_cnt);
6400 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_data_err_cnt);
6401 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_ctrl_err_cnt);
6402 tmp_stats[i++] =
6403 (u64)le32_to_cpu(stat_info->rmac_accepted_ip_oflow) << 32 |
6404 le32_to_cpu(stat_info->rmac_accepted_ip);
6405 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_err_tcp);
6406 tmp_stats[i++] = le32_to_cpu(stat_info->rd_req_cnt);
6407 tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_cnt);
6408 tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_rtry_cnt);
6409 tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_cnt);
6410 tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_rd_ack_cnt);
6411 tmp_stats[i++] = le32_to_cpu(stat_info->wr_req_cnt);
6412 tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_cnt);
6413 tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_rtry_cnt);
6414 tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_cnt);
6415 tmp_stats[i++] = le32_to_cpu(stat_info->wr_disc_cnt);
6416 tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_wr_ack_cnt);
6417 tmp_stats[i++] = le32_to_cpu(stat_info->txp_wr_cnt);
6418 tmp_stats[i++] = le32_to_cpu(stat_info->txd_rd_cnt);
6419 tmp_stats[i++] = le32_to_cpu(stat_info->txd_wr_cnt);
6420 tmp_stats[i++] = le32_to_cpu(stat_info->rxd_rd_cnt);
6421 tmp_stats[i++] = le32_to_cpu(stat_info->rxd_wr_cnt);
6422 tmp_stats[i++] = le32_to_cpu(stat_info->txf_rd_cnt);
6423 tmp_stats[i++] = le32_to_cpu(stat_info->rxf_wr_cnt);
6425 /* Enhanced statistics exist only for Hercules */
6426 if(sp->device_type == XFRAME_II_DEVICE) {
6427 tmp_stats[i++] =
6428 le64_to_cpu(stat_info->rmac_ttl_1519_4095_frms);
6429 tmp_stats[i++] =
6430 le64_to_cpu(stat_info->rmac_ttl_4096_8191_frms);
6431 tmp_stats[i++] =
6432 le64_to_cpu(stat_info->rmac_ttl_8192_max_frms);
6433 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_gt_max_frms);
6434 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_osized_alt_frms);
6435 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_jabber_alt_frms);
6436 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_gt_max_alt_frms);
6437 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_vlan_frms);
6438 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_len_discard);
6439 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_fcs_discard);
6440 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_pf_discard);
6441 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_da_discard);
6442 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_red_discard);
6443 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_rts_discard);
6444 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_ingm_full_discard);
6445 tmp_stats[i++] = le32_to_cpu(stat_info->link_fault_cnt);
6448 tmp_stats[i++] = 0;
6449 tmp_stats[i++] = stat_info->sw_stat.single_ecc_errs;
6450 tmp_stats[i++] = stat_info->sw_stat.double_ecc_errs;
6451 tmp_stats[i++] = stat_info->sw_stat.parity_err_cnt;
6452 tmp_stats[i++] = stat_info->sw_stat.serious_err_cnt;
6453 tmp_stats[i++] = stat_info->sw_stat.soft_reset_cnt;
6454 tmp_stats[i++] = stat_info->sw_stat.fifo_full_cnt;
6455 for (k = 0; k < MAX_RX_RINGS; k++)
6456 tmp_stats[i++] = stat_info->sw_stat.ring_full_cnt[k];
6457 tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_high;
6458 tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_low;
6459 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_high;
6460 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_low;
6461 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_high;
6462 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_low;
6463 tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_high;
6464 tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_low;
6465 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_high;
6466 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_low;
6467 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_high;
6468 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_low;
6469 tmp_stats[i++] = stat_info->sw_stat.clubbed_frms_cnt;
6470 tmp_stats[i++] = stat_info->sw_stat.sending_both;
6471 tmp_stats[i++] = stat_info->sw_stat.outof_sequence_pkts;
6472 tmp_stats[i++] = stat_info->sw_stat.flush_max_pkts;
6473 if (stat_info->sw_stat.num_aggregations) {
6474 u64 tmp = stat_info->sw_stat.sum_avg_pkts_aggregated;
6475 int count = 0;
6477 * Since 64-bit divide does not work on all platforms,
6478 * do repeated subtraction.
6480 while (tmp >= stat_info->sw_stat.num_aggregations) {
6481 tmp -= stat_info->sw_stat.num_aggregations;
6482 count++;
6484 tmp_stats[i++] = count;
6486 else
6487 tmp_stats[i++] = 0;
6488 tmp_stats[i++] = stat_info->sw_stat.mem_alloc_fail_cnt;
6489 tmp_stats[i++] = stat_info->sw_stat.pci_map_fail_cnt;
6490 tmp_stats[i++] = stat_info->sw_stat.watchdog_timer_cnt;
6491 tmp_stats[i++] = stat_info->sw_stat.mem_allocated;
6492 tmp_stats[i++] = stat_info->sw_stat.mem_freed;
6493 tmp_stats[i++] = stat_info->sw_stat.link_up_cnt;
6494 tmp_stats[i++] = stat_info->sw_stat.link_down_cnt;
6495 tmp_stats[i++] = stat_info->sw_stat.link_up_time;
6496 tmp_stats[i++] = stat_info->sw_stat.link_down_time;
6498 tmp_stats[i++] = stat_info->sw_stat.tx_buf_abort_cnt;
6499 tmp_stats[i++] = stat_info->sw_stat.tx_desc_abort_cnt;
6500 tmp_stats[i++] = stat_info->sw_stat.tx_parity_err_cnt;
6501 tmp_stats[i++] = stat_info->sw_stat.tx_link_loss_cnt;
6502 tmp_stats[i++] = stat_info->sw_stat.tx_list_proc_err_cnt;
6504 tmp_stats[i++] = stat_info->sw_stat.rx_parity_err_cnt;
6505 tmp_stats[i++] = stat_info->sw_stat.rx_abort_cnt;
6506 tmp_stats[i++] = stat_info->sw_stat.rx_parity_abort_cnt;
6507 tmp_stats[i++] = stat_info->sw_stat.rx_rda_fail_cnt;
6508 tmp_stats[i++] = stat_info->sw_stat.rx_unkn_prot_cnt;
6509 tmp_stats[i++] = stat_info->sw_stat.rx_fcs_err_cnt;
6510 tmp_stats[i++] = stat_info->sw_stat.rx_buf_size_err_cnt;
6511 tmp_stats[i++] = stat_info->sw_stat.rx_rxd_corrupt_cnt;
6512 tmp_stats[i++] = stat_info->sw_stat.rx_unkn_err_cnt;
6513 tmp_stats[i++] = stat_info->sw_stat.tda_err_cnt;
6514 tmp_stats[i++] = stat_info->sw_stat.pfc_err_cnt;
6515 tmp_stats[i++] = stat_info->sw_stat.pcc_err_cnt;
6516 tmp_stats[i++] = stat_info->sw_stat.tti_err_cnt;
6517 tmp_stats[i++] = stat_info->sw_stat.tpa_err_cnt;
6518 tmp_stats[i++] = stat_info->sw_stat.sm_err_cnt;
6519 tmp_stats[i++] = stat_info->sw_stat.lso_err_cnt;
6520 tmp_stats[i++] = stat_info->sw_stat.mac_tmac_err_cnt;
6521 tmp_stats[i++] = stat_info->sw_stat.mac_rmac_err_cnt;
6522 tmp_stats[i++] = stat_info->sw_stat.xgxs_txgxs_err_cnt;
6523 tmp_stats[i++] = stat_info->sw_stat.xgxs_rxgxs_err_cnt;
6524 tmp_stats[i++] = stat_info->sw_stat.rc_err_cnt;
6525 tmp_stats[i++] = stat_info->sw_stat.prc_pcix_err_cnt;
6526 tmp_stats[i++] = stat_info->sw_stat.rpa_err_cnt;
6527 tmp_stats[i++] = stat_info->sw_stat.rda_err_cnt;
6528 tmp_stats[i++] = stat_info->sw_stat.rti_err_cnt;
6529 tmp_stats[i++] = stat_info->sw_stat.mc_err_cnt;
6532 static int s2io_ethtool_get_regs_len(struct net_device *dev)
6534 return (XENA_REG_SPACE);
6538 static u32 s2io_ethtool_get_rx_csum(struct net_device * dev)
6540 struct s2io_nic *sp = dev->priv;
6542 return (sp->rx_csum);
6545 static int s2io_ethtool_set_rx_csum(struct net_device *dev, u32 data)
6547 struct s2io_nic *sp = dev->priv;
6549 if (data)
6550 sp->rx_csum = 1;
6551 else
6552 sp->rx_csum = 0;
6554 return 0;
6557 static int s2io_get_eeprom_len(struct net_device *dev)
6559 return (XENA_EEPROM_SPACE);
6562 static int s2io_get_sset_count(struct net_device *dev, int sset)
6564 struct s2io_nic *sp = dev->priv;
6566 switch (sset) {
6567 case ETH_SS_TEST:
6568 return S2IO_TEST_LEN;
6569 case ETH_SS_STATS:
6570 switch(sp->device_type) {
6571 case XFRAME_I_DEVICE:
6572 return XFRAME_I_STAT_LEN;
6573 case XFRAME_II_DEVICE:
6574 return XFRAME_II_STAT_LEN;
6575 default:
6576 return 0;
6578 default:
6579 return -EOPNOTSUPP;
6583 static void s2io_ethtool_get_strings(struct net_device *dev,
6584 u32 stringset, u8 * data)
6586 int stat_size = 0;
6587 struct s2io_nic *sp = dev->priv;
6589 switch (stringset) {
6590 case ETH_SS_TEST:
6591 memcpy(data, s2io_gstrings, S2IO_STRINGS_LEN);
6592 break;
6593 case ETH_SS_STATS:
6594 stat_size = sizeof(ethtool_xena_stats_keys);
6595 memcpy(data, &ethtool_xena_stats_keys,stat_size);
6596 if(sp->device_type == XFRAME_II_DEVICE) {
6597 memcpy(data + stat_size,
6598 &ethtool_enhanced_stats_keys,
6599 sizeof(ethtool_enhanced_stats_keys));
6600 stat_size += sizeof(ethtool_enhanced_stats_keys);
6603 memcpy(data + stat_size, &ethtool_driver_stats_keys,
6604 sizeof(ethtool_driver_stats_keys));
6608 static int s2io_ethtool_op_set_tx_csum(struct net_device *dev, u32 data)
6610 if (data)
6611 dev->features |= NETIF_F_IP_CSUM;
6612 else
6613 dev->features &= ~NETIF_F_IP_CSUM;
6615 return 0;
6618 static u32 s2io_ethtool_op_get_tso(struct net_device *dev)
6620 return (dev->features & NETIF_F_TSO) != 0;
6622 static int s2io_ethtool_op_set_tso(struct net_device *dev, u32 data)
6624 if (data)
6625 dev->features |= (NETIF_F_TSO | NETIF_F_TSO6);
6626 else
6627 dev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6);
6629 return 0;
6632 static const struct ethtool_ops netdev_ethtool_ops = {
6633 .get_settings = s2io_ethtool_gset,
6634 .set_settings = s2io_ethtool_sset,
6635 .get_drvinfo = s2io_ethtool_gdrvinfo,
6636 .get_regs_len = s2io_ethtool_get_regs_len,
6637 .get_regs = s2io_ethtool_gregs,
6638 .get_link = ethtool_op_get_link,
6639 .get_eeprom_len = s2io_get_eeprom_len,
6640 .get_eeprom = s2io_ethtool_geeprom,
6641 .set_eeprom = s2io_ethtool_seeprom,
6642 .get_ringparam = s2io_ethtool_gringparam,
6643 .get_pauseparam = s2io_ethtool_getpause_data,
6644 .set_pauseparam = s2io_ethtool_setpause_data,
6645 .get_rx_csum = s2io_ethtool_get_rx_csum,
6646 .set_rx_csum = s2io_ethtool_set_rx_csum,
6647 .set_tx_csum = s2io_ethtool_op_set_tx_csum,
6648 .set_sg = ethtool_op_set_sg,
6649 .get_tso = s2io_ethtool_op_get_tso,
6650 .set_tso = s2io_ethtool_op_set_tso,
6651 .set_ufo = ethtool_op_set_ufo,
6652 .self_test = s2io_ethtool_test,
6653 .get_strings = s2io_ethtool_get_strings,
6654 .phys_id = s2io_ethtool_idnic,
6655 .get_ethtool_stats = s2io_get_ethtool_stats,
6656 .get_sset_count = s2io_get_sset_count,
6660 * s2io_ioctl - Entry point for the Ioctl
6661 * @dev : Device pointer.
6662 * @ifr : An IOCTL specefic structure, that can contain a pointer to
6663 * a proprietary structure used to pass information to the driver.
6664 * @cmd : This is used to distinguish between the different commands that
6665 * can be passed to the IOCTL functions.
6666 * Description:
6667 * Currently there are no special functionality supported in IOCTL, hence
6668 * function always return EOPNOTSUPPORTED
6671 static int s2io_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
6673 return -EOPNOTSUPP;
6677 * s2io_change_mtu - entry point to change MTU size for the device.
6678 * @dev : device pointer.
6679 * @new_mtu : the new MTU size for the device.
6680 * Description: A driver entry point to change MTU size for the device.
6681 * Before changing the MTU the device must be stopped.
6682 * Return value:
6683 * 0 on success and an appropriate (-)ve integer as defined in errno.h
6684 * file on failure.
6687 static int s2io_change_mtu(struct net_device *dev, int new_mtu)
6689 struct s2io_nic *sp = dev->priv;
6690 int ret = 0;
6692 if ((new_mtu < MIN_MTU) || (new_mtu > S2IO_JUMBO_SIZE)) {
6693 DBG_PRINT(ERR_DBG, "%s: MTU size is invalid.\n",
6694 dev->name);
6695 return -EPERM;
6698 dev->mtu = new_mtu;
6699 if (netif_running(dev)) {
6700 s2io_stop_all_tx_queue(sp);
6701 s2io_card_down(sp);
6702 ret = s2io_card_up(sp);
6703 if (ret) {
6704 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
6705 __FUNCTION__);
6706 return ret;
6708 s2io_wake_all_tx_queue(sp);
6709 } else { /* Device is down */
6710 struct XENA_dev_config __iomem *bar0 = sp->bar0;
6711 u64 val64 = new_mtu;
6713 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
6716 return ret;
6720 * s2io_set_link - Set the LInk status
6721 * @data: long pointer to device private structue
6722 * Description: Sets the link status for the adapter
6725 static void s2io_set_link(struct work_struct *work)
6727 struct s2io_nic *nic = container_of(work, struct s2io_nic, set_link_task);
6728 struct net_device *dev = nic->dev;
6729 struct XENA_dev_config __iomem *bar0 = nic->bar0;
6730 register u64 val64;
6731 u16 subid;
6733 rtnl_lock();
6735 if (!netif_running(dev))
6736 goto out_unlock;
6738 if (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(nic->state))) {
6739 /* The card is being reset, no point doing anything */
6740 goto out_unlock;
6743 subid = nic->pdev->subsystem_device;
6744 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
6746 * Allow a small delay for the NICs self initiated
6747 * cleanup to complete.
6749 msleep(100);
6752 val64 = readq(&bar0->adapter_status);
6753 if (LINK_IS_UP(val64)) {
6754 if (!(readq(&bar0->adapter_control) & ADAPTER_CNTL_EN)) {
6755 if (verify_xena_quiescence(nic)) {
6756 val64 = readq(&bar0->adapter_control);
6757 val64 |= ADAPTER_CNTL_EN;
6758 writeq(val64, &bar0->adapter_control);
6759 if (CARDS_WITH_FAULTY_LINK_INDICATORS(
6760 nic->device_type, subid)) {
6761 val64 = readq(&bar0->gpio_control);
6762 val64 |= GPIO_CTRL_GPIO_0;
6763 writeq(val64, &bar0->gpio_control);
6764 val64 = readq(&bar0->gpio_control);
6765 } else {
6766 val64 |= ADAPTER_LED_ON;
6767 writeq(val64, &bar0->adapter_control);
6769 nic->device_enabled_once = TRUE;
6770 } else {
6771 DBG_PRINT(ERR_DBG, "%s: Error: ", dev->name);
6772 DBG_PRINT(ERR_DBG, "device is not Quiescent\n");
6773 s2io_stop_all_tx_queue(nic);
6776 val64 = readq(&bar0->adapter_control);
6777 val64 |= ADAPTER_LED_ON;
6778 writeq(val64, &bar0->adapter_control);
6779 s2io_link(nic, LINK_UP);
6780 } else {
6781 if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type,
6782 subid)) {
6783 val64 = readq(&bar0->gpio_control);
6784 val64 &= ~GPIO_CTRL_GPIO_0;
6785 writeq(val64, &bar0->gpio_control);
6786 val64 = readq(&bar0->gpio_control);
6788 /* turn off LED */
6789 val64 = readq(&bar0->adapter_control);
6790 val64 = val64 &(~ADAPTER_LED_ON);
6791 writeq(val64, &bar0->adapter_control);
6792 s2io_link(nic, LINK_DOWN);
6794 clear_bit(__S2IO_STATE_LINK_TASK, &(nic->state));
6796 out_unlock:
6797 rtnl_unlock();
6800 static int set_rxd_buffer_pointer(struct s2io_nic *sp, struct RxD_t *rxdp,
6801 struct buffAdd *ba,
6802 struct sk_buff **skb, u64 *temp0, u64 *temp1,
6803 u64 *temp2, int size)
6805 struct net_device *dev = sp->dev;
6806 struct swStat *stats = &sp->mac_control.stats_info->sw_stat;
6808 if ((sp->rxd_mode == RXD_MODE_1) && (rxdp->Host_Control == 0)) {
6809 struct RxD1 *rxdp1 = (struct RxD1 *)rxdp;
6810 /* allocate skb */
6811 if (*skb) {
6812 DBG_PRINT(INFO_DBG, "SKB is not NULL\n");
6814 * As Rx frame are not going to be processed,
6815 * using same mapped address for the Rxd
6816 * buffer pointer
6818 rxdp1->Buffer0_ptr = *temp0;
6819 } else {
6820 *skb = dev_alloc_skb(size);
6821 if (!(*skb)) {
6822 DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
6823 DBG_PRINT(INFO_DBG, "memory to allocate ");
6824 DBG_PRINT(INFO_DBG, "1 buf mode SKBs\n");
6825 sp->mac_control.stats_info->sw_stat. \
6826 mem_alloc_fail_cnt++;
6827 return -ENOMEM ;
6829 sp->mac_control.stats_info->sw_stat.mem_allocated
6830 += (*skb)->truesize;
6831 /* storing the mapped addr in a temp variable
6832 * such it will be used for next rxd whose
6833 * Host Control is NULL
6835 rxdp1->Buffer0_ptr = *temp0 =
6836 pci_map_single( sp->pdev, (*skb)->data,
6837 size - NET_IP_ALIGN,
6838 PCI_DMA_FROMDEVICE);
6839 if( (rxdp1->Buffer0_ptr == 0) ||
6840 (rxdp1->Buffer0_ptr == DMA_ERROR_CODE)) {
6841 goto memalloc_failed;
6843 rxdp->Host_Control = (unsigned long) (*skb);
6845 } else if ((sp->rxd_mode == RXD_MODE_3B) && (rxdp->Host_Control == 0)) {
6846 struct RxD3 *rxdp3 = (struct RxD3 *)rxdp;
6847 /* Two buffer Mode */
6848 if (*skb) {
6849 rxdp3->Buffer2_ptr = *temp2;
6850 rxdp3->Buffer0_ptr = *temp0;
6851 rxdp3->Buffer1_ptr = *temp1;
6852 } else {
6853 *skb = dev_alloc_skb(size);
6854 if (!(*skb)) {
6855 DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
6856 DBG_PRINT(INFO_DBG, "memory to allocate ");
6857 DBG_PRINT(INFO_DBG, "2 buf mode SKBs\n");
6858 sp->mac_control.stats_info->sw_stat. \
6859 mem_alloc_fail_cnt++;
6860 return -ENOMEM;
6862 sp->mac_control.stats_info->sw_stat.mem_allocated
6863 += (*skb)->truesize;
6864 rxdp3->Buffer2_ptr = *temp2 =
6865 pci_map_single(sp->pdev, (*skb)->data,
6866 dev->mtu + 4,
6867 PCI_DMA_FROMDEVICE);
6868 if( (rxdp3->Buffer2_ptr == 0) ||
6869 (rxdp3->Buffer2_ptr == DMA_ERROR_CODE)) {
6870 goto memalloc_failed;
6872 rxdp3->Buffer0_ptr = *temp0 =
6873 pci_map_single( sp->pdev, ba->ba_0, BUF0_LEN,
6874 PCI_DMA_FROMDEVICE);
6875 if( (rxdp3->Buffer0_ptr == 0) ||
6876 (rxdp3->Buffer0_ptr == DMA_ERROR_CODE)) {
6877 pci_unmap_single (sp->pdev,
6878 (dma_addr_t)rxdp3->Buffer2_ptr,
6879 dev->mtu + 4, PCI_DMA_FROMDEVICE);
6880 goto memalloc_failed;
6882 rxdp->Host_Control = (unsigned long) (*skb);
6884 /* Buffer-1 will be dummy buffer not used */
6885 rxdp3->Buffer1_ptr = *temp1 =
6886 pci_map_single(sp->pdev, ba->ba_1, BUF1_LEN,
6887 PCI_DMA_FROMDEVICE);
6888 if( (rxdp3->Buffer1_ptr == 0) ||
6889 (rxdp3->Buffer1_ptr == DMA_ERROR_CODE)) {
6890 pci_unmap_single (sp->pdev,
6891 (dma_addr_t)rxdp3->Buffer0_ptr,
6892 BUF0_LEN, PCI_DMA_FROMDEVICE);
6893 pci_unmap_single (sp->pdev,
6894 (dma_addr_t)rxdp3->Buffer2_ptr,
6895 dev->mtu + 4, PCI_DMA_FROMDEVICE);
6896 goto memalloc_failed;
6900 return 0;
6901 memalloc_failed:
6902 stats->pci_map_fail_cnt++;
6903 stats->mem_freed += (*skb)->truesize;
6904 dev_kfree_skb(*skb);
6905 return -ENOMEM;
6908 static void set_rxd_buffer_size(struct s2io_nic *sp, struct RxD_t *rxdp,
6909 int size)
6911 struct net_device *dev = sp->dev;
6912 if (sp->rxd_mode == RXD_MODE_1) {
6913 rxdp->Control_2 = SET_BUFFER0_SIZE_1( size - NET_IP_ALIGN);
6914 } else if (sp->rxd_mode == RXD_MODE_3B) {
6915 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
6916 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
6917 rxdp->Control_2 |= SET_BUFFER2_SIZE_3( dev->mtu + 4);
6921 static int rxd_owner_bit_reset(struct s2io_nic *sp)
6923 int i, j, k, blk_cnt = 0, size;
6924 struct mac_info * mac_control = &sp->mac_control;
6925 struct config_param *config = &sp->config;
6926 struct net_device *dev = sp->dev;
6927 struct RxD_t *rxdp = NULL;
6928 struct sk_buff *skb = NULL;
6929 struct buffAdd *ba = NULL;
6930 u64 temp0_64 = 0, temp1_64 = 0, temp2_64 = 0;
6932 /* Calculate the size based on ring mode */
6933 size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
6934 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
6935 if (sp->rxd_mode == RXD_MODE_1)
6936 size += NET_IP_ALIGN;
6937 else if (sp->rxd_mode == RXD_MODE_3B)
6938 size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
6940 for (i = 0; i < config->rx_ring_num; i++) {
6941 blk_cnt = config->rx_cfg[i].num_rxd /
6942 (rxd_count[sp->rxd_mode] +1);
6944 for (j = 0; j < blk_cnt; j++) {
6945 for (k = 0; k < rxd_count[sp->rxd_mode]; k++) {
6946 rxdp = mac_control->rings[i].
6947 rx_blocks[j].rxds[k].virt_addr;
6948 if(sp->rxd_mode == RXD_MODE_3B)
6949 ba = &mac_control->rings[i].ba[j][k];
6950 if (set_rxd_buffer_pointer(sp, rxdp, ba,
6951 &skb,(u64 *)&temp0_64,
6952 (u64 *)&temp1_64,
6953 (u64 *)&temp2_64,
6954 size) == ENOMEM) {
6955 return 0;
6958 set_rxd_buffer_size(sp, rxdp, size);
6959 wmb();
6960 /* flip the Ownership bit to Hardware */
6961 rxdp->Control_1 |= RXD_OWN_XENA;
6965 return 0;
6969 static int s2io_add_isr(struct s2io_nic * sp)
6971 int ret = 0;
6972 struct net_device *dev = sp->dev;
6973 int err = 0;
6975 if (sp->config.intr_type == MSI_X)
6976 ret = s2io_enable_msi_x(sp);
6977 if (ret) {
6978 DBG_PRINT(ERR_DBG, "%s: Defaulting to INTA\n", dev->name);
6979 sp->config.intr_type = INTA;
6982 /* Store the values of the MSIX table in the struct s2io_nic structure */
6983 store_xmsi_data(sp);
6985 /* After proper initialization of H/W, register ISR */
6986 if (sp->config.intr_type == MSI_X) {
6987 int i, msix_tx_cnt=0,msix_rx_cnt=0;
6989 for (i=1; (sp->s2io_entries[i].in_use == MSIX_FLG); i++) {
6990 if (sp->s2io_entries[i].type == MSIX_FIFO_TYPE) {
6991 sprintf(sp->desc[i], "%s:MSI-X-%d-TX",
6992 dev->name, i);
6993 err = request_irq(sp->entries[i].vector,
6994 s2io_msix_fifo_handle, 0, sp->desc[i],
6995 sp->s2io_entries[i].arg);
6996 /* If either data or addr is zero print it */
6997 if(!(sp->msix_info[i].addr &&
6998 sp->msix_info[i].data)) {
6999 DBG_PRINT(ERR_DBG, "%s @ Addr:0x%llx "
7000 "Data:0x%llx\n",sp->desc[i],
7001 (unsigned long long)
7002 sp->msix_info[i].addr,
7003 (unsigned long long)
7004 sp->msix_info[i].data);
7005 } else {
7006 msix_tx_cnt++;
7008 } else {
7009 sprintf(sp->desc[i], "%s:MSI-X-%d-RX",
7010 dev->name, i);
7011 err = request_irq(sp->entries[i].vector,
7012 s2io_msix_ring_handle, 0, sp->desc[i],
7013 sp->s2io_entries[i].arg);
7014 /* If either data or addr is zero print it */
7015 if(!(sp->msix_info[i].addr &&
7016 sp->msix_info[i].data)) {
7017 DBG_PRINT(ERR_DBG, "%s @ Addr:0x%llx "
7018 "Data:0x%llx\n",sp->desc[i],
7019 (unsigned long long)
7020 sp->msix_info[i].addr,
7021 (unsigned long long)
7022 sp->msix_info[i].data);
7023 } else {
7024 msix_rx_cnt++;
7027 if (err) {
7028 remove_msix_isr(sp);
7029 DBG_PRINT(ERR_DBG,"%s:MSI-X-%d registration "
7030 "failed\n", dev->name, i);
7031 DBG_PRINT(ERR_DBG, "%s: defaulting to INTA\n",
7032 dev->name);
7033 sp->config.intr_type = INTA;
7034 break;
7036 sp->s2io_entries[i].in_use = MSIX_REGISTERED_SUCCESS;
7038 if (!err) {
7039 printk(KERN_INFO "MSI-X-TX %d entries enabled\n",
7040 msix_tx_cnt);
7041 printk(KERN_INFO "MSI-X-RX %d entries enabled\n",
7042 msix_rx_cnt);
7045 if (sp->config.intr_type == INTA) {
7046 err = request_irq((int) sp->pdev->irq, s2io_isr, IRQF_SHARED,
7047 sp->name, dev);
7048 if (err) {
7049 DBG_PRINT(ERR_DBG, "%s: ISR registration failed\n",
7050 dev->name);
7051 return -1;
7054 return 0;
7056 static void s2io_rem_isr(struct s2io_nic * sp)
7058 if (sp->config.intr_type == MSI_X)
7059 remove_msix_isr(sp);
7060 else
7061 remove_inta_isr(sp);
7064 static void do_s2io_card_down(struct s2io_nic * sp, int do_io)
7066 int cnt = 0;
7067 struct XENA_dev_config __iomem *bar0 = sp->bar0;
7068 register u64 val64 = 0;
7069 struct config_param *config;
7070 config = &sp->config;
7072 if (!is_s2io_card_up(sp))
7073 return;
7075 del_timer_sync(&sp->alarm_timer);
7076 /* If s2io_set_link task is executing, wait till it completes. */
7077 while (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(sp->state))) {
7078 msleep(50);
7080 clear_bit(__S2IO_STATE_CARD_UP, &sp->state);
7082 /* Disable napi */
7083 if (config->napi)
7084 napi_disable(&sp->napi);
7086 /* disable Tx and Rx traffic on the NIC */
7087 if (do_io)
7088 stop_nic(sp);
7090 s2io_rem_isr(sp);
7092 /* Check if the device is Quiescent and then Reset the NIC */
7093 while(do_io) {
7094 /* As per the HW requirement we need to replenish the
7095 * receive buffer to avoid the ring bump. Since there is
7096 * no intention of processing the Rx frame at this pointwe are
7097 * just settting the ownership bit of rxd in Each Rx
7098 * ring to HW and set the appropriate buffer size
7099 * based on the ring mode
7101 rxd_owner_bit_reset(sp);
7103 val64 = readq(&bar0->adapter_status);
7104 if (verify_xena_quiescence(sp)) {
7105 if(verify_pcc_quiescent(sp, sp->device_enabled_once))
7106 break;
7109 msleep(50);
7110 cnt++;
7111 if (cnt == 10) {
7112 DBG_PRINT(ERR_DBG,
7113 "s2io_close:Device not Quiescent ");
7114 DBG_PRINT(ERR_DBG, "adaper status reads 0x%llx\n",
7115 (unsigned long long) val64);
7116 break;
7119 if (do_io)
7120 s2io_reset(sp);
7122 /* Free all Tx buffers */
7123 free_tx_buffers(sp);
7125 /* Free all Rx buffers */
7126 free_rx_buffers(sp);
7128 clear_bit(__S2IO_STATE_LINK_TASK, &(sp->state));
7131 static void s2io_card_down(struct s2io_nic * sp)
7133 do_s2io_card_down(sp, 1);
7136 static int s2io_card_up(struct s2io_nic * sp)
7138 int i, ret = 0;
7139 struct mac_info *mac_control;
7140 struct config_param *config;
7141 struct net_device *dev = (struct net_device *) sp->dev;
7142 u16 interruptible;
7144 /* Initialize the H/W I/O registers */
7145 ret = init_nic(sp);
7146 if (ret != 0) {
7147 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
7148 dev->name);
7149 if (ret != -EIO)
7150 s2io_reset(sp);
7151 return ret;
7155 * Initializing the Rx buffers. For now we are considering only 1
7156 * Rx ring and initializing buffers into 30 Rx blocks
7158 mac_control = &sp->mac_control;
7159 config = &sp->config;
7161 for (i = 0; i < config->rx_ring_num; i++) {
7162 mac_control->rings[i].mtu = dev->mtu;
7163 ret = fill_rx_buffers(&mac_control->rings[i]);
7164 if (ret) {
7165 DBG_PRINT(ERR_DBG, "%s: Out of memory in Open\n",
7166 dev->name);
7167 s2io_reset(sp);
7168 free_rx_buffers(sp);
7169 return -ENOMEM;
7171 DBG_PRINT(INFO_DBG, "Buf in ring:%d is %d:\n", i,
7172 mac_control->rings[i].rx_bufs_left);
7175 /* Initialise napi */
7176 if (config->napi)
7177 napi_enable(&sp->napi);
7179 /* Maintain the state prior to the open */
7180 if (sp->promisc_flg)
7181 sp->promisc_flg = 0;
7182 if (sp->m_cast_flg) {
7183 sp->m_cast_flg = 0;
7184 sp->all_multi_pos= 0;
7187 /* Setting its receive mode */
7188 s2io_set_multicast(dev);
7190 if (sp->lro) {
7191 /* Initialize max aggregatable pkts per session based on MTU */
7192 sp->lro_max_aggr_per_sess = ((1<<16) - 1) / dev->mtu;
7193 /* Check if we can use(if specified) user provided value */
7194 if (lro_max_pkts < sp->lro_max_aggr_per_sess)
7195 sp->lro_max_aggr_per_sess = lro_max_pkts;
7198 /* Enable Rx Traffic and interrupts on the NIC */
7199 if (start_nic(sp)) {
7200 DBG_PRINT(ERR_DBG, "%s: Starting NIC failed\n", dev->name);
7201 s2io_reset(sp);
7202 free_rx_buffers(sp);
7203 return -ENODEV;
7206 /* Add interrupt service routine */
7207 if (s2io_add_isr(sp) != 0) {
7208 if (sp->config.intr_type == MSI_X)
7209 s2io_rem_isr(sp);
7210 s2io_reset(sp);
7211 free_rx_buffers(sp);
7212 return -ENODEV;
7215 S2IO_TIMER_CONF(sp->alarm_timer, s2io_alarm_handle, sp, (HZ/2));
7217 /* Enable select interrupts */
7218 en_dis_err_alarms(sp, ENA_ALL_INTRS, ENABLE_INTRS);
7219 if (sp->config.intr_type != INTA)
7220 en_dis_able_nic_intrs(sp, ENA_ALL_INTRS, DISABLE_INTRS);
7221 else {
7222 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
7223 interruptible |= TX_PIC_INTR;
7224 en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
7227 set_bit(__S2IO_STATE_CARD_UP, &sp->state);
7228 return 0;
7232 * s2io_restart_nic - Resets the NIC.
7233 * @data : long pointer to the device private structure
7234 * Description:
7235 * This function is scheduled to be run by the s2io_tx_watchdog
7236 * function after 0.5 secs to reset the NIC. The idea is to reduce
7237 * the run time of the watch dog routine which is run holding a
7238 * spin lock.
7241 static void s2io_restart_nic(struct work_struct *work)
7243 struct s2io_nic *sp = container_of(work, struct s2io_nic, rst_timer_task);
7244 struct net_device *dev = sp->dev;
7246 rtnl_lock();
7248 if (!netif_running(dev))
7249 goto out_unlock;
7251 s2io_card_down(sp);
7252 if (s2io_card_up(sp)) {
7253 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
7254 dev->name);
7256 s2io_wake_all_tx_queue(sp);
7257 DBG_PRINT(ERR_DBG, "%s: was reset by Tx watchdog timer\n",
7258 dev->name);
7259 out_unlock:
7260 rtnl_unlock();
7264 * s2io_tx_watchdog - Watchdog for transmit side.
7265 * @dev : Pointer to net device structure
7266 * Description:
7267 * This function is triggered if the Tx Queue is stopped
7268 * for a pre-defined amount of time when the Interface is still up.
7269 * If the Interface is jammed in such a situation, the hardware is
7270 * reset (by s2io_close) and restarted again (by s2io_open) to
7271 * overcome any problem that might have been caused in the hardware.
7272 * Return value:
7273 * void
7276 static void s2io_tx_watchdog(struct net_device *dev)
7278 struct s2io_nic *sp = dev->priv;
7280 if (netif_carrier_ok(dev)) {
7281 sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt++;
7282 schedule_work(&sp->rst_timer_task);
7283 sp->mac_control.stats_info->sw_stat.soft_reset_cnt++;
7288 * rx_osm_handler - To perform some OS related operations on SKB.
7289 * @sp: private member of the device structure,pointer to s2io_nic structure.
7290 * @skb : the socket buffer pointer.
7291 * @len : length of the packet
7292 * @cksum : FCS checksum of the frame.
7293 * @ring_no : the ring from which this RxD was extracted.
7294 * Description:
7295 * This function is called by the Rx interrupt serivce routine to perform
7296 * some OS related operations on the SKB before passing it to the upper
7297 * layers. It mainly checks if the checksum is OK, if so adds it to the
7298 * SKBs cksum variable, increments the Rx packet count and passes the SKB
7299 * to the upper layer. If the checksum is wrong, it increments the Rx
7300 * packet error count, frees the SKB and returns error.
7301 * Return value:
7302 * SUCCESS on success and -1 on failure.
7304 static int rx_osm_handler(struct ring_info *ring_data, struct RxD_t * rxdp)
7306 struct s2io_nic *sp = ring_data->nic;
7307 struct net_device *dev = (struct net_device *) ring_data->dev;
7308 struct sk_buff *skb = (struct sk_buff *)
7309 ((unsigned long) rxdp->Host_Control);
7310 int ring_no = ring_data->ring_no;
7311 u16 l3_csum, l4_csum;
7312 unsigned long long err = rxdp->Control_1 & RXD_T_CODE;
7313 struct lro *lro;
7314 u8 err_mask;
7316 skb->dev = dev;
7318 if (err) {
7319 /* Check for parity error */
7320 if (err & 0x1) {
7321 sp->mac_control.stats_info->sw_stat.parity_err_cnt++;
7323 err_mask = err >> 48;
7324 switch(err_mask) {
7325 case 1:
7326 sp->mac_control.stats_info->sw_stat.
7327 rx_parity_err_cnt++;
7328 break;
7330 case 2:
7331 sp->mac_control.stats_info->sw_stat.
7332 rx_abort_cnt++;
7333 break;
7335 case 3:
7336 sp->mac_control.stats_info->sw_stat.
7337 rx_parity_abort_cnt++;
7338 break;
7340 case 4:
7341 sp->mac_control.stats_info->sw_stat.
7342 rx_rda_fail_cnt++;
7343 break;
7345 case 5:
7346 sp->mac_control.stats_info->sw_stat.
7347 rx_unkn_prot_cnt++;
7348 break;
7350 case 6:
7351 sp->mac_control.stats_info->sw_stat.
7352 rx_fcs_err_cnt++;
7353 break;
7355 case 7:
7356 sp->mac_control.stats_info->sw_stat.
7357 rx_buf_size_err_cnt++;
7358 break;
7360 case 8:
7361 sp->mac_control.stats_info->sw_stat.
7362 rx_rxd_corrupt_cnt++;
7363 break;
7365 case 15:
7366 sp->mac_control.stats_info->sw_stat.
7367 rx_unkn_err_cnt++;
7368 break;
7371 * Drop the packet if bad transfer code. Exception being
7372 * 0x5, which could be due to unsupported IPv6 extension header.
7373 * In this case, we let stack handle the packet.
7374 * Note that in this case, since checksum will be incorrect,
7375 * stack will validate the same.
7377 if (err_mask != 0x5) {
7378 DBG_PRINT(ERR_DBG, "%s: Rx error Value: 0x%x\n",
7379 dev->name, err_mask);
7380 sp->stats.rx_crc_errors++;
7381 sp->mac_control.stats_info->sw_stat.mem_freed
7382 += skb->truesize;
7383 dev_kfree_skb(skb);
7384 ring_data->rx_bufs_left -= 1;
7385 rxdp->Host_Control = 0;
7386 return 0;
7390 /* Updating statistics */
7391 ring_data->rx_packets++;
7392 rxdp->Host_Control = 0;
7393 if (sp->rxd_mode == RXD_MODE_1) {
7394 int len = RXD_GET_BUFFER0_SIZE_1(rxdp->Control_2);
7396 ring_data->rx_bytes += len;
7397 skb_put(skb, len);
7399 } else if (sp->rxd_mode == RXD_MODE_3B) {
7400 int get_block = ring_data->rx_curr_get_info.block_index;
7401 int get_off = ring_data->rx_curr_get_info.offset;
7402 int buf0_len = RXD_GET_BUFFER0_SIZE_3(rxdp->Control_2);
7403 int buf2_len = RXD_GET_BUFFER2_SIZE_3(rxdp->Control_2);
7404 unsigned char *buff = skb_push(skb, buf0_len);
7406 struct buffAdd *ba = &ring_data->ba[get_block][get_off];
7407 ring_data->rx_bytes += buf0_len + buf2_len;
7408 memcpy(buff, ba->ba_0, buf0_len);
7409 skb_put(skb, buf2_len);
7412 if ((rxdp->Control_1 & TCP_OR_UDP_FRAME) && ((!ring_data->lro) ||
7413 (ring_data->lro && (!(rxdp->Control_1 & RXD_FRAME_IP_FRAG)))) &&
7414 (sp->rx_csum)) {
7415 l3_csum = RXD_GET_L3_CKSUM(rxdp->Control_1);
7416 l4_csum = RXD_GET_L4_CKSUM(rxdp->Control_1);
7417 if ((l3_csum == L3_CKSUM_OK) && (l4_csum == L4_CKSUM_OK)) {
7419 * NIC verifies if the Checksum of the received
7420 * frame is Ok or not and accordingly returns
7421 * a flag in the RxD.
7423 skb->ip_summed = CHECKSUM_UNNECESSARY;
7424 if (ring_data->lro) {
7425 u32 tcp_len;
7426 u8 *tcp;
7427 int ret = 0;
7429 ret = s2io_club_tcp_session(ring_data,
7430 skb->data, &tcp, &tcp_len, &lro,
7431 rxdp, sp);
7432 switch (ret) {
7433 case 3: /* Begin anew */
7434 lro->parent = skb;
7435 goto aggregate;
7436 case 1: /* Aggregate */
7438 lro_append_pkt(sp, lro,
7439 skb, tcp_len);
7440 goto aggregate;
7442 case 4: /* Flush session */
7444 lro_append_pkt(sp, lro,
7445 skb, tcp_len);
7446 queue_rx_frame(lro->parent,
7447 lro->vlan_tag);
7448 clear_lro_session(lro);
7449 sp->mac_control.stats_info->
7450 sw_stat.flush_max_pkts++;
7451 goto aggregate;
7453 case 2: /* Flush both */
7454 lro->parent->data_len =
7455 lro->frags_len;
7456 sp->mac_control.stats_info->
7457 sw_stat.sending_both++;
7458 queue_rx_frame(lro->parent,
7459 lro->vlan_tag);
7460 clear_lro_session(lro);
7461 goto send_up;
7462 case 0: /* sessions exceeded */
7463 case -1: /* non-TCP or not
7464 * L2 aggregatable
7466 case 5: /*
7467 * First pkt in session not
7468 * L3/L4 aggregatable
7470 break;
7471 default:
7472 DBG_PRINT(ERR_DBG,
7473 "%s: Samadhana!!\n",
7474 __FUNCTION__);
7475 BUG();
7478 } else {
7480 * Packet with erroneous checksum, let the
7481 * upper layers deal with it.
7483 skb->ip_summed = CHECKSUM_NONE;
7485 } else
7486 skb->ip_summed = CHECKSUM_NONE;
7488 sp->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
7489 send_up:
7490 queue_rx_frame(skb, RXD_GET_VLAN_TAG(rxdp->Control_2));
7491 dev->last_rx = jiffies;
7492 aggregate:
7493 sp->mac_control.rings[ring_no].rx_bufs_left -= 1;
7494 return SUCCESS;
7498 * s2io_link - stops/starts the Tx queue.
7499 * @sp : private member of the device structure, which is a pointer to the
7500 * s2io_nic structure.
7501 * @link : inidicates whether link is UP/DOWN.
7502 * Description:
7503 * This function stops/starts the Tx queue depending on whether the link
7504 * status of the NIC is is down or up. This is called by the Alarm
7505 * interrupt handler whenever a link change interrupt comes up.
7506 * Return value:
7507 * void.
7510 static void s2io_link(struct s2io_nic * sp, int link)
7512 struct net_device *dev = (struct net_device *) sp->dev;
7514 if (link != sp->last_link_state) {
7515 init_tti(sp, link);
7516 if (link == LINK_DOWN) {
7517 DBG_PRINT(ERR_DBG, "%s: Link down\n", dev->name);
7518 s2io_stop_all_tx_queue(sp);
7519 netif_carrier_off(dev);
7520 if(sp->mac_control.stats_info->sw_stat.link_up_cnt)
7521 sp->mac_control.stats_info->sw_stat.link_up_time =
7522 jiffies - sp->start_time;
7523 sp->mac_control.stats_info->sw_stat.link_down_cnt++;
7524 } else {
7525 DBG_PRINT(ERR_DBG, "%s: Link Up\n", dev->name);
7526 if (sp->mac_control.stats_info->sw_stat.link_down_cnt)
7527 sp->mac_control.stats_info->sw_stat.link_down_time =
7528 jiffies - sp->start_time;
7529 sp->mac_control.stats_info->sw_stat.link_up_cnt++;
7530 netif_carrier_on(dev);
7531 s2io_wake_all_tx_queue(sp);
7534 sp->last_link_state = link;
7535 sp->start_time = jiffies;
7539 * s2io_init_pci -Initialization of PCI and PCI-X configuration registers .
7540 * @sp : private member of the device structure, which is a pointer to the
7541 * s2io_nic structure.
7542 * Description:
7543 * This function initializes a few of the PCI and PCI-X configuration registers
7544 * with recommended values.
7545 * Return value:
7546 * void
7549 static void s2io_init_pci(struct s2io_nic * sp)
7551 u16 pci_cmd = 0, pcix_cmd = 0;
7553 /* Enable Data Parity Error Recovery in PCI-X command register. */
7554 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7555 &(pcix_cmd));
7556 pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7557 (pcix_cmd | 1));
7558 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7559 &(pcix_cmd));
7561 /* Set the PErr Response bit in PCI command register. */
7562 pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
7563 pci_write_config_word(sp->pdev, PCI_COMMAND,
7564 (pci_cmd | PCI_COMMAND_PARITY));
7565 pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
7568 static int s2io_verify_parm(struct pci_dev *pdev, u8 *dev_intr_type,
7569 u8 *dev_multiq)
7571 if ((tx_fifo_num > MAX_TX_FIFOS) ||
7572 (tx_fifo_num < 1)) {
7573 DBG_PRINT(ERR_DBG, "s2io: Requested number of tx fifos "
7574 "(%d) not supported\n", tx_fifo_num);
7576 if (tx_fifo_num < 1)
7577 tx_fifo_num = 1;
7578 else
7579 tx_fifo_num = MAX_TX_FIFOS;
7581 DBG_PRINT(ERR_DBG, "s2io: Default to %d ", tx_fifo_num);
7582 DBG_PRINT(ERR_DBG, "tx fifos\n");
7585 #ifndef CONFIG_NETDEVICES_MULTIQUEUE
7586 if (multiq) {
7587 DBG_PRINT(ERR_DBG, "s2io: Multiqueue support not enabled\n");
7588 multiq = 0;
7590 #endif
7591 if (multiq)
7592 *dev_multiq = multiq;
7594 if (tx_steering_type && (1 == tx_fifo_num)) {
7595 if (tx_steering_type != TX_DEFAULT_STEERING)
7596 DBG_PRINT(ERR_DBG,
7597 "s2io: Tx steering is not supported with "
7598 "one fifo. Disabling Tx steering.\n");
7599 tx_steering_type = NO_STEERING;
7602 if ((tx_steering_type < NO_STEERING) ||
7603 (tx_steering_type > TX_DEFAULT_STEERING)) {
7604 DBG_PRINT(ERR_DBG, "s2io: Requested transmit steering not "
7605 "supported\n");
7606 DBG_PRINT(ERR_DBG, "s2io: Disabling transmit steering\n");
7607 tx_steering_type = NO_STEERING;
7610 if (rx_ring_num > MAX_RX_RINGS) {
7611 DBG_PRINT(ERR_DBG, "s2io: Requested number of rx rings not "
7612 "supported\n");
7613 DBG_PRINT(ERR_DBG, "s2io: Default to %d rx rings\n",
7614 MAX_RX_RINGS);
7615 rx_ring_num = MAX_RX_RINGS;
7618 if (*dev_intr_type != INTA)
7619 napi = 0;
7621 if ((*dev_intr_type != INTA) && (*dev_intr_type != MSI_X)) {
7622 DBG_PRINT(ERR_DBG, "s2io: Wrong intr_type requested. "
7623 "Defaulting to INTA\n");
7624 *dev_intr_type = INTA;
7627 if ((*dev_intr_type == MSI_X) &&
7628 ((pdev->device != PCI_DEVICE_ID_HERC_WIN) &&
7629 (pdev->device != PCI_DEVICE_ID_HERC_UNI))) {
7630 DBG_PRINT(ERR_DBG, "s2io: Xframe I does not support MSI_X. "
7631 "Defaulting to INTA\n");
7632 *dev_intr_type = INTA;
7635 if ((rx_ring_mode != 1) && (rx_ring_mode != 2)) {
7636 DBG_PRINT(ERR_DBG, "s2io: Requested ring mode not supported\n");
7637 DBG_PRINT(ERR_DBG, "s2io: Defaulting to 1-buffer mode\n");
7638 rx_ring_mode = 1;
7640 return SUCCESS;
7644 * rts_ds_steer - Receive traffic steering based on IPv4 or IPv6 TOS
7645 * or Traffic class respectively.
7646 * @nic: device private variable
7647 * Description: The function configures the receive steering to
7648 * desired receive ring.
7649 * Return Value: SUCCESS on success and
7650 * '-1' on failure (endian settings incorrect).
7652 static int rts_ds_steer(struct s2io_nic *nic, u8 ds_codepoint, u8 ring)
7654 struct XENA_dev_config __iomem *bar0 = nic->bar0;
7655 register u64 val64 = 0;
7657 if (ds_codepoint > 63)
7658 return FAILURE;
7660 val64 = RTS_DS_MEM_DATA(ring);
7661 writeq(val64, &bar0->rts_ds_mem_data);
7663 val64 = RTS_DS_MEM_CTRL_WE |
7664 RTS_DS_MEM_CTRL_STROBE_NEW_CMD |
7665 RTS_DS_MEM_CTRL_OFFSET(ds_codepoint);
7667 writeq(val64, &bar0->rts_ds_mem_ctrl);
7669 return wait_for_cmd_complete(&bar0->rts_ds_mem_ctrl,
7670 RTS_DS_MEM_CTRL_STROBE_CMD_BEING_EXECUTED,
7671 S2IO_BIT_RESET);
7675 * s2io_init_nic - Initialization of the adapter .
7676 * @pdev : structure containing the PCI related information of the device.
7677 * @pre: List of PCI devices supported by the driver listed in s2io_tbl.
7678 * Description:
7679 * The function initializes an adapter identified by the pci_dec structure.
7680 * All OS related initialization including memory and device structure and
7681 * initlaization of the device private variable is done. Also the swapper
7682 * control register is initialized to enable read and write into the I/O
7683 * registers of the device.
7684 * Return value:
7685 * returns 0 on success and negative on failure.
7688 static int __devinit
7689 s2io_init_nic(struct pci_dev *pdev, const struct pci_device_id *pre)
7691 struct s2io_nic *sp;
7692 struct net_device *dev;
7693 int i, j, ret;
7694 int dma_flag = FALSE;
7695 u32 mac_up, mac_down;
7696 u64 val64 = 0, tmp64 = 0;
7697 struct XENA_dev_config __iomem *bar0 = NULL;
7698 u16 subid;
7699 struct mac_info *mac_control;
7700 struct config_param *config;
7701 int mode;
7702 u8 dev_intr_type = intr_type;
7703 u8 dev_multiq = 0;
7704 DECLARE_MAC_BUF(mac);
7706 ret = s2io_verify_parm(pdev, &dev_intr_type, &dev_multiq);
7707 if (ret)
7708 return ret;
7710 if ((ret = pci_enable_device(pdev))) {
7711 DBG_PRINT(ERR_DBG,
7712 "s2io_init_nic: pci_enable_device failed\n");
7713 return ret;
7716 if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
7717 DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 64bit DMA\n");
7718 dma_flag = TRUE;
7719 if (pci_set_consistent_dma_mask
7720 (pdev, DMA_64BIT_MASK)) {
7721 DBG_PRINT(ERR_DBG,
7722 "Unable to obtain 64bit DMA for \
7723 consistent allocations\n");
7724 pci_disable_device(pdev);
7725 return -ENOMEM;
7727 } else if (!pci_set_dma_mask(pdev, DMA_32BIT_MASK)) {
7728 DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 32bit DMA\n");
7729 } else {
7730 pci_disable_device(pdev);
7731 return -ENOMEM;
7733 if ((ret = pci_request_regions(pdev, s2io_driver_name))) {
7734 DBG_PRINT(ERR_DBG, "%s: Request Regions failed - %x \n", __FUNCTION__, ret);
7735 pci_disable_device(pdev);
7736 return -ENODEV;
7738 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
7739 if (dev_multiq)
7740 dev = alloc_etherdev_mq(sizeof(struct s2io_nic), tx_fifo_num);
7741 else
7742 #endif
7743 dev = alloc_etherdev(sizeof(struct s2io_nic));
7744 if (dev == NULL) {
7745 DBG_PRINT(ERR_DBG, "Device allocation failed\n");
7746 pci_disable_device(pdev);
7747 pci_release_regions(pdev);
7748 return -ENODEV;
7751 pci_set_master(pdev);
7752 pci_set_drvdata(pdev, dev);
7753 SET_NETDEV_DEV(dev, &pdev->dev);
7755 /* Private member variable initialized to s2io NIC structure */
7756 sp = dev->priv;
7757 memset(sp, 0, sizeof(struct s2io_nic));
7758 sp->dev = dev;
7759 sp->pdev = pdev;
7760 sp->high_dma_flag = dma_flag;
7761 sp->device_enabled_once = FALSE;
7762 if (rx_ring_mode == 1)
7763 sp->rxd_mode = RXD_MODE_1;
7764 if (rx_ring_mode == 2)
7765 sp->rxd_mode = RXD_MODE_3B;
7767 sp->config.intr_type = dev_intr_type;
7769 if ((pdev->device == PCI_DEVICE_ID_HERC_WIN) ||
7770 (pdev->device == PCI_DEVICE_ID_HERC_UNI))
7771 sp->device_type = XFRAME_II_DEVICE;
7772 else
7773 sp->device_type = XFRAME_I_DEVICE;
7775 sp->lro = lro_enable;
7777 /* Initialize some PCI/PCI-X fields of the NIC. */
7778 s2io_init_pci(sp);
7781 * Setting the device configuration parameters.
7782 * Most of these parameters can be specified by the user during
7783 * module insertion as they are module loadable parameters. If
7784 * these parameters are not not specified during load time, they
7785 * are initialized with default values.
7787 mac_control = &sp->mac_control;
7788 config = &sp->config;
7790 config->napi = napi;
7791 config->tx_steering_type = tx_steering_type;
7793 /* Tx side parameters. */
7794 if (config->tx_steering_type == TX_PRIORITY_STEERING)
7795 config->tx_fifo_num = MAX_TX_FIFOS;
7796 else
7797 config->tx_fifo_num = tx_fifo_num;
7799 /* Initialize the fifos used for tx steering */
7800 if (config->tx_fifo_num < 5) {
7801 if (config->tx_fifo_num == 1)
7802 sp->total_tcp_fifos = 1;
7803 else
7804 sp->total_tcp_fifos = config->tx_fifo_num - 1;
7805 sp->udp_fifo_idx = config->tx_fifo_num - 1;
7806 sp->total_udp_fifos = 1;
7807 sp->other_fifo_idx = sp->total_tcp_fifos - 1;
7808 } else {
7809 sp->total_tcp_fifos = (tx_fifo_num - FIFO_UDP_MAX_NUM -
7810 FIFO_OTHER_MAX_NUM);
7811 sp->udp_fifo_idx = sp->total_tcp_fifos;
7812 sp->total_udp_fifos = FIFO_UDP_MAX_NUM;
7813 sp->other_fifo_idx = sp->udp_fifo_idx + FIFO_UDP_MAX_NUM;
7816 config->multiq = dev_multiq;
7817 for (i = 0; i < config->tx_fifo_num; i++) {
7818 config->tx_cfg[i].fifo_len = tx_fifo_len[i];
7819 config->tx_cfg[i].fifo_priority = i;
7822 /* mapping the QoS priority to the configured fifos */
7823 for (i = 0; i < MAX_TX_FIFOS; i++)
7824 config->fifo_mapping[i] = fifo_map[config->tx_fifo_num - 1][i];
7826 /* map the hashing selector table to the configured fifos */
7827 for (i = 0; i < config->tx_fifo_num; i++)
7828 sp->fifo_selector[i] = fifo_selector[i];
7831 config->tx_intr_type = TXD_INT_TYPE_UTILZ;
7832 for (i = 0; i < config->tx_fifo_num; i++) {
7833 config->tx_cfg[i].f_no_snoop =
7834 (NO_SNOOP_TXD | NO_SNOOP_TXD_BUFFER);
7835 if (config->tx_cfg[i].fifo_len < 65) {
7836 config->tx_intr_type = TXD_INT_TYPE_PER_LIST;
7837 break;
7840 /* + 2 because one Txd for skb->data and one Txd for UFO */
7841 config->max_txds = MAX_SKB_FRAGS + 2;
7843 /* Rx side parameters. */
7844 config->rx_ring_num = rx_ring_num;
7845 for (i = 0; i < config->rx_ring_num; i++) {
7846 config->rx_cfg[i].num_rxd = rx_ring_sz[i] *
7847 (rxd_count[sp->rxd_mode] + 1);
7848 config->rx_cfg[i].ring_priority = i;
7849 mac_control->rings[i].rx_bufs_left = 0;
7850 mac_control->rings[i].rxd_mode = sp->rxd_mode;
7851 mac_control->rings[i].rxd_count = rxd_count[sp->rxd_mode];
7852 mac_control->rings[i].pdev = sp->pdev;
7853 mac_control->rings[i].dev = sp->dev;
7856 for (i = 0; i < rx_ring_num; i++) {
7857 config->rx_cfg[i].ring_org = RING_ORG_BUFF1;
7858 config->rx_cfg[i].f_no_snoop =
7859 (NO_SNOOP_RXD | NO_SNOOP_RXD_BUFFER);
7862 /* Setting Mac Control parameters */
7863 mac_control->rmac_pause_time = rmac_pause_time;
7864 mac_control->mc_pause_threshold_q0q3 = mc_pause_threshold_q0q3;
7865 mac_control->mc_pause_threshold_q4q7 = mc_pause_threshold_q4q7;
7868 /* initialize the shared memory used by the NIC and the host */
7869 if (init_shared_mem(sp)) {
7870 DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n",
7871 dev->name);
7872 ret = -ENOMEM;
7873 goto mem_alloc_failed;
7876 sp->bar0 = ioremap(pci_resource_start(pdev, 0),
7877 pci_resource_len(pdev, 0));
7878 if (!sp->bar0) {
7879 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem1\n",
7880 dev->name);
7881 ret = -ENOMEM;
7882 goto bar0_remap_failed;
7885 sp->bar1 = ioremap(pci_resource_start(pdev, 2),
7886 pci_resource_len(pdev, 2));
7887 if (!sp->bar1) {
7888 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem2\n",
7889 dev->name);
7890 ret = -ENOMEM;
7891 goto bar1_remap_failed;
7894 dev->irq = pdev->irq;
7895 dev->base_addr = (unsigned long) sp->bar0;
7897 /* Initializing the BAR1 address as the start of the FIFO pointer. */
7898 for (j = 0; j < MAX_TX_FIFOS; j++) {
7899 mac_control->tx_FIFO_start[j] = (struct TxFIFO_element __iomem *)
7900 (sp->bar1 + (j * 0x00020000));
7903 /* Driver entry points */
7904 dev->open = &s2io_open;
7905 dev->stop = &s2io_close;
7906 dev->hard_start_xmit = &s2io_xmit;
7907 dev->get_stats = &s2io_get_stats;
7908 dev->set_multicast_list = &s2io_set_multicast;
7909 dev->do_ioctl = &s2io_ioctl;
7910 dev->set_mac_address = &s2io_set_mac_addr;
7911 dev->change_mtu = &s2io_change_mtu;
7912 SET_ETHTOOL_OPS(dev, &netdev_ethtool_ops);
7913 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
7914 dev->vlan_rx_register = s2io_vlan_rx_register;
7915 dev->vlan_rx_kill_vid = (void *)s2io_vlan_rx_kill_vid;
7918 * will use eth_mac_addr() for dev->set_mac_address
7919 * mac address will be set every time dev->open() is called
7921 netif_napi_add(dev, &sp->napi, s2io_poll, 32);
7923 #ifdef CONFIG_NET_POLL_CONTROLLER
7924 dev->poll_controller = s2io_netpoll;
7925 #endif
7927 dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM;
7928 if (sp->high_dma_flag == TRUE)
7929 dev->features |= NETIF_F_HIGHDMA;
7930 dev->features |= NETIF_F_TSO;
7931 dev->features |= NETIF_F_TSO6;
7932 if ((sp->device_type & XFRAME_II_DEVICE) && (ufo)) {
7933 dev->features |= NETIF_F_UFO;
7934 dev->features |= NETIF_F_HW_CSUM;
7936 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
7937 if (config->multiq)
7938 dev->features |= NETIF_F_MULTI_QUEUE;
7939 #endif
7940 dev->tx_timeout = &s2io_tx_watchdog;
7941 dev->watchdog_timeo = WATCH_DOG_TIMEOUT;
7942 INIT_WORK(&sp->rst_timer_task, s2io_restart_nic);
7943 INIT_WORK(&sp->set_link_task, s2io_set_link);
7945 pci_save_state(sp->pdev);
7947 /* Setting swapper control on the NIC, for proper reset operation */
7948 if (s2io_set_swapper(sp)) {
7949 DBG_PRINT(ERR_DBG, "%s:swapper settings are wrong\n",
7950 dev->name);
7951 ret = -EAGAIN;
7952 goto set_swap_failed;
7955 /* Verify if the Herc works on the slot its placed into */
7956 if (sp->device_type & XFRAME_II_DEVICE) {
7957 mode = s2io_verify_pci_mode(sp);
7958 if (mode < 0) {
7959 DBG_PRINT(ERR_DBG, "%s: ", __FUNCTION__);
7960 DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
7961 ret = -EBADSLT;
7962 goto set_swap_failed;
7966 /* Not needed for Herc */
7967 if (sp->device_type & XFRAME_I_DEVICE) {
7969 * Fix for all "FFs" MAC address problems observed on
7970 * Alpha platforms
7972 fix_mac_address(sp);
7973 s2io_reset(sp);
7977 * MAC address initialization.
7978 * For now only one mac address will be read and used.
7980 bar0 = sp->bar0;
7981 val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
7982 RMAC_ADDR_CMD_MEM_OFFSET(0 + S2IO_MAC_ADDR_START_OFFSET);
7983 writeq(val64, &bar0->rmac_addr_cmd_mem);
7984 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
7985 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING, S2IO_BIT_RESET);
7986 tmp64 = readq(&bar0->rmac_addr_data0_mem);
7987 mac_down = (u32) tmp64;
7988 mac_up = (u32) (tmp64 >> 32);
7990 sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_up);
7991 sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_up >> 8);
7992 sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_up >> 16);
7993 sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_up >> 24);
7994 sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_down >> 16);
7995 sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_down >> 24);
7997 /* Set the factory defined MAC address initially */
7998 dev->addr_len = ETH_ALEN;
7999 memcpy(dev->dev_addr, sp->def_mac_addr, ETH_ALEN);
8000 memcpy(dev->perm_addr, dev->dev_addr, ETH_ALEN);
8002 /* initialize number of multicast & unicast MAC entries variables */
8003 if (sp->device_type == XFRAME_I_DEVICE) {
8004 config->max_mc_addr = S2IO_XENA_MAX_MC_ADDRESSES;
8005 config->max_mac_addr = S2IO_XENA_MAX_MAC_ADDRESSES;
8006 config->mc_start_offset = S2IO_XENA_MC_ADDR_START_OFFSET;
8007 } else if (sp->device_type == XFRAME_II_DEVICE) {
8008 config->max_mc_addr = S2IO_HERC_MAX_MC_ADDRESSES;
8009 config->max_mac_addr = S2IO_HERC_MAX_MAC_ADDRESSES;
8010 config->mc_start_offset = S2IO_HERC_MC_ADDR_START_OFFSET;
8013 /* store mac addresses from CAM to s2io_nic structure */
8014 do_s2io_store_unicast_mc(sp);
8016 /* Store the values of the MSIX table in the s2io_nic structure */
8017 store_xmsi_data(sp);
8018 /* reset Nic and bring it to known state */
8019 s2io_reset(sp);
8022 * Initialize link state flags
8023 * and the card state parameter
8025 sp->state = 0;
8027 /* Initialize spinlocks */
8028 for (i = 0; i < sp->config.tx_fifo_num; i++)
8029 spin_lock_init(&mac_control->fifos[i].tx_lock);
8032 * SXE-002: Configure link and activity LED to init state
8033 * on driver load.
8035 subid = sp->pdev->subsystem_device;
8036 if ((subid & 0xFF) >= 0x07) {
8037 val64 = readq(&bar0->gpio_control);
8038 val64 |= 0x0000800000000000ULL;
8039 writeq(val64, &bar0->gpio_control);
8040 val64 = 0x0411040400000000ULL;
8041 writeq(val64, (void __iomem *) bar0 + 0x2700);
8042 val64 = readq(&bar0->gpio_control);
8045 sp->rx_csum = 1; /* Rx chksum verify enabled by default */
8047 if (register_netdev(dev)) {
8048 DBG_PRINT(ERR_DBG, "Device registration failed\n");
8049 ret = -ENODEV;
8050 goto register_failed;
8052 s2io_vpd_read(sp);
8053 DBG_PRINT(ERR_DBG, "Copyright(c) 2002-2007 Neterion Inc.\n");
8054 DBG_PRINT(ERR_DBG, "%s: Neterion %s (rev %d)\n",dev->name,
8055 sp->product_name, pdev->revision);
8056 DBG_PRINT(ERR_DBG, "%s: Driver version %s\n", dev->name,
8057 s2io_driver_version);
8058 DBG_PRINT(ERR_DBG, "%s: MAC ADDR: %s\n",
8059 dev->name, print_mac(mac, dev->dev_addr));
8060 DBG_PRINT(ERR_DBG, "SERIAL NUMBER: %s\n", sp->serial_num);
8061 if (sp->device_type & XFRAME_II_DEVICE) {
8062 mode = s2io_print_pci_mode(sp);
8063 if (mode < 0) {
8064 DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
8065 ret = -EBADSLT;
8066 unregister_netdev(dev);
8067 goto set_swap_failed;
8070 switch(sp->rxd_mode) {
8071 case RXD_MODE_1:
8072 DBG_PRINT(ERR_DBG, "%s: 1-Buffer receive mode enabled\n",
8073 dev->name);
8074 break;
8075 case RXD_MODE_3B:
8076 DBG_PRINT(ERR_DBG, "%s: 2-Buffer receive mode enabled\n",
8077 dev->name);
8078 break;
8081 if (napi)
8082 DBG_PRINT(ERR_DBG, "%s: NAPI enabled\n", dev->name);
8084 DBG_PRINT(ERR_DBG, "%s: Using %d Tx fifo(s)\n", dev->name,
8085 sp->config.tx_fifo_num);
8087 DBG_PRINT(ERR_DBG, "%s: Using %d Rx ring(s)\n", dev->name,
8088 sp->config.rx_ring_num);
8090 switch(sp->config.intr_type) {
8091 case INTA:
8092 DBG_PRINT(ERR_DBG, "%s: Interrupt type INTA\n", dev->name);
8093 break;
8094 case MSI_X:
8095 DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI-X\n", dev->name);
8096 break;
8098 if (sp->config.multiq) {
8099 for (i = 0; i < sp->config.tx_fifo_num; i++)
8100 mac_control->fifos[i].multiq = config->multiq;
8101 DBG_PRINT(ERR_DBG, "%s: Multiqueue support enabled\n",
8102 dev->name);
8103 } else
8104 DBG_PRINT(ERR_DBG, "%s: Multiqueue support disabled\n",
8105 dev->name);
8107 switch (sp->config.tx_steering_type) {
8108 case NO_STEERING:
8109 DBG_PRINT(ERR_DBG, "%s: No steering enabled for"
8110 " transmit\n", dev->name);
8111 break;
8112 case TX_PRIORITY_STEERING:
8113 DBG_PRINT(ERR_DBG, "%s: Priority steering enabled for"
8114 " transmit\n", dev->name);
8115 break;
8116 case TX_DEFAULT_STEERING:
8117 DBG_PRINT(ERR_DBG, "%s: Default steering enabled for"
8118 " transmit\n", dev->name);
8121 if (sp->lro)
8122 DBG_PRINT(ERR_DBG, "%s: Large receive offload enabled\n",
8123 dev->name);
8124 if (ufo)
8125 DBG_PRINT(ERR_DBG, "%s: UDP Fragmentation Offload(UFO)"
8126 " enabled\n", dev->name);
8127 /* Initialize device name */
8128 sprintf(sp->name, "%s Neterion %s", dev->name, sp->product_name);
8131 * Make Link state as off at this point, when the Link change
8132 * interrupt comes the state will be automatically changed to
8133 * the right state.
8135 netif_carrier_off(dev);
8137 return 0;
8139 register_failed:
8140 set_swap_failed:
8141 iounmap(sp->bar1);
8142 bar1_remap_failed:
8143 iounmap(sp->bar0);
8144 bar0_remap_failed:
8145 mem_alloc_failed:
8146 free_shared_mem(sp);
8147 pci_disable_device(pdev);
8148 pci_release_regions(pdev);
8149 pci_set_drvdata(pdev, NULL);
8150 free_netdev(dev);
8152 return ret;
8156 * s2io_rem_nic - Free the PCI device
8157 * @pdev: structure containing the PCI related information of the device.
8158 * Description: This function is called by the Pci subsystem to release a
8159 * PCI device and free up all resource held up by the device. This could
8160 * be in response to a Hot plug event or when the driver is to be removed
8161 * from memory.
8164 static void __devexit s2io_rem_nic(struct pci_dev *pdev)
8166 struct net_device *dev =
8167 (struct net_device *) pci_get_drvdata(pdev);
8168 struct s2io_nic *sp;
8170 if (dev == NULL) {
8171 DBG_PRINT(ERR_DBG, "Driver Data is NULL!!\n");
8172 return;
8175 flush_scheduled_work();
8177 sp = dev->priv;
8178 unregister_netdev(dev);
8180 free_shared_mem(sp);
8181 iounmap(sp->bar0);
8182 iounmap(sp->bar1);
8183 pci_release_regions(pdev);
8184 pci_set_drvdata(pdev, NULL);
8185 free_netdev(dev);
8186 pci_disable_device(pdev);
8190 * s2io_starter - Entry point for the driver
8191 * Description: This function is the entry point for the driver. It verifies
8192 * the module loadable parameters and initializes PCI configuration space.
8195 static int __init s2io_starter(void)
8197 return pci_register_driver(&s2io_driver);
8201 * s2io_closer - Cleanup routine for the driver
8202 * Description: This function is the cleanup routine for the driver. It unregist * ers the driver.
8205 static __exit void s2io_closer(void)
8207 pci_unregister_driver(&s2io_driver);
8208 DBG_PRINT(INIT_DBG, "cleanup done\n");
8211 module_init(s2io_starter);
8212 module_exit(s2io_closer);
8214 static int check_L2_lro_capable(u8 *buffer, struct iphdr **ip,
8215 struct tcphdr **tcp, struct RxD_t *rxdp,
8216 struct s2io_nic *sp)
8218 int ip_off;
8219 u8 l2_type = (u8)((rxdp->Control_1 >> 37) & 0x7), ip_len;
8221 if (!(rxdp->Control_1 & RXD_FRAME_PROTO_TCP)) {
8222 DBG_PRINT(INIT_DBG,"%s: Non-TCP frames not supported for LRO\n",
8223 __FUNCTION__);
8224 return -1;
8227 /* Checking for DIX type or DIX type with VLAN */
8228 if ((l2_type == 0)
8229 || (l2_type == 4)) {
8230 ip_off = HEADER_ETHERNET_II_802_3_SIZE;
8232 * If vlan stripping is disabled and the frame is VLAN tagged,
8233 * shift the offset by the VLAN header size bytes.
8235 if ((!vlan_strip_flag) &&
8236 (rxdp->Control_1 & RXD_FRAME_VLAN_TAG))
8237 ip_off += HEADER_VLAN_SIZE;
8238 } else {
8239 /* LLC, SNAP etc are considered non-mergeable */
8240 return -1;
8243 *ip = (struct iphdr *)((u8 *)buffer + ip_off);
8244 ip_len = (u8)((*ip)->ihl);
8245 ip_len <<= 2;
8246 *tcp = (struct tcphdr *)((unsigned long)*ip + ip_len);
8248 return 0;
8251 static int check_for_socket_match(struct lro *lro, struct iphdr *ip,
8252 struct tcphdr *tcp)
8254 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
8255 if ((lro->iph->saddr != ip->saddr) || (lro->iph->daddr != ip->daddr) ||
8256 (lro->tcph->source != tcp->source) || (lro->tcph->dest != tcp->dest))
8257 return -1;
8258 return 0;
8261 static inline int get_l4_pyld_length(struct iphdr *ip, struct tcphdr *tcp)
8263 return(ntohs(ip->tot_len) - (ip->ihl << 2) - (tcp->doff << 2));
8266 static void initiate_new_session(struct lro *lro, u8 *l2h,
8267 struct iphdr *ip, struct tcphdr *tcp, u32 tcp_pyld_len, u16 vlan_tag)
8269 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
8270 lro->l2h = l2h;
8271 lro->iph = ip;
8272 lro->tcph = tcp;
8273 lro->tcp_next_seq = tcp_pyld_len + ntohl(tcp->seq);
8274 lro->tcp_ack = tcp->ack_seq;
8275 lro->sg_num = 1;
8276 lro->total_len = ntohs(ip->tot_len);
8277 lro->frags_len = 0;
8278 lro->vlan_tag = vlan_tag;
8280 * check if we saw TCP timestamp. Other consistency checks have
8281 * already been done.
8283 if (tcp->doff == 8) {
8284 __be32 *ptr;
8285 ptr = (__be32 *)(tcp+1);
8286 lro->saw_ts = 1;
8287 lro->cur_tsval = ntohl(*(ptr+1));
8288 lro->cur_tsecr = *(ptr+2);
8290 lro->in_use = 1;
8293 static void update_L3L4_header(struct s2io_nic *sp, struct lro *lro)
8295 struct iphdr *ip = lro->iph;
8296 struct tcphdr *tcp = lro->tcph;
8297 __sum16 nchk;
8298 struct stat_block *statinfo = sp->mac_control.stats_info;
8299 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
8301 /* Update L3 header */
8302 ip->tot_len = htons(lro->total_len);
8303 ip->check = 0;
8304 nchk = ip_fast_csum((u8 *)lro->iph, ip->ihl);
8305 ip->check = nchk;
8307 /* Update L4 header */
8308 tcp->ack_seq = lro->tcp_ack;
8309 tcp->window = lro->window;
8311 /* Update tsecr field if this session has timestamps enabled */
8312 if (lro->saw_ts) {
8313 __be32 *ptr = (__be32 *)(tcp + 1);
8314 *(ptr+2) = lro->cur_tsecr;
8317 /* Update counters required for calculation of
8318 * average no. of packets aggregated.
8320 statinfo->sw_stat.sum_avg_pkts_aggregated += lro->sg_num;
8321 statinfo->sw_stat.num_aggregations++;
8324 static void aggregate_new_rx(struct lro *lro, struct iphdr *ip,
8325 struct tcphdr *tcp, u32 l4_pyld)
8327 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
8328 lro->total_len += l4_pyld;
8329 lro->frags_len += l4_pyld;
8330 lro->tcp_next_seq += l4_pyld;
8331 lro->sg_num++;
8333 /* Update ack seq no. and window ad(from this pkt) in LRO object */
8334 lro->tcp_ack = tcp->ack_seq;
8335 lro->window = tcp->window;
8337 if (lro->saw_ts) {
8338 __be32 *ptr;
8339 /* Update tsecr and tsval from this packet */
8340 ptr = (__be32 *)(tcp+1);
8341 lro->cur_tsval = ntohl(*(ptr+1));
8342 lro->cur_tsecr = *(ptr + 2);
8346 static int verify_l3_l4_lro_capable(struct lro *l_lro, struct iphdr *ip,
8347 struct tcphdr *tcp, u32 tcp_pyld_len)
8349 u8 *ptr;
8351 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
8353 if (!tcp_pyld_len) {
8354 /* Runt frame or a pure ack */
8355 return -1;
8358 if (ip->ihl != 5) /* IP has options */
8359 return -1;
8361 /* If we see CE codepoint in IP header, packet is not mergeable */
8362 if (INET_ECN_is_ce(ipv4_get_dsfield(ip)))
8363 return -1;
8365 /* If we see ECE or CWR flags in TCP header, packet is not mergeable */
8366 if (tcp->urg || tcp->psh || tcp->rst || tcp->syn || tcp->fin ||
8367 tcp->ece || tcp->cwr || !tcp->ack) {
8369 * Currently recognize only the ack control word and
8370 * any other control field being set would result in
8371 * flushing the LRO session
8373 return -1;
8377 * Allow only one TCP timestamp option. Don't aggregate if
8378 * any other options are detected.
8380 if (tcp->doff != 5 && tcp->doff != 8)
8381 return -1;
8383 if (tcp->doff == 8) {
8384 ptr = (u8 *)(tcp + 1);
8385 while (*ptr == TCPOPT_NOP)
8386 ptr++;
8387 if (*ptr != TCPOPT_TIMESTAMP || *(ptr+1) != TCPOLEN_TIMESTAMP)
8388 return -1;
8390 /* Ensure timestamp value increases monotonically */
8391 if (l_lro)
8392 if (l_lro->cur_tsval > ntohl(*((__be32 *)(ptr+2))))
8393 return -1;
8395 /* timestamp echo reply should be non-zero */
8396 if (*((__be32 *)(ptr+6)) == 0)
8397 return -1;
8400 return 0;
8403 static int
8404 s2io_club_tcp_session(struct ring_info *ring_data, u8 *buffer, u8 **tcp,
8405 u32 *tcp_len, struct lro **lro, struct RxD_t *rxdp,
8406 struct s2io_nic *sp)
8408 struct iphdr *ip;
8409 struct tcphdr *tcph;
8410 int ret = 0, i;
8411 u16 vlan_tag = 0;
8413 if (!(ret = check_L2_lro_capable(buffer, &ip, (struct tcphdr **)tcp,
8414 rxdp, sp))) {
8415 DBG_PRINT(INFO_DBG,"IP Saddr: %x Daddr: %x\n",
8416 ip->saddr, ip->daddr);
8417 } else
8418 return ret;
8420 vlan_tag = RXD_GET_VLAN_TAG(rxdp->Control_2);
8421 tcph = (struct tcphdr *)*tcp;
8422 *tcp_len = get_l4_pyld_length(ip, tcph);
8423 for (i=0; i<MAX_LRO_SESSIONS; i++) {
8424 struct lro *l_lro = &ring_data->lro0_n[i];
8425 if (l_lro->in_use) {
8426 if (check_for_socket_match(l_lro, ip, tcph))
8427 continue;
8428 /* Sock pair matched */
8429 *lro = l_lro;
8431 if ((*lro)->tcp_next_seq != ntohl(tcph->seq)) {
8432 DBG_PRINT(INFO_DBG, "%s:Out of order. expected "
8433 "0x%x, actual 0x%x\n", __FUNCTION__,
8434 (*lro)->tcp_next_seq,
8435 ntohl(tcph->seq));
8437 sp->mac_control.stats_info->
8438 sw_stat.outof_sequence_pkts++;
8439 ret = 2;
8440 break;
8443 if (!verify_l3_l4_lro_capable(l_lro, ip, tcph,*tcp_len))
8444 ret = 1; /* Aggregate */
8445 else
8446 ret = 2; /* Flush both */
8447 break;
8451 if (ret == 0) {
8452 /* Before searching for available LRO objects,
8453 * check if the pkt is L3/L4 aggregatable. If not
8454 * don't create new LRO session. Just send this
8455 * packet up.
8457 if (verify_l3_l4_lro_capable(NULL, ip, tcph, *tcp_len)) {
8458 return 5;
8461 for (i=0; i<MAX_LRO_SESSIONS; i++) {
8462 struct lro *l_lro = &ring_data->lro0_n[i];
8463 if (!(l_lro->in_use)) {
8464 *lro = l_lro;
8465 ret = 3; /* Begin anew */
8466 break;
8471 if (ret == 0) { /* sessions exceeded */
8472 DBG_PRINT(INFO_DBG,"%s:All LRO sessions already in use\n",
8473 __FUNCTION__);
8474 *lro = NULL;
8475 return ret;
8478 switch (ret) {
8479 case 3:
8480 initiate_new_session(*lro, buffer, ip, tcph, *tcp_len,
8481 vlan_tag);
8482 break;
8483 case 2:
8484 update_L3L4_header(sp, *lro);
8485 break;
8486 case 1:
8487 aggregate_new_rx(*lro, ip, tcph, *tcp_len);
8488 if ((*lro)->sg_num == sp->lro_max_aggr_per_sess) {
8489 update_L3L4_header(sp, *lro);
8490 ret = 4; /* Flush the LRO */
8492 break;
8493 default:
8494 DBG_PRINT(ERR_DBG,"%s:Dont know, can't say!!\n",
8495 __FUNCTION__);
8496 break;
8499 return ret;
8502 static void clear_lro_session(struct lro *lro)
8504 static u16 lro_struct_size = sizeof(struct lro);
8506 memset(lro, 0, lro_struct_size);
8509 static void queue_rx_frame(struct sk_buff *skb, u16 vlan_tag)
8511 struct net_device *dev = skb->dev;
8512 struct s2io_nic *sp = dev->priv;
8514 skb->protocol = eth_type_trans(skb, dev);
8515 if (sp->vlgrp && vlan_tag
8516 && (vlan_strip_flag)) {
8517 /* Queueing the vlan frame to the upper layer */
8518 if (sp->config.napi)
8519 vlan_hwaccel_receive_skb(skb, sp->vlgrp, vlan_tag);
8520 else
8521 vlan_hwaccel_rx(skb, sp->vlgrp, vlan_tag);
8522 } else {
8523 if (sp->config.napi)
8524 netif_receive_skb(skb);
8525 else
8526 netif_rx(skb);
8530 static void lro_append_pkt(struct s2io_nic *sp, struct lro *lro,
8531 struct sk_buff *skb,
8532 u32 tcp_len)
8534 struct sk_buff *first = lro->parent;
8536 first->len += tcp_len;
8537 first->data_len = lro->frags_len;
8538 skb_pull(skb, (skb->len - tcp_len));
8539 if (skb_shinfo(first)->frag_list)
8540 lro->last_frag->next = skb;
8541 else
8542 skb_shinfo(first)->frag_list = skb;
8543 first->truesize += skb->truesize;
8544 lro->last_frag = skb;
8545 sp->mac_control.stats_info->sw_stat.clubbed_frms_cnt++;
8546 return;
8550 * s2io_io_error_detected - called when PCI error is detected
8551 * @pdev: Pointer to PCI device
8552 * @state: The current pci connection state
8554 * This function is called after a PCI bus error affecting
8555 * this device has been detected.
8557 static pci_ers_result_t s2io_io_error_detected(struct pci_dev *pdev,
8558 pci_channel_state_t state)
8560 struct net_device *netdev = pci_get_drvdata(pdev);
8561 struct s2io_nic *sp = netdev->priv;
8563 netif_device_detach(netdev);
8565 if (netif_running(netdev)) {
8566 /* Bring down the card, while avoiding PCI I/O */
8567 do_s2io_card_down(sp, 0);
8569 pci_disable_device(pdev);
8571 return PCI_ERS_RESULT_NEED_RESET;
8575 * s2io_io_slot_reset - called after the pci bus has been reset.
8576 * @pdev: Pointer to PCI device
8578 * Restart the card from scratch, as if from a cold-boot.
8579 * At this point, the card has exprienced a hard reset,
8580 * followed by fixups by BIOS, and has its config space
8581 * set up identically to what it was at cold boot.
8583 static pci_ers_result_t s2io_io_slot_reset(struct pci_dev *pdev)
8585 struct net_device *netdev = pci_get_drvdata(pdev);
8586 struct s2io_nic *sp = netdev->priv;
8588 if (pci_enable_device(pdev)) {
8589 printk(KERN_ERR "s2io: "
8590 "Cannot re-enable PCI device after reset.\n");
8591 return PCI_ERS_RESULT_DISCONNECT;
8594 pci_set_master(pdev);
8595 s2io_reset(sp);
8597 return PCI_ERS_RESULT_RECOVERED;
8601 * s2io_io_resume - called when traffic can start flowing again.
8602 * @pdev: Pointer to PCI device
8604 * This callback is called when the error recovery driver tells
8605 * us that its OK to resume normal operation.
8607 static void s2io_io_resume(struct pci_dev *pdev)
8609 struct net_device *netdev = pci_get_drvdata(pdev);
8610 struct s2io_nic *sp = netdev->priv;
8612 if (netif_running(netdev)) {
8613 if (s2io_card_up(sp)) {
8614 printk(KERN_ERR "s2io: "
8615 "Can't bring device back up after reset.\n");
8616 return;
8619 if (s2io_set_mac_addr(netdev, netdev->dev_addr) == FAILURE) {
8620 s2io_card_down(sp);
8621 printk(KERN_ERR "s2io: "
8622 "Can't resetore mac addr after reset.\n");
8623 return;
8627 netif_device_attach(netdev);
8628 netif_wake_queue(netdev);