1 /************************************************************************
2 * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC
3 * Copyright(c) 2002-2007 Neterion Inc.
5 * This software may be used and distributed according to the terms of
6 * the GNU General Public License (GPL), incorporated herein by reference.
7 * Drivers based on or derived from this code fall under the GPL and must
8 * retain the authorship, copyright and license notice. This file is not
9 * a complete program and may only be used when the entire operating
10 * system is licensed under the GPL.
11 * See the file COPYING in this distribution for more information.
14 * Jeff Garzik : For pointing out the improper error condition
15 * check in the s2io_xmit routine and also some
16 * issues in the Tx watch dog function. Also for
17 * patiently answering all those innumerable
18 * questions regaring the 2.6 porting issues.
19 * Stephen Hemminger : Providing proper 2.6 porting mechanism for some
20 * macros available only in 2.6 Kernel.
21 * Francois Romieu : For pointing out all code part that were
22 * deprecated and also styling related comments.
23 * Grant Grundler : For helping me get rid of some Architecture
25 * Christopher Hellwig : Some more 2.6 specific issues in the driver.
27 * The module loadable parameters that are supported by the driver and a brief
28 * explaination of all the variables.
30 * rx_ring_num : This can be used to program the number of receive rings used
32 * rx_ring_sz: This defines the number of receive blocks each ring can have.
33 * This is also an array of size 8.
34 * rx_ring_mode: This defines the operation mode of all 8 rings. The valid
36 * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver.
37 * tx_fifo_len: This too is an array of 8. Each element defines the number of
38 * Tx descriptors that can be associated with each corresponding FIFO.
39 * intr_type: This defines the type of interrupt. The values can be 0(INTA),
40 * 2(MSI_X). Default value is '2(MSI_X)'
41 * lro_enable: Specifies whether to enable Large Receive Offload (LRO) or not.
42 * Possible values '1' for enable '0' for disable. Default is '0'
43 * lro_max_pkts: This parameter defines maximum number of packets can be
44 * aggregated as a single large packet
45 * napi: This parameter used to enable/disable NAPI (polling Rx)
46 * Possible values '1' for enable and '0' for disable. Default is '1'
47 * ufo: This parameter used to enable/disable UDP Fragmentation Offload(UFO)
48 * Possible values '1' for enable and '0' for disable. Default is '0'
49 * vlan_tag_strip: This can be used to enable or disable vlan stripping.
50 * Possible values '1' for enable , '0' for disable.
51 * Default is '2' - which means disable in promisc mode
52 * and enable in non-promiscuous mode.
53 * multiq: This parameter used to enable/disable MULTIQUEUE support.
54 * Possible values '1' for enable and '0' for disable. Default is '0'
55 ************************************************************************/
57 #include <linux/module.h>
58 #include <linux/types.h>
59 #include <linux/errno.h>
60 #include <linux/ioport.h>
61 #include <linux/pci.h>
62 #include <linux/dma-mapping.h>
63 #include <linux/kernel.h>
64 #include <linux/netdevice.h>
65 #include <linux/etherdevice.h>
66 #include <linux/skbuff.h>
67 #include <linux/init.h>
68 #include <linux/delay.h>
69 #include <linux/stddef.h>
70 #include <linux/ioctl.h>
71 #include <linux/timex.h>
72 #include <linux/ethtool.h>
73 #include <linux/workqueue.h>
74 #include <linux/if_vlan.h>
76 #include <linux/tcp.h>
79 #include <asm/system.h>
80 #include <asm/uaccess.h>
82 #include <asm/div64.h>
87 #include "s2io-regs.h"
89 #define DRV_VERSION "2.0.26.23"
91 /* S2io Driver name & version. */
92 static char s2io_driver_name
[] = "Neterion";
93 static char s2io_driver_version
[] = DRV_VERSION
;
95 static int rxd_size
[2] = {32,48};
96 static int rxd_count
[2] = {127,85};
98 static inline int RXD_IS_UP2DT(struct RxD_t
*rxdp
)
102 ret
= ((!(rxdp
->Control_1
& RXD_OWN_XENA
)) &&
103 (GET_RXD_MARKER(rxdp
->Control_2
) != THE_RXD_MARK
));
109 * Cards with following subsystem_id have a link state indication
110 * problem, 600B, 600C, 600D, 640B, 640C and 640D.
111 * macro below identifies these cards given the subsystem_id.
113 #define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid) \
114 (dev_type == XFRAME_I_DEVICE) ? \
115 ((((subid >= 0x600B) && (subid <= 0x600D)) || \
116 ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0
118 #define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \
119 ADAPTER_STATUS_RMAC_LOCAL_FAULT)))
121 static inline int is_s2io_card_up(const struct s2io_nic
* sp
)
123 return test_bit(__S2IO_STATE_CARD_UP
, &sp
->state
);
126 /* Ethtool related variables and Macros. */
127 static char s2io_gstrings
[][ETH_GSTRING_LEN
] = {
128 "Register test\t(offline)",
129 "Eeprom test\t(offline)",
130 "Link test\t(online)",
131 "RLDRAM test\t(offline)",
132 "BIST Test\t(offline)"
135 static char ethtool_xena_stats_keys
[][ETH_GSTRING_LEN
] = {
137 {"tmac_data_octets"},
141 {"tmac_pause_ctrl_frms"},
145 {"tmac_any_err_frms"},
146 {"tmac_ttl_less_fb_octets"},
147 {"tmac_vld_ip_octets"},
155 {"rmac_data_octets"},
156 {"rmac_fcs_err_frms"},
158 {"rmac_vld_mcst_frms"},
159 {"rmac_vld_bcst_frms"},
160 {"rmac_in_rng_len_err_frms"},
161 {"rmac_out_rng_len_err_frms"},
163 {"rmac_pause_ctrl_frms"},
164 {"rmac_unsup_ctrl_frms"},
166 {"rmac_accepted_ucst_frms"},
167 {"rmac_accepted_nucst_frms"},
168 {"rmac_discarded_frms"},
169 {"rmac_drop_events"},
170 {"rmac_ttl_less_fb_octets"},
172 {"rmac_usized_frms"},
173 {"rmac_osized_frms"},
175 {"rmac_jabber_frms"},
176 {"rmac_ttl_64_frms"},
177 {"rmac_ttl_65_127_frms"},
178 {"rmac_ttl_128_255_frms"},
179 {"rmac_ttl_256_511_frms"},
180 {"rmac_ttl_512_1023_frms"},
181 {"rmac_ttl_1024_1518_frms"},
189 {"rmac_err_drp_udp"},
190 {"rmac_xgmii_err_sym"},
208 {"rmac_xgmii_data_err_cnt"},
209 {"rmac_xgmii_ctrl_err_cnt"},
210 {"rmac_accepted_ip"},
214 {"new_rd_req_rtry_cnt"},
216 {"wr_rtry_rd_ack_cnt"},
219 {"new_wr_req_rtry_cnt"},
222 {"rd_rtry_wr_ack_cnt"},
232 static char ethtool_enhanced_stats_keys
[][ETH_GSTRING_LEN
] = {
233 {"rmac_ttl_1519_4095_frms"},
234 {"rmac_ttl_4096_8191_frms"},
235 {"rmac_ttl_8192_max_frms"},
236 {"rmac_ttl_gt_max_frms"},
237 {"rmac_osized_alt_frms"},
238 {"rmac_jabber_alt_frms"},
239 {"rmac_gt_max_alt_frms"},
241 {"rmac_len_discard"},
242 {"rmac_fcs_discard"},
245 {"rmac_red_discard"},
246 {"rmac_rts_discard"},
247 {"rmac_ingm_full_discard"},
251 static char ethtool_driver_stats_keys
[][ETH_GSTRING_LEN
] = {
252 {"\n DRIVER STATISTICS"},
253 {"single_bit_ecc_errs"},
254 {"double_bit_ecc_errs"},
267 {"alarm_transceiver_temp_high"},
268 {"alarm_transceiver_temp_low"},
269 {"alarm_laser_bias_current_high"},
270 {"alarm_laser_bias_current_low"},
271 {"alarm_laser_output_power_high"},
272 {"alarm_laser_output_power_low"},
273 {"warn_transceiver_temp_high"},
274 {"warn_transceiver_temp_low"},
275 {"warn_laser_bias_current_high"},
276 {"warn_laser_bias_current_low"},
277 {"warn_laser_output_power_high"},
278 {"warn_laser_output_power_low"},
279 {"lro_aggregated_pkts"},
280 {"lro_flush_both_count"},
281 {"lro_out_of_sequence_pkts"},
282 {"lro_flush_due_to_max_pkts"},
283 {"lro_avg_aggr_pkts"},
284 {"mem_alloc_fail_cnt"},
285 {"pci_map_fail_cnt"},
286 {"watchdog_timer_cnt"},
293 {"tx_tcode_buf_abort_cnt"},
294 {"tx_tcode_desc_abort_cnt"},
295 {"tx_tcode_parity_err_cnt"},
296 {"tx_tcode_link_loss_cnt"},
297 {"tx_tcode_list_proc_err_cnt"},
298 {"rx_tcode_parity_err_cnt"},
299 {"rx_tcode_abort_cnt"},
300 {"rx_tcode_parity_abort_cnt"},
301 {"rx_tcode_rda_fail_cnt"},
302 {"rx_tcode_unkn_prot_cnt"},
303 {"rx_tcode_fcs_err_cnt"},
304 {"rx_tcode_buf_size_err_cnt"},
305 {"rx_tcode_rxd_corrupt_cnt"},
306 {"rx_tcode_unkn_err_cnt"},
314 {"mac_tmac_err_cnt"},
315 {"mac_rmac_err_cnt"},
316 {"xgxs_txgxs_err_cnt"},
317 {"xgxs_rxgxs_err_cnt"},
319 {"prc_pcix_err_cnt"},
326 #define S2IO_XENA_STAT_LEN ARRAY_SIZE(ethtool_xena_stats_keys)
327 #define S2IO_ENHANCED_STAT_LEN ARRAY_SIZE(ethtool_enhanced_stats_keys)
328 #define S2IO_DRIVER_STAT_LEN ARRAY_SIZE(ethtool_driver_stats_keys)
330 #define XFRAME_I_STAT_LEN (S2IO_XENA_STAT_LEN + S2IO_DRIVER_STAT_LEN )
331 #define XFRAME_II_STAT_LEN (XFRAME_I_STAT_LEN + S2IO_ENHANCED_STAT_LEN )
333 #define XFRAME_I_STAT_STRINGS_LEN ( XFRAME_I_STAT_LEN * ETH_GSTRING_LEN )
334 #define XFRAME_II_STAT_STRINGS_LEN ( XFRAME_II_STAT_LEN * ETH_GSTRING_LEN )
336 #define S2IO_TEST_LEN ARRAY_SIZE(s2io_gstrings)
337 #define S2IO_STRINGS_LEN S2IO_TEST_LEN * ETH_GSTRING_LEN
339 #define S2IO_TIMER_CONF(timer, handle, arg, exp) \
340 init_timer(&timer); \
341 timer.function = handle; \
342 timer.data = (unsigned long) arg; \
343 mod_timer(&timer, (jiffies + exp)) \
345 /* copy mac addr to def_mac_addr array */
346 static void do_s2io_copy_mac_addr(struct s2io_nic
*sp
, int offset
, u64 mac_addr
)
348 sp
->def_mac_addr
[offset
].mac_addr
[5] = (u8
) (mac_addr
);
349 sp
->def_mac_addr
[offset
].mac_addr
[4] = (u8
) (mac_addr
>> 8);
350 sp
->def_mac_addr
[offset
].mac_addr
[3] = (u8
) (mac_addr
>> 16);
351 sp
->def_mac_addr
[offset
].mac_addr
[2] = (u8
) (mac_addr
>> 24);
352 sp
->def_mac_addr
[offset
].mac_addr
[1] = (u8
) (mac_addr
>> 32);
353 sp
->def_mac_addr
[offset
].mac_addr
[0] = (u8
) (mac_addr
>> 40);
356 static void s2io_vlan_rx_register(struct net_device
*dev
,
357 struct vlan_group
*grp
)
360 struct s2io_nic
*nic
= dev
->priv
;
361 unsigned long flags
[MAX_TX_FIFOS
];
362 struct mac_info
*mac_control
= &nic
->mac_control
;
363 struct config_param
*config
= &nic
->config
;
365 for (i
= 0; i
< config
->tx_fifo_num
; i
++)
366 spin_lock_irqsave(&mac_control
->fifos
[i
].tx_lock
, flags
[i
]);
369 for (i
= config
->tx_fifo_num
- 1; i
>= 0; i
--)
370 spin_unlock_irqrestore(&mac_control
->fifos
[i
].tx_lock
,
374 /* A flag indicating whether 'RX_PA_CFG_STRIP_VLAN_TAG' bit is set or not */
375 static int vlan_strip_flag
;
377 /* Unregister the vlan */
378 static void s2io_vlan_rx_kill_vid(struct net_device
*dev
, unsigned long vid
)
381 struct s2io_nic
*nic
= dev
->priv
;
382 unsigned long flags
[MAX_TX_FIFOS
];
383 struct mac_info
*mac_control
= &nic
->mac_control
;
384 struct config_param
*config
= &nic
->config
;
386 for (i
= 0; i
< config
->tx_fifo_num
; i
++)
387 spin_lock_irqsave(&mac_control
->fifos
[i
].tx_lock
, flags
[i
]);
390 vlan_group_set_device(nic
->vlgrp
, vid
, NULL
);
392 for (i
= config
->tx_fifo_num
- 1; i
>= 0; i
--)
393 spin_unlock_irqrestore(&mac_control
->fifos
[i
].tx_lock
,
398 * Constants to be programmed into the Xena's registers, to configure
403 static const u64 herc_act_dtx_cfg
[] = {
405 0x8000051536750000ULL
, 0x80000515367500E0ULL
,
407 0x8000051536750004ULL
, 0x80000515367500E4ULL
,
409 0x80010515003F0000ULL
, 0x80010515003F00E0ULL
,
411 0x80010515003F0004ULL
, 0x80010515003F00E4ULL
,
413 0x801205150D440000ULL
, 0x801205150D4400E0ULL
,
415 0x801205150D440004ULL
, 0x801205150D4400E4ULL
,
417 0x80020515F2100000ULL
, 0x80020515F21000E0ULL
,
419 0x80020515F2100004ULL
, 0x80020515F21000E4ULL
,
424 static const u64 xena_dtx_cfg
[] = {
426 0x8000051500000000ULL
, 0x80000515000000E0ULL
,
428 0x80000515D9350004ULL
, 0x80000515D93500E4ULL
,
430 0x8001051500000000ULL
, 0x80010515000000E0ULL
,
432 0x80010515001E0004ULL
, 0x80010515001E00E4ULL
,
434 0x8002051500000000ULL
, 0x80020515000000E0ULL
,
436 0x80020515F2100004ULL
, 0x80020515F21000E4ULL
,
441 * Constants for Fixing the MacAddress problem seen mostly on
444 static const u64 fix_mac
[] = {
445 0x0060000000000000ULL
, 0x0060600000000000ULL
,
446 0x0040600000000000ULL
, 0x0000600000000000ULL
,
447 0x0020600000000000ULL
, 0x0060600000000000ULL
,
448 0x0020600000000000ULL
, 0x0060600000000000ULL
,
449 0x0020600000000000ULL
, 0x0060600000000000ULL
,
450 0x0020600000000000ULL
, 0x0060600000000000ULL
,
451 0x0020600000000000ULL
, 0x0060600000000000ULL
,
452 0x0020600000000000ULL
, 0x0060600000000000ULL
,
453 0x0020600000000000ULL
, 0x0060600000000000ULL
,
454 0x0020600000000000ULL
, 0x0060600000000000ULL
,
455 0x0020600000000000ULL
, 0x0060600000000000ULL
,
456 0x0020600000000000ULL
, 0x0060600000000000ULL
,
457 0x0020600000000000ULL
, 0x0000600000000000ULL
,
458 0x0040600000000000ULL
, 0x0060600000000000ULL
,
462 MODULE_LICENSE("GPL");
463 MODULE_VERSION(DRV_VERSION
);
466 /* Module Loadable parameters. */
467 S2IO_PARM_INT(tx_fifo_num
, FIFO_DEFAULT_NUM
);
468 S2IO_PARM_INT(rx_ring_num
, 1);
469 S2IO_PARM_INT(multiq
, 0);
470 S2IO_PARM_INT(rx_ring_mode
, 1);
471 S2IO_PARM_INT(use_continuous_tx_intrs
, 1);
472 S2IO_PARM_INT(rmac_pause_time
, 0x100);
473 S2IO_PARM_INT(mc_pause_threshold_q0q3
, 187);
474 S2IO_PARM_INT(mc_pause_threshold_q4q7
, 187);
475 S2IO_PARM_INT(shared_splits
, 0);
476 S2IO_PARM_INT(tmac_util_period
, 5);
477 S2IO_PARM_INT(rmac_util_period
, 5);
478 S2IO_PARM_INT(l3l4hdr_size
, 128);
479 /* 0 is no steering, 1 is Priority steering, 2 is Default steering */
480 S2IO_PARM_INT(tx_steering_type
, TX_DEFAULT_STEERING
);
481 /* Frequency of Rx desc syncs expressed as power of 2 */
482 S2IO_PARM_INT(rxsync_frequency
, 3);
483 /* Interrupt type. Values can be 0(INTA), 2(MSI_X) */
484 S2IO_PARM_INT(intr_type
, 2);
485 /* Large receive offload feature */
486 static unsigned int lro_enable
;
487 module_param_named(lro
, lro_enable
, uint
, 0);
489 /* Max pkts to be aggregated by LRO at one time. If not specified,
490 * aggregation happens until we hit max IP pkt size(64K)
492 S2IO_PARM_INT(lro_max_pkts
, 0xFFFF);
493 S2IO_PARM_INT(indicate_max_pkts
, 0);
495 S2IO_PARM_INT(napi
, 1);
496 S2IO_PARM_INT(ufo
, 0);
497 S2IO_PARM_INT(vlan_tag_strip
, NO_STRIP_IN_PROMISC
);
499 static unsigned int tx_fifo_len
[MAX_TX_FIFOS
] =
500 {DEFAULT_FIFO_0_LEN
, [1 ...(MAX_TX_FIFOS
- 1)] = DEFAULT_FIFO_1_7_LEN
};
501 static unsigned int rx_ring_sz
[MAX_RX_RINGS
] =
502 {[0 ...(MAX_RX_RINGS
- 1)] = SMALL_BLK_CNT
};
503 static unsigned int rts_frm_len
[MAX_RX_RINGS
] =
504 {[0 ...(MAX_RX_RINGS
- 1)] = 0 };
506 module_param_array(tx_fifo_len
, uint
, NULL
, 0);
507 module_param_array(rx_ring_sz
, uint
, NULL
, 0);
508 module_param_array(rts_frm_len
, uint
, NULL
, 0);
512 * This table lists all the devices that this driver supports.
514 static struct pci_device_id s2io_tbl
[] __devinitdata
= {
515 {PCI_VENDOR_ID_S2IO
, PCI_DEVICE_ID_S2IO_WIN
,
516 PCI_ANY_ID
, PCI_ANY_ID
},
517 {PCI_VENDOR_ID_S2IO
, PCI_DEVICE_ID_S2IO_UNI
,
518 PCI_ANY_ID
, PCI_ANY_ID
},
519 {PCI_VENDOR_ID_S2IO
, PCI_DEVICE_ID_HERC_WIN
,
520 PCI_ANY_ID
, PCI_ANY_ID
},
521 {PCI_VENDOR_ID_S2IO
, PCI_DEVICE_ID_HERC_UNI
,
522 PCI_ANY_ID
, PCI_ANY_ID
},
526 MODULE_DEVICE_TABLE(pci
, s2io_tbl
);
528 static struct pci_error_handlers s2io_err_handler
= {
529 .error_detected
= s2io_io_error_detected
,
530 .slot_reset
= s2io_io_slot_reset
,
531 .resume
= s2io_io_resume
,
534 static struct pci_driver s2io_driver
= {
536 .id_table
= s2io_tbl
,
537 .probe
= s2io_init_nic
,
538 .remove
= __devexit_p(s2io_rem_nic
),
539 .err_handler
= &s2io_err_handler
,
542 /* A simplifier macro used both by init and free shared_mem Fns(). */
543 #define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each)
545 /* netqueue manipulation helper functions */
546 static inline void s2io_stop_all_tx_queue(struct s2io_nic
*sp
)
549 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
550 if (sp
->config
.multiq
) {
551 for (i
= 0; i
< sp
->config
.tx_fifo_num
; i
++)
552 netif_stop_subqueue(sp
->dev
, i
);
556 for (i
= 0; i
< sp
->config
.tx_fifo_num
; i
++)
557 sp
->mac_control
.fifos
[i
].queue_state
= FIFO_QUEUE_STOP
;
558 netif_stop_queue(sp
->dev
);
562 static inline void s2io_stop_tx_queue(struct s2io_nic
*sp
, int fifo_no
)
564 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
565 if (sp
->config
.multiq
)
566 netif_stop_subqueue(sp
->dev
, fifo_no
);
570 sp
->mac_control
.fifos
[fifo_no
].queue_state
=
572 netif_stop_queue(sp
->dev
);
576 static inline void s2io_start_all_tx_queue(struct s2io_nic
*sp
)
579 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
580 if (sp
->config
.multiq
) {
581 for (i
= 0; i
< sp
->config
.tx_fifo_num
; i
++)
582 netif_start_subqueue(sp
->dev
, i
);
586 for (i
= 0; i
< sp
->config
.tx_fifo_num
; i
++)
587 sp
->mac_control
.fifos
[i
].queue_state
= FIFO_QUEUE_START
;
588 netif_start_queue(sp
->dev
);
592 static inline void s2io_start_tx_queue(struct s2io_nic
*sp
, int fifo_no
)
594 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
595 if (sp
->config
.multiq
)
596 netif_start_subqueue(sp
->dev
, fifo_no
);
600 sp
->mac_control
.fifos
[fifo_no
].queue_state
=
602 netif_start_queue(sp
->dev
);
606 static inline void s2io_wake_all_tx_queue(struct s2io_nic
*sp
)
609 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
610 if (sp
->config
.multiq
) {
611 for (i
= 0; i
< sp
->config
.tx_fifo_num
; i
++)
612 netif_wake_subqueue(sp
->dev
, i
);
616 for (i
= 0; i
< sp
->config
.tx_fifo_num
; i
++)
617 sp
->mac_control
.fifos
[i
].queue_state
= FIFO_QUEUE_START
;
618 netif_wake_queue(sp
->dev
);
622 static inline void s2io_wake_tx_queue(
623 struct fifo_info
*fifo
, int cnt
, u8 multiq
)
626 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
628 if (cnt
&& __netif_subqueue_stopped(fifo
->dev
, fifo
->fifo_no
))
629 netif_wake_subqueue(fifo
->dev
, fifo
->fifo_no
);
632 if (cnt
&& (fifo
->queue_state
== FIFO_QUEUE_STOP
)) {
633 if (netif_queue_stopped(fifo
->dev
)) {
634 fifo
->queue_state
= FIFO_QUEUE_START
;
635 netif_wake_queue(fifo
->dev
);
641 * init_shared_mem - Allocation and Initialization of Memory
642 * @nic: Device private variable.
643 * Description: The function allocates all the memory areas shared
644 * between the NIC and the driver. This includes Tx descriptors,
645 * Rx descriptors and the statistics block.
648 static int init_shared_mem(struct s2io_nic
*nic
)
651 void *tmp_v_addr
, *tmp_v_addr_next
;
652 dma_addr_t tmp_p_addr
, tmp_p_addr_next
;
653 struct RxD_block
*pre_rxd_blk
= NULL
;
655 int lst_size
, lst_per_page
;
656 struct net_device
*dev
= nic
->dev
;
660 struct mac_info
*mac_control
;
661 struct config_param
*config
;
662 unsigned long long mem_allocated
= 0;
664 mac_control
= &nic
->mac_control
;
665 config
= &nic
->config
;
668 /* Allocation and initialization of TXDLs in FIOFs */
670 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
671 size
+= config
->tx_cfg
[i
].fifo_len
;
673 if (size
> MAX_AVAILABLE_TXDS
) {
674 DBG_PRINT(ERR_DBG
, "s2io: Requested TxDs too high, ");
675 DBG_PRINT(ERR_DBG
, "Requested: %d, max supported: 8192\n", size
);
680 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
681 size
= config
->tx_cfg
[i
].fifo_len
;
683 * Legal values are from 2 to 8192
686 DBG_PRINT(ERR_DBG
, "s2io: Invalid fifo len (%d)", size
);
687 DBG_PRINT(ERR_DBG
, "for fifo %d\n", i
);
688 DBG_PRINT(ERR_DBG
, "s2io: Legal values for fifo len"
694 lst_size
= (sizeof(struct TxD
) * config
->max_txds
);
695 lst_per_page
= PAGE_SIZE
/ lst_size
;
697 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
698 int fifo_len
= config
->tx_cfg
[i
].fifo_len
;
699 int list_holder_size
= fifo_len
* sizeof(struct list_info_hold
);
700 mac_control
->fifos
[i
].list_info
= kzalloc(list_holder_size
,
702 if (!mac_control
->fifos
[i
].list_info
) {
704 "Malloc failed for list_info\n");
707 mem_allocated
+= list_holder_size
;
709 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
710 int page_num
= TXD_MEM_PAGE_CNT(config
->tx_cfg
[i
].fifo_len
,
712 mac_control
->fifos
[i
].tx_curr_put_info
.offset
= 0;
713 mac_control
->fifos
[i
].tx_curr_put_info
.fifo_len
=
714 config
->tx_cfg
[i
].fifo_len
- 1;
715 mac_control
->fifos
[i
].tx_curr_get_info
.offset
= 0;
716 mac_control
->fifos
[i
].tx_curr_get_info
.fifo_len
=
717 config
->tx_cfg
[i
].fifo_len
- 1;
718 mac_control
->fifos
[i
].fifo_no
= i
;
719 mac_control
->fifos
[i
].nic
= nic
;
720 mac_control
->fifos
[i
].max_txds
= MAX_SKB_FRAGS
+ 2;
721 mac_control
->fifos
[i
].dev
= dev
;
723 for (j
= 0; j
< page_num
; j
++) {
727 tmp_v
= pci_alloc_consistent(nic
->pdev
,
731 "pci_alloc_consistent ");
732 DBG_PRINT(INFO_DBG
, "failed for TxDL\n");
735 /* If we got a zero DMA address(can happen on
736 * certain platforms like PPC), reallocate.
737 * Store virtual address of page we don't want,
741 mac_control
->zerodma_virt_addr
= tmp_v
;
743 "%s: Zero DMA address for TxDL. ", dev
->name
);
745 "Virtual address %p\n", tmp_v
);
746 tmp_v
= pci_alloc_consistent(nic
->pdev
,
750 "pci_alloc_consistent ");
751 DBG_PRINT(INFO_DBG
, "failed for TxDL\n");
754 mem_allocated
+= PAGE_SIZE
;
756 while (k
< lst_per_page
) {
757 int l
= (j
* lst_per_page
) + k
;
758 if (l
== config
->tx_cfg
[i
].fifo_len
)
760 mac_control
->fifos
[i
].list_info
[l
].list_virt_addr
=
761 tmp_v
+ (k
* lst_size
);
762 mac_control
->fifos
[i
].list_info
[l
].list_phy_addr
=
763 tmp_p
+ (k
* lst_size
);
769 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
770 size
= config
->tx_cfg
[i
].fifo_len
;
771 mac_control
->fifos
[i
].ufo_in_band_v
772 = kcalloc(size
, sizeof(u64
), GFP_KERNEL
);
773 if (!mac_control
->fifos
[i
].ufo_in_band_v
)
775 mem_allocated
+= (size
* sizeof(u64
));
778 /* Allocation and initialization of RXDs in Rings */
780 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
781 if (config
->rx_cfg
[i
].num_rxd
%
782 (rxd_count
[nic
->rxd_mode
] + 1)) {
783 DBG_PRINT(ERR_DBG
, "%s: RxD count of ", dev
->name
);
784 DBG_PRINT(ERR_DBG
, "Ring%d is not a multiple of ",
786 DBG_PRINT(ERR_DBG
, "RxDs per Block");
789 size
+= config
->rx_cfg
[i
].num_rxd
;
790 mac_control
->rings
[i
].block_count
=
791 config
->rx_cfg
[i
].num_rxd
/
792 (rxd_count
[nic
->rxd_mode
] + 1 );
793 mac_control
->rings
[i
].pkt_cnt
= config
->rx_cfg
[i
].num_rxd
-
794 mac_control
->rings
[i
].block_count
;
796 if (nic
->rxd_mode
== RXD_MODE_1
)
797 size
= (size
* (sizeof(struct RxD1
)));
799 size
= (size
* (sizeof(struct RxD3
)));
801 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
802 mac_control
->rings
[i
].rx_curr_get_info
.block_index
= 0;
803 mac_control
->rings
[i
].rx_curr_get_info
.offset
= 0;
804 mac_control
->rings
[i
].rx_curr_get_info
.ring_len
=
805 config
->rx_cfg
[i
].num_rxd
- 1;
806 mac_control
->rings
[i
].rx_curr_put_info
.block_index
= 0;
807 mac_control
->rings
[i
].rx_curr_put_info
.offset
= 0;
808 mac_control
->rings
[i
].rx_curr_put_info
.ring_len
=
809 config
->rx_cfg
[i
].num_rxd
- 1;
810 mac_control
->rings
[i
].nic
= nic
;
811 mac_control
->rings
[i
].ring_no
= i
;
812 mac_control
->rings
[i
].lro
= lro_enable
;
814 blk_cnt
= config
->rx_cfg
[i
].num_rxd
/
815 (rxd_count
[nic
->rxd_mode
] + 1);
816 /* Allocating all the Rx blocks */
817 for (j
= 0; j
< blk_cnt
; j
++) {
818 struct rx_block_info
*rx_blocks
;
821 rx_blocks
= &mac_control
->rings
[i
].rx_blocks
[j
];
822 size
= SIZE_OF_BLOCK
; //size is always page size
823 tmp_v_addr
= pci_alloc_consistent(nic
->pdev
, size
,
825 if (tmp_v_addr
== NULL
) {
827 * In case of failure, free_shared_mem()
828 * is called, which should free any
829 * memory that was alloced till the
832 rx_blocks
->block_virt_addr
= tmp_v_addr
;
835 mem_allocated
+= size
;
836 memset(tmp_v_addr
, 0, size
);
837 rx_blocks
->block_virt_addr
= tmp_v_addr
;
838 rx_blocks
->block_dma_addr
= tmp_p_addr
;
839 rx_blocks
->rxds
= kmalloc(sizeof(struct rxd_info
)*
840 rxd_count
[nic
->rxd_mode
],
842 if (!rx_blocks
->rxds
)
845 (sizeof(struct rxd_info
)* rxd_count
[nic
->rxd_mode
]);
846 for (l
=0; l
<rxd_count
[nic
->rxd_mode
];l
++) {
847 rx_blocks
->rxds
[l
].virt_addr
=
848 rx_blocks
->block_virt_addr
+
849 (rxd_size
[nic
->rxd_mode
] * l
);
850 rx_blocks
->rxds
[l
].dma_addr
=
851 rx_blocks
->block_dma_addr
+
852 (rxd_size
[nic
->rxd_mode
] * l
);
855 /* Interlinking all Rx Blocks */
856 for (j
= 0; j
< blk_cnt
; j
++) {
858 mac_control
->rings
[i
].rx_blocks
[j
].block_virt_addr
;
860 mac_control
->rings
[i
].rx_blocks
[(j
+ 1) %
861 blk_cnt
].block_virt_addr
;
863 mac_control
->rings
[i
].rx_blocks
[j
].block_dma_addr
;
865 mac_control
->rings
[i
].rx_blocks
[(j
+ 1) %
866 blk_cnt
].block_dma_addr
;
868 pre_rxd_blk
= (struct RxD_block
*) tmp_v_addr
;
869 pre_rxd_blk
->reserved_2_pNext_RxD_block
=
870 (unsigned long) tmp_v_addr_next
;
871 pre_rxd_blk
->pNext_RxD_Blk_physical
=
872 (u64
) tmp_p_addr_next
;
875 if (nic
->rxd_mode
== RXD_MODE_3B
) {
877 * Allocation of Storages for buffer addresses in 2BUFF mode
878 * and the buffers as well.
880 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
881 blk_cnt
= config
->rx_cfg
[i
].num_rxd
/
882 (rxd_count
[nic
->rxd_mode
]+ 1);
883 mac_control
->rings
[i
].ba
=
884 kmalloc((sizeof(struct buffAdd
*) * blk_cnt
),
886 if (!mac_control
->rings
[i
].ba
)
888 mem_allocated
+=(sizeof(struct buffAdd
*) * blk_cnt
);
889 for (j
= 0; j
< blk_cnt
; j
++) {
891 mac_control
->rings
[i
].ba
[j
] =
892 kmalloc((sizeof(struct buffAdd
) *
893 (rxd_count
[nic
->rxd_mode
] + 1)),
895 if (!mac_control
->rings
[i
].ba
[j
])
897 mem_allocated
+= (sizeof(struct buffAdd
) * \
898 (rxd_count
[nic
->rxd_mode
] + 1));
899 while (k
!= rxd_count
[nic
->rxd_mode
]) {
900 ba
= &mac_control
->rings
[i
].ba
[j
][k
];
902 ba
->ba_0_org
= (void *) kmalloc
903 (BUF0_LEN
+ ALIGN_SIZE
, GFP_KERNEL
);
907 (BUF0_LEN
+ ALIGN_SIZE
);
908 tmp
= (unsigned long)ba
->ba_0_org
;
910 tmp
&= ~((unsigned long) ALIGN_SIZE
);
911 ba
->ba_0
= (void *) tmp
;
913 ba
->ba_1_org
= (void *) kmalloc
914 (BUF1_LEN
+ ALIGN_SIZE
, GFP_KERNEL
);
918 += (BUF1_LEN
+ ALIGN_SIZE
);
919 tmp
= (unsigned long) ba
->ba_1_org
;
921 tmp
&= ~((unsigned long) ALIGN_SIZE
);
922 ba
->ba_1
= (void *) tmp
;
929 /* Allocation and initialization of Statistics block */
930 size
= sizeof(struct stat_block
);
931 mac_control
->stats_mem
= pci_alloc_consistent
932 (nic
->pdev
, size
, &mac_control
->stats_mem_phy
);
934 if (!mac_control
->stats_mem
) {
936 * In case of failure, free_shared_mem() is called, which
937 * should free any memory that was alloced till the
942 mem_allocated
+= size
;
943 mac_control
->stats_mem_sz
= size
;
945 tmp_v_addr
= mac_control
->stats_mem
;
946 mac_control
->stats_info
= (struct stat_block
*) tmp_v_addr
;
947 memset(tmp_v_addr
, 0, size
);
948 DBG_PRINT(INIT_DBG
, "%s:Ring Mem PHY: 0x%llx\n", dev
->name
,
949 (unsigned long long) tmp_p_addr
);
950 mac_control
->stats_info
->sw_stat
.mem_allocated
+= mem_allocated
;
955 * free_shared_mem - Free the allocated Memory
956 * @nic: Device private variable.
957 * Description: This function is to free all memory locations allocated by
958 * the init_shared_mem() function and return it to the kernel.
961 static void free_shared_mem(struct s2io_nic
*nic
)
963 int i
, j
, blk_cnt
, size
;
965 dma_addr_t tmp_p_addr
;
966 struct mac_info
*mac_control
;
967 struct config_param
*config
;
968 int lst_size
, lst_per_page
;
969 struct net_device
*dev
;
977 mac_control
= &nic
->mac_control
;
978 config
= &nic
->config
;
980 lst_size
= (sizeof(struct TxD
) * config
->max_txds
);
981 lst_per_page
= PAGE_SIZE
/ lst_size
;
983 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
984 page_num
= TXD_MEM_PAGE_CNT(config
->tx_cfg
[i
].fifo_len
,
986 for (j
= 0; j
< page_num
; j
++) {
987 int mem_blks
= (j
* lst_per_page
);
988 if (!mac_control
->fifos
[i
].list_info
)
990 if (!mac_control
->fifos
[i
].list_info
[mem_blks
].
993 pci_free_consistent(nic
->pdev
, PAGE_SIZE
,
994 mac_control
->fifos
[i
].
997 mac_control
->fifos
[i
].
1000 nic
->mac_control
.stats_info
->sw_stat
.mem_freed
1003 /* If we got a zero DMA address during allocation,
1006 if (mac_control
->zerodma_virt_addr
) {
1007 pci_free_consistent(nic
->pdev
, PAGE_SIZE
,
1008 mac_control
->zerodma_virt_addr
,
1011 "%s: Freeing TxDL with zero DMA addr. ",
1013 DBG_PRINT(INIT_DBG
, "Virtual address %p\n",
1014 mac_control
->zerodma_virt_addr
);
1015 nic
->mac_control
.stats_info
->sw_stat
.mem_freed
1018 kfree(mac_control
->fifos
[i
].list_info
);
1019 nic
->mac_control
.stats_info
->sw_stat
.mem_freed
+=
1020 (nic
->config
.tx_cfg
[i
].fifo_len
*sizeof(struct list_info_hold
));
1023 size
= SIZE_OF_BLOCK
;
1024 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
1025 blk_cnt
= mac_control
->rings
[i
].block_count
;
1026 for (j
= 0; j
< blk_cnt
; j
++) {
1027 tmp_v_addr
= mac_control
->rings
[i
].rx_blocks
[j
].
1029 tmp_p_addr
= mac_control
->rings
[i
].rx_blocks
[j
].
1031 if (tmp_v_addr
== NULL
)
1033 pci_free_consistent(nic
->pdev
, size
,
1034 tmp_v_addr
, tmp_p_addr
);
1035 nic
->mac_control
.stats_info
->sw_stat
.mem_freed
+= size
;
1036 kfree(mac_control
->rings
[i
].rx_blocks
[j
].rxds
);
1037 nic
->mac_control
.stats_info
->sw_stat
.mem_freed
+=
1038 ( sizeof(struct rxd_info
)* rxd_count
[nic
->rxd_mode
]);
1042 if (nic
->rxd_mode
== RXD_MODE_3B
) {
1043 /* Freeing buffer storage addresses in 2BUFF mode. */
1044 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
1045 blk_cnt
= config
->rx_cfg
[i
].num_rxd
/
1046 (rxd_count
[nic
->rxd_mode
] + 1);
1047 for (j
= 0; j
< blk_cnt
; j
++) {
1049 if (!mac_control
->rings
[i
].ba
[j
])
1051 while (k
!= rxd_count
[nic
->rxd_mode
]) {
1052 struct buffAdd
*ba
=
1053 &mac_control
->rings
[i
].ba
[j
][k
];
1054 kfree(ba
->ba_0_org
);
1055 nic
->mac_control
.stats_info
->sw_stat
.\
1056 mem_freed
+= (BUF0_LEN
+ ALIGN_SIZE
);
1057 kfree(ba
->ba_1_org
);
1058 nic
->mac_control
.stats_info
->sw_stat
.\
1059 mem_freed
+= (BUF1_LEN
+ ALIGN_SIZE
);
1062 kfree(mac_control
->rings
[i
].ba
[j
]);
1063 nic
->mac_control
.stats_info
->sw_stat
.mem_freed
+=
1064 (sizeof(struct buffAdd
) *
1065 (rxd_count
[nic
->rxd_mode
] + 1));
1067 kfree(mac_control
->rings
[i
].ba
);
1068 nic
->mac_control
.stats_info
->sw_stat
.mem_freed
+=
1069 (sizeof(struct buffAdd
*) * blk_cnt
);
1073 for (i
= 0; i
< nic
->config
.tx_fifo_num
; i
++) {
1074 if (mac_control
->fifos
[i
].ufo_in_band_v
) {
1075 nic
->mac_control
.stats_info
->sw_stat
.mem_freed
1076 += (config
->tx_cfg
[i
].fifo_len
* sizeof(u64
));
1077 kfree(mac_control
->fifos
[i
].ufo_in_band_v
);
1081 if (mac_control
->stats_mem
) {
1082 nic
->mac_control
.stats_info
->sw_stat
.mem_freed
+=
1083 mac_control
->stats_mem_sz
;
1084 pci_free_consistent(nic
->pdev
,
1085 mac_control
->stats_mem_sz
,
1086 mac_control
->stats_mem
,
1087 mac_control
->stats_mem_phy
);
1092 * s2io_verify_pci_mode -
1095 static int s2io_verify_pci_mode(struct s2io_nic
*nic
)
1097 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
1098 register u64 val64
= 0;
1101 val64
= readq(&bar0
->pci_mode
);
1102 mode
= (u8
)GET_PCI_MODE(val64
);
1104 if ( val64
& PCI_MODE_UNKNOWN_MODE
)
1105 return -1; /* Unknown PCI mode */
1109 #define NEC_VENID 0x1033
1110 #define NEC_DEVID 0x0125
1111 static int s2io_on_nec_bridge(struct pci_dev
*s2io_pdev
)
1113 struct pci_dev
*tdev
= NULL
;
1114 while ((tdev
= pci_get_device(PCI_ANY_ID
, PCI_ANY_ID
, tdev
)) != NULL
) {
1115 if (tdev
->vendor
== NEC_VENID
&& tdev
->device
== NEC_DEVID
) {
1116 if (tdev
->bus
== s2io_pdev
->bus
->parent
)
1124 static int bus_speed
[8] = {33, 133, 133, 200, 266, 133, 200, 266};
1126 * s2io_print_pci_mode -
1128 static int s2io_print_pci_mode(struct s2io_nic
*nic
)
1130 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
1131 register u64 val64
= 0;
1133 struct config_param
*config
= &nic
->config
;
1135 val64
= readq(&bar0
->pci_mode
);
1136 mode
= (u8
)GET_PCI_MODE(val64
);
1138 if ( val64
& PCI_MODE_UNKNOWN_MODE
)
1139 return -1; /* Unknown PCI mode */
1141 config
->bus_speed
= bus_speed
[mode
];
1143 if (s2io_on_nec_bridge(nic
->pdev
)) {
1144 DBG_PRINT(ERR_DBG
, "%s: Device is on PCI-E bus\n",
1149 if (val64
& PCI_MODE_32_BITS
) {
1150 DBG_PRINT(ERR_DBG
, "%s: Device is on 32 bit ", nic
->dev
->name
);
1152 DBG_PRINT(ERR_DBG
, "%s: Device is on 64 bit ", nic
->dev
->name
);
1156 case PCI_MODE_PCI_33
:
1157 DBG_PRINT(ERR_DBG
, "33MHz PCI bus\n");
1159 case PCI_MODE_PCI_66
:
1160 DBG_PRINT(ERR_DBG
, "66MHz PCI bus\n");
1162 case PCI_MODE_PCIX_M1_66
:
1163 DBG_PRINT(ERR_DBG
, "66MHz PCIX(M1) bus\n");
1165 case PCI_MODE_PCIX_M1_100
:
1166 DBG_PRINT(ERR_DBG
, "100MHz PCIX(M1) bus\n");
1168 case PCI_MODE_PCIX_M1_133
:
1169 DBG_PRINT(ERR_DBG
, "133MHz PCIX(M1) bus\n");
1171 case PCI_MODE_PCIX_M2_66
:
1172 DBG_PRINT(ERR_DBG
, "133MHz PCIX(M2) bus\n");
1174 case PCI_MODE_PCIX_M2_100
:
1175 DBG_PRINT(ERR_DBG
, "200MHz PCIX(M2) bus\n");
1177 case PCI_MODE_PCIX_M2_133
:
1178 DBG_PRINT(ERR_DBG
, "266MHz PCIX(M2) bus\n");
1181 return -1; /* Unsupported bus speed */
1188 * init_tti - Initialization transmit traffic interrupt scheme
1189 * @nic: device private variable
1190 * @link: link status (UP/DOWN) used to enable/disable continuous
1191 * transmit interrupts
1192 * Description: The function configures transmit traffic interrupts
1193 * Return Value: SUCCESS on success and
1197 static int init_tti(struct s2io_nic
*nic
, int link
)
1199 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
1200 register u64 val64
= 0;
1202 struct config_param
*config
;
1204 config
= &nic
->config
;
1206 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
1208 * TTI Initialization. Default Tx timer gets us about
1209 * 250 interrupts per sec. Continuous interrupts are enabled
1212 if (nic
->device_type
== XFRAME_II_DEVICE
) {
1213 int count
= (nic
->config
.bus_speed
* 125)/2;
1214 val64
= TTI_DATA1_MEM_TX_TIMER_VAL(count
);
1216 val64
= TTI_DATA1_MEM_TX_TIMER_VAL(0x2078);
1218 val64
|= TTI_DATA1_MEM_TX_URNG_A(0xA) |
1219 TTI_DATA1_MEM_TX_URNG_B(0x10) |
1220 TTI_DATA1_MEM_TX_URNG_C(0x30) |
1221 TTI_DATA1_MEM_TX_TIMER_AC_EN
;
1223 if (use_continuous_tx_intrs
&& (link
== LINK_UP
))
1224 val64
|= TTI_DATA1_MEM_TX_TIMER_CI_EN
;
1225 writeq(val64
, &bar0
->tti_data1_mem
);
1227 val64
= TTI_DATA2_MEM_TX_UFC_A(0x10) |
1228 TTI_DATA2_MEM_TX_UFC_B(0x20) |
1229 TTI_DATA2_MEM_TX_UFC_C(0x40) |
1230 TTI_DATA2_MEM_TX_UFC_D(0x80);
1232 writeq(val64
, &bar0
->tti_data2_mem
);
1234 val64
= TTI_CMD_MEM_WE
| TTI_CMD_MEM_STROBE_NEW_CMD
|
1235 TTI_CMD_MEM_OFFSET(i
);
1236 writeq(val64
, &bar0
->tti_command_mem
);
1238 if (wait_for_cmd_complete(&bar0
->tti_command_mem
,
1239 TTI_CMD_MEM_STROBE_NEW_CMD
, S2IO_BIT_RESET
) != SUCCESS
)
1247 * init_nic - Initialization of hardware
1248 * @nic: device private variable
1249 * Description: The function sequentially configures every block
1250 * of the H/W from their reset values.
1251 * Return Value: SUCCESS on success and
1252 * '-1' on failure (endian settings incorrect).
1255 static int init_nic(struct s2io_nic
*nic
)
1257 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
1258 struct net_device
*dev
= nic
->dev
;
1259 register u64 val64
= 0;
1263 struct mac_info
*mac_control
;
1264 struct config_param
*config
;
1266 unsigned long long mem_share
;
1269 mac_control
= &nic
->mac_control
;
1270 config
= &nic
->config
;
1272 /* to set the swapper controle on the card */
1273 if(s2io_set_swapper(nic
)) {
1274 DBG_PRINT(ERR_DBG
,"ERROR: Setting Swapper failed\n");
1279 * Herc requires EOI to be removed from reset before XGXS, so..
1281 if (nic
->device_type
& XFRAME_II_DEVICE
) {
1282 val64
= 0xA500000000ULL
;
1283 writeq(val64
, &bar0
->sw_reset
);
1285 val64
= readq(&bar0
->sw_reset
);
1288 /* Remove XGXS from reset state */
1290 writeq(val64
, &bar0
->sw_reset
);
1292 val64
= readq(&bar0
->sw_reset
);
1294 /* Ensure that it's safe to access registers by checking
1295 * RIC_RUNNING bit is reset. Check is valid only for XframeII.
1297 if (nic
->device_type
== XFRAME_II_DEVICE
) {
1298 for (i
= 0; i
< 50; i
++) {
1299 val64
= readq(&bar0
->adapter_status
);
1300 if (!(val64
& ADAPTER_STATUS_RIC_RUNNING
))
1308 /* Enable Receiving broadcasts */
1309 add
= &bar0
->mac_cfg
;
1310 val64
= readq(&bar0
->mac_cfg
);
1311 val64
|= MAC_RMAC_BCAST_ENABLE
;
1312 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
1313 writel((u32
) val64
, add
);
1314 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
1315 writel((u32
) (val64
>> 32), (add
+ 4));
1317 /* Read registers in all blocks */
1318 val64
= readq(&bar0
->mac_int_mask
);
1319 val64
= readq(&bar0
->mc_int_mask
);
1320 val64
= readq(&bar0
->xgxs_int_mask
);
1324 writeq(vBIT(val64
, 2, 14), &bar0
->rmac_max_pyld_len
);
1326 if (nic
->device_type
& XFRAME_II_DEVICE
) {
1327 while (herc_act_dtx_cfg
[dtx_cnt
] != END_SIGN
) {
1328 SPECIAL_REG_WRITE(herc_act_dtx_cfg
[dtx_cnt
],
1329 &bar0
->dtx_control
, UF
);
1331 msleep(1); /* Necessary!! */
1335 while (xena_dtx_cfg
[dtx_cnt
] != END_SIGN
) {
1336 SPECIAL_REG_WRITE(xena_dtx_cfg
[dtx_cnt
],
1337 &bar0
->dtx_control
, UF
);
1338 val64
= readq(&bar0
->dtx_control
);
1343 /* Tx DMA Initialization */
1345 writeq(val64
, &bar0
->tx_fifo_partition_0
);
1346 writeq(val64
, &bar0
->tx_fifo_partition_1
);
1347 writeq(val64
, &bar0
->tx_fifo_partition_2
);
1348 writeq(val64
, &bar0
->tx_fifo_partition_3
);
1351 for (i
= 0, j
= 0; i
< config
->tx_fifo_num
; i
++) {
1353 vBIT(config
->tx_cfg
[i
].fifo_len
- 1, ((j
* 32) + 19),
1354 13) | vBIT(config
->tx_cfg
[i
].fifo_priority
,
1357 if (i
== (config
->tx_fifo_num
- 1)) {
1364 writeq(val64
, &bar0
->tx_fifo_partition_0
);
1369 writeq(val64
, &bar0
->tx_fifo_partition_1
);
1374 writeq(val64
, &bar0
->tx_fifo_partition_2
);
1379 writeq(val64
, &bar0
->tx_fifo_partition_3
);
1390 * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug
1391 * SXE-008 TRANSMIT DMA ARBITRATION ISSUE.
1393 if ((nic
->device_type
== XFRAME_I_DEVICE
) &&
1394 (nic
->pdev
->revision
< 4))
1395 writeq(PCC_ENABLE_FOUR
, &bar0
->pcc_enable
);
1397 val64
= readq(&bar0
->tx_fifo_partition_0
);
1398 DBG_PRINT(INIT_DBG
, "Fifo partition at: 0x%p is: 0x%llx\n",
1399 &bar0
->tx_fifo_partition_0
, (unsigned long long) val64
);
1402 * Initialization of Tx_PA_CONFIG register to ignore packet
1403 * integrity checking.
1405 val64
= readq(&bar0
->tx_pa_cfg
);
1406 val64
|= TX_PA_CFG_IGNORE_FRM_ERR
| TX_PA_CFG_IGNORE_SNAP_OUI
|
1407 TX_PA_CFG_IGNORE_LLC_CTRL
| TX_PA_CFG_IGNORE_L2_ERR
;
1408 writeq(val64
, &bar0
->tx_pa_cfg
);
1410 /* Rx DMA intialization. */
1412 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
1414 vBIT(config
->rx_cfg
[i
].ring_priority
, (5 + (i
* 8)),
1417 writeq(val64
, &bar0
->rx_queue_priority
);
1420 * Allocating equal share of memory to all the
1424 if (nic
->device_type
& XFRAME_II_DEVICE
)
1429 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
1432 mem_share
= (mem_size
/ config
->rx_ring_num
+
1433 mem_size
% config
->rx_ring_num
);
1434 val64
|= RX_QUEUE_CFG_Q0_SZ(mem_share
);
1437 mem_share
= (mem_size
/ config
->rx_ring_num
);
1438 val64
|= RX_QUEUE_CFG_Q1_SZ(mem_share
);
1441 mem_share
= (mem_size
/ config
->rx_ring_num
);
1442 val64
|= RX_QUEUE_CFG_Q2_SZ(mem_share
);
1445 mem_share
= (mem_size
/ config
->rx_ring_num
);
1446 val64
|= RX_QUEUE_CFG_Q3_SZ(mem_share
);
1449 mem_share
= (mem_size
/ config
->rx_ring_num
);
1450 val64
|= RX_QUEUE_CFG_Q4_SZ(mem_share
);
1453 mem_share
= (mem_size
/ config
->rx_ring_num
);
1454 val64
|= RX_QUEUE_CFG_Q5_SZ(mem_share
);
1457 mem_share
= (mem_size
/ config
->rx_ring_num
);
1458 val64
|= RX_QUEUE_CFG_Q6_SZ(mem_share
);
1461 mem_share
= (mem_size
/ config
->rx_ring_num
);
1462 val64
|= RX_QUEUE_CFG_Q7_SZ(mem_share
);
1466 writeq(val64
, &bar0
->rx_queue_cfg
);
1469 * Filling Tx round robin registers
1470 * as per the number of FIFOs for equal scheduling priority
1472 switch (config
->tx_fifo_num
) {
1475 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1476 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1477 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1478 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1479 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1482 val64
= 0x0001000100010001ULL
;
1483 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1484 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1485 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1486 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1487 val64
= 0x0001000100000000ULL
;
1488 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1491 val64
= 0x0001020001020001ULL
;
1492 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1493 val64
= 0x0200010200010200ULL
;
1494 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1495 val64
= 0x0102000102000102ULL
;
1496 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1497 val64
= 0x0001020001020001ULL
;
1498 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1499 val64
= 0x0200010200000000ULL
;
1500 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1503 val64
= 0x0001020300010203ULL
;
1504 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1505 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1506 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1507 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1508 val64
= 0x0001020300000000ULL
;
1509 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1512 val64
= 0x0001020304000102ULL
;
1513 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1514 val64
= 0x0304000102030400ULL
;
1515 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1516 val64
= 0x0102030400010203ULL
;
1517 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1518 val64
= 0x0400010203040001ULL
;
1519 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1520 val64
= 0x0203040000000000ULL
;
1521 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1524 val64
= 0x0001020304050001ULL
;
1525 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1526 val64
= 0x0203040500010203ULL
;
1527 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1528 val64
= 0x0405000102030405ULL
;
1529 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1530 val64
= 0x0001020304050001ULL
;
1531 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1532 val64
= 0x0203040500000000ULL
;
1533 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1536 val64
= 0x0001020304050600ULL
;
1537 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1538 val64
= 0x0102030405060001ULL
;
1539 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1540 val64
= 0x0203040506000102ULL
;
1541 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1542 val64
= 0x0304050600010203ULL
;
1543 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1544 val64
= 0x0405060000000000ULL
;
1545 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1548 val64
= 0x0001020304050607ULL
;
1549 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1550 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1551 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1552 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1553 val64
= 0x0001020300000000ULL
;
1554 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1558 /* Enable all configured Tx FIFO partitions */
1559 val64
= readq(&bar0
->tx_fifo_partition_0
);
1560 val64
|= (TX_FIFO_PARTITION_EN
);
1561 writeq(val64
, &bar0
->tx_fifo_partition_0
);
1563 /* Filling the Rx round robin registers as per the
1564 * number of Rings and steering based on QoS with
1567 switch (config
->rx_ring_num
) {
1570 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1571 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1572 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1573 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1574 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1576 val64
= 0x8080808080808080ULL
;
1577 writeq(val64
, &bar0
->rts_qos_steering
);
1580 val64
= 0x0001000100010001ULL
;
1581 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1582 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1583 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1584 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1585 val64
= 0x0001000100000000ULL
;
1586 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1588 val64
= 0x8080808040404040ULL
;
1589 writeq(val64
, &bar0
->rts_qos_steering
);
1592 val64
= 0x0001020001020001ULL
;
1593 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1594 val64
= 0x0200010200010200ULL
;
1595 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1596 val64
= 0x0102000102000102ULL
;
1597 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1598 val64
= 0x0001020001020001ULL
;
1599 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1600 val64
= 0x0200010200000000ULL
;
1601 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1603 val64
= 0x8080804040402020ULL
;
1604 writeq(val64
, &bar0
->rts_qos_steering
);
1607 val64
= 0x0001020300010203ULL
;
1608 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1609 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1610 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1611 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1612 val64
= 0x0001020300000000ULL
;
1613 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1615 val64
= 0x8080404020201010ULL
;
1616 writeq(val64
, &bar0
->rts_qos_steering
);
1619 val64
= 0x0001020304000102ULL
;
1620 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1621 val64
= 0x0304000102030400ULL
;
1622 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1623 val64
= 0x0102030400010203ULL
;
1624 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1625 val64
= 0x0400010203040001ULL
;
1626 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1627 val64
= 0x0203040000000000ULL
;
1628 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1630 val64
= 0x8080404020201008ULL
;
1631 writeq(val64
, &bar0
->rts_qos_steering
);
1634 val64
= 0x0001020304050001ULL
;
1635 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1636 val64
= 0x0203040500010203ULL
;
1637 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1638 val64
= 0x0405000102030405ULL
;
1639 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1640 val64
= 0x0001020304050001ULL
;
1641 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1642 val64
= 0x0203040500000000ULL
;
1643 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1645 val64
= 0x8080404020100804ULL
;
1646 writeq(val64
, &bar0
->rts_qos_steering
);
1649 val64
= 0x0001020304050600ULL
;
1650 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1651 val64
= 0x0102030405060001ULL
;
1652 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1653 val64
= 0x0203040506000102ULL
;
1654 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1655 val64
= 0x0304050600010203ULL
;
1656 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1657 val64
= 0x0405060000000000ULL
;
1658 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1660 val64
= 0x8080402010080402ULL
;
1661 writeq(val64
, &bar0
->rts_qos_steering
);
1664 val64
= 0x0001020304050607ULL
;
1665 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1666 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1667 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1668 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1669 val64
= 0x0001020300000000ULL
;
1670 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1672 val64
= 0x8040201008040201ULL
;
1673 writeq(val64
, &bar0
->rts_qos_steering
);
1679 for (i
= 0; i
< 8; i
++)
1680 writeq(val64
, &bar0
->rts_frm_len_n
[i
]);
1682 /* Set the default rts frame length for the rings configured */
1683 val64
= MAC_RTS_FRM_LEN_SET(dev
->mtu
+22);
1684 for (i
= 0 ; i
< config
->rx_ring_num
; i
++)
1685 writeq(val64
, &bar0
->rts_frm_len_n
[i
]);
1687 /* Set the frame length for the configured rings
1688 * desired by the user
1690 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
1691 /* If rts_frm_len[i] == 0 then it is assumed that user not
1692 * specified frame length steering.
1693 * If the user provides the frame length then program
1694 * the rts_frm_len register for those values or else
1695 * leave it as it is.
1697 if (rts_frm_len
[i
] != 0) {
1698 writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len
[i
]),
1699 &bar0
->rts_frm_len_n
[i
]);
1703 /* Disable differentiated services steering logic */
1704 for (i
= 0; i
< 64; i
++) {
1705 if (rts_ds_steer(nic
, i
, 0) == FAILURE
) {
1706 DBG_PRINT(ERR_DBG
, "%s: failed rts ds steering",
1708 DBG_PRINT(ERR_DBG
, "set on codepoint %d\n", i
);
1713 /* Program statistics memory */
1714 writeq(mac_control
->stats_mem_phy
, &bar0
->stat_addr
);
1716 if (nic
->device_type
== XFRAME_II_DEVICE
) {
1717 val64
= STAT_BC(0x320);
1718 writeq(val64
, &bar0
->stat_byte_cnt
);
1722 * Initializing the sampling rate for the device to calculate the
1723 * bandwidth utilization.
1725 val64
= MAC_TX_LINK_UTIL_VAL(tmac_util_period
) |
1726 MAC_RX_LINK_UTIL_VAL(rmac_util_period
);
1727 writeq(val64
, &bar0
->mac_link_util
);
1730 * Initializing the Transmit and Receive Traffic Interrupt
1734 /* Initialize TTI */
1735 if (SUCCESS
!= init_tti(nic
, nic
->last_link_state
))
1738 /* RTI Initialization */
1739 if (nic
->device_type
== XFRAME_II_DEVICE
) {
1741 * Programmed to generate Apprx 500 Intrs per
1744 int count
= (nic
->config
.bus_speed
* 125)/4;
1745 val64
= RTI_DATA1_MEM_RX_TIMER_VAL(count
);
1747 val64
= RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF);
1748 val64
|= RTI_DATA1_MEM_RX_URNG_A(0xA) |
1749 RTI_DATA1_MEM_RX_URNG_B(0x10) |
1750 RTI_DATA1_MEM_RX_URNG_C(0x30) | RTI_DATA1_MEM_RX_TIMER_AC_EN
;
1752 writeq(val64
, &bar0
->rti_data1_mem
);
1754 val64
= RTI_DATA2_MEM_RX_UFC_A(0x1) |
1755 RTI_DATA2_MEM_RX_UFC_B(0x2) ;
1756 if (nic
->config
.intr_type
== MSI_X
)
1757 val64
|= (RTI_DATA2_MEM_RX_UFC_C(0x20) | \
1758 RTI_DATA2_MEM_RX_UFC_D(0x40));
1760 val64
|= (RTI_DATA2_MEM_RX_UFC_C(0x40) | \
1761 RTI_DATA2_MEM_RX_UFC_D(0x80));
1762 writeq(val64
, &bar0
->rti_data2_mem
);
1764 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
1765 val64
= RTI_CMD_MEM_WE
| RTI_CMD_MEM_STROBE_NEW_CMD
1766 | RTI_CMD_MEM_OFFSET(i
);
1767 writeq(val64
, &bar0
->rti_command_mem
);
1770 * Once the operation completes, the Strobe bit of the
1771 * command register will be reset. We poll for this
1772 * particular condition. We wait for a maximum of 500ms
1773 * for the operation to complete, if it's not complete
1774 * by then we return error.
1778 val64
= readq(&bar0
->rti_command_mem
);
1779 if (!(val64
& RTI_CMD_MEM_STROBE_NEW_CMD
))
1783 DBG_PRINT(ERR_DBG
, "%s: RTI init Failed\n",
1793 * Initializing proper values as Pause threshold into all
1794 * the 8 Queues on Rx side.
1796 writeq(0xffbbffbbffbbffbbULL
, &bar0
->mc_pause_thresh_q0q3
);
1797 writeq(0xffbbffbbffbbffbbULL
, &bar0
->mc_pause_thresh_q4q7
);
1799 /* Disable RMAC PAD STRIPPING */
1800 add
= &bar0
->mac_cfg
;
1801 val64
= readq(&bar0
->mac_cfg
);
1802 val64
&= ~(MAC_CFG_RMAC_STRIP_PAD
);
1803 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
1804 writel((u32
) (val64
), add
);
1805 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
1806 writel((u32
) (val64
>> 32), (add
+ 4));
1807 val64
= readq(&bar0
->mac_cfg
);
1809 /* Enable FCS stripping by adapter */
1810 add
= &bar0
->mac_cfg
;
1811 val64
= readq(&bar0
->mac_cfg
);
1812 val64
|= MAC_CFG_RMAC_STRIP_FCS
;
1813 if (nic
->device_type
== XFRAME_II_DEVICE
)
1814 writeq(val64
, &bar0
->mac_cfg
);
1816 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
1817 writel((u32
) (val64
), add
);
1818 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
1819 writel((u32
) (val64
>> 32), (add
+ 4));
1823 * Set the time value to be inserted in the pause frame
1824 * generated by xena.
1826 val64
= readq(&bar0
->rmac_pause_cfg
);
1827 val64
&= ~(RMAC_PAUSE_HG_PTIME(0xffff));
1828 val64
|= RMAC_PAUSE_HG_PTIME(nic
->mac_control
.rmac_pause_time
);
1829 writeq(val64
, &bar0
->rmac_pause_cfg
);
1832 * Set the Threshold Limit for Generating the pause frame
1833 * If the amount of data in any Queue exceeds ratio of
1834 * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256
1835 * pause frame is generated
1838 for (i
= 0; i
< 4; i
++) {
1840 (((u64
) 0xFF00 | nic
->mac_control
.
1841 mc_pause_threshold_q0q3
)
1844 writeq(val64
, &bar0
->mc_pause_thresh_q0q3
);
1847 for (i
= 0; i
< 4; i
++) {
1849 (((u64
) 0xFF00 | nic
->mac_control
.
1850 mc_pause_threshold_q4q7
)
1853 writeq(val64
, &bar0
->mc_pause_thresh_q4q7
);
1856 * TxDMA will stop Read request if the number of read split has
1857 * exceeded the limit pointed by shared_splits
1859 val64
= readq(&bar0
->pic_control
);
1860 val64
|= PIC_CNTL_SHARED_SPLITS(shared_splits
);
1861 writeq(val64
, &bar0
->pic_control
);
1863 if (nic
->config
.bus_speed
== 266) {
1864 writeq(TXREQTO_VAL(0x7f) | TXREQTO_EN
, &bar0
->txreqtimeout
);
1865 writeq(0x0, &bar0
->read_retry_delay
);
1866 writeq(0x0, &bar0
->write_retry_delay
);
1870 * Programming the Herc to split every write transaction
1871 * that does not start on an ADB to reduce disconnects.
1873 if (nic
->device_type
== XFRAME_II_DEVICE
) {
1874 val64
= FAULT_BEHAVIOUR
| EXT_REQ_EN
|
1875 MISC_LINK_STABILITY_PRD(3);
1876 writeq(val64
, &bar0
->misc_control
);
1877 val64
= readq(&bar0
->pic_control2
);
1878 val64
&= ~(s2BIT(13)|s2BIT(14)|s2BIT(15));
1879 writeq(val64
, &bar0
->pic_control2
);
1881 if (strstr(nic
->product_name
, "CX4")) {
1882 val64
= TMAC_AVG_IPG(0x17);
1883 writeq(val64
, &bar0
->tmac_avg_ipg
);
1888 #define LINK_UP_DOWN_INTERRUPT 1
1889 #define MAC_RMAC_ERR_TIMER 2
1891 static int s2io_link_fault_indication(struct s2io_nic
*nic
)
1893 if (nic
->config
.intr_type
!= INTA
)
1894 return MAC_RMAC_ERR_TIMER
;
1895 if (nic
->device_type
== XFRAME_II_DEVICE
)
1896 return LINK_UP_DOWN_INTERRUPT
;
1898 return MAC_RMAC_ERR_TIMER
;
1902 * do_s2io_write_bits - update alarm bits in alarm register
1903 * @value: alarm bits
1904 * @flag: interrupt status
1905 * @addr: address value
1906 * Description: update alarm bits in alarm register
1910 static void do_s2io_write_bits(u64 value
, int flag
, void __iomem
*addr
)
1914 temp64
= readq(addr
);
1916 if(flag
== ENABLE_INTRS
)
1917 temp64
&= ~((u64
) value
);
1919 temp64
|= ((u64
) value
);
1920 writeq(temp64
, addr
);
1923 static void en_dis_err_alarms(struct s2io_nic
*nic
, u16 mask
, int flag
)
1925 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
1926 register u64 gen_int_mask
= 0;
1928 if (mask
& TX_DMA_INTR
) {
1930 gen_int_mask
|= TXDMA_INT_M
;
1932 do_s2io_write_bits(TXDMA_TDA_INT
| TXDMA_PFC_INT
|
1933 TXDMA_PCC_INT
| TXDMA_TTI_INT
|
1934 TXDMA_LSO_INT
| TXDMA_TPA_INT
|
1935 TXDMA_SM_INT
, flag
, &bar0
->txdma_int_mask
);
1937 do_s2io_write_bits(PFC_ECC_DB_ERR
| PFC_SM_ERR_ALARM
|
1938 PFC_MISC_0_ERR
| PFC_MISC_1_ERR
|
1939 PFC_PCIX_ERR
| PFC_ECC_SG_ERR
, flag
,
1940 &bar0
->pfc_err_mask
);
1942 do_s2io_write_bits(TDA_Fn_ECC_DB_ERR
| TDA_SM0_ERR_ALARM
|
1943 TDA_SM1_ERR_ALARM
| TDA_Fn_ECC_SG_ERR
|
1944 TDA_PCIX_ERR
, flag
, &bar0
->tda_err_mask
);
1946 do_s2io_write_bits(PCC_FB_ECC_DB_ERR
| PCC_TXB_ECC_DB_ERR
|
1947 PCC_SM_ERR_ALARM
| PCC_WR_ERR_ALARM
|
1948 PCC_N_SERR
| PCC_6_COF_OV_ERR
|
1949 PCC_7_COF_OV_ERR
| PCC_6_LSO_OV_ERR
|
1950 PCC_7_LSO_OV_ERR
| PCC_FB_ECC_SG_ERR
|
1951 PCC_TXB_ECC_SG_ERR
, flag
, &bar0
->pcc_err_mask
);
1953 do_s2io_write_bits(TTI_SM_ERR_ALARM
| TTI_ECC_SG_ERR
|
1954 TTI_ECC_DB_ERR
, flag
, &bar0
->tti_err_mask
);
1956 do_s2io_write_bits(LSO6_ABORT
| LSO7_ABORT
|
1957 LSO6_SM_ERR_ALARM
| LSO7_SM_ERR_ALARM
|
1958 LSO6_SEND_OFLOW
| LSO7_SEND_OFLOW
,
1959 flag
, &bar0
->lso_err_mask
);
1961 do_s2io_write_bits(TPA_SM_ERR_ALARM
| TPA_TX_FRM_DROP
,
1962 flag
, &bar0
->tpa_err_mask
);
1964 do_s2io_write_bits(SM_SM_ERR_ALARM
, flag
, &bar0
->sm_err_mask
);
1968 if (mask
& TX_MAC_INTR
) {
1969 gen_int_mask
|= TXMAC_INT_M
;
1970 do_s2io_write_bits(MAC_INT_STATUS_TMAC_INT
, flag
,
1971 &bar0
->mac_int_mask
);
1972 do_s2io_write_bits(TMAC_TX_BUF_OVRN
| TMAC_TX_SM_ERR
|
1973 TMAC_ECC_SG_ERR
| TMAC_ECC_DB_ERR
|
1974 TMAC_DESC_ECC_SG_ERR
| TMAC_DESC_ECC_DB_ERR
,
1975 flag
, &bar0
->mac_tmac_err_mask
);
1978 if (mask
& TX_XGXS_INTR
) {
1979 gen_int_mask
|= TXXGXS_INT_M
;
1980 do_s2io_write_bits(XGXS_INT_STATUS_TXGXS
, flag
,
1981 &bar0
->xgxs_int_mask
);
1982 do_s2io_write_bits(TXGXS_ESTORE_UFLOW
| TXGXS_TX_SM_ERR
|
1983 TXGXS_ECC_SG_ERR
| TXGXS_ECC_DB_ERR
,
1984 flag
, &bar0
->xgxs_txgxs_err_mask
);
1987 if (mask
& RX_DMA_INTR
) {
1988 gen_int_mask
|= RXDMA_INT_M
;
1989 do_s2io_write_bits(RXDMA_INT_RC_INT_M
| RXDMA_INT_RPA_INT_M
|
1990 RXDMA_INT_RDA_INT_M
| RXDMA_INT_RTI_INT_M
,
1991 flag
, &bar0
->rxdma_int_mask
);
1992 do_s2io_write_bits(RC_PRCn_ECC_DB_ERR
| RC_FTC_ECC_DB_ERR
|
1993 RC_PRCn_SM_ERR_ALARM
| RC_FTC_SM_ERR_ALARM
|
1994 RC_PRCn_ECC_SG_ERR
| RC_FTC_ECC_SG_ERR
|
1995 RC_RDA_FAIL_WR_Rn
, flag
, &bar0
->rc_err_mask
);
1996 do_s2io_write_bits(PRC_PCI_AB_RD_Rn
| PRC_PCI_AB_WR_Rn
|
1997 PRC_PCI_AB_F_WR_Rn
| PRC_PCI_DP_RD_Rn
|
1998 PRC_PCI_DP_WR_Rn
| PRC_PCI_DP_F_WR_Rn
, flag
,
1999 &bar0
->prc_pcix_err_mask
);
2000 do_s2io_write_bits(RPA_SM_ERR_ALARM
| RPA_CREDIT_ERR
|
2001 RPA_ECC_SG_ERR
| RPA_ECC_DB_ERR
, flag
,
2002 &bar0
->rpa_err_mask
);
2003 do_s2io_write_bits(RDA_RXDn_ECC_DB_ERR
| RDA_FRM_ECC_DB_N_AERR
|
2004 RDA_SM1_ERR_ALARM
| RDA_SM0_ERR_ALARM
|
2005 RDA_RXD_ECC_DB_SERR
| RDA_RXDn_ECC_SG_ERR
|
2006 RDA_FRM_ECC_SG_ERR
| RDA_MISC_ERR
|RDA_PCIX_ERR
,
2007 flag
, &bar0
->rda_err_mask
);
2008 do_s2io_write_bits(RTI_SM_ERR_ALARM
|
2009 RTI_ECC_SG_ERR
| RTI_ECC_DB_ERR
,
2010 flag
, &bar0
->rti_err_mask
);
2013 if (mask
& RX_MAC_INTR
) {
2014 gen_int_mask
|= RXMAC_INT_M
;
2015 do_s2io_write_bits(MAC_INT_STATUS_RMAC_INT
, flag
,
2016 &bar0
->mac_int_mask
);
2017 do_s2io_write_bits(RMAC_RX_BUFF_OVRN
| RMAC_RX_SM_ERR
|
2018 RMAC_UNUSED_INT
| RMAC_SINGLE_ECC_ERR
|
2019 RMAC_DOUBLE_ECC_ERR
|
2020 RMAC_LINK_STATE_CHANGE_INT
,
2021 flag
, &bar0
->mac_rmac_err_mask
);
2024 if (mask
& RX_XGXS_INTR
)
2026 gen_int_mask
|= RXXGXS_INT_M
;
2027 do_s2io_write_bits(XGXS_INT_STATUS_RXGXS
, flag
,
2028 &bar0
->xgxs_int_mask
);
2029 do_s2io_write_bits(RXGXS_ESTORE_OFLOW
| RXGXS_RX_SM_ERR
, flag
,
2030 &bar0
->xgxs_rxgxs_err_mask
);
2033 if (mask
& MC_INTR
) {
2034 gen_int_mask
|= MC_INT_M
;
2035 do_s2io_write_bits(MC_INT_MASK_MC_INT
, flag
, &bar0
->mc_int_mask
);
2036 do_s2io_write_bits(MC_ERR_REG_SM_ERR
| MC_ERR_REG_ECC_ALL_SNG
|
2037 MC_ERR_REG_ECC_ALL_DBL
| PLL_LOCK_N
, flag
,
2038 &bar0
->mc_err_mask
);
2040 nic
->general_int_mask
= gen_int_mask
;
2042 /* Remove this line when alarm interrupts are enabled */
2043 nic
->general_int_mask
= 0;
2046 * en_dis_able_nic_intrs - Enable or Disable the interrupts
2047 * @nic: device private variable,
2048 * @mask: A mask indicating which Intr block must be modified and,
2049 * @flag: A flag indicating whether to enable or disable the Intrs.
2050 * Description: This function will either disable or enable the interrupts
2051 * depending on the flag argument. The mask argument can be used to
2052 * enable/disable any Intr block.
2053 * Return Value: NONE.
2056 static void en_dis_able_nic_intrs(struct s2io_nic
*nic
, u16 mask
, int flag
)
2058 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
2059 register u64 temp64
= 0, intr_mask
= 0;
2061 intr_mask
= nic
->general_int_mask
;
2063 /* Top level interrupt classification */
2064 /* PIC Interrupts */
2065 if (mask
& TX_PIC_INTR
) {
2066 /* Enable PIC Intrs in the general intr mask register */
2067 intr_mask
|= TXPIC_INT_M
;
2068 if (flag
== ENABLE_INTRS
) {
2070 * If Hercules adapter enable GPIO otherwise
2071 * disable all PCIX, Flash, MDIO, IIC and GPIO
2072 * interrupts for now.
2075 if (s2io_link_fault_indication(nic
) ==
2076 LINK_UP_DOWN_INTERRUPT
) {
2077 do_s2io_write_bits(PIC_INT_GPIO
, flag
,
2078 &bar0
->pic_int_mask
);
2079 do_s2io_write_bits(GPIO_INT_MASK_LINK_UP
, flag
,
2080 &bar0
->gpio_int_mask
);
2082 writeq(DISABLE_ALL_INTRS
, &bar0
->pic_int_mask
);
2083 } else if (flag
== DISABLE_INTRS
) {
2085 * Disable PIC Intrs in the general
2086 * intr mask register
2088 writeq(DISABLE_ALL_INTRS
, &bar0
->pic_int_mask
);
2092 /* Tx traffic interrupts */
2093 if (mask
& TX_TRAFFIC_INTR
) {
2094 intr_mask
|= TXTRAFFIC_INT_M
;
2095 if (flag
== ENABLE_INTRS
) {
2097 * Enable all the Tx side interrupts
2098 * writing 0 Enables all 64 TX interrupt levels
2100 writeq(0x0, &bar0
->tx_traffic_mask
);
2101 } else if (flag
== DISABLE_INTRS
) {
2103 * Disable Tx Traffic Intrs in the general intr mask
2106 writeq(DISABLE_ALL_INTRS
, &bar0
->tx_traffic_mask
);
2110 /* Rx traffic interrupts */
2111 if (mask
& RX_TRAFFIC_INTR
) {
2112 intr_mask
|= RXTRAFFIC_INT_M
;
2113 if (flag
== ENABLE_INTRS
) {
2114 /* writing 0 Enables all 8 RX interrupt levels */
2115 writeq(0x0, &bar0
->rx_traffic_mask
);
2116 } else if (flag
== DISABLE_INTRS
) {
2118 * Disable Rx Traffic Intrs in the general intr mask
2121 writeq(DISABLE_ALL_INTRS
, &bar0
->rx_traffic_mask
);
2125 temp64
= readq(&bar0
->general_int_mask
);
2126 if (flag
== ENABLE_INTRS
)
2127 temp64
&= ~((u64
) intr_mask
);
2129 temp64
= DISABLE_ALL_INTRS
;
2130 writeq(temp64
, &bar0
->general_int_mask
);
2132 nic
->general_int_mask
= readq(&bar0
->general_int_mask
);
2136 * verify_pcc_quiescent- Checks for PCC quiescent state
2137 * Return: 1 If PCC is quiescence
2138 * 0 If PCC is not quiescence
2140 static int verify_pcc_quiescent(struct s2io_nic
*sp
, int flag
)
2143 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
2144 u64 val64
= readq(&bar0
->adapter_status
);
2146 herc
= (sp
->device_type
== XFRAME_II_DEVICE
);
2148 if (flag
== FALSE
) {
2149 if ((!herc
&& (sp
->pdev
->revision
>= 4)) || herc
) {
2150 if (!(val64
& ADAPTER_STATUS_RMAC_PCC_IDLE
))
2153 if (!(val64
& ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE
))
2157 if ((!herc
&& (sp
->pdev
->revision
>= 4)) || herc
) {
2158 if (((val64
& ADAPTER_STATUS_RMAC_PCC_IDLE
) ==
2159 ADAPTER_STATUS_RMAC_PCC_IDLE
))
2162 if (((val64
& ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE
) ==
2163 ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE
))
2171 * verify_xena_quiescence - Checks whether the H/W is ready
2172 * Description: Returns whether the H/W is ready to go or not. Depending
2173 * on whether adapter enable bit was written or not the comparison
2174 * differs and the calling function passes the input argument flag to
2176 * Return: 1 If xena is quiescence
2177 * 0 If Xena is not quiescence
2180 static int verify_xena_quiescence(struct s2io_nic
*sp
)
2183 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
2184 u64 val64
= readq(&bar0
->adapter_status
);
2185 mode
= s2io_verify_pci_mode(sp
);
2187 if (!(val64
& ADAPTER_STATUS_TDMA_READY
)) {
2188 DBG_PRINT(ERR_DBG
, "%s", "TDMA is not ready!");
2191 if (!(val64
& ADAPTER_STATUS_RDMA_READY
)) {
2192 DBG_PRINT(ERR_DBG
, "%s", "RDMA is not ready!");
2195 if (!(val64
& ADAPTER_STATUS_PFC_READY
)) {
2196 DBG_PRINT(ERR_DBG
, "%s", "PFC is not ready!");
2199 if (!(val64
& ADAPTER_STATUS_TMAC_BUF_EMPTY
)) {
2200 DBG_PRINT(ERR_DBG
, "%s", "TMAC BUF is not empty!");
2203 if (!(val64
& ADAPTER_STATUS_PIC_QUIESCENT
)) {
2204 DBG_PRINT(ERR_DBG
, "%s", "PIC is not QUIESCENT!");
2207 if (!(val64
& ADAPTER_STATUS_MC_DRAM_READY
)) {
2208 DBG_PRINT(ERR_DBG
, "%s", "MC_DRAM is not ready!");
2211 if (!(val64
& ADAPTER_STATUS_MC_QUEUES_READY
)) {
2212 DBG_PRINT(ERR_DBG
, "%s", "MC_QUEUES is not ready!");
2215 if (!(val64
& ADAPTER_STATUS_M_PLL_LOCK
)) {
2216 DBG_PRINT(ERR_DBG
, "%s", "M_PLL is not locked!");
2221 * In PCI 33 mode, the P_PLL is not used, and therefore,
2222 * the the P_PLL_LOCK bit in the adapter_status register will
2225 if (!(val64
& ADAPTER_STATUS_P_PLL_LOCK
) &&
2226 sp
->device_type
== XFRAME_II_DEVICE
&& mode
!=
2228 DBG_PRINT(ERR_DBG
, "%s", "P_PLL is not locked!");
2231 if (!((val64
& ADAPTER_STATUS_RC_PRC_QUIESCENT
) ==
2232 ADAPTER_STATUS_RC_PRC_QUIESCENT
)) {
2233 DBG_PRINT(ERR_DBG
, "%s", "RC_PRC is not QUIESCENT!");
2240 * fix_mac_address - Fix for Mac addr problem on Alpha platforms
2241 * @sp: Pointer to device specifc structure
2243 * New procedure to clear mac address reading problems on Alpha platforms
2247 static void fix_mac_address(struct s2io_nic
* sp
)
2249 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
2253 while (fix_mac
[i
] != END_SIGN
) {
2254 writeq(fix_mac
[i
++], &bar0
->gpio_control
);
2256 val64
= readq(&bar0
->gpio_control
);
2261 * start_nic - Turns the device on
2262 * @nic : device private variable.
2264 * This function actually turns the device on. Before this function is
2265 * called,all Registers are configured from their reset states
2266 * and shared memory is allocated but the NIC is still quiescent. On
2267 * calling this function, the device interrupts are cleared and the NIC is
2268 * literally switched on by writing into the adapter control register.
2270 * SUCCESS on success and -1 on failure.
2273 static int start_nic(struct s2io_nic
*nic
)
2275 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
2276 struct net_device
*dev
= nic
->dev
;
2277 register u64 val64
= 0;
2279 struct mac_info
*mac_control
;
2280 struct config_param
*config
;
2282 mac_control
= &nic
->mac_control
;
2283 config
= &nic
->config
;
2285 /* PRC Initialization and configuration */
2286 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
2287 writeq((u64
) mac_control
->rings
[i
].rx_blocks
[0].block_dma_addr
,
2288 &bar0
->prc_rxd0_n
[i
]);
2290 val64
= readq(&bar0
->prc_ctrl_n
[i
]);
2291 if (nic
->rxd_mode
== RXD_MODE_1
)
2292 val64
|= PRC_CTRL_RC_ENABLED
;
2294 val64
|= PRC_CTRL_RC_ENABLED
| PRC_CTRL_RING_MODE_3
;
2295 if (nic
->device_type
== XFRAME_II_DEVICE
)
2296 val64
|= PRC_CTRL_GROUP_READS
;
2297 val64
&= ~PRC_CTRL_RXD_BACKOFF_INTERVAL(0xFFFFFF);
2298 val64
|= PRC_CTRL_RXD_BACKOFF_INTERVAL(0x1000);
2299 writeq(val64
, &bar0
->prc_ctrl_n
[i
]);
2302 if (nic
->rxd_mode
== RXD_MODE_3B
) {
2303 /* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */
2304 val64
= readq(&bar0
->rx_pa_cfg
);
2305 val64
|= RX_PA_CFG_IGNORE_L2_ERR
;
2306 writeq(val64
, &bar0
->rx_pa_cfg
);
2309 if (vlan_tag_strip
== 0) {
2310 val64
= readq(&bar0
->rx_pa_cfg
);
2311 val64
&= ~RX_PA_CFG_STRIP_VLAN_TAG
;
2312 writeq(val64
, &bar0
->rx_pa_cfg
);
2313 vlan_strip_flag
= 0;
2317 * Enabling MC-RLDRAM. After enabling the device, we timeout
2318 * for around 100ms, which is approximately the time required
2319 * for the device to be ready for operation.
2321 val64
= readq(&bar0
->mc_rldram_mrs
);
2322 val64
|= MC_RLDRAM_QUEUE_SIZE_ENABLE
| MC_RLDRAM_MRS_ENABLE
;
2323 SPECIAL_REG_WRITE(val64
, &bar0
->mc_rldram_mrs
, UF
);
2324 val64
= readq(&bar0
->mc_rldram_mrs
);
2326 msleep(100); /* Delay by around 100 ms. */
2328 /* Enabling ECC Protection. */
2329 val64
= readq(&bar0
->adapter_control
);
2330 val64
&= ~ADAPTER_ECC_EN
;
2331 writeq(val64
, &bar0
->adapter_control
);
2334 * Verify if the device is ready to be enabled, if so enable
2337 val64
= readq(&bar0
->adapter_status
);
2338 if (!verify_xena_quiescence(nic
)) {
2339 DBG_PRINT(ERR_DBG
, "%s: device is not ready, ", dev
->name
);
2340 DBG_PRINT(ERR_DBG
, "Adapter status reads: 0x%llx\n",
2341 (unsigned long long) val64
);
2346 * With some switches, link might be already up at this point.
2347 * Because of this weird behavior, when we enable laser,
2348 * we may not get link. We need to handle this. We cannot
2349 * figure out which switch is misbehaving. So we are forced to
2350 * make a global change.
2353 /* Enabling Laser. */
2354 val64
= readq(&bar0
->adapter_control
);
2355 val64
|= ADAPTER_EOI_TX_ON
;
2356 writeq(val64
, &bar0
->adapter_control
);
2358 if (s2io_link_fault_indication(nic
) == MAC_RMAC_ERR_TIMER
) {
2360 * Dont see link state interrupts initally on some switches,
2361 * so directly scheduling the link state task here.
2363 schedule_work(&nic
->set_link_task
);
2365 /* SXE-002: Initialize link and activity LED */
2366 subid
= nic
->pdev
->subsystem_device
;
2367 if (((subid
& 0xFF) >= 0x07) &&
2368 (nic
->device_type
== XFRAME_I_DEVICE
)) {
2369 val64
= readq(&bar0
->gpio_control
);
2370 val64
|= 0x0000800000000000ULL
;
2371 writeq(val64
, &bar0
->gpio_control
);
2372 val64
= 0x0411040400000000ULL
;
2373 writeq(val64
, (void __iomem
*)bar0
+ 0x2700);
2379 * s2io_txdl_getskb - Get the skb from txdl, unmap and return skb
2381 static struct sk_buff
*s2io_txdl_getskb(struct fifo_info
*fifo_data
, struct \
2382 TxD
*txdlp
, int get_off
)
2384 struct s2io_nic
*nic
= fifo_data
->nic
;
2385 struct sk_buff
*skb
;
2390 if (txds
->Host_Control
== (u64
)(long)fifo_data
->ufo_in_band_v
) {
2391 pci_unmap_single(nic
->pdev
, (dma_addr_t
)
2392 txds
->Buffer_Pointer
, sizeof(u64
),
2397 skb
= (struct sk_buff
*) ((unsigned long)
2398 txds
->Host_Control
);
2400 memset(txdlp
, 0, (sizeof(struct TxD
) * fifo_data
->max_txds
));
2403 pci_unmap_single(nic
->pdev
, (dma_addr_t
)
2404 txds
->Buffer_Pointer
,
2405 skb
->len
- skb
->data_len
,
2407 frg_cnt
= skb_shinfo(skb
)->nr_frags
;
2410 for (j
= 0; j
< frg_cnt
; j
++, txds
++) {
2411 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[j
];
2412 if (!txds
->Buffer_Pointer
)
2414 pci_unmap_page(nic
->pdev
, (dma_addr_t
)
2415 txds
->Buffer_Pointer
,
2416 frag
->size
, PCI_DMA_TODEVICE
);
2419 memset(txdlp
,0, (sizeof(struct TxD
) * fifo_data
->max_txds
));
2424 * free_tx_buffers - Free all queued Tx buffers
2425 * @nic : device private variable.
2427 * Free all queued Tx buffers.
2428 * Return Value: void
2431 static void free_tx_buffers(struct s2io_nic
*nic
)
2433 struct net_device
*dev
= nic
->dev
;
2434 struct sk_buff
*skb
;
2437 struct mac_info
*mac_control
;
2438 struct config_param
*config
;
2441 mac_control
= &nic
->mac_control
;
2442 config
= &nic
->config
;
2444 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
2445 unsigned long flags
;
2446 spin_lock_irqsave(&mac_control
->fifos
[i
].tx_lock
, flags
);
2447 for (j
= 0; j
< config
->tx_cfg
[i
].fifo_len
; j
++) {
2448 txdp
= (struct TxD
*) \
2449 mac_control
->fifos
[i
].list_info
[j
].list_virt_addr
;
2450 skb
= s2io_txdl_getskb(&mac_control
->fifos
[i
], txdp
, j
);
2452 nic
->mac_control
.stats_info
->sw_stat
.mem_freed
2459 "%s:forcibly freeing %d skbs on FIFO%d\n",
2461 mac_control
->fifos
[i
].tx_curr_get_info
.offset
= 0;
2462 mac_control
->fifos
[i
].tx_curr_put_info
.offset
= 0;
2463 spin_unlock_irqrestore(&mac_control
->fifos
[i
].tx_lock
, flags
);
2468 * stop_nic - To stop the nic
2469 * @nic ; device private variable.
2471 * This function does exactly the opposite of what the start_nic()
2472 * function does. This function is called to stop the device.
2477 static void stop_nic(struct s2io_nic
*nic
)
2479 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
2480 register u64 val64
= 0;
2482 struct mac_info
*mac_control
;
2483 struct config_param
*config
;
2485 mac_control
= &nic
->mac_control
;
2486 config
= &nic
->config
;
2488 /* Disable all interrupts */
2489 en_dis_err_alarms(nic
, ENA_ALL_INTRS
, DISABLE_INTRS
);
2490 interruptible
= TX_TRAFFIC_INTR
| RX_TRAFFIC_INTR
;
2491 interruptible
|= TX_PIC_INTR
;
2492 en_dis_able_nic_intrs(nic
, interruptible
, DISABLE_INTRS
);
2494 /* Clearing Adapter_En bit of ADAPTER_CONTROL Register */
2495 val64
= readq(&bar0
->adapter_control
);
2496 val64
&= ~(ADAPTER_CNTL_EN
);
2497 writeq(val64
, &bar0
->adapter_control
);
2501 * fill_rx_buffers - Allocates the Rx side skbs
2502 * @ring_info: per ring structure
2504 * The function allocates Rx side skbs and puts the physical
2505 * address of these buffers into the RxD buffer pointers, so that the NIC
2506 * can DMA the received frame into these locations.
2507 * The NIC supports 3 receive modes, viz
2509 * 2. three buffer and
2510 * 3. Five buffer modes.
2511 * Each mode defines how many fragments the received frame will be split
2512 * up into by the NIC. The frame is split into L3 header, L4 Header,
2513 * L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself
2514 * is split into 3 fragments. As of now only single buffer mode is
2517 * SUCCESS on success or an appropriate -ve value on failure.
2520 static int fill_rx_buffers(struct ring_info
*ring
)
2522 struct sk_buff
*skb
;
2524 int off
, size
, block_no
, block_no1
;
2529 struct RxD_t
*first_rxdp
= NULL
;
2530 u64 Buffer0_ptr
= 0, Buffer1_ptr
= 0;
2534 struct swStat
*stats
= &ring
->nic
->mac_control
.stats_info
->sw_stat
;
2536 alloc_cnt
= ring
->pkt_cnt
- ring
->rx_bufs_left
;
2538 block_no1
= ring
->rx_curr_get_info
.block_index
;
2539 while (alloc_tab
< alloc_cnt
) {
2540 block_no
= ring
->rx_curr_put_info
.block_index
;
2542 off
= ring
->rx_curr_put_info
.offset
;
2544 rxdp
= ring
->rx_blocks
[block_no
].rxds
[off
].virt_addr
;
2546 rxd_index
= off
+ 1;
2548 rxd_index
+= (block_no
* ring
->rxd_count
);
2550 if ((block_no
== block_no1
) &&
2551 (off
== ring
->rx_curr_get_info
.offset
) &&
2552 (rxdp
->Host_Control
)) {
2553 DBG_PRINT(INTR_DBG
, "%s: Get and Put",
2555 DBG_PRINT(INTR_DBG
, " info equated\n");
2558 if (off
&& (off
== ring
->rxd_count
)) {
2559 ring
->rx_curr_put_info
.block_index
++;
2560 if (ring
->rx_curr_put_info
.block_index
==
2562 ring
->rx_curr_put_info
.block_index
= 0;
2563 block_no
= ring
->rx_curr_put_info
.block_index
;
2565 ring
->rx_curr_put_info
.offset
= off
;
2566 rxdp
= ring
->rx_blocks
[block_no
].block_virt_addr
;
2567 DBG_PRINT(INTR_DBG
, "%s: Next block at: %p\n",
2568 ring
->dev
->name
, rxdp
);
2572 if ((rxdp
->Control_1
& RXD_OWN_XENA
) &&
2573 ((ring
->rxd_mode
== RXD_MODE_3B
) &&
2574 (rxdp
->Control_2
& s2BIT(0)))) {
2575 ring
->rx_curr_put_info
.offset
= off
;
2578 /* calculate size of skb based on ring mode */
2579 size
= ring
->mtu
+ HEADER_ETHERNET_II_802_3_SIZE
+
2580 HEADER_802_2_SIZE
+ HEADER_SNAP_SIZE
;
2581 if (ring
->rxd_mode
== RXD_MODE_1
)
2582 size
+= NET_IP_ALIGN
;
2584 size
= ring
->mtu
+ ALIGN_SIZE
+ BUF0_LEN
+ 4;
2587 skb
= dev_alloc_skb(size
);
2589 DBG_PRINT(INFO_DBG
, "%s: Out of ", ring
->dev
->name
);
2590 DBG_PRINT(INFO_DBG
, "memory to allocate SKBs\n");
2593 first_rxdp
->Control_1
|= RXD_OWN_XENA
;
2595 stats
->mem_alloc_fail_cnt
++;
2599 stats
->mem_allocated
+= skb
->truesize
;
2601 if (ring
->rxd_mode
== RXD_MODE_1
) {
2602 /* 1 buffer mode - normal operation mode */
2603 rxdp1
= (struct RxD1
*)rxdp
;
2604 memset(rxdp
, 0, sizeof(struct RxD1
));
2605 skb_reserve(skb
, NET_IP_ALIGN
);
2606 rxdp1
->Buffer0_ptr
= pci_map_single
2607 (ring
->pdev
, skb
->data
, size
- NET_IP_ALIGN
,
2608 PCI_DMA_FROMDEVICE
);
2609 if( (rxdp1
->Buffer0_ptr
== 0) ||
2610 (rxdp1
->Buffer0_ptr
==
2612 goto pci_map_failed
;
2615 SET_BUFFER0_SIZE_1(size
- NET_IP_ALIGN
);
2616 rxdp
->Host_Control
= (unsigned long) (skb
);
2617 } else if (ring
->rxd_mode
== RXD_MODE_3B
) {
2620 * 2 buffer mode provides 128
2621 * byte aligned receive buffers.
2624 rxdp3
= (struct RxD3
*)rxdp
;
2625 /* save buffer pointers to avoid frequent dma mapping */
2626 Buffer0_ptr
= rxdp3
->Buffer0_ptr
;
2627 Buffer1_ptr
= rxdp3
->Buffer1_ptr
;
2628 memset(rxdp
, 0, sizeof(struct RxD3
));
2629 /* restore the buffer pointers for dma sync*/
2630 rxdp3
->Buffer0_ptr
= Buffer0_ptr
;
2631 rxdp3
->Buffer1_ptr
= Buffer1_ptr
;
2633 ba
= &ring
->ba
[block_no
][off
];
2634 skb_reserve(skb
, BUF0_LEN
);
2635 tmp
= (u64
)(unsigned long) skb
->data
;
2638 skb
->data
= (void *) (unsigned long)tmp
;
2639 skb_reset_tail_pointer(skb
);
2641 if (!(rxdp3
->Buffer0_ptr
))
2642 rxdp3
->Buffer0_ptr
=
2643 pci_map_single(ring
->pdev
, ba
->ba_0
,
2644 BUF0_LEN
, PCI_DMA_FROMDEVICE
);
2646 pci_dma_sync_single_for_device(ring
->pdev
,
2647 (dma_addr_t
) rxdp3
->Buffer0_ptr
,
2648 BUF0_LEN
, PCI_DMA_FROMDEVICE
);
2649 if( (rxdp3
->Buffer0_ptr
== 0) ||
2650 (rxdp3
->Buffer0_ptr
== DMA_ERROR_CODE
))
2651 goto pci_map_failed
;
2653 rxdp
->Control_2
= SET_BUFFER0_SIZE_3(BUF0_LEN
);
2654 if (ring
->rxd_mode
== RXD_MODE_3B
) {
2655 /* Two buffer mode */
2658 * Buffer2 will have L3/L4 header plus
2661 rxdp3
->Buffer2_ptr
= pci_map_single
2662 (ring
->pdev
, skb
->data
, ring
->mtu
+ 4,
2663 PCI_DMA_FROMDEVICE
);
2665 if( (rxdp3
->Buffer2_ptr
== 0) ||
2666 (rxdp3
->Buffer2_ptr
== DMA_ERROR_CODE
))
2667 goto pci_map_failed
;
2669 if (!rxdp3
->Buffer1_ptr
)
2670 rxdp3
->Buffer1_ptr
=
2671 pci_map_single(ring
->pdev
,
2673 PCI_DMA_FROMDEVICE
);
2675 if( (rxdp3
->Buffer1_ptr
== 0) ||
2676 (rxdp3
->Buffer1_ptr
== DMA_ERROR_CODE
)) {
2679 (dma_addr_t
)(unsigned long)
2682 PCI_DMA_FROMDEVICE
);
2683 goto pci_map_failed
;
2685 rxdp
->Control_2
|= SET_BUFFER1_SIZE_3(1);
2686 rxdp
->Control_2
|= SET_BUFFER2_SIZE_3
2689 rxdp
->Control_2
|= s2BIT(0);
2690 rxdp
->Host_Control
= (unsigned long) (skb
);
2692 if (alloc_tab
& ((1 << rxsync_frequency
) - 1))
2693 rxdp
->Control_1
|= RXD_OWN_XENA
;
2695 if (off
== (ring
->rxd_count
+ 1))
2697 ring
->rx_curr_put_info
.offset
= off
;
2699 rxdp
->Control_2
|= SET_RXD_MARKER
;
2700 if (!(alloc_tab
& ((1 << rxsync_frequency
) - 1))) {
2703 first_rxdp
->Control_1
|= RXD_OWN_XENA
;
2707 ring
->rx_bufs_left
+= 1;
2712 /* Transfer ownership of first descriptor to adapter just before
2713 * exiting. Before that, use memory barrier so that ownership
2714 * and other fields are seen by adapter correctly.
2718 first_rxdp
->Control_1
|= RXD_OWN_XENA
;
2723 stats
->pci_map_fail_cnt
++;
2724 stats
->mem_freed
+= skb
->truesize
;
2725 dev_kfree_skb_irq(skb
);
2729 static void free_rxd_blk(struct s2io_nic
*sp
, int ring_no
, int blk
)
2731 struct net_device
*dev
= sp
->dev
;
2733 struct sk_buff
*skb
;
2735 struct mac_info
*mac_control
;
2740 mac_control
= &sp
->mac_control
;
2741 for (j
= 0 ; j
< rxd_count
[sp
->rxd_mode
]; j
++) {
2742 rxdp
= mac_control
->rings
[ring_no
].
2743 rx_blocks
[blk
].rxds
[j
].virt_addr
;
2744 skb
= (struct sk_buff
*)
2745 ((unsigned long) rxdp
->Host_Control
);
2749 if (sp
->rxd_mode
== RXD_MODE_1
) {
2750 rxdp1
= (struct RxD1
*)rxdp
;
2751 pci_unmap_single(sp
->pdev
, (dma_addr_t
)
2754 HEADER_ETHERNET_II_802_3_SIZE
2755 + HEADER_802_2_SIZE
+
2757 PCI_DMA_FROMDEVICE
);
2758 memset(rxdp
, 0, sizeof(struct RxD1
));
2759 } else if(sp
->rxd_mode
== RXD_MODE_3B
) {
2760 rxdp3
= (struct RxD3
*)rxdp
;
2761 ba
= &mac_control
->rings
[ring_no
].
2763 pci_unmap_single(sp
->pdev
, (dma_addr_t
)
2766 PCI_DMA_FROMDEVICE
);
2767 pci_unmap_single(sp
->pdev
, (dma_addr_t
)
2770 PCI_DMA_FROMDEVICE
);
2771 pci_unmap_single(sp
->pdev
, (dma_addr_t
)
2774 PCI_DMA_FROMDEVICE
);
2775 memset(rxdp
, 0, sizeof(struct RxD3
));
2777 sp
->mac_control
.stats_info
->sw_stat
.mem_freed
+= skb
->truesize
;
2779 mac_control
->rings
[ring_no
].rx_bufs_left
-= 1;
2784 * free_rx_buffers - Frees all Rx buffers
2785 * @sp: device private variable.
2787 * This function will free all Rx buffers allocated by host.
2792 static void free_rx_buffers(struct s2io_nic
*sp
)
2794 struct net_device
*dev
= sp
->dev
;
2795 int i
, blk
= 0, buf_cnt
= 0;
2796 struct mac_info
*mac_control
;
2797 struct config_param
*config
;
2799 mac_control
= &sp
->mac_control
;
2800 config
= &sp
->config
;
2802 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
2803 for (blk
= 0; blk
< rx_ring_sz
[i
]; blk
++)
2804 free_rxd_blk(sp
,i
,blk
);
2806 mac_control
->rings
[i
].rx_curr_put_info
.block_index
= 0;
2807 mac_control
->rings
[i
].rx_curr_get_info
.block_index
= 0;
2808 mac_control
->rings
[i
].rx_curr_put_info
.offset
= 0;
2809 mac_control
->rings
[i
].rx_curr_get_info
.offset
= 0;
2810 mac_control
->rings
[i
].rx_bufs_left
= 0;
2811 DBG_PRINT(INIT_DBG
, "%s:Freed 0x%x Rx Buffers on ring%d\n",
2812 dev
->name
, buf_cnt
, i
);
2817 * s2io_poll - Rx interrupt handler for NAPI support
2818 * @napi : pointer to the napi structure.
2819 * @budget : The number of packets that were budgeted to be processed
2820 * during one pass through the 'Poll" function.
2822 * Comes into picture only if NAPI support has been incorporated. It does
2823 * the same thing that rx_intr_handler does, but not in a interrupt context
2824 * also It will process only a given number of packets.
2826 * 0 on success and 1 if there are No Rx packets to be processed.
2829 static int s2io_poll(struct napi_struct
*napi
, int budget
)
2831 struct s2io_nic
*nic
= container_of(napi
, struct s2io_nic
, napi
);
2832 struct net_device
*dev
= nic
->dev
;
2833 int pkt_cnt
= 0, org_pkts_to_process
;
2834 struct mac_info
*mac_control
;
2835 struct config_param
*config
;
2836 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
2839 mac_control
= &nic
->mac_control
;
2840 config
= &nic
->config
;
2842 nic
->pkts_to_process
= budget
;
2843 org_pkts_to_process
= nic
->pkts_to_process
;
2845 writeq(S2IO_MINUS_ONE
, &bar0
->rx_traffic_int
);
2846 readl(&bar0
->rx_traffic_int
);
2848 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
2849 rx_intr_handler(&mac_control
->rings
[i
]);
2850 pkt_cnt
= org_pkts_to_process
- nic
->pkts_to_process
;
2851 if (!nic
->pkts_to_process
) {
2852 /* Quota for the current iteration has been met */
2857 netif_rx_complete(dev
, napi
);
2859 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
2860 if (fill_rx_buffers(&mac_control
->rings
[i
]) == -ENOMEM
) {
2861 DBG_PRINT(INFO_DBG
, "%s:Out of memory", dev
->name
);
2862 DBG_PRINT(INFO_DBG
, " in Rx Poll!!\n");
2866 /* Re enable the Rx interrupts. */
2867 writeq(0x0, &bar0
->rx_traffic_mask
);
2868 readl(&bar0
->rx_traffic_mask
);
2872 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
2873 if (fill_rx_buffers(&mac_control
->rings
[i
]) == -ENOMEM
) {
2874 DBG_PRINT(INFO_DBG
, "%s:Out of memory", dev
->name
);
2875 DBG_PRINT(INFO_DBG
, " in Rx Poll!!\n");
2882 #ifdef CONFIG_NET_POLL_CONTROLLER
2884 * s2io_netpoll - netpoll event handler entry point
2885 * @dev : pointer to the device structure.
2887 * This function will be called by upper layer to check for events on the
2888 * interface in situations where interrupts are disabled. It is used for
2889 * specific in-kernel networking tasks, such as remote consoles and kernel
2890 * debugging over the network (example netdump in RedHat).
2892 static void s2io_netpoll(struct net_device
*dev
)
2894 struct s2io_nic
*nic
= dev
->priv
;
2895 struct mac_info
*mac_control
;
2896 struct config_param
*config
;
2897 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
2898 u64 val64
= 0xFFFFFFFFFFFFFFFFULL
;
2901 if (pci_channel_offline(nic
->pdev
))
2904 disable_irq(dev
->irq
);
2906 mac_control
= &nic
->mac_control
;
2907 config
= &nic
->config
;
2909 writeq(val64
, &bar0
->rx_traffic_int
);
2910 writeq(val64
, &bar0
->tx_traffic_int
);
2912 /* we need to free up the transmitted skbufs or else netpoll will
2913 * run out of skbs and will fail and eventually netpoll application such
2914 * as netdump will fail.
2916 for (i
= 0; i
< config
->tx_fifo_num
; i
++)
2917 tx_intr_handler(&mac_control
->fifos
[i
]);
2919 /* check for received packet and indicate up to network */
2920 for (i
= 0; i
< config
->rx_ring_num
; i
++)
2921 rx_intr_handler(&mac_control
->rings
[i
]);
2923 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
2924 if (fill_rx_buffers(&mac_control
->rings
[i
]) == -ENOMEM
) {
2925 DBG_PRINT(INFO_DBG
, "%s:Out of memory", dev
->name
);
2926 DBG_PRINT(INFO_DBG
, " in Rx Netpoll!!\n");
2930 enable_irq(dev
->irq
);
2936 * rx_intr_handler - Rx interrupt handler
2937 * @nic: device private variable.
2939 * If the interrupt is because of a received frame or if the
2940 * receive ring contains fresh as yet un-processed frames,this function is
2941 * called. It picks out the RxD at which place the last Rx processing had
2942 * stopped and sends the skb to the OSM's Rx handler and then increments
2947 static void rx_intr_handler(struct ring_info
*ring_data
)
2949 int get_block
, put_block
;
2950 struct rx_curr_get_info get_info
, put_info
;
2952 struct sk_buff
*skb
;
2958 get_info
= ring_data
->rx_curr_get_info
;
2959 get_block
= get_info
.block_index
;
2960 memcpy(&put_info
, &ring_data
->rx_curr_put_info
, sizeof(put_info
));
2961 put_block
= put_info
.block_index
;
2962 rxdp
= ring_data
->rx_blocks
[get_block
].rxds
[get_info
.offset
].virt_addr
;
2964 while (RXD_IS_UP2DT(rxdp
)) {
2966 * If your are next to put index then it's
2967 * FIFO full condition
2969 if ((get_block
== put_block
) &&
2970 (get_info
.offset
+ 1) == put_info
.offset
) {
2971 DBG_PRINT(INTR_DBG
, "%s: Ring Full\n",
2972 ring_data
->dev
->name
);
2975 skb
= (struct sk_buff
*) ((unsigned long)rxdp
->Host_Control
);
2977 DBG_PRINT(ERR_DBG
, "%s: The skb is ",
2978 ring_data
->dev
->name
);
2979 DBG_PRINT(ERR_DBG
, "Null in Rx Intr\n");
2982 if (ring_data
->rxd_mode
== RXD_MODE_1
) {
2983 rxdp1
= (struct RxD1
*)rxdp
;
2984 pci_unmap_single(ring_data
->pdev
, (dma_addr_t
)
2987 HEADER_ETHERNET_II_802_3_SIZE
+
2990 PCI_DMA_FROMDEVICE
);
2991 } else if (ring_data
->rxd_mode
== RXD_MODE_3B
) {
2992 rxdp3
= (struct RxD3
*)rxdp
;
2993 pci_dma_sync_single_for_cpu(ring_data
->pdev
, (dma_addr_t
)
2995 BUF0_LEN
, PCI_DMA_FROMDEVICE
);
2996 pci_unmap_single(ring_data
->pdev
, (dma_addr_t
)
2999 PCI_DMA_FROMDEVICE
);
3001 prefetch(skb
->data
);
3002 rx_osm_handler(ring_data
, rxdp
);
3004 ring_data
->rx_curr_get_info
.offset
= get_info
.offset
;
3005 rxdp
= ring_data
->rx_blocks
[get_block
].
3006 rxds
[get_info
.offset
].virt_addr
;
3007 if (get_info
.offset
== rxd_count
[ring_data
->rxd_mode
]) {
3008 get_info
.offset
= 0;
3009 ring_data
->rx_curr_get_info
.offset
= get_info
.offset
;
3011 if (get_block
== ring_data
->block_count
)
3013 ring_data
->rx_curr_get_info
.block_index
= get_block
;
3014 rxdp
= ring_data
->rx_blocks
[get_block
].block_virt_addr
;
3017 if(ring_data
->nic
->config
.napi
){
3018 ring_data
->nic
->pkts_to_process
-= 1;
3019 if (!ring_data
->nic
->pkts_to_process
)
3023 if ((indicate_max_pkts
) && (pkt_cnt
> indicate_max_pkts
))
3026 if (ring_data
->lro
) {
3027 /* Clear all LRO sessions before exiting */
3028 for (i
=0; i
<MAX_LRO_SESSIONS
; i
++) {
3029 struct lro
*lro
= &ring_data
->lro0_n
[i
];
3031 update_L3L4_header(ring_data
->nic
, lro
);
3032 queue_rx_frame(lro
->parent
, lro
->vlan_tag
);
3033 clear_lro_session(lro
);
3040 * tx_intr_handler - Transmit interrupt handler
3041 * @nic : device private variable
3043 * If an interrupt was raised to indicate DMA complete of the
3044 * Tx packet, this function is called. It identifies the last TxD
3045 * whose buffer was freed and frees all skbs whose data have already
3046 * DMA'ed into the NICs internal memory.
3051 static void tx_intr_handler(struct fifo_info
*fifo_data
)
3053 struct s2io_nic
*nic
= fifo_data
->nic
;
3054 struct tx_curr_get_info get_info
, put_info
;
3055 struct sk_buff
*skb
= NULL
;
3058 unsigned long flags
= 0;
3061 if (!spin_trylock_irqsave(&fifo_data
->tx_lock
, flags
))
3064 get_info
= fifo_data
->tx_curr_get_info
;
3065 memcpy(&put_info
, &fifo_data
->tx_curr_put_info
, sizeof(put_info
));
3066 txdlp
= (struct TxD
*) fifo_data
->list_info
[get_info
.offset
].
3068 while ((!(txdlp
->Control_1
& TXD_LIST_OWN_XENA
)) &&
3069 (get_info
.offset
!= put_info
.offset
) &&
3070 (txdlp
->Host_Control
)) {
3071 /* Check for TxD errors */
3072 if (txdlp
->Control_1
& TXD_T_CODE
) {
3073 unsigned long long err
;
3074 err
= txdlp
->Control_1
& TXD_T_CODE
;
3076 nic
->mac_control
.stats_info
->sw_stat
.
3080 /* update t_code statistics */
3081 err_mask
= err
>> 48;
3084 nic
->mac_control
.stats_info
->sw_stat
.
3089 nic
->mac_control
.stats_info
->sw_stat
.
3090 tx_desc_abort_cnt
++;
3094 nic
->mac_control
.stats_info
->sw_stat
.
3095 tx_parity_err_cnt
++;
3099 nic
->mac_control
.stats_info
->sw_stat
.
3104 nic
->mac_control
.stats_info
->sw_stat
.
3105 tx_list_proc_err_cnt
++;
3110 skb
= s2io_txdl_getskb(fifo_data
, txdlp
, get_info
.offset
);
3112 spin_unlock_irqrestore(&fifo_data
->tx_lock
, flags
);
3113 DBG_PRINT(ERR_DBG
, "%s: Null skb ",
3115 DBG_PRINT(ERR_DBG
, "in Tx Free Intr\n");
3120 /* Updating the statistics block */
3121 nic
->stats
.tx_bytes
+= skb
->len
;
3122 nic
->mac_control
.stats_info
->sw_stat
.mem_freed
+= skb
->truesize
;
3123 dev_kfree_skb_irq(skb
);
3126 if (get_info
.offset
== get_info
.fifo_len
+ 1)
3127 get_info
.offset
= 0;
3128 txdlp
= (struct TxD
*) fifo_data
->list_info
3129 [get_info
.offset
].list_virt_addr
;
3130 fifo_data
->tx_curr_get_info
.offset
=
3134 s2io_wake_tx_queue(fifo_data
, pkt_cnt
, nic
->config
.multiq
);
3136 spin_unlock_irqrestore(&fifo_data
->tx_lock
, flags
);
3140 * s2io_mdio_write - Function to write in to MDIO registers
3141 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3142 * @addr : address value
3143 * @value : data value
3144 * @dev : pointer to net_device structure
3146 * This function is used to write values to the MDIO registers
3149 static void s2io_mdio_write(u32 mmd_type
, u64 addr
, u16 value
, struct net_device
*dev
)
3152 struct s2io_nic
*sp
= dev
->priv
;
3153 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
3155 //address transaction
3156 val64
= val64
| MDIO_MMD_INDX_ADDR(addr
)
3157 | MDIO_MMD_DEV_ADDR(mmd_type
)
3158 | MDIO_MMS_PRT_ADDR(0x0);
3159 writeq(val64
, &bar0
->mdio_control
);
3160 val64
= val64
| MDIO_CTRL_START_TRANS(0xE);
3161 writeq(val64
, &bar0
->mdio_control
);
3166 val64
= val64
| MDIO_MMD_INDX_ADDR(addr
)
3167 | MDIO_MMD_DEV_ADDR(mmd_type
)
3168 | MDIO_MMS_PRT_ADDR(0x0)
3169 | MDIO_MDIO_DATA(value
)
3170 | MDIO_OP(MDIO_OP_WRITE_TRANS
);
3171 writeq(val64
, &bar0
->mdio_control
);
3172 val64
= val64
| MDIO_CTRL_START_TRANS(0xE);
3173 writeq(val64
, &bar0
->mdio_control
);
3177 val64
= val64
| MDIO_MMD_INDX_ADDR(addr
)
3178 | MDIO_MMD_DEV_ADDR(mmd_type
)
3179 | MDIO_MMS_PRT_ADDR(0x0)
3180 | MDIO_OP(MDIO_OP_READ_TRANS
);
3181 writeq(val64
, &bar0
->mdio_control
);
3182 val64
= val64
| MDIO_CTRL_START_TRANS(0xE);
3183 writeq(val64
, &bar0
->mdio_control
);
3189 * s2io_mdio_read - Function to write in to MDIO registers
3190 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3191 * @addr : address value
3192 * @dev : pointer to net_device structure
3194 * This function is used to read values to the MDIO registers
3197 static u64
s2io_mdio_read(u32 mmd_type
, u64 addr
, struct net_device
*dev
)
3201 struct s2io_nic
*sp
= dev
->priv
;
3202 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
3204 /* address transaction */
3205 val64
= val64
| MDIO_MMD_INDX_ADDR(addr
)
3206 | MDIO_MMD_DEV_ADDR(mmd_type
)
3207 | MDIO_MMS_PRT_ADDR(0x0);
3208 writeq(val64
, &bar0
->mdio_control
);
3209 val64
= val64
| MDIO_CTRL_START_TRANS(0xE);
3210 writeq(val64
, &bar0
->mdio_control
);
3213 /* Data transaction */
3215 val64
= val64
| MDIO_MMD_INDX_ADDR(addr
)
3216 | MDIO_MMD_DEV_ADDR(mmd_type
)
3217 | MDIO_MMS_PRT_ADDR(0x0)
3218 | MDIO_OP(MDIO_OP_READ_TRANS
);
3219 writeq(val64
, &bar0
->mdio_control
);
3220 val64
= val64
| MDIO_CTRL_START_TRANS(0xE);
3221 writeq(val64
, &bar0
->mdio_control
);
3224 /* Read the value from regs */
3225 rval64
= readq(&bar0
->mdio_control
);
3226 rval64
= rval64
& 0xFFFF0000;
3227 rval64
= rval64
>> 16;
3231 * s2io_chk_xpak_counter - Function to check the status of the xpak counters
3232 * @counter : couter value to be updated
3233 * @flag : flag to indicate the status
3234 * @type : counter type
3236 * This function is to check the status of the xpak counters value
3240 static void s2io_chk_xpak_counter(u64
*counter
, u64
* regs_stat
, u32 index
, u16 flag
, u16 type
)
3245 for(i
= 0; i
<index
; i
++)
3250 *counter
= *counter
+ 1;
3251 val64
= *regs_stat
& mask
;
3252 val64
= val64
>> (index
* 0x2);
3259 DBG_PRINT(ERR_DBG
, "Take Xframe NIC out of "
3260 "service. Excessive temperatures may "
3261 "result in premature transceiver "
3265 DBG_PRINT(ERR_DBG
, "Take Xframe NIC out of "
3266 "service Excessive bias currents may "
3267 "indicate imminent laser diode "
3271 DBG_PRINT(ERR_DBG
, "Take Xframe NIC out of "
3272 "service Excessive laser output "
3273 "power may saturate far-end "
3277 DBG_PRINT(ERR_DBG
, "Incorrect XPAK Alarm "
3282 val64
= val64
<< (index
* 0x2);
3283 *regs_stat
= (*regs_stat
& (~mask
)) | (val64
);
3286 *regs_stat
= *regs_stat
& (~mask
);
3291 * s2io_updt_xpak_counter - Function to update the xpak counters
3292 * @dev : pointer to net_device struct
3294 * This function is to upate the status of the xpak counters value
3297 static void s2io_updt_xpak_counter(struct net_device
*dev
)
3305 struct s2io_nic
*sp
= dev
->priv
;
3306 struct stat_block
*stat_info
= sp
->mac_control
.stats_info
;
3308 /* Check the communication with the MDIO slave */
3311 val64
= s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR
, addr
, dev
);
3312 if((val64
== 0xFFFF) || (val64
== 0x0000))
3314 DBG_PRINT(ERR_DBG
, "ERR: MDIO slave access failed - "
3315 "Returned %llx\n", (unsigned long long)val64
);
3319 /* Check for the expecte value of 2040 at PMA address 0x0000 */
3322 DBG_PRINT(ERR_DBG
, "Incorrect value at PMA address 0x0000 - ");
3323 DBG_PRINT(ERR_DBG
, "Returned: %llx- Expected: 0x2040\n",
3324 (unsigned long long)val64
);
3328 /* Loading the DOM register to MDIO register */
3330 s2io_mdio_write(MDIO_MMD_PMA_DEV_ADDR
, addr
, val16
, dev
);
3331 val64
= s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR
, addr
, dev
);
3333 /* Reading the Alarm flags */
3336 val64
= s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR
, addr
, dev
);
3338 flag
= CHECKBIT(val64
, 0x7);
3340 s2io_chk_xpak_counter(&stat_info
->xpak_stat
.alarm_transceiver_temp_high
,
3341 &stat_info
->xpak_stat
.xpak_regs_stat
,
3344 if(CHECKBIT(val64
, 0x6))
3345 stat_info
->xpak_stat
.alarm_transceiver_temp_low
++;
3347 flag
= CHECKBIT(val64
, 0x3);
3349 s2io_chk_xpak_counter(&stat_info
->xpak_stat
.alarm_laser_bias_current_high
,
3350 &stat_info
->xpak_stat
.xpak_regs_stat
,
3353 if(CHECKBIT(val64
, 0x2))
3354 stat_info
->xpak_stat
.alarm_laser_bias_current_low
++;
3356 flag
= CHECKBIT(val64
, 0x1);
3358 s2io_chk_xpak_counter(&stat_info
->xpak_stat
.alarm_laser_output_power_high
,
3359 &stat_info
->xpak_stat
.xpak_regs_stat
,
3362 if(CHECKBIT(val64
, 0x0))
3363 stat_info
->xpak_stat
.alarm_laser_output_power_low
++;
3365 /* Reading the Warning flags */
3368 val64
= s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR
, addr
, dev
);
3370 if(CHECKBIT(val64
, 0x7))
3371 stat_info
->xpak_stat
.warn_transceiver_temp_high
++;
3373 if(CHECKBIT(val64
, 0x6))
3374 stat_info
->xpak_stat
.warn_transceiver_temp_low
++;
3376 if(CHECKBIT(val64
, 0x3))
3377 stat_info
->xpak_stat
.warn_laser_bias_current_high
++;
3379 if(CHECKBIT(val64
, 0x2))
3380 stat_info
->xpak_stat
.warn_laser_bias_current_low
++;
3382 if(CHECKBIT(val64
, 0x1))
3383 stat_info
->xpak_stat
.warn_laser_output_power_high
++;
3385 if(CHECKBIT(val64
, 0x0))
3386 stat_info
->xpak_stat
.warn_laser_output_power_low
++;
3390 * wait_for_cmd_complete - waits for a command to complete.
3391 * @sp : private member of the device structure, which is a pointer to the
3392 * s2io_nic structure.
3393 * Description: Function that waits for a command to Write into RMAC
3394 * ADDR DATA registers to be completed and returns either success or
3395 * error depending on whether the command was complete or not.
3397 * SUCCESS on success and FAILURE on failure.
3400 static int wait_for_cmd_complete(void __iomem
*addr
, u64 busy_bit
,
3403 int ret
= FAILURE
, cnt
= 0, delay
= 1;
3406 if ((bit_state
!= S2IO_BIT_RESET
) && (bit_state
!= S2IO_BIT_SET
))
3410 val64
= readq(addr
);
3411 if (bit_state
== S2IO_BIT_RESET
) {
3412 if (!(val64
& busy_bit
)) {
3417 if (!(val64
& busy_bit
)) {
3434 * check_pci_device_id - Checks if the device id is supported
3436 * Description: Function to check if the pci device id is supported by driver.
3437 * Return value: Actual device id if supported else PCI_ANY_ID
3439 static u16
check_pci_device_id(u16 id
)
3442 case PCI_DEVICE_ID_HERC_WIN
:
3443 case PCI_DEVICE_ID_HERC_UNI
:
3444 return XFRAME_II_DEVICE
;
3445 case PCI_DEVICE_ID_S2IO_UNI
:
3446 case PCI_DEVICE_ID_S2IO_WIN
:
3447 return XFRAME_I_DEVICE
;
3454 * s2io_reset - Resets the card.
3455 * @sp : private member of the device structure.
3456 * Description: Function to Reset the card. This function then also
3457 * restores the previously saved PCI configuration space registers as
3458 * the card reset also resets the configuration space.
3463 static void s2io_reset(struct s2io_nic
* sp
)
3465 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
3470 unsigned long long up_cnt
, down_cnt
, up_time
, down_time
, reset_cnt
;
3471 unsigned long long mem_alloc_cnt
, mem_free_cnt
, watchdog_cnt
;
3473 DBG_PRINT(INIT_DBG
,"%s - Resetting XFrame card %s\n",
3474 __FUNCTION__
, sp
->dev
->name
);
3476 /* Back up the PCI-X CMD reg, dont want to lose MMRBC, OST settings */
3477 pci_read_config_word(sp
->pdev
, PCIX_COMMAND_REGISTER
, &(pci_cmd
));
3479 val64
= SW_RESET_ALL
;
3480 writeq(val64
, &bar0
->sw_reset
);
3481 if (strstr(sp
->product_name
, "CX4")) {
3485 for (i
= 0; i
< S2IO_MAX_PCI_CONFIG_SPACE_REINIT
; i
++) {
3487 /* Restore the PCI state saved during initialization. */
3488 pci_restore_state(sp
->pdev
);
3489 pci_read_config_word(sp
->pdev
, 0x2, &val16
);
3490 if (check_pci_device_id(val16
) != (u16
)PCI_ANY_ID
)
3495 if (check_pci_device_id(val16
) == (u16
)PCI_ANY_ID
) {
3496 DBG_PRINT(ERR_DBG
,"%s SW_Reset failed!\n", __FUNCTION__
);
3499 pci_write_config_word(sp
->pdev
, PCIX_COMMAND_REGISTER
, pci_cmd
);
3503 /* Set swapper to enable I/O register access */
3504 s2io_set_swapper(sp
);
3506 /* restore mac_addr entries */
3507 do_s2io_restore_unicast_mc(sp
);
3509 /* Restore the MSIX table entries from local variables */
3510 restore_xmsi_data(sp
);
3512 /* Clear certain PCI/PCI-X fields after reset */
3513 if (sp
->device_type
== XFRAME_II_DEVICE
) {
3514 /* Clear "detected parity error" bit */
3515 pci_write_config_word(sp
->pdev
, PCI_STATUS
, 0x8000);
3517 /* Clearing PCIX Ecc status register */
3518 pci_write_config_dword(sp
->pdev
, 0x68, 0x7C);
3520 /* Clearing PCI_STATUS error reflected here */
3521 writeq(s2BIT(62), &bar0
->txpic_int_reg
);
3524 /* Reset device statistics maintained by OS */
3525 memset(&sp
->stats
, 0, sizeof (struct net_device_stats
));
3527 up_cnt
= sp
->mac_control
.stats_info
->sw_stat
.link_up_cnt
;
3528 down_cnt
= sp
->mac_control
.stats_info
->sw_stat
.link_down_cnt
;
3529 up_time
= sp
->mac_control
.stats_info
->sw_stat
.link_up_time
;
3530 down_time
= sp
->mac_control
.stats_info
->sw_stat
.link_down_time
;
3531 reset_cnt
= sp
->mac_control
.stats_info
->sw_stat
.soft_reset_cnt
;
3532 mem_alloc_cnt
= sp
->mac_control
.stats_info
->sw_stat
.mem_allocated
;
3533 mem_free_cnt
= sp
->mac_control
.stats_info
->sw_stat
.mem_freed
;
3534 watchdog_cnt
= sp
->mac_control
.stats_info
->sw_stat
.watchdog_timer_cnt
;
3535 /* save link up/down time/cnt, reset/memory/watchdog cnt */
3536 memset(sp
->mac_control
.stats_info
, 0, sizeof(struct stat_block
));
3537 /* restore link up/down time/cnt, reset/memory/watchdog cnt */
3538 sp
->mac_control
.stats_info
->sw_stat
.link_up_cnt
= up_cnt
;
3539 sp
->mac_control
.stats_info
->sw_stat
.link_down_cnt
= down_cnt
;
3540 sp
->mac_control
.stats_info
->sw_stat
.link_up_time
= up_time
;
3541 sp
->mac_control
.stats_info
->sw_stat
.link_down_time
= down_time
;
3542 sp
->mac_control
.stats_info
->sw_stat
.soft_reset_cnt
= reset_cnt
;
3543 sp
->mac_control
.stats_info
->sw_stat
.mem_allocated
= mem_alloc_cnt
;
3544 sp
->mac_control
.stats_info
->sw_stat
.mem_freed
= mem_free_cnt
;
3545 sp
->mac_control
.stats_info
->sw_stat
.watchdog_timer_cnt
= watchdog_cnt
;
3547 /* SXE-002: Configure link and activity LED to turn it off */
3548 subid
= sp
->pdev
->subsystem_device
;
3549 if (((subid
& 0xFF) >= 0x07) &&
3550 (sp
->device_type
== XFRAME_I_DEVICE
)) {
3551 val64
= readq(&bar0
->gpio_control
);
3552 val64
|= 0x0000800000000000ULL
;
3553 writeq(val64
, &bar0
->gpio_control
);
3554 val64
= 0x0411040400000000ULL
;
3555 writeq(val64
, (void __iomem
*)bar0
+ 0x2700);
3559 * Clear spurious ECC interrupts that would have occured on
3560 * XFRAME II cards after reset.
3562 if (sp
->device_type
== XFRAME_II_DEVICE
) {
3563 val64
= readq(&bar0
->pcc_err_reg
);
3564 writeq(val64
, &bar0
->pcc_err_reg
);
3567 sp
->device_enabled_once
= FALSE
;
3571 * s2io_set_swapper - to set the swapper controle on the card
3572 * @sp : private member of the device structure,
3573 * pointer to the s2io_nic structure.
3574 * Description: Function to set the swapper control on the card
3575 * correctly depending on the 'endianness' of the system.
3577 * SUCCESS on success and FAILURE on failure.
3580 static int s2io_set_swapper(struct s2io_nic
* sp
)
3582 struct net_device
*dev
= sp
->dev
;
3583 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
3584 u64 val64
, valt
, valr
;
3587 * Set proper endian settings and verify the same by reading
3588 * the PIF Feed-back register.
3591 val64
= readq(&bar0
->pif_rd_swapper_fb
);
3592 if (val64
!= 0x0123456789ABCDEFULL
) {
3594 u64 value
[] = { 0xC30000C3C30000C3ULL
, /* FE=1, SE=1 */
3595 0x8100008181000081ULL
, /* FE=1, SE=0 */
3596 0x4200004242000042ULL
, /* FE=0, SE=1 */
3597 0}; /* FE=0, SE=0 */
3600 writeq(value
[i
], &bar0
->swapper_ctrl
);
3601 val64
= readq(&bar0
->pif_rd_swapper_fb
);
3602 if (val64
== 0x0123456789ABCDEFULL
)
3607 DBG_PRINT(ERR_DBG
, "%s: Endian settings are wrong, ",
3609 DBG_PRINT(ERR_DBG
, "feedback read %llx\n",
3610 (unsigned long long) val64
);
3615 valr
= readq(&bar0
->swapper_ctrl
);
3618 valt
= 0x0123456789ABCDEFULL
;
3619 writeq(valt
, &bar0
->xmsi_address
);
3620 val64
= readq(&bar0
->xmsi_address
);
3624 u64 value
[] = { 0x00C3C30000C3C300ULL
, /* FE=1, SE=1 */
3625 0x0081810000818100ULL
, /* FE=1, SE=0 */
3626 0x0042420000424200ULL
, /* FE=0, SE=1 */
3627 0}; /* FE=0, SE=0 */
3630 writeq((value
[i
] | valr
), &bar0
->swapper_ctrl
);
3631 writeq(valt
, &bar0
->xmsi_address
);
3632 val64
= readq(&bar0
->xmsi_address
);
3638 unsigned long long x
= val64
;
3639 DBG_PRINT(ERR_DBG
, "Write failed, Xmsi_addr ");
3640 DBG_PRINT(ERR_DBG
, "reads:0x%llx\n", x
);
3644 val64
= readq(&bar0
->swapper_ctrl
);
3645 val64
&= 0xFFFF000000000000ULL
;
3649 * The device by default set to a big endian format, so a
3650 * big endian driver need not set anything.
3652 val64
|= (SWAPPER_CTRL_TXP_FE
|
3653 SWAPPER_CTRL_TXP_SE
|
3654 SWAPPER_CTRL_TXD_R_FE
|
3655 SWAPPER_CTRL_TXD_W_FE
|
3656 SWAPPER_CTRL_TXF_R_FE
|
3657 SWAPPER_CTRL_RXD_R_FE
|
3658 SWAPPER_CTRL_RXD_W_FE
|
3659 SWAPPER_CTRL_RXF_W_FE
|
3660 SWAPPER_CTRL_XMSI_FE
|
3661 SWAPPER_CTRL_STATS_FE
| SWAPPER_CTRL_STATS_SE
);
3662 if (sp
->config
.intr_type
== INTA
)
3663 val64
|= SWAPPER_CTRL_XMSI_SE
;
3664 writeq(val64
, &bar0
->swapper_ctrl
);
3667 * Initially we enable all bits to make it accessible by the
3668 * driver, then we selectively enable only those bits that
3671 val64
|= (SWAPPER_CTRL_TXP_FE
|
3672 SWAPPER_CTRL_TXP_SE
|
3673 SWAPPER_CTRL_TXD_R_FE
|
3674 SWAPPER_CTRL_TXD_R_SE
|
3675 SWAPPER_CTRL_TXD_W_FE
|
3676 SWAPPER_CTRL_TXD_W_SE
|
3677 SWAPPER_CTRL_TXF_R_FE
|
3678 SWAPPER_CTRL_RXD_R_FE
|
3679 SWAPPER_CTRL_RXD_R_SE
|
3680 SWAPPER_CTRL_RXD_W_FE
|
3681 SWAPPER_CTRL_RXD_W_SE
|
3682 SWAPPER_CTRL_RXF_W_FE
|
3683 SWAPPER_CTRL_XMSI_FE
|
3684 SWAPPER_CTRL_STATS_FE
| SWAPPER_CTRL_STATS_SE
);
3685 if (sp
->config
.intr_type
== INTA
)
3686 val64
|= SWAPPER_CTRL_XMSI_SE
;
3687 writeq(val64
, &bar0
->swapper_ctrl
);
3689 val64
= readq(&bar0
->swapper_ctrl
);
3692 * Verifying if endian settings are accurate by reading a
3693 * feedback register.
3695 val64
= readq(&bar0
->pif_rd_swapper_fb
);
3696 if (val64
!= 0x0123456789ABCDEFULL
) {
3697 /* Endian settings are incorrect, calls for another dekko. */
3698 DBG_PRINT(ERR_DBG
, "%s: Endian settings are wrong, ",
3700 DBG_PRINT(ERR_DBG
, "feedback read %llx\n",
3701 (unsigned long long) val64
);
3708 static int wait_for_msix_trans(struct s2io_nic
*nic
, int i
)
3710 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
3712 int ret
= 0, cnt
= 0;
3715 val64
= readq(&bar0
->xmsi_access
);
3716 if (!(val64
& s2BIT(15)))
3722 DBG_PRINT(ERR_DBG
, "XMSI # %d Access failed\n", i
);
3729 static void restore_xmsi_data(struct s2io_nic
*nic
)
3731 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
3735 for (i
=0; i
< MAX_REQUESTED_MSI_X
; i
++) {
3736 writeq(nic
->msix_info
[i
].addr
, &bar0
->xmsi_address
);
3737 writeq(nic
->msix_info
[i
].data
, &bar0
->xmsi_data
);
3738 val64
= (s2BIT(7) | s2BIT(15) | vBIT(i
, 26, 6));
3739 writeq(val64
, &bar0
->xmsi_access
);
3740 if (wait_for_msix_trans(nic
, i
)) {
3741 DBG_PRINT(ERR_DBG
, "failed in %s\n", __FUNCTION__
);
3747 static void store_xmsi_data(struct s2io_nic
*nic
)
3749 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
3750 u64 val64
, addr
, data
;
3753 /* Store and display */
3754 for (i
=0; i
< MAX_REQUESTED_MSI_X
; i
++) {
3755 val64
= (s2BIT(15) | vBIT(i
, 26, 6));
3756 writeq(val64
, &bar0
->xmsi_access
);
3757 if (wait_for_msix_trans(nic
, i
)) {
3758 DBG_PRINT(ERR_DBG
, "failed in %s\n", __FUNCTION__
);
3761 addr
= readq(&bar0
->xmsi_address
);
3762 data
= readq(&bar0
->xmsi_data
);
3764 nic
->msix_info
[i
].addr
= addr
;
3765 nic
->msix_info
[i
].data
= data
;
3770 static int s2io_enable_msi_x(struct s2io_nic
*nic
)
3772 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
3774 u16 msi_control
; /* Temp variable */
3775 int ret
, i
, j
, msix_indx
= 1;
3777 nic
->entries
= kcalloc(MAX_REQUESTED_MSI_X
, sizeof(struct msix_entry
),
3779 if (!nic
->entries
) {
3780 DBG_PRINT(INFO_DBG
, "%s: Memory allocation failed\n", \
3782 nic
->mac_control
.stats_info
->sw_stat
.mem_alloc_fail_cnt
++;
3785 nic
->mac_control
.stats_info
->sw_stat
.mem_allocated
3786 += (MAX_REQUESTED_MSI_X
* sizeof(struct msix_entry
));
3789 kcalloc(MAX_REQUESTED_MSI_X
, sizeof(struct s2io_msix_entry
),
3791 if (!nic
->s2io_entries
) {
3792 DBG_PRINT(INFO_DBG
, "%s: Memory allocation failed\n",
3794 nic
->mac_control
.stats_info
->sw_stat
.mem_alloc_fail_cnt
++;
3795 kfree(nic
->entries
);
3796 nic
->mac_control
.stats_info
->sw_stat
.mem_freed
3797 += (MAX_REQUESTED_MSI_X
* sizeof(struct msix_entry
));
3800 nic
->mac_control
.stats_info
->sw_stat
.mem_allocated
3801 += (MAX_REQUESTED_MSI_X
* sizeof(struct s2io_msix_entry
));
3803 for (i
=0; i
< MAX_REQUESTED_MSI_X
; i
++) {
3804 nic
->entries
[i
].entry
= i
;
3805 nic
->s2io_entries
[i
].entry
= i
;
3806 nic
->s2io_entries
[i
].arg
= NULL
;
3807 nic
->s2io_entries
[i
].in_use
= 0;
3810 tx_mat
= readq(&bar0
->tx_mat0_n
[0]);
3811 for (i
=0; i
<nic
->config
.tx_fifo_num
; i
++, msix_indx
++) {
3812 tx_mat
|= TX_MAT_SET(i
, msix_indx
);
3813 nic
->s2io_entries
[msix_indx
].arg
= &nic
->mac_control
.fifos
[i
];
3814 nic
->s2io_entries
[msix_indx
].type
= MSIX_FIFO_TYPE
;
3815 nic
->s2io_entries
[msix_indx
].in_use
= MSIX_FLG
;
3817 writeq(tx_mat
, &bar0
->tx_mat0_n
[0]);
3819 rx_mat
= readq(&bar0
->rx_mat
);
3820 for (j
= 0; j
< nic
->config
.rx_ring_num
; j
++, msix_indx
++) {
3821 rx_mat
|= RX_MAT_SET(j
, msix_indx
);
3822 nic
->s2io_entries
[msix_indx
].arg
3823 = &nic
->mac_control
.rings
[j
];
3824 nic
->s2io_entries
[msix_indx
].type
= MSIX_RING_TYPE
;
3825 nic
->s2io_entries
[msix_indx
].in_use
= MSIX_FLG
;
3827 writeq(rx_mat
, &bar0
->rx_mat
);
3829 nic
->avail_msix_vectors
= 0;
3830 ret
= pci_enable_msix(nic
->pdev
, nic
->entries
, MAX_REQUESTED_MSI_X
);
3831 /* We fail init if error or we get less vectors than min required */
3832 if (ret
>= (nic
->config
.tx_fifo_num
+ nic
->config
.rx_ring_num
+ 1)) {
3833 nic
->avail_msix_vectors
= ret
;
3834 ret
= pci_enable_msix(nic
->pdev
, nic
->entries
, ret
);
3837 DBG_PRINT(ERR_DBG
, "%s: Enabling MSIX failed\n", nic
->dev
->name
);
3838 kfree(nic
->entries
);
3839 nic
->mac_control
.stats_info
->sw_stat
.mem_freed
3840 += (MAX_REQUESTED_MSI_X
* sizeof(struct msix_entry
));
3841 kfree(nic
->s2io_entries
);
3842 nic
->mac_control
.stats_info
->sw_stat
.mem_freed
3843 += (MAX_REQUESTED_MSI_X
* sizeof(struct s2io_msix_entry
));
3844 nic
->entries
= NULL
;
3845 nic
->s2io_entries
= NULL
;
3846 nic
->avail_msix_vectors
= 0;
3849 if (!nic
->avail_msix_vectors
)
3850 nic
->avail_msix_vectors
= MAX_REQUESTED_MSI_X
;
3853 * To enable MSI-X, MSI also needs to be enabled, due to a bug
3854 * in the herc NIC. (Temp change, needs to be removed later)
3856 pci_read_config_word(nic
->pdev
, 0x42, &msi_control
);
3857 msi_control
|= 0x1; /* Enable MSI */
3858 pci_write_config_word(nic
->pdev
, 0x42, msi_control
);
3863 /* Handle software interrupt used during MSI(X) test */
3864 static irqreturn_t
s2io_test_intr(int irq
, void *dev_id
)
3866 struct s2io_nic
*sp
= dev_id
;
3868 sp
->msi_detected
= 1;
3869 wake_up(&sp
->msi_wait
);
3874 /* Test interrupt path by forcing a a software IRQ */
3875 static int s2io_test_msi(struct s2io_nic
*sp
)
3877 struct pci_dev
*pdev
= sp
->pdev
;
3878 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
3882 err
= request_irq(sp
->entries
[1].vector
, s2io_test_intr
, 0,
3885 DBG_PRINT(ERR_DBG
, "%s: PCI %s: cannot assign irq %d\n",
3886 sp
->dev
->name
, pci_name(pdev
), pdev
->irq
);
3890 init_waitqueue_head (&sp
->msi_wait
);
3891 sp
->msi_detected
= 0;
3893 saved64
= val64
= readq(&bar0
->scheduled_int_ctrl
);
3894 val64
|= SCHED_INT_CTRL_ONE_SHOT
;
3895 val64
|= SCHED_INT_CTRL_TIMER_EN
;
3896 val64
|= SCHED_INT_CTRL_INT2MSI(1);
3897 writeq(val64
, &bar0
->scheduled_int_ctrl
);
3899 wait_event_timeout(sp
->msi_wait
, sp
->msi_detected
, HZ
/10);
3901 if (!sp
->msi_detected
) {
3902 /* MSI(X) test failed, go back to INTx mode */
3903 DBG_PRINT(ERR_DBG
, "%s: PCI %s: No interrupt was generated "
3904 "using MSI(X) during test\n", sp
->dev
->name
,
3910 free_irq(sp
->entries
[1].vector
, sp
);
3912 writeq(saved64
, &bar0
->scheduled_int_ctrl
);
3917 static void remove_msix_isr(struct s2io_nic
*sp
)
3922 for (i
= 0; i
< MAX_REQUESTED_MSI_X
; i
++) {
3923 if (sp
->s2io_entries
[i
].in_use
==
3924 MSIX_REGISTERED_SUCCESS
) {
3925 int vector
= sp
->entries
[i
].vector
;
3926 void *arg
= sp
->s2io_entries
[i
].arg
;
3927 free_irq(vector
, arg
);
3932 kfree(sp
->s2io_entries
);
3934 sp
->s2io_entries
= NULL
;
3936 pci_read_config_word(sp
->pdev
, 0x42, &msi_control
);
3937 msi_control
&= 0xFFFE; /* Disable MSI */
3938 pci_write_config_word(sp
->pdev
, 0x42, msi_control
);
3940 pci_disable_msix(sp
->pdev
);
3943 static void remove_inta_isr(struct s2io_nic
*sp
)
3945 struct net_device
*dev
= sp
->dev
;
3947 free_irq(sp
->pdev
->irq
, dev
);
3950 /* ********************************************************* *
3951 * Functions defined below concern the OS part of the driver *
3952 * ********************************************************* */
3955 * s2io_open - open entry point of the driver
3956 * @dev : pointer to the device structure.
3958 * This function is the open entry point of the driver. It mainly calls a
3959 * function to allocate Rx buffers and inserts them into the buffer
3960 * descriptors and then enables the Rx part of the NIC.
3962 * 0 on success and an appropriate (-)ve integer as defined in errno.h
3966 static int s2io_open(struct net_device
*dev
)
3968 struct s2io_nic
*sp
= dev
->priv
;
3972 * Make sure you have link off by default every time
3973 * Nic is initialized
3975 netif_carrier_off(dev
);
3976 sp
->last_link_state
= 0;
3978 if (sp
->config
.intr_type
== MSI_X
) {
3979 int ret
= s2io_enable_msi_x(sp
);
3982 ret
= s2io_test_msi(sp
);
3983 /* rollback MSI-X, will re-enable during add_isr() */
3984 remove_msix_isr(sp
);
3989 "%s: MSI-X requested but failed to enable\n",
3991 sp
->config
.intr_type
= INTA
;
3995 /* NAPI doesn't work well with MSI(X) */
3996 if (sp
->config
.intr_type
!= INTA
) {
3998 sp
->config
.napi
= 0;
4001 /* Initialize H/W and enable interrupts */
4002 err
= s2io_card_up(sp
);
4004 DBG_PRINT(ERR_DBG
, "%s: H/W initialization failed\n",
4006 goto hw_init_failed
;
4009 if (do_s2io_prog_unicast(dev
, dev
->dev_addr
) == FAILURE
) {
4010 DBG_PRINT(ERR_DBG
, "Set Mac Address Failed\n");
4013 goto hw_init_failed
;
4015 s2io_start_all_tx_queue(sp
);
4019 if (sp
->config
.intr_type
== MSI_X
) {
4022 sp
->mac_control
.stats_info
->sw_stat
.mem_freed
4023 += (MAX_REQUESTED_MSI_X
* sizeof(struct msix_entry
));
4025 if (sp
->s2io_entries
) {
4026 kfree(sp
->s2io_entries
);
4027 sp
->mac_control
.stats_info
->sw_stat
.mem_freed
4028 += (MAX_REQUESTED_MSI_X
* sizeof(struct s2io_msix_entry
));
4035 * s2io_close -close entry point of the driver
4036 * @dev : device pointer.
4038 * This is the stop entry point of the driver. It needs to undo exactly
4039 * whatever was done by the open entry point,thus it's usually referred to
4040 * as the close function.Among other things this function mainly stops the
4041 * Rx side of the NIC and frees all the Rx buffers in the Rx rings.
4043 * 0 on success and an appropriate (-)ve integer as defined in errno.h
4047 static int s2io_close(struct net_device
*dev
)
4049 struct s2io_nic
*sp
= dev
->priv
;
4050 struct config_param
*config
= &sp
->config
;
4054 /* Return if the device is already closed *
4055 * Can happen when s2io_card_up failed in change_mtu *
4057 if (!is_s2io_card_up(sp
))
4060 s2io_stop_all_tx_queue(sp
);
4061 /* delete all populated mac entries */
4062 for (offset
= 1; offset
< config
->max_mc_addr
; offset
++) {
4063 tmp64
= do_s2io_read_unicast_mc(sp
, offset
);
4064 if (tmp64
!= S2IO_DISABLE_MAC_ENTRY
)
4065 do_s2io_delete_unicast_mc(sp
, tmp64
);
4074 * s2io_xmit - Tx entry point of te driver
4075 * @skb : the socket buffer containing the Tx data.
4076 * @dev : device pointer.
4078 * This function is the Tx entry point of the driver. S2IO NIC supports
4079 * certain protocol assist features on Tx side, namely CSO, S/G, LSO.
4080 * NOTE: when device cant queue the pkt,just the trans_start variable will
4083 * 0 on success & 1 on failure.
4086 static int s2io_xmit(struct sk_buff
*skb
, struct net_device
*dev
)
4088 struct s2io_nic
*sp
= dev
->priv
;
4089 u16 frg_cnt
, frg_len
, i
, queue
, queue_len
, put_off
, get_off
;
4092 struct TxFIFO_element __iomem
*tx_fifo
;
4093 unsigned long flags
= 0;
4095 struct fifo_info
*fifo
= NULL
;
4096 struct mac_info
*mac_control
;
4097 struct config_param
*config
;
4098 int do_spin_lock
= 1;
4100 int enable_per_list_interrupt
= 0;
4101 struct swStat
*stats
= &sp
->mac_control
.stats_info
->sw_stat
;
4103 mac_control
= &sp
->mac_control
;
4104 config
= &sp
->config
;
4106 DBG_PRINT(TX_DBG
, "%s: In Neterion Tx routine\n", dev
->name
);
4108 if (unlikely(skb
->len
<= 0)) {
4109 DBG_PRINT(TX_DBG
, "%s:Buffer has no data..\n", dev
->name
);
4110 dev_kfree_skb_any(skb
);
4114 if (!is_s2io_card_up(sp
)) {
4115 DBG_PRINT(TX_DBG
, "%s: Card going down for reset\n",
4122 if (sp
->vlgrp
&& vlan_tx_tag_present(skb
))
4123 vlan_tag
= vlan_tx_tag_get(skb
);
4124 if (sp
->config
.tx_steering_type
== TX_DEFAULT_STEERING
) {
4125 if (skb
->protocol
== htons(ETH_P_IP
)) {
4130 if ((ip
->frag_off
& htons(IP_OFFSET
|IP_MF
)) == 0) {
4131 th
= (struct tcphdr
*)(((unsigned char *)ip
) +
4134 if (ip
->protocol
== IPPROTO_TCP
) {
4135 queue_len
= sp
->total_tcp_fifos
;
4136 queue
= (ntohs(th
->source
) +
4138 sp
->fifo_selector
[queue_len
- 1];
4139 if (queue
>= queue_len
)
4140 queue
= queue_len
- 1;
4141 } else if (ip
->protocol
== IPPROTO_UDP
) {
4142 queue_len
= sp
->total_udp_fifos
;
4143 queue
= (ntohs(th
->source
) +
4145 sp
->fifo_selector
[queue_len
- 1];
4146 if (queue
>= queue_len
)
4147 queue
= queue_len
- 1;
4148 queue
+= sp
->udp_fifo_idx
;
4149 if (skb
->len
> 1024)
4150 enable_per_list_interrupt
= 1;
4155 } else if (sp
->config
.tx_steering_type
== TX_PRIORITY_STEERING
)
4156 /* get fifo number based on skb->priority value */
4157 queue
= config
->fifo_mapping
4158 [skb
->priority
& (MAX_TX_FIFOS
- 1)];
4159 fifo
= &mac_control
->fifos
[queue
];
4162 spin_lock_irqsave(&fifo
->tx_lock
, flags
);
4164 if (unlikely(!spin_trylock_irqsave(&fifo
->tx_lock
, flags
)))
4165 return NETDEV_TX_LOCKED
;
4168 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
4169 if (sp
->config
.multiq
) {
4170 if (__netif_subqueue_stopped(dev
, fifo
->fifo_no
)) {
4171 spin_unlock_irqrestore(&fifo
->tx_lock
, flags
);
4172 return NETDEV_TX_BUSY
;
4176 if (unlikely(fifo
->queue_state
== FIFO_QUEUE_STOP
)) {
4177 if (netif_queue_stopped(dev
)) {
4178 spin_unlock_irqrestore(&fifo
->tx_lock
, flags
);
4179 return NETDEV_TX_BUSY
;
4183 put_off
= (u16
) fifo
->tx_curr_put_info
.offset
;
4184 get_off
= (u16
) fifo
->tx_curr_get_info
.offset
;
4185 txdp
= (struct TxD
*) fifo
->list_info
[put_off
].list_virt_addr
;
4187 queue_len
= fifo
->tx_curr_put_info
.fifo_len
+ 1;
4188 /* Avoid "put" pointer going beyond "get" pointer */
4189 if (txdp
->Host_Control
||
4190 ((put_off
+1) == queue_len
? 0 : (put_off
+1)) == get_off
) {
4191 DBG_PRINT(TX_DBG
, "Error in xmit, No free TXDs.\n");
4192 s2io_stop_tx_queue(sp
, fifo
->fifo_no
);
4194 spin_unlock_irqrestore(&fifo
->tx_lock
, flags
);
4198 offload_type
= s2io_offload_type(skb
);
4199 if (offload_type
& (SKB_GSO_TCPV4
| SKB_GSO_TCPV6
)) {
4200 txdp
->Control_1
|= TXD_TCP_LSO_EN
;
4201 txdp
->Control_1
|= TXD_TCP_LSO_MSS(s2io_tcp_mss(skb
));
4203 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
4205 (TXD_TX_CKO_IPV4_EN
| TXD_TX_CKO_TCP_EN
|
4208 txdp
->Control_1
|= TXD_GATHER_CODE_FIRST
;
4209 txdp
->Control_1
|= TXD_LIST_OWN_XENA
;
4210 txdp
->Control_2
|= TXD_INT_NUMBER(fifo
->fifo_no
);
4211 if (enable_per_list_interrupt
)
4212 if (put_off
& (queue_len
>> 5))
4213 txdp
->Control_2
|= TXD_INT_TYPE_PER_LIST
;
4215 txdp
->Control_2
|= TXD_VLAN_ENABLE
;
4216 txdp
->Control_2
|= TXD_VLAN_TAG(vlan_tag
);
4219 frg_len
= skb
->len
- skb
->data_len
;
4220 if (offload_type
== SKB_GSO_UDP
) {
4223 ufo_size
= s2io_udp_mss(skb
);
4225 txdp
->Control_1
|= TXD_UFO_EN
;
4226 txdp
->Control_1
|= TXD_UFO_MSS(ufo_size
);
4227 txdp
->Control_1
|= TXD_BUFFER0_SIZE(8);
4229 /* both variants do cpu_to_be64(be32_to_cpu(...)) */
4230 fifo
->ufo_in_band_v
[put_off
] =
4231 (__force u64
)skb_shinfo(skb
)->ip6_frag_id
;
4233 fifo
->ufo_in_band_v
[put_off
] =
4234 (__force u64
)skb_shinfo(skb
)->ip6_frag_id
<< 32;
4236 txdp
->Host_Control
= (unsigned long)fifo
->ufo_in_band_v
;
4237 txdp
->Buffer_Pointer
= pci_map_single(sp
->pdev
,
4238 fifo
->ufo_in_band_v
,
4239 sizeof(u64
), PCI_DMA_TODEVICE
);
4240 if((txdp
->Buffer_Pointer
== 0) ||
4241 (txdp
->Buffer_Pointer
== DMA_ERROR_CODE
))
4242 goto pci_map_failed
;
4246 txdp
->Buffer_Pointer
= pci_map_single
4247 (sp
->pdev
, skb
->data
, frg_len
, PCI_DMA_TODEVICE
);
4248 if((txdp
->Buffer_Pointer
== 0) ||
4249 (txdp
->Buffer_Pointer
== DMA_ERROR_CODE
))
4250 goto pci_map_failed
;
4252 txdp
->Host_Control
= (unsigned long) skb
;
4253 txdp
->Control_1
|= TXD_BUFFER0_SIZE(frg_len
);
4254 if (offload_type
== SKB_GSO_UDP
)
4255 txdp
->Control_1
|= TXD_UFO_EN
;
4257 frg_cnt
= skb_shinfo(skb
)->nr_frags
;
4258 /* For fragmented SKB. */
4259 for (i
= 0; i
< frg_cnt
; i
++) {
4260 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
4261 /* A '0' length fragment will be ignored */
4265 txdp
->Buffer_Pointer
= (u64
) pci_map_page
4266 (sp
->pdev
, frag
->page
, frag
->page_offset
,
4267 frag
->size
, PCI_DMA_TODEVICE
);
4268 txdp
->Control_1
= TXD_BUFFER0_SIZE(frag
->size
);
4269 if (offload_type
== SKB_GSO_UDP
)
4270 txdp
->Control_1
|= TXD_UFO_EN
;
4272 txdp
->Control_1
|= TXD_GATHER_CODE_LAST
;
4274 if (offload_type
== SKB_GSO_UDP
)
4275 frg_cnt
++; /* as Txd0 was used for inband header */
4277 tx_fifo
= mac_control
->tx_FIFO_start
[queue
];
4278 val64
= fifo
->list_info
[put_off
].list_phy_addr
;
4279 writeq(val64
, &tx_fifo
->TxDL_Pointer
);
4281 val64
= (TX_FIFO_LAST_TXD_NUM(frg_cnt
) | TX_FIFO_FIRST_LIST
|
4284 val64
|= TX_FIFO_SPECIAL_FUNC
;
4286 writeq(val64
, &tx_fifo
->List_Control
);
4291 if (put_off
== fifo
->tx_curr_put_info
.fifo_len
+ 1)
4293 fifo
->tx_curr_put_info
.offset
= put_off
;
4295 /* Avoid "put" pointer going beyond "get" pointer */
4296 if (((put_off
+1) == queue_len
? 0 : (put_off
+1)) == get_off
) {
4297 sp
->mac_control
.stats_info
->sw_stat
.fifo_full_cnt
++;
4299 "No free TxDs for xmit, Put: 0x%x Get:0x%x\n",
4301 s2io_stop_tx_queue(sp
, fifo
->fifo_no
);
4303 mac_control
->stats_info
->sw_stat
.mem_allocated
+= skb
->truesize
;
4304 dev
->trans_start
= jiffies
;
4305 spin_unlock_irqrestore(&fifo
->tx_lock
, flags
);
4307 if (sp
->config
.intr_type
== MSI_X
)
4308 tx_intr_handler(fifo
);
4312 stats
->pci_map_fail_cnt
++;
4313 s2io_stop_tx_queue(sp
, fifo
->fifo_no
);
4314 stats
->mem_freed
+= skb
->truesize
;
4316 spin_unlock_irqrestore(&fifo
->tx_lock
, flags
);
4321 s2io_alarm_handle(unsigned long data
)
4323 struct s2io_nic
*sp
= (struct s2io_nic
*)data
;
4324 struct net_device
*dev
= sp
->dev
;
4326 s2io_handle_errors(dev
);
4327 mod_timer(&sp
->alarm_timer
, jiffies
+ HZ
/ 2);
4330 static int s2io_chk_rx_buffers(struct ring_info
*ring
)
4332 if (fill_rx_buffers(ring
) == -ENOMEM
) {
4333 DBG_PRINT(INFO_DBG
, "%s:Out of memory", ring
->dev
->name
);
4334 DBG_PRINT(INFO_DBG
, " in Rx Intr!!\n");
4339 static irqreturn_t
s2io_msix_ring_handle(int irq
, void *dev_id
)
4341 struct ring_info
*ring
= (struct ring_info
*)dev_id
;
4342 struct s2io_nic
*sp
= ring
->nic
;
4344 if (!is_s2io_card_up(sp
))
4347 rx_intr_handler(ring
);
4348 s2io_chk_rx_buffers(ring
);
4353 static irqreturn_t
s2io_msix_fifo_handle(int irq
, void *dev_id
)
4355 struct fifo_info
*fifo
= (struct fifo_info
*)dev_id
;
4356 struct s2io_nic
*sp
= fifo
->nic
;
4358 if (!is_s2io_card_up(sp
))
4361 tx_intr_handler(fifo
);
4364 static void s2io_txpic_intr_handle(struct s2io_nic
*sp
)
4366 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
4369 val64
= readq(&bar0
->pic_int_status
);
4370 if (val64
& PIC_INT_GPIO
) {
4371 val64
= readq(&bar0
->gpio_int_reg
);
4372 if ((val64
& GPIO_INT_REG_LINK_DOWN
) &&
4373 (val64
& GPIO_INT_REG_LINK_UP
)) {
4375 * This is unstable state so clear both up/down
4376 * interrupt and adapter to re-evaluate the link state.
4378 val64
|= GPIO_INT_REG_LINK_DOWN
;
4379 val64
|= GPIO_INT_REG_LINK_UP
;
4380 writeq(val64
, &bar0
->gpio_int_reg
);
4381 val64
= readq(&bar0
->gpio_int_mask
);
4382 val64
&= ~(GPIO_INT_MASK_LINK_UP
|
4383 GPIO_INT_MASK_LINK_DOWN
);
4384 writeq(val64
, &bar0
->gpio_int_mask
);
4386 else if (val64
& GPIO_INT_REG_LINK_UP
) {
4387 val64
= readq(&bar0
->adapter_status
);
4388 /* Enable Adapter */
4389 val64
= readq(&bar0
->adapter_control
);
4390 val64
|= ADAPTER_CNTL_EN
;
4391 writeq(val64
, &bar0
->adapter_control
);
4392 val64
|= ADAPTER_LED_ON
;
4393 writeq(val64
, &bar0
->adapter_control
);
4394 if (!sp
->device_enabled_once
)
4395 sp
->device_enabled_once
= 1;
4397 s2io_link(sp
, LINK_UP
);
4399 * unmask link down interrupt and mask link-up
4402 val64
= readq(&bar0
->gpio_int_mask
);
4403 val64
&= ~GPIO_INT_MASK_LINK_DOWN
;
4404 val64
|= GPIO_INT_MASK_LINK_UP
;
4405 writeq(val64
, &bar0
->gpio_int_mask
);
4407 }else if (val64
& GPIO_INT_REG_LINK_DOWN
) {
4408 val64
= readq(&bar0
->adapter_status
);
4409 s2io_link(sp
, LINK_DOWN
);
4410 /* Link is down so unmaks link up interrupt */
4411 val64
= readq(&bar0
->gpio_int_mask
);
4412 val64
&= ~GPIO_INT_MASK_LINK_UP
;
4413 val64
|= GPIO_INT_MASK_LINK_DOWN
;
4414 writeq(val64
, &bar0
->gpio_int_mask
);
4417 val64
= readq(&bar0
->adapter_control
);
4418 val64
= val64
&(~ADAPTER_LED_ON
);
4419 writeq(val64
, &bar0
->adapter_control
);
4422 val64
= readq(&bar0
->gpio_int_mask
);
4426 * do_s2io_chk_alarm_bit - Check for alarm and incrment the counter
4427 * @value: alarm bits
4428 * @addr: address value
4429 * @cnt: counter variable
4430 * Description: Check for alarm and increment the counter
4432 * 1 - if alarm bit set
4433 * 0 - if alarm bit is not set
4435 static int do_s2io_chk_alarm_bit(u64 value
, void __iomem
* addr
,
4436 unsigned long long *cnt
)
4439 val64
= readq(addr
);
4440 if ( val64
& value
) {
4441 writeq(val64
, addr
);
4450 * s2io_handle_errors - Xframe error indication handler
4451 * @nic: device private variable
4452 * Description: Handle alarms such as loss of link, single or
4453 * double ECC errors, critical and serious errors.
4457 static void s2io_handle_errors(void * dev_id
)
4459 struct net_device
*dev
= (struct net_device
*) dev_id
;
4460 struct s2io_nic
*sp
= dev
->priv
;
4461 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
4462 u64 temp64
= 0,val64
=0;
4465 struct swStat
*sw_stat
= &sp
->mac_control
.stats_info
->sw_stat
;
4466 struct xpakStat
*stats
= &sp
->mac_control
.stats_info
->xpak_stat
;
4468 if (!is_s2io_card_up(sp
))
4471 if (pci_channel_offline(sp
->pdev
))
4474 memset(&sw_stat
->ring_full_cnt
, 0,
4475 sizeof(sw_stat
->ring_full_cnt
));
4477 /* Handling the XPAK counters update */
4478 if(stats
->xpak_timer_count
< 72000) {
4479 /* waiting for an hour */
4480 stats
->xpak_timer_count
++;
4482 s2io_updt_xpak_counter(dev
);
4483 /* reset the count to zero */
4484 stats
->xpak_timer_count
= 0;
4487 /* Handling link status change error Intr */
4488 if (s2io_link_fault_indication(sp
) == MAC_RMAC_ERR_TIMER
) {
4489 val64
= readq(&bar0
->mac_rmac_err_reg
);
4490 writeq(val64
, &bar0
->mac_rmac_err_reg
);
4491 if (val64
& RMAC_LINK_STATE_CHANGE_INT
)
4492 schedule_work(&sp
->set_link_task
);
4495 /* In case of a serious error, the device will be Reset. */
4496 if (do_s2io_chk_alarm_bit(SERR_SOURCE_ANY
, &bar0
->serr_source
,
4497 &sw_stat
->serious_err_cnt
))
4500 /* Check for data parity error */
4501 if (do_s2io_chk_alarm_bit(GPIO_INT_REG_DP_ERR_INT
, &bar0
->gpio_int_reg
,
4502 &sw_stat
->parity_err_cnt
))
4505 /* Check for ring full counter */
4506 if (sp
->device_type
== XFRAME_II_DEVICE
) {
4507 val64
= readq(&bar0
->ring_bump_counter1
);
4508 for (i
=0; i
<4; i
++) {
4509 temp64
= ( val64
& vBIT(0xFFFF,(i
*16),16));
4510 temp64
>>= 64 - ((i
+1)*16);
4511 sw_stat
->ring_full_cnt
[i
] += temp64
;
4514 val64
= readq(&bar0
->ring_bump_counter2
);
4515 for (i
=0; i
<4; i
++) {
4516 temp64
= ( val64
& vBIT(0xFFFF,(i
*16),16));
4517 temp64
>>= 64 - ((i
+1)*16);
4518 sw_stat
->ring_full_cnt
[i
+4] += temp64
;
4522 val64
= readq(&bar0
->txdma_int_status
);
4523 /*check for pfc_err*/
4524 if (val64
& TXDMA_PFC_INT
) {
4525 if (do_s2io_chk_alarm_bit(PFC_ECC_DB_ERR
| PFC_SM_ERR_ALARM
|
4526 PFC_MISC_0_ERR
| PFC_MISC_1_ERR
|
4527 PFC_PCIX_ERR
, &bar0
->pfc_err_reg
,
4528 &sw_stat
->pfc_err_cnt
))
4530 do_s2io_chk_alarm_bit(PFC_ECC_SG_ERR
, &bar0
->pfc_err_reg
,
4531 &sw_stat
->pfc_err_cnt
);
4534 /*check for tda_err*/
4535 if (val64
& TXDMA_TDA_INT
) {
4536 if(do_s2io_chk_alarm_bit(TDA_Fn_ECC_DB_ERR
| TDA_SM0_ERR_ALARM
|
4537 TDA_SM1_ERR_ALARM
, &bar0
->tda_err_reg
,
4538 &sw_stat
->tda_err_cnt
))
4540 do_s2io_chk_alarm_bit(TDA_Fn_ECC_SG_ERR
| TDA_PCIX_ERR
,
4541 &bar0
->tda_err_reg
, &sw_stat
->tda_err_cnt
);
4543 /*check for pcc_err*/
4544 if (val64
& TXDMA_PCC_INT
) {
4545 if (do_s2io_chk_alarm_bit(PCC_SM_ERR_ALARM
| PCC_WR_ERR_ALARM
4546 | PCC_N_SERR
| PCC_6_COF_OV_ERR
4547 | PCC_7_COF_OV_ERR
| PCC_6_LSO_OV_ERR
4548 | PCC_7_LSO_OV_ERR
| PCC_FB_ECC_DB_ERR
4549 | PCC_TXB_ECC_DB_ERR
, &bar0
->pcc_err_reg
,
4550 &sw_stat
->pcc_err_cnt
))
4552 do_s2io_chk_alarm_bit(PCC_FB_ECC_SG_ERR
| PCC_TXB_ECC_SG_ERR
,
4553 &bar0
->pcc_err_reg
, &sw_stat
->pcc_err_cnt
);
4556 /*check for tti_err*/
4557 if (val64
& TXDMA_TTI_INT
) {
4558 if (do_s2io_chk_alarm_bit(TTI_SM_ERR_ALARM
, &bar0
->tti_err_reg
,
4559 &sw_stat
->tti_err_cnt
))
4561 do_s2io_chk_alarm_bit(TTI_ECC_SG_ERR
| TTI_ECC_DB_ERR
,
4562 &bar0
->tti_err_reg
, &sw_stat
->tti_err_cnt
);
4565 /*check for lso_err*/
4566 if (val64
& TXDMA_LSO_INT
) {
4567 if (do_s2io_chk_alarm_bit(LSO6_ABORT
| LSO7_ABORT
4568 | LSO6_SM_ERR_ALARM
| LSO7_SM_ERR_ALARM
,
4569 &bar0
->lso_err_reg
, &sw_stat
->lso_err_cnt
))
4571 do_s2io_chk_alarm_bit(LSO6_SEND_OFLOW
| LSO7_SEND_OFLOW
,
4572 &bar0
->lso_err_reg
, &sw_stat
->lso_err_cnt
);
4575 /*check for tpa_err*/
4576 if (val64
& TXDMA_TPA_INT
) {
4577 if (do_s2io_chk_alarm_bit(TPA_SM_ERR_ALARM
, &bar0
->tpa_err_reg
,
4578 &sw_stat
->tpa_err_cnt
))
4580 do_s2io_chk_alarm_bit(TPA_TX_FRM_DROP
, &bar0
->tpa_err_reg
,
4581 &sw_stat
->tpa_err_cnt
);
4584 /*check for sm_err*/
4585 if (val64
& TXDMA_SM_INT
) {
4586 if (do_s2io_chk_alarm_bit(SM_SM_ERR_ALARM
, &bar0
->sm_err_reg
,
4587 &sw_stat
->sm_err_cnt
))
4591 val64
= readq(&bar0
->mac_int_status
);
4592 if (val64
& MAC_INT_STATUS_TMAC_INT
) {
4593 if (do_s2io_chk_alarm_bit(TMAC_TX_BUF_OVRN
| TMAC_TX_SM_ERR
,
4594 &bar0
->mac_tmac_err_reg
,
4595 &sw_stat
->mac_tmac_err_cnt
))
4597 do_s2io_chk_alarm_bit(TMAC_ECC_SG_ERR
| TMAC_ECC_DB_ERR
4598 | TMAC_DESC_ECC_SG_ERR
| TMAC_DESC_ECC_DB_ERR
,
4599 &bar0
->mac_tmac_err_reg
,
4600 &sw_stat
->mac_tmac_err_cnt
);
4603 val64
= readq(&bar0
->xgxs_int_status
);
4604 if (val64
& XGXS_INT_STATUS_TXGXS
) {
4605 if (do_s2io_chk_alarm_bit(TXGXS_ESTORE_UFLOW
| TXGXS_TX_SM_ERR
,
4606 &bar0
->xgxs_txgxs_err_reg
,
4607 &sw_stat
->xgxs_txgxs_err_cnt
))
4609 do_s2io_chk_alarm_bit(TXGXS_ECC_SG_ERR
| TXGXS_ECC_DB_ERR
,
4610 &bar0
->xgxs_txgxs_err_reg
,
4611 &sw_stat
->xgxs_txgxs_err_cnt
);
4614 val64
= readq(&bar0
->rxdma_int_status
);
4615 if (val64
& RXDMA_INT_RC_INT_M
) {
4616 if (do_s2io_chk_alarm_bit(RC_PRCn_ECC_DB_ERR
| RC_FTC_ECC_DB_ERR
4617 | RC_PRCn_SM_ERR_ALARM
|RC_FTC_SM_ERR_ALARM
,
4618 &bar0
->rc_err_reg
, &sw_stat
->rc_err_cnt
))
4620 do_s2io_chk_alarm_bit(RC_PRCn_ECC_SG_ERR
| RC_FTC_ECC_SG_ERR
4621 | RC_RDA_FAIL_WR_Rn
, &bar0
->rc_err_reg
,
4622 &sw_stat
->rc_err_cnt
);
4623 if (do_s2io_chk_alarm_bit(PRC_PCI_AB_RD_Rn
| PRC_PCI_AB_WR_Rn
4624 | PRC_PCI_AB_F_WR_Rn
, &bar0
->prc_pcix_err_reg
,
4625 &sw_stat
->prc_pcix_err_cnt
))
4627 do_s2io_chk_alarm_bit(PRC_PCI_DP_RD_Rn
| PRC_PCI_DP_WR_Rn
4628 | PRC_PCI_DP_F_WR_Rn
, &bar0
->prc_pcix_err_reg
,
4629 &sw_stat
->prc_pcix_err_cnt
);
4632 if (val64
& RXDMA_INT_RPA_INT_M
) {
4633 if (do_s2io_chk_alarm_bit(RPA_SM_ERR_ALARM
| RPA_CREDIT_ERR
,
4634 &bar0
->rpa_err_reg
, &sw_stat
->rpa_err_cnt
))
4636 do_s2io_chk_alarm_bit(RPA_ECC_SG_ERR
| RPA_ECC_DB_ERR
,
4637 &bar0
->rpa_err_reg
, &sw_stat
->rpa_err_cnt
);
4640 if (val64
& RXDMA_INT_RDA_INT_M
) {
4641 if (do_s2io_chk_alarm_bit(RDA_RXDn_ECC_DB_ERR
4642 | RDA_FRM_ECC_DB_N_AERR
| RDA_SM1_ERR_ALARM
4643 | RDA_SM0_ERR_ALARM
| RDA_RXD_ECC_DB_SERR
,
4644 &bar0
->rda_err_reg
, &sw_stat
->rda_err_cnt
))
4646 do_s2io_chk_alarm_bit(RDA_RXDn_ECC_SG_ERR
| RDA_FRM_ECC_SG_ERR
4647 | RDA_MISC_ERR
| RDA_PCIX_ERR
,
4648 &bar0
->rda_err_reg
, &sw_stat
->rda_err_cnt
);
4651 if (val64
& RXDMA_INT_RTI_INT_M
) {
4652 if (do_s2io_chk_alarm_bit(RTI_SM_ERR_ALARM
, &bar0
->rti_err_reg
,
4653 &sw_stat
->rti_err_cnt
))
4655 do_s2io_chk_alarm_bit(RTI_ECC_SG_ERR
| RTI_ECC_DB_ERR
,
4656 &bar0
->rti_err_reg
, &sw_stat
->rti_err_cnt
);
4659 val64
= readq(&bar0
->mac_int_status
);
4660 if (val64
& MAC_INT_STATUS_RMAC_INT
) {
4661 if (do_s2io_chk_alarm_bit(RMAC_RX_BUFF_OVRN
| RMAC_RX_SM_ERR
,
4662 &bar0
->mac_rmac_err_reg
,
4663 &sw_stat
->mac_rmac_err_cnt
))
4665 do_s2io_chk_alarm_bit(RMAC_UNUSED_INT
|RMAC_SINGLE_ECC_ERR
|
4666 RMAC_DOUBLE_ECC_ERR
, &bar0
->mac_rmac_err_reg
,
4667 &sw_stat
->mac_rmac_err_cnt
);
4670 val64
= readq(&bar0
->xgxs_int_status
);
4671 if (val64
& XGXS_INT_STATUS_RXGXS
) {
4672 if (do_s2io_chk_alarm_bit(RXGXS_ESTORE_OFLOW
| RXGXS_RX_SM_ERR
,
4673 &bar0
->xgxs_rxgxs_err_reg
,
4674 &sw_stat
->xgxs_rxgxs_err_cnt
))
4678 val64
= readq(&bar0
->mc_int_status
);
4679 if(val64
& MC_INT_STATUS_MC_INT
) {
4680 if (do_s2io_chk_alarm_bit(MC_ERR_REG_SM_ERR
, &bar0
->mc_err_reg
,
4681 &sw_stat
->mc_err_cnt
))
4684 /* Handling Ecc errors */
4685 if (val64
& (MC_ERR_REG_ECC_ALL_SNG
| MC_ERR_REG_ECC_ALL_DBL
)) {
4686 writeq(val64
, &bar0
->mc_err_reg
);
4687 if (val64
& MC_ERR_REG_ECC_ALL_DBL
) {
4688 sw_stat
->double_ecc_errs
++;
4689 if (sp
->device_type
!= XFRAME_II_DEVICE
) {
4691 * Reset XframeI only if critical error
4694 (MC_ERR_REG_MIRI_ECC_DB_ERR_0
|
4695 MC_ERR_REG_MIRI_ECC_DB_ERR_1
))
4699 sw_stat
->single_ecc_errs
++;
4705 s2io_stop_all_tx_queue(sp
);
4706 schedule_work(&sp
->rst_timer_task
);
4707 sw_stat
->soft_reset_cnt
++;
4712 * s2io_isr - ISR handler of the device .
4713 * @irq: the irq of the device.
4714 * @dev_id: a void pointer to the dev structure of the NIC.
4715 * Description: This function is the ISR handler of the device. It
4716 * identifies the reason for the interrupt and calls the relevant
4717 * service routines. As a contongency measure, this ISR allocates the
4718 * recv buffers, if their numbers are below the panic value which is
4719 * presently set to 25% of the original number of rcv buffers allocated.
4721 * IRQ_HANDLED: will be returned if IRQ was handled by this routine
4722 * IRQ_NONE: will be returned if interrupt is not from our device
4724 static irqreturn_t
s2io_isr(int irq
, void *dev_id
)
4726 struct net_device
*dev
= (struct net_device
*) dev_id
;
4727 struct s2io_nic
*sp
= dev
->priv
;
4728 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
4731 struct mac_info
*mac_control
;
4732 struct config_param
*config
;
4734 /* Pretend we handled any irq's from a disconnected card */
4735 if (pci_channel_offline(sp
->pdev
))
4738 if (!is_s2io_card_up(sp
))
4741 mac_control
= &sp
->mac_control
;
4742 config
= &sp
->config
;
4745 * Identify the cause for interrupt and call the appropriate
4746 * interrupt handler. Causes for the interrupt could be;
4751 reason
= readq(&bar0
->general_int_status
);
4753 if (unlikely(reason
== S2IO_MINUS_ONE
) ) {
4754 /* Nothing much can be done. Get out */
4758 if (reason
& (GEN_INTR_RXTRAFFIC
|
4759 GEN_INTR_TXTRAFFIC
| GEN_INTR_TXPIC
))
4761 writeq(S2IO_MINUS_ONE
, &bar0
->general_int_mask
);
4764 if (reason
& GEN_INTR_RXTRAFFIC
) {
4765 if (likely(netif_rx_schedule_prep(dev
,
4767 __netif_rx_schedule(dev
, &sp
->napi
);
4768 writeq(S2IO_MINUS_ONE
,
4769 &bar0
->rx_traffic_mask
);
4771 writeq(S2IO_MINUS_ONE
,
4772 &bar0
->rx_traffic_int
);
4776 * rx_traffic_int reg is an R1 register, writing all 1's
4777 * will ensure that the actual interrupt causing bit
4778 * get's cleared and hence a read can be avoided.
4780 if (reason
& GEN_INTR_RXTRAFFIC
)
4781 writeq(S2IO_MINUS_ONE
, &bar0
->rx_traffic_int
);
4783 for (i
= 0; i
< config
->rx_ring_num
; i
++)
4784 rx_intr_handler(&mac_control
->rings
[i
]);
4788 * tx_traffic_int reg is an R1 register, writing all 1's
4789 * will ensure that the actual interrupt causing bit get's
4790 * cleared and hence a read can be avoided.
4792 if (reason
& GEN_INTR_TXTRAFFIC
)
4793 writeq(S2IO_MINUS_ONE
, &bar0
->tx_traffic_int
);
4795 for (i
= 0; i
< config
->tx_fifo_num
; i
++)
4796 tx_intr_handler(&mac_control
->fifos
[i
]);
4798 if (reason
& GEN_INTR_TXPIC
)
4799 s2io_txpic_intr_handle(sp
);
4802 * Reallocate the buffers from the interrupt handler itself.
4804 if (!config
->napi
) {
4805 for (i
= 0; i
< config
->rx_ring_num
; i
++)
4806 s2io_chk_rx_buffers(&mac_control
->rings
[i
]);
4808 writeq(sp
->general_int_mask
, &bar0
->general_int_mask
);
4809 readl(&bar0
->general_int_status
);
4815 /* The interrupt was not raised by us */
4825 static void s2io_updt_stats(struct s2io_nic
*sp
)
4827 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
4831 if (is_s2io_card_up(sp
)) {
4832 /* Apprx 30us on a 133 MHz bus */
4833 val64
= SET_UPDT_CLICKS(10) |
4834 STAT_CFG_ONE_SHOT_EN
| STAT_CFG_STAT_EN
;
4835 writeq(val64
, &bar0
->stat_cfg
);
4838 val64
= readq(&bar0
->stat_cfg
);
4839 if (!(val64
& s2BIT(0)))
4843 break; /* Updt failed */
4849 * s2io_get_stats - Updates the device statistics structure.
4850 * @dev : pointer to the device structure.
4852 * This function updates the device statistics structure in the s2io_nic
4853 * structure and returns a pointer to the same.
4855 * pointer to the updated net_device_stats structure.
4858 static struct net_device_stats
*s2io_get_stats(struct net_device
*dev
)
4860 struct s2io_nic
*sp
= dev
->priv
;
4861 struct mac_info
*mac_control
;
4862 struct config_param
*config
;
4866 mac_control
= &sp
->mac_control
;
4867 config
= &sp
->config
;
4869 /* Configure Stats for immediate updt */
4870 s2io_updt_stats(sp
);
4872 sp
->stats
.tx_packets
=
4873 le32_to_cpu(mac_control
->stats_info
->tmac_frms
);
4874 sp
->stats
.tx_errors
=
4875 le32_to_cpu(mac_control
->stats_info
->tmac_any_err_frms
);
4876 sp
->stats
.rx_errors
=
4877 le64_to_cpu(mac_control
->stats_info
->rmac_drop_frms
);
4878 sp
->stats
.multicast
=
4879 le32_to_cpu(mac_control
->stats_info
->rmac_vld_mcst_frms
);
4880 sp
->stats
.rx_length_errors
=
4881 le64_to_cpu(mac_control
->stats_info
->rmac_long_frms
);
4883 /* collect per-ring rx_packets and rx_bytes */
4884 sp
->stats
.rx_packets
= sp
->stats
.rx_bytes
= 0;
4885 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
4886 sp
->stats
.rx_packets
+= mac_control
->rings
[i
].rx_packets
;
4887 sp
->stats
.rx_bytes
+= mac_control
->rings
[i
].rx_bytes
;
4890 return (&sp
->stats
);
4894 * s2io_set_multicast - entry point for multicast address enable/disable.
4895 * @dev : pointer to the device structure
4897 * This function is a driver entry point which gets called by the kernel
4898 * whenever multicast addresses must be enabled/disabled. This also gets
4899 * called to set/reset promiscuous mode. Depending on the deivce flag, we
4900 * determine, if multicast address must be enabled or if promiscuous mode
4901 * is to be disabled etc.
4906 static void s2io_set_multicast(struct net_device
*dev
)
4909 struct dev_mc_list
*mclist
;
4910 struct s2io_nic
*sp
= dev
->priv
;
4911 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
4912 u64 val64
= 0, multi_mac
= 0x010203040506ULL
, mask
=
4914 u64 dis_addr
= S2IO_DISABLE_MAC_ENTRY
, mac_addr
= 0;
4916 struct config_param
*config
= &sp
->config
;
4918 if ((dev
->flags
& IFF_ALLMULTI
) && (!sp
->m_cast_flg
)) {
4919 /* Enable all Multicast addresses */
4920 writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac
),
4921 &bar0
->rmac_addr_data0_mem
);
4922 writeq(RMAC_ADDR_DATA1_MEM_MASK(mask
),
4923 &bar0
->rmac_addr_data1_mem
);
4924 val64
= RMAC_ADDR_CMD_MEM_WE
|
4925 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD
|
4926 RMAC_ADDR_CMD_MEM_OFFSET(config
->max_mc_addr
- 1);
4927 writeq(val64
, &bar0
->rmac_addr_cmd_mem
);
4928 /* Wait till command completes */
4929 wait_for_cmd_complete(&bar0
->rmac_addr_cmd_mem
,
4930 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING
,
4934 sp
->all_multi_pos
= config
->max_mc_addr
- 1;
4935 } else if ((dev
->flags
& IFF_ALLMULTI
) && (sp
->m_cast_flg
)) {
4936 /* Disable all Multicast addresses */
4937 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr
),
4938 &bar0
->rmac_addr_data0_mem
);
4939 writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0),
4940 &bar0
->rmac_addr_data1_mem
);
4941 val64
= RMAC_ADDR_CMD_MEM_WE
|
4942 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD
|
4943 RMAC_ADDR_CMD_MEM_OFFSET(sp
->all_multi_pos
);
4944 writeq(val64
, &bar0
->rmac_addr_cmd_mem
);
4945 /* Wait till command completes */
4946 wait_for_cmd_complete(&bar0
->rmac_addr_cmd_mem
,
4947 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING
,
4951 sp
->all_multi_pos
= 0;
4954 if ((dev
->flags
& IFF_PROMISC
) && (!sp
->promisc_flg
)) {
4955 /* Put the NIC into promiscuous mode */
4956 add
= &bar0
->mac_cfg
;
4957 val64
= readq(&bar0
->mac_cfg
);
4958 val64
|= MAC_CFG_RMAC_PROM_ENABLE
;
4960 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
4961 writel((u32
) val64
, add
);
4962 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
4963 writel((u32
) (val64
>> 32), (add
+ 4));
4965 if (vlan_tag_strip
!= 1) {
4966 val64
= readq(&bar0
->rx_pa_cfg
);
4967 val64
&= ~RX_PA_CFG_STRIP_VLAN_TAG
;
4968 writeq(val64
, &bar0
->rx_pa_cfg
);
4969 vlan_strip_flag
= 0;
4972 val64
= readq(&bar0
->mac_cfg
);
4973 sp
->promisc_flg
= 1;
4974 DBG_PRINT(INFO_DBG
, "%s: entered promiscuous mode\n",
4976 } else if (!(dev
->flags
& IFF_PROMISC
) && (sp
->promisc_flg
)) {
4977 /* Remove the NIC from promiscuous mode */
4978 add
= &bar0
->mac_cfg
;
4979 val64
= readq(&bar0
->mac_cfg
);
4980 val64
&= ~MAC_CFG_RMAC_PROM_ENABLE
;
4982 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
4983 writel((u32
) val64
, add
);
4984 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
4985 writel((u32
) (val64
>> 32), (add
+ 4));
4987 if (vlan_tag_strip
!= 0) {
4988 val64
= readq(&bar0
->rx_pa_cfg
);
4989 val64
|= RX_PA_CFG_STRIP_VLAN_TAG
;
4990 writeq(val64
, &bar0
->rx_pa_cfg
);
4991 vlan_strip_flag
= 1;
4994 val64
= readq(&bar0
->mac_cfg
);
4995 sp
->promisc_flg
= 0;
4996 DBG_PRINT(INFO_DBG
, "%s: left promiscuous mode\n",
5000 /* Update individual M_CAST address list */
5001 if ((!sp
->m_cast_flg
) && dev
->mc_count
) {
5003 (config
->max_mc_addr
- config
->max_mac_addr
)) {
5004 DBG_PRINT(ERR_DBG
, "%s: No more Rx filters ",
5006 DBG_PRINT(ERR_DBG
, "can be added, please enable ");
5007 DBG_PRINT(ERR_DBG
, "ALL_MULTI instead\n");
5011 prev_cnt
= sp
->mc_addr_count
;
5012 sp
->mc_addr_count
= dev
->mc_count
;
5014 /* Clear out the previous list of Mc in the H/W. */
5015 for (i
= 0; i
< prev_cnt
; i
++) {
5016 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr
),
5017 &bar0
->rmac_addr_data0_mem
);
5018 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
5019 &bar0
->rmac_addr_data1_mem
);
5020 val64
= RMAC_ADDR_CMD_MEM_WE
|
5021 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD
|
5022 RMAC_ADDR_CMD_MEM_OFFSET
5023 (config
->mc_start_offset
+ i
);
5024 writeq(val64
, &bar0
->rmac_addr_cmd_mem
);
5026 /* Wait for command completes */
5027 if (wait_for_cmd_complete(&bar0
->rmac_addr_cmd_mem
,
5028 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING
,
5030 DBG_PRINT(ERR_DBG
, "%s: Adding ",
5032 DBG_PRINT(ERR_DBG
, "Multicasts failed\n");
5037 /* Create the new Rx filter list and update the same in H/W. */
5038 for (i
= 0, mclist
= dev
->mc_list
; i
< dev
->mc_count
;
5039 i
++, mclist
= mclist
->next
) {
5040 memcpy(sp
->usr_addrs
[i
].addr
, mclist
->dmi_addr
,
5043 for (j
= 0; j
< ETH_ALEN
; j
++) {
5044 mac_addr
|= mclist
->dmi_addr
[j
];
5048 writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr
),
5049 &bar0
->rmac_addr_data0_mem
);
5050 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
5051 &bar0
->rmac_addr_data1_mem
);
5052 val64
= RMAC_ADDR_CMD_MEM_WE
|
5053 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD
|
5054 RMAC_ADDR_CMD_MEM_OFFSET
5055 (i
+ config
->mc_start_offset
);
5056 writeq(val64
, &bar0
->rmac_addr_cmd_mem
);
5058 /* Wait for command completes */
5059 if (wait_for_cmd_complete(&bar0
->rmac_addr_cmd_mem
,
5060 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING
,
5062 DBG_PRINT(ERR_DBG
, "%s: Adding ",
5064 DBG_PRINT(ERR_DBG
, "Multicasts failed\n");
5071 /* read from CAM unicast & multicast addresses and store it in
5072 * def_mac_addr structure
5074 void do_s2io_store_unicast_mc(struct s2io_nic
*sp
)
5078 struct config_param
*config
= &sp
->config
;
5080 /* store unicast & multicast mac addresses */
5081 for (offset
= 0; offset
< config
->max_mc_addr
; offset
++) {
5082 mac_addr
= do_s2io_read_unicast_mc(sp
, offset
);
5083 /* if read fails disable the entry */
5084 if (mac_addr
== FAILURE
)
5085 mac_addr
= S2IO_DISABLE_MAC_ENTRY
;
5086 do_s2io_copy_mac_addr(sp
, offset
, mac_addr
);
5090 /* restore unicast & multicast MAC to CAM from def_mac_addr structure */
5091 static void do_s2io_restore_unicast_mc(struct s2io_nic
*sp
)
5094 struct config_param
*config
= &sp
->config
;
5095 /* restore unicast mac address */
5096 for (offset
= 0; offset
< config
->max_mac_addr
; offset
++)
5097 do_s2io_prog_unicast(sp
->dev
,
5098 sp
->def_mac_addr
[offset
].mac_addr
);
5100 /* restore multicast mac address */
5101 for (offset
= config
->mc_start_offset
;
5102 offset
< config
->max_mc_addr
; offset
++)
5103 do_s2io_add_mc(sp
, sp
->def_mac_addr
[offset
].mac_addr
);
5106 /* add a multicast MAC address to CAM */
5107 static int do_s2io_add_mc(struct s2io_nic
*sp
, u8
*addr
)
5111 struct config_param
*config
= &sp
->config
;
5113 for (i
= 0; i
< ETH_ALEN
; i
++) {
5115 mac_addr
|= addr
[i
];
5117 if ((0ULL == mac_addr
) || (mac_addr
== S2IO_DISABLE_MAC_ENTRY
))
5120 /* check if the multicast mac already preset in CAM */
5121 for (i
= config
->mc_start_offset
; i
< config
->max_mc_addr
; i
++) {
5123 tmp64
= do_s2io_read_unicast_mc(sp
, i
);
5124 if (tmp64
== S2IO_DISABLE_MAC_ENTRY
) /* CAM entry is empty */
5127 if (tmp64
== mac_addr
)
5130 if (i
== config
->max_mc_addr
) {
5132 "CAM full no space left for multicast MAC\n");
5135 /* Update the internal structure with this new mac address */
5136 do_s2io_copy_mac_addr(sp
, i
, mac_addr
);
5138 return (do_s2io_add_mac(sp
, mac_addr
, i
));
5141 /* add MAC address to CAM */
5142 static int do_s2io_add_mac(struct s2io_nic
*sp
, u64 addr
, int off
)
5145 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5147 writeq(RMAC_ADDR_DATA0_MEM_ADDR(addr
),
5148 &bar0
->rmac_addr_data0_mem
);
5151 RMAC_ADDR_CMD_MEM_WE
| RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD
|
5152 RMAC_ADDR_CMD_MEM_OFFSET(off
);
5153 writeq(val64
, &bar0
->rmac_addr_cmd_mem
);
5155 /* Wait till command completes */
5156 if (wait_for_cmd_complete(&bar0
->rmac_addr_cmd_mem
,
5157 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING
,
5159 DBG_PRINT(INFO_DBG
, "do_s2io_add_mac failed\n");
5164 /* deletes a specified unicast/multicast mac entry from CAM */
5165 static int do_s2io_delete_unicast_mc(struct s2io_nic
*sp
, u64 addr
)
5168 u64 dis_addr
= S2IO_DISABLE_MAC_ENTRY
, tmp64
;
5169 struct config_param
*config
= &sp
->config
;
5172 offset
< config
->max_mc_addr
; offset
++) {
5173 tmp64
= do_s2io_read_unicast_mc(sp
, offset
);
5174 if (tmp64
== addr
) {
5175 /* disable the entry by writing 0xffffffffffffULL */
5176 if (do_s2io_add_mac(sp
, dis_addr
, offset
) == FAILURE
)
5178 /* store the new mac list from CAM */
5179 do_s2io_store_unicast_mc(sp
);
5183 DBG_PRINT(ERR_DBG
, "MAC address 0x%llx not found in CAM\n",
5184 (unsigned long long)addr
);
5188 /* read mac entries from CAM */
5189 static u64
do_s2io_read_unicast_mc(struct s2io_nic
*sp
, int offset
)
5191 u64 tmp64
= 0xffffffffffff0000ULL
, val64
;
5192 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5196 RMAC_ADDR_CMD_MEM_RD
| RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD
|
5197 RMAC_ADDR_CMD_MEM_OFFSET(offset
);
5198 writeq(val64
, &bar0
->rmac_addr_cmd_mem
);
5200 /* Wait till command completes */
5201 if (wait_for_cmd_complete(&bar0
->rmac_addr_cmd_mem
,
5202 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING
,
5204 DBG_PRINT(INFO_DBG
, "do_s2io_read_unicast_mc failed\n");
5207 tmp64
= readq(&bar0
->rmac_addr_data0_mem
);
5208 return (tmp64
>> 16);
5212 * s2io_set_mac_addr driver entry point
5215 static int s2io_set_mac_addr(struct net_device
*dev
, void *p
)
5217 struct sockaddr
*addr
= p
;
5219 if (!is_valid_ether_addr(addr
->sa_data
))
5222 memcpy(dev
->dev_addr
, addr
->sa_data
, dev
->addr_len
);
5224 /* store the MAC address in CAM */
5225 return (do_s2io_prog_unicast(dev
, dev
->dev_addr
));
5228 * do_s2io_prog_unicast - Programs the Xframe mac address
5229 * @dev : pointer to the device structure.
5230 * @addr: a uchar pointer to the new mac address which is to be set.
5231 * Description : This procedure will program the Xframe to receive
5232 * frames with new Mac Address
5233 * Return value: SUCCESS on success and an appropriate (-)ve integer
5234 * as defined in errno.h file on failure.
5237 static int do_s2io_prog_unicast(struct net_device
*dev
, u8
*addr
)
5239 struct s2io_nic
*sp
= dev
->priv
;
5240 register u64 mac_addr
= 0, perm_addr
= 0;
5243 struct config_param
*config
= &sp
->config
;
5246 * Set the new MAC address as the new unicast filter and reflect this
5247 * change on the device address registered with the OS. It will be
5250 for (i
= 0; i
< ETH_ALEN
; i
++) {
5252 mac_addr
|= addr
[i
];
5254 perm_addr
|= sp
->def_mac_addr
[0].mac_addr
[i
];
5257 /* check if the dev_addr is different than perm_addr */
5258 if (mac_addr
== perm_addr
)
5261 /* check if the mac already preset in CAM */
5262 for (i
= 1; i
< config
->max_mac_addr
; i
++) {
5263 tmp64
= do_s2io_read_unicast_mc(sp
, i
);
5264 if (tmp64
== S2IO_DISABLE_MAC_ENTRY
) /* CAM entry is empty */
5267 if (tmp64
== mac_addr
) {
5269 "MAC addr:0x%llx already present in CAM\n",
5270 (unsigned long long)mac_addr
);
5274 if (i
== config
->max_mac_addr
) {
5275 DBG_PRINT(ERR_DBG
, "CAM full no space left for Unicast MAC\n");
5278 /* Update the internal structure with this new mac address */
5279 do_s2io_copy_mac_addr(sp
, i
, mac_addr
);
5280 return (do_s2io_add_mac(sp
, mac_addr
, i
));
5284 * s2io_ethtool_sset - Sets different link parameters.
5285 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
5286 * @info: pointer to the structure with parameters given by ethtool to set
5289 * The function sets different link parameters provided by the user onto
5295 static int s2io_ethtool_sset(struct net_device
*dev
,
5296 struct ethtool_cmd
*info
)
5298 struct s2io_nic
*sp
= dev
->priv
;
5299 if ((info
->autoneg
== AUTONEG_ENABLE
) ||
5300 (info
->speed
!= SPEED_10000
) || (info
->duplex
!= DUPLEX_FULL
))
5303 s2io_close(sp
->dev
);
5311 * s2io_ethtol_gset - Return link specific information.
5312 * @sp : private member of the device structure, pointer to the
5313 * s2io_nic structure.
5314 * @info : pointer to the structure with parameters given by ethtool
5315 * to return link information.
5317 * Returns link specific information like speed, duplex etc.. to ethtool.
5319 * return 0 on success.
5322 static int s2io_ethtool_gset(struct net_device
*dev
, struct ethtool_cmd
*info
)
5324 struct s2io_nic
*sp
= dev
->priv
;
5325 info
->supported
= (SUPPORTED_10000baseT_Full
| SUPPORTED_FIBRE
);
5326 info
->advertising
= (SUPPORTED_10000baseT_Full
| SUPPORTED_FIBRE
);
5327 info
->port
= PORT_FIBRE
;
5329 /* info->transceiver */
5330 info
->transceiver
= XCVR_EXTERNAL
;
5332 if (netif_carrier_ok(sp
->dev
)) {
5333 info
->speed
= 10000;
5334 info
->duplex
= DUPLEX_FULL
;
5340 info
->autoneg
= AUTONEG_DISABLE
;
5345 * s2io_ethtool_gdrvinfo - Returns driver specific information.
5346 * @sp : private member of the device structure, which is a pointer to the
5347 * s2io_nic structure.
5348 * @info : pointer to the structure with parameters given by ethtool to
5349 * return driver information.
5351 * Returns driver specefic information like name, version etc.. to ethtool.
5356 static void s2io_ethtool_gdrvinfo(struct net_device
*dev
,
5357 struct ethtool_drvinfo
*info
)
5359 struct s2io_nic
*sp
= dev
->priv
;
5361 strncpy(info
->driver
, s2io_driver_name
, sizeof(info
->driver
));
5362 strncpy(info
->version
, s2io_driver_version
, sizeof(info
->version
));
5363 strncpy(info
->fw_version
, "", sizeof(info
->fw_version
));
5364 strncpy(info
->bus_info
, pci_name(sp
->pdev
), sizeof(info
->bus_info
));
5365 info
->regdump_len
= XENA_REG_SPACE
;
5366 info
->eedump_len
= XENA_EEPROM_SPACE
;
5370 * s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer.
5371 * @sp: private member of the device structure, which is a pointer to the
5372 * s2io_nic structure.
5373 * @regs : pointer to the structure with parameters given by ethtool for
5374 * dumping the registers.
5375 * @reg_space: The input argumnet into which all the registers are dumped.
5377 * Dumps the entire register space of xFrame NIC into the user given
5383 static void s2io_ethtool_gregs(struct net_device
*dev
,
5384 struct ethtool_regs
*regs
, void *space
)
5388 u8
*reg_space
= (u8
*) space
;
5389 struct s2io_nic
*sp
= dev
->priv
;
5391 regs
->len
= XENA_REG_SPACE
;
5392 regs
->version
= sp
->pdev
->subsystem_device
;
5394 for (i
= 0; i
< regs
->len
; i
+= 8) {
5395 reg
= readq(sp
->bar0
+ i
);
5396 memcpy((reg_space
+ i
), ®
, 8);
5401 * s2io_phy_id - timer function that alternates adapter LED.
5402 * @data : address of the private member of the device structure, which
5403 * is a pointer to the s2io_nic structure, provided as an u32.
5404 * Description: This is actually the timer function that alternates the
5405 * adapter LED bit of the adapter control bit to set/reset every time on
5406 * invocation. The timer is set for 1/2 a second, hence tha NIC blinks
5407 * once every second.
5409 static void s2io_phy_id(unsigned long data
)
5411 struct s2io_nic
*sp
= (struct s2io_nic
*) data
;
5412 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5416 subid
= sp
->pdev
->subsystem_device
;
5417 if ((sp
->device_type
== XFRAME_II_DEVICE
) ||
5418 ((subid
& 0xFF) >= 0x07)) {
5419 val64
= readq(&bar0
->gpio_control
);
5420 val64
^= GPIO_CTRL_GPIO_0
;
5421 writeq(val64
, &bar0
->gpio_control
);
5423 val64
= readq(&bar0
->adapter_control
);
5424 val64
^= ADAPTER_LED_ON
;
5425 writeq(val64
, &bar0
->adapter_control
);
5428 mod_timer(&sp
->id_timer
, jiffies
+ HZ
/ 2);
5432 * s2io_ethtool_idnic - To physically identify the nic on the system.
5433 * @sp : private member of the device structure, which is a pointer to the
5434 * s2io_nic structure.
5435 * @id : pointer to the structure with identification parameters given by
5437 * Description: Used to physically identify the NIC on the system.
5438 * The Link LED will blink for a time specified by the user for
5440 * NOTE: The Link has to be Up to be able to blink the LED. Hence
5441 * identification is possible only if it's link is up.
5443 * int , returns 0 on success
5446 static int s2io_ethtool_idnic(struct net_device
*dev
, u32 data
)
5448 u64 val64
= 0, last_gpio_ctrl_val
;
5449 struct s2io_nic
*sp
= dev
->priv
;
5450 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5453 subid
= sp
->pdev
->subsystem_device
;
5454 last_gpio_ctrl_val
= readq(&bar0
->gpio_control
);
5455 if ((sp
->device_type
== XFRAME_I_DEVICE
) &&
5456 ((subid
& 0xFF) < 0x07)) {
5457 val64
= readq(&bar0
->adapter_control
);
5458 if (!(val64
& ADAPTER_CNTL_EN
)) {
5460 "Adapter Link down, cannot blink LED\n");
5464 if (sp
->id_timer
.function
== NULL
) {
5465 init_timer(&sp
->id_timer
);
5466 sp
->id_timer
.function
= s2io_phy_id
;
5467 sp
->id_timer
.data
= (unsigned long) sp
;
5469 mod_timer(&sp
->id_timer
, jiffies
);
5471 msleep_interruptible(data
* HZ
);
5473 msleep_interruptible(MAX_FLICKER_TIME
);
5474 del_timer_sync(&sp
->id_timer
);
5476 if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp
->device_type
, subid
)) {
5477 writeq(last_gpio_ctrl_val
, &bar0
->gpio_control
);
5478 last_gpio_ctrl_val
= readq(&bar0
->gpio_control
);
5484 static void s2io_ethtool_gringparam(struct net_device
*dev
,
5485 struct ethtool_ringparam
*ering
)
5487 struct s2io_nic
*sp
= dev
->priv
;
5488 int i
,tx_desc_count
=0,rx_desc_count
=0;
5490 if (sp
->rxd_mode
== RXD_MODE_1
)
5491 ering
->rx_max_pending
= MAX_RX_DESC_1
;
5492 else if (sp
->rxd_mode
== RXD_MODE_3B
)
5493 ering
->rx_max_pending
= MAX_RX_DESC_2
;
5495 ering
->tx_max_pending
= MAX_TX_DESC
;
5496 for (i
= 0 ; i
< sp
->config
.tx_fifo_num
; i
++)
5497 tx_desc_count
+= sp
->config
.tx_cfg
[i
].fifo_len
;
5499 DBG_PRINT(INFO_DBG
,"\nmax txds : %d\n",sp
->config
.max_txds
);
5500 ering
->tx_pending
= tx_desc_count
;
5502 for (i
= 0 ; i
< sp
->config
.rx_ring_num
; i
++)
5503 rx_desc_count
+= sp
->config
.rx_cfg
[i
].num_rxd
;
5505 ering
->rx_pending
= rx_desc_count
;
5507 ering
->rx_mini_max_pending
= 0;
5508 ering
->rx_mini_pending
= 0;
5509 if(sp
->rxd_mode
== RXD_MODE_1
)
5510 ering
->rx_jumbo_max_pending
= MAX_RX_DESC_1
;
5511 else if (sp
->rxd_mode
== RXD_MODE_3B
)
5512 ering
->rx_jumbo_max_pending
= MAX_RX_DESC_2
;
5513 ering
->rx_jumbo_pending
= rx_desc_count
;
5517 * s2io_ethtool_getpause_data -Pause frame frame generation and reception.
5518 * @sp : private member of the device structure, which is a pointer to the
5519 * s2io_nic structure.
5520 * @ep : pointer to the structure with pause parameters given by ethtool.
5522 * Returns the Pause frame generation and reception capability of the NIC.
5526 static void s2io_ethtool_getpause_data(struct net_device
*dev
,
5527 struct ethtool_pauseparam
*ep
)
5530 struct s2io_nic
*sp
= dev
->priv
;
5531 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5533 val64
= readq(&bar0
->rmac_pause_cfg
);
5534 if (val64
& RMAC_PAUSE_GEN_ENABLE
)
5535 ep
->tx_pause
= TRUE
;
5536 if (val64
& RMAC_PAUSE_RX_ENABLE
)
5537 ep
->rx_pause
= TRUE
;
5538 ep
->autoneg
= FALSE
;
5542 * s2io_ethtool_setpause_data - set/reset pause frame generation.
5543 * @sp : private member of the device structure, which is a pointer to the
5544 * s2io_nic structure.
5545 * @ep : pointer to the structure with pause parameters given by ethtool.
5547 * It can be used to set or reset Pause frame generation or reception
5548 * support of the NIC.
5550 * int, returns 0 on Success
5553 static int s2io_ethtool_setpause_data(struct net_device
*dev
,
5554 struct ethtool_pauseparam
*ep
)
5557 struct s2io_nic
*sp
= dev
->priv
;
5558 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5560 val64
= readq(&bar0
->rmac_pause_cfg
);
5562 val64
|= RMAC_PAUSE_GEN_ENABLE
;
5564 val64
&= ~RMAC_PAUSE_GEN_ENABLE
;
5566 val64
|= RMAC_PAUSE_RX_ENABLE
;
5568 val64
&= ~RMAC_PAUSE_RX_ENABLE
;
5569 writeq(val64
, &bar0
->rmac_pause_cfg
);
5574 * read_eeprom - reads 4 bytes of data from user given offset.
5575 * @sp : private member of the device structure, which is a pointer to the
5576 * s2io_nic structure.
5577 * @off : offset at which the data must be written
5578 * @data : Its an output parameter where the data read at the given
5581 * Will read 4 bytes of data from the user given offset and return the
5583 * NOTE: Will allow to read only part of the EEPROM visible through the
5586 * -1 on failure and 0 on success.
5589 #define S2IO_DEV_ID 5
5590 static int read_eeprom(struct s2io_nic
* sp
, int off
, u64
* data
)
5595 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5597 if (sp
->device_type
== XFRAME_I_DEVICE
) {
5598 val64
= I2C_CONTROL_DEV_ID(S2IO_DEV_ID
) | I2C_CONTROL_ADDR(off
) |
5599 I2C_CONTROL_BYTE_CNT(0x3) | I2C_CONTROL_READ
|
5600 I2C_CONTROL_CNTL_START
;
5601 SPECIAL_REG_WRITE(val64
, &bar0
->i2c_control
, LF
);
5603 while (exit_cnt
< 5) {
5604 val64
= readq(&bar0
->i2c_control
);
5605 if (I2C_CONTROL_CNTL_END(val64
)) {
5606 *data
= I2C_CONTROL_GET_DATA(val64
);
5615 if (sp
->device_type
== XFRAME_II_DEVICE
) {
5616 val64
= SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1
|
5617 SPI_CONTROL_BYTECNT(0x3) |
5618 SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off
);
5619 SPECIAL_REG_WRITE(val64
, &bar0
->spi_control
, LF
);
5620 val64
|= SPI_CONTROL_REQ
;
5621 SPECIAL_REG_WRITE(val64
, &bar0
->spi_control
, LF
);
5622 while (exit_cnt
< 5) {
5623 val64
= readq(&bar0
->spi_control
);
5624 if (val64
& SPI_CONTROL_NACK
) {
5627 } else if (val64
& SPI_CONTROL_DONE
) {
5628 *data
= readq(&bar0
->spi_data
);
5641 * write_eeprom - actually writes the relevant part of the data value.
5642 * @sp : private member of the device structure, which is a pointer to the
5643 * s2io_nic structure.
5644 * @off : offset at which the data must be written
5645 * @data : The data that is to be written
5646 * @cnt : Number of bytes of the data that are actually to be written into
5647 * the Eeprom. (max of 3)
5649 * Actually writes the relevant part of the data value into the Eeprom
5650 * through the I2C bus.
5652 * 0 on success, -1 on failure.
5655 static int write_eeprom(struct s2io_nic
* sp
, int off
, u64 data
, int cnt
)
5657 int exit_cnt
= 0, ret
= -1;
5659 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5661 if (sp
->device_type
== XFRAME_I_DEVICE
) {
5662 val64
= I2C_CONTROL_DEV_ID(S2IO_DEV_ID
) | I2C_CONTROL_ADDR(off
) |
5663 I2C_CONTROL_BYTE_CNT(cnt
) | I2C_CONTROL_SET_DATA((u32
)data
) |
5664 I2C_CONTROL_CNTL_START
;
5665 SPECIAL_REG_WRITE(val64
, &bar0
->i2c_control
, LF
);
5667 while (exit_cnt
< 5) {
5668 val64
= readq(&bar0
->i2c_control
);
5669 if (I2C_CONTROL_CNTL_END(val64
)) {
5670 if (!(val64
& I2C_CONTROL_NACK
))
5679 if (sp
->device_type
== XFRAME_II_DEVICE
) {
5680 int write_cnt
= (cnt
== 8) ? 0 : cnt
;
5681 writeq(SPI_DATA_WRITE(data
,(cnt
<<3)), &bar0
->spi_data
);
5683 val64
= SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1
|
5684 SPI_CONTROL_BYTECNT(write_cnt
) |
5685 SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off
);
5686 SPECIAL_REG_WRITE(val64
, &bar0
->spi_control
, LF
);
5687 val64
|= SPI_CONTROL_REQ
;
5688 SPECIAL_REG_WRITE(val64
, &bar0
->spi_control
, LF
);
5689 while (exit_cnt
< 5) {
5690 val64
= readq(&bar0
->spi_control
);
5691 if (val64
& SPI_CONTROL_NACK
) {
5694 } else if (val64
& SPI_CONTROL_DONE
) {
5704 static void s2io_vpd_read(struct s2io_nic
*nic
)
5708 int i
=0, cnt
, fail
= 0;
5709 int vpd_addr
= 0x80;
5711 if (nic
->device_type
== XFRAME_II_DEVICE
) {
5712 strcpy(nic
->product_name
, "Xframe II 10GbE network adapter");
5716 strcpy(nic
->product_name
, "Xframe I 10GbE network adapter");
5719 strcpy(nic
->serial_num
, "NOT AVAILABLE");
5721 vpd_data
= kmalloc(256, GFP_KERNEL
);
5723 nic
->mac_control
.stats_info
->sw_stat
.mem_alloc_fail_cnt
++;
5726 nic
->mac_control
.stats_info
->sw_stat
.mem_allocated
+= 256;
5728 for (i
= 0; i
< 256; i
+=4 ) {
5729 pci_write_config_byte(nic
->pdev
, (vpd_addr
+ 2), i
);
5730 pci_read_config_byte(nic
->pdev
, (vpd_addr
+ 2), &data
);
5731 pci_write_config_byte(nic
->pdev
, (vpd_addr
+ 3), 0);
5732 for (cnt
= 0; cnt
<5; cnt
++) {
5734 pci_read_config_byte(nic
->pdev
, (vpd_addr
+ 3), &data
);
5739 DBG_PRINT(ERR_DBG
, "Read of VPD data failed\n");
5743 pci_read_config_dword(nic
->pdev
, (vpd_addr
+ 4),
5744 (u32
*)&vpd_data
[i
]);
5748 /* read serial number of adapter */
5749 for (cnt
= 0; cnt
< 256; cnt
++) {
5750 if ((vpd_data
[cnt
] == 'S') &&
5751 (vpd_data
[cnt
+1] == 'N') &&
5752 (vpd_data
[cnt
+2] < VPD_STRING_LEN
)) {
5753 memset(nic
->serial_num
, 0, VPD_STRING_LEN
);
5754 memcpy(nic
->serial_num
, &vpd_data
[cnt
+ 3],
5761 if ((!fail
) && (vpd_data
[1] < VPD_STRING_LEN
)) {
5762 memset(nic
->product_name
, 0, vpd_data
[1]);
5763 memcpy(nic
->product_name
, &vpd_data
[3], vpd_data
[1]);
5766 nic
->mac_control
.stats_info
->sw_stat
.mem_freed
+= 256;
5770 * s2io_ethtool_geeprom - reads the value stored in the Eeprom.
5771 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
5772 * @eeprom : pointer to the user level structure provided by ethtool,
5773 * containing all relevant information.
5774 * @data_buf : user defined value to be written into Eeprom.
5775 * Description: Reads the values stored in the Eeprom at given offset
5776 * for a given length. Stores these values int the input argument data
5777 * buffer 'data_buf' and returns these to the caller (ethtool.)
5782 static int s2io_ethtool_geeprom(struct net_device
*dev
,
5783 struct ethtool_eeprom
*eeprom
, u8
* data_buf
)
5787 struct s2io_nic
*sp
= dev
->priv
;
5789 eeprom
->magic
= sp
->pdev
->vendor
| (sp
->pdev
->device
<< 16);
5791 if ((eeprom
->offset
+ eeprom
->len
) > (XENA_EEPROM_SPACE
))
5792 eeprom
->len
= XENA_EEPROM_SPACE
- eeprom
->offset
;
5794 for (i
= 0; i
< eeprom
->len
; i
+= 4) {
5795 if (read_eeprom(sp
, (eeprom
->offset
+ i
), &data
)) {
5796 DBG_PRINT(ERR_DBG
, "Read of EEPROM failed\n");
5800 memcpy((data_buf
+ i
), &valid
, 4);
5806 * s2io_ethtool_seeprom - tries to write the user provided value in Eeprom
5807 * @sp : private member of the device structure, which is a pointer to the
5808 * s2io_nic structure.
5809 * @eeprom : pointer to the user level structure provided by ethtool,
5810 * containing all relevant information.
5811 * @data_buf ; user defined value to be written into Eeprom.
5813 * Tries to write the user provided value in the Eeprom, at the offset
5814 * given by the user.
5816 * 0 on success, -EFAULT on failure.
5819 static int s2io_ethtool_seeprom(struct net_device
*dev
,
5820 struct ethtool_eeprom
*eeprom
,
5823 int len
= eeprom
->len
, cnt
= 0;
5824 u64 valid
= 0, data
;
5825 struct s2io_nic
*sp
= dev
->priv
;
5827 if (eeprom
->magic
!= (sp
->pdev
->vendor
| (sp
->pdev
->device
<< 16))) {
5829 "ETHTOOL_WRITE_EEPROM Err: Magic value ");
5830 DBG_PRINT(ERR_DBG
, "is wrong, Its not 0x%x\n",
5836 data
= (u32
) data_buf
[cnt
] & 0x000000FF;
5838 valid
= (u32
) (data
<< 24);
5842 if (write_eeprom(sp
, (eeprom
->offset
+ cnt
), valid
, 0)) {
5844 "ETHTOOL_WRITE_EEPROM Err: Cannot ");
5846 "write into the specified offset\n");
5857 * s2io_register_test - reads and writes into all clock domains.
5858 * @sp : private member of the device structure, which is a pointer to the
5859 * s2io_nic structure.
5860 * @data : variable that returns the result of each of the test conducted b
5863 * Read and write into all clock domains. The NIC has 3 clock domains,
5864 * see that registers in all the three regions are accessible.
5869 static int s2io_register_test(struct s2io_nic
* sp
, uint64_t * data
)
5871 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5872 u64 val64
= 0, exp_val
;
5875 val64
= readq(&bar0
->pif_rd_swapper_fb
);
5876 if (val64
!= 0x123456789abcdefULL
) {
5878 DBG_PRINT(INFO_DBG
, "Read Test level 1 fails\n");
5881 val64
= readq(&bar0
->rmac_pause_cfg
);
5882 if (val64
!= 0xc000ffff00000000ULL
) {
5884 DBG_PRINT(INFO_DBG
, "Read Test level 2 fails\n");
5887 val64
= readq(&bar0
->rx_queue_cfg
);
5888 if (sp
->device_type
== XFRAME_II_DEVICE
)
5889 exp_val
= 0x0404040404040404ULL
;
5891 exp_val
= 0x0808080808080808ULL
;
5892 if (val64
!= exp_val
) {
5894 DBG_PRINT(INFO_DBG
, "Read Test level 3 fails\n");
5897 val64
= readq(&bar0
->xgxs_efifo_cfg
);
5898 if (val64
!= 0x000000001923141EULL
) {
5900 DBG_PRINT(INFO_DBG
, "Read Test level 4 fails\n");
5903 val64
= 0x5A5A5A5A5A5A5A5AULL
;
5904 writeq(val64
, &bar0
->xmsi_data
);
5905 val64
= readq(&bar0
->xmsi_data
);
5906 if (val64
!= 0x5A5A5A5A5A5A5A5AULL
) {
5908 DBG_PRINT(ERR_DBG
, "Write Test level 1 fails\n");
5911 val64
= 0xA5A5A5A5A5A5A5A5ULL
;
5912 writeq(val64
, &bar0
->xmsi_data
);
5913 val64
= readq(&bar0
->xmsi_data
);
5914 if (val64
!= 0xA5A5A5A5A5A5A5A5ULL
) {
5916 DBG_PRINT(ERR_DBG
, "Write Test level 2 fails\n");
5924 * s2io_eeprom_test - to verify that EEprom in the xena can be programmed.
5925 * @sp : private member of the device structure, which is a pointer to the
5926 * s2io_nic structure.
5927 * @data:variable that returns the result of each of the test conducted by
5930 * Verify that EEPROM in the xena can be programmed using I2C_CONTROL
5936 static int s2io_eeprom_test(struct s2io_nic
* sp
, uint64_t * data
)
5939 u64 ret_data
, org_4F0
, org_7F0
;
5940 u8 saved_4F0
= 0, saved_7F0
= 0;
5941 struct net_device
*dev
= sp
->dev
;
5943 /* Test Write Error at offset 0 */
5944 /* Note that SPI interface allows write access to all areas
5945 * of EEPROM. Hence doing all negative testing only for Xframe I.
5947 if (sp
->device_type
== XFRAME_I_DEVICE
)
5948 if (!write_eeprom(sp
, 0, 0, 3))
5951 /* Save current values at offsets 0x4F0 and 0x7F0 */
5952 if (!read_eeprom(sp
, 0x4F0, &org_4F0
))
5954 if (!read_eeprom(sp
, 0x7F0, &org_7F0
))
5957 /* Test Write at offset 4f0 */
5958 if (write_eeprom(sp
, 0x4F0, 0x012345, 3))
5960 if (read_eeprom(sp
, 0x4F0, &ret_data
))
5963 if (ret_data
!= 0x012345) {
5964 DBG_PRINT(ERR_DBG
, "%s: eeprom test error at offset 0x4F0. "
5965 "Data written %llx Data read %llx\n",
5966 dev
->name
, (unsigned long long)0x12345,
5967 (unsigned long long)ret_data
);
5971 /* Reset the EEPROM data go FFFF */
5972 write_eeprom(sp
, 0x4F0, 0xFFFFFF, 3);
5974 /* Test Write Request Error at offset 0x7c */
5975 if (sp
->device_type
== XFRAME_I_DEVICE
)
5976 if (!write_eeprom(sp
, 0x07C, 0, 3))
5979 /* Test Write Request at offset 0x7f0 */
5980 if (write_eeprom(sp
, 0x7F0, 0x012345, 3))
5982 if (read_eeprom(sp
, 0x7F0, &ret_data
))
5985 if (ret_data
!= 0x012345) {
5986 DBG_PRINT(ERR_DBG
, "%s: eeprom test error at offset 0x7F0. "
5987 "Data written %llx Data read %llx\n",
5988 dev
->name
, (unsigned long long)0x12345,
5989 (unsigned long long)ret_data
);
5993 /* Reset the EEPROM data go FFFF */
5994 write_eeprom(sp
, 0x7F0, 0xFFFFFF, 3);
5996 if (sp
->device_type
== XFRAME_I_DEVICE
) {
5997 /* Test Write Error at offset 0x80 */
5998 if (!write_eeprom(sp
, 0x080, 0, 3))
6001 /* Test Write Error at offset 0xfc */
6002 if (!write_eeprom(sp
, 0x0FC, 0, 3))
6005 /* Test Write Error at offset 0x100 */
6006 if (!write_eeprom(sp
, 0x100, 0, 3))
6009 /* Test Write Error at offset 4ec */
6010 if (!write_eeprom(sp
, 0x4EC, 0, 3))
6014 /* Restore values at offsets 0x4F0 and 0x7F0 */
6016 write_eeprom(sp
, 0x4F0, org_4F0
, 3);
6018 write_eeprom(sp
, 0x7F0, org_7F0
, 3);
6025 * s2io_bist_test - invokes the MemBist test of the card .
6026 * @sp : private member of the device structure, which is a pointer to the
6027 * s2io_nic structure.
6028 * @data:variable that returns the result of each of the test conducted by
6031 * This invokes the MemBist test of the card. We give around
6032 * 2 secs time for the Test to complete. If it's still not complete
6033 * within this peiod, we consider that the test failed.
6035 * 0 on success and -1 on failure.
6038 static int s2io_bist_test(struct s2io_nic
* sp
, uint64_t * data
)
6041 int cnt
= 0, ret
= -1;
6043 pci_read_config_byte(sp
->pdev
, PCI_BIST
, &bist
);
6044 bist
|= PCI_BIST_START
;
6045 pci_write_config_word(sp
->pdev
, PCI_BIST
, bist
);
6048 pci_read_config_byte(sp
->pdev
, PCI_BIST
, &bist
);
6049 if (!(bist
& PCI_BIST_START
)) {
6050 *data
= (bist
& PCI_BIST_CODE_MASK
);
6062 * s2io-link_test - verifies the link state of the nic
6063 * @sp ; private member of the device structure, which is a pointer to the
6064 * s2io_nic structure.
6065 * @data: variable that returns the result of each of the test conducted by
6068 * The function verifies the link state of the NIC and updates the input
6069 * argument 'data' appropriately.
6074 static int s2io_link_test(struct s2io_nic
* sp
, uint64_t * data
)
6076 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
6079 val64
= readq(&bar0
->adapter_status
);
6080 if(!(LINK_IS_UP(val64
)))
6089 * s2io_rldram_test - offline test for access to the RldRam chip on the NIC
6090 * @sp - private member of the device structure, which is a pointer to the
6091 * s2io_nic structure.
6092 * @data - variable that returns the result of each of the test
6093 * conducted by the driver.
6095 * This is one of the offline test that tests the read and write
6096 * access to the RldRam chip on the NIC.
6101 static int s2io_rldram_test(struct s2io_nic
* sp
, uint64_t * data
)
6103 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
6105 int cnt
, iteration
= 0, test_fail
= 0;
6107 val64
= readq(&bar0
->adapter_control
);
6108 val64
&= ~ADAPTER_ECC_EN
;
6109 writeq(val64
, &bar0
->adapter_control
);
6111 val64
= readq(&bar0
->mc_rldram_test_ctrl
);
6112 val64
|= MC_RLDRAM_TEST_MODE
;
6113 SPECIAL_REG_WRITE(val64
, &bar0
->mc_rldram_test_ctrl
, LF
);
6115 val64
= readq(&bar0
->mc_rldram_mrs
);
6116 val64
|= MC_RLDRAM_QUEUE_SIZE_ENABLE
;
6117 SPECIAL_REG_WRITE(val64
, &bar0
->mc_rldram_mrs
, UF
);
6119 val64
|= MC_RLDRAM_MRS_ENABLE
;
6120 SPECIAL_REG_WRITE(val64
, &bar0
->mc_rldram_mrs
, UF
);
6122 while (iteration
< 2) {
6123 val64
= 0x55555555aaaa0000ULL
;
6124 if (iteration
== 1) {
6125 val64
^= 0xFFFFFFFFFFFF0000ULL
;
6127 writeq(val64
, &bar0
->mc_rldram_test_d0
);
6129 val64
= 0xaaaa5a5555550000ULL
;
6130 if (iteration
== 1) {
6131 val64
^= 0xFFFFFFFFFFFF0000ULL
;
6133 writeq(val64
, &bar0
->mc_rldram_test_d1
);
6135 val64
= 0x55aaaaaaaa5a0000ULL
;
6136 if (iteration
== 1) {
6137 val64
^= 0xFFFFFFFFFFFF0000ULL
;
6139 writeq(val64
, &bar0
->mc_rldram_test_d2
);
6141 val64
= (u64
) (0x0000003ffffe0100ULL
);
6142 writeq(val64
, &bar0
->mc_rldram_test_add
);
6144 val64
= MC_RLDRAM_TEST_MODE
| MC_RLDRAM_TEST_WRITE
|
6146 SPECIAL_REG_WRITE(val64
, &bar0
->mc_rldram_test_ctrl
, LF
);
6148 for (cnt
= 0; cnt
< 5; cnt
++) {
6149 val64
= readq(&bar0
->mc_rldram_test_ctrl
);
6150 if (val64
& MC_RLDRAM_TEST_DONE
)
6158 val64
= MC_RLDRAM_TEST_MODE
| MC_RLDRAM_TEST_GO
;
6159 SPECIAL_REG_WRITE(val64
, &bar0
->mc_rldram_test_ctrl
, LF
);
6161 for (cnt
= 0; cnt
< 5; cnt
++) {
6162 val64
= readq(&bar0
->mc_rldram_test_ctrl
);
6163 if (val64
& MC_RLDRAM_TEST_DONE
)
6171 val64
= readq(&bar0
->mc_rldram_test_ctrl
);
6172 if (!(val64
& MC_RLDRAM_TEST_PASS
))
6180 /* Bring the adapter out of test mode */
6181 SPECIAL_REG_WRITE(0, &bar0
->mc_rldram_test_ctrl
, LF
);
6187 * s2io_ethtool_test - conducts 6 tsets to determine the health of card.
6188 * @sp : private member of the device structure, which is a pointer to the
6189 * s2io_nic structure.
6190 * @ethtest : pointer to a ethtool command specific structure that will be
6191 * returned to the user.
6192 * @data : variable that returns the result of each of the test
6193 * conducted by the driver.
6195 * This function conducts 6 tests ( 4 offline and 2 online) to determine
6196 * the health of the card.
6201 static void s2io_ethtool_test(struct net_device
*dev
,
6202 struct ethtool_test
*ethtest
,
6205 struct s2io_nic
*sp
= dev
->priv
;
6206 int orig_state
= netif_running(sp
->dev
);
6208 if (ethtest
->flags
== ETH_TEST_FL_OFFLINE
) {
6209 /* Offline Tests. */
6211 s2io_close(sp
->dev
);
6213 if (s2io_register_test(sp
, &data
[0]))
6214 ethtest
->flags
|= ETH_TEST_FL_FAILED
;
6218 if (s2io_rldram_test(sp
, &data
[3]))
6219 ethtest
->flags
|= ETH_TEST_FL_FAILED
;
6223 if (s2io_eeprom_test(sp
, &data
[1]))
6224 ethtest
->flags
|= ETH_TEST_FL_FAILED
;
6226 if (s2io_bist_test(sp
, &data
[4]))
6227 ethtest
->flags
|= ETH_TEST_FL_FAILED
;
6237 "%s: is not up, cannot run test\n",
6246 if (s2io_link_test(sp
, &data
[2]))
6247 ethtest
->flags
|= ETH_TEST_FL_FAILED
;
6256 static void s2io_get_ethtool_stats(struct net_device
*dev
,
6257 struct ethtool_stats
*estats
,
6261 struct s2io_nic
*sp
= dev
->priv
;
6262 struct stat_block
*stat_info
= sp
->mac_control
.stats_info
;
6264 s2io_updt_stats(sp
);
6266 (u64
)le32_to_cpu(stat_info
->tmac_frms_oflow
) << 32 |
6267 le32_to_cpu(stat_info
->tmac_frms
);
6269 (u64
)le32_to_cpu(stat_info
->tmac_data_octets_oflow
) << 32 |
6270 le32_to_cpu(stat_info
->tmac_data_octets
);
6271 tmp_stats
[i
++] = le64_to_cpu(stat_info
->tmac_drop_frms
);
6273 (u64
)le32_to_cpu(stat_info
->tmac_mcst_frms_oflow
) << 32 |
6274 le32_to_cpu(stat_info
->tmac_mcst_frms
);
6276 (u64
)le32_to_cpu(stat_info
->tmac_bcst_frms_oflow
) << 32 |
6277 le32_to_cpu(stat_info
->tmac_bcst_frms
);
6278 tmp_stats
[i
++] = le64_to_cpu(stat_info
->tmac_pause_ctrl_frms
);
6280 (u64
)le32_to_cpu(stat_info
->tmac_ttl_octets_oflow
) << 32 |
6281 le32_to_cpu(stat_info
->tmac_ttl_octets
);
6283 (u64
)le32_to_cpu(stat_info
->tmac_ucst_frms_oflow
) << 32 |
6284 le32_to_cpu(stat_info
->tmac_ucst_frms
);
6286 (u64
)le32_to_cpu(stat_info
->tmac_nucst_frms_oflow
) << 32 |
6287 le32_to_cpu(stat_info
->tmac_nucst_frms
);
6289 (u64
)le32_to_cpu(stat_info
->tmac_any_err_frms_oflow
) << 32 |
6290 le32_to_cpu(stat_info
->tmac_any_err_frms
);
6291 tmp_stats
[i
++] = le64_to_cpu(stat_info
->tmac_ttl_less_fb_octets
);
6292 tmp_stats
[i
++] = le64_to_cpu(stat_info
->tmac_vld_ip_octets
);
6294 (u64
)le32_to_cpu(stat_info
->tmac_vld_ip_oflow
) << 32 |
6295 le32_to_cpu(stat_info
->tmac_vld_ip
);
6297 (u64
)le32_to_cpu(stat_info
->tmac_drop_ip_oflow
) << 32 |
6298 le32_to_cpu(stat_info
->tmac_drop_ip
);
6300 (u64
)le32_to_cpu(stat_info
->tmac_icmp_oflow
) << 32 |
6301 le32_to_cpu(stat_info
->tmac_icmp
);
6303 (u64
)le32_to_cpu(stat_info
->tmac_rst_tcp_oflow
) << 32 |
6304 le32_to_cpu(stat_info
->tmac_rst_tcp
);
6305 tmp_stats
[i
++] = le64_to_cpu(stat_info
->tmac_tcp
);
6306 tmp_stats
[i
++] = (u64
)le32_to_cpu(stat_info
->tmac_udp_oflow
) << 32 |
6307 le32_to_cpu(stat_info
->tmac_udp
);
6309 (u64
)le32_to_cpu(stat_info
->rmac_vld_frms_oflow
) << 32 |
6310 le32_to_cpu(stat_info
->rmac_vld_frms
);
6312 (u64
)le32_to_cpu(stat_info
->rmac_data_octets_oflow
) << 32 |
6313 le32_to_cpu(stat_info
->rmac_data_octets
);
6314 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_fcs_err_frms
);
6315 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_drop_frms
);
6317 (u64
)le32_to_cpu(stat_info
->rmac_vld_mcst_frms_oflow
) << 32 |
6318 le32_to_cpu(stat_info
->rmac_vld_mcst_frms
);
6320 (u64
)le32_to_cpu(stat_info
->rmac_vld_bcst_frms_oflow
) << 32 |
6321 le32_to_cpu(stat_info
->rmac_vld_bcst_frms
);
6322 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rmac_in_rng_len_err_frms
);
6323 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rmac_out_rng_len_err_frms
);
6324 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_long_frms
);
6325 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_pause_ctrl_frms
);
6326 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_unsup_ctrl_frms
);
6328 (u64
)le32_to_cpu(stat_info
->rmac_ttl_octets_oflow
) << 32 |
6329 le32_to_cpu(stat_info
->rmac_ttl_octets
);
6331 (u64
)le32_to_cpu(stat_info
->rmac_accepted_ucst_frms_oflow
)
6332 << 32 | le32_to_cpu(stat_info
->rmac_accepted_ucst_frms
);
6334 (u64
)le32_to_cpu(stat_info
->rmac_accepted_nucst_frms_oflow
)
6335 << 32 | le32_to_cpu(stat_info
->rmac_accepted_nucst_frms
);
6337 (u64
)le32_to_cpu(stat_info
->rmac_discarded_frms_oflow
) << 32 |
6338 le32_to_cpu(stat_info
->rmac_discarded_frms
);
6340 (u64
)le32_to_cpu(stat_info
->rmac_drop_events_oflow
)
6341 << 32 | le32_to_cpu(stat_info
->rmac_drop_events
);
6342 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_ttl_less_fb_octets
);
6343 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_ttl_frms
);
6345 (u64
)le32_to_cpu(stat_info
->rmac_usized_frms_oflow
) << 32 |
6346 le32_to_cpu(stat_info
->rmac_usized_frms
);
6348 (u64
)le32_to_cpu(stat_info
->rmac_osized_frms_oflow
) << 32 |
6349 le32_to_cpu(stat_info
->rmac_osized_frms
);
6351 (u64
)le32_to_cpu(stat_info
->rmac_frag_frms_oflow
) << 32 |
6352 le32_to_cpu(stat_info
->rmac_frag_frms
);
6354 (u64
)le32_to_cpu(stat_info
->rmac_jabber_frms_oflow
) << 32 |
6355 le32_to_cpu(stat_info
->rmac_jabber_frms
);
6356 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_ttl_64_frms
);
6357 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_ttl_65_127_frms
);
6358 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_ttl_128_255_frms
);
6359 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_ttl_256_511_frms
);
6360 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_ttl_512_1023_frms
);
6361 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_ttl_1024_1518_frms
);
6363 (u64
)le32_to_cpu(stat_info
->rmac_ip_oflow
) << 32 |
6364 le32_to_cpu(stat_info
->rmac_ip
);
6365 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_ip_octets
);
6366 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rmac_hdr_err_ip
);
6368 (u64
)le32_to_cpu(stat_info
->rmac_drop_ip_oflow
) << 32 |
6369 le32_to_cpu(stat_info
->rmac_drop_ip
);
6371 (u64
)le32_to_cpu(stat_info
->rmac_icmp_oflow
) << 32 |
6372 le32_to_cpu(stat_info
->rmac_icmp
);
6373 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_tcp
);
6375 (u64
)le32_to_cpu(stat_info
->rmac_udp_oflow
) << 32 |
6376 le32_to_cpu(stat_info
->rmac_udp
);
6378 (u64
)le32_to_cpu(stat_info
->rmac_err_drp_udp_oflow
) << 32 |
6379 le32_to_cpu(stat_info
->rmac_err_drp_udp
);
6380 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_xgmii_err_sym
);
6381 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_frms_q0
);
6382 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_frms_q1
);
6383 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_frms_q2
);
6384 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_frms_q3
);
6385 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_frms_q4
);
6386 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_frms_q5
);
6387 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_frms_q6
);
6388 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_frms_q7
);
6389 tmp_stats
[i
++] = le16_to_cpu(stat_info
->rmac_full_q0
);
6390 tmp_stats
[i
++] = le16_to_cpu(stat_info
->rmac_full_q1
);
6391 tmp_stats
[i
++] = le16_to_cpu(stat_info
->rmac_full_q2
);
6392 tmp_stats
[i
++] = le16_to_cpu(stat_info
->rmac_full_q3
);
6393 tmp_stats
[i
++] = le16_to_cpu(stat_info
->rmac_full_q4
);
6394 tmp_stats
[i
++] = le16_to_cpu(stat_info
->rmac_full_q5
);
6395 tmp_stats
[i
++] = le16_to_cpu(stat_info
->rmac_full_q6
);
6396 tmp_stats
[i
++] = le16_to_cpu(stat_info
->rmac_full_q7
);
6398 (u64
)le32_to_cpu(stat_info
->rmac_pause_cnt_oflow
) << 32 |
6399 le32_to_cpu(stat_info
->rmac_pause_cnt
);
6400 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_xgmii_data_err_cnt
);
6401 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_xgmii_ctrl_err_cnt
);
6403 (u64
)le32_to_cpu(stat_info
->rmac_accepted_ip_oflow
) << 32 |
6404 le32_to_cpu(stat_info
->rmac_accepted_ip
);
6405 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rmac_err_tcp
);
6406 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rd_req_cnt
);
6407 tmp_stats
[i
++] = le32_to_cpu(stat_info
->new_rd_req_cnt
);
6408 tmp_stats
[i
++] = le32_to_cpu(stat_info
->new_rd_req_rtry_cnt
);
6409 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rd_rtry_cnt
);
6410 tmp_stats
[i
++] = le32_to_cpu(stat_info
->wr_rtry_rd_ack_cnt
);
6411 tmp_stats
[i
++] = le32_to_cpu(stat_info
->wr_req_cnt
);
6412 tmp_stats
[i
++] = le32_to_cpu(stat_info
->new_wr_req_cnt
);
6413 tmp_stats
[i
++] = le32_to_cpu(stat_info
->new_wr_req_rtry_cnt
);
6414 tmp_stats
[i
++] = le32_to_cpu(stat_info
->wr_rtry_cnt
);
6415 tmp_stats
[i
++] = le32_to_cpu(stat_info
->wr_disc_cnt
);
6416 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rd_rtry_wr_ack_cnt
);
6417 tmp_stats
[i
++] = le32_to_cpu(stat_info
->txp_wr_cnt
);
6418 tmp_stats
[i
++] = le32_to_cpu(stat_info
->txd_rd_cnt
);
6419 tmp_stats
[i
++] = le32_to_cpu(stat_info
->txd_wr_cnt
);
6420 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rxd_rd_cnt
);
6421 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rxd_wr_cnt
);
6422 tmp_stats
[i
++] = le32_to_cpu(stat_info
->txf_rd_cnt
);
6423 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rxf_wr_cnt
);
6425 /* Enhanced statistics exist only for Hercules */
6426 if(sp
->device_type
== XFRAME_II_DEVICE
) {
6428 le64_to_cpu(stat_info
->rmac_ttl_1519_4095_frms
);
6430 le64_to_cpu(stat_info
->rmac_ttl_4096_8191_frms
);
6432 le64_to_cpu(stat_info
->rmac_ttl_8192_max_frms
);
6433 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_ttl_gt_max_frms
);
6434 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_osized_alt_frms
);
6435 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_jabber_alt_frms
);
6436 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_gt_max_alt_frms
);
6437 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_vlan_frms
);
6438 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rmac_len_discard
);
6439 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rmac_fcs_discard
);
6440 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rmac_pf_discard
);
6441 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rmac_da_discard
);
6442 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rmac_red_discard
);
6443 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rmac_rts_discard
);
6444 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rmac_ingm_full_discard
);
6445 tmp_stats
[i
++] = le32_to_cpu(stat_info
->link_fault_cnt
);
6449 tmp_stats
[i
++] = stat_info
->sw_stat
.single_ecc_errs
;
6450 tmp_stats
[i
++] = stat_info
->sw_stat
.double_ecc_errs
;
6451 tmp_stats
[i
++] = stat_info
->sw_stat
.parity_err_cnt
;
6452 tmp_stats
[i
++] = stat_info
->sw_stat
.serious_err_cnt
;
6453 tmp_stats
[i
++] = stat_info
->sw_stat
.soft_reset_cnt
;
6454 tmp_stats
[i
++] = stat_info
->sw_stat
.fifo_full_cnt
;
6455 for (k
= 0; k
< MAX_RX_RINGS
; k
++)
6456 tmp_stats
[i
++] = stat_info
->sw_stat
.ring_full_cnt
[k
];
6457 tmp_stats
[i
++] = stat_info
->xpak_stat
.alarm_transceiver_temp_high
;
6458 tmp_stats
[i
++] = stat_info
->xpak_stat
.alarm_transceiver_temp_low
;
6459 tmp_stats
[i
++] = stat_info
->xpak_stat
.alarm_laser_bias_current_high
;
6460 tmp_stats
[i
++] = stat_info
->xpak_stat
.alarm_laser_bias_current_low
;
6461 tmp_stats
[i
++] = stat_info
->xpak_stat
.alarm_laser_output_power_high
;
6462 tmp_stats
[i
++] = stat_info
->xpak_stat
.alarm_laser_output_power_low
;
6463 tmp_stats
[i
++] = stat_info
->xpak_stat
.warn_transceiver_temp_high
;
6464 tmp_stats
[i
++] = stat_info
->xpak_stat
.warn_transceiver_temp_low
;
6465 tmp_stats
[i
++] = stat_info
->xpak_stat
.warn_laser_bias_current_high
;
6466 tmp_stats
[i
++] = stat_info
->xpak_stat
.warn_laser_bias_current_low
;
6467 tmp_stats
[i
++] = stat_info
->xpak_stat
.warn_laser_output_power_high
;
6468 tmp_stats
[i
++] = stat_info
->xpak_stat
.warn_laser_output_power_low
;
6469 tmp_stats
[i
++] = stat_info
->sw_stat
.clubbed_frms_cnt
;
6470 tmp_stats
[i
++] = stat_info
->sw_stat
.sending_both
;
6471 tmp_stats
[i
++] = stat_info
->sw_stat
.outof_sequence_pkts
;
6472 tmp_stats
[i
++] = stat_info
->sw_stat
.flush_max_pkts
;
6473 if (stat_info
->sw_stat
.num_aggregations
) {
6474 u64 tmp
= stat_info
->sw_stat
.sum_avg_pkts_aggregated
;
6477 * Since 64-bit divide does not work on all platforms,
6478 * do repeated subtraction.
6480 while (tmp
>= stat_info
->sw_stat
.num_aggregations
) {
6481 tmp
-= stat_info
->sw_stat
.num_aggregations
;
6484 tmp_stats
[i
++] = count
;
6488 tmp_stats
[i
++] = stat_info
->sw_stat
.mem_alloc_fail_cnt
;
6489 tmp_stats
[i
++] = stat_info
->sw_stat
.pci_map_fail_cnt
;
6490 tmp_stats
[i
++] = stat_info
->sw_stat
.watchdog_timer_cnt
;
6491 tmp_stats
[i
++] = stat_info
->sw_stat
.mem_allocated
;
6492 tmp_stats
[i
++] = stat_info
->sw_stat
.mem_freed
;
6493 tmp_stats
[i
++] = stat_info
->sw_stat
.link_up_cnt
;
6494 tmp_stats
[i
++] = stat_info
->sw_stat
.link_down_cnt
;
6495 tmp_stats
[i
++] = stat_info
->sw_stat
.link_up_time
;
6496 tmp_stats
[i
++] = stat_info
->sw_stat
.link_down_time
;
6498 tmp_stats
[i
++] = stat_info
->sw_stat
.tx_buf_abort_cnt
;
6499 tmp_stats
[i
++] = stat_info
->sw_stat
.tx_desc_abort_cnt
;
6500 tmp_stats
[i
++] = stat_info
->sw_stat
.tx_parity_err_cnt
;
6501 tmp_stats
[i
++] = stat_info
->sw_stat
.tx_link_loss_cnt
;
6502 tmp_stats
[i
++] = stat_info
->sw_stat
.tx_list_proc_err_cnt
;
6504 tmp_stats
[i
++] = stat_info
->sw_stat
.rx_parity_err_cnt
;
6505 tmp_stats
[i
++] = stat_info
->sw_stat
.rx_abort_cnt
;
6506 tmp_stats
[i
++] = stat_info
->sw_stat
.rx_parity_abort_cnt
;
6507 tmp_stats
[i
++] = stat_info
->sw_stat
.rx_rda_fail_cnt
;
6508 tmp_stats
[i
++] = stat_info
->sw_stat
.rx_unkn_prot_cnt
;
6509 tmp_stats
[i
++] = stat_info
->sw_stat
.rx_fcs_err_cnt
;
6510 tmp_stats
[i
++] = stat_info
->sw_stat
.rx_buf_size_err_cnt
;
6511 tmp_stats
[i
++] = stat_info
->sw_stat
.rx_rxd_corrupt_cnt
;
6512 tmp_stats
[i
++] = stat_info
->sw_stat
.rx_unkn_err_cnt
;
6513 tmp_stats
[i
++] = stat_info
->sw_stat
.tda_err_cnt
;
6514 tmp_stats
[i
++] = stat_info
->sw_stat
.pfc_err_cnt
;
6515 tmp_stats
[i
++] = stat_info
->sw_stat
.pcc_err_cnt
;
6516 tmp_stats
[i
++] = stat_info
->sw_stat
.tti_err_cnt
;
6517 tmp_stats
[i
++] = stat_info
->sw_stat
.tpa_err_cnt
;
6518 tmp_stats
[i
++] = stat_info
->sw_stat
.sm_err_cnt
;
6519 tmp_stats
[i
++] = stat_info
->sw_stat
.lso_err_cnt
;
6520 tmp_stats
[i
++] = stat_info
->sw_stat
.mac_tmac_err_cnt
;
6521 tmp_stats
[i
++] = stat_info
->sw_stat
.mac_rmac_err_cnt
;
6522 tmp_stats
[i
++] = stat_info
->sw_stat
.xgxs_txgxs_err_cnt
;
6523 tmp_stats
[i
++] = stat_info
->sw_stat
.xgxs_rxgxs_err_cnt
;
6524 tmp_stats
[i
++] = stat_info
->sw_stat
.rc_err_cnt
;
6525 tmp_stats
[i
++] = stat_info
->sw_stat
.prc_pcix_err_cnt
;
6526 tmp_stats
[i
++] = stat_info
->sw_stat
.rpa_err_cnt
;
6527 tmp_stats
[i
++] = stat_info
->sw_stat
.rda_err_cnt
;
6528 tmp_stats
[i
++] = stat_info
->sw_stat
.rti_err_cnt
;
6529 tmp_stats
[i
++] = stat_info
->sw_stat
.mc_err_cnt
;
6532 static int s2io_ethtool_get_regs_len(struct net_device
*dev
)
6534 return (XENA_REG_SPACE
);
6538 static u32
s2io_ethtool_get_rx_csum(struct net_device
* dev
)
6540 struct s2io_nic
*sp
= dev
->priv
;
6542 return (sp
->rx_csum
);
6545 static int s2io_ethtool_set_rx_csum(struct net_device
*dev
, u32 data
)
6547 struct s2io_nic
*sp
= dev
->priv
;
6557 static int s2io_get_eeprom_len(struct net_device
*dev
)
6559 return (XENA_EEPROM_SPACE
);
6562 static int s2io_get_sset_count(struct net_device
*dev
, int sset
)
6564 struct s2io_nic
*sp
= dev
->priv
;
6568 return S2IO_TEST_LEN
;
6570 switch(sp
->device_type
) {
6571 case XFRAME_I_DEVICE
:
6572 return XFRAME_I_STAT_LEN
;
6573 case XFRAME_II_DEVICE
:
6574 return XFRAME_II_STAT_LEN
;
6583 static void s2io_ethtool_get_strings(struct net_device
*dev
,
6584 u32 stringset
, u8
* data
)
6587 struct s2io_nic
*sp
= dev
->priv
;
6589 switch (stringset
) {
6591 memcpy(data
, s2io_gstrings
, S2IO_STRINGS_LEN
);
6594 stat_size
= sizeof(ethtool_xena_stats_keys
);
6595 memcpy(data
, ðtool_xena_stats_keys
,stat_size
);
6596 if(sp
->device_type
== XFRAME_II_DEVICE
) {
6597 memcpy(data
+ stat_size
,
6598 ðtool_enhanced_stats_keys
,
6599 sizeof(ethtool_enhanced_stats_keys
));
6600 stat_size
+= sizeof(ethtool_enhanced_stats_keys
);
6603 memcpy(data
+ stat_size
, ðtool_driver_stats_keys
,
6604 sizeof(ethtool_driver_stats_keys
));
6608 static int s2io_ethtool_op_set_tx_csum(struct net_device
*dev
, u32 data
)
6611 dev
->features
|= NETIF_F_IP_CSUM
;
6613 dev
->features
&= ~NETIF_F_IP_CSUM
;
6618 static u32
s2io_ethtool_op_get_tso(struct net_device
*dev
)
6620 return (dev
->features
& NETIF_F_TSO
) != 0;
6622 static int s2io_ethtool_op_set_tso(struct net_device
*dev
, u32 data
)
6625 dev
->features
|= (NETIF_F_TSO
| NETIF_F_TSO6
);
6627 dev
->features
&= ~(NETIF_F_TSO
| NETIF_F_TSO6
);
6632 static const struct ethtool_ops netdev_ethtool_ops
= {
6633 .get_settings
= s2io_ethtool_gset
,
6634 .set_settings
= s2io_ethtool_sset
,
6635 .get_drvinfo
= s2io_ethtool_gdrvinfo
,
6636 .get_regs_len
= s2io_ethtool_get_regs_len
,
6637 .get_regs
= s2io_ethtool_gregs
,
6638 .get_link
= ethtool_op_get_link
,
6639 .get_eeprom_len
= s2io_get_eeprom_len
,
6640 .get_eeprom
= s2io_ethtool_geeprom
,
6641 .set_eeprom
= s2io_ethtool_seeprom
,
6642 .get_ringparam
= s2io_ethtool_gringparam
,
6643 .get_pauseparam
= s2io_ethtool_getpause_data
,
6644 .set_pauseparam
= s2io_ethtool_setpause_data
,
6645 .get_rx_csum
= s2io_ethtool_get_rx_csum
,
6646 .set_rx_csum
= s2io_ethtool_set_rx_csum
,
6647 .set_tx_csum
= s2io_ethtool_op_set_tx_csum
,
6648 .set_sg
= ethtool_op_set_sg
,
6649 .get_tso
= s2io_ethtool_op_get_tso
,
6650 .set_tso
= s2io_ethtool_op_set_tso
,
6651 .set_ufo
= ethtool_op_set_ufo
,
6652 .self_test
= s2io_ethtool_test
,
6653 .get_strings
= s2io_ethtool_get_strings
,
6654 .phys_id
= s2io_ethtool_idnic
,
6655 .get_ethtool_stats
= s2io_get_ethtool_stats
,
6656 .get_sset_count
= s2io_get_sset_count
,
6660 * s2io_ioctl - Entry point for the Ioctl
6661 * @dev : Device pointer.
6662 * @ifr : An IOCTL specefic structure, that can contain a pointer to
6663 * a proprietary structure used to pass information to the driver.
6664 * @cmd : This is used to distinguish between the different commands that
6665 * can be passed to the IOCTL functions.
6667 * Currently there are no special functionality supported in IOCTL, hence
6668 * function always return EOPNOTSUPPORTED
6671 static int s2io_ioctl(struct net_device
*dev
, struct ifreq
*rq
, int cmd
)
6677 * s2io_change_mtu - entry point to change MTU size for the device.
6678 * @dev : device pointer.
6679 * @new_mtu : the new MTU size for the device.
6680 * Description: A driver entry point to change MTU size for the device.
6681 * Before changing the MTU the device must be stopped.
6683 * 0 on success and an appropriate (-)ve integer as defined in errno.h
6687 static int s2io_change_mtu(struct net_device
*dev
, int new_mtu
)
6689 struct s2io_nic
*sp
= dev
->priv
;
6692 if ((new_mtu
< MIN_MTU
) || (new_mtu
> S2IO_JUMBO_SIZE
)) {
6693 DBG_PRINT(ERR_DBG
, "%s: MTU size is invalid.\n",
6699 if (netif_running(dev
)) {
6700 s2io_stop_all_tx_queue(sp
);
6702 ret
= s2io_card_up(sp
);
6704 DBG_PRINT(ERR_DBG
, "%s: Device bring up failed\n",
6708 s2io_wake_all_tx_queue(sp
);
6709 } else { /* Device is down */
6710 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
6711 u64 val64
= new_mtu
;
6713 writeq(vBIT(val64
, 2, 14), &bar0
->rmac_max_pyld_len
);
6720 * s2io_set_link - Set the LInk status
6721 * @data: long pointer to device private structue
6722 * Description: Sets the link status for the adapter
6725 static void s2io_set_link(struct work_struct
*work
)
6727 struct s2io_nic
*nic
= container_of(work
, struct s2io_nic
, set_link_task
);
6728 struct net_device
*dev
= nic
->dev
;
6729 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
6735 if (!netif_running(dev
))
6738 if (test_and_set_bit(__S2IO_STATE_LINK_TASK
, &(nic
->state
))) {
6739 /* The card is being reset, no point doing anything */
6743 subid
= nic
->pdev
->subsystem_device
;
6744 if (s2io_link_fault_indication(nic
) == MAC_RMAC_ERR_TIMER
) {
6746 * Allow a small delay for the NICs self initiated
6747 * cleanup to complete.
6752 val64
= readq(&bar0
->adapter_status
);
6753 if (LINK_IS_UP(val64
)) {
6754 if (!(readq(&bar0
->adapter_control
) & ADAPTER_CNTL_EN
)) {
6755 if (verify_xena_quiescence(nic
)) {
6756 val64
= readq(&bar0
->adapter_control
);
6757 val64
|= ADAPTER_CNTL_EN
;
6758 writeq(val64
, &bar0
->adapter_control
);
6759 if (CARDS_WITH_FAULTY_LINK_INDICATORS(
6760 nic
->device_type
, subid
)) {
6761 val64
= readq(&bar0
->gpio_control
);
6762 val64
|= GPIO_CTRL_GPIO_0
;
6763 writeq(val64
, &bar0
->gpio_control
);
6764 val64
= readq(&bar0
->gpio_control
);
6766 val64
|= ADAPTER_LED_ON
;
6767 writeq(val64
, &bar0
->adapter_control
);
6769 nic
->device_enabled_once
= TRUE
;
6771 DBG_PRINT(ERR_DBG
, "%s: Error: ", dev
->name
);
6772 DBG_PRINT(ERR_DBG
, "device is not Quiescent\n");
6773 s2io_stop_all_tx_queue(nic
);
6776 val64
= readq(&bar0
->adapter_control
);
6777 val64
|= ADAPTER_LED_ON
;
6778 writeq(val64
, &bar0
->adapter_control
);
6779 s2io_link(nic
, LINK_UP
);
6781 if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic
->device_type
,
6783 val64
= readq(&bar0
->gpio_control
);
6784 val64
&= ~GPIO_CTRL_GPIO_0
;
6785 writeq(val64
, &bar0
->gpio_control
);
6786 val64
= readq(&bar0
->gpio_control
);
6789 val64
= readq(&bar0
->adapter_control
);
6790 val64
= val64
&(~ADAPTER_LED_ON
);
6791 writeq(val64
, &bar0
->adapter_control
);
6792 s2io_link(nic
, LINK_DOWN
);
6794 clear_bit(__S2IO_STATE_LINK_TASK
, &(nic
->state
));
6800 static int set_rxd_buffer_pointer(struct s2io_nic
*sp
, struct RxD_t
*rxdp
,
6802 struct sk_buff
**skb
, u64
*temp0
, u64
*temp1
,
6803 u64
*temp2
, int size
)
6805 struct net_device
*dev
= sp
->dev
;
6806 struct swStat
*stats
= &sp
->mac_control
.stats_info
->sw_stat
;
6808 if ((sp
->rxd_mode
== RXD_MODE_1
) && (rxdp
->Host_Control
== 0)) {
6809 struct RxD1
*rxdp1
= (struct RxD1
*)rxdp
;
6812 DBG_PRINT(INFO_DBG
, "SKB is not NULL\n");
6814 * As Rx frame are not going to be processed,
6815 * using same mapped address for the Rxd
6818 rxdp1
->Buffer0_ptr
= *temp0
;
6820 *skb
= dev_alloc_skb(size
);
6822 DBG_PRINT(INFO_DBG
, "%s: Out of ", dev
->name
);
6823 DBG_PRINT(INFO_DBG
, "memory to allocate ");
6824 DBG_PRINT(INFO_DBG
, "1 buf mode SKBs\n");
6825 sp
->mac_control
.stats_info
->sw_stat
. \
6826 mem_alloc_fail_cnt
++;
6829 sp
->mac_control
.stats_info
->sw_stat
.mem_allocated
6830 += (*skb
)->truesize
;
6831 /* storing the mapped addr in a temp variable
6832 * such it will be used for next rxd whose
6833 * Host Control is NULL
6835 rxdp1
->Buffer0_ptr
= *temp0
=
6836 pci_map_single( sp
->pdev
, (*skb
)->data
,
6837 size
- NET_IP_ALIGN
,
6838 PCI_DMA_FROMDEVICE
);
6839 if( (rxdp1
->Buffer0_ptr
== 0) ||
6840 (rxdp1
->Buffer0_ptr
== DMA_ERROR_CODE
)) {
6841 goto memalloc_failed
;
6843 rxdp
->Host_Control
= (unsigned long) (*skb
);
6845 } else if ((sp
->rxd_mode
== RXD_MODE_3B
) && (rxdp
->Host_Control
== 0)) {
6846 struct RxD3
*rxdp3
= (struct RxD3
*)rxdp
;
6847 /* Two buffer Mode */
6849 rxdp3
->Buffer2_ptr
= *temp2
;
6850 rxdp3
->Buffer0_ptr
= *temp0
;
6851 rxdp3
->Buffer1_ptr
= *temp1
;
6853 *skb
= dev_alloc_skb(size
);
6855 DBG_PRINT(INFO_DBG
, "%s: Out of ", dev
->name
);
6856 DBG_PRINT(INFO_DBG
, "memory to allocate ");
6857 DBG_PRINT(INFO_DBG
, "2 buf mode SKBs\n");
6858 sp
->mac_control
.stats_info
->sw_stat
. \
6859 mem_alloc_fail_cnt
++;
6862 sp
->mac_control
.stats_info
->sw_stat
.mem_allocated
6863 += (*skb
)->truesize
;
6864 rxdp3
->Buffer2_ptr
= *temp2
=
6865 pci_map_single(sp
->pdev
, (*skb
)->data
,
6867 PCI_DMA_FROMDEVICE
);
6868 if( (rxdp3
->Buffer2_ptr
== 0) ||
6869 (rxdp3
->Buffer2_ptr
== DMA_ERROR_CODE
)) {
6870 goto memalloc_failed
;
6872 rxdp3
->Buffer0_ptr
= *temp0
=
6873 pci_map_single( sp
->pdev
, ba
->ba_0
, BUF0_LEN
,
6874 PCI_DMA_FROMDEVICE
);
6875 if( (rxdp3
->Buffer0_ptr
== 0) ||
6876 (rxdp3
->Buffer0_ptr
== DMA_ERROR_CODE
)) {
6877 pci_unmap_single (sp
->pdev
,
6878 (dma_addr_t
)rxdp3
->Buffer2_ptr
,
6879 dev
->mtu
+ 4, PCI_DMA_FROMDEVICE
);
6880 goto memalloc_failed
;
6882 rxdp
->Host_Control
= (unsigned long) (*skb
);
6884 /* Buffer-1 will be dummy buffer not used */
6885 rxdp3
->Buffer1_ptr
= *temp1
=
6886 pci_map_single(sp
->pdev
, ba
->ba_1
, BUF1_LEN
,
6887 PCI_DMA_FROMDEVICE
);
6888 if( (rxdp3
->Buffer1_ptr
== 0) ||
6889 (rxdp3
->Buffer1_ptr
== DMA_ERROR_CODE
)) {
6890 pci_unmap_single (sp
->pdev
,
6891 (dma_addr_t
)rxdp3
->Buffer0_ptr
,
6892 BUF0_LEN
, PCI_DMA_FROMDEVICE
);
6893 pci_unmap_single (sp
->pdev
,
6894 (dma_addr_t
)rxdp3
->Buffer2_ptr
,
6895 dev
->mtu
+ 4, PCI_DMA_FROMDEVICE
);
6896 goto memalloc_failed
;
6902 stats
->pci_map_fail_cnt
++;
6903 stats
->mem_freed
+= (*skb
)->truesize
;
6904 dev_kfree_skb(*skb
);
6908 static void set_rxd_buffer_size(struct s2io_nic
*sp
, struct RxD_t
*rxdp
,
6911 struct net_device
*dev
= sp
->dev
;
6912 if (sp
->rxd_mode
== RXD_MODE_1
) {
6913 rxdp
->Control_2
= SET_BUFFER0_SIZE_1( size
- NET_IP_ALIGN
);
6914 } else if (sp
->rxd_mode
== RXD_MODE_3B
) {
6915 rxdp
->Control_2
= SET_BUFFER0_SIZE_3(BUF0_LEN
);
6916 rxdp
->Control_2
|= SET_BUFFER1_SIZE_3(1);
6917 rxdp
->Control_2
|= SET_BUFFER2_SIZE_3( dev
->mtu
+ 4);
6921 static int rxd_owner_bit_reset(struct s2io_nic
*sp
)
6923 int i
, j
, k
, blk_cnt
= 0, size
;
6924 struct mac_info
* mac_control
= &sp
->mac_control
;
6925 struct config_param
*config
= &sp
->config
;
6926 struct net_device
*dev
= sp
->dev
;
6927 struct RxD_t
*rxdp
= NULL
;
6928 struct sk_buff
*skb
= NULL
;
6929 struct buffAdd
*ba
= NULL
;
6930 u64 temp0_64
= 0, temp1_64
= 0, temp2_64
= 0;
6932 /* Calculate the size based on ring mode */
6933 size
= dev
->mtu
+ HEADER_ETHERNET_II_802_3_SIZE
+
6934 HEADER_802_2_SIZE
+ HEADER_SNAP_SIZE
;
6935 if (sp
->rxd_mode
== RXD_MODE_1
)
6936 size
+= NET_IP_ALIGN
;
6937 else if (sp
->rxd_mode
== RXD_MODE_3B
)
6938 size
= dev
->mtu
+ ALIGN_SIZE
+ BUF0_LEN
+ 4;
6940 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
6941 blk_cnt
= config
->rx_cfg
[i
].num_rxd
/
6942 (rxd_count
[sp
->rxd_mode
] +1);
6944 for (j
= 0; j
< blk_cnt
; j
++) {
6945 for (k
= 0; k
< rxd_count
[sp
->rxd_mode
]; k
++) {
6946 rxdp
= mac_control
->rings
[i
].
6947 rx_blocks
[j
].rxds
[k
].virt_addr
;
6948 if(sp
->rxd_mode
== RXD_MODE_3B
)
6949 ba
= &mac_control
->rings
[i
].ba
[j
][k
];
6950 if (set_rxd_buffer_pointer(sp
, rxdp
, ba
,
6951 &skb
,(u64
*)&temp0_64
,
6958 set_rxd_buffer_size(sp
, rxdp
, size
);
6960 /* flip the Ownership bit to Hardware */
6961 rxdp
->Control_1
|= RXD_OWN_XENA
;
6969 static int s2io_add_isr(struct s2io_nic
* sp
)
6972 struct net_device
*dev
= sp
->dev
;
6975 if (sp
->config
.intr_type
== MSI_X
)
6976 ret
= s2io_enable_msi_x(sp
);
6978 DBG_PRINT(ERR_DBG
, "%s: Defaulting to INTA\n", dev
->name
);
6979 sp
->config
.intr_type
= INTA
;
6982 /* Store the values of the MSIX table in the struct s2io_nic structure */
6983 store_xmsi_data(sp
);
6985 /* After proper initialization of H/W, register ISR */
6986 if (sp
->config
.intr_type
== MSI_X
) {
6987 int i
, msix_tx_cnt
=0,msix_rx_cnt
=0;
6989 for (i
=1; (sp
->s2io_entries
[i
].in_use
== MSIX_FLG
); i
++) {
6990 if (sp
->s2io_entries
[i
].type
== MSIX_FIFO_TYPE
) {
6991 sprintf(sp
->desc
[i
], "%s:MSI-X-%d-TX",
6993 err
= request_irq(sp
->entries
[i
].vector
,
6994 s2io_msix_fifo_handle
, 0, sp
->desc
[i
],
6995 sp
->s2io_entries
[i
].arg
);
6996 /* If either data or addr is zero print it */
6997 if(!(sp
->msix_info
[i
].addr
&&
6998 sp
->msix_info
[i
].data
)) {
6999 DBG_PRINT(ERR_DBG
, "%s @ Addr:0x%llx "
7000 "Data:0x%llx\n",sp
->desc
[i
],
7001 (unsigned long long)
7002 sp
->msix_info
[i
].addr
,
7003 (unsigned long long)
7004 sp
->msix_info
[i
].data
);
7009 sprintf(sp
->desc
[i
], "%s:MSI-X-%d-RX",
7011 err
= request_irq(sp
->entries
[i
].vector
,
7012 s2io_msix_ring_handle
, 0, sp
->desc
[i
],
7013 sp
->s2io_entries
[i
].arg
);
7014 /* If either data or addr is zero print it */
7015 if(!(sp
->msix_info
[i
].addr
&&
7016 sp
->msix_info
[i
].data
)) {
7017 DBG_PRINT(ERR_DBG
, "%s @ Addr:0x%llx "
7018 "Data:0x%llx\n",sp
->desc
[i
],
7019 (unsigned long long)
7020 sp
->msix_info
[i
].addr
,
7021 (unsigned long long)
7022 sp
->msix_info
[i
].data
);
7028 remove_msix_isr(sp
);
7029 DBG_PRINT(ERR_DBG
,"%s:MSI-X-%d registration "
7030 "failed\n", dev
->name
, i
);
7031 DBG_PRINT(ERR_DBG
, "%s: defaulting to INTA\n",
7033 sp
->config
.intr_type
= INTA
;
7036 sp
->s2io_entries
[i
].in_use
= MSIX_REGISTERED_SUCCESS
;
7039 printk(KERN_INFO
"MSI-X-TX %d entries enabled\n",
7041 printk(KERN_INFO
"MSI-X-RX %d entries enabled\n",
7045 if (sp
->config
.intr_type
== INTA
) {
7046 err
= request_irq((int) sp
->pdev
->irq
, s2io_isr
, IRQF_SHARED
,
7049 DBG_PRINT(ERR_DBG
, "%s: ISR registration failed\n",
7056 static void s2io_rem_isr(struct s2io_nic
* sp
)
7058 if (sp
->config
.intr_type
== MSI_X
)
7059 remove_msix_isr(sp
);
7061 remove_inta_isr(sp
);
7064 static void do_s2io_card_down(struct s2io_nic
* sp
, int do_io
)
7067 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
7068 register u64 val64
= 0;
7069 struct config_param
*config
;
7070 config
= &sp
->config
;
7072 if (!is_s2io_card_up(sp
))
7075 del_timer_sync(&sp
->alarm_timer
);
7076 /* If s2io_set_link task is executing, wait till it completes. */
7077 while (test_and_set_bit(__S2IO_STATE_LINK_TASK
, &(sp
->state
))) {
7080 clear_bit(__S2IO_STATE_CARD_UP
, &sp
->state
);
7084 napi_disable(&sp
->napi
);
7086 /* disable Tx and Rx traffic on the NIC */
7092 /* Check if the device is Quiescent and then Reset the NIC */
7094 /* As per the HW requirement we need to replenish the
7095 * receive buffer to avoid the ring bump. Since there is
7096 * no intention of processing the Rx frame at this pointwe are
7097 * just settting the ownership bit of rxd in Each Rx
7098 * ring to HW and set the appropriate buffer size
7099 * based on the ring mode
7101 rxd_owner_bit_reset(sp
);
7103 val64
= readq(&bar0
->adapter_status
);
7104 if (verify_xena_quiescence(sp
)) {
7105 if(verify_pcc_quiescent(sp
, sp
->device_enabled_once
))
7113 "s2io_close:Device not Quiescent ");
7114 DBG_PRINT(ERR_DBG
, "adaper status reads 0x%llx\n",
7115 (unsigned long long) val64
);
7122 /* Free all Tx buffers */
7123 free_tx_buffers(sp
);
7125 /* Free all Rx buffers */
7126 free_rx_buffers(sp
);
7128 clear_bit(__S2IO_STATE_LINK_TASK
, &(sp
->state
));
7131 static void s2io_card_down(struct s2io_nic
* sp
)
7133 do_s2io_card_down(sp
, 1);
7136 static int s2io_card_up(struct s2io_nic
* sp
)
7139 struct mac_info
*mac_control
;
7140 struct config_param
*config
;
7141 struct net_device
*dev
= (struct net_device
*) sp
->dev
;
7144 /* Initialize the H/W I/O registers */
7147 DBG_PRINT(ERR_DBG
, "%s: H/W initialization failed\n",
7155 * Initializing the Rx buffers. For now we are considering only 1
7156 * Rx ring and initializing buffers into 30 Rx blocks
7158 mac_control
= &sp
->mac_control
;
7159 config
= &sp
->config
;
7161 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
7162 mac_control
->rings
[i
].mtu
= dev
->mtu
;
7163 ret
= fill_rx_buffers(&mac_control
->rings
[i
]);
7165 DBG_PRINT(ERR_DBG
, "%s: Out of memory in Open\n",
7168 free_rx_buffers(sp
);
7171 DBG_PRINT(INFO_DBG
, "Buf in ring:%d is %d:\n", i
,
7172 mac_control
->rings
[i
].rx_bufs_left
);
7175 /* Initialise napi */
7177 napi_enable(&sp
->napi
);
7179 /* Maintain the state prior to the open */
7180 if (sp
->promisc_flg
)
7181 sp
->promisc_flg
= 0;
7182 if (sp
->m_cast_flg
) {
7184 sp
->all_multi_pos
= 0;
7187 /* Setting its receive mode */
7188 s2io_set_multicast(dev
);
7191 /* Initialize max aggregatable pkts per session based on MTU */
7192 sp
->lro_max_aggr_per_sess
= ((1<<16) - 1) / dev
->mtu
;
7193 /* Check if we can use(if specified) user provided value */
7194 if (lro_max_pkts
< sp
->lro_max_aggr_per_sess
)
7195 sp
->lro_max_aggr_per_sess
= lro_max_pkts
;
7198 /* Enable Rx Traffic and interrupts on the NIC */
7199 if (start_nic(sp
)) {
7200 DBG_PRINT(ERR_DBG
, "%s: Starting NIC failed\n", dev
->name
);
7202 free_rx_buffers(sp
);
7206 /* Add interrupt service routine */
7207 if (s2io_add_isr(sp
) != 0) {
7208 if (sp
->config
.intr_type
== MSI_X
)
7211 free_rx_buffers(sp
);
7215 S2IO_TIMER_CONF(sp
->alarm_timer
, s2io_alarm_handle
, sp
, (HZ
/2));
7217 /* Enable select interrupts */
7218 en_dis_err_alarms(sp
, ENA_ALL_INTRS
, ENABLE_INTRS
);
7219 if (sp
->config
.intr_type
!= INTA
)
7220 en_dis_able_nic_intrs(sp
, ENA_ALL_INTRS
, DISABLE_INTRS
);
7222 interruptible
= TX_TRAFFIC_INTR
| RX_TRAFFIC_INTR
;
7223 interruptible
|= TX_PIC_INTR
;
7224 en_dis_able_nic_intrs(sp
, interruptible
, ENABLE_INTRS
);
7227 set_bit(__S2IO_STATE_CARD_UP
, &sp
->state
);
7232 * s2io_restart_nic - Resets the NIC.
7233 * @data : long pointer to the device private structure
7235 * This function is scheduled to be run by the s2io_tx_watchdog
7236 * function after 0.5 secs to reset the NIC. The idea is to reduce
7237 * the run time of the watch dog routine which is run holding a
7241 static void s2io_restart_nic(struct work_struct
*work
)
7243 struct s2io_nic
*sp
= container_of(work
, struct s2io_nic
, rst_timer_task
);
7244 struct net_device
*dev
= sp
->dev
;
7248 if (!netif_running(dev
))
7252 if (s2io_card_up(sp
)) {
7253 DBG_PRINT(ERR_DBG
, "%s: Device bring up failed\n",
7256 s2io_wake_all_tx_queue(sp
);
7257 DBG_PRINT(ERR_DBG
, "%s: was reset by Tx watchdog timer\n",
7264 * s2io_tx_watchdog - Watchdog for transmit side.
7265 * @dev : Pointer to net device structure
7267 * This function is triggered if the Tx Queue is stopped
7268 * for a pre-defined amount of time when the Interface is still up.
7269 * If the Interface is jammed in such a situation, the hardware is
7270 * reset (by s2io_close) and restarted again (by s2io_open) to
7271 * overcome any problem that might have been caused in the hardware.
7276 static void s2io_tx_watchdog(struct net_device
*dev
)
7278 struct s2io_nic
*sp
= dev
->priv
;
7280 if (netif_carrier_ok(dev
)) {
7281 sp
->mac_control
.stats_info
->sw_stat
.watchdog_timer_cnt
++;
7282 schedule_work(&sp
->rst_timer_task
);
7283 sp
->mac_control
.stats_info
->sw_stat
.soft_reset_cnt
++;
7288 * rx_osm_handler - To perform some OS related operations on SKB.
7289 * @sp: private member of the device structure,pointer to s2io_nic structure.
7290 * @skb : the socket buffer pointer.
7291 * @len : length of the packet
7292 * @cksum : FCS checksum of the frame.
7293 * @ring_no : the ring from which this RxD was extracted.
7295 * This function is called by the Rx interrupt serivce routine to perform
7296 * some OS related operations on the SKB before passing it to the upper
7297 * layers. It mainly checks if the checksum is OK, if so adds it to the
7298 * SKBs cksum variable, increments the Rx packet count and passes the SKB
7299 * to the upper layer. If the checksum is wrong, it increments the Rx
7300 * packet error count, frees the SKB and returns error.
7302 * SUCCESS on success and -1 on failure.
7304 static int rx_osm_handler(struct ring_info
*ring_data
, struct RxD_t
* rxdp
)
7306 struct s2io_nic
*sp
= ring_data
->nic
;
7307 struct net_device
*dev
= (struct net_device
*) ring_data
->dev
;
7308 struct sk_buff
*skb
= (struct sk_buff
*)
7309 ((unsigned long) rxdp
->Host_Control
);
7310 int ring_no
= ring_data
->ring_no
;
7311 u16 l3_csum
, l4_csum
;
7312 unsigned long long err
= rxdp
->Control_1
& RXD_T_CODE
;
7319 /* Check for parity error */
7321 sp
->mac_control
.stats_info
->sw_stat
.parity_err_cnt
++;
7323 err_mask
= err
>> 48;
7326 sp
->mac_control
.stats_info
->sw_stat
.
7327 rx_parity_err_cnt
++;
7331 sp
->mac_control
.stats_info
->sw_stat
.
7336 sp
->mac_control
.stats_info
->sw_stat
.
7337 rx_parity_abort_cnt
++;
7341 sp
->mac_control
.stats_info
->sw_stat
.
7346 sp
->mac_control
.stats_info
->sw_stat
.
7351 sp
->mac_control
.stats_info
->sw_stat
.
7356 sp
->mac_control
.stats_info
->sw_stat
.
7357 rx_buf_size_err_cnt
++;
7361 sp
->mac_control
.stats_info
->sw_stat
.
7362 rx_rxd_corrupt_cnt
++;
7366 sp
->mac_control
.stats_info
->sw_stat
.
7371 * Drop the packet if bad transfer code. Exception being
7372 * 0x5, which could be due to unsupported IPv6 extension header.
7373 * In this case, we let stack handle the packet.
7374 * Note that in this case, since checksum will be incorrect,
7375 * stack will validate the same.
7377 if (err_mask
!= 0x5) {
7378 DBG_PRINT(ERR_DBG
, "%s: Rx error Value: 0x%x\n",
7379 dev
->name
, err_mask
);
7380 sp
->stats
.rx_crc_errors
++;
7381 sp
->mac_control
.stats_info
->sw_stat
.mem_freed
7384 ring_data
->rx_bufs_left
-= 1;
7385 rxdp
->Host_Control
= 0;
7390 /* Updating statistics */
7391 ring_data
->rx_packets
++;
7392 rxdp
->Host_Control
= 0;
7393 if (sp
->rxd_mode
== RXD_MODE_1
) {
7394 int len
= RXD_GET_BUFFER0_SIZE_1(rxdp
->Control_2
);
7396 ring_data
->rx_bytes
+= len
;
7399 } else if (sp
->rxd_mode
== RXD_MODE_3B
) {
7400 int get_block
= ring_data
->rx_curr_get_info
.block_index
;
7401 int get_off
= ring_data
->rx_curr_get_info
.offset
;
7402 int buf0_len
= RXD_GET_BUFFER0_SIZE_3(rxdp
->Control_2
);
7403 int buf2_len
= RXD_GET_BUFFER2_SIZE_3(rxdp
->Control_2
);
7404 unsigned char *buff
= skb_push(skb
, buf0_len
);
7406 struct buffAdd
*ba
= &ring_data
->ba
[get_block
][get_off
];
7407 ring_data
->rx_bytes
+= buf0_len
+ buf2_len
;
7408 memcpy(buff
, ba
->ba_0
, buf0_len
);
7409 skb_put(skb
, buf2_len
);
7412 if ((rxdp
->Control_1
& TCP_OR_UDP_FRAME
) && ((!ring_data
->lro
) ||
7413 (ring_data
->lro
&& (!(rxdp
->Control_1
& RXD_FRAME_IP_FRAG
)))) &&
7415 l3_csum
= RXD_GET_L3_CKSUM(rxdp
->Control_1
);
7416 l4_csum
= RXD_GET_L4_CKSUM(rxdp
->Control_1
);
7417 if ((l3_csum
== L3_CKSUM_OK
) && (l4_csum
== L4_CKSUM_OK
)) {
7419 * NIC verifies if the Checksum of the received
7420 * frame is Ok or not and accordingly returns
7421 * a flag in the RxD.
7423 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
7424 if (ring_data
->lro
) {
7429 ret
= s2io_club_tcp_session(ring_data
,
7430 skb
->data
, &tcp
, &tcp_len
, &lro
,
7433 case 3: /* Begin anew */
7436 case 1: /* Aggregate */
7438 lro_append_pkt(sp
, lro
,
7442 case 4: /* Flush session */
7444 lro_append_pkt(sp
, lro
,
7446 queue_rx_frame(lro
->parent
,
7448 clear_lro_session(lro
);
7449 sp
->mac_control
.stats_info
->
7450 sw_stat
.flush_max_pkts
++;
7453 case 2: /* Flush both */
7454 lro
->parent
->data_len
=
7456 sp
->mac_control
.stats_info
->
7457 sw_stat
.sending_both
++;
7458 queue_rx_frame(lro
->parent
,
7460 clear_lro_session(lro
);
7462 case 0: /* sessions exceeded */
7463 case -1: /* non-TCP or not
7467 * First pkt in session not
7468 * L3/L4 aggregatable
7473 "%s: Samadhana!!\n",
7480 * Packet with erroneous checksum, let the
7481 * upper layers deal with it.
7483 skb
->ip_summed
= CHECKSUM_NONE
;
7486 skb
->ip_summed
= CHECKSUM_NONE
;
7488 sp
->mac_control
.stats_info
->sw_stat
.mem_freed
+= skb
->truesize
;
7490 queue_rx_frame(skb
, RXD_GET_VLAN_TAG(rxdp
->Control_2
));
7491 dev
->last_rx
= jiffies
;
7493 sp
->mac_control
.rings
[ring_no
].rx_bufs_left
-= 1;
7498 * s2io_link - stops/starts the Tx queue.
7499 * @sp : private member of the device structure, which is a pointer to the
7500 * s2io_nic structure.
7501 * @link : inidicates whether link is UP/DOWN.
7503 * This function stops/starts the Tx queue depending on whether the link
7504 * status of the NIC is is down or up. This is called by the Alarm
7505 * interrupt handler whenever a link change interrupt comes up.
7510 static void s2io_link(struct s2io_nic
* sp
, int link
)
7512 struct net_device
*dev
= (struct net_device
*) sp
->dev
;
7514 if (link
!= sp
->last_link_state
) {
7516 if (link
== LINK_DOWN
) {
7517 DBG_PRINT(ERR_DBG
, "%s: Link down\n", dev
->name
);
7518 s2io_stop_all_tx_queue(sp
);
7519 netif_carrier_off(dev
);
7520 if(sp
->mac_control
.stats_info
->sw_stat
.link_up_cnt
)
7521 sp
->mac_control
.stats_info
->sw_stat
.link_up_time
=
7522 jiffies
- sp
->start_time
;
7523 sp
->mac_control
.stats_info
->sw_stat
.link_down_cnt
++;
7525 DBG_PRINT(ERR_DBG
, "%s: Link Up\n", dev
->name
);
7526 if (sp
->mac_control
.stats_info
->sw_stat
.link_down_cnt
)
7527 sp
->mac_control
.stats_info
->sw_stat
.link_down_time
=
7528 jiffies
- sp
->start_time
;
7529 sp
->mac_control
.stats_info
->sw_stat
.link_up_cnt
++;
7530 netif_carrier_on(dev
);
7531 s2io_wake_all_tx_queue(sp
);
7534 sp
->last_link_state
= link
;
7535 sp
->start_time
= jiffies
;
7539 * s2io_init_pci -Initialization of PCI and PCI-X configuration registers .
7540 * @sp : private member of the device structure, which is a pointer to the
7541 * s2io_nic structure.
7543 * This function initializes a few of the PCI and PCI-X configuration registers
7544 * with recommended values.
7549 static void s2io_init_pci(struct s2io_nic
* sp
)
7551 u16 pci_cmd
= 0, pcix_cmd
= 0;
7553 /* Enable Data Parity Error Recovery in PCI-X command register. */
7554 pci_read_config_word(sp
->pdev
, PCIX_COMMAND_REGISTER
,
7556 pci_write_config_word(sp
->pdev
, PCIX_COMMAND_REGISTER
,
7558 pci_read_config_word(sp
->pdev
, PCIX_COMMAND_REGISTER
,
7561 /* Set the PErr Response bit in PCI command register. */
7562 pci_read_config_word(sp
->pdev
, PCI_COMMAND
, &pci_cmd
);
7563 pci_write_config_word(sp
->pdev
, PCI_COMMAND
,
7564 (pci_cmd
| PCI_COMMAND_PARITY
));
7565 pci_read_config_word(sp
->pdev
, PCI_COMMAND
, &pci_cmd
);
7568 static int s2io_verify_parm(struct pci_dev
*pdev
, u8
*dev_intr_type
,
7571 if ((tx_fifo_num
> MAX_TX_FIFOS
) ||
7572 (tx_fifo_num
< 1)) {
7573 DBG_PRINT(ERR_DBG
, "s2io: Requested number of tx fifos "
7574 "(%d) not supported\n", tx_fifo_num
);
7576 if (tx_fifo_num
< 1)
7579 tx_fifo_num
= MAX_TX_FIFOS
;
7581 DBG_PRINT(ERR_DBG
, "s2io: Default to %d ", tx_fifo_num
);
7582 DBG_PRINT(ERR_DBG
, "tx fifos\n");
7585 #ifndef CONFIG_NETDEVICES_MULTIQUEUE
7587 DBG_PRINT(ERR_DBG
, "s2io: Multiqueue support not enabled\n");
7592 *dev_multiq
= multiq
;
7594 if (tx_steering_type
&& (1 == tx_fifo_num
)) {
7595 if (tx_steering_type
!= TX_DEFAULT_STEERING
)
7597 "s2io: Tx steering is not supported with "
7598 "one fifo. Disabling Tx steering.\n");
7599 tx_steering_type
= NO_STEERING
;
7602 if ((tx_steering_type
< NO_STEERING
) ||
7603 (tx_steering_type
> TX_DEFAULT_STEERING
)) {
7604 DBG_PRINT(ERR_DBG
, "s2io: Requested transmit steering not "
7606 DBG_PRINT(ERR_DBG
, "s2io: Disabling transmit steering\n");
7607 tx_steering_type
= NO_STEERING
;
7610 if (rx_ring_num
> MAX_RX_RINGS
) {
7611 DBG_PRINT(ERR_DBG
, "s2io: Requested number of rx rings not "
7613 DBG_PRINT(ERR_DBG
, "s2io: Default to %d rx rings\n",
7615 rx_ring_num
= MAX_RX_RINGS
;
7618 if (*dev_intr_type
!= INTA
)
7621 if ((*dev_intr_type
!= INTA
) && (*dev_intr_type
!= MSI_X
)) {
7622 DBG_PRINT(ERR_DBG
, "s2io: Wrong intr_type requested. "
7623 "Defaulting to INTA\n");
7624 *dev_intr_type
= INTA
;
7627 if ((*dev_intr_type
== MSI_X
) &&
7628 ((pdev
->device
!= PCI_DEVICE_ID_HERC_WIN
) &&
7629 (pdev
->device
!= PCI_DEVICE_ID_HERC_UNI
))) {
7630 DBG_PRINT(ERR_DBG
, "s2io: Xframe I does not support MSI_X. "
7631 "Defaulting to INTA\n");
7632 *dev_intr_type
= INTA
;
7635 if ((rx_ring_mode
!= 1) && (rx_ring_mode
!= 2)) {
7636 DBG_PRINT(ERR_DBG
, "s2io: Requested ring mode not supported\n");
7637 DBG_PRINT(ERR_DBG
, "s2io: Defaulting to 1-buffer mode\n");
7644 * rts_ds_steer - Receive traffic steering based on IPv4 or IPv6 TOS
7645 * or Traffic class respectively.
7646 * @nic: device private variable
7647 * Description: The function configures the receive steering to
7648 * desired receive ring.
7649 * Return Value: SUCCESS on success and
7650 * '-1' on failure (endian settings incorrect).
7652 static int rts_ds_steer(struct s2io_nic
*nic
, u8 ds_codepoint
, u8 ring
)
7654 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
7655 register u64 val64
= 0;
7657 if (ds_codepoint
> 63)
7660 val64
= RTS_DS_MEM_DATA(ring
);
7661 writeq(val64
, &bar0
->rts_ds_mem_data
);
7663 val64
= RTS_DS_MEM_CTRL_WE
|
7664 RTS_DS_MEM_CTRL_STROBE_NEW_CMD
|
7665 RTS_DS_MEM_CTRL_OFFSET(ds_codepoint
);
7667 writeq(val64
, &bar0
->rts_ds_mem_ctrl
);
7669 return wait_for_cmd_complete(&bar0
->rts_ds_mem_ctrl
,
7670 RTS_DS_MEM_CTRL_STROBE_CMD_BEING_EXECUTED
,
7675 * s2io_init_nic - Initialization of the adapter .
7676 * @pdev : structure containing the PCI related information of the device.
7677 * @pre: List of PCI devices supported by the driver listed in s2io_tbl.
7679 * The function initializes an adapter identified by the pci_dec structure.
7680 * All OS related initialization including memory and device structure and
7681 * initlaization of the device private variable is done. Also the swapper
7682 * control register is initialized to enable read and write into the I/O
7683 * registers of the device.
7685 * returns 0 on success and negative on failure.
7688 static int __devinit
7689 s2io_init_nic(struct pci_dev
*pdev
, const struct pci_device_id
*pre
)
7691 struct s2io_nic
*sp
;
7692 struct net_device
*dev
;
7694 int dma_flag
= FALSE
;
7695 u32 mac_up
, mac_down
;
7696 u64 val64
= 0, tmp64
= 0;
7697 struct XENA_dev_config __iomem
*bar0
= NULL
;
7699 struct mac_info
*mac_control
;
7700 struct config_param
*config
;
7702 u8 dev_intr_type
= intr_type
;
7704 DECLARE_MAC_BUF(mac
);
7706 ret
= s2io_verify_parm(pdev
, &dev_intr_type
, &dev_multiq
);
7710 if ((ret
= pci_enable_device(pdev
))) {
7712 "s2io_init_nic: pci_enable_device failed\n");
7716 if (!pci_set_dma_mask(pdev
, DMA_64BIT_MASK
)) {
7717 DBG_PRINT(INIT_DBG
, "s2io_init_nic: Using 64bit DMA\n");
7719 if (pci_set_consistent_dma_mask
7720 (pdev
, DMA_64BIT_MASK
)) {
7722 "Unable to obtain 64bit DMA for \
7723 consistent allocations\n");
7724 pci_disable_device(pdev
);
7727 } else if (!pci_set_dma_mask(pdev
, DMA_32BIT_MASK
)) {
7728 DBG_PRINT(INIT_DBG
, "s2io_init_nic: Using 32bit DMA\n");
7730 pci_disable_device(pdev
);
7733 if ((ret
= pci_request_regions(pdev
, s2io_driver_name
))) {
7734 DBG_PRINT(ERR_DBG
, "%s: Request Regions failed - %x \n", __FUNCTION__
, ret
);
7735 pci_disable_device(pdev
);
7738 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
7740 dev
= alloc_etherdev_mq(sizeof(struct s2io_nic
), tx_fifo_num
);
7743 dev
= alloc_etherdev(sizeof(struct s2io_nic
));
7745 DBG_PRINT(ERR_DBG
, "Device allocation failed\n");
7746 pci_disable_device(pdev
);
7747 pci_release_regions(pdev
);
7751 pci_set_master(pdev
);
7752 pci_set_drvdata(pdev
, dev
);
7753 SET_NETDEV_DEV(dev
, &pdev
->dev
);
7755 /* Private member variable initialized to s2io NIC structure */
7757 memset(sp
, 0, sizeof(struct s2io_nic
));
7760 sp
->high_dma_flag
= dma_flag
;
7761 sp
->device_enabled_once
= FALSE
;
7762 if (rx_ring_mode
== 1)
7763 sp
->rxd_mode
= RXD_MODE_1
;
7764 if (rx_ring_mode
== 2)
7765 sp
->rxd_mode
= RXD_MODE_3B
;
7767 sp
->config
.intr_type
= dev_intr_type
;
7769 if ((pdev
->device
== PCI_DEVICE_ID_HERC_WIN
) ||
7770 (pdev
->device
== PCI_DEVICE_ID_HERC_UNI
))
7771 sp
->device_type
= XFRAME_II_DEVICE
;
7773 sp
->device_type
= XFRAME_I_DEVICE
;
7775 sp
->lro
= lro_enable
;
7777 /* Initialize some PCI/PCI-X fields of the NIC. */
7781 * Setting the device configuration parameters.
7782 * Most of these parameters can be specified by the user during
7783 * module insertion as they are module loadable parameters. If
7784 * these parameters are not not specified during load time, they
7785 * are initialized with default values.
7787 mac_control
= &sp
->mac_control
;
7788 config
= &sp
->config
;
7790 config
->napi
= napi
;
7791 config
->tx_steering_type
= tx_steering_type
;
7793 /* Tx side parameters. */
7794 if (config
->tx_steering_type
== TX_PRIORITY_STEERING
)
7795 config
->tx_fifo_num
= MAX_TX_FIFOS
;
7797 config
->tx_fifo_num
= tx_fifo_num
;
7799 /* Initialize the fifos used for tx steering */
7800 if (config
->tx_fifo_num
< 5) {
7801 if (config
->tx_fifo_num
== 1)
7802 sp
->total_tcp_fifos
= 1;
7804 sp
->total_tcp_fifos
= config
->tx_fifo_num
- 1;
7805 sp
->udp_fifo_idx
= config
->tx_fifo_num
- 1;
7806 sp
->total_udp_fifos
= 1;
7807 sp
->other_fifo_idx
= sp
->total_tcp_fifos
- 1;
7809 sp
->total_tcp_fifos
= (tx_fifo_num
- FIFO_UDP_MAX_NUM
-
7810 FIFO_OTHER_MAX_NUM
);
7811 sp
->udp_fifo_idx
= sp
->total_tcp_fifos
;
7812 sp
->total_udp_fifos
= FIFO_UDP_MAX_NUM
;
7813 sp
->other_fifo_idx
= sp
->udp_fifo_idx
+ FIFO_UDP_MAX_NUM
;
7816 config
->multiq
= dev_multiq
;
7817 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
7818 config
->tx_cfg
[i
].fifo_len
= tx_fifo_len
[i
];
7819 config
->tx_cfg
[i
].fifo_priority
= i
;
7822 /* mapping the QoS priority to the configured fifos */
7823 for (i
= 0; i
< MAX_TX_FIFOS
; i
++)
7824 config
->fifo_mapping
[i
] = fifo_map
[config
->tx_fifo_num
- 1][i
];
7826 /* map the hashing selector table to the configured fifos */
7827 for (i
= 0; i
< config
->tx_fifo_num
; i
++)
7828 sp
->fifo_selector
[i
] = fifo_selector
[i
];
7831 config
->tx_intr_type
= TXD_INT_TYPE_UTILZ
;
7832 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
7833 config
->tx_cfg
[i
].f_no_snoop
=
7834 (NO_SNOOP_TXD
| NO_SNOOP_TXD_BUFFER
);
7835 if (config
->tx_cfg
[i
].fifo_len
< 65) {
7836 config
->tx_intr_type
= TXD_INT_TYPE_PER_LIST
;
7840 /* + 2 because one Txd for skb->data and one Txd for UFO */
7841 config
->max_txds
= MAX_SKB_FRAGS
+ 2;
7843 /* Rx side parameters. */
7844 config
->rx_ring_num
= rx_ring_num
;
7845 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
7846 config
->rx_cfg
[i
].num_rxd
= rx_ring_sz
[i
] *
7847 (rxd_count
[sp
->rxd_mode
] + 1);
7848 config
->rx_cfg
[i
].ring_priority
= i
;
7849 mac_control
->rings
[i
].rx_bufs_left
= 0;
7850 mac_control
->rings
[i
].rxd_mode
= sp
->rxd_mode
;
7851 mac_control
->rings
[i
].rxd_count
= rxd_count
[sp
->rxd_mode
];
7852 mac_control
->rings
[i
].pdev
= sp
->pdev
;
7853 mac_control
->rings
[i
].dev
= sp
->dev
;
7856 for (i
= 0; i
< rx_ring_num
; i
++) {
7857 config
->rx_cfg
[i
].ring_org
= RING_ORG_BUFF1
;
7858 config
->rx_cfg
[i
].f_no_snoop
=
7859 (NO_SNOOP_RXD
| NO_SNOOP_RXD_BUFFER
);
7862 /* Setting Mac Control parameters */
7863 mac_control
->rmac_pause_time
= rmac_pause_time
;
7864 mac_control
->mc_pause_threshold_q0q3
= mc_pause_threshold_q0q3
;
7865 mac_control
->mc_pause_threshold_q4q7
= mc_pause_threshold_q4q7
;
7868 /* initialize the shared memory used by the NIC and the host */
7869 if (init_shared_mem(sp
)) {
7870 DBG_PRINT(ERR_DBG
, "%s: Memory allocation failed\n",
7873 goto mem_alloc_failed
;
7876 sp
->bar0
= ioremap(pci_resource_start(pdev
, 0),
7877 pci_resource_len(pdev
, 0));
7879 DBG_PRINT(ERR_DBG
, "%s: Neterion: cannot remap io mem1\n",
7882 goto bar0_remap_failed
;
7885 sp
->bar1
= ioremap(pci_resource_start(pdev
, 2),
7886 pci_resource_len(pdev
, 2));
7888 DBG_PRINT(ERR_DBG
, "%s: Neterion: cannot remap io mem2\n",
7891 goto bar1_remap_failed
;
7894 dev
->irq
= pdev
->irq
;
7895 dev
->base_addr
= (unsigned long) sp
->bar0
;
7897 /* Initializing the BAR1 address as the start of the FIFO pointer. */
7898 for (j
= 0; j
< MAX_TX_FIFOS
; j
++) {
7899 mac_control
->tx_FIFO_start
[j
] = (struct TxFIFO_element __iomem
*)
7900 (sp
->bar1
+ (j
* 0x00020000));
7903 /* Driver entry points */
7904 dev
->open
= &s2io_open
;
7905 dev
->stop
= &s2io_close
;
7906 dev
->hard_start_xmit
= &s2io_xmit
;
7907 dev
->get_stats
= &s2io_get_stats
;
7908 dev
->set_multicast_list
= &s2io_set_multicast
;
7909 dev
->do_ioctl
= &s2io_ioctl
;
7910 dev
->set_mac_address
= &s2io_set_mac_addr
;
7911 dev
->change_mtu
= &s2io_change_mtu
;
7912 SET_ETHTOOL_OPS(dev
, &netdev_ethtool_ops
);
7913 dev
->features
|= NETIF_F_HW_VLAN_TX
| NETIF_F_HW_VLAN_RX
;
7914 dev
->vlan_rx_register
= s2io_vlan_rx_register
;
7915 dev
->vlan_rx_kill_vid
= (void *)s2io_vlan_rx_kill_vid
;
7918 * will use eth_mac_addr() for dev->set_mac_address
7919 * mac address will be set every time dev->open() is called
7921 netif_napi_add(dev
, &sp
->napi
, s2io_poll
, 32);
7923 #ifdef CONFIG_NET_POLL_CONTROLLER
7924 dev
->poll_controller
= s2io_netpoll
;
7927 dev
->features
|= NETIF_F_SG
| NETIF_F_IP_CSUM
;
7928 if (sp
->high_dma_flag
== TRUE
)
7929 dev
->features
|= NETIF_F_HIGHDMA
;
7930 dev
->features
|= NETIF_F_TSO
;
7931 dev
->features
|= NETIF_F_TSO6
;
7932 if ((sp
->device_type
& XFRAME_II_DEVICE
) && (ufo
)) {
7933 dev
->features
|= NETIF_F_UFO
;
7934 dev
->features
|= NETIF_F_HW_CSUM
;
7936 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
7938 dev
->features
|= NETIF_F_MULTI_QUEUE
;
7940 dev
->tx_timeout
= &s2io_tx_watchdog
;
7941 dev
->watchdog_timeo
= WATCH_DOG_TIMEOUT
;
7942 INIT_WORK(&sp
->rst_timer_task
, s2io_restart_nic
);
7943 INIT_WORK(&sp
->set_link_task
, s2io_set_link
);
7945 pci_save_state(sp
->pdev
);
7947 /* Setting swapper control on the NIC, for proper reset operation */
7948 if (s2io_set_swapper(sp
)) {
7949 DBG_PRINT(ERR_DBG
, "%s:swapper settings are wrong\n",
7952 goto set_swap_failed
;
7955 /* Verify if the Herc works on the slot its placed into */
7956 if (sp
->device_type
& XFRAME_II_DEVICE
) {
7957 mode
= s2io_verify_pci_mode(sp
);
7959 DBG_PRINT(ERR_DBG
, "%s: ", __FUNCTION__
);
7960 DBG_PRINT(ERR_DBG
, " Unsupported PCI bus mode\n");
7962 goto set_swap_failed
;
7966 /* Not needed for Herc */
7967 if (sp
->device_type
& XFRAME_I_DEVICE
) {
7969 * Fix for all "FFs" MAC address problems observed on
7972 fix_mac_address(sp
);
7977 * MAC address initialization.
7978 * For now only one mac address will be read and used.
7981 val64
= RMAC_ADDR_CMD_MEM_RD
| RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD
|
7982 RMAC_ADDR_CMD_MEM_OFFSET(0 + S2IO_MAC_ADDR_START_OFFSET
);
7983 writeq(val64
, &bar0
->rmac_addr_cmd_mem
);
7984 wait_for_cmd_complete(&bar0
->rmac_addr_cmd_mem
,
7985 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING
, S2IO_BIT_RESET
);
7986 tmp64
= readq(&bar0
->rmac_addr_data0_mem
);
7987 mac_down
= (u32
) tmp64
;
7988 mac_up
= (u32
) (tmp64
>> 32);
7990 sp
->def_mac_addr
[0].mac_addr
[3] = (u8
) (mac_up
);
7991 sp
->def_mac_addr
[0].mac_addr
[2] = (u8
) (mac_up
>> 8);
7992 sp
->def_mac_addr
[0].mac_addr
[1] = (u8
) (mac_up
>> 16);
7993 sp
->def_mac_addr
[0].mac_addr
[0] = (u8
) (mac_up
>> 24);
7994 sp
->def_mac_addr
[0].mac_addr
[5] = (u8
) (mac_down
>> 16);
7995 sp
->def_mac_addr
[0].mac_addr
[4] = (u8
) (mac_down
>> 24);
7997 /* Set the factory defined MAC address initially */
7998 dev
->addr_len
= ETH_ALEN
;
7999 memcpy(dev
->dev_addr
, sp
->def_mac_addr
, ETH_ALEN
);
8000 memcpy(dev
->perm_addr
, dev
->dev_addr
, ETH_ALEN
);
8002 /* initialize number of multicast & unicast MAC entries variables */
8003 if (sp
->device_type
== XFRAME_I_DEVICE
) {
8004 config
->max_mc_addr
= S2IO_XENA_MAX_MC_ADDRESSES
;
8005 config
->max_mac_addr
= S2IO_XENA_MAX_MAC_ADDRESSES
;
8006 config
->mc_start_offset
= S2IO_XENA_MC_ADDR_START_OFFSET
;
8007 } else if (sp
->device_type
== XFRAME_II_DEVICE
) {
8008 config
->max_mc_addr
= S2IO_HERC_MAX_MC_ADDRESSES
;
8009 config
->max_mac_addr
= S2IO_HERC_MAX_MAC_ADDRESSES
;
8010 config
->mc_start_offset
= S2IO_HERC_MC_ADDR_START_OFFSET
;
8013 /* store mac addresses from CAM to s2io_nic structure */
8014 do_s2io_store_unicast_mc(sp
);
8016 /* Store the values of the MSIX table in the s2io_nic structure */
8017 store_xmsi_data(sp
);
8018 /* reset Nic and bring it to known state */
8022 * Initialize link state flags
8023 * and the card state parameter
8027 /* Initialize spinlocks */
8028 for (i
= 0; i
< sp
->config
.tx_fifo_num
; i
++)
8029 spin_lock_init(&mac_control
->fifos
[i
].tx_lock
);
8032 * SXE-002: Configure link and activity LED to init state
8035 subid
= sp
->pdev
->subsystem_device
;
8036 if ((subid
& 0xFF) >= 0x07) {
8037 val64
= readq(&bar0
->gpio_control
);
8038 val64
|= 0x0000800000000000ULL
;
8039 writeq(val64
, &bar0
->gpio_control
);
8040 val64
= 0x0411040400000000ULL
;
8041 writeq(val64
, (void __iomem
*) bar0
+ 0x2700);
8042 val64
= readq(&bar0
->gpio_control
);
8045 sp
->rx_csum
= 1; /* Rx chksum verify enabled by default */
8047 if (register_netdev(dev
)) {
8048 DBG_PRINT(ERR_DBG
, "Device registration failed\n");
8050 goto register_failed
;
8053 DBG_PRINT(ERR_DBG
, "Copyright(c) 2002-2007 Neterion Inc.\n");
8054 DBG_PRINT(ERR_DBG
, "%s: Neterion %s (rev %d)\n",dev
->name
,
8055 sp
->product_name
, pdev
->revision
);
8056 DBG_PRINT(ERR_DBG
, "%s: Driver version %s\n", dev
->name
,
8057 s2io_driver_version
);
8058 DBG_PRINT(ERR_DBG
, "%s: MAC ADDR: %s\n",
8059 dev
->name
, print_mac(mac
, dev
->dev_addr
));
8060 DBG_PRINT(ERR_DBG
, "SERIAL NUMBER: %s\n", sp
->serial_num
);
8061 if (sp
->device_type
& XFRAME_II_DEVICE
) {
8062 mode
= s2io_print_pci_mode(sp
);
8064 DBG_PRINT(ERR_DBG
, " Unsupported PCI bus mode\n");
8066 unregister_netdev(dev
);
8067 goto set_swap_failed
;
8070 switch(sp
->rxd_mode
) {
8072 DBG_PRINT(ERR_DBG
, "%s: 1-Buffer receive mode enabled\n",
8076 DBG_PRINT(ERR_DBG
, "%s: 2-Buffer receive mode enabled\n",
8082 DBG_PRINT(ERR_DBG
, "%s: NAPI enabled\n", dev
->name
);
8084 DBG_PRINT(ERR_DBG
, "%s: Using %d Tx fifo(s)\n", dev
->name
,
8085 sp
->config
.tx_fifo_num
);
8087 DBG_PRINT(ERR_DBG
, "%s: Using %d Rx ring(s)\n", dev
->name
,
8088 sp
->config
.rx_ring_num
);
8090 switch(sp
->config
.intr_type
) {
8092 DBG_PRINT(ERR_DBG
, "%s: Interrupt type INTA\n", dev
->name
);
8095 DBG_PRINT(ERR_DBG
, "%s: Interrupt type MSI-X\n", dev
->name
);
8098 if (sp
->config
.multiq
) {
8099 for (i
= 0; i
< sp
->config
.tx_fifo_num
; i
++)
8100 mac_control
->fifos
[i
].multiq
= config
->multiq
;
8101 DBG_PRINT(ERR_DBG
, "%s: Multiqueue support enabled\n",
8104 DBG_PRINT(ERR_DBG
, "%s: Multiqueue support disabled\n",
8107 switch (sp
->config
.tx_steering_type
) {
8109 DBG_PRINT(ERR_DBG
, "%s: No steering enabled for"
8110 " transmit\n", dev
->name
);
8112 case TX_PRIORITY_STEERING
:
8113 DBG_PRINT(ERR_DBG
, "%s: Priority steering enabled for"
8114 " transmit\n", dev
->name
);
8116 case TX_DEFAULT_STEERING
:
8117 DBG_PRINT(ERR_DBG
, "%s: Default steering enabled for"
8118 " transmit\n", dev
->name
);
8122 DBG_PRINT(ERR_DBG
, "%s: Large receive offload enabled\n",
8125 DBG_PRINT(ERR_DBG
, "%s: UDP Fragmentation Offload(UFO)"
8126 " enabled\n", dev
->name
);
8127 /* Initialize device name */
8128 sprintf(sp
->name
, "%s Neterion %s", dev
->name
, sp
->product_name
);
8131 * Make Link state as off at this point, when the Link change
8132 * interrupt comes the state will be automatically changed to
8135 netif_carrier_off(dev
);
8146 free_shared_mem(sp
);
8147 pci_disable_device(pdev
);
8148 pci_release_regions(pdev
);
8149 pci_set_drvdata(pdev
, NULL
);
8156 * s2io_rem_nic - Free the PCI device
8157 * @pdev: structure containing the PCI related information of the device.
8158 * Description: This function is called by the Pci subsystem to release a
8159 * PCI device and free up all resource held up by the device. This could
8160 * be in response to a Hot plug event or when the driver is to be removed
8164 static void __devexit
s2io_rem_nic(struct pci_dev
*pdev
)
8166 struct net_device
*dev
=
8167 (struct net_device
*) pci_get_drvdata(pdev
);
8168 struct s2io_nic
*sp
;
8171 DBG_PRINT(ERR_DBG
, "Driver Data is NULL!!\n");
8175 flush_scheduled_work();
8178 unregister_netdev(dev
);
8180 free_shared_mem(sp
);
8183 pci_release_regions(pdev
);
8184 pci_set_drvdata(pdev
, NULL
);
8186 pci_disable_device(pdev
);
8190 * s2io_starter - Entry point for the driver
8191 * Description: This function is the entry point for the driver. It verifies
8192 * the module loadable parameters and initializes PCI configuration space.
8195 static int __init
s2io_starter(void)
8197 return pci_register_driver(&s2io_driver
);
8201 * s2io_closer - Cleanup routine for the driver
8202 * Description: This function is the cleanup routine for the driver. It unregist * ers the driver.
8205 static __exit
void s2io_closer(void)
8207 pci_unregister_driver(&s2io_driver
);
8208 DBG_PRINT(INIT_DBG
, "cleanup done\n");
8211 module_init(s2io_starter
);
8212 module_exit(s2io_closer
);
8214 static int check_L2_lro_capable(u8
*buffer
, struct iphdr
**ip
,
8215 struct tcphdr
**tcp
, struct RxD_t
*rxdp
,
8216 struct s2io_nic
*sp
)
8219 u8 l2_type
= (u8
)((rxdp
->Control_1
>> 37) & 0x7), ip_len
;
8221 if (!(rxdp
->Control_1
& RXD_FRAME_PROTO_TCP
)) {
8222 DBG_PRINT(INIT_DBG
,"%s: Non-TCP frames not supported for LRO\n",
8227 /* Checking for DIX type or DIX type with VLAN */
8229 || (l2_type
== 4)) {
8230 ip_off
= HEADER_ETHERNET_II_802_3_SIZE
;
8232 * If vlan stripping is disabled and the frame is VLAN tagged,
8233 * shift the offset by the VLAN header size bytes.
8235 if ((!vlan_strip_flag
) &&
8236 (rxdp
->Control_1
& RXD_FRAME_VLAN_TAG
))
8237 ip_off
+= HEADER_VLAN_SIZE
;
8239 /* LLC, SNAP etc are considered non-mergeable */
8243 *ip
= (struct iphdr
*)((u8
*)buffer
+ ip_off
);
8244 ip_len
= (u8
)((*ip
)->ihl
);
8246 *tcp
= (struct tcphdr
*)((unsigned long)*ip
+ ip_len
);
8251 static int check_for_socket_match(struct lro
*lro
, struct iphdr
*ip
,
8254 DBG_PRINT(INFO_DBG
,"%s: Been here...\n", __FUNCTION__
);
8255 if ((lro
->iph
->saddr
!= ip
->saddr
) || (lro
->iph
->daddr
!= ip
->daddr
) ||
8256 (lro
->tcph
->source
!= tcp
->source
) || (lro
->tcph
->dest
!= tcp
->dest
))
8261 static inline int get_l4_pyld_length(struct iphdr
*ip
, struct tcphdr
*tcp
)
8263 return(ntohs(ip
->tot_len
) - (ip
->ihl
<< 2) - (tcp
->doff
<< 2));
8266 static void initiate_new_session(struct lro
*lro
, u8
*l2h
,
8267 struct iphdr
*ip
, struct tcphdr
*tcp
, u32 tcp_pyld_len
, u16 vlan_tag
)
8269 DBG_PRINT(INFO_DBG
,"%s: Been here...\n", __FUNCTION__
);
8273 lro
->tcp_next_seq
= tcp_pyld_len
+ ntohl(tcp
->seq
);
8274 lro
->tcp_ack
= tcp
->ack_seq
;
8276 lro
->total_len
= ntohs(ip
->tot_len
);
8278 lro
->vlan_tag
= vlan_tag
;
8280 * check if we saw TCP timestamp. Other consistency checks have
8281 * already been done.
8283 if (tcp
->doff
== 8) {
8285 ptr
= (__be32
*)(tcp
+1);
8287 lro
->cur_tsval
= ntohl(*(ptr
+1));
8288 lro
->cur_tsecr
= *(ptr
+2);
8293 static void update_L3L4_header(struct s2io_nic
*sp
, struct lro
*lro
)
8295 struct iphdr
*ip
= lro
->iph
;
8296 struct tcphdr
*tcp
= lro
->tcph
;
8298 struct stat_block
*statinfo
= sp
->mac_control
.stats_info
;
8299 DBG_PRINT(INFO_DBG
,"%s: Been here...\n", __FUNCTION__
);
8301 /* Update L3 header */
8302 ip
->tot_len
= htons(lro
->total_len
);
8304 nchk
= ip_fast_csum((u8
*)lro
->iph
, ip
->ihl
);
8307 /* Update L4 header */
8308 tcp
->ack_seq
= lro
->tcp_ack
;
8309 tcp
->window
= lro
->window
;
8311 /* Update tsecr field if this session has timestamps enabled */
8313 __be32
*ptr
= (__be32
*)(tcp
+ 1);
8314 *(ptr
+2) = lro
->cur_tsecr
;
8317 /* Update counters required for calculation of
8318 * average no. of packets aggregated.
8320 statinfo
->sw_stat
.sum_avg_pkts_aggregated
+= lro
->sg_num
;
8321 statinfo
->sw_stat
.num_aggregations
++;
8324 static void aggregate_new_rx(struct lro
*lro
, struct iphdr
*ip
,
8325 struct tcphdr
*tcp
, u32 l4_pyld
)
8327 DBG_PRINT(INFO_DBG
,"%s: Been here...\n", __FUNCTION__
);
8328 lro
->total_len
+= l4_pyld
;
8329 lro
->frags_len
+= l4_pyld
;
8330 lro
->tcp_next_seq
+= l4_pyld
;
8333 /* Update ack seq no. and window ad(from this pkt) in LRO object */
8334 lro
->tcp_ack
= tcp
->ack_seq
;
8335 lro
->window
= tcp
->window
;
8339 /* Update tsecr and tsval from this packet */
8340 ptr
= (__be32
*)(tcp
+1);
8341 lro
->cur_tsval
= ntohl(*(ptr
+1));
8342 lro
->cur_tsecr
= *(ptr
+ 2);
8346 static int verify_l3_l4_lro_capable(struct lro
*l_lro
, struct iphdr
*ip
,
8347 struct tcphdr
*tcp
, u32 tcp_pyld_len
)
8351 DBG_PRINT(INFO_DBG
,"%s: Been here...\n", __FUNCTION__
);
8353 if (!tcp_pyld_len
) {
8354 /* Runt frame or a pure ack */
8358 if (ip
->ihl
!= 5) /* IP has options */
8361 /* If we see CE codepoint in IP header, packet is not mergeable */
8362 if (INET_ECN_is_ce(ipv4_get_dsfield(ip
)))
8365 /* If we see ECE or CWR flags in TCP header, packet is not mergeable */
8366 if (tcp
->urg
|| tcp
->psh
|| tcp
->rst
|| tcp
->syn
|| tcp
->fin
||
8367 tcp
->ece
|| tcp
->cwr
|| !tcp
->ack
) {
8369 * Currently recognize only the ack control word and
8370 * any other control field being set would result in
8371 * flushing the LRO session
8377 * Allow only one TCP timestamp option. Don't aggregate if
8378 * any other options are detected.
8380 if (tcp
->doff
!= 5 && tcp
->doff
!= 8)
8383 if (tcp
->doff
== 8) {
8384 ptr
= (u8
*)(tcp
+ 1);
8385 while (*ptr
== TCPOPT_NOP
)
8387 if (*ptr
!= TCPOPT_TIMESTAMP
|| *(ptr
+1) != TCPOLEN_TIMESTAMP
)
8390 /* Ensure timestamp value increases monotonically */
8392 if (l_lro
->cur_tsval
> ntohl(*((__be32
*)(ptr
+2))))
8395 /* timestamp echo reply should be non-zero */
8396 if (*((__be32
*)(ptr
+6)) == 0)
8404 s2io_club_tcp_session(struct ring_info
*ring_data
, u8
*buffer
, u8
**tcp
,
8405 u32
*tcp_len
, struct lro
**lro
, struct RxD_t
*rxdp
,
8406 struct s2io_nic
*sp
)
8409 struct tcphdr
*tcph
;
8413 if (!(ret
= check_L2_lro_capable(buffer
, &ip
, (struct tcphdr
**)tcp
,
8415 DBG_PRINT(INFO_DBG
,"IP Saddr: %x Daddr: %x\n",
8416 ip
->saddr
, ip
->daddr
);
8420 vlan_tag
= RXD_GET_VLAN_TAG(rxdp
->Control_2
);
8421 tcph
= (struct tcphdr
*)*tcp
;
8422 *tcp_len
= get_l4_pyld_length(ip
, tcph
);
8423 for (i
=0; i
<MAX_LRO_SESSIONS
; i
++) {
8424 struct lro
*l_lro
= &ring_data
->lro0_n
[i
];
8425 if (l_lro
->in_use
) {
8426 if (check_for_socket_match(l_lro
, ip
, tcph
))
8428 /* Sock pair matched */
8431 if ((*lro
)->tcp_next_seq
!= ntohl(tcph
->seq
)) {
8432 DBG_PRINT(INFO_DBG
, "%s:Out of order. expected "
8433 "0x%x, actual 0x%x\n", __FUNCTION__
,
8434 (*lro
)->tcp_next_seq
,
8437 sp
->mac_control
.stats_info
->
8438 sw_stat
.outof_sequence_pkts
++;
8443 if (!verify_l3_l4_lro_capable(l_lro
, ip
, tcph
,*tcp_len
))
8444 ret
= 1; /* Aggregate */
8446 ret
= 2; /* Flush both */
8452 /* Before searching for available LRO objects,
8453 * check if the pkt is L3/L4 aggregatable. If not
8454 * don't create new LRO session. Just send this
8457 if (verify_l3_l4_lro_capable(NULL
, ip
, tcph
, *tcp_len
)) {
8461 for (i
=0; i
<MAX_LRO_SESSIONS
; i
++) {
8462 struct lro
*l_lro
= &ring_data
->lro0_n
[i
];
8463 if (!(l_lro
->in_use
)) {
8465 ret
= 3; /* Begin anew */
8471 if (ret
== 0) { /* sessions exceeded */
8472 DBG_PRINT(INFO_DBG
,"%s:All LRO sessions already in use\n",
8480 initiate_new_session(*lro
, buffer
, ip
, tcph
, *tcp_len
,
8484 update_L3L4_header(sp
, *lro
);
8487 aggregate_new_rx(*lro
, ip
, tcph
, *tcp_len
);
8488 if ((*lro
)->sg_num
== sp
->lro_max_aggr_per_sess
) {
8489 update_L3L4_header(sp
, *lro
);
8490 ret
= 4; /* Flush the LRO */
8494 DBG_PRINT(ERR_DBG
,"%s:Dont know, can't say!!\n",
8502 static void clear_lro_session(struct lro
*lro
)
8504 static u16 lro_struct_size
= sizeof(struct lro
);
8506 memset(lro
, 0, lro_struct_size
);
8509 static void queue_rx_frame(struct sk_buff
*skb
, u16 vlan_tag
)
8511 struct net_device
*dev
= skb
->dev
;
8512 struct s2io_nic
*sp
= dev
->priv
;
8514 skb
->protocol
= eth_type_trans(skb
, dev
);
8515 if (sp
->vlgrp
&& vlan_tag
8516 && (vlan_strip_flag
)) {
8517 /* Queueing the vlan frame to the upper layer */
8518 if (sp
->config
.napi
)
8519 vlan_hwaccel_receive_skb(skb
, sp
->vlgrp
, vlan_tag
);
8521 vlan_hwaccel_rx(skb
, sp
->vlgrp
, vlan_tag
);
8523 if (sp
->config
.napi
)
8524 netif_receive_skb(skb
);
8530 static void lro_append_pkt(struct s2io_nic
*sp
, struct lro
*lro
,
8531 struct sk_buff
*skb
,
8534 struct sk_buff
*first
= lro
->parent
;
8536 first
->len
+= tcp_len
;
8537 first
->data_len
= lro
->frags_len
;
8538 skb_pull(skb
, (skb
->len
- tcp_len
));
8539 if (skb_shinfo(first
)->frag_list
)
8540 lro
->last_frag
->next
= skb
;
8542 skb_shinfo(first
)->frag_list
= skb
;
8543 first
->truesize
+= skb
->truesize
;
8544 lro
->last_frag
= skb
;
8545 sp
->mac_control
.stats_info
->sw_stat
.clubbed_frms_cnt
++;
8550 * s2io_io_error_detected - called when PCI error is detected
8551 * @pdev: Pointer to PCI device
8552 * @state: The current pci connection state
8554 * This function is called after a PCI bus error affecting
8555 * this device has been detected.
8557 static pci_ers_result_t
s2io_io_error_detected(struct pci_dev
*pdev
,
8558 pci_channel_state_t state
)
8560 struct net_device
*netdev
= pci_get_drvdata(pdev
);
8561 struct s2io_nic
*sp
= netdev
->priv
;
8563 netif_device_detach(netdev
);
8565 if (netif_running(netdev
)) {
8566 /* Bring down the card, while avoiding PCI I/O */
8567 do_s2io_card_down(sp
, 0);
8569 pci_disable_device(pdev
);
8571 return PCI_ERS_RESULT_NEED_RESET
;
8575 * s2io_io_slot_reset - called after the pci bus has been reset.
8576 * @pdev: Pointer to PCI device
8578 * Restart the card from scratch, as if from a cold-boot.
8579 * At this point, the card has exprienced a hard reset,
8580 * followed by fixups by BIOS, and has its config space
8581 * set up identically to what it was at cold boot.
8583 static pci_ers_result_t
s2io_io_slot_reset(struct pci_dev
*pdev
)
8585 struct net_device
*netdev
= pci_get_drvdata(pdev
);
8586 struct s2io_nic
*sp
= netdev
->priv
;
8588 if (pci_enable_device(pdev
)) {
8589 printk(KERN_ERR
"s2io: "
8590 "Cannot re-enable PCI device after reset.\n");
8591 return PCI_ERS_RESULT_DISCONNECT
;
8594 pci_set_master(pdev
);
8597 return PCI_ERS_RESULT_RECOVERED
;
8601 * s2io_io_resume - called when traffic can start flowing again.
8602 * @pdev: Pointer to PCI device
8604 * This callback is called when the error recovery driver tells
8605 * us that its OK to resume normal operation.
8607 static void s2io_io_resume(struct pci_dev
*pdev
)
8609 struct net_device
*netdev
= pci_get_drvdata(pdev
);
8610 struct s2io_nic
*sp
= netdev
->priv
;
8612 if (netif_running(netdev
)) {
8613 if (s2io_card_up(sp
)) {
8614 printk(KERN_ERR
"s2io: "
8615 "Can't bring device back up after reset.\n");
8619 if (s2io_set_mac_addr(netdev
, netdev
->dev_addr
) == FAILURE
) {
8621 printk(KERN_ERR
"s2io: "
8622 "Can't resetore mac addr after reset.\n");
8627 netif_device_attach(netdev
);
8628 netif_wake_queue(netdev
);