1 /****************************************************************************
2 * Driver for Solarflare Solarstorm network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2005-2008 Solarflare Communications Inc.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
11 #include <linux/module.h>
12 #include <linux/pci.h>
13 #include <linux/netdevice.h>
14 #include <linux/etherdevice.h>
15 #include <linux/delay.h>
16 #include <linux/notifier.h>
18 #include <linux/tcp.h>
20 #include <linux/crc32.h>
21 #include <linux/ethtool.h>
22 #include "net_driver.h"
30 #include "workarounds.h"
33 #define EFX_MAX_MTU (9 * 1024)
35 /* RX slow fill workqueue. If memory allocation fails in the fast path,
36 * a work item is pushed onto this work queue to retry the allocation later,
37 * to avoid the NIC being starved of RX buffers. Since this is a per cpu
38 * workqueue, there is nothing to be gained in making it per NIC
40 static struct workqueue_struct
*refill_workqueue
;
42 /**************************************************************************
46 *************************************************************************/
49 * Enable large receive offload (LRO) aka soft segment reassembly (SSR)
51 * This sets the default for new devices. It can be controlled later
55 module_param(lro
, int, 0644);
56 MODULE_PARM_DESC(lro
, "Large receive offload acceleration");
59 * Use separate channels for TX and RX events
61 * Set this to 1 to use separate channels for TX and RX. It allows us to
62 * apply a higher level of interrupt moderation to TX events.
64 * This is forced to 0 for MSI interrupt mode as the interrupt vector
67 static unsigned int separate_tx_and_rx_channels
= 1;
69 /* This is the weight assigned to each of the (per-channel) virtual
72 static int napi_weight
= 64;
74 /* This is the time (in jiffies) between invocations of the hardware
75 * monitor, which checks for known hardware bugs and resets the
76 * hardware and driver as necessary.
78 unsigned int efx_monitor_interval
= 1 * HZ
;
80 /* This controls whether or not the hardware monitor will trigger a
81 * reset when it detects an error condition.
83 static unsigned int monitor_reset
= 1;
85 /* This controls whether or not the driver will initialise devices
86 * with invalid MAC addresses stored in the EEPROM or flash. If true,
87 * such devices will be initialised with a random locally-generated
88 * MAC address. This allows for loading the sfc_mtd driver to
89 * reprogram the flash, even if the flash contents (including the MAC
90 * address) have previously been erased.
92 static unsigned int allow_bad_hwaddr
;
94 /* Initial interrupt moderation settings. They can be modified after
95 * module load with ethtool.
97 * The default for RX should strike a balance between increasing the
98 * round-trip latency and reducing overhead.
100 static unsigned int rx_irq_mod_usec
= 60;
102 /* Initial interrupt moderation settings. They can be modified after
103 * module load with ethtool.
105 * This default is chosen to ensure that a 10G link does not go idle
106 * while a TX queue is stopped after it has become full. A queue is
107 * restarted when it drops below half full. The time this takes (assuming
108 * worst case 3 descriptors per packet and 1024 descriptors) is
109 * 512 / 3 * 1.2 = 205 usec.
111 static unsigned int tx_irq_mod_usec
= 150;
113 /* This is the first interrupt mode to try out of:
118 static unsigned int interrupt_mode
;
120 /* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
121 * i.e. the number of CPUs among which we may distribute simultaneous
122 * interrupt handling.
124 * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
125 * The default (0) means to assign an interrupt to each package (level II cache)
127 static unsigned int rss_cpus
;
128 module_param(rss_cpus
, uint
, 0444);
129 MODULE_PARM_DESC(rss_cpus
, "Number of CPUs to use for Receive-Side Scaling");
131 /**************************************************************************
133 * Utility functions and prototypes
135 *************************************************************************/
136 static void efx_remove_channel(struct efx_channel
*channel
);
137 static void efx_remove_port(struct efx_nic
*efx
);
138 static void efx_fini_napi(struct efx_nic
*efx
);
139 static void efx_fini_channels(struct efx_nic
*efx
);
141 #define EFX_ASSERT_RESET_SERIALISED(efx) \
143 if ((efx->state == STATE_RUNNING) || \
144 (efx->state == STATE_RESETTING)) \
148 /**************************************************************************
150 * Event queue processing
152 *************************************************************************/
154 /* Process channel's event queue
156 * This function is responsible for processing the event queue of a
157 * single channel. The caller must guarantee that this function will
158 * never be concurrently called more than once on the same channel,
159 * though different channels may be being processed concurrently.
161 static inline int efx_process_channel(struct efx_channel
*channel
, int rx_quota
)
164 struct efx_rx_queue
*rx_queue
;
166 if (unlikely(channel
->efx
->reset_pending
!= RESET_TYPE_NONE
||
170 rxdmaqs
= falcon_process_eventq(channel
, &rx_quota
);
172 /* Deliver last RX packet. */
173 if (channel
->rx_pkt
) {
174 __efx_rx_packet(channel
, channel
->rx_pkt
,
175 channel
->rx_pkt_csummed
);
176 channel
->rx_pkt
= NULL
;
179 efx_flush_lro(channel
);
180 efx_rx_strategy(channel
);
182 /* Refill descriptor rings as necessary */
183 rx_queue
= &channel
->efx
->rx_queue
[0];
186 efx_fast_push_rx_descriptors(rx_queue
);
194 /* Mark channel as finished processing
196 * Note that since we will not receive further interrupts for this
197 * channel before we finish processing and call the eventq_read_ack()
198 * method, there is no need to use the interrupt hold-off timers.
200 static inline void efx_channel_processed(struct efx_channel
*channel
)
202 /* Write to EVQ_RPTR_REG. If a new event arrived in a race
203 * with finishing processing, a new interrupt will be raised.
205 channel
->work_pending
= 0;
206 smp_wmb(); /* Ensure channel updated before any new interrupt. */
207 falcon_eventq_read_ack(channel
);
212 * NAPI guarantees serialisation of polls of the same device, which
213 * provides the guarantee required by efx_process_channel().
215 static int efx_poll(struct napi_struct
*napi
, int budget
)
217 struct efx_channel
*channel
=
218 container_of(napi
, struct efx_channel
, napi_str
);
219 struct net_device
*napi_dev
= channel
->napi_dev
;
223 EFX_TRACE(channel
->efx
, "channel %d NAPI poll executing on CPU %d\n",
224 channel
->channel
, raw_smp_processor_id());
226 unused
= efx_process_channel(channel
, budget
);
227 rx_packets
= (budget
- unused
);
229 if (rx_packets
< budget
) {
230 /* There is no race here; although napi_disable() will
231 * only wait for netif_rx_complete(), this isn't a problem
232 * since efx_channel_processed() will have no effect if
233 * interrupts have already been disabled.
235 netif_rx_complete(napi_dev
, napi
);
236 efx_channel_processed(channel
);
242 /* Process the eventq of the specified channel immediately on this CPU
244 * Disable hardware generated interrupts, wait for any existing
245 * processing to finish, then directly poll (and ack ) the eventq.
246 * Finally reenable NAPI and interrupts.
248 * Since we are touching interrupts the caller should hold the suspend lock
250 void efx_process_channel_now(struct efx_channel
*channel
)
252 struct efx_nic
*efx
= channel
->efx
;
254 BUG_ON(!channel
->used_flags
);
255 BUG_ON(!channel
->enabled
);
257 /* Disable interrupts and wait for ISRs to complete */
258 falcon_disable_interrupts(efx
);
260 synchronize_irq(efx
->legacy_irq
);
261 if (channel
->has_interrupt
&& channel
->irq
)
262 synchronize_irq(channel
->irq
);
264 /* Wait for any NAPI processing to complete */
265 napi_disable(&channel
->napi_str
);
267 /* Poll the channel */
268 (void) efx_process_channel(channel
, efx
->type
->evq_size
);
270 /* Ack the eventq. This may cause an interrupt to be generated
271 * when they are reenabled */
272 efx_channel_processed(channel
);
274 napi_enable(&channel
->napi_str
);
275 falcon_enable_interrupts(efx
);
278 /* Create event queue
279 * Event queue memory allocations are done only once. If the channel
280 * is reset, the memory buffer will be reused; this guards against
281 * errors during channel reset and also simplifies interrupt handling.
283 static int efx_probe_eventq(struct efx_channel
*channel
)
285 EFX_LOG(channel
->efx
, "chan %d create event queue\n", channel
->channel
);
287 return falcon_probe_eventq(channel
);
290 /* Prepare channel's event queue */
291 static int efx_init_eventq(struct efx_channel
*channel
)
293 EFX_LOG(channel
->efx
, "chan %d init event queue\n", channel
->channel
);
295 channel
->eventq_read_ptr
= 0;
297 return falcon_init_eventq(channel
);
300 static void efx_fini_eventq(struct efx_channel
*channel
)
302 EFX_LOG(channel
->efx
, "chan %d fini event queue\n", channel
->channel
);
304 falcon_fini_eventq(channel
);
307 static void efx_remove_eventq(struct efx_channel
*channel
)
309 EFX_LOG(channel
->efx
, "chan %d remove event queue\n", channel
->channel
);
311 falcon_remove_eventq(channel
);
314 /**************************************************************************
318 *************************************************************************/
320 /* Setup per-NIC RX buffer parameters.
321 * Calculate the rx buffer allocation parameters required to support
322 * the current MTU, including padding for header alignment and overruns.
324 static void efx_calc_rx_buffer_params(struct efx_nic
*efx
)
326 unsigned int order
, len
;
328 len
= (max(EFX_PAGE_IP_ALIGN
, NET_IP_ALIGN
) +
329 EFX_MAX_FRAME_LEN(efx
->net_dev
->mtu
) +
330 efx
->type
->rx_buffer_padding
);
332 /* Calculate page-order */
333 for (order
= 0; ((1u << order
) * PAGE_SIZE
) < len
; ++order
)
336 efx
->rx_buffer_len
= len
;
337 efx
->rx_buffer_order
= order
;
340 static int efx_probe_channel(struct efx_channel
*channel
)
342 struct efx_tx_queue
*tx_queue
;
343 struct efx_rx_queue
*rx_queue
;
346 EFX_LOG(channel
->efx
, "creating channel %d\n", channel
->channel
);
348 rc
= efx_probe_eventq(channel
);
352 efx_for_each_channel_tx_queue(tx_queue
, channel
) {
353 rc
= efx_probe_tx_queue(tx_queue
);
358 efx_for_each_channel_rx_queue(rx_queue
, channel
) {
359 rc
= efx_probe_rx_queue(rx_queue
);
364 channel
->n_rx_frm_trunc
= 0;
369 efx_for_each_channel_rx_queue(rx_queue
, channel
)
370 efx_remove_rx_queue(rx_queue
);
372 efx_for_each_channel_tx_queue(tx_queue
, channel
)
373 efx_remove_tx_queue(tx_queue
);
379 /* Channels are shutdown and reinitialised whilst the NIC is running
380 * to propagate configuration changes (mtu, checksum offload), or
381 * to clear hardware error conditions
383 static int efx_init_channels(struct efx_nic
*efx
)
385 struct efx_tx_queue
*tx_queue
;
386 struct efx_rx_queue
*rx_queue
;
387 struct efx_channel
*channel
;
390 efx_calc_rx_buffer_params(efx
);
392 /* Initialise the channels */
393 efx_for_each_channel(channel
, efx
) {
394 EFX_LOG(channel
->efx
, "init chan %d\n", channel
->channel
);
396 rc
= efx_init_eventq(channel
);
400 efx_for_each_channel_tx_queue(tx_queue
, channel
) {
401 rc
= efx_init_tx_queue(tx_queue
);
406 /* The rx buffer allocation strategy is MTU dependent */
407 efx_rx_strategy(channel
);
409 efx_for_each_channel_rx_queue(rx_queue
, channel
) {
410 rc
= efx_init_rx_queue(rx_queue
);
415 WARN_ON(channel
->rx_pkt
!= NULL
);
416 efx_rx_strategy(channel
);
422 EFX_ERR(efx
, "failed to initialise channel %d\n",
423 channel
? channel
->channel
: -1);
424 efx_fini_channels(efx
);
428 /* This enables event queue processing and packet transmission.
430 * Note that this function is not allowed to fail, since that would
431 * introduce too much complexity into the suspend/resume path.
433 static void efx_start_channel(struct efx_channel
*channel
)
435 struct efx_rx_queue
*rx_queue
;
437 EFX_LOG(channel
->efx
, "starting chan %d\n", channel
->channel
);
439 if (!(channel
->efx
->net_dev
->flags
& IFF_UP
))
440 netif_napi_add(channel
->napi_dev
, &channel
->napi_str
,
441 efx_poll
, napi_weight
);
443 channel
->work_pending
= 0;
444 channel
->enabled
= 1;
445 smp_wmb(); /* ensure channel updated before first interrupt */
447 napi_enable(&channel
->napi_str
);
449 /* Load up RX descriptors */
450 efx_for_each_channel_rx_queue(rx_queue
, channel
)
451 efx_fast_push_rx_descriptors(rx_queue
);
454 /* This disables event queue processing and packet transmission.
455 * This function does not guarantee that all queue processing
456 * (e.g. RX refill) is complete.
458 static void efx_stop_channel(struct efx_channel
*channel
)
460 struct efx_rx_queue
*rx_queue
;
462 if (!channel
->enabled
)
465 EFX_LOG(channel
->efx
, "stop chan %d\n", channel
->channel
);
467 channel
->enabled
= 0;
468 napi_disable(&channel
->napi_str
);
470 /* Ensure that any worker threads have exited or will be no-ops */
471 efx_for_each_channel_rx_queue(rx_queue
, channel
) {
472 spin_lock_bh(&rx_queue
->add_lock
);
473 spin_unlock_bh(&rx_queue
->add_lock
);
477 static void efx_fini_channels(struct efx_nic
*efx
)
479 struct efx_channel
*channel
;
480 struct efx_tx_queue
*tx_queue
;
481 struct efx_rx_queue
*rx_queue
;
483 EFX_ASSERT_RESET_SERIALISED(efx
);
484 BUG_ON(efx
->port_enabled
);
486 efx_for_each_channel(channel
, efx
) {
487 EFX_LOG(channel
->efx
, "shut down chan %d\n", channel
->channel
);
489 efx_for_each_channel_rx_queue(rx_queue
, channel
)
490 efx_fini_rx_queue(rx_queue
);
491 efx_for_each_channel_tx_queue(tx_queue
, channel
)
492 efx_fini_tx_queue(tx_queue
);
495 /* Do the event queues last so that we can handle flush events
496 * for all DMA queues. */
497 efx_for_each_channel(channel
, efx
) {
498 EFX_LOG(channel
->efx
, "shut down evq %d\n", channel
->channel
);
500 efx_fini_eventq(channel
);
504 static void efx_remove_channel(struct efx_channel
*channel
)
506 struct efx_tx_queue
*tx_queue
;
507 struct efx_rx_queue
*rx_queue
;
509 EFX_LOG(channel
->efx
, "destroy chan %d\n", channel
->channel
);
511 efx_for_each_channel_rx_queue(rx_queue
, channel
)
512 efx_remove_rx_queue(rx_queue
);
513 efx_for_each_channel_tx_queue(tx_queue
, channel
)
514 efx_remove_tx_queue(tx_queue
);
515 efx_remove_eventq(channel
);
517 channel
->used_flags
= 0;
520 void efx_schedule_slow_fill(struct efx_rx_queue
*rx_queue
, int delay
)
522 queue_delayed_work(refill_workqueue
, &rx_queue
->work
, delay
);
525 /**************************************************************************
529 **************************************************************************/
531 /* This ensures that the kernel is kept informed (via
532 * netif_carrier_on/off) of the link status, and also maintains the
533 * link status's stop on the port's TX queue.
535 static void efx_link_status_changed(struct efx_nic
*efx
)
539 /* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
540 * that no events are triggered between unregister_netdev() and the
541 * driver unloading. A more general condition is that NETDEV_CHANGE
542 * can only be generated between NETDEV_UP and NETDEV_DOWN */
543 if (!netif_running(efx
->net_dev
))
546 carrier_ok
= netif_carrier_ok(efx
->net_dev
) ? 1 : 0;
547 if (efx
->link_up
!= carrier_ok
) {
548 efx
->n_link_state_changes
++;
551 netif_carrier_on(efx
->net_dev
);
553 netif_carrier_off(efx
->net_dev
);
556 /* Status message for kernel log */
558 struct mii_if_info
*gmii
= &efx
->mii
;
560 /* NONE here means direct XAUI from the controller, with no
561 * MDIO-attached device we can query. */
562 if (efx
->phy_type
!= PHY_TYPE_NONE
) {
563 adv
= gmii_advertised(gmii
);
564 lpa
= gmii_lpa(gmii
);
566 lpa
= GM_LPA_10000
| LPA_DUPLEX
;
569 EFX_INFO(efx
, "link up at %dMbps %s-duplex "
570 "(adv %04x lpa %04x) (MTU %d)%s\n",
571 (efx
->link_options
& GM_LPA_10000
? 10000 :
572 (efx
->link_options
& GM_LPA_1000
? 1000 :
573 (efx
->link_options
& GM_LPA_100
? 100 :
575 (efx
->link_options
& GM_LPA_DUPLEX
?
579 (efx
->promiscuous
? " [PROMISC]" : ""));
581 EFX_INFO(efx
, "link down\n");
586 /* This call reinitialises the MAC to pick up new PHY settings. The
587 * caller must hold the mac_lock */
588 static void __efx_reconfigure_port(struct efx_nic
*efx
)
590 WARN_ON(!mutex_is_locked(&efx
->mac_lock
));
592 EFX_LOG(efx
, "reconfiguring MAC from PHY settings on CPU %d\n",
593 raw_smp_processor_id());
595 falcon_reconfigure_xmac(efx
);
597 /* Inform kernel of loss/gain of carrier */
598 efx_link_status_changed(efx
);
601 /* Reinitialise the MAC to pick up new PHY settings, even if the port is
603 void efx_reconfigure_port(struct efx_nic
*efx
)
605 EFX_ASSERT_RESET_SERIALISED(efx
);
607 mutex_lock(&efx
->mac_lock
);
608 __efx_reconfigure_port(efx
);
609 mutex_unlock(&efx
->mac_lock
);
612 /* Asynchronous efx_reconfigure_port work item. To speed up efx_flush_all()
613 * we don't efx_reconfigure_port() if the port is disabled. Care is taken
614 * in efx_stop_all() and efx_start_port() to prevent PHY events being lost */
615 static void efx_reconfigure_work(struct work_struct
*data
)
617 struct efx_nic
*efx
= container_of(data
, struct efx_nic
,
620 mutex_lock(&efx
->mac_lock
);
621 if (efx
->port_enabled
)
622 __efx_reconfigure_port(efx
);
623 mutex_unlock(&efx
->mac_lock
);
626 static int efx_probe_port(struct efx_nic
*efx
)
630 EFX_LOG(efx
, "create port\n");
632 /* Connect up MAC/PHY operations table and read MAC address */
633 rc
= falcon_probe_port(efx
);
637 /* Sanity check MAC address */
638 if (is_valid_ether_addr(efx
->mac_address
)) {
639 memcpy(efx
->net_dev
->dev_addr
, efx
->mac_address
, ETH_ALEN
);
641 DECLARE_MAC_BUF(mac
);
643 EFX_ERR(efx
, "invalid MAC address %s\n",
644 print_mac(mac
, efx
->mac_address
));
645 if (!allow_bad_hwaddr
) {
649 random_ether_addr(efx
->net_dev
->dev_addr
);
650 EFX_INFO(efx
, "using locally-generated MAC %s\n",
651 print_mac(mac
, efx
->net_dev
->dev_addr
));
657 efx_remove_port(efx
);
661 static int efx_init_port(struct efx_nic
*efx
)
665 EFX_LOG(efx
, "init port\n");
667 /* Initialise the MAC and PHY */
668 rc
= falcon_init_xmac(efx
);
672 efx
->port_initialized
= 1;
674 /* Reconfigure port to program MAC registers */
675 falcon_reconfigure_xmac(efx
);
680 /* Allow efx_reconfigure_port() to be scheduled, and close the window
681 * between efx_stop_port and efx_flush_all whereby a previously scheduled
682 * efx_reconfigure_port() may have been cancelled */
683 static void efx_start_port(struct efx_nic
*efx
)
685 EFX_LOG(efx
, "start port\n");
686 BUG_ON(efx
->port_enabled
);
688 mutex_lock(&efx
->mac_lock
);
689 efx
->port_enabled
= 1;
690 __efx_reconfigure_port(efx
);
691 mutex_unlock(&efx
->mac_lock
);
694 /* Prevent efx_reconfigure_work and efx_monitor() from executing, and
695 * efx_set_multicast_list() from scheduling efx_reconfigure_work.
696 * efx_reconfigure_work can still be scheduled via NAPI processing
697 * until efx_flush_all() is called */
698 static void efx_stop_port(struct efx_nic
*efx
)
700 EFX_LOG(efx
, "stop port\n");
702 mutex_lock(&efx
->mac_lock
);
703 efx
->port_enabled
= 0;
704 mutex_unlock(&efx
->mac_lock
);
706 /* Serialise against efx_set_multicast_list() */
707 if (NET_DEV_REGISTERED(efx
)) {
708 netif_tx_lock_bh(efx
->net_dev
);
709 netif_tx_unlock_bh(efx
->net_dev
);
713 static void efx_fini_port(struct efx_nic
*efx
)
715 EFX_LOG(efx
, "shut down port\n");
717 if (!efx
->port_initialized
)
720 falcon_fini_xmac(efx
);
721 efx
->port_initialized
= 0;
724 efx_link_status_changed(efx
);
727 static void efx_remove_port(struct efx_nic
*efx
)
729 EFX_LOG(efx
, "destroying port\n");
731 falcon_remove_port(efx
);
734 /**************************************************************************
738 **************************************************************************/
740 /* This configures the PCI device to enable I/O and DMA. */
741 static int efx_init_io(struct efx_nic
*efx
)
743 struct pci_dev
*pci_dev
= efx
->pci_dev
;
744 dma_addr_t dma_mask
= efx
->type
->max_dma_mask
;
747 EFX_LOG(efx
, "initialising I/O\n");
749 rc
= pci_enable_device(pci_dev
);
751 EFX_ERR(efx
, "failed to enable PCI device\n");
755 pci_set_master(pci_dev
);
757 /* Set the PCI DMA mask. Try all possibilities from our
758 * genuine mask down to 32 bits, because some architectures
759 * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit
760 * masks event though they reject 46 bit masks.
762 while (dma_mask
> 0x7fffffffUL
) {
763 if (pci_dma_supported(pci_dev
, dma_mask
) &&
764 ((rc
= pci_set_dma_mask(pci_dev
, dma_mask
)) == 0))
769 EFX_ERR(efx
, "could not find a suitable DMA mask\n");
772 EFX_LOG(efx
, "using DMA mask %llx\n", (unsigned long long) dma_mask
);
773 rc
= pci_set_consistent_dma_mask(pci_dev
, dma_mask
);
775 /* pci_set_consistent_dma_mask() is not *allowed* to
776 * fail with a mask that pci_set_dma_mask() accepted,
777 * but just in case...
779 EFX_ERR(efx
, "failed to set consistent DMA mask\n");
783 efx
->membase_phys
= pci_resource_start(efx
->pci_dev
,
785 rc
= pci_request_region(pci_dev
, efx
->type
->mem_bar
, "sfc");
787 EFX_ERR(efx
, "request for memory BAR failed\n");
791 efx
->membase
= ioremap_nocache(efx
->membase_phys
,
792 efx
->type
->mem_map_size
);
794 EFX_ERR(efx
, "could not map memory BAR %d at %lx+%x\n",
795 efx
->type
->mem_bar
, efx
->membase_phys
,
796 efx
->type
->mem_map_size
);
800 EFX_LOG(efx
, "memory BAR %u at %lx+%x (virtual %p)\n",
801 efx
->type
->mem_bar
, efx
->membase_phys
, efx
->type
->mem_map_size
,
807 release_mem_region(efx
->membase_phys
, efx
->type
->mem_map_size
);
809 efx
->membase_phys
= 0UL;
811 pci_disable_device(efx
->pci_dev
);
816 static void efx_fini_io(struct efx_nic
*efx
)
818 EFX_LOG(efx
, "shutting down I/O\n");
821 iounmap(efx
->membase
);
825 if (efx
->membase_phys
) {
826 pci_release_region(efx
->pci_dev
, efx
->type
->mem_bar
);
827 efx
->membase_phys
= 0UL;
830 pci_disable_device(efx
->pci_dev
);
833 /* Probe the number and type of interrupts we are able to obtain. */
834 static void efx_probe_interrupts(struct efx_nic
*efx
)
836 int max_channel
= efx
->type
->phys_addr_channels
- 1;
837 struct msix_entry xentries
[EFX_MAX_CHANNELS
];
840 if (efx
->interrupt_mode
== EFX_INT_MODE_MSIX
) {
841 BUG_ON(!pci_find_capability(efx
->pci_dev
, PCI_CAP_ID_MSIX
));
843 efx
->rss_queues
= rss_cpus
? rss_cpus
: num_online_cpus();
844 efx
->rss_queues
= min(efx
->rss_queues
, max_channel
+ 1);
845 efx
->rss_queues
= min(efx
->rss_queues
, EFX_MAX_CHANNELS
);
847 /* Request maximum number of MSI interrupts, and fill out
848 * the channel interrupt information the allowed allocation */
849 for (i
= 0; i
< efx
->rss_queues
; i
++)
850 xentries
[i
].entry
= i
;
851 rc
= pci_enable_msix(efx
->pci_dev
, xentries
, efx
->rss_queues
);
853 EFX_BUG_ON_PARANOID(rc
>= efx
->rss_queues
);
854 efx
->rss_queues
= rc
;
855 rc
= pci_enable_msix(efx
->pci_dev
, xentries
,
860 for (i
= 0; i
< efx
->rss_queues
; i
++) {
861 efx
->channel
[i
].has_interrupt
= 1;
862 efx
->channel
[i
].irq
= xentries
[i
].vector
;
865 /* Fall back to single channel MSI */
866 efx
->interrupt_mode
= EFX_INT_MODE_MSI
;
867 EFX_ERR(efx
, "could not enable MSI-X\n");
871 /* Try single interrupt MSI */
872 if (efx
->interrupt_mode
== EFX_INT_MODE_MSI
) {
874 rc
= pci_enable_msi(efx
->pci_dev
);
876 efx
->channel
[0].irq
= efx
->pci_dev
->irq
;
877 efx
->channel
[0].has_interrupt
= 1;
879 EFX_ERR(efx
, "could not enable MSI\n");
880 efx
->interrupt_mode
= EFX_INT_MODE_LEGACY
;
884 /* Assume legacy interrupts */
885 if (efx
->interrupt_mode
== EFX_INT_MODE_LEGACY
) {
887 /* Every channel is interruptible */
888 for (i
= 0; i
< EFX_MAX_CHANNELS
; i
++)
889 efx
->channel
[i
].has_interrupt
= 1;
890 efx
->legacy_irq
= efx
->pci_dev
->irq
;
894 static void efx_remove_interrupts(struct efx_nic
*efx
)
896 struct efx_channel
*channel
;
898 /* Remove MSI/MSI-X interrupts */
899 efx_for_each_channel_with_interrupt(channel
, efx
)
901 pci_disable_msi(efx
->pci_dev
);
902 pci_disable_msix(efx
->pci_dev
);
904 /* Remove legacy interrupt */
908 /* Select number of used resources
909 * Should be called after probe_interrupts()
911 static void efx_select_used(struct efx_nic
*efx
)
913 struct efx_tx_queue
*tx_queue
;
914 struct efx_rx_queue
*rx_queue
;
917 /* TX queues. One per port per channel with TX capability
918 * (more than one per port won't work on Linux, due to out
919 * of order issues... but will be fine on Solaris)
921 tx_queue
= &efx
->tx_queue
[0];
923 /* Perform this for each channel with TX capabilities.
924 * At the moment, we only support a single TX queue
927 if ((!EFX_INT_MODE_USE_MSI(efx
)) && separate_tx_and_rx_channels
)
928 tx_queue
->channel
= &efx
->channel
[1];
930 tx_queue
->channel
= &efx
->channel
[0];
931 tx_queue
->channel
->used_flags
|= EFX_USED_BY_TX
;
934 /* RX queues. Each has a dedicated channel. */
935 for (i
= 0; i
< EFX_MAX_RX_QUEUES
; i
++) {
936 rx_queue
= &efx
->rx_queue
[i
];
938 if (i
< efx
->rss_queues
) {
940 /* If we allow multiple RX queues per channel
941 * we need to decide that here
943 rx_queue
->channel
= &efx
->channel
[rx_queue
->queue
];
944 rx_queue
->channel
->used_flags
|= EFX_USED_BY_RX
;
950 static int efx_probe_nic(struct efx_nic
*efx
)
954 EFX_LOG(efx
, "creating NIC\n");
956 /* Carry out hardware-type specific initialisation */
957 rc
= falcon_probe_nic(efx
);
961 /* Determine the number of channels and RX queues by trying to hook
962 * in MSI-X interrupts. */
963 efx_probe_interrupts(efx
);
965 /* Determine number of RX queues and TX queues */
966 efx_select_used(efx
);
968 /* Initialise the interrupt moderation settings */
969 efx_init_irq_moderation(efx
, tx_irq_mod_usec
, rx_irq_mod_usec
);
974 static void efx_remove_nic(struct efx_nic
*efx
)
976 EFX_LOG(efx
, "destroying NIC\n");
978 efx_remove_interrupts(efx
);
979 falcon_remove_nic(efx
);
982 /**************************************************************************
984 * NIC startup/shutdown
986 *************************************************************************/
988 static int efx_probe_all(struct efx_nic
*efx
)
990 struct efx_channel
*channel
;
994 rc
= efx_probe_nic(efx
);
996 EFX_ERR(efx
, "failed to create NIC\n");
1001 rc
= efx_probe_port(efx
);
1003 EFX_ERR(efx
, "failed to create port\n");
1007 /* Create channels */
1008 efx_for_each_channel(channel
, efx
) {
1009 rc
= efx_probe_channel(channel
);
1011 EFX_ERR(efx
, "failed to create channel %d\n",
1020 efx_for_each_channel(channel
, efx
)
1021 efx_remove_channel(channel
);
1022 efx_remove_port(efx
);
1024 efx_remove_nic(efx
);
1029 /* Called after previous invocation(s) of efx_stop_all, restarts the
1030 * port, kernel transmit queue, NAPI processing and hardware interrupts,
1031 * and ensures that the port is scheduled to be reconfigured.
1032 * This function is safe to call multiple times when the NIC is in any
1034 static void efx_start_all(struct efx_nic
*efx
)
1036 struct efx_channel
*channel
;
1038 EFX_ASSERT_RESET_SERIALISED(efx
);
1040 /* Check that it is appropriate to restart the interface. All
1041 * of these flags are safe to read under just the rtnl lock */
1042 if (efx
->port_enabled
)
1044 if ((efx
->state
!= STATE_RUNNING
) && (efx
->state
!= STATE_INIT
))
1046 if (NET_DEV_REGISTERED(efx
) && !netif_running(efx
->net_dev
))
1049 /* Mark the port as enabled so port reconfigurations can start, then
1050 * restart the transmit interface early so the watchdog timer stops */
1051 efx_start_port(efx
);
1052 efx_wake_queue(efx
);
1054 efx_for_each_channel(channel
, efx
)
1055 efx_start_channel(channel
);
1057 falcon_enable_interrupts(efx
);
1059 /* Start hardware monitor if we're in RUNNING */
1060 if (efx
->state
== STATE_RUNNING
)
1061 queue_delayed_work(efx
->workqueue
, &efx
->monitor_work
,
1062 efx_monitor_interval
);
1065 /* Flush all delayed work. Should only be called when no more delayed work
1066 * will be scheduled. This doesn't flush pending online resets (efx_reset),
1067 * since we're holding the rtnl_lock at this point. */
1068 static void efx_flush_all(struct efx_nic
*efx
)
1070 struct efx_rx_queue
*rx_queue
;
1072 /* Make sure the hardware monitor is stopped */
1073 cancel_delayed_work_sync(&efx
->monitor_work
);
1075 /* Ensure that all RX slow refills are complete. */
1076 efx_for_each_rx_queue(rx_queue
, efx
) {
1077 cancel_delayed_work_sync(&rx_queue
->work
);
1080 /* Stop scheduled port reconfigurations */
1081 cancel_work_sync(&efx
->reconfigure_work
);
1085 /* Quiesce hardware and software without bringing the link down.
1086 * Safe to call multiple times, when the nic and interface is in any
1087 * state. The caller is guaranteed to subsequently be in a position
1088 * to modify any hardware and software state they see fit without
1090 static void efx_stop_all(struct efx_nic
*efx
)
1092 struct efx_channel
*channel
;
1094 EFX_ASSERT_RESET_SERIALISED(efx
);
1096 /* port_enabled can be read safely under the rtnl lock */
1097 if (!efx
->port_enabled
)
1100 /* Disable interrupts and wait for ISR to complete */
1101 falcon_disable_interrupts(efx
);
1102 if (efx
->legacy_irq
)
1103 synchronize_irq(efx
->legacy_irq
);
1104 efx_for_each_channel_with_interrupt(channel
, efx
)
1106 synchronize_irq(channel
->irq
);
1108 /* Stop all NAPI processing and synchronous rx refills */
1109 efx_for_each_channel(channel
, efx
)
1110 efx_stop_channel(channel
);
1112 /* Stop all asynchronous port reconfigurations. Since all
1113 * event processing has already been stopped, there is no
1114 * window to loose phy events */
1117 /* Flush reconfigure_work, refill_workqueue, monitor_work */
1120 /* Isolate the MAC from the TX and RX engines, so that queue
1121 * flushes will complete in a timely fashion. */
1122 falcon_deconfigure_mac_wrapper(efx
);
1123 falcon_drain_tx_fifo(efx
);
1125 /* Stop the kernel transmit interface late, so the watchdog
1126 * timer isn't ticking over the flush */
1127 efx_stop_queue(efx
);
1128 if (NET_DEV_REGISTERED(efx
)) {
1129 netif_tx_lock_bh(efx
->net_dev
);
1130 netif_tx_unlock_bh(efx
->net_dev
);
1134 static void efx_remove_all(struct efx_nic
*efx
)
1136 struct efx_channel
*channel
;
1138 efx_for_each_channel(channel
, efx
)
1139 efx_remove_channel(channel
);
1140 efx_remove_port(efx
);
1141 efx_remove_nic(efx
);
1144 /* A convinience function to safely flush all the queues */
1145 int efx_flush_queues(struct efx_nic
*efx
)
1149 EFX_ASSERT_RESET_SERIALISED(efx
);
1153 efx_fini_channels(efx
);
1154 rc
= efx_init_channels(efx
);
1156 efx_schedule_reset(efx
, RESET_TYPE_DISABLE
);
1165 /**************************************************************************
1167 * Interrupt moderation
1169 **************************************************************************/
1171 /* Set interrupt moderation parameters */
1172 void efx_init_irq_moderation(struct efx_nic
*efx
, int tx_usecs
, int rx_usecs
)
1174 struct efx_tx_queue
*tx_queue
;
1175 struct efx_rx_queue
*rx_queue
;
1177 EFX_ASSERT_RESET_SERIALISED(efx
);
1179 efx_for_each_tx_queue(tx_queue
, efx
)
1180 tx_queue
->channel
->irq_moderation
= tx_usecs
;
1182 efx_for_each_rx_queue(rx_queue
, efx
)
1183 rx_queue
->channel
->irq_moderation
= rx_usecs
;
1186 /**************************************************************************
1190 **************************************************************************/
1192 /* Run periodically off the general workqueue. Serialised against
1193 * efx_reconfigure_port via the mac_lock */
1194 static void efx_monitor(struct work_struct
*data
)
1196 struct efx_nic
*efx
= container_of(data
, struct efx_nic
,
1200 EFX_TRACE(efx
, "hardware monitor executing on CPU %d\n",
1201 raw_smp_processor_id());
1204 /* If the mac_lock is already held then it is likely a port
1205 * reconfiguration is already in place, which will likely do
1206 * most of the work of check_hw() anyway. */
1207 if (!mutex_trylock(&efx
->mac_lock
)) {
1208 queue_delayed_work(efx
->workqueue
, &efx
->monitor_work
,
1209 efx_monitor_interval
);
1213 if (efx
->port_enabled
)
1214 rc
= falcon_check_xmac(efx
);
1215 mutex_unlock(&efx
->mac_lock
);
1218 if (monitor_reset
) {
1219 EFX_ERR(efx
, "hardware monitor detected a fault: "
1220 "triggering reset\n");
1221 efx_schedule_reset(efx
, RESET_TYPE_MONITOR
);
1223 EFX_ERR(efx
, "hardware monitor detected a fault, "
1224 "skipping reset\n");
1228 queue_delayed_work(efx
->workqueue
, &efx
->monitor_work
,
1229 efx_monitor_interval
);
1232 /**************************************************************************
1236 *************************************************************************/
1239 * Context: process, rtnl_lock() held.
1241 static int efx_ioctl(struct net_device
*net_dev
, struct ifreq
*ifr
, int cmd
)
1243 struct efx_nic
*efx
= net_dev
->priv
;
1245 EFX_ASSERT_RESET_SERIALISED(efx
);
1247 return generic_mii_ioctl(&efx
->mii
, if_mii(ifr
), cmd
, NULL
);
1250 /**************************************************************************
1254 **************************************************************************/
1256 static int efx_init_napi(struct efx_nic
*efx
)
1258 struct efx_channel
*channel
;
1261 efx_for_each_channel(channel
, efx
) {
1262 channel
->napi_dev
= efx
->net_dev
;
1263 rc
= efx_lro_init(&channel
->lro_mgr
, efx
);
1273 static void efx_fini_napi(struct efx_nic
*efx
)
1275 struct efx_channel
*channel
;
1277 efx_for_each_channel(channel
, efx
) {
1278 efx_lro_fini(&channel
->lro_mgr
);
1279 channel
->napi_dev
= NULL
;
1283 /**************************************************************************
1285 * Kernel netpoll interface
1287 *************************************************************************/
1289 #ifdef CONFIG_NET_POLL_CONTROLLER
1291 /* Although in the common case interrupts will be disabled, this is not
1292 * guaranteed. However, all our work happens inside the NAPI callback,
1293 * so no locking is required.
1295 static void efx_netpoll(struct net_device
*net_dev
)
1297 struct efx_nic
*efx
= net_dev
->priv
;
1298 struct efx_channel
*channel
;
1300 efx_for_each_channel_with_interrupt(channel
, efx
)
1301 efx_schedule_channel(channel
);
1306 /**************************************************************************
1308 * Kernel net device interface
1310 *************************************************************************/
1312 /* Context: process, rtnl_lock() held. */
1313 static int efx_net_open(struct net_device
*net_dev
)
1315 struct efx_nic
*efx
= net_dev
->priv
;
1316 EFX_ASSERT_RESET_SERIALISED(efx
);
1318 EFX_LOG(efx
, "opening device %s on CPU %d\n", net_dev
->name
,
1319 raw_smp_processor_id());
1325 /* Context: process, rtnl_lock() held.
1326 * Note that the kernel will ignore our return code; this method
1327 * should really be a void.
1329 static int efx_net_stop(struct net_device
*net_dev
)
1331 struct efx_nic
*efx
= net_dev
->priv
;
1334 EFX_LOG(efx
, "closing %s on CPU %d\n", net_dev
->name
,
1335 raw_smp_processor_id());
1337 /* Stop the device and flush all the channels */
1339 efx_fini_channels(efx
);
1340 rc
= efx_init_channels(efx
);
1342 efx_schedule_reset(efx
, RESET_TYPE_DISABLE
);
1347 /* Context: process, dev_base_lock held, non-blocking. */
1348 static struct net_device_stats
*efx_net_stats(struct net_device
*net_dev
)
1350 struct efx_nic
*efx
= net_dev
->priv
;
1351 struct efx_mac_stats
*mac_stats
= &efx
->mac_stats
;
1352 struct net_device_stats
*stats
= &net_dev
->stats
;
1354 if (!spin_trylock(&efx
->stats_lock
))
1356 if (efx
->state
== STATE_RUNNING
) {
1357 falcon_update_stats_xmac(efx
);
1358 falcon_update_nic_stats(efx
);
1360 spin_unlock(&efx
->stats_lock
);
1362 stats
->rx_packets
= mac_stats
->rx_packets
;
1363 stats
->tx_packets
= mac_stats
->tx_packets
;
1364 stats
->rx_bytes
= mac_stats
->rx_bytes
;
1365 stats
->tx_bytes
= mac_stats
->tx_bytes
;
1366 stats
->multicast
= mac_stats
->rx_multicast
;
1367 stats
->collisions
= mac_stats
->tx_collision
;
1368 stats
->rx_length_errors
= (mac_stats
->rx_gtjumbo
+
1369 mac_stats
->rx_length_error
);
1370 stats
->rx_over_errors
= efx
->n_rx_nodesc_drop_cnt
;
1371 stats
->rx_crc_errors
= mac_stats
->rx_bad
;
1372 stats
->rx_frame_errors
= mac_stats
->rx_align_error
;
1373 stats
->rx_fifo_errors
= mac_stats
->rx_overflow
;
1374 stats
->rx_missed_errors
= mac_stats
->rx_missed
;
1375 stats
->tx_window_errors
= mac_stats
->tx_late_collision
;
1377 stats
->rx_errors
= (stats
->rx_length_errors
+
1378 stats
->rx_over_errors
+
1379 stats
->rx_crc_errors
+
1380 stats
->rx_frame_errors
+
1381 stats
->rx_fifo_errors
+
1382 stats
->rx_missed_errors
+
1383 mac_stats
->rx_symbol_error
);
1384 stats
->tx_errors
= (stats
->tx_window_errors
+
1390 /* Context: netif_tx_lock held, BHs disabled. */
1391 static void efx_watchdog(struct net_device
*net_dev
)
1393 struct efx_nic
*efx
= net_dev
->priv
;
1395 EFX_ERR(efx
, "TX stuck with stop_count=%d port_enabled=%d: %s\n",
1396 atomic_read(&efx
->netif_stop_count
), efx
->port_enabled
,
1397 monitor_reset
? "resetting channels" : "skipping reset");
1400 efx_schedule_reset(efx
, RESET_TYPE_MONITOR
);
1404 /* Context: process, rtnl_lock() held. */
1405 static int efx_change_mtu(struct net_device
*net_dev
, int new_mtu
)
1407 struct efx_nic
*efx
= net_dev
->priv
;
1410 EFX_ASSERT_RESET_SERIALISED(efx
);
1412 if (new_mtu
> EFX_MAX_MTU
)
1417 EFX_LOG(efx
, "changing MTU to %d\n", new_mtu
);
1419 efx_fini_channels(efx
);
1420 net_dev
->mtu
= new_mtu
;
1421 rc
= efx_init_channels(efx
);
1429 efx_schedule_reset(efx
, RESET_TYPE_DISABLE
);
1433 static int efx_set_mac_address(struct net_device
*net_dev
, void *data
)
1435 struct efx_nic
*efx
= net_dev
->priv
;
1436 struct sockaddr
*addr
= data
;
1437 char *new_addr
= addr
->sa_data
;
1439 EFX_ASSERT_RESET_SERIALISED(efx
);
1441 if (!is_valid_ether_addr(new_addr
)) {
1442 DECLARE_MAC_BUF(mac
);
1443 EFX_ERR(efx
, "invalid ethernet MAC address requested: %s\n",
1444 print_mac(mac
, new_addr
));
1448 memcpy(net_dev
->dev_addr
, new_addr
, net_dev
->addr_len
);
1450 /* Reconfigure the MAC */
1451 efx_reconfigure_port(efx
);
1456 /* Context: netif_tx_lock held, BHs disabled. */
1457 static void efx_set_multicast_list(struct net_device
*net_dev
)
1459 struct efx_nic
*efx
= net_dev
->priv
;
1460 struct dev_mc_list
*mc_list
= net_dev
->mc_list
;
1461 union efx_multicast_hash
*mc_hash
= &efx
->multicast_hash
;
1467 /* Set per-MAC promiscuity flag and reconfigure MAC if necessary */
1468 promiscuous
= (net_dev
->flags
& IFF_PROMISC
) ? 1 : 0;
1469 if (efx
->promiscuous
!= promiscuous
) {
1470 efx
->promiscuous
= promiscuous
;
1471 /* Close the window between efx_stop_port() and efx_flush_all()
1472 * by only queuing work when the port is enabled. */
1473 if (efx
->port_enabled
)
1474 queue_work(efx
->workqueue
, &efx
->reconfigure_work
);
1477 /* Build multicast hash table */
1478 if (promiscuous
|| (net_dev
->flags
& IFF_ALLMULTI
)) {
1479 memset(mc_hash
, 0xff, sizeof(*mc_hash
));
1481 memset(mc_hash
, 0x00, sizeof(*mc_hash
));
1482 for (i
= 0; i
< net_dev
->mc_count
; i
++) {
1483 crc
= ether_crc_le(ETH_ALEN
, mc_list
->dmi_addr
);
1484 bit
= crc
& (EFX_MCAST_HASH_ENTRIES
- 1);
1485 set_bit_le(bit
, mc_hash
->byte
);
1486 mc_list
= mc_list
->next
;
1490 /* Create and activate new global multicast hash table */
1491 falcon_set_multicast_hash(efx
);
1494 static int efx_netdev_event(struct notifier_block
*this,
1495 unsigned long event
, void *ptr
)
1497 struct net_device
*net_dev
= (struct net_device
*)ptr
;
1499 if (net_dev
->open
== efx_net_open
&& event
== NETDEV_CHANGENAME
) {
1500 struct efx_nic
*efx
= net_dev
->priv
;
1502 strcpy(efx
->name
, net_dev
->name
);
1508 static struct notifier_block efx_netdev_notifier
= {
1509 .notifier_call
= efx_netdev_event
,
1512 static int efx_register_netdev(struct efx_nic
*efx
)
1514 struct net_device
*net_dev
= efx
->net_dev
;
1517 net_dev
->watchdog_timeo
= 5 * HZ
;
1518 net_dev
->irq
= efx
->pci_dev
->irq
;
1519 net_dev
->open
= efx_net_open
;
1520 net_dev
->stop
= efx_net_stop
;
1521 net_dev
->get_stats
= efx_net_stats
;
1522 net_dev
->tx_timeout
= &efx_watchdog
;
1523 net_dev
->hard_start_xmit
= efx_hard_start_xmit
;
1524 net_dev
->do_ioctl
= efx_ioctl
;
1525 net_dev
->change_mtu
= efx_change_mtu
;
1526 net_dev
->set_mac_address
= efx_set_mac_address
;
1527 net_dev
->set_multicast_list
= efx_set_multicast_list
;
1528 #ifdef CONFIG_NET_POLL_CONTROLLER
1529 net_dev
->poll_controller
= efx_netpoll
;
1531 SET_NETDEV_DEV(net_dev
, &efx
->pci_dev
->dev
);
1532 SET_ETHTOOL_OPS(net_dev
, &efx_ethtool_ops
);
1534 /* Always start with carrier off; PHY events will detect the link */
1535 netif_carrier_off(efx
->net_dev
);
1537 /* Clear MAC statistics */
1538 falcon_update_stats_xmac(efx
);
1539 memset(&efx
->mac_stats
, 0, sizeof(efx
->mac_stats
));
1541 rc
= register_netdev(net_dev
);
1543 EFX_ERR(efx
, "could not register net dev\n");
1546 strcpy(efx
->name
, net_dev
->name
);
1551 static void efx_unregister_netdev(struct efx_nic
*efx
)
1553 struct efx_tx_queue
*tx_queue
;
1558 BUG_ON(efx
->net_dev
->priv
!= efx
);
1560 /* Free up any skbs still remaining. This has to happen before
1561 * we try to unregister the netdev as running their destructors
1562 * may be needed to get the device ref. count to 0. */
1563 efx_for_each_tx_queue(tx_queue
, efx
)
1564 efx_release_tx_buffers(tx_queue
);
1566 if (NET_DEV_REGISTERED(efx
)) {
1567 strlcpy(efx
->name
, pci_name(efx
->pci_dev
), sizeof(efx
->name
));
1568 unregister_netdev(efx
->net_dev
);
1572 /**************************************************************************
1574 * Device reset and suspend
1576 **************************************************************************/
1578 /* The final hardware and software finalisation before reset. */
1579 static int efx_reset_down(struct efx_nic
*efx
, struct ethtool_cmd
*ecmd
)
1583 EFX_ASSERT_RESET_SERIALISED(efx
);
1585 rc
= falcon_xmac_get_settings(efx
, ecmd
);
1587 EFX_ERR(efx
, "could not back up PHY settings\n");
1591 efx_fini_channels(efx
);
1598 /* The first part of software initialisation after a hardware reset
1599 * This function does not handle serialisation with the kernel, it
1600 * assumes the caller has done this */
1601 static int efx_reset_up(struct efx_nic
*efx
, struct ethtool_cmd
*ecmd
)
1605 rc
= efx_init_channels(efx
);
1609 /* Restore MAC and PHY settings. */
1610 rc
= falcon_xmac_set_settings(efx
, ecmd
);
1612 EFX_ERR(efx
, "could not restore PHY settings\n");
1619 efx_fini_channels(efx
);
1624 /* Reset the NIC as transparently as possible. Do not reset the PHY
1625 * Note that the reset may fail, in which case the card will be left
1626 * in a most-probably-unusable state.
1628 * This function will sleep. You cannot reset from within an atomic
1629 * state; use efx_schedule_reset() instead.
1631 * Grabs the rtnl_lock.
1633 static int efx_reset(struct efx_nic
*efx
)
1635 struct ethtool_cmd ecmd
;
1636 enum reset_type method
= efx
->reset_pending
;
1639 /* Serialise with kernel interfaces */
1642 /* If we're not RUNNING then don't reset. Leave the reset_pending
1643 * flag set so that efx_pci_probe_main will be retried */
1644 if (efx
->state
!= STATE_RUNNING
) {
1645 EFX_INFO(efx
, "scheduled reset quenched. NIC not RUNNING\n");
1649 efx
->state
= STATE_RESETTING
;
1650 EFX_INFO(efx
, "resetting (%d)\n", method
);
1652 /* The net_dev->get_stats handler is quite slow, and will fail
1653 * if a fetch is pending over reset. Serialise against it. */
1654 spin_lock(&efx
->stats_lock
);
1655 spin_unlock(&efx
->stats_lock
);
1658 mutex_lock(&efx
->mac_lock
);
1660 rc
= efx_reset_down(efx
, &ecmd
);
1664 rc
= falcon_reset_hw(efx
, method
);
1666 EFX_ERR(efx
, "failed to reset hardware\n");
1670 /* Allow resets to be rescheduled. */
1671 efx
->reset_pending
= RESET_TYPE_NONE
;
1673 /* Reinitialise bus-mastering, which may have been turned off before
1674 * the reset was scheduled. This is still appropriate, even in the
1675 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
1676 * can respond to requests. */
1677 pci_set_master(efx
->pci_dev
);
1679 /* Reinitialise device. This is appropriate in the RESET_TYPE_DISABLE
1680 * case so the driver can talk to external SRAM */
1681 rc
= falcon_init_nic(efx
);
1683 EFX_ERR(efx
, "failed to initialise NIC\n");
1687 /* Leave device stopped if necessary */
1688 if (method
== RESET_TYPE_DISABLE
) {
1689 /* Reinitialise the device anyway so the driver unload sequence
1690 * can talk to the external SRAM */
1691 (void) falcon_init_nic(efx
);
1696 rc
= efx_reset_up(efx
, &ecmd
);
1700 mutex_unlock(&efx
->mac_lock
);
1701 EFX_LOG(efx
, "reset complete\n");
1703 efx
->state
= STATE_RUNNING
;
1715 EFX_ERR(efx
, "has been disabled\n");
1716 efx
->state
= STATE_DISABLED
;
1718 mutex_unlock(&efx
->mac_lock
);
1720 efx_unregister_netdev(efx
);
1725 /* The worker thread exists so that code that cannot sleep can
1726 * schedule a reset for later.
1728 static void efx_reset_work(struct work_struct
*data
)
1730 struct efx_nic
*nic
= container_of(data
, struct efx_nic
, reset_work
);
1735 void efx_schedule_reset(struct efx_nic
*efx
, enum reset_type type
)
1737 enum reset_type method
;
1739 if (efx
->reset_pending
!= RESET_TYPE_NONE
) {
1740 EFX_INFO(efx
, "quenching already scheduled reset\n");
1745 case RESET_TYPE_INVISIBLE
:
1746 case RESET_TYPE_ALL
:
1747 case RESET_TYPE_WORLD
:
1748 case RESET_TYPE_DISABLE
:
1751 case RESET_TYPE_RX_RECOVERY
:
1752 case RESET_TYPE_RX_DESC_FETCH
:
1753 case RESET_TYPE_TX_DESC_FETCH
:
1754 case RESET_TYPE_TX_SKIP
:
1755 method
= RESET_TYPE_INVISIBLE
;
1758 method
= RESET_TYPE_ALL
;
1763 EFX_LOG(efx
, "scheduling reset (%d:%d)\n", type
, method
);
1765 EFX_LOG(efx
, "scheduling reset (%d)\n", method
);
1767 efx
->reset_pending
= method
;
1769 queue_work(efx
->workqueue
, &efx
->reset_work
);
1772 /**************************************************************************
1774 * List of NICs we support
1776 **************************************************************************/
1778 /* PCI device ID table */
1779 static struct pci_device_id efx_pci_table
[] __devinitdata
= {
1780 {PCI_DEVICE(EFX_VENDID_SFC
, FALCON_A_P_DEVID
),
1781 .driver_data
= (unsigned long) &falcon_a_nic_type
},
1782 {PCI_DEVICE(EFX_VENDID_SFC
, FALCON_B_P_DEVID
),
1783 .driver_data
= (unsigned long) &falcon_b_nic_type
},
1784 {0} /* end of list */
1787 /**************************************************************************
1789 * Dummy PHY/MAC/Board operations
1791 * Can be used where the MAC does not implement this operation
1792 * Needed so all function pointers are valid and do not have to be tested
1795 **************************************************************************/
1796 int efx_port_dummy_op_int(struct efx_nic
*efx
)
1800 void efx_port_dummy_op_void(struct efx_nic
*efx
) {}
1801 void efx_port_dummy_op_blink(struct efx_nic
*efx
, int blink
) {}
1803 static struct efx_phy_operations efx_dummy_phy_operations
= {
1804 .init
= efx_port_dummy_op_int
,
1805 .reconfigure
= efx_port_dummy_op_void
,
1806 .check_hw
= efx_port_dummy_op_int
,
1807 .fini
= efx_port_dummy_op_void
,
1808 .clear_interrupt
= efx_port_dummy_op_void
,
1809 .reset_xaui
= efx_port_dummy_op_void
,
1812 /* Dummy board operations */
1813 static int efx_nic_dummy_op_int(struct efx_nic
*nic
)
1818 static struct efx_board efx_dummy_board_info
= {
1819 .init
= efx_nic_dummy_op_int
,
1820 .init_leds
= efx_port_dummy_op_int
,
1821 .set_fault_led
= efx_port_dummy_op_blink
,
1824 /**************************************************************************
1828 **************************************************************************/
1830 /* This zeroes out and then fills in the invariants in a struct
1831 * efx_nic (including all sub-structures).
1833 static int efx_init_struct(struct efx_nic
*efx
, struct efx_nic_type
*type
,
1834 struct pci_dev
*pci_dev
, struct net_device
*net_dev
)
1836 struct efx_channel
*channel
;
1837 struct efx_tx_queue
*tx_queue
;
1838 struct efx_rx_queue
*rx_queue
;
1841 /* Initialise common structures */
1842 memset(efx
, 0, sizeof(*efx
));
1843 spin_lock_init(&efx
->biu_lock
);
1844 spin_lock_init(&efx
->phy_lock
);
1845 INIT_WORK(&efx
->reset_work
, efx_reset_work
);
1846 INIT_DELAYED_WORK(&efx
->monitor_work
, efx_monitor
);
1847 efx
->pci_dev
= pci_dev
;
1848 efx
->state
= STATE_INIT
;
1849 efx
->reset_pending
= RESET_TYPE_NONE
;
1850 strlcpy(efx
->name
, pci_name(pci_dev
), sizeof(efx
->name
));
1851 efx
->board_info
= efx_dummy_board_info
;
1853 efx
->net_dev
= net_dev
;
1854 efx
->rx_checksum_enabled
= 1;
1855 spin_lock_init(&efx
->netif_stop_lock
);
1856 spin_lock_init(&efx
->stats_lock
);
1857 mutex_init(&efx
->mac_lock
);
1858 efx
->phy_op
= &efx_dummy_phy_operations
;
1859 efx
->mii
.dev
= net_dev
;
1860 INIT_WORK(&efx
->reconfigure_work
, efx_reconfigure_work
);
1861 atomic_set(&efx
->netif_stop_count
, 1);
1863 for (i
= 0; i
< EFX_MAX_CHANNELS
; i
++) {
1864 channel
= &efx
->channel
[i
];
1866 channel
->channel
= i
;
1867 channel
->evqnum
= i
;
1868 channel
->work_pending
= 0;
1870 for (i
= 0; i
< EFX_MAX_TX_QUEUES
; i
++) {
1871 tx_queue
= &efx
->tx_queue
[i
];
1872 tx_queue
->efx
= efx
;
1873 tx_queue
->queue
= i
;
1874 tx_queue
->buffer
= NULL
;
1875 tx_queue
->channel
= &efx
->channel
[0]; /* for safety */
1877 for (i
= 0; i
< EFX_MAX_RX_QUEUES
; i
++) {
1878 rx_queue
= &efx
->rx_queue
[i
];
1879 rx_queue
->efx
= efx
;
1880 rx_queue
->queue
= i
;
1881 rx_queue
->channel
= &efx
->channel
[0]; /* for safety */
1882 rx_queue
->buffer
= NULL
;
1883 spin_lock_init(&rx_queue
->add_lock
);
1884 INIT_DELAYED_WORK(&rx_queue
->work
, efx_rx_work
);
1889 /* Sanity-check NIC type */
1890 EFX_BUG_ON_PARANOID(efx
->type
->txd_ring_mask
&
1891 (efx
->type
->txd_ring_mask
+ 1));
1892 EFX_BUG_ON_PARANOID(efx
->type
->rxd_ring_mask
&
1893 (efx
->type
->rxd_ring_mask
+ 1));
1894 EFX_BUG_ON_PARANOID(efx
->type
->evq_size
&
1895 (efx
->type
->evq_size
- 1));
1896 /* As close as we can get to guaranteeing that we don't overflow */
1897 EFX_BUG_ON_PARANOID(efx
->type
->evq_size
<
1898 (efx
->type
->txd_ring_mask
+ 1 +
1899 efx
->type
->rxd_ring_mask
+ 1));
1900 EFX_BUG_ON_PARANOID(efx
->type
->phys_addr_channels
> EFX_MAX_CHANNELS
);
1902 /* Higher numbered interrupt modes are less capable! */
1903 efx
->interrupt_mode
= max(efx
->type
->max_interrupt_mode
,
1906 efx
->workqueue
= create_singlethread_workqueue("sfc_work");
1907 if (!efx
->workqueue
) {
1918 static void efx_fini_struct(struct efx_nic
*efx
)
1920 if (efx
->workqueue
) {
1921 destroy_workqueue(efx
->workqueue
);
1922 efx
->workqueue
= NULL
;
1926 /**************************************************************************
1930 **************************************************************************/
1932 /* Main body of final NIC shutdown code
1933 * This is called only at module unload (or hotplug removal).
1935 static void efx_pci_remove_main(struct efx_nic
*efx
)
1937 EFX_ASSERT_RESET_SERIALISED(efx
);
1939 /* Skip everything if we never obtained a valid membase */
1943 efx_fini_channels(efx
);
1946 /* Shutdown the board, then the NIC and board state */
1947 falcon_fini_interrupt(efx
);
1950 efx_remove_all(efx
);
1953 /* Final NIC shutdown
1954 * This is called only at module unload (or hotplug removal).
1956 static void efx_pci_remove(struct pci_dev
*pci_dev
)
1958 struct efx_nic
*efx
;
1960 efx
= pci_get_drvdata(pci_dev
);
1964 /* Mark the NIC as fini, then stop the interface */
1966 efx
->state
= STATE_FINI
;
1967 dev_close(efx
->net_dev
);
1969 /* Allow any queued efx_resets() to complete */
1972 if (efx
->membase
== NULL
)
1975 efx_unregister_netdev(efx
);
1977 /* Wait for any scheduled resets to complete. No more will be
1978 * scheduled from this point because efx_stop_all() has been
1979 * called, we are no longer registered with driverlink, and
1980 * the net_device's have been removed. */
1981 flush_workqueue(efx
->workqueue
);
1983 efx_pci_remove_main(efx
);
1987 EFX_LOG(efx
, "shutdown successful\n");
1989 pci_set_drvdata(pci_dev
, NULL
);
1990 efx_fini_struct(efx
);
1991 free_netdev(efx
->net_dev
);
1994 /* Main body of NIC initialisation
1995 * This is called at module load (or hotplug insertion, theoretically).
1997 static int efx_pci_probe_main(struct efx_nic
*efx
)
2001 /* Do start-of-day initialisation */
2002 rc
= efx_probe_all(efx
);
2006 rc
= efx_init_napi(efx
);
2010 /* Initialise the board */
2011 rc
= efx
->board_info
.init(efx
);
2013 EFX_ERR(efx
, "failed to initialise board\n");
2017 rc
= falcon_init_nic(efx
);
2019 EFX_ERR(efx
, "failed to initialise NIC\n");
2023 rc
= efx_init_port(efx
);
2025 EFX_ERR(efx
, "failed to initialise port\n");
2029 rc
= efx_init_channels(efx
);
2033 rc
= falcon_init_interrupt(efx
);
2040 efx_fini_channels(efx
);
2048 efx_remove_all(efx
);
2053 /* NIC initialisation
2055 * This is called at module load (or hotplug insertion,
2056 * theoretically). It sets up PCI mappings, tests and resets the NIC,
2057 * sets up and registers the network devices with the kernel and hooks
2058 * the interrupt service routine. It does not prepare the device for
2059 * transmission; this is left to the first time one of the network
2060 * interfaces is brought up (i.e. efx_net_open).
2062 static int __devinit
efx_pci_probe(struct pci_dev
*pci_dev
,
2063 const struct pci_device_id
*entry
)
2065 struct efx_nic_type
*type
= (struct efx_nic_type
*) entry
->driver_data
;
2066 struct net_device
*net_dev
;
2067 struct efx_nic
*efx
;
2070 /* Allocate and initialise a struct net_device and struct efx_nic */
2071 net_dev
= alloc_etherdev(sizeof(*efx
));
2074 net_dev
->features
|= NETIF_F_IP_CSUM
| NETIF_F_SG
| NETIF_F_HIGHDMA
;
2076 net_dev
->features
|= NETIF_F_LRO
;
2077 efx
= net_dev
->priv
;
2078 pci_set_drvdata(pci_dev
, efx
);
2079 rc
= efx_init_struct(efx
, type
, pci_dev
, net_dev
);
2083 EFX_INFO(efx
, "Solarflare Communications NIC detected\n");
2085 /* Set up basic I/O (BAR mappings etc) */
2086 rc
= efx_init_io(efx
);
2090 /* No serialisation is required with the reset path because
2091 * we're in STATE_INIT. */
2092 for (i
= 0; i
< 5; i
++) {
2093 rc
= efx_pci_probe_main(efx
);
2097 /* Serialise against efx_reset(). No more resets will be
2098 * scheduled since efx_stop_all() has been called, and we
2099 * have not and never have been registered with either
2100 * the rtnetlink or driverlink layers. */
2101 cancel_work_sync(&efx
->reset_work
);
2103 /* Retry if a recoverably reset event has been scheduled */
2104 if ((efx
->reset_pending
!= RESET_TYPE_INVISIBLE
) &&
2105 (efx
->reset_pending
!= RESET_TYPE_ALL
))
2108 efx
->reset_pending
= RESET_TYPE_NONE
;
2112 EFX_ERR(efx
, "Could not reset NIC\n");
2116 /* Switch to the running state before we expose the device to
2117 * the OS. This is to ensure that the initial gathering of
2118 * MAC stats succeeds. */
2120 efx
->state
= STATE_RUNNING
;
2123 rc
= efx_register_netdev(efx
);
2127 EFX_LOG(efx
, "initialisation successful\n");
2132 efx_pci_remove_main(efx
);
2137 efx_fini_struct(efx
);
2139 EFX_LOG(efx
, "initialisation failed. rc=%d\n", rc
);
2140 free_netdev(net_dev
);
2144 static struct pci_driver efx_pci_driver
= {
2145 .name
= EFX_DRIVER_NAME
,
2146 .id_table
= efx_pci_table
,
2147 .probe
= efx_pci_probe
,
2148 .remove
= efx_pci_remove
,
2151 /**************************************************************************
2153 * Kernel module interface
2155 *************************************************************************/
2157 module_param(interrupt_mode
, uint
, 0444);
2158 MODULE_PARM_DESC(interrupt_mode
,
2159 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");
2161 static int __init
efx_init_module(void)
2165 printk(KERN_INFO
"Solarflare NET driver v" EFX_DRIVER_VERSION
"\n");
2167 rc
= register_netdevice_notifier(&efx_netdev_notifier
);
2171 refill_workqueue
= create_workqueue("sfc_refill");
2172 if (!refill_workqueue
) {
2177 rc
= pci_register_driver(&efx_pci_driver
);
2184 destroy_workqueue(refill_workqueue
);
2186 unregister_netdevice_notifier(&efx_netdev_notifier
);
2191 static void __exit
efx_exit_module(void)
2193 printk(KERN_INFO
"Solarflare NET driver unloading\n");
2195 pci_unregister_driver(&efx_pci_driver
);
2196 destroy_workqueue(refill_workqueue
);
2197 unregister_netdevice_notifier(&efx_netdev_notifier
);
2201 module_init(efx_init_module
);
2202 module_exit(efx_exit_module
);
2204 MODULE_AUTHOR("Michael Brown <mbrown@fensystems.co.uk> and "
2205 "Solarflare Communications");
2206 MODULE_DESCRIPTION("Solarflare Communications network driver");
2207 MODULE_LICENSE("GPL");
2208 MODULE_DEVICE_TABLE(pci
, efx_pci_table
);