Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux-2.6
[linux-2.6/linux-mips/linux-dm7025.git] / drivers / video / intelfb / intelfbhw.c
blob8e6d6a4db0ad85a52d8fd8313fcaf7f9f6884d3b
1 /*
2 * intelfb
4 * Linux framebuffer driver for Intel(R) 865G integrated graphics chips.
6 * Copyright © 2002, 2003 David Dawes <dawes@xfree86.org>
7 * 2004 Sylvain Meyer
9 * This driver consists of two parts. The first part (intelfbdrv.c) provides
10 * the basic fbdev interfaces, is derived in part from the radeonfb and
11 * vesafb drivers, and is covered by the GPL. The second part (intelfbhw.c)
12 * provides the code to program the hardware. Most of it is derived from
13 * the i810/i830 XFree86 driver. The HW-specific code is covered here
14 * under a dual license (GPL and MIT/XFree86 license).
16 * Author: David Dawes
20 /* $DHD: intelfb/intelfbhw.c,v 1.9 2003/06/27 15:06:25 dawes Exp $ */
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/errno.h>
25 #include <linux/string.h>
26 #include <linux/mm.h>
27 #include <linux/slab.h>
28 #include <linux/delay.h>
29 #include <linux/fb.h>
30 #include <linux/ioport.h>
31 #include <linux/init.h>
32 #include <linux/pci.h>
33 #include <linux/vmalloc.h>
34 #include <linux/pagemap.h>
35 #include <linux/interrupt.h>
37 #include <asm/io.h>
39 #include "intelfb.h"
40 #include "intelfbhw.h"
42 struct pll_min_max {
43 int min_m, max_m, min_m1, max_m1;
44 int min_m2, max_m2, min_n, max_n;
45 int min_p, max_p, min_p1, max_p1;
46 int min_vco, max_vco, p_transition_clk, ref_clk;
47 int p_inc_lo, p_inc_hi;
50 #define PLLS_I8xx 0
51 #define PLLS_I9xx 1
52 #define PLLS_MAX 2
54 static struct pll_min_max plls[PLLS_MAX] = {
55 { 108, 140, 18, 26,
56 6, 16, 3, 16,
57 4, 128, 0, 31,
58 930000, 1400000, 165000, 48000,
59 4, 2 }, /* I8xx */
61 { 75, 120, 10, 20,
62 5, 9, 4, 7,
63 5, 80, 1, 8,
64 1400000, 2800000, 200000, 96000,
65 10, 5 } /* I9xx */
68 int intelfbhw_get_chipset(struct pci_dev *pdev, struct intelfb_info *dinfo)
70 u32 tmp;
71 if (!pdev || !dinfo)
72 return 1;
74 switch (pdev->device) {
75 case PCI_DEVICE_ID_INTEL_830M:
76 dinfo->name = "Intel(R) 830M";
77 dinfo->chipset = INTEL_830M;
78 dinfo->mobile = 1;
79 dinfo->pll_index = PLLS_I8xx;
80 return 0;
81 case PCI_DEVICE_ID_INTEL_845G:
82 dinfo->name = "Intel(R) 845G";
83 dinfo->chipset = INTEL_845G;
84 dinfo->mobile = 0;
85 dinfo->pll_index = PLLS_I8xx;
86 return 0;
87 case PCI_DEVICE_ID_INTEL_85XGM:
88 tmp = 0;
89 dinfo->mobile = 1;
90 dinfo->pll_index = PLLS_I8xx;
91 pci_read_config_dword(pdev, INTEL_85X_CAPID, &tmp);
92 switch ((tmp >> INTEL_85X_VARIANT_SHIFT) &
93 INTEL_85X_VARIANT_MASK) {
94 case INTEL_VAR_855GME:
95 dinfo->name = "Intel(R) 855GME";
96 dinfo->chipset = INTEL_855GME;
97 return 0;
98 case INTEL_VAR_855GM:
99 dinfo->name = "Intel(R) 855GM";
100 dinfo->chipset = INTEL_855GM;
101 return 0;
102 case INTEL_VAR_852GME:
103 dinfo->name = "Intel(R) 852GME";
104 dinfo->chipset = INTEL_852GME;
105 return 0;
106 case INTEL_VAR_852GM:
107 dinfo->name = "Intel(R) 852GM";
108 dinfo->chipset = INTEL_852GM;
109 return 0;
110 default:
111 dinfo->name = "Intel(R) 852GM/855GM";
112 dinfo->chipset = INTEL_85XGM;
113 return 0;
115 break;
116 case PCI_DEVICE_ID_INTEL_865G:
117 dinfo->name = "Intel(R) 865G";
118 dinfo->chipset = INTEL_865G;
119 dinfo->mobile = 0;
120 dinfo->pll_index = PLLS_I8xx;
121 return 0;
122 case PCI_DEVICE_ID_INTEL_915G:
123 dinfo->name = "Intel(R) 915G";
124 dinfo->chipset = INTEL_915G;
125 dinfo->mobile = 0;
126 dinfo->pll_index = PLLS_I9xx;
127 return 0;
128 case PCI_DEVICE_ID_INTEL_915GM:
129 dinfo->name = "Intel(R) 915GM";
130 dinfo->chipset = INTEL_915GM;
131 dinfo->mobile = 1;
132 dinfo->pll_index = PLLS_I9xx;
133 return 0;
134 case PCI_DEVICE_ID_INTEL_945G:
135 dinfo->name = "Intel(R) 945G";
136 dinfo->chipset = INTEL_945G;
137 dinfo->mobile = 0;
138 dinfo->pll_index = PLLS_I9xx;
139 return 0;
140 case PCI_DEVICE_ID_INTEL_945GM:
141 dinfo->name = "Intel(R) 945GM";
142 dinfo->chipset = INTEL_945GM;
143 dinfo->mobile = 1;
144 dinfo->pll_index = PLLS_I9xx;
145 return 0;
146 case PCI_DEVICE_ID_INTEL_965G:
147 dinfo->name = "Intel(R) 965G";
148 dinfo->chipset = INTEL_965G;
149 dinfo->mobile = 0;
150 dinfo->pll_index = PLLS_I9xx;
151 return 0;
152 case PCI_DEVICE_ID_INTEL_965GM:
153 dinfo->name = "Intel(R) 965GM";
154 dinfo->chipset = INTEL_965GM;
155 dinfo->mobile = 1;
156 dinfo->pll_index = PLLS_I9xx;
157 return 0;
158 default:
159 return 1;
163 int intelfbhw_get_memory(struct pci_dev *pdev, int *aperture_size,
164 int *stolen_size)
166 struct pci_dev *bridge_dev;
167 u16 tmp;
168 int stolen_overhead;
170 if (!pdev || !aperture_size || !stolen_size)
171 return 1;
173 /* Find the bridge device. It is always 0:0.0 */
174 if (!(bridge_dev = pci_get_bus_and_slot(0, PCI_DEVFN(0, 0)))) {
175 ERR_MSG("cannot find bridge device\n");
176 return 1;
179 /* Get the fb aperture size and "stolen" memory amount. */
180 tmp = 0;
181 pci_read_config_word(bridge_dev, INTEL_GMCH_CTRL, &tmp);
182 pci_dev_put(bridge_dev);
184 switch (pdev->device) {
185 case PCI_DEVICE_ID_INTEL_915G:
186 case PCI_DEVICE_ID_INTEL_915GM:
187 case PCI_DEVICE_ID_INTEL_945G:
188 case PCI_DEVICE_ID_INTEL_945GM:
189 case PCI_DEVICE_ID_INTEL_965G:
190 case PCI_DEVICE_ID_INTEL_965GM:
191 /* 915, 945 and 965 chipsets support a 256MB aperture.
192 Aperture size is determined by inspected the
193 base address of the aperture. */
194 if (pci_resource_start(pdev, 2) & 0x08000000)
195 *aperture_size = MB(128);
196 else
197 *aperture_size = MB(256);
198 break;
199 default:
200 if ((tmp & INTEL_GMCH_MEM_MASK) == INTEL_GMCH_MEM_64M)
201 *aperture_size = MB(64);
202 else
203 *aperture_size = MB(128);
204 break;
207 /* Stolen memory size is reduced by the GTT and the popup.
208 GTT is 1K per MB of aperture size, and popup is 4K. */
209 stolen_overhead = (*aperture_size / MB(1)) + 4;
210 switch(pdev->device) {
211 case PCI_DEVICE_ID_INTEL_830M:
212 case PCI_DEVICE_ID_INTEL_845G:
213 switch (tmp & INTEL_830_GMCH_GMS_MASK) {
214 case INTEL_830_GMCH_GMS_STOLEN_512:
215 *stolen_size = KB(512) - KB(stolen_overhead);
216 return 0;
217 case INTEL_830_GMCH_GMS_STOLEN_1024:
218 *stolen_size = MB(1) - KB(stolen_overhead);
219 return 0;
220 case INTEL_830_GMCH_GMS_STOLEN_8192:
221 *stolen_size = MB(8) - KB(stolen_overhead);
222 return 0;
223 case INTEL_830_GMCH_GMS_LOCAL:
224 ERR_MSG("only local memory found\n");
225 return 1;
226 case INTEL_830_GMCH_GMS_DISABLED:
227 ERR_MSG("video memory is disabled\n");
228 return 1;
229 default:
230 ERR_MSG("unexpected GMCH_GMS value: 0x%02x\n",
231 tmp & INTEL_830_GMCH_GMS_MASK);
232 return 1;
234 break;
235 default:
236 switch (tmp & INTEL_855_GMCH_GMS_MASK) {
237 case INTEL_855_GMCH_GMS_STOLEN_1M:
238 *stolen_size = MB(1) - KB(stolen_overhead);
239 return 0;
240 case INTEL_855_GMCH_GMS_STOLEN_4M:
241 *stolen_size = MB(4) - KB(stolen_overhead);
242 return 0;
243 case INTEL_855_GMCH_GMS_STOLEN_8M:
244 *stolen_size = MB(8) - KB(stolen_overhead);
245 return 0;
246 case INTEL_855_GMCH_GMS_STOLEN_16M:
247 *stolen_size = MB(16) - KB(stolen_overhead);
248 return 0;
249 case INTEL_855_GMCH_GMS_STOLEN_32M:
250 *stolen_size = MB(32) - KB(stolen_overhead);
251 return 0;
252 case INTEL_915G_GMCH_GMS_STOLEN_48M:
253 *stolen_size = MB(48) - KB(stolen_overhead);
254 return 0;
255 case INTEL_915G_GMCH_GMS_STOLEN_64M:
256 *stolen_size = MB(64) - KB(stolen_overhead);
257 return 0;
258 case INTEL_855_GMCH_GMS_DISABLED:
259 ERR_MSG("video memory is disabled\n");
260 return 0;
261 default:
262 ERR_MSG("unexpected GMCH_GMS value: 0x%02x\n",
263 tmp & INTEL_855_GMCH_GMS_MASK);
264 return 1;
269 int intelfbhw_check_non_crt(struct intelfb_info *dinfo)
271 int dvo = 0;
273 if (INREG(LVDS) & PORT_ENABLE)
274 dvo |= LVDS_PORT;
275 if (INREG(DVOA) & PORT_ENABLE)
276 dvo |= DVOA_PORT;
277 if (INREG(DVOB) & PORT_ENABLE)
278 dvo |= DVOB_PORT;
279 if (INREG(DVOC) & PORT_ENABLE)
280 dvo |= DVOC_PORT;
282 return dvo;
285 const char * intelfbhw_dvo_to_string(int dvo)
287 if (dvo & DVOA_PORT)
288 return "DVO port A";
289 else if (dvo & DVOB_PORT)
290 return "DVO port B";
291 else if (dvo & DVOC_PORT)
292 return "DVO port C";
293 else if (dvo & LVDS_PORT)
294 return "LVDS port";
295 else
296 return NULL;
300 int intelfbhw_validate_mode(struct intelfb_info *dinfo,
301 struct fb_var_screeninfo *var)
303 int bytes_per_pixel;
304 int tmp;
306 #if VERBOSE > 0
307 DBG_MSG("intelfbhw_validate_mode\n");
308 #endif
310 bytes_per_pixel = var->bits_per_pixel / 8;
311 if (bytes_per_pixel == 3)
312 bytes_per_pixel = 4;
314 /* Check if enough video memory. */
315 tmp = var->yres_virtual * var->xres_virtual * bytes_per_pixel;
316 if (tmp > dinfo->fb.size) {
317 WRN_MSG("Not enough video ram for mode "
318 "(%d KByte vs %d KByte).\n",
319 BtoKB(tmp), BtoKB(dinfo->fb.size));
320 return 1;
323 /* Check if x/y limits are OK. */
324 if (var->xres - 1 > HACTIVE_MASK) {
325 WRN_MSG("X resolution too large (%d vs %d).\n",
326 var->xres, HACTIVE_MASK + 1);
327 return 1;
329 if (var->yres - 1 > VACTIVE_MASK) {
330 WRN_MSG("Y resolution too large (%d vs %d).\n",
331 var->yres, VACTIVE_MASK + 1);
332 return 1;
334 if (var->xres < 4) {
335 WRN_MSG("X resolution too small (%d vs 4).\n", var->xres);
336 return 1;
338 if (var->yres < 4) {
339 WRN_MSG("Y resolution too small (%d vs 4).\n", var->yres);
340 return 1;
343 /* Check for doublescan modes. */
344 if (var->vmode & FB_VMODE_DOUBLE) {
345 WRN_MSG("Mode is double-scan.\n");
346 return 1;
349 if ((var->vmode & FB_VMODE_INTERLACED) && (var->yres & 1)) {
350 WRN_MSG("Odd number of lines in interlaced mode\n");
351 return 1;
354 /* Check if clock is OK. */
355 tmp = 1000000000 / var->pixclock;
356 if (tmp < MIN_CLOCK) {
357 WRN_MSG("Pixel clock is too low (%d MHz vs %d MHz).\n",
358 (tmp + 500) / 1000, MIN_CLOCK / 1000);
359 return 1;
361 if (tmp > MAX_CLOCK) {
362 WRN_MSG("Pixel clock is too high (%d MHz vs %d MHz).\n",
363 (tmp + 500) / 1000, MAX_CLOCK / 1000);
364 return 1;
367 return 0;
370 int intelfbhw_pan_display(struct fb_var_screeninfo *var, struct fb_info *info)
372 struct intelfb_info *dinfo = GET_DINFO(info);
373 u32 offset, xoffset, yoffset;
375 #if VERBOSE > 0
376 DBG_MSG("intelfbhw_pan_display\n");
377 #endif
379 xoffset = ROUND_DOWN_TO(var->xoffset, 8);
380 yoffset = var->yoffset;
382 if ((xoffset + var->xres > var->xres_virtual) ||
383 (yoffset + var->yres > var->yres_virtual))
384 return -EINVAL;
386 offset = (yoffset * dinfo->pitch) +
387 (xoffset * var->bits_per_pixel) / 8;
389 offset += dinfo->fb.offset << 12;
391 dinfo->vsync.pan_offset = offset;
392 if ((var->activate & FB_ACTIVATE_VBL) &&
393 !intelfbhw_enable_irq(dinfo))
394 dinfo->vsync.pan_display = 1;
395 else {
396 dinfo->vsync.pan_display = 0;
397 OUTREG(DSPABASE, offset);
400 return 0;
403 /* Blank the screen. */
404 void intelfbhw_do_blank(int blank, struct fb_info *info)
406 struct intelfb_info *dinfo = GET_DINFO(info);
407 u32 tmp;
409 #if VERBOSE > 0
410 DBG_MSG("intelfbhw_do_blank: blank is %d\n", blank);
411 #endif
413 /* Turn plane A on or off */
414 tmp = INREG(DSPACNTR);
415 if (blank)
416 tmp &= ~DISPPLANE_PLANE_ENABLE;
417 else
418 tmp |= DISPPLANE_PLANE_ENABLE;
419 OUTREG(DSPACNTR, tmp);
420 /* Flush */
421 tmp = INREG(DSPABASE);
422 OUTREG(DSPABASE, tmp);
424 /* Turn off/on the HW cursor */
425 #if VERBOSE > 0
426 DBG_MSG("cursor_on is %d\n", dinfo->cursor_on);
427 #endif
428 if (dinfo->cursor_on) {
429 if (blank)
430 intelfbhw_cursor_hide(dinfo);
431 else
432 intelfbhw_cursor_show(dinfo);
433 dinfo->cursor_on = 1;
435 dinfo->cursor_blanked = blank;
437 /* Set DPMS level */
438 tmp = INREG(ADPA) & ~ADPA_DPMS_CONTROL_MASK;
439 switch (blank) {
440 case FB_BLANK_UNBLANK:
441 case FB_BLANK_NORMAL:
442 tmp |= ADPA_DPMS_D0;
443 break;
444 case FB_BLANK_VSYNC_SUSPEND:
445 tmp |= ADPA_DPMS_D1;
446 break;
447 case FB_BLANK_HSYNC_SUSPEND:
448 tmp |= ADPA_DPMS_D2;
449 break;
450 case FB_BLANK_POWERDOWN:
451 tmp |= ADPA_DPMS_D3;
452 break;
454 OUTREG(ADPA, tmp);
456 return;
460 void intelfbhw_setcolreg(struct intelfb_info *dinfo, unsigned regno,
461 unsigned red, unsigned green, unsigned blue,
462 unsigned transp)
464 u32 palette_reg = (dinfo->pipe == PIPE_A) ?
465 PALETTE_A : PALETTE_B;
467 #if VERBOSE > 0
468 DBG_MSG("intelfbhw_setcolreg: %d: (%d, %d, %d)\n",
469 regno, red, green, blue);
470 #endif
472 OUTREG(palette_reg + (regno << 2),
473 (red << PALETTE_8_RED_SHIFT) |
474 (green << PALETTE_8_GREEN_SHIFT) |
475 (blue << PALETTE_8_BLUE_SHIFT));
479 int intelfbhw_read_hw_state(struct intelfb_info *dinfo,
480 struct intelfb_hwstate *hw, int flag)
482 int i;
484 #if VERBOSE > 0
485 DBG_MSG("intelfbhw_read_hw_state\n");
486 #endif
488 if (!hw || !dinfo)
489 return -1;
491 /* Read in as much of the HW state as possible. */
492 hw->vga0_divisor = INREG(VGA0_DIVISOR);
493 hw->vga1_divisor = INREG(VGA1_DIVISOR);
494 hw->vga_pd = INREG(VGAPD);
495 hw->dpll_a = INREG(DPLL_A);
496 hw->dpll_b = INREG(DPLL_B);
497 hw->fpa0 = INREG(FPA0);
498 hw->fpa1 = INREG(FPA1);
499 hw->fpb0 = INREG(FPB0);
500 hw->fpb1 = INREG(FPB1);
502 if (flag == 1)
503 return flag;
505 #if 0
506 /* This seems to be a problem with the 852GM/855GM */
507 for (i = 0; i < PALETTE_8_ENTRIES; i++) {
508 hw->palette_a[i] = INREG(PALETTE_A + (i << 2));
509 hw->palette_b[i] = INREG(PALETTE_B + (i << 2));
511 #endif
513 if (flag == 2)
514 return flag;
516 hw->htotal_a = INREG(HTOTAL_A);
517 hw->hblank_a = INREG(HBLANK_A);
518 hw->hsync_a = INREG(HSYNC_A);
519 hw->vtotal_a = INREG(VTOTAL_A);
520 hw->vblank_a = INREG(VBLANK_A);
521 hw->vsync_a = INREG(VSYNC_A);
522 hw->src_size_a = INREG(SRC_SIZE_A);
523 hw->bclrpat_a = INREG(BCLRPAT_A);
524 hw->htotal_b = INREG(HTOTAL_B);
525 hw->hblank_b = INREG(HBLANK_B);
526 hw->hsync_b = INREG(HSYNC_B);
527 hw->vtotal_b = INREG(VTOTAL_B);
528 hw->vblank_b = INREG(VBLANK_B);
529 hw->vsync_b = INREG(VSYNC_B);
530 hw->src_size_b = INREG(SRC_SIZE_B);
531 hw->bclrpat_b = INREG(BCLRPAT_B);
533 if (flag == 3)
534 return flag;
536 hw->adpa = INREG(ADPA);
537 hw->dvoa = INREG(DVOA);
538 hw->dvob = INREG(DVOB);
539 hw->dvoc = INREG(DVOC);
540 hw->dvoa_srcdim = INREG(DVOA_SRCDIM);
541 hw->dvob_srcdim = INREG(DVOB_SRCDIM);
542 hw->dvoc_srcdim = INREG(DVOC_SRCDIM);
543 hw->lvds = INREG(LVDS);
545 if (flag == 4)
546 return flag;
548 hw->pipe_a_conf = INREG(PIPEACONF);
549 hw->pipe_b_conf = INREG(PIPEBCONF);
550 hw->disp_arb = INREG(DISPARB);
552 if (flag == 5)
553 return flag;
555 hw->cursor_a_control = INREG(CURSOR_A_CONTROL);
556 hw->cursor_b_control = INREG(CURSOR_B_CONTROL);
557 hw->cursor_a_base = INREG(CURSOR_A_BASEADDR);
558 hw->cursor_b_base = INREG(CURSOR_B_BASEADDR);
560 if (flag == 6)
561 return flag;
563 for (i = 0; i < 4; i++) {
564 hw->cursor_a_palette[i] = INREG(CURSOR_A_PALETTE0 + (i << 2));
565 hw->cursor_b_palette[i] = INREG(CURSOR_B_PALETTE0 + (i << 2));
568 if (flag == 7)
569 return flag;
571 hw->cursor_size = INREG(CURSOR_SIZE);
573 if (flag == 8)
574 return flag;
576 hw->disp_a_ctrl = INREG(DSPACNTR);
577 hw->disp_b_ctrl = INREG(DSPBCNTR);
578 hw->disp_a_base = INREG(DSPABASE);
579 hw->disp_b_base = INREG(DSPBBASE);
580 hw->disp_a_stride = INREG(DSPASTRIDE);
581 hw->disp_b_stride = INREG(DSPBSTRIDE);
583 if (flag == 9)
584 return flag;
586 hw->vgacntrl = INREG(VGACNTRL);
588 if (flag == 10)
589 return flag;
591 hw->add_id = INREG(ADD_ID);
593 if (flag == 11)
594 return flag;
596 for (i = 0; i < 7; i++) {
597 hw->swf0x[i] = INREG(SWF00 + (i << 2));
598 hw->swf1x[i] = INREG(SWF10 + (i << 2));
599 if (i < 3)
600 hw->swf3x[i] = INREG(SWF30 + (i << 2));
603 for (i = 0; i < 8; i++)
604 hw->fence[i] = INREG(FENCE + (i << 2));
606 hw->instpm = INREG(INSTPM);
607 hw->mem_mode = INREG(MEM_MODE);
608 hw->fw_blc_0 = INREG(FW_BLC_0);
609 hw->fw_blc_1 = INREG(FW_BLC_1);
611 hw->hwstam = INREG16(HWSTAM);
612 hw->ier = INREG16(IER);
613 hw->iir = INREG16(IIR);
614 hw->imr = INREG16(IMR);
616 return 0;
620 static int calc_vclock3(int index, int m, int n, int p)
622 if (p == 0 || n == 0)
623 return 0;
624 return plls[index].ref_clk * m / n / p;
627 static int calc_vclock(int index, int m1, int m2, int n, int p1, int p2,
628 int lvds)
630 struct pll_min_max *pll = &plls[index];
631 u32 m, vco, p;
633 m = (5 * (m1 + 2)) + (m2 + 2);
634 n += 2;
635 vco = pll->ref_clk * m / n;
637 if (index == PLLS_I8xx)
638 p = ((p1 + 2) * (1 << (p2 + 1)));
639 else
640 p = ((p1) * (p2 ? 5 : 10));
641 return vco / p;
644 #if REGDUMP
645 static void intelfbhw_get_p1p2(struct intelfb_info *dinfo, int dpll,
646 int *o_p1, int *o_p2)
648 int p1, p2;
650 if (IS_I9XX(dinfo)) {
651 if (dpll & DPLL_P1_FORCE_DIV2)
652 p1 = 1;
653 else
654 p1 = (dpll >> DPLL_P1_SHIFT) & 0xff;
656 p1 = ffs(p1);
658 p2 = (dpll >> DPLL_I9XX_P2_SHIFT) & DPLL_P2_MASK;
659 } else {
660 if (dpll & DPLL_P1_FORCE_DIV2)
661 p1 = 0;
662 else
663 p1 = (dpll >> DPLL_P1_SHIFT) & DPLL_P1_MASK;
664 p2 = (dpll >> DPLL_P2_SHIFT) & DPLL_P2_MASK;
667 *o_p1 = p1;
668 *o_p2 = p2;
670 #endif
673 void intelfbhw_print_hw_state(struct intelfb_info *dinfo,
674 struct intelfb_hwstate *hw)
676 #if REGDUMP
677 int i, m1, m2, n, p1, p2;
678 int index = dinfo->pll_index;
679 DBG_MSG("intelfbhw_print_hw_state\n");
681 if (!hw)
682 return;
683 /* Read in as much of the HW state as possible. */
684 printk("hw state dump start\n");
685 printk(" VGA0_DIVISOR: 0x%08x\n", hw->vga0_divisor);
686 printk(" VGA1_DIVISOR: 0x%08x\n", hw->vga1_divisor);
687 printk(" VGAPD: 0x%08x\n", hw->vga_pd);
688 n = (hw->vga0_divisor >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
689 m1 = (hw->vga0_divisor >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
690 m2 = (hw->vga0_divisor >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
692 intelfbhw_get_p1p2(dinfo, hw->vga_pd, &p1, &p2);
694 printk(" VGA0: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
695 m1, m2, n, p1, p2);
696 printk(" VGA0: clock is %d\n",
697 calc_vclock(index, m1, m2, n, p1, p2, 0));
699 n = (hw->vga1_divisor >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
700 m1 = (hw->vga1_divisor >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
701 m2 = (hw->vga1_divisor >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
703 intelfbhw_get_p1p2(dinfo, hw->vga_pd, &p1, &p2);
704 printk(" VGA1: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
705 m1, m2, n, p1, p2);
706 printk(" VGA1: clock is %d\n",
707 calc_vclock(index, m1, m2, n, p1, p2, 0));
709 printk(" DPLL_A: 0x%08x\n", hw->dpll_a);
710 printk(" DPLL_B: 0x%08x\n", hw->dpll_b);
711 printk(" FPA0: 0x%08x\n", hw->fpa0);
712 printk(" FPA1: 0x%08x\n", hw->fpa1);
713 printk(" FPB0: 0x%08x\n", hw->fpb0);
714 printk(" FPB1: 0x%08x\n", hw->fpb1);
716 n = (hw->fpa0 >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
717 m1 = (hw->fpa0 >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
718 m2 = (hw->fpa0 >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
720 intelfbhw_get_p1p2(dinfo, hw->dpll_a, &p1, &p2);
722 printk(" PLLA0: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
723 m1, m2, n, p1, p2);
724 printk(" PLLA0: clock is %d\n",
725 calc_vclock(index, m1, m2, n, p1, p2, 0));
727 n = (hw->fpa1 >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
728 m1 = (hw->fpa1 >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
729 m2 = (hw->fpa1 >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
731 intelfbhw_get_p1p2(dinfo, hw->dpll_a, &p1, &p2);
733 printk(" PLLA1: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
734 m1, m2, n, p1, p2);
735 printk(" PLLA1: clock is %d\n",
736 calc_vclock(index, m1, m2, n, p1, p2, 0));
738 #if 0
739 printk(" PALETTE_A:\n");
740 for (i = 0; i < PALETTE_8_ENTRIES)
741 printk(" %3d: 0x%08x\n", i, hw->palette_a[i]);
742 printk(" PALETTE_B:\n");
743 for (i = 0; i < PALETTE_8_ENTRIES)
744 printk(" %3d: 0x%08x\n", i, hw->palette_b[i]);
745 #endif
747 printk(" HTOTAL_A: 0x%08x\n", hw->htotal_a);
748 printk(" HBLANK_A: 0x%08x\n", hw->hblank_a);
749 printk(" HSYNC_A: 0x%08x\n", hw->hsync_a);
750 printk(" VTOTAL_A: 0x%08x\n", hw->vtotal_a);
751 printk(" VBLANK_A: 0x%08x\n", hw->vblank_a);
752 printk(" VSYNC_A: 0x%08x\n", hw->vsync_a);
753 printk(" SRC_SIZE_A: 0x%08x\n", hw->src_size_a);
754 printk(" BCLRPAT_A: 0x%08x\n", hw->bclrpat_a);
755 printk(" HTOTAL_B: 0x%08x\n", hw->htotal_b);
756 printk(" HBLANK_B: 0x%08x\n", hw->hblank_b);
757 printk(" HSYNC_B: 0x%08x\n", hw->hsync_b);
758 printk(" VTOTAL_B: 0x%08x\n", hw->vtotal_b);
759 printk(" VBLANK_B: 0x%08x\n", hw->vblank_b);
760 printk(" VSYNC_B: 0x%08x\n", hw->vsync_b);
761 printk(" SRC_SIZE_B: 0x%08x\n", hw->src_size_b);
762 printk(" BCLRPAT_B: 0x%08x\n", hw->bclrpat_b);
764 printk(" ADPA: 0x%08x\n", hw->adpa);
765 printk(" DVOA: 0x%08x\n", hw->dvoa);
766 printk(" DVOB: 0x%08x\n", hw->dvob);
767 printk(" DVOC: 0x%08x\n", hw->dvoc);
768 printk(" DVOA_SRCDIM: 0x%08x\n", hw->dvoa_srcdim);
769 printk(" DVOB_SRCDIM: 0x%08x\n", hw->dvob_srcdim);
770 printk(" DVOC_SRCDIM: 0x%08x\n", hw->dvoc_srcdim);
771 printk(" LVDS: 0x%08x\n", hw->lvds);
773 printk(" PIPEACONF: 0x%08x\n", hw->pipe_a_conf);
774 printk(" PIPEBCONF: 0x%08x\n", hw->pipe_b_conf);
775 printk(" DISPARB: 0x%08x\n", hw->disp_arb);
777 printk(" CURSOR_A_CONTROL: 0x%08x\n", hw->cursor_a_control);
778 printk(" CURSOR_B_CONTROL: 0x%08x\n", hw->cursor_b_control);
779 printk(" CURSOR_A_BASEADDR: 0x%08x\n", hw->cursor_a_base);
780 printk(" CURSOR_B_BASEADDR: 0x%08x\n", hw->cursor_b_base);
782 printk(" CURSOR_A_PALETTE: ");
783 for (i = 0; i < 4; i++) {
784 printk("0x%08x", hw->cursor_a_palette[i]);
785 if (i < 3)
786 printk(", ");
788 printk("\n");
789 printk(" CURSOR_B_PALETTE: ");
790 for (i = 0; i < 4; i++) {
791 printk("0x%08x", hw->cursor_b_palette[i]);
792 if (i < 3)
793 printk(", ");
795 printk("\n");
797 printk(" CURSOR_SIZE: 0x%08x\n", hw->cursor_size);
799 printk(" DSPACNTR: 0x%08x\n", hw->disp_a_ctrl);
800 printk(" DSPBCNTR: 0x%08x\n", hw->disp_b_ctrl);
801 printk(" DSPABASE: 0x%08x\n", hw->disp_a_base);
802 printk(" DSPBBASE: 0x%08x\n", hw->disp_b_base);
803 printk(" DSPASTRIDE: 0x%08x\n", hw->disp_a_stride);
804 printk(" DSPBSTRIDE: 0x%08x\n", hw->disp_b_stride);
806 printk(" VGACNTRL: 0x%08x\n", hw->vgacntrl);
807 printk(" ADD_ID: 0x%08x\n", hw->add_id);
809 for (i = 0; i < 7; i++) {
810 printk(" SWF0%d 0x%08x\n", i,
811 hw->swf0x[i]);
813 for (i = 0; i < 7; i++) {
814 printk(" SWF1%d 0x%08x\n", i,
815 hw->swf1x[i]);
817 for (i = 0; i < 3; i++) {
818 printk(" SWF3%d 0x%08x\n", i,
819 hw->swf3x[i]);
821 for (i = 0; i < 8; i++)
822 printk(" FENCE%d 0x%08x\n", i,
823 hw->fence[i]);
825 printk(" INSTPM 0x%08x\n", hw->instpm);
826 printk(" MEM_MODE 0x%08x\n", hw->mem_mode);
827 printk(" FW_BLC_0 0x%08x\n", hw->fw_blc_0);
828 printk(" FW_BLC_1 0x%08x\n", hw->fw_blc_1);
830 printk(" HWSTAM 0x%04x\n", hw->hwstam);
831 printk(" IER 0x%04x\n", hw->ier);
832 printk(" IIR 0x%04x\n", hw->iir);
833 printk(" IMR 0x%04x\n", hw->imr);
834 printk("hw state dump end\n");
835 #endif
840 /* Split the M parameter into M1 and M2. */
841 static int splitm(int index, unsigned int m, unsigned int *retm1,
842 unsigned int *retm2)
844 int m1, m2;
845 int testm;
846 struct pll_min_max *pll = &plls[index];
848 /* no point optimising too much - brute force m */
849 for (m1 = pll->min_m1; m1 < pll->max_m1 + 1; m1++) {
850 for (m2 = pll->min_m2; m2 < pll->max_m2 + 1; m2++) {
851 testm = (5 * (m1 + 2)) + (m2 + 2);
852 if (testm == m) {
853 *retm1 = (unsigned int)m1;
854 *retm2 = (unsigned int)m2;
855 return 0;
859 return 1;
862 /* Split the P parameter into P1 and P2. */
863 static int splitp(int index, unsigned int p, unsigned int *retp1,
864 unsigned int *retp2)
866 int p1, p2;
867 struct pll_min_max *pll = &plls[index];
869 if (index == PLLS_I9xx) {
870 p2 = (p % 10) ? 1 : 0;
872 p1 = p / (p2 ? 5 : 10);
874 *retp1 = (unsigned int)p1;
875 *retp2 = (unsigned int)p2;
876 return 0;
879 if (p % 4 == 0)
880 p2 = 1;
881 else
882 p2 = 0;
883 p1 = (p / (1 << (p2 + 1))) - 2;
884 if (p % 4 == 0 && p1 < pll->min_p1) {
885 p2 = 0;
886 p1 = (p / (1 << (p2 + 1))) - 2;
888 if (p1 < pll->min_p1 || p1 > pll->max_p1 ||
889 (p1 + 2) * (1 << (p2 + 1)) != p) {
890 return 1;
891 } else {
892 *retp1 = (unsigned int)p1;
893 *retp2 = (unsigned int)p2;
894 return 0;
898 static int calc_pll_params(int index, int clock, u32 *retm1, u32 *retm2,
899 u32 *retn, u32 *retp1, u32 *retp2, u32 *retclock)
901 u32 m1, m2, n, p1, p2, n1, testm;
902 u32 f_vco, p, p_best = 0, m, f_out = 0;
903 u32 err_max, err_target, err_best = 10000000;
904 u32 n_best = 0, m_best = 0, f_best, f_err;
905 u32 p_min, p_max, p_inc, div_max;
906 struct pll_min_max *pll = &plls[index];
908 /* Accept 0.5% difference, but aim for 0.1% */
909 err_max = 5 * clock / 1000;
910 err_target = clock / 1000;
912 DBG_MSG("Clock is %d\n", clock);
914 div_max = pll->max_vco / clock;
916 p_inc = (clock <= pll->p_transition_clk) ? pll->p_inc_lo : pll->p_inc_hi;
917 p_min = p_inc;
918 p_max = ROUND_DOWN_TO(div_max, p_inc);
919 if (p_min < pll->min_p)
920 p_min = pll->min_p;
921 if (p_max > pll->max_p)
922 p_max = pll->max_p;
924 DBG_MSG("p range is %d-%d (%d)\n", p_min, p_max, p_inc);
926 p = p_min;
927 do {
928 if (splitp(index, p, &p1, &p2)) {
929 WRN_MSG("cannot split p = %d\n", p);
930 p += p_inc;
931 continue;
933 n = pll->min_n;
934 f_vco = clock * p;
936 do {
937 m = ROUND_UP_TO(f_vco * n, pll->ref_clk) / pll->ref_clk;
938 if (m < pll->min_m)
939 m = pll->min_m + 1;
940 if (m > pll->max_m)
941 m = pll->max_m - 1;
942 for (testm = m - 1; testm <= m; testm++) {
943 f_out = calc_vclock3(index, testm, n, p);
944 if (splitm(index, testm, &m1, &m2)) {
945 WRN_MSG("cannot split m = %d\n",
946 testm);
947 continue;
949 if (clock > f_out)
950 f_err = clock - f_out;
951 else/* slightly bias the error for bigger clocks */
952 f_err = f_out - clock + 1;
954 if (f_err < err_best) {
955 m_best = testm;
956 n_best = n;
957 p_best = p;
958 f_best = f_out;
959 err_best = f_err;
962 n++;
963 } while ((n <= pll->max_n) && (f_out >= clock));
964 p += p_inc;
965 } while ((p <= p_max));
967 if (!m_best) {
968 WRN_MSG("cannot find parameters for clock %d\n", clock);
969 return 1;
971 m = m_best;
972 n = n_best;
973 p = p_best;
974 splitm(index, m, &m1, &m2);
975 splitp(index, p, &p1, &p2);
976 n1 = n - 2;
978 DBG_MSG("m, n, p: %d (%d,%d), %d (%d), %d (%d,%d), "
979 "f: %d (%d), VCO: %d\n",
980 m, m1, m2, n, n1, p, p1, p2,
981 calc_vclock3(index, m, n, p),
982 calc_vclock(index, m1, m2, n1, p1, p2, 0),
983 calc_vclock3(index, m, n, p) * p);
984 *retm1 = m1;
985 *retm2 = m2;
986 *retn = n1;
987 *retp1 = p1;
988 *retp2 = p2;
989 *retclock = calc_vclock(index, m1, m2, n1, p1, p2, 0);
991 return 0;
994 static __inline__ int check_overflow(u32 value, u32 limit,
995 const char *description)
997 if (value > limit) {
998 WRN_MSG("%s value %d exceeds limit %d\n",
999 description, value, limit);
1000 return 1;
1002 return 0;
1005 /* It is assumed that hw is filled in with the initial state information. */
1006 int intelfbhw_mode_to_hw(struct intelfb_info *dinfo,
1007 struct intelfb_hwstate *hw,
1008 struct fb_var_screeninfo *var)
1010 int pipe = PIPE_A;
1011 u32 *dpll, *fp0, *fp1;
1012 u32 m1, m2, n, p1, p2, clock_target, clock;
1013 u32 hsync_start, hsync_end, hblank_start, hblank_end, htotal, hactive;
1014 u32 vsync_start, vsync_end, vblank_start, vblank_end, vtotal, vactive;
1015 u32 vsync_pol, hsync_pol;
1016 u32 *vs, *vb, *vt, *hs, *hb, *ht, *ss, *pipe_conf;
1017 u32 stride_alignment;
1019 DBG_MSG("intelfbhw_mode_to_hw\n");
1021 /* Disable VGA */
1022 hw->vgacntrl |= VGA_DISABLE;
1024 /* Check whether pipe A or pipe B is enabled. */
1025 if (hw->pipe_a_conf & PIPECONF_ENABLE)
1026 pipe = PIPE_A;
1027 else if (hw->pipe_b_conf & PIPECONF_ENABLE)
1028 pipe = PIPE_B;
1030 /* Set which pipe's registers will be set. */
1031 if (pipe == PIPE_B) {
1032 dpll = &hw->dpll_b;
1033 fp0 = &hw->fpb0;
1034 fp1 = &hw->fpb1;
1035 hs = &hw->hsync_b;
1036 hb = &hw->hblank_b;
1037 ht = &hw->htotal_b;
1038 vs = &hw->vsync_b;
1039 vb = &hw->vblank_b;
1040 vt = &hw->vtotal_b;
1041 ss = &hw->src_size_b;
1042 pipe_conf = &hw->pipe_b_conf;
1043 } else {
1044 dpll = &hw->dpll_a;
1045 fp0 = &hw->fpa0;
1046 fp1 = &hw->fpa1;
1047 hs = &hw->hsync_a;
1048 hb = &hw->hblank_a;
1049 ht = &hw->htotal_a;
1050 vs = &hw->vsync_a;
1051 vb = &hw->vblank_a;
1052 vt = &hw->vtotal_a;
1053 ss = &hw->src_size_a;
1054 pipe_conf = &hw->pipe_a_conf;
1057 /* Use ADPA register for sync control. */
1058 hw->adpa &= ~ADPA_USE_VGA_HVPOLARITY;
1060 /* sync polarity */
1061 hsync_pol = (var->sync & FB_SYNC_HOR_HIGH_ACT) ?
1062 ADPA_SYNC_ACTIVE_HIGH : ADPA_SYNC_ACTIVE_LOW;
1063 vsync_pol = (var->sync & FB_SYNC_VERT_HIGH_ACT) ?
1064 ADPA_SYNC_ACTIVE_HIGH : ADPA_SYNC_ACTIVE_LOW;
1065 hw->adpa &= ~((ADPA_SYNC_ACTIVE_MASK << ADPA_VSYNC_ACTIVE_SHIFT) |
1066 (ADPA_SYNC_ACTIVE_MASK << ADPA_HSYNC_ACTIVE_SHIFT));
1067 hw->adpa |= (hsync_pol << ADPA_HSYNC_ACTIVE_SHIFT) |
1068 (vsync_pol << ADPA_VSYNC_ACTIVE_SHIFT);
1070 /* Connect correct pipe to the analog port DAC */
1071 hw->adpa &= ~(PIPE_MASK << ADPA_PIPE_SELECT_SHIFT);
1072 hw->adpa |= (pipe << ADPA_PIPE_SELECT_SHIFT);
1074 /* Set DPMS state to D0 (on) */
1075 hw->adpa &= ~ADPA_DPMS_CONTROL_MASK;
1076 hw->adpa |= ADPA_DPMS_D0;
1078 hw->adpa |= ADPA_DAC_ENABLE;
1080 *dpll |= (DPLL_VCO_ENABLE | DPLL_VGA_MODE_DISABLE);
1081 *dpll &= ~(DPLL_RATE_SELECT_MASK | DPLL_REFERENCE_SELECT_MASK);
1082 *dpll |= (DPLL_REFERENCE_DEFAULT | DPLL_RATE_SELECT_FP0);
1084 /* Desired clock in kHz */
1085 clock_target = 1000000000 / var->pixclock;
1087 if (calc_pll_params(dinfo->pll_index, clock_target, &m1, &m2,
1088 &n, &p1, &p2, &clock)) {
1089 WRN_MSG("calc_pll_params failed\n");
1090 return 1;
1093 /* Check for overflow. */
1094 if (check_overflow(p1, DPLL_P1_MASK, "PLL P1 parameter"))
1095 return 1;
1096 if (check_overflow(p2, DPLL_P2_MASK, "PLL P2 parameter"))
1097 return 1;
1098 if (check_overflow(m1, FP_DIVISOR_MASK, "PLL M1 parameter"))
1099 return 1;
1100 if (check_overflow(m2, FP_DIVISOR_MASK, "PLL M2 parameter"))
1101 return 1;
1102 if (check_overflow(n, FP_DIVISOR_MASK, "PLL N parameter"))
1103 return 1;
1105 *dpll &= ~DPLL_P1_FORCE_DIV2;
1106 *dpll &= ~((DPLL_P2_MASK << DPLL_P2_SHIFT) |
1107 (DPLL_P1_MASK << DPLL_P1_SHIFT));
1109 if (IS_I9XX(dinfo)) {
1110 *dpll |= (p2 << DPLL_I9XX_P2_SHIFT);
1111 *dpll |= (1 << (p1 - 1)) << DPLL_P1_SHIFT;
1112 } else
1113 *dpll |= (p2 << DPLL_P2_SHIFT) | (p1 << DPLL_P1_SHIFT);
1115 *fp0 = (n << FP_N_DIVISOR_SHIFT) |
1116 (m1 << FP_M1_DIVISOR_SHIFT) |
1117 (m2 << FP_M2_DIVISOR_SHIFT);
1118 *fp1 = *fp0;
1120 hw->dvob &= ~PORT_ENABLE;
1121 hw->dvoc &= ~PORT_ENABLE;
1123 /* Use display plane A. */
1124 hw->disp_a_ctrl |= DISPPLANE_PLANE_ENABLE;
1125 hw->disp_a_ctrl &= ~DISPPLANE_GAMMA_ENABLE;
1126 hw->disp_a_ctrl &= ~DISPPLANE_PIXFORMAT_MASK;
1127 switch (intelfb_var_to_depth(var)) {
1128 case 8:
1129 hw->disp_a_ctrl |= DISPPLANE_8BPP | DISPPLANE_GAMMA_ENABLE;
1130 break;
1131 case 15:
1132 hw->disp_a_ctrl |= DISPPLANE_15_16BPP;
1133 break;
1134 case 16:
1135 hw->disp_a_ctrl |= DISPPLANE_16BPP;
1136 break;
1137 case 24:
1138 hw->disp_a_ctrl |= DISPPLANE_32BPP_NO_ALPHA;
1139 break;
1141 hw->disp_a_ctrl &= ~(PIPE_MASK << DISPPLANE_SEL_PIPE_SHIFT);
1142 hw->disp_a_ctrl |= (pipe << DISPPLANE_SEL_PIPE_SHIFT);
1144 /* Set CRTC registers. */
1145 hactive = var->xres;
1146 hsync_start = hactive + var->right_margin;
1147 hsync_end = hsync_start + var->hsync_len;
1148 htotal = hsync_end + var->left_margin;
1149 hblank_start = hactive;
1150 hblank_end = htotal;
1152 DBG_MSG("H: act %d, ss %d, se %d, tot %d bs %d, be %d\n",
1153 hactive, hsync_start, hsync_end, htotal, hblank_start,
1154 hblank_end);
1156 vactive = var->yres;
1157 if (var->vmode & FB_VMODE_INTERLACED)
1158 vactive--; /* the chip adds 2 halflines automatically */
1159 vsync_start = vactive + var->lower_margin;
1160 vsync_end = vsync_start + var->vsync_len;
1161 vtotal = vsync_end + var->upper_margin;
1162 vblank_start = vactive;
1163 vblank_end = vtotal;
1164 vblank_end = vsync_end + 1;
1166 DBG_MSG("V: act %d, ss %d, se %d, tot %d bs %d, be %d\n",
1167 vactive, vsync_start, vsync_end, vtotal, vblank_start,
1168 vblank_end);
1170 /* Adjust for register values, and check for overflow. */
1171 hactive--;
1172 if (check_overflow(hactive, HACTIVE_MASK, "CRTC hactive"))
1173 return 1;
1174 hsync_start--;
1175 if (check_overflow(hsync_start, HSYNCSTART_MASK, "CRTC hsync_start"))
1176 return 1;
1177 hsync_end--;
1178 if (check_overflow(hsync_end, HSYNCEND_MASK, "CRTC hsync_end"))
1179 return 1;
1180 htotal--;
1181 if (check_overflow(htotal, HTOTAL_MASK, "CRTC htotal"))
1182 return 1;
1183 hblank_start--;
1184 if (check_overflow(hblank_start, HBLANKSTART_MASK, "CRTC hblank_start"))
1185 return 1;
1186 hblank_end--;
1187 if (check_overflow(hblank_end, HBLANKEND_MASK, "CRTC hblank_end"))
1188 return 1;
1190 vactive--;
1191 if (check_overflow(vactive, VACTIVE_MASK, "CRTC vactive"))
1192 return 1;
1193 vsync_start--;
1194 if (check_overflow(vsync_start, VSYNCSTART_MASK, "CRTC vsync_start"))
1195 return 1;
1196 vsync_end--;
1197 if (check_overflow(vsync_end, VSYNCEND_MASK, "CRTC vsync_end"))
1198 return 1;
1199 vtotal--;
1200 if (check_overflow(vtotal, VTOTAL_MASK, "CRTC vtotal"))
1201 return 1;
1202 vblank_start--;
1203 if (check_overflow(vblank_start, VBLANKSTART_MASK, "CRTC vblank_start"))
1204 return 1;
1205 vblank_end--;
1206 if (check_overflow(vblank_end, VBLANKEND_MASK, "CRTC vblank_end"))
1207 return 1;
1209 *ht = (htotal << HTOTAL_SHIFT) | (hactive << HACTIVE_SHIFT);
1210 *hb = (hblank_start << HBLANKSTART_SHIFT) |
1211 (hblank_end << HSYNCEND_SHIFT);
1212 *hs = (hsync_start << HSYNCSTART_SHIFT) | (hsync_end << HSYNCEND_SHIFT);
1214 *vt = (vtotal << VTOTAL_SHIFT) | (vactive << VACTIVE_SHIFT);
1215 *vb = (vblank_start << VBLANKSTART_SHIFT) |
1216 (vblank_end << VSYNCEND_SHIFT);
1217 *vs = (vsync_start << VSYNCSTART_SHIFT) | (vsync_end << VSYNCEND_SHIFT);
1218 *ss = (hactive << SRC_SIZE_HORIZ_SHIFT) |
1219 (vactive << SRC_SIZE_VERT_SHIFT);
1221 hw->disp_a_stride = dinfo->pitch;
1222 DBG_MSG("pitch is %d\n", hw->disp_a_stride);
1224 hw->disp_a_base = hw->disp_a_stride * var->yoffset +
1225 var->xoffset * var->bits_per_pixel / 8;
1227 hw->disp_a_base += dinfo->fb.offset << 12;
1229 /* Check stride alignment. */
1230 stride_alignment = IS_I9XX(dinfo) ? STRIDE_ALIGNMENT_I9XX :
1231 STRIDE_ALIGNMENT;
1232 if (hw->disp_a_stride % stride_alignment != 0) {
1233 WRN_MSG("display stride %d has bad alignment %d\n",
1234 hw->disp_a_stride, stride_alignment);
1235 return 1;
1238 /* Set the palette to 8-bit mode. */
1239 *pipe_conf &= ~PIPECONF_GAMMA;
1241 if (var->vmode & FB_VMODE_INTERLACED)
1242 *pipe_conf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
1243 else
1244 *pipe_conf &= ~PIPECONF_INTERLACE_MASK;
1246 return 0;
1249 /* Program a (non-VGA) video mode. */
1250 int intelfbhw_program_mode(struct intelfb_info *dinfo,
1251 const struct intelfb_hwstate *hw, int blank)
1253 int pipe = PIPE_A;
1254 u32 tmp;
1255 const u32 *dpll, *fp0, *fp1, *pipe_conf;
1256 const u32 *hs, *ht, *hb, *vs, *vt, *vb, *ss;
1257 u32 dpll_reg, fp0_reg, fp1_reg, pipe_conf_reg, pipe_stat_reg;
1258 u32 hsync_reg, htotal_reg, hblank_reg;
1259 u32 vsync_reg, vtotal_reg, vblank_reg;
1260 u32 src_size_reg;
1261 u32 count, tmp_val[3];
1263 /* Assume single pipe, display plane A, analog CRT. */
1265 #if VERBOSE > 0
1266 DBG_MSG("intelfbhw_program_mode\n");
1267 #endif
1269 /* Disable VGA */
1270 tmp = INREG(VGACNTRL);
1271 tmp |= VGA_DISABLE;
1272 OUTREG(VGACNTRL, tmp);
1274 /* Check whether pipe A or pipe B is enabled. */
1275 if (hw->pipe_a_conf & PIPECONF_ENABLE)
1276 pipe = PIPE_A;
1277 else if (hw->pipe_b_conf & PIPECONF_ENABLE)
1278 pipe = PIPE_B;
1280 dinfo->pipe = pipe;
1282 if (pipe == PIPE_B) {
1283 dpll = &hw->dpll_b;
1284 fp0 = &hw->fpb0;
1285 fp1 = &hw->fpb1;
1286 pipe_conf = &hw->pipe_b_conf;
1287 hs = &hw->hsync_b;
1288 hb = &hw->hblank_b;
1289 ht = &hw->htotal_b;
1290 vs = &hw->vsync_b;
1291 vb = &hw->vblank_b;
1292 vt = &hw->vtotal_b;
1293 ss = &hw->src_size_b;
1294 dpll_reg = DPLL_B;
1295 fp0_reg = FPB0;
1296 fp1_reg = FPB1;
1297 pipe_conf_reg = PIPEBCONF;
1298 pipe_stat_reg = PIPEBSTAT;
1299 hsync_reg = HSYNC_B;
1300 htotal_reg = HTOTAL_B;
1301 hblank_reg = HBLANK_B;
1302 vsync_reg = VSYNC_B;
1303 vtotal_reg = VTOTAL_B;
1304 vblank_reg = VBLANK_B;
1305 src_size_reg = SRC_SIZE_B;
1306 } else {
1307 dpll = &hw->dpll_a;
1308 fp0 = &hw->fpa0;
1309 fp1 = &hw->fpa1;
1310 pipe_conf = &hw->pipe_a_conf;
1311 hs = &hw->hsync_a;
1312 hb = &hw->hblank_a;
1313 ht = &hw->htotal_a;
1314 vs = &hw->vsync_a;
1315 vb = &hw->vblank_a;
1316 vt = &hw->vtotal_a;
1317 ss = &hw->src_size_a;
1318 dpll_reg = DPLL_A;
1319 fp0_reg = FPA0;
1320 fp1_reg = FPA1;
1321 pipe_conf_reg = PIPEACONF;
1322 pipe_stat_reg = PIPEASTAT;
1323 hsync_reg = HSYNC_A;
1324 htotal_reg = HTOTAL_A;
1325 hblank_reg = HBLANK_A;
1326 vsync_reg = VSYNC_A;
1327 vtotal_reg = VTOTAL_A;
1328 vblank_reg = VBLANK_A;
1329 src_size_reg = SRC_SIZE_A;
1332 /* turn off pipe */
1333 tmp = INREG(pipe_conf_reg);
1334 tmp &= ~PIPECONF_ENABLE;
1335 OUTREG(pipe_conf_reg, tmp);
1337 count = 0;
1338 do {
1339 tmp_val[count % 3] = INREG(PIPEA_DSL);
1340 if ((tmp_val[0] == tmp_val[1]) && (tmp_val[1] == tmp_val[2]))
1341 break;
1342 count++;
1343 udelay(1);
1344 if (count % 200 == 0) {
1345 tmp = INREG(pipe_conf_reg);
1346 tmp &= ~PIPECONF_ENABLE;
1347 OUTREG(pipe_conf_reg, tmp);
1349 } while (count < 2000);
1351 OUTREG(ADPA, INREG(ADPA) & ~ADPA_DAC_ENABLE);
1353 /* Disable planes A and B. */
1354 tmp = INREG(DSPACNTR);
1355 tmp &= ~DISPPLANE_PLANE_ENABLE;
1356 OUTREG(DSPACNTR, tmp);
1357 tmp = INREG(DSPBCNTR);
1358 tmp &= ~DISPPLANE_PLANE_ENABLE;
1359 OUTREG(DSPBCNTR, tmp);
1361 /* Wait for vblank. For now, just wait for a 50Hz cycle (20ms)) */
1362 mdelay(20);
1364 OUTREG(DVOB, INREG(DVOB) & ~PORT_ENABLE);
1365 OUTREG(DVOC, INREG(DVOC) & ~PORT_ENABLE);
1366 OUTREG(ADPA, INREG(ADPA) & ~ADPA_DAC_ENABLE);
1368 /* Disable Sync */
1369 tmp = INREG(ADPA);
1370 tmp &= ~ADPA_DPMS_CONTROL_MASK;
1371 tmp |= ADPA_DPMS_D3;
1372 OUTREG(ADPA, tmp);
1374 /* do some funky magic - xyzzy */
1375 OUTREG(0x61204, 0xabcd0000);
1377 /* turn off PLL */
1378 tmp = INREG(dpll_reg);
1379 tmp &= ~DPLL_VCO_ENABLE;
1380 OUTREG(dpll_reg, tmp);
1382 /* Set PLL parameters */
1383 OUTREG(fp0_reg, *fp0);
1384 OUTREG(fp1_reg, *fp1);
1386 /* Enable PLL */
1387 OUTREG(dpll_reg, *dpll);
1389 /* Set DVOs B/C */
1390 OUTREG(DVOB, hw->dvob);
1391 OUTREG(DVOC, hw->dvoc);
1393 /* undo funky magic */
1394 OUTREG(0x61204, 0x00000000);
1396 /* Set ADPA */
1397 OUTREG(ADPA, INREG(ADPA) | ADPA_DAC_ENABLE);
1398 OUTREG(ADPA, (hw->adpa & ~(ADPA_DPMS_CONTROL_MASK)) | ADPA_DPMS_D3);
1400 /* Set pipe parameters */
1401 OUTREG(hsync_reg, *hs);
1402 OUTREG(hblank_reg, *hb);
1403 OUTREG(htotal_reg, *ht);
1404 OUTREG(vsync_reg, *vs);
1405 OUTREG(vblank_reg, *vb);
1406 OUTREG(vtotal_reg, *vt);
1407 OUTREG(src_size_reg, *ss);
1409 switch (dinfo->info->var.vmode & (FB_VMODE_INTERLACED |
1410 FB_VMODE_ODD_FLD_FIRST)) {
1411 case FB_VMODE_INTERLACED | FB_VMODE_ODD_FLD_FIRST:
1412 OUTREG(pipe_stat_reg, 0xFFFF | PIPESTAT_FLD_EVT_ODD_EN);
1413 break;
1414 case FB_VMODE_INTERLACED: /* even lines first */
1415 OUTREG(pipe_stat_reg, 0xFFFF | PIPESTAT_FLD_EVT_EVEN_EN);
1416 break;
1417 default: /* non-interlaced */
1418 OUTREG(pipe_stat_reg, 0xFFFF); /* clear all status bits only */
1420 /* Enable pipe */
1421 OUTREG(pipe_conf_reg, *pipe_conf | PIPECONF_ENABLE);
1423 /* Enable sync */
1424 tmp = INREG(ADPA);
1425 tmp &= ~ADPA_DPMS_CONTROL_MASK;
1426 tmp |= ADPA_DPMS_D0;
1427 OUTREG(ADPA, tmp);
1429 /* setup display plane */
1430 if (dinfo->pdev->device == PCI_DEVICE_ID_INTEL_830M) {
1432 * i830M errata: the display plane must be enabled
1433 * to allow writes to the other bits in the plane
1434 * control register.
1436 tmp = INREG(DSPACNTR);
1437 if ((tmp & DISPPLANE_PLANE_ENABLE) != DISPPLANE_PLANE_ENABLE) {
1438 tmp |= DISPPLANE_PLANE_ENABLE;
1439 OUTREG(DSPACNTR, tmp);
1440 OUTREG(DSPACNTR,
1441 hw->disp_a_ctrl|DISPPLANE_PLANE_ENABLE);
1442 mdelay(1);
1446 OUTREG(DSPACNTR, hw->disp_a_ctrl & ~DISPPLANE_PLANE_ENABLE);
1447 OUTREG(DSPASTRIDE, hw->disp_a_stride);
1448 OUTREG(DSPABASE, hw->disp_a_base);
1450 /* Enable plane */
1451 if (!blank) {
1452 tmp = INREG(DSPACNTR);
1453 tmp |= DISPPLANE_PLANE_ENABLE;
1454 OUTREG(DSPACNTR, tmp);
1455 OUTREG(DSPABASE, hw->disp_a_base);
1458 return 0;
1461 /* forward declarations */
1462 static void refresh_ring(struct intelfb_info *dinfo);
1463 static void reset_state(struct intelfb_info *dinfo);
1464 static void do_flush(struct intelfb_info *dinfo);
1466 static u32 get_ring_space(struct intelfb_info *dinfo)
1468 u32 ring_space;
1470 if (dinfo->ring_tail >= dinfo->ring_head)
1471 ring_space = dinfo->ring.size -
1472 (dinfo->ring_tail - dinfo->ring_head);
1473 else
1474 ring_space = dinfo->ring_head - dinfo->ring_tail;
1476 if (ring_space > RING_MIN_FREE)
1477 ring_space -= RING_MIN_FREE;
1478 else
1479 ring_space = 0;
1481 return ring_space;
1484 static int wait_ring(struct intelfb_info *dinfo, int n)
1486 int i = 0;
1487 unsigned long end;
1488 u32 last_head = INREG(PRI_RING_HEAD) & RING_HEAD_MASK;
1490 #if VERBOSE > 0
1491 DBG_MSG("wait_ring: %d\n", n);
1492 #endif
1494 end = jiffies + (HZ * 3);
1495 while (dinfo->ring_space < n) {
1496 dinfo->ring_head = INREG(PRI_RING_HEAD) & RING_HEAD_MASK;
1497 dinfo->ring_space = get_ring_space(dinfo);
1499 if (dinfo->ring_head != last_head) {
1500 end = jiffies + (HZ * 3);
1501 last_head = dinfo->ring_head;
1503 i++;
1504 if (time_before(end, jiffies)) {
1505 if (!i) {
1506 /* Try again */
1507 reset_state(dinfo);
1508 refresh_ring(dinfo);
1509 do_flush(dinfo);
1510 end = jiffies + (HZ * 3);
1511 i = 1;
1512 } else {
1513 WRN_MSG("ring buffer : space: %d wanted %d\n",
1514 dinfo->ring_space, n);
1515 WRN_MSG("lockup - turning off hardware "
1516 "acceleration\n");
1517 dinfo->ring_lockup = 1;
1518 break;
1521 udelay(1);
1523 return i;
1526 static void do_flush(struct intelfb_info *dinfo)
1528 START_RING(2);
1529 OUT_RING(MI_FLUSH | MI_WRITE_DIRTY_STATE | MI_INVALIDATE_MAP_CACHE);
1530 OUT_RING(MI_NOOP);
1531 ADVANCE_RING();
1534 void intelfbhw_do_sync(struct intelfb_info *dinfo)
1536 #if VERBOSE > 0
1537 DBG_MSG("intelfbhw_do_sync\n");
1538 #endif
1540 if (!dinfo->accel)
1541 return;
1544 * Send a flush, then wait until the ring is empty. This is what
1545 * the XFree86 driver does, and actually it doesn't seem a lot worse
1546 * than the recommended method (both have problems).
1548 do_flush(dinfo);
1549 wait_ring(dinfo, dinfo->ring.size - RING_MIN_FREE);
1550 dinfo->ring_space = dinfo->ring.size - RING_MIN_FREE;
1553 static void refresh_ring(struct intelfb_info *dinfo)
1555 #if VERBOSE > 0
1556 DBG_MSG("refresh_ring\n");
1557 #endif
1559 dinfo->ring_head = INREG(PRI_RING_HEAD) & RING_HEAD_MASK;
1560 dinfo->ring_tail = INREG(PRI_RING_TAIL) & RING_TAIL_MASK;
1561 dinfo->ring_space = get_ring_space(dinfo);
1564 static void reset_state(struct intelfb_info *dinfo)
1566 int i;
1567 u32 tmp;
1569 #if VERBOSE > 0
1570 DBG_MSG("reset_state\n");
1571 #endif
1573 for (i = 0; i < FENCE_NUM; i++)
1574 OUTREG(FENCE + (i << 2), 0);
1576 /* Flush the ring buffer if it's enabled. */
1577 tmp = INREG(PRI_RING_LENGTH);
1578 if (tmp & RING_ENABLE) {
1579 #if VERBOSE > 0
1580 DBG_MSG("reset_state: ring was enabled\n");
1581 #endif
1582 refresh_ring(dinfo);
1583 intelfbhw_do_sync(dinfo);
1584 DO_RING_IDLE();
1587 OUTREG(PRI_RING_LENGTH, 0);
1588 OUTREG(PRI_RING_HEAD, 0);
1589 OUTREG(PRI_RING_TAIL, 0);
1590 OUTREG(PRI_RING_START, 0);
1593 /* Stop the 2D engine, and turn off the ring buffer. */
1594 void intelfbhw_2d_stop(struct intelfb_info *dinfo)
1596 #if VERBOSE > 0
1597 DBG_MSG("intelfbhw_2d_stop: accel: %d, ring_active: %d\n",
1598 dinfo->accel, dinfo->ring_active);
1599 #endif
1601 if (!dinfo->accel)
1602 return;
1604 dinfo->ring_active = 0;
1605 reset_state(dinfo);
1609 * Enable the ring buffer, and initialise the 2D engine.
1610 * It is assumed that the graphics engine has been stopped by previously
1611 * calling intelfb_2d_stop().
1613 void intelfbhw_2d_start(struct intelfb_info *dinfo)
1615 #if VERBOSE > 0
1616 DBG_MSG("intelfbhw_2d_start: accel: %d, ring_active: %d\n",
1617 dinfo->accel, dinfo->ring_active);
1618 #endif
1620 if (!dinfo->accel)
1621 return;
1623 /* Initialise the primary ring buffer. */
1624 OUTREG(PRI_RING_LENGTH, 0);
1625 OUTREG(PRI_RING_TAIL, 0);
1626 OUTREG(PRI_RING_HEAD, 0);
1628 OUTREG(PRI_RING_START, dinfo->ring.physical & RING_START_MASK);
1629 OUTREG(PRI_RING_LENGTH,
1630 ((dinfo->ring.size - GTT_PAGE_SIZE) & RING_LENGTH_MASK) |
1631 RING_NO_REPORT | RING_ENABLE);
1632 refresh_ring(dinfo);
1633 dinfo->ring_active = 1;
1636 /* 2D fillrect (solid fill or invert) */
1637 void intelfbhw_do_fillrect(struct intelfb_info *dinfo, u32 x, u32 y, u32 w,
1638 u32 h, u32 color, u32 pitch, u32 bpp, u32 rop)
1640 u32 br00, br09, br13, br14, br16;
1642 #if VERBOSE > 0
1643 DBG_MSG("intelfbhw_do_fillrect: (%d,%d) %dx%d, c 0x%06x, p %d bpp %d, "
1644 "rop 0x%02x\n", x, y, w, h, color, pitch, bpp, rop);
1645 #endif
1647 br00 = COLOR_BLT_CMD;
1648 br09 = dinfo->fb_start + (y * pitch + x * (bpp / 8));
1649 br13 = (rop << ROP_SHIFT) | pitch;
1650 br14 = (h << HEIGHT_SHIFT) | ((w * (bpp / 8)) << WIDTH_SHIFT);
1651 br16 = color;
1653 switch (bpp) {
1654 case 8:
1655 br13 |= COLOR_DEPTH_8;
1656 break;
1657 case 16:
1658 br13 |= COLOR_DEPTH_16;
1659 break;
1660 case 32:
1661 br13 |= COLOR_DEPTH_32;
1662 br00 |= WRITE_ALPHA | WRITE_RGB;
1663 break;
1666 START_RING(6);
1667 OUT_RING(br00);
1668 OUT_RING(br13);
1669 OUT_RING(br14);
1670 OUT_RING(br09);
1671 OUT_RING(br16);
1672 OUT_RING(MI_NOOP);
1673 ADVANCE_RING();
1675 #if VERBOSE > 0
1676 DBG_MSG("ring = 0x%08x, 0x%08x (%d)\n", dinfo->ring_head,
1677 dinfo->ring_tail, dinfo->ring_space);
1678 #endif
1681 void
1682 intelfbhw_do_bitblt(struct intelfb_info *dinfo, u32 curx, u32 cury,
1683 u32 dstx, u32 dsty, u32 w, u32 h, u32 pitch, u32 bpp)
1685 u32 br00, br09, br11, br12, br13, br22, br23, br26;
1687 #if VERBOSE > 0
1688 DBG_MSG("intelfbhw_do_bitblt: (%d,%d)->(%d,%d) %dx%d, p %d bpp %d\n",
1689 curx, cury, dstx, dsty, w, h, pitch, bpp);
1690 #endif
1692 br00 = XY_SRC_COPY_BLT_CMD;
1693 br09 = dinfo->fb_start;
1694 br11 = (pitch << PITCH_SHIFT);
1695 br12 = dinfo->fb_start;
1696 br13 = (SRC_ROP_GXCOPY << ROP_SHIFT) | (pitch << PITCH_SHIFT);
1697 br22 = (dstx << WIDTH_SHIFT) | (dsty << HEIGHT_SHIFT);
1698 br23 = ((dstx + w) << WIDTH_SHIFT) |
1699 ((dsty + h) << HEIGHT_SHIFT);
1700 br26 = (curx << WIDTH_SHIFT) | (cury << HEIGHT_SHIFT);
1702 switch (bpp) {
1703 case 8:
1704 br13 |= COLOR_DEPTH_8;
1705 break;
1706 case 16:
1707 br13 |= COLOR_DEPTH_16;
1708 break;
1709 case 32:
1710 br13 |= COLOR_DEPTH_32;
1711 br00 |= WRITE_ALPHA | WRITE_RGB;
1712 break;
1715 START_RING(8);
1716 OUT_RING(br00);
1717 OUT_RING(br13);
1718 OUT_RING(br22);
1719 OUT_RING(br23);
1720 OUT_RING(br09);
1721 OUT_RING(br26);
1722 OUT_RING(br11);
1723 OUT_RING(br12);
1724 ADVANCE_RING();
1727 int intelfbhw_do_drawglyph(struct intelfb_info *dinfo, u32 fg, u32 bg, u32 w,
1728 u32 h, const u8* cdat, u32 x, u32 y, u32 pitch,
1729 u32 bpp)
1731 int nbytes, ndwords, pad, tmp;
1732 u32 br00, br09, br13, br18, br19, br22, br23;
1733 int dat, ix, iy, iw;
1734 int i, j;
1736 #if VERBOSE > 0
1737 DBG_MSG("intelfbhw_do_drawglyph: (%d,%d) %dx%d\n", x, y, w, h);
1738 #endif
1740 /* size in bytes of a padded scanline */
1741 nbytes = ROUND_UP_TO(w, 16) / 8;
1743 /* Total bytes of padded scanline data to write out. */
1744 nbytes = nbytes * h;
1747 * Check if the glyph data exceeds the immediate mode limit.
1748 * It would take a large font (1K pixels) to hit this limit.
1750 if (nbytes > MAX_MONO_IMM_SIZE)
1751 return 0;
1753 /* Src data is packaged a dword (32-bit) at a time. */
1754 ndwords = ROUND_UP_TO(nbytes, 4) / 4;
1757 * Ring has to be padded to a quad word. But because the command starts
1758 with 7 bytes, pad only if there is an even number of ndwords
1760 pad = !(ndwords % 2);
1762 tmp = (XY_MONO_SRC_IMM_BLT_CMD & DW_LENGTH_MASK) + ndwords;
1763 br00 = (XY_MONO_SRC_IMM_BLT_CMD & ~DW_LENGTH_MASK) | tmp;
1764 br09 = dinfo->fb_start;
1765 br13 = (SRC_ROP_GXCOPY << ROP_SHIFT) | (pitch << PITCH_SHIFT);
1766 br18 = bg;
1767 br19 = fg;
1768 br22 = (x << WIDTH_SHIFT) | (y << HEIGHT_SHIFT);
1769 br23 = ((x + w) << WIDTH_SHIFT) | ((y + h) << HEIGHT_SHIFT);
1771 switch (bpp) {
1772 case 8:
1773 br13 |= COLOR_DEPTH_8;
1774 break;
1775 case 16:
1776 br13 |= COLOR_DEPTH_16;
1777 break;
1778 case 32:
1779 br13 |= COLOR_DEPTH_32;
1780 br00 |= WRITE_ALPHA | WRITE_RGB;
1781 break;
1784 START_RING(8 + ndwords);
1785 OUT_RING(br00);
1786 OUT_RING(br13);
1787 OUT_RING(br22);
1788 OUT_RING(br23);
1789 OUT_RING(br09);
1790 OUT_RING(br18);
1791 OUT_RING(br19);
1792 ix = iy = 0;
1793 iw = ROUND_UP_TO(w, 8) / 8;
1794 while (ndwords--) {
1795 dat = 0;
1796 for (j = 0; j < 2; ++j) {
1797 for (i = 0; i < 2; ++i) {
1798 if (ix != iw || i == 0)
1799 dat |= cdat[iy*iw + ix++] << (i+j*2)*8;
1801 if (ix == iw && iy != (h-1)) {
1802 ix = 0;
1803 ++iy;
1806 OUT_RING(dat);
1808 if (pad)
1809 OUT_RING(MI_NOOP);
1810 ADVANCE_RING();
1812 return 1;
1815 /* HW cursor functions. */
1816 void intelfbhw_cursor_init(struct intelfb_info *dinfo)
1818 u32 tmp;
1820 #if VERBOSE > 0
1821 DBG_MSG("intelfbhw_cursor_init\n");
1822 #endif
1824 if (dinfo->mobile || IS_I9XX(dinfo)) {
1825 if (!dinfo->cursor.physical)
1826 return;
1827 tmp = INREG(CURSOR_A_CONTROL);
1828 tmp &= ~(CURSOR_MODE_MASK | CURSOR_MOBILE_GAMMA_ENABLE |
1829 CURSOR_MEM_TYPE_LOCAL |
1830 (1 << CURSOR_PIPE_SELECT_SHIFT));
1831 tmp |= CURSOR_MODE_DISABLE;
1832 OUTREG(CURSOR_A_CONTROL, tmp);
1833 OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
1834 } else {
1835 tmp = INREG(CURSOR_CONTROL);
1836 tmp &= ~(CURSOR_FORMAT_MASK | CURSOR_GAMMA_ENABLE |
1837 CURSOR_ENABLE | CURSOR_STRIDE_MASK);
1838 tmp = CURSOR_FORMAT_3C;
1839 OUTREG(CURSOR_CONTROL, tmp);
1840 OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.offset << 12);
1841 tmp = (64 << CURSOR_SIZE_H_SHIFT) |
1842 (64 << CURSOR_SIZE_V_SHIFT);
1843 OUTREG(CURSOR_SIZE, tmp);
1847 void intelfbhw_cursor_hide(struct intelfb_info *dinfo)
1849 u32 tmp;
1851 #if VERBOSE > 0
1852 DBG_MSG("intelfbhw_cursor_hide\n");
1853 #endif
1855 dinfo->cursor_on = 0;
1856 if (dinfo->mobile || IS_I9XX(dinfo)) {
1857 if (!dinfo->cursor.physical)
1858 return;
1859 tmp = INREG(CURSOR_A_CONTROL);
1860 tmp &= ~CURSOR_MODE_MASK;
1861 tmp |= CURSOR_MODE_DISABLE;
1862 OUTREG(CURSOR_A_CONTROL, tmp);
1863 /* Flush changes */
1864 OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
1865 } else {
1866 tmp = INREG(CURSOR_CONTROL);
1867 tmp &= ~CURSOR_ENABLE;
1868 OUTREG(CURSOR_CONTROL, tmp);
1872 void intelfbhw_cursor_show(struct intelfb_info *dinfo)
1874 u32 tmp;
1876 #if VERBOSE > 0
1877 DBG_MSG("intelfbhw_cursor_show\n");
1878 #endif
1880 dinfo->cursor_on = 1;
1882 if (dinfo->cursor_blanked)
1883 return;
1885 if (dinfo->mobile || IS_I9XX(dinfo)) {
1886 if (!dinfo->cursor.physical)
1887 return;
1888 tmp = INREG(CURSOR_A_CONTROL);
1889 tmp &= ~CURSOR_MODE_MASK;
1890 tmp |= CURSOR_MODE_64_4C_AX;
1891 OUTREG(CURSOR_A_CONTROL, tmp);
1892 /* Flush changes */
1893 OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
1894 } else {
1895 tmp = INREG(CURSOR_CONTROL);
1896 tmp |= CURSOR_ENABLE;
1897 OUTREG(CURSOR_CONTROL, tmp);
1901 void intelfbhw_cursor_setpos(struct intelfb_info *dinfo, int x, int y)
1903 u32 tmp;
1905 #if VERBOSE > 0
1906 DBG_MSG("intelfbhw_cursor_setpos: (%d, %d)\n", x, y);
1907 #endif
1910 * Sets the position. The coordinates are assumed to already
1911 * have any offset adjusted. Assume that the cursor is never
1912 * completely off-screen, and that x, y are always >= 0.
1915 tmp = ((x & CURSOR_POS_MASK) << CURSOR_X_SHIFT) |
1916 ((y & CURSOR_POS_MASK) << CURSOR_Y_SHIFT);
1917 OUTREG(CURSOR_A_POSITION, tmp);
1919 if (IS_I9XX(dinfo))
1920 OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
1923 void intelfbhw_cursor_setcolor(struct intelfb_info *dinfo, u32 bg, u32 fg)
1925 #if VERBOSE > 0
1926 DBG_MSG("intelfbhw_cursor_setcolor\n");
1927 #endif
1929 OUTREG(CURSOR_A_PALETTE0, bg & CURSOR_PALETTE_MASK);
1930 OUTREG(CURSOR_A_PALETTE1, fg & CURSOR_PALETTE_MASK);
1931 OUTREG(CURSOR_A_PALETTE2, fg & CURSOR_PALETTE_MASK);
1932 OUTREG(CURSOR_A_PALETTE3, bg & CURSOR_PALETTE_MASK);
1935 void intelfbhw_cursor_load(struct intelfb_info *dinfo, int width, int height,
1936 u8 *data)
1938 u8 __iomem *addr = (u8 __iomem *)dinfo->cursor.virtual;
1939 int i, j, w = width / 8;
1940 int mod = width % 8, t_mask, d_mask;
1942 #if VERBOSE > 0
1943 DBG_MSG("intelfbhw_cursor_load\n");
1944 #endif
1946 if (!dinfo->cursor.virtual)
1947 return;
1949 t_mask = 0xff >> mod;
1950 d_mask = ~(0xff >> mod);
1951 for (i = height; i--; ) {
1952 for (j = 0; j < w; j++) {
1953 writeb(0x00, addr + j);
1954 writeb(*(data++), addr + j+8);
1956 if (mod) {
1957 writeb(t_mask, addr + j);
1958 writeb(*(data++) & d_mask, addr + j+8);
1960 addr += 16;
1964 void intelfbhw_cursor_reset(struct intelfb_info *dinfo)
1966 u8 __iomem *addr = (u8 __iomem *)dinfo->cursor.virtual;
1967 int i, j;
1969 #if VERBOSE > 0
1970 DBG_MSG("intelfbhw_cursor_reset\n");
1971 #endif
1973 if (!dinfo->cursor.virtual)
1974 return;
1976 for (i = 64; i--; ) {
1977 for (j = 0; j < 8; j++) {
1978 writeb(0xff, addr + j+0);
1979 writeb(0x00, addr + j+8);
1981 addr += 16;
1985 static irqreturn_t intelfbhw_irq(int irq, void *dev_id)
1987 u16 tmp;
1988 struct intelfb_info *dinfo = dev_id;
1990 spin_lock(&dinfo->int_lock);
1992 tmp = INREG16(IIR);
1993 if (dinfo->info->var.vmode & FB_VMODE_INTERLACED)
1994 tmp &= PIPE_A_EVENT_INTERRUPT;
1995 else
1996 tmp &= VSYNC_PIPE_A_INTERRUPT; /* non-interlaced */
1998 if (tmp == 0) {
1999 spin_unlock(&dinfo->int_lock);
2000 return IRQ_RETVAL(0); /* not us */
2003 /* clear status bits 0-15 ASAP and don't touch bits 16-31 */
2004 OUTREG(PIPEASTAT, INREG(PIPEASTAT));
2006 OUTREG16(IIR, tmp);
2007 if (dinfo->vsync.pan_display) {
2008 dinfo->vsync.pan_display = 0;
2009 OUTREG(DSPABASE, dinfo->vsync.pan_offset);
2012 dinfo->vsync.count++;
2013 wake_up_interruptible(&dinfo->vsync.wait);
2015 spin_unlock(&dinfo->int_lock);
2017 return IRQ_RETVAL(1);
2020 int intelfbhw_enable_irq(struct intelfb_info *dinfo)
2022 u16 tmp;
2023 if (!test_and_set_bit(0, &dinfo->irq_flags)) {
2024 if (request_irq(dinfo->pdev->irq, intelfbhw_irq, IRQF_SHARED,
2025 "intelfb", dinfo)) {
2026 clear_bit(0, &dinfo->irq_flags);
2027 return -EINVAL;
2030 spin_lock_irq(&dinfo->int_lock);
2031 OUTREG16(HWSTAM, 0xfffe); /* i830 DRM uses ffff */
2032 OUTREG16(IMR, 0);
2033 } else
2034 spin_lock_irq(&dinfo->int_lock);
2036 if (dinfo->info->var.vmode & FB_VMODE_INTERLACED)
2037 tmp = PIPE_A_EVENT_INTERRUPT;
2038 else
2039 tmp = VSYNC_PIPE_A_INTERRUPT; /* non-interlaced */
2040 if (tmp != INREG16(IER)) {
2041 DBG_MSG("changing IER to 0x%X\n", tmp);
2042 OUTREG16(IER, tmp);
2045 spin_unlock_irq(&dinfo->int_lock);
2046 return 0;
2049 void intelfbhw_disable_irq(struct intelfb_info *dinfo)
2051 if (test_and_clear_bit(0, &dinfo->irq_flags)) {
2052 if (dinfo->vsync.pan_display) {
2053 dinfo->vsync.pan_display = 0;
2054 OUTREG(DSPABASE, dinfo->vsync.pan_offset);
2056 spin_lock_irq(&dinfo->int_lock);
2057 OUTREG16(HWSTAM, 0xffff);
2058 OUTREG16(IMR, 0xffff);
2059 OUTREG16(IER, 0x0);
2061 OUTREG16(IIR, INREG16(IIR)); /* clear IRQ requests */
2062 spin_unlock_irq(&dinfo->int_lock);
2064 free_irq(dinfo->pdev->irq, dinfo);
2068 int intelfbhw_wait_for_vsync(struct intelfb_info *dinfo, u32 pipe)
2070 struct intelfb_vsync *vsync;
2071 unsigned int count;
2072 int ret;
2074 switch (pipe) {
2075 case 0:
2076 vsync = &dinfo->vsync;
2077 break;
2078 default:
2079 return -ENODEV;
2082 ret = intelfbhw_enable_irq(dinfo);
2083 if (ret)
2084 return ret;
2086 count = vsync->count;
2087 ret = wait_event_interruptible_timeout(vsync->wait,
2088 count != vsync->count, HZ / 10);
2089 if (ret < 0)
2090 return ret;
2091 if (ret == 0) {
2092 DBG_MSG("wait_for_vsync timed out!\n");
2093 return -ETIMEDOUT;
2096 return 0;