[MIPS] RTLX: Protect rtlx_{read,write} with mutex.
[linux-2.6/linux-mips/linux-dm7025.git] / drivers / block / cciss.c
blob072e18e6d76de505d2ce2cfec19db1fefc1544d0
1 /*
2 * Disk Array driver for HP SA 5xxx and 6xxx Controllers
3 * Copyright 2000, 2006 Hewlett-Packard Development Company, L.P.
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
13 * NON INFRINGEMENT. See the GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 * Questions/Comments/Bugfixes to iss_storagedev@hp.com
23 #include <linux/module.h>
24 #include <linux/interrupt.h>
25 #include <linux/types.h>
26 #include <linux/pci.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/delay.h>
30 #include <linux/major.h>
31 #include <linux/fs.h>
32 #include <linux/bio.h>
33 #include <linux/blkpg.h>
34 #include <linux/timer.h>
35 #include <linux/proc_fs.h>
36 #include <linux/init.h>
37 #include <linux/hdreg.h>
38 #include <linux/spinlock.h>
39 #include <linux/compat.h>
40 #include <linux/blktrace_api.h>
41 #include <asm/uaccess.h>
42 #include <asm/io.h>
44 #include <linux/dma-mapping.h>
45 #include <linux/blkdev.h>
46 #include <linux/genhd.h>
47 #include <linux/completion.h>
49 #define CCISS_DRIVER_VERSION(maj,min,submin) ((maj<<16)|(min<<8)|(submin))
50 #define DRIVER_NAME "HP CISS Driver (v 3.6.14)"
51 #define DRIVER_VERSION CCISS_DRIVER_VERSION(3,6,14)
53 /* Embedded module documentation macros - see modules.h */
54 MODULE_AUTHOR("Hewlett-Packard Company");
55 MODULE_DESCRIPTION("Driver for HP Controller SA5xxx SA6xxx version 3.6.14");
56 MODULE_SUPPORTED_DEVICE("HP SA5i SA5i+ SA532 SA5300 SA5312 SA641 SA642 SA6400"
57 " SA6i P600 P800 P400 P400i E200 E200i E500");
58 MODULE_VERSION("3.6.14");
59 MODULE_LICENSE("GPL");
61 #include "cciss_cmd.h"
62 #include "cciss.h"
63 #include <linux/cciss_ioctl.h>
65 /* define the PCI info for the cards we can control */
66 static const struct pci_device_id cciss_pci_device_id[] = {
67 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISS, 0x0E11, 0x4070},
68 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4080},
69 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4082},
70 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4083},
71 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x4091},
72 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409A},
73 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409B},
74 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409C},
75 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409D},
76 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSA, 0x103C, 0x3225},
77 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3223},
78 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3234},
79 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3235},
80 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3211},
81 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3212},
82 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3213},
83 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3214},
84 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3215},
85 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3237},
86 {PCI_VENDOR_ID_HP, PCI_ANY_ID, PCI_ANY_ID, PCI_ANY_ID,
87 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
88 {0,}
91 MODULE_DEVICE_TABLE(pci, cciss_pci_device_id);
93 /* board_id = Subsystem Device ID & Vendor ID
94 * product = Marketing Name for the board
95 * access = Address of the struct of function pointers
96 * nr_cmds = Number of commands supported by controller
98 static struct board_type products[] = {
99 {0x40700E11, "Smart Array 5300", &SA5_access, 512},
100 {0x40800E11, "Smart Array 5i", &SA5B_access, 512},
101 {0x40820E11, "Smart Array 532", &SA5B_access, 512},
102 {0x40830E11, "Smart Array 5312", &SA5B_access, 512},
103 {0x409A0E11, "Smart Array 641", &SA5_access, 512},
104 {0x409B0E11, "Smart Array 642", &SA5_access, 512},
105 {0x409C0E11, "Smart Array 6400", &SA5_access, 512},
106 {0x409D0E11, "Smart Array 6400 EM", &SA5_access, 512},
107 {0x40910E11, "Smart Array 6i", &SA5_access, 512},
108 {0x3225103C, "Smart Array P600", &SA5_access, 512},
109 {0x3223103C, "Smart Array P800", &SA5_access, 512},
110 {0x3234103C, "Smart Array P400", &SA5_access, 512},
111 {0x3235103C, "Smart Array P400i", &SA5_access, 512},
112 {0x3211103C, "Smart Array E200i", &SA5_access, 120},
113 {0x3212103C, "Smart Array E200", &SA5_access, 120},
114 {0x3213103C, "Smart Array E200i", &SA5_access, 120},
115 {0x3214103C, "Smart Array E200i", &SA5_access, 120},
116 {0x3215103C, "Smart Array E200i", &SA5_access, 120},
117 {0x3237103C, "Smart Array E500", &SA5_access, 512},
118 {0xFFFF103C, "Unknown Smart Array", &SA5_access, 120},
121 /* How long to wait (in milliseconds) for board to go into simple mode */
122 #define MAX_CONFIG_WAIT 30000
123 #define MAX_IOCTL_CONFIG_WAIT 1000
125 /*define how many times we will try a command because of bus resets */
126 #define MAX_CMD_RETRIES 3
128 #define READ_AHEAD 1024
129 #define MAX_CTLR 32
131 /* Originally cciss driver only supports 8 major numbers */
132 #define MAX_CTLR_ORIG 8
134 static ctlr_info_t *hba[MAX_CTLR];
136 static void do_cciss_request(request_queue_t *q);
137 static irqreturn_t do_cciss_intr(int irq, void *dev_id);
138 static int cciss_open(struct inode *inode, struct file *filep);
139 static int cciss_release(struct inode *inode, struct file *filep);
140 static int cciss_ioctl(struct inode *inode, struct file *filep,
141 unsigned int cmd, unsigned long arg);
142 static int cciss_getgeo(struct block_device *bdev, struct hd_geometry *geo);
144 static int cciss_revalidate(struct gendisk *disk);
145 static int rebuild_lun_table(ctlr_info_t *h, struct gendisk *del_disk);
146 static int deregister_disk(struct gendisk *disk, drive_info_struct *drv,
147 int clear_all);
149 static void cciss_read_capacity(int ctlr, int logvol, int withirq,
150 sector_t *total_size, unsigned int *block_size);
151 static void cciss_read_capacity_16(int ctlr, int logvol, int withirq,
152 sector_t *total_size, unsigned int *block_size);
153 static void cciss_geometry_inquiry(int ctlr, int logvol,
154 int withirq, sector_t total_size,
155 unsigned int block_size, InquiryData_struct *inq_buff,
156 drive_info_struct *drv);
157 static void cciss_getgeometry(int cntl_num);
158 static void __devinit cciss_interrupt_mode(ctlr_info_t *, struct pci_dev *,
159 __u32);
160 static void start_io(ctlr_info_t *h);
161 static int sendcmd(__u8 cmd, int ctlr, void *buff, size_t size,
162 unsigned int use_unit_num, unsigned int log_unit,
163 __u8 page_code, unsigned char *scsi3addr, int cmd_type);
164 static int sendcmd_withirq(__u8 cmd, int ctlr, void *buff, size_t size,
165 unsigned int use_unit_num, unsigned int log_unit,
166 __u8 page_code, int cmd_type);
168 static void fail_all_cmds(unsigned long ctlr);
170 #ifdef CONFIG_PROC_FS
171 static int cciss_proc_get_info(char *buffer, char **start, off_t offset,
172 int length, int *eof, void *data);
173 static void cciss_procinit(int i);
174 #else
175 static void cciss_procinit(int i)
178 #endif /* CONFIG_PROC_FS */
180 #ifdef CONFIG_COMPAT
181 static long cciss_compat_ioctl(struct file *f, unsigned cmd, unsigned long arg);
182 #endif
184 static struct block_device_operations cciss_fops = {
185 .owner = THIS_MODULE,
186 .open = cciss_open,
187 .release = cciss_release,
188 .ioctl = cciss_ioctl,
189 .getgeo = cciss_getgeo,
190 #ifdef CONFIG_COMPAT
191 .compat_ioctl = cciss_compat_ioctl,
192 #endif
193 .revalidate_disk = cciss_revalidate,
197 * Enqueuing and dequeuing functions for cmdlists.
199 static inline void addQ(CommandList_struct **Qptr, CommandList_struct *c)
201 if (*Qptr == NULL) {
202 *Qptr = c;
203 c->next = c->prev = c;
204 } else {
205 c->prev = (*Qptr)->prev;
206 c->next = (*Qptr);
207 (*Qptr)->prev->next = c;
208 (*Qptr)->prev = c;
212 static inline CommandList_struct *removeQ(CommandList_struct **Qptr,
213 CommandList_struct *c)
215 if (c && c->next != c) {
216 if (*Qptr == c)
217 *Qptr = c->next;
218 c->prev->next = c->next;
219 c->next->prev = c->prev;
220 } else {
221 *Qptr = NULL;
223 return c;
226 #include "cciss_scsi.c" /* For SCSI tape support */
228 #define RAID_UNKNOWN 6
230 #ifdef CONFIG_PROC_FS
233 * Report information about this controller.
235 #define ENG_GIG 1000000000
236 #define ENG_GIG_FACTOR (ENG_GIG/512)
237 static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
238 "UNKNOWN"
241 static struct proc_dir_entry *proc_cciss;
243 static int cciss_proc_get_info(char *buffer, char **start, off_t offset,
244 int length, int *eof, void *data)
246 off_t pos = 0;
247 off_t len = 0;
248 int size, i, ctlr;
249 ctlr_info_t *h = (ctlr_info_t *) data;
250 drive_info_struct *drv;
251 unsigned long flags;
252 sector_t vol_sz, vol_sz_frac;
254 ctlr = h->ctlr;
256 /* prevent displaying bogus info during configuration
257 * or deconfiguration of a logical volume
259 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
260 if (h->busy_configuring) {
261 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
262 return -EBUSY;
264 h->busy_configuring = 1;
265 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
267 size = sprintf(buffer, "%s: HP %s Controller\n"
268 "Board ID: 0x%08lx\n"
269 "Firmware Version: %c%c%c%c\n"
270 "IRQ: %d\n"
271 "Logical drives: %d\n"
272 "Max sectors: %d\n"
273 "Current Q depth: %d\n"
274 "Current # commands on controller: %d\n"
275 "Max Q depth since init: %d\n"
276 "Max # commands on controller since init: %d\n"
277 "Max SG entries since init: %d\n\n",
278 h->devname,
279 h->product_name,
280 (unsigned long)h->board_id,
281 h->firm_ver[0], h->firm_ver[1], h->firm_ver[2],
282 h->firm_ver[3], (unsigned int)h->intr[SIMPLE_MODE_INT],
283 h->num_luns,
284 h->cciss_max_sectors,
285 h->Qdepth, h->commands_outstanding,
286 h->maxQsinceinit, h->max_outstanding, h->maxSG);
288 pos += size;
289 len += size;
290 cciss_proc_tape_report(ctlr, buffer, &pos, &len);
291 for (i = 0; i <= h->highest_lun; i++) {
293 drv = &h->drv[i];
294 if (drv->heads == 0)
295 continue;
297 vol_sz = drv->nr_blocks;
298 vol_sz_frac = sector_div(vol_sz, ENG_GIG_FACTOR);
299 vol_sz_frac *= 100;
300 sector_div(vol_sz_frac, ENG_GIG_FACTOR);
302 if (drv->raid_level > 5)
303 drv->raid_level = RAID_UNKNOWN;
304 size = sprintf(buffer + len, "cciss/c%dd%d:"
305 "\t%4u.%02uGB\tRAID %s\n",
306 ctlr, i, (int)vol_sz, (int)vol_sz_frac,
307 raid_label[drv->raid_level]);
308 pos += size;
309 len += size;
312 *eof = 1;
313 *start = buffer + offset;
314 len -= offset;
315 if (len > length)
316 len = length;
317 h->busy_configuring = 0;
318 return len;
321 static int
322 cciss_proc_write(struct file *file, const char __user *buffer,
323 unsigned long count, void *data)
325 unsigned char cmd[80];
326 int len;
327 #ifdef CONFIG_CISS_SCSI_TAPE
328 ctlr_info_t *h = (ctlr_info_t *) data;
329 int rc;
330 #endif
332 if (count > sizeof(cmd) - 1)
333 return -EINVAL;
334 if (copy_from_user(cmd, buffer, count))
335 return -EFAULT;
336 cmd[count] = '\0';
337 len = strlen(cmd); // above 3 lines ensure safety
338 if (len && cmd[len - 1] == '\n')
339 cmd[--len] = '\0';
340 # ifdef CONFIG_CISS_SCSI_TAPE
341 if (strcmp("engage scsi", cmd) == 0) {
342 rc = cciss_engage_scsi(h->ctlr);
343 if (rc != 0)
344 return -rc;
345 return count;
347 /* might be nice to have "disengage" too, but it's not
348 safely possible. (only 1 module use count, lock issues.) */
349 # endif
350 return -EINVAL;
354 * Get us a file in /proc/cciss that says something about each controller.
355 * Create /proc/cciss if it doesn't exist yet.
357 static void __devinit cciss_procinit(int i)
359 struct proc_dir_entry *pde;
361 if (proc_cciss == NULL) {
362 proc_cciss = proc_mkdir("cciss", proc_root_driver);
363 if (!proc_cciss)
364 return;
367 pde = create_proc_read_entry(hba[i]->devname,
368 S_IWUSR | S_IRUSR | S_IRGRP | S_IROTH,
369 proc_cciss, cciss_proc_get_info, hba[i]);
370 pde->write_proc = cciss_proc_write;
372 #endif /* CONFIG_PROC_FS */
375 * For operations that cannot sleep, a command block is allocated at init,
376 * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
377 * which ones are free or in use. For operations that can wait for kmalloc
378 * to possible sleep, this routine can be called with get_from_pool set to 0.
379 * cmd_free() MUST be called with a got_from_pool set to 0 if cmd_alloc was.
381 static CommandList_struct *cmd_alloc(ctlr_info_t *h, int get_from_pool)
383 CommandList_struct *c;
384 int i;
385 u64bit temp64;
386 dma_addr_t cmd_dma_handle, err_dma_handle;
388 if (!get_from_pool) {
389 c = (CommandList_struct *) pci_alloc_consistent(h->pdev,
390 sizeof(CommandList_struct), &cmd_dma_handle);
391 if (c == NULL)
392 return NULL;
393 memset(c, 0, sizeof(CommandList_struct));
395 c->cmdindex = -1;
397 c->err_info = (ErrorInfo_struct *)
398 pci_alloc_consistent(h->pdev, sizeof(ErrorInfo_struct),
399 &err_dma_handle);
401 if (c->err_info == NULL) {
402 pci_free_consistent(h->pdev,
403 sizeof(CommandList_struct), c, cmd_dma_handle);
404 return NULL;
406 memset(c->err_info, 0, sizeof(ErrorInfo_struct));
407 } else { /* get it out of the controllers pool */
409 do {
410 i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds);
411 if (i == h->nr_cmds)
412 return NULL;
413 } while (test_and_set_bit
414 (i & (BITS_PER_LONG - 1),
415 h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0);
416 #ifdef CCISS_DEBUG
417 printk(KERN_DEBUG "cciss: using command buffer %d\n", i);
418 #endif
419 c = h->cmd_pool + i;
420 memset(c, 0, sizeof(CommandList_struct));
421 cmd_dma_handle = h->cmd_pool_dhandle
422 + i * sizeof(CommandList_struct);
423 c->err_info = h->errinfo_pool + i;
424 memset(c->err_info, 0, sizeof(ErrorInfo_struct));
425 err_dma_handle = h->errinfo_pool_dhandle
426 + i * sizeof(ErrorInfo_struct);
427 h->nr_allocs++;
429 c->cmdindex = i;
432 c->busaddr = (__u32) cmd_dma_handle;
433 temp64.val = (__u64) err_dma_handle;
434 c->ErrDesc.Addr.lower = temp64.val32.lower;
435 c->ErrDesc.Addr.upper = temp64.val32.upper;
436 c->ErrDesc.Len = sizeof(ErrorInfo_struct);
438 c->ctlr = h->ctlr;
439 return c;
443 * Frees a command block that was previously allocated with cmd_alloc().
445 static void cmd_free(ctlr_info_t *h, CommandList_struct *c, int got_from_pool)
447 int i;
448 u64bit temp64;
450 if (!got_from_pool) {
451 temp64.val32.lower = c->ErrDesc.Addr.lower;
452 temp64.val32.upper = c->ErrDesc.Addr.upper;
453 pci_free_consistent(h->pdev, sizeof(ErrorInfo_struct),
454 c->err_info, (dma_addr_t) temp64.val);
455 pci_free_consistent(h->pdev, sizeof(CommandList_struct),
456 c, (dma_addr_t) c->busaddr);
457 } else {
458 i = c - h->cmd_pool;
459 clear_bit(i & (BITS_PER_LONG - 1),
460 h->cmd_pool_bits + (i / BITS_PER_LONG));
461 h->nr_frees++;
465 static inline ctlr_info_t *get_host(struct gendisk *disk)
467 return disk->queue->queuedata;
470 static inline drive_info_struct *get_drv(struct gendisk *disk)
472 return disk->private_data;
476 * Open. Make sure the device is really there.
478 static int cciss_open(struct inode *inode, struct file *filep)
480 ctlr_info_t *host = get_host(inode->i_bdev->bd_disk);
481 drive_info_struct *drv = get_drv(inode->i_bdev->bd_disk);
483 #ifdef CCISS_DEBUG
484 printk(KERN_DEBUG "cciss_open %s\n", inode->i_bdev->bd_disk->disk_name);
485 #endif /* CCISS_DEBUG */
487 if (host->busy_initializing || drv->busy_configuring)
488 return -EBUSY;
490 * Root is allowed to open raw volume zero even if it's not configured
491 * so array config can still work. Root is also allowed to open any
492 * volume that has a LUN ID, so it can issue IOCTL to reread the
493 * disk information. I don't think I really like this
494 * but I'm already using way to many device nodes to claim another one
495 * for "raw controller".
497 if (drv->heads == 0) {
498 if (iminor(inode) != 0) { /* not node 0? */
499 /* if not node 0 make sure it is a partition = 0 */
500 if (iminor(inode) & 0x0f) {
501 return -ENXIO;
502 /* if it is, make sure we have a LUN ID */
503 } else if (drv->LunID == 0) {
504 return -ENXIO;
507 if (!capable(CAP_SYS_ADMIN))
508 return -EPERM;
510 drv->usage_count++;
511 host->usage_count++;
512 return 0;
516 * Close. Sync first.
518 static int cciss_release(struct inode *inode, struct file *filep)
520 ctlr_info_t *host = get_host(inode->i_bdev->bd_disk);
521 drive_info_struct *drv = get_drv(inode->i_bdev->bd_disk);
523 #ifdef CCISS_DEBUG
524 printk(KERN_DEBUG "cciss_release %s\n",
525 inode->i_bdev->bd_disk->disk_name);
526 #endif /* CCISS_DEBUG */
528 drv->usage_count--;
529 host->usage_count--;
530 return 0;
533 #ifdef CONFIG_COMPAT
535 static int do_ioctl(struct file *f, unsigned cmd, unsigned long arg)
537 int ret;
538 lock_kernel();
539 ret = cciss_ioctl(f->f_path.dentry->d_inode, f, cmd, arg);
540 unlock_kernel();
541 return ret;
544 static int cciss_ioctl32_passthru(struct file *f, unsigned cmd,
545 unsigned long arg);
546 static int cciss_ioctl32_big_passthru(struct file *f, unsigned cmd,
547 unsigned long arg);
549 static long cciss_compat_ioctl(struct file *f, unsigned cmd, unsigned long arg)
551 switch (cmd) {
552 case CCISS_GETPCIINFO:
553 case CCISS_GETINTINFO:
554 case CCISS_SETINTINFO:
555 case CCISS_GETNODENAME:
556 case CCISS_SETNODENAME:
557 case CCISS_GETHEARTBEAT:
558 case CCISS_GETBUSTYPES:
559 case CCISS_GETFIRMVER:
560 case CCISS_GETDRIVVER:
561 case CCISS_REVALIDVOLS:
562 case CCISS_DEREGDISK:
563 case CCISS_REGNEWDISK:
564 case CCISS_REGNEWD:
565 case CCISS_RESCANDISK:
566 case CCISS_GETLUNINFO:
567 return do_ioctl(f, cmd, arg);
569 case CCISS_PASSTHRU32:
570 return cciss_ioctl32_passthru(f, cmd, arg);
571 case CCISS_BIG_PASSTHRU32:
572 return cciss_ioctl32_big_passthru(f, cmd, arg);
574 default:
575 return -ENOIOCTLCMD;
579 static int cciss_ioctl32_passthru(struct file *f, unsigned cmd,
580 unsigned long arg)
582 IOCTL32_Command_struct __user *arg32 =
583 (IOCTL32_Command_struct __user *) arg;
584 IOCTL_Command_struct arg64;
585 IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
586 int err;
587 u32 cp;
589 err = 0;
590 err |=
591 copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
592 sizeof(arg64.LUN_info));
593 err |=
594 copy_from_user(&arg64.Request, &arg32->Request,
595 sizeof(arg64.Request));
596 err |=
597 copy_from_user(&arg64.error_info, &arg32->error_info,
598 sizeof(arg64.error_info));
599 err |= get_user(arg64.buf_size, &arg32->buf_size);
600 err |= get_user(cp, &arg32->buf);
601 arg64.buf = compat_ptr(cp);
602 err |= copy_to_user(p, &arg64, sizeof(arg64));
604 if (err)
605 return -EFAULT;
607 err = do_ioctl(f, CCISS_PASSTHRU, (unsigned long)p);
608 if (err)
609 return err;
610 err |=
611 copy_in_user(&arg32->error_info, &p->error_info,
612 sizeof(arg32->error_info));
613 if (err)
614 return -EFAULT;
615 return err;
618 static int cciss_ioctl32_big_passthru(struct file *file, unsigned cmd,
619 unsigned long arg)
621 BIG_IOCTL32_Command_struct __user *arg32 =
622 (BIG_IOCTL32_Command_struct __user *) arg;
623 BIG_IOCTL_Command_struct arg64;
624 BIG_IOCTL_Command_struct __user *p =
625 compat_alloc_user_space(sizeof(arg64));
626 int err;
627 u32 cp;
629 err = 0;
630 err |=
631 copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
632 sizeof(arg64.LUN_info));
633 err |=
634 copy_from_user(&arg64.Request, &arg32->Request,
635 sizeof(arg64.Request));
636 err |=
637 copy_from_user(&arg64.error_info, &arg32->error_info,
638 sizeof(arg64.error_info));
639 err |= get_user(arg64.buf_size, &arg32->buf_size);
640 err |= get_user(arg64.malloc_size, &arg32->malloc_size);
641 err |= get_user(cp, &arg32->buf);
642 arg64.buf = compat_ptr(cp);
643 err |= copy_to_user(p, &arg64, sizeof(arg64));
645 if (err)
646 return -EFAULT;
648 err = do_ioctl(file, CCISS_BIG_PASSTHRU, (unsigned long)p);
649 if (err)
650 return err;
651 err |=
652 copy_in_user(&arg32->error_info, &p->error_info,
653 sizeof(arg32->error_info));
654 if (err)
655 return -EFAULT;
656 return err;
658 #endif
660 static int cciss_getgeo(struct block_device *bdev, struct hd_geometry *geo)
662 drive_info_struct *drv = get_drv(bdev->bd_disk);
664 if (!drv->cylinders)
665 return -ENXIO;
667 geo->heads = drv->heads;
668 geo->sectors = drv->sectors;
669 geo->cylinders = drv->cylinders;
670 return 0;
674 * ioctl
676 static int cciss_ioctl(struct inode *inode, struct file *filep,
677 unsigned int cmd, unsigned long arg)
679 struct block_device *bdev = inode->i_bdev;
680 struct gendisk *disk = bdev->bd_disk;
681 ctlr_info_t *host = get_host(disk);
682 drive_info_struct *drv = get_drv(disk);
683 int ctlr = host->ctlr;
684 void __user *argp = (void __user *)arg;
686 #ifdef CCISS_DEBUG
687 printk(KERN_DEBUG "cciss_ioctl: Called with cmd=%x %lx\n", cmd, arg);
688 #endif /* CCISS_DEBUG */
690 switch (cmd) {
691 case CCISS_GETPCIINFO:
693 cciss_pci_info_struct pciinfo;
695 if (!arg)
696 return -EINVAL;
697 pciinfo.domain = pci_domain_nr(host->pdev->bus);
698 pciinfo.bus = host->pdev->bus->number;
699 pciinfo.dev_fn = host->pdev->devfn;
700 pciinfo.board_id = host->board_id;
701 if (copy_to_user
702 (argp, &pciinfo, sizeof(cciss_pci_info_struct)))
703 return -EFAULT;
704 return 0;
706 case CCISS_GETINTINFO:
708 cciss_coalint_struct intinfo;
709 if (!arg)
710 return -EINVAL;
711 intinfo.delay =
712 readl(&host->cfgtable->HostWrite.CoalIntDelay);
713 intinfo.count =
714 readl(&host->cfgtable->HostWrite.CoalIntCount);
715 if (copy_to_user
716 (argp, &intinfo, sizeof(cciss_coalint_struct)))
717 return -EFAULT;
718 return 0;
720 case CCISS_SETINTINFO:
722 cciss_coalint_struct intinfo;
723 unsigned long flags;
724 int i;
726 if (!arg)
727 return -EINVAL;
728 if (!capable(CAP_SYS_ADMIN))
729 return -EPERM;
730 if (copy_from_user
731 (&intinfo, argp, sizeof(cciss_coalint_struct)))
732 return -EFAULT;
733 if ((intinfo.delay == 0) && (intinfo.count == 0))
735 // printk("cciss_ioctl: delay and count cannot be 0\n");
736 return -EINVAL;
738 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
739 /* Update the field, and then ring the doorbell */
740 writel(intinfo.delay,
741 &(host->cfgtable->HostWrite.CoalIntDelay));
742 writel(intinfo.count,
743 &(host->cfgtable->HostWrite.CoalIntCount));
744 writel(CFGTBL_ChangeReq, host->vaddr + SA5_DOORBELL);
746 for (i = 0; i < MAX_IOCTL_CONFIG_WAIT; i++) {
747 if (!(readl(host->vaddr + SA5_DOORBELL)
748 & CFGTBL_ChangeReq))
749 break;
750 /* delay and try again */
751 udelay(1000);
753 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
754 if (i >= MAX_IOCTL_CONFIG_WAIT)
755 return -EAGAIN;
756 return 0;
758 case CCISS_GETNODENAME:
760 NodeName_type NodeName;
761 int i;
763 if (!arg)
764 return -EINVAL;
765 for (i = 0; i < 16; i++)
766 NodeName[i] =
767 readb(&host->cfgtable->ServerName[i]);
768 if (copy_to_user(argp, NodeName, sizeof(NodeName_type)))
769 return -EFAULT;
770 return 0;
772 case CCISS_SETNODENAME:
774 NodeName_type NodeName;
775 unsigned long flags;
776 int i;
778 if (!arg)
779 return -EINVAL;
780 if (!capable(CAP_SYS_ADMIN))
781 return -EPERM;
783 if (copy_from_user
784 (NodeName, argp, sizeof(NodeName_type)))
785 return -EFAULT;
787 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
789 /* Update the field, and then ring the doorbell */
790 for (i = 0; i < 16; i++)
791 writeb(NodeName[i],
792 &host->cfgtable->ServerName[i]);
794 writel(CFGTBL_ChangeReq, host->vaddr + SA5_DOORBELL);
796 for (i = 0; i < MAX_IOCTL_CONFIG_WAIT; i++) {
797 if (!(readl(host->vaddr + SA5_DOORBELL)
798 & CFGTBL_ChangeReq))
799 break;
800 /* delay and try again */
801 udelay(1000);
803 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
804 if (i >= MAX_IOCTL_CONFIG_WAIT)
805 return -EAGAIN;
806 return 0;
809 case CCISS_GETHEARTBEAT:
811 Heartbeat_type heartbeat;
813 if (!arg)
814 return -EINVAL;
815 heartbeat = readl(&host->cfgtable->HeartBeat);
816 if (copy_to_user
817 (argp, &heartbeat, sizeof(Heartbeat_type)))
818 return -EFAULT;
819 return 0;
821 case CCISS_GETBUSTYPES:
823 BusTypes_type BusTypes;
825 if (!arg)
826 return -EINVAL;
827 BusTypes = readl(&host->cfgtable->BusTypes);
828 if (copy_to_user
829 (argp, &BusTypes, sizeof(BusTypes_type)))
830 return -EFAULT;
831 return 0;
833 case CCISS_GETFIRMVER:
835 FirmwareVer_type firmware;
837 if (!arg)
838 return -EINVAL;
839 memcpy(firmware, host->firm_ver, 4);
841 if (copy_to_user
842 (argp, firmware, sizeof(FirmwareVer_type)))
843 return -EFAULT;
844 return 0;
846 case CCISS_GETDRIVVER:
848 DriverVer_type DriverVer = DRIVER_VERSION;
850 if (!arg)
851 return -EINVAL;
853 if (copy_to_user
854 (argp, &DriverVer, sizeof(DriverVer_type)))
855 return -EFAULT;
856 return 0;
859 case CCISS_REVALIDVOLS:
860 return rebuild_lun_table(host, NULL);
862 case CCISS_GETLUNINFO:{
863 LogvolInfo_struct luninfo;
865 luninfo.LunID = drv->LunID;
866 luninfo.num_opens = drv->usage_count;
867 luninfo.num_parts = 0;
868 if (copy_to_user(argp, &luninfo,
869 sizeof(LogvolInfo_struct)))
870 return -EFAULT;
871 return 0;
873 case CCISS_DEREGDISK:
874 return rebuild_lun_table(host, disk);
876 case CCISS_REGNEWD:
877 return rebuild_lun_table(host, NULL);
879 case CCISS_PASSTHRU:
881 IOCTL_Command_struct iocommand;
882 CommandList_struct *c;
883 char *buff = NULL;
884 u64bit temp64;
885 unsigned long flags;
886 DECLARE_COMPLETION_ONSTACK(wait);
888 if (!arg)
889 return -EINVAL;
891 if (!capable(CAP_SYS_RAWIO))
892 return -EPERM;
894 if (copy_from_user
895 (&iocommand, argp, sizeof(IOCTL_Command_struct)))
896 return -EFAULT;
897 if ((iocommand.buf_size < 1) &&
898 (iocommand.Request.Type.Direction != XFER_NONE)) {
899 return -EINVAL;
901 #if 0 /* 'buf_size' member is 16-bits, and always smaller than kmalloc limit */
902 /* Check kmalloc limits */
903 if (iocommand.buf_size > 128000)
904 return -EINVAL;
905 #endif
906 if (iocommand.buf_size > 0) {
907 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
908 if (buff == NULL)
909 return -EFAULT;
911 if (iocommand.Request.Type.Direction == XFER_WRITE) {
912 /* Copy the data into the buffer we created */
913 if (copy_from_user
914 (buff, iocommand.buf, iocommand.buf_size)) {
915 kfree(buff);
916 return -EFAULT;
918 } else {
919 memset(buff, 0, iocommand.buf_size);
921 if ((c = cmd_alloc(host, 0)) == NULL) {
922 kfree(buff);
923 return -ENOMEM;
925 // Fill in the command type
926 c->cmd_type = CMD_IOCTL_PEND;
927 // Fill in Command Header
928 c->Header.ReplyQueue = 0; // unused in simple mode
929 if (iocommand.buf_size > 0) // buffer to fill
931 c->Header.SGList = 1;
932 c->Header.SGTotal = 1;
933 } else // no buffers to fill
935 c->Header.SGList = 0;
936 c->Header.SGTotal = 0;
938 c->Header.LUN = iocommand.LUN_info;
939 c->Header.Tag.lower = c->busaddr; // use the kernel address the cmd block for tag
941 // Fill in Request block
942 c->Request = iocommand.Request;
944 // Fill in the scatter gather information
945 if (iocommand.buf_size > 0) {
946 temp64.val = pci_map_single(host->pdev, buff,
947 iocommand.buf_size,
948 PCI_DMA_BIDIRECTIONAL);
949 c->SG[0].Addr.lower = temp64.val32.lower;
950 c->SG[0].Addr.upper = temp64.val32.upper;
951 c->SG[0].Len = iocommand.buf_size;
952 c->SG[0].Ext = 0; // we are not chaining
954 c->waiting = &wait;
956 /* Put the request on the tail of the request queue */
957 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
958 addQ(&host->reqQ, c);
959 host->Qdepth++;
960 start_io(host);
961 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
963 wait_for_completion(&wait);
965 /* unlock the buffers from DMA */
966 temp64.val32.lower = c->SG[0].Addr.lower;
967 temp64.val32.upper = c->SG[0].Addr.upper;
968 pci_unmap_single(host->pdev, (dma_addr_t) temp64.val,
969 iocommand.buf_size,
970 PCI_DMA_BIDIRECTIONAL);
972 /* Copy the error information out */
973 iocommand.error_info = *(c->err_info);
974 if (copy_to_user
975 (argp, &iocommand, sizeof(IOCTL_Command_struct))) {
976 kfree(buff);
977 cmd_free(host, c, 0);
978 return -EFAULT;
981 if (iocommand.Request.Type.Direction == XFER_READ) {
982 /* Copy the data out of the buffer we created */
983 if (copy_to_user
984 (iocommand.buf, buff, iocommand.buf_size)) {
985 kfree(buff);
986 cmd_free(host, c, 0);
987 return -EFAULT;
990 kfree(buff);
991 cmd_free(host, c, 0);
992 return 0;
994 case CCISS_BIG_PASSTHRU:{
995 BIG_IOCTL_Command_struct *ioc;
996 CommandList_struct *c;
997 unsigned char **buff = NULL;
998 int *buff_size = NULL;
999 u64bit temp64;
1000 unsigned long flags;
1001 BYTE sg_used = 0;
1002 int status = 0;
1003 int i;
1004 DECLARE_COMPLETION_ONSTACK(wait);
1005 __u32 left;
1006 __u32 sz;
1007 BYTE __user *data_ptr;
1009 if (!arg)
1010 return -EINVAL;
1011 if (!capable(CAP_SYS_RAWIO))
1012 return -EPERM;
1013 ioc = (BIG_IOCTL_Command_struct *)
1014 kmalloc(sizeof(*ioc), GFP_KERNEL);
1015 if (!ioc) {
1016 status = -ENOMEM;
1017 goto cleanup1;
1019 if (copy_from_user(ioc, argp, sizeof(*ioc))) {
1020 status = -EFAULT;
1021 goto cleanup1;
1023 if ((ioc->buf_size < 1) &&
1024 (ioc->Request.Type.Direction != XFER_NONE)) {
1025 status = -EINVAL;
1026 goto cleanup1;
1028 /* Check kmalloc limits using all SGs */
1029 if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
1030 status = -EINVAL;
1031 goto cleanup1;
1033 if (ioc->buf_size > ioc->malloc_size * MAXSGENTRIES) {
1034 status = -EINVAL;
1035 goto cleanup1;
1037 buff =
1038 kzalloc(MAXSGENTRIES * sizeof(char *), GFP_KERNEL);
1039 if (!buff) {
1040 status = -ENOMEM;
1041 goto cleanup1;
1043 buff_size = kmalloc(MAXSGENTRIES * sizeof(int),
1044 GFP_KERNEL);
1045 if (!buff_size) {
1046 status = -ENOMEM;
1047 goto cleanup1;
1049 left = ioc->buf_size;
1050 data_ptr = ioc->buf;
1051 while (left) {
1052 sz = (left >
1053 ioc->malloc_size) ? ioc->
1054 malloc_size : left;
1055 buff_size[sg_used] = sz;
1056 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
1057 if (buff[sg_used] == NULL) {
1058 status = -ENOMEM;
1059 goto cleanup1;
1061 if (ioc->Request.Type.Direction == XFER_WRITE) {
1062 if (copy_from_user
1063 (buff[sg_used], data_ptr, sz)) {
1064 status = -ENOMEM;
1065 goto cleanup1;
1067 } else {
1068 memset(buff[sg_used], 0, sz);
1070 left -= sz;
1071 data_ptr += sz;
1072 sg_used++;
1074 if ((c = cmd_alloc(host, 0)) == NULL) {
1075 status = -ENOMEM;
1076 goto cleanup1;
1078 c->cmd_type = CMD_IOCTL_PEND;
1079 c->Header.ReplyQueue = 0;
1081 if (ioc->buf_size > 0) {
1082 c->Header.SGList = sg_used;
1083 c->Header.SGTotal = sg_used;
1084 } else {
1085 c->Header.SGList = 0;
1086 c->Header.SGTotal = 0;
1088 c->Header.LUN = ioc->LUN_info;
1089 c->Header.Tag.lower = c->busaddr;
1091 c->Request = ioc->Request;
1092 if (ioc->buf_size > 0) {
1093 int i;
1094 for (i = 0; i < sg_used; i++) {
1095 temp64.val =
1096 pci_map_single(host->pdev, buff[i],
1097 buff_size[i],
1098 PCI_DMA_BIDIRECTIONAL);
1099 c->SG[i].Addr.lower =
1100 temp64.val32.lower;
1101 c->SG[i].Addr.upper =
1102 temp64.val32.upper;
1103 c->SG[i].Len = buff_size[i];
1104 c->SG[i].Ext = 0; /* we are not chaining */
1107 c->waiting = &wait;
1108 /* Put the request on the tail of the request queue */
1109 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
1110 addQ(&host->reqQ, c);
1111 host->Qdepth++;
1112 start_io(host);
1113 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
1114 wait_for_completion(&wait);
1115 /* unlock the buffers from DMA */
1116 for (i = 0; i < sg_used; i++) {
1117 temp64.val32.lower = c->SG[i].Addr.lower;
1118 temp64.val32.upper = c->SG[i].Addr.upper;
1119 pci_unmap_single(host->pdev,
1120 (dma_addr_t) temp64.val, buff_size[i],
1121 PCI_DMA_BIDIRECTIONAL);
1123 /* Copy the error information out */
1124 ioc->error_info = *(c->err_info);
1125 if (copy_to_user(argp, ioc, sizeof(*ioc))) {
1126 cmd_free(host, c, 0);
1127 status = -EFAULT;
1128 goto cleanup1;
1130 if (ioc->Request.Type.Direction == XFER_READ) {
1131 /* Copy the data out of the buffer we created */
1132 BYTE __user *ptr = ioc->buf;
1133 for (i = 0; i < sg_used; i++) {
1134 if (copy_to_user
1135 (ptr, buff[i], buff_size[i])) {
1136 cmd_free(host, c, 0);
1137 status = -EFAULT;
1138 goto cleanup1;
1140 ptr += buff_size[i];
1143 cmd_free(host, c, 0);
1144 status = 0;
1145 cleanup1:
1146 if (buff) {
1147 for (i = 0; i < sg_used; i++)
1148 kfree(buff[i]);
1149 kfree(buff);
1151 kfree(buff_size);
1152 kfree(ioc);
1153 return status;
1155 default:
1156 return -ENOTTY;
1160 static inline void complete_buffers(struct bio *bio, int status)
1162 while (bio) {
1163 struct bio *xbh = bio->bi_next;
1164 int nr_sectors = bio_sectors(bio);
1166 bio->bi_next = NULL;
1167 bio_endio(bio, nr_sectors << 9, status ? 0 : -EIO);
1168 bio = xbh;
1172 static void cciss_check_queues(ctlr_info_t *h)
1174 int start_queue = h->next_to_run;
1175 int i;
1177 /* check to see if we have maxed out the number of commands that can
1178 * be placed on the queue. If so then exit. We do this check here
1179 * in case the interrupt we serviced was from an ioctl and did not
1180 * free any new commands.
1182 if ((find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds)) == h->nr_cmds)
1183 return;
1185 /* We have room on the queue for more commands. Now we need to queue
1186 * them up. We will also keep track of the next queue to run so
1187 * that every queue gets a chance to be started first.
1189 for (i = 0; i < h->highest_lun + 1; i++) {
1190 int curr_queue = (start_queue + i) % (h->highest_lun + 1);
1191 /* make sure the disk has been added and the drive is real
1192 * because this can be called from the middle of init_one.
1194 if (!(h->drv[curr_queue].queue) || !(h->drv[curr_queue].heads))
1195 continue;
1196 blk_start_queue(h->gendisk[curr_queue]->queue);
1198 /* check to see if we have maxed out the number of commands
1199 * that can be placed on the queue.
1201 if ((find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds)) == h->nr_cmds) {
1202 if (curr_queue == start_queue) {
1203 h->next_to_run =
1204 (start_queue + 1) % (h->highest_lun + 1);
1205 break;
1206 } else {
1207 h->next_to_run = curr_queue;
1208 break;
1210 } else {
1211 curr_queue = (curr_queue + 1) % (h->highest_lun + 1);
1216 static void cciss_softirq_done(struct request *rq)
1218 CommandList_struct *cmd = rq->completion_data;
1219 ctlr_info_t *h = hba[cmd->ctlr];
1220 unsigned long flags;
1221 u64bit temp64;
1222 int i, ddir;
1224 if (cmd->Request.Type.Direction == XFER_READ)
1225 ddir = PCI_DMA_FROMDEVICE;
1226 else
1227 ddir = PCI_DMA_TODEVICE;
1229 /* command did not need to be retried */
1230 /* unmap the DMA mapping for all the scatter gather elements */
1231 for (i = 0; i < cmd->Header.SGList; i++) {
1232 temp64.val32.lower = cmd->SG[i].Addr.lower;
1233 temp64.val32.upper = cmd->SG[i].Addr.upper;
1234 pci_unmap_page(h->pdev, temp64.val, cmd->SG[i].Len, ddir);
1237 complete_buffers(rq->bio, rq->errors);
1239 if (blk_fs_request(rq)) {
1240 const int rw = rq_data_dir(rq);
1242 disk_stat_add(rq->rq_disk, sectors[rw], rq->nr_sectors);
1245 #ifdef CCISS_DEBUG
1246 printk("Done with %p\n", rq);
1247 #endif /* CCISS_DEBUG */
1249 add_disk_randomness(rq->rq_disk);
1250 spin_lock_irqsave(&h->lock, flags);
1251 end_that_request_last(rq, rq->errors);
1252 cmd_free(h, cmd, 1);
1253 cciss_check_queues(h);
1254 spin_unlock_irqrestore(&h->lock, flags);
1257 /* This function will check the usage_count of the drive to be updated/added.
1258 * If the usage_count is zero then the drive information will be updated and
1259 * the disk will be re-registered with the kernel. If not then it will be
1260 * left alone for the next reboot. The exception to this is disk 0 which
1261 * will always be left registered with the kernel since it is also the
1262 * controller node. Any changes to disk 0 will show up on the next
1263 * reboot.
1265 static void cciss_update_drive_info(int ctlr, int drv_index)
1267 ctlr_info_t *h = hba[ctlr];
1268 struct gendisk *disk;
1269 InquiryData_struct *inq_buff = NULL;
1270 unsigned int block_size;
1271 sector_t total_size;
1272 unsigned long flags = 0;
1273 int ret = 0;
1275 /* if the disk already exists then deregister it before proceeding */
1276 if (h->drv[drv_index].raid_level != -1) {
1277 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
1278 h->drv[drv_index].busy_configuring = 1;
1279 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
1280 ret = deregister_disk(h->gendisk[drv_index],
1281 &h->drv[drv_index], 0);
1282 h->drv[drv_index].busy_configuring = 0;
1285 /* If the disk is in use return */
1286 if (ret)
1287 return;
1289 /* Get information about the disk and modify the driver structure */
1290 inq_buff = kmalloc(sizeof(InquiryData_struct), GFP_KERNEL);
1291 if (inq_buff == NULL)
1292 goto mem_msg;
1294 /* testing to see if 16-byte CDBs are already being used */
1295 if (h->cciss_read == CCISS_READ_16) {
1296 cciss_read_capacity_16(h->ctlr, drv_index, 1,
1297 &total_size, &block_size);
1298 goto geo_inq;
1301 cciss_read_capacity(ctlr, drv_index, 1,
1302 &total_size, &block_size);
1304 /* if read_capacity returns all F's this volume is >2TB in size */
1305 /* so we switch to 16-byte CDB's for all read/write ops */
1306 if (total_size == 0xFFFFFFFFULL) {
1307 cciss_read_capacity_16(ctlr, drv_index, 1,
1308 &total_size, &block_size);
1309 h->cciss_read = CCISS_READ_16;
1310 h->cciss_write = CCISS_WRITE_16;
1311 } else {
1312 h->cciss_read = CCISS_READ_10;
1313 h->cciss_write = CCISS_WRITE_10;
1315 geo_inq:
1316 cciss_geometry_inquiry(ctlr, drv_index, 1, total_size, block_size,
1317 inq_buff, &h->drv[drv_index]);
1319 ++h->num_luns;
1320 disk = h->gendisk[drv_index];
1321 set_capacity(disk, h->drv[drv_index].nr_blocks);
1323 /* if it's the controller it's already added */
1324 if (drv_index) {
1325 disk->queue = blk_init_queue(do_cciss_request, &h->lock);
1326 sprintf(disk->disk_name, "cciss/c%dd%d", ctlr, drv_index);
1327 disk->major = h->major;
1328 disk->first_minor = drv_index << NWD_SHIFT;
1329 disk->fops = &cciss_fops;
1330 disk->private_data = &h->drv[drv_index];
1332 /* Set up queue information */
1333 disk->queue->backing_dev_info.ra_pages = READ_AHEAD;
1334 blk_queue_bounce_limit(disk->queue, hba[ctlr]->pdev->dma_mask);
1336 /* This is a hardware imposed limit. */
1337 blk_queue_max_hw_segments(disk->queue, MAXSGENTRIES);
1339 /* This is a limit in the driver and could be eliminated. */
1340 blk_queue_max_phys_segments(disk->queue, MAXSGENTRIES);
1342 blk_queue_max_sectors(disk->queue, h->cciss_max_sectors);
1344 blk_queue_softirq_done(disk->queue, cciss_softirq_done);
1346 disk->queue->queuedata = hba[ctlr];
1348 blk_queue_hardsect_size(disk->queue,
1349 hba[ctlr]->drv[drv_index].block_size);
1351 h->drv[drv_index].queue = disk->queue;
1352 add_disk(disk);
1355 freeret:
1356 kfree(inq_buff);
1357 return;
1358 mem_msg:
1359 printk(KERN_ERR "cciss: out of memory\n");
1360 goto freeret;
1363 /* This function will find the first index of the controllers drive array
1364 * that has a -1 for the raid_level and will return that index. This is
1365 * where new drives will be added. If the index to be returned is greater
1366 * than the highest_lun index for the controller then highest_lun is set
1367 * to this new index. If there are no available indexes then -1 is returned.
1369 static int cciss_find_free_drive_index(int ctlr)
1371 int i;
1373 for (i = 0; i < CISS_MAX_LUN; i++) {
1374 if (hba[ctlr]->drv[i].raid_level == -1) {
1375 if (i > hba[ctlr]->highest_lun)
1376 hba[ctlr]->highest_lun = i;
1377 return i;
1380 return -1;
1383 /* This function will add and remove logical drives from the Logical
1384 * drive array of the controller and maintain persistency of ordering
1385 * so that mount points are preserved until the next reboot. This allows
1386 * for the removal of logical drives in the middle of the drive array
1387 * without a re-ordering of those drives.
1388 * INPUT
1389 * h = The controller to perform the operations on
1390 * del_disk = The disk to remove if specified. If the value given
1391 * is NULL then no disk is removed.
1393 static int rebuild_lun_table(ctlr_info_t *h, struct gendisk *del_disk)
1395 int ctlr = h->ctlr;
1396 int num_luns;
1397 ReportLunData_struct *ld_buff = NULL;
1398 drive_info_struct *drv = NULL;
1399 int return_code;
1400 int listlength = 0;
1401 int i;
1402 int drv_found;
1403 int drv_index = 0;
1404 __u32 lunid = 0;
1405 unsigned long flags;
1407 /* Set busy_configuring flag for this operation */
1408 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
1409 if (h->busy_configuring) {
1410 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
1411 return -EBUSY;
1413 h->busy_configuring = 1;
1415 /* if del_disk is NULL then we are being called to add a new disk
1416 * and update the logical drive table. If it is not NULL then
1417 * we will check if the disk is in use or not.
1419 if (del_disk != NULL) {
1420 drv = get_drv(del_disk);
1421 drv->busy_configuring = 1;
1422 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
1423 return_code = deregister_disk(del_disk, drv, 1);
1424 drv->busy_configuring = 0;
1425 h->busy_configuring = 0;
1426 return return_code;
1427 } else {
1428 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
1429 if (!capable(CAP_SYS_RAWIO))
1430 return -EPERM;
1432 ld_buff = kzalloc(sizeof(ReportLunData_struct), GFP_KERNEL);
1433 if (ld_buff == NULL)
1434 goto mem_msg;
1436 return_code = sendcmd_withirq(CISS_REPORT_LOG, ctlr, ld_buff,
1437 sizeof(ReportLunData_struct), 0,
1438 0, 0, TYPE_CMD);
1440 if (return_code == IO_OK) {
1441 listlength =
1442 be32_to_cpu(*(__be32 *) ld_buff->LUNListLength);
1443 } else { /* reading number of logical volumes failed */
1444 printk(KERN_WARNING "cciss: report logical volume"
1445 " command failed\n");
1446 listlength = 0;
1447 goto freeret;
1450 num_luns = listlength / 8; /* 8 bytes per entry */
1451 if (num_luns > CISS_MAX_LUN) {
1452 num_luns = CISS_MAX_LUN;
1453 printk(KERN_WARNING "cciss: more luns configured"
1454 " on controller than can be handled by"
1455 " this driver.\n");
1458 /* Compare controller drive array to drivers drive array.
1459 * Check for updates in the drive information and any new drives
1460 * on the controller.
1462 for (i = 0; i < num_luns; i++) {
1463 int j;
1465 drv_found = 0;
1467 lunid = (0xff &
1468 (unsigned int)(ld_buff->LUN[i][3])) << 24;
1469 lunid |= (0xff &
1470 (unsigned int)(ld_buff->LUN[i][2])) << 16;
1471 lunid |= (0xff &
1472 (unsigned int)(ld_buff->LUN[i][1])) << 8;
1473 lunid |= 0xff & (unsigned int)(ld_buff->LUN[i][0]);
1475 /* Find if the LUN is already in the drive array
1476 * of the controller. If so then update its info
1477 * if not is use. If it does not exist then find
1478 * the first free index and add it.
1480 for (j = 0; j <= h->highest_lun; j++) {
1481 if (h->drv[j].LunID == lunid) {
1482 drv_index = j;
1483 drv_found = 1;
1487 /* check if the drive was found already in the array */
1488 if (!drv_found) {
1489 drv_index = cciss_find_free_drive_index(ctlr);
1490 if (drv_index == -1)
1491 goto freeret;
1493 /*Check if the gendisk needs to be allocated */
1494 if (!h->gendisk[drv_index]){
1495 h->gendisk[drv_index] = alloc_disk(1 << NWD_SHIFT);
1496 if (!h->gendisk[drv_index]){
1497 printk(KERN_ERR "cciss: could not allocate new disk %d\n", drv_index);
1498 goto mem_msg;
1502 h->drv[drv_index].LunID = lunid;
1503 cciss_update_drive_info(ctlr, drv_index);
1504 } /* end for */
1505 } /* end else */
1507 freeret:
1508 kfree(ld_buff);
1509 h->busy_configuring = 0;
1510 /* We return -1 here to tell the ACU that we have registered/updated
1511 * all of the drives that we can and to keep it from calling us
1512 * additional times.
1514 return -1;
1515 mem_msg:
1516 printk(KERN_ERR "cciss: out of memory\n");
1517 goto freeret;
1520 /* This function will deregister the disk and it's queue from the
1521 * kernel. It must be called with the controller lock held and the
1522 * drv structures busy_configuring flag set. It's parameters are:
1524 * disk = This is the disk to be deregistered
1525 * drv = This is the drive_info_struct associated with the disk to be
1526 * deregistered. It contains information about the disk used
1527 * by the driver.
1528 * clear_all = This flag determines whether or not the disk information
1529 * is going to be completely cleared out and the highest_lun
1530 * reset. Sometimes we want to clear out information about
1531 * the disk in preparation for re-adding it. In this case
1532 * the highest_lun should be left unchanged and the LunID
1533 * should not be cleared.
1535 static int deregister_disk(struct gendisk *disk, drive_info_struct *drv,
1536 int clear_all)
1538 int i;
1539 ctlr_info_t *h = get_host(disk);
1541 if (!capable(CAP_SYS_RAWIO))
1542 return -EPERM;
1544 /* make sure logical volume is NOT is use */
1545 if (clear_all || (h->gendisk[0] == disk)) {
1546 if (drv->usage_count > 1)
1547 return -EBUSY;
1548 } else if (drv->usage_count > 0)
1549 return -EBUSY;
1551 /* invalidate the devices and deregister the disk. If it is disk
1552 * zero do not deregister it but just zero out it's values. This
1553 * allows us to delete disk zero but keep the controller registered.
1555 if (h->gendisk[0] != disk) {
1556 if (disk) {
1557 request_queue_t *q = disk->queue;
1558 if (disk->flags & GENHD_FL_UP)
1559 del_gendisk(disk);
1560 if (q) {
1561 blk_cleanup_queue(q);
1562 /* Set drv->queue to NULL so that we do not try
1563 * to call blk_start_queue on this queue in the
1564 * interrupt handler
1566 drv->queue = NULL;
1568 /* If clear_all is set then we are deleting the logical
1569 * drive, not just refreshing its info. For drives
1570 * other than disk 0 we will call put_disk. We do not
1571 * do this for disk 0 as we need it to be able to
1572 * configure the controller.
1574 if (clear_all){
1575 /* This isn't pretty, but we need to find the
1576 * disk in our array and NULL our the pointer.
1577 * This is so that we will call alloc_disk if
1578 * this index is used again later.
1580 for (i=0; i < CISS_MAX_LUN; i++){
1581 if(h->gendisk[i] == disk){
1582 h->gendisk[i] = NULL;
1583 break;
1586 put_disk(disk);
1589 } else {
1590 set_capacity(disk, 0);
1593 --h->num_luns;
1594 /* zero out the disk size info */
1595 drv->nr_blocks = 0;
1596 drv->block_size = 0;
1597 drv->heads = 0;
1598 drv->sectors = 0;
1599 drv->cylinders = 0;
1600 drv->raid_level = -1; /* This can be used as a flag variable to
1601 * indicate that this element of the drive
1602 * array is free.
1605 if (clear_all) {
1606 /* check to see if it was the last disk */
1607 if (drv == h->drv + h->highest_lun) {
1608 /* if so, find the new hightest lun */
1609 int i, newhighest = -1;
1610 for (i = 0; i < h->highest_lun; i++) {
1611 /* if the disk has size > 0, it is available */
1612 if (h->drv[i].heads)
1613 newhighest = i;
1615 h->highest_lun = newhighest;
1618 drv->LunID = 0;
1620 return 0;
1623 static int fill_cmd(CommandList_struct *c, __u8 cmd, int ctlr, void *buff, size_t size, unsigned int use_unit_num, /* 0: address the controller,
1624 1: address logical volume log_unit,
1625 2: periph device address is scsi3addr */
1626 unsigned int log_unit, __u8 page_code,
1627 unsigned char *scsi3addr, int cmd_type)
1629 ctlr_info_t *h = hba[ctlr];
1630 u64bit buff_dma_handle;
1631 int status = IO_OK;
1633 c->cmd_type = CMD_IOCTL_PEND;
1634 c->Header.ReplyQueue = 0;
1635 if (buff != NULL) {
1636 c->Header.SGList = 1;
1637 c->Header.SGTotal = 1;
1638 } else {
1639 c->Header.SGList = 0;
1640 c->Header.SGTotal = 0;
1642 c->Header.Tag.lower = c->busaddr;
1644 c->Request.Type.Type = cmd_type;
1645 if (cmd_type == TYPE_CMD) {
1646 switch (cmd) {
1647 case CISS_INQUIRY:
1648 /* If the logical unit number is 0 then, this is going
1649 to controller so It's a physical command
1650 mode = 0 target = 0. So we have nothing to write.
1651 otherwise, if use_unit_num == 1,
1652 mode = 1(volume set addressing) target = LUNID
1653 otherwise, if use_unit_num == 2,
1654 mode = 0(periph dev addr) target = scsi3addr */
1655 if (use_unit_num == 1) {
1656 c->Header.LUN.LogDev.VolId =
1657 h->drv[log_unit].LunID;
1658 c->Header.LUN.LogDev.Mode = 1;
1659 } else if (use_unit_num == 2) {
1660 memcpy(c->Header.LUN.LunAddrBytes, scsi3addr,
1662 c->Header.LUN.LogDev.Mode = 0;
1664 /* are we trying to read a vital product page */
1665 if (page_code != 0) {
1666 c->Request.CDB[1] = 0x01;
1667 c->Request.CDB[2] = page_code;
1669 c->Request.CDBLen = 6;
1670 c->Request.Type.Attribute = ATTR_SIMPLE;
1671 c->Request.Type.Direction = XFER_READ;
1672 c->Request.Timeout = 0;
1673 c->Request.CDB[0] = CISS_INQUIRY;
1674 c->Request.CDB[4] = size & 0xFF;
1675 break;
1676 case CISS_REPORT_LOG:
1677 case CISS_REPORT_PHYS:
1678 /* Talking to controller so It's a physical command
1679 mode = 00 target = 0. Nothing to write.
1681 c->Request.CDBLen = 12;
1682 c->Request.Type.Attribute = ATTR_SIMPLE;
1683 c->Request.Type.Direction = XFER_READ;
1684 c->Request.Timeout = 0;
1685 c->Request.CDB[0] = cmd;
1686 c->Request.CDB[6] = (size >> 24) & 0xFF; //MSB
1687 c->Request.CDB[7] = (size >> 16) & 0xFF;
1688 c->Request.CDB[8] = (size >> 8) & 0xFF;
1689 c->Request.CDB[9] = size & 0xFF;
1690 break;
1692 case CCISS_READ_CAPACITY:
1693 c->Header.LUN.LogDev.VolId = h->drv[log_unit].LunID;
1694 c->Header.LUN.LogDev.Mode = 1;
1695 c->Request.CDBLen = 10;
1696 c->Request.Type.Attribute = ATTR_SIMPLE;
1697 c->Request.Type.Direction = XFER_READ;
1698 c->Request.Timeout = 0;
1699 c->Request.CDB[0] = cmd;
1700 break;
1701 case CCISS_READ_CAPACITY_16:
1702 c->Header.LUN.LogDev.VolId = h->drv[log_unit].LunID;
1703 c->Header.LUN.LogDev.Mode = 1;
1704 c->Request.CDBLen = 16;
1705 c->Request.Type.Attribute = ATTR_SIMPLE;
1706 c->Request.Type.Direction = XFER_READ;
1707 c->Request.Timeout = 0;
1708 c->Request.CDB[0] = cmd;
1709 c->Request.CDB[1] = 0x10;
1710 c->Request.CDB[10] = (size >> 24) & 0xFF;
1711 c->Request.CDB[11] = (size >> 16) & 0xFF;
1712 c->Request.CDB[12] = (size >> 8) & 0xFF;
1713 c->Request.CDB[13] = size & 0xFF;
1714 c->Request.Timeout = 0;
1715 c->Request.CDB[0] = cmd;
1716 break;
1717 case CCISS_CACHE_FLUSH:
1718 c->Request.CDBLen = 12;
1719 c->Request.Type.Attribute = ATTR_SIMPLE;
1720 c->Request.Type.Direction = XFER_WRITE;
1721 c->Request.Timeout = 0;
1722 c->Request.CDB[0] = BMIC_WRITE;
1723 c->Request.CDB[6] = BMIC_CACHE_FLUSH;
1724 break;
1725 default:
1726 printk(KERN_WARNING
1727 "cciss%d: Unknown Command 0x%c\n", ctlr, cmd);
1728 return IO_ERROR;
1730 } else if (cmd_type == TYPE_MSG) {
1731 switch (cmd) {
1732 case 0: /* ABORT message */
1733 c->Request.CDBLen = 12;
1734 c->Request.Type.Attribute = ATTR_SIMPLE;
1735 c->Request.Type.Direction = XFER_WRITE;
1736 c->Request.Timeout = 0;
1737 c->Request.CDB[0] = cmd; /* abort */
1738 c->Request.CDB[1] = 0; /* abort a command */
1739 /* buff contains the tag of the command to abort */
1740 memcpy(&c->Request.CDB[4], buff, 8);
1741 break;
1742 case 1: /* RESET message */
1743 c->Request.CDBLen = 12;
1744 c->Request.Type.Attribute = ATTR_SIMPLE;
1745 c->Request.Type.Direction = XFER_WRITE;
1746 c->Request.Timeout = 0;
1747 memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
1748 c->Request.CDB[0] = cmd; /* reset */
1749 c->Request.CDB[1] = 0x04; /* reset a LUN */
1750 break;
1751 case 3: /* No-Op message */
1752 c->Request.CDBLen = 1;
1753 c->Request.Type.Attribute = ATTR_SIMPLE;
1754 c->Request.Type.Direction = XFER_WRITE;
1755 c->Request.Timeout = 0;
1756 c->Request.CDB[0] = cmd;
1757 break;
1758 default:
1759 printk(KERN_WARNING
1760 "cciss%d: unknown message type %d\n", ctlr, cmd);
1761 return IO_ERROR;
1763 } else {
1764 printk(KERN_WARNING
1765 "cciss%d: unknown command type %d\n", ctlr, cmd_type);
1766 return IO_ERROR;
1768 /* Fill in the scatter gather information */
1769 if (size > 0) {
1770 buff_dma_handle.val = (__u64) pci_map_single(h->pdev,
1771 buff, size,
1772 PCI_DMA_BIDIRECTIONAL);
1773 c->SG[0].Addr.lower = buff_dma_handle.val32.lower;
1774 c->SG[0].Addr.upper = buff_dma_handle.val32.upper;
1775 c->SG[0].Len = size;
1776 c->SG[0].Ext = 0; /* we are not chaining */
1778 return status;
1781 static int sendcmd_withirq(__u8 cmd,
1782 int ctlr,
1783 void *buff,
1784 size_t size,
1785 unsigned int use_unit_num,
1786 unsigned int log_unit, __u8 page_code, int cmd_type)
1788 ctlr_info_t *h = hba[ctlr];
1789 CommandList_struct *c;
1790 u64bit buff_dma_handle;
1791 unsigned long flags;
1792 int return_status;
1793 DECLARE_COMPLETION_ONSTACK(wait);
1795 if ((c = cmd_alloc(h, 0)) == NULL)
1796 return -ENOMEM;
1797 return_status = fill_cmd(c, cmd, ctlr, buff, size, use_unit_num,
1798 log_unit, page_code, NULL, cmd_type);
1799 if (return_status != IO_OK) {
1800 cmd_free(h, c, 0);
1801 return return_status;
1803 resend_cmd2:
1804 c->waiting = &wait;
1806 /* Put the request on the tail of the queue and send it */
1807 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
1808 addQ(&h->reqQ, c);
1809 h->Qdepth++;
1810 start_io(h);
1811 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
1813 wait_for_completion(&wait);
1815 if (c->err_info->CommandStatus != 0) { /* an error has occurred */
1816 switch (c->err_info->CommandStatus) {
1817 case CMD_TARGET_STATUS:
1818 printk(KERN_WARNING "cciss: cmd %p has "
1819 " completed with errors\n", c);
1820 if (c->err_info->ScsiStatus) {
1821 printk(KERN_WARNING "cciss: cmd %p "
1822 "has SCSI Status = %x\n",
1823 c, c->err_info->ScsiStatus);
1826 break;
1827 case CMD_DATA_UNDERRUN:
1828 case CMD_DATA_OVERRUN:
1829 /* expected for inquire and report lun commands */
1830 break;
1831 case CMD_INVALID:
1832 printk(KERN_WARNING "cciss: Cmd %p is "
1833 "reported invalid\n", c);
1834 return_status = IO_ERROR;
1835 break;
1836 case CMD_PROTOCOL_ERR:
1837 printk(KERN_WARNING "cciss: cmd %p has "
1838 "protocol error \n", c);
1839 return_status = IO_ERROR;
1840 break;
1841 case CMD_HARDWARE_ERR:
1842 printk(KERN_WARNING "cciss: cmd %p had "
1843 " hardware error\n", c);
1844 return_status = IO_ERROR;
1845 break;
1846 case CMD_CONNECTION_LOST:
1847 printk(KERN_WARNING "cciss: cmd %p had "
1848 "connection lost\n", c);
1849 return_status = IO_ERROR;
1850 break;
1851 case CMD_ABORTED:
1852 printk(KERN_WARNING "cciss: cmd %p was "
1853 "aborted\n", c);
1854 return_status = IO_ERROR;
1855 break;
1856 case CMD_ABORT_FAILED:
1857 printk(KERN_WARNING "cciss: cmd %p reports "
1858 "abort failed\n", c);
1859 return_status = IO_ERROR;
1860 break;
1861 case CMD_UNSOLICITED_ABORT:
1862 printk(KERN_WARNING
1863 "cciss%d: unsolicited abort %p\n", ctlr, c);
1864 if (c->retry_count < MAX_CMD_RETRIES) {
1865 printk(KERN_WARNING
1866 "cciss%d: retrying %p\n", ctlr, c);
1867 c->retry_count++;
1868 /* erase the old error information */
1869 memset(c->err_info, 0,
1870 sizeof(ErrorInfo_struct));
1871 return_status = IO_OK;
1872 INIT_COMPLETION(wait);
1873 goto resend_cmd2;
1875 return_status = IO_ERROR;
1876 break;
1877 default:
1878 printk(KERN_WARNING "cciss: cmd %p returned "
1879 "unknown status %x\n", c,
1880 c->err_info->CommandStatus);
1881 return_status = IO_ERROR;
1884 /* unlock the buffers from DMA */
1885 buff_dma_handle.val32.lower = c->SG[0].Addr.lower;
1886 buff_dma_handle.val32.upper = c->SG[0].Addr.upper;
1887 pci_unmap_single(h->pdev, (dma_addr_t) buff_dma_handle.val,
1888 c->SG[0].Len, PCI_DMA_BIDIRECTIONAL);
1889 cmd_free(h, c, 0);
1890 return return_status;
1893 static void cciss_geometry_inquiry(int ctlr, int logvol,
1894 int withirq, sector_t total_size,
1895 unsigned int block_size,
1896 InquiryData_struct *inq_buff,
1897 drive_info_struct *drv)
1899 int return_code;
1900 unsigned long t;
1902 memset(inq_buff, 0, sizeof(InquiryData_struct));
1903 if (withirq)
1904 return_code = sendcmd_withirq(CISS_INQUIRY, ctlr,
1905 inq_buff, sizeof(*inq_buff), 1,
1906 logvol, 0xC1, TYPE_CMD);
1907 else
1908 return_code = sendcmd(CISS_INQUIRY, ctlr, inq_buff,
1909 sizeof(*inq_buff), 1, logvol, 0xC1, NULL,
1910 TYPE_CMD);
1911 if (return_code == IO_OK) {
1912 if (inq_buff->data_byte[8] == 0xFF) {
1913 printk(KERN_WARNING
1914 "cciss: reading geometry failed, volume "
1915 "does not support reading geometry\n");
1916 drv->heads = 255;
1917 drv->sectors = 32; // Sectors per track
1918 drv->raid_level = RAID_UNKNOWN;
1919 } else {
1920 drv->heads = inq_buff->data_byte[6];
1921 drv->sectors = inq_buff->data_byte[7];
1922 drv->cylinders = (inq_buff->data_byte[4] & 0xff) << 8;
1923 drv->cylinders += inq_buff->data_byte[5];
1924 drv->raid_level = inq_buff->data_byte[8];
1926 drv->block_size = block_size;
1927 drv->nr_blocks = total_size + 1;
1928 t = drv->heads * drv->sectors;
1929 if (t > 1) {
1930 sector_t real_size = total_size + 1;
1931 unsigned long rem = sector_div(real_size, t);
1932 if (rem)
1933 real_size++;
1934 drv->cylinders = real_size;
1936 } else { /* Get geometry failed */
1937 printk(KERN_WARNING "cciss: reading geometry failed\n");
1939 printk(KERN_INFO " heads=%d, sectors=%d, cylinders=%d\n\n",
1940 drv->heads, drv->sectors, drv->cylinders);
1943 static void
1944 cciss_read_capacity(int ctlr, int logvol, int withirq, sector_t *total_size,
1945 unsigned int *block_size)
1947 ReadCapdata_struct *buf;
1948 int return_code;
1949 buf = kmalloc(sizeof(ReadCapdata_struct), GFP_KERNEL);
1950 if (buf == NULL) {
1951 printk(KERN_WARNING "cciss: out of memory\n");
1952 return;
1954 memset(buf, 0, sizeof(ReadCapdata_struct));
1955 if (withirq)
1956 return_code = sendcmd_withirq(CCISS_READ_CAPACITY,
1957 ctlr, buf, sizeof(ReadCapdata_struct),
1958 1, logvol, 0, TYPE_CMD);
1959 else
1960 return_code = sendcmd(CCISS_READ_CAPACITY,
1961 ctlr, buf, sizeof(ReadCapdata_struct),
1962 1, logvol, 0, NULL, TYPE_CMD);
1963 if (return_code == IO_OK) {
1964 *total_size = be32_to_cpu(*(__be32 *) buf->total_size);
1965 *block_size = be32_to_cpu(*(__be32 *) buf->block_size);
1966 } else { /* read capacity command failed */
1967 printk(KERN_WARNING "cciss: read capacity failed\n");
1968 *total_size = 0;
1969 *block_size = BLOCK_SIZE;
1971 if (*total_size != 0)
1972 printk(KERN_INFO " blocks= %llu block_size= %d\n",
1973 (unsigned long long)*total_size+1, *block_size);
1974 kfree(buf);
1975 return;
1978 static void
1979 cciss_read_capacity_16(int ctlr, int logvol, int withirq, sector_t *total_size, unsigned int *block_size)
1981 ReadCapdata_struct_16 *buf;
1982 int return_code;
1983 buf = kmalloc(sizeof(ReadCapdata_struct_16), GFP_KERNEL);
1984 if (buf == NULL) {
1985 printk(KERN_WARNING "cciss: out of memory\n");
1986 return;
1988 memset(buf, 0, sizeof(ReadCapdata_struct_16));
1989 if (withirq) {
1990 return_code = sendcmd_withirq(CCISS_READ_CAPACITY_16,
1991 ctlr, buf, sizeof(ReadCapdata_struct_16),
1992 1, logvol, 0, TYPE_CMD);
1994 else {
1995 return_code = sendcmd(CCISS_READ_CAPACITY_16,
1996 ctlr, buf, sizeof(ReadCapdata_struct_16),
1997 1, logvol, 0, NULL, TYPE_CMD);
1999 if (return_code == IO_OK) {
2000 *total_size = be64_to_cpu(*(__be64 *) buf->total_size);
2001 *block_size = be32_to_cpu(*(__be32 *) buf->block_size);
2002 } else { /* read capacity command failed */
2003 printk(KERN_WARNING "cciss: read capacity failed\n");
2004 *total_size = 0;
2005 *block_size = BLOCK_SIZE;
2007 printk(KERN_INFO " blocks= %llu block_size= %d\n",
2008 (unsigned long long)*total_size+1, *block_size);
2009 kfree(buf);
2010 return;
2013 static int cciss_revalidate(struct gendisk *disk)
2015 ctlr_info_t *h = get_host(disk);
2016 drive_info_struct *drv = get_drv(disk);
2017 int logvol;
2018 int FOUND = 0;
2019 unsigned int block_size;
2020 sector_t total_size;
2021 InquiryData_struct *inq_buff = NULL;
2023 for (logvol = 0; logvol < CISS_MAX_LUN; logvol++) {
2024 if (h->drv[logvol].LunID == drv->LunID) {
2025 FOUND = 1;
2026 break;
2030 if (!FOUND)
2031 return 1;
2033 inq_buff = kmalloc(sizeof(InquiryData_struct), GFP_KERNEL);
2034 if (inq_buff == NULL) {
2035 printk(KERN_WARNING "cciss: out of memory\n");
2036 return 1;
2038 if (h->cciss_read == CCISS_READ_10) {
2039 cciss_read_capacity(h->ctlr, logvol, 1,
2040 &total_size, &block_size);
2041 } else {
2042 cciss_read_capacity_16(h->ctlr, logvol, 1,
2043 &total_size, &block_size);
2045 cciss_geometry_inquiry(h->ctlr, logvol, 1, total_size, block_size,
2046 inq_buff, drv);
2048 blk_queue_hardsect_size(drv->queue, drv->block_size);
2049 set_capacity(disk, drv->nr_blocks);
2051 kfree(inq_buff);
2052 return 0;
2056 * Wait polling for a command to complete.
2057 * The memory mapped FIFO is polled for the completion.
2058 * Used only at init time, interrupts from the HBA are disabled.
2060 static unsigned long pollcomplete(int ctlr)
2062 unsigned long done;
2063 int i;
2065 /* Wait (up to 20 seconds) for a command to complete */
2067 for (i = 20 * HZ; i > 0; i--) {
2068 done = hba[ctlr]->access.command_completed(hba[ctlr]);
2069 if (done == FIFO_EMPTY)
2070 schedule_timeout_uninterruptible(1);
2071 else
2072 return done;
2074 /* Invalid address to tell caller we ran out of time */
2075 return 1;
2078 static int add_sendcmd_reject(__u8 cmd, int ctlr, unsigned long complete)
2080 /* We get in here if sendcmd() is polling for completions
2081 and gets some command back that it wasn't expecting --
2082 something other than that which it just sent down.
2083 Ordinarily, that shouldn't happen, but it can happen when
2084 the scsi tape stuff gets into error handling mode, and
2085 starts using sendcmd() to try to abort commands and
2086 reset tape drives. In that case, sendcmd may pick up
2087 completions of commands that were sent to logical drives
2088 through the block i/o system, or cciss ioctls completing, etc.
2089 In that case, we need to save those completions for later
2090 processing by the interrupt handler.
2093 #ifdef CONFIG_CISS_SCSI_TAPE
2094 struct sendcmd_reject_list *srl = &hba[ctlr]->scsi_rejects;
2096 /* If it's not the scsi tape stuff doing error handling, (abort */
2097 /* or reset) then we don't expect anything weird. */
2098 if (cmd != CCISS_RESET_MSG && cmd != CCISS_ABORT_MSG) {
2099 #endif
2100 printk(KERN_WARNING "cciss cciss%d: SendCmd "
2101 "Invalid command list address returned! (%lx)\n",
2102 ctlr, complete);
2103 /* not much we can do. */
2104 #ifdef CONFIG_CISS_SCSI_TAPE
2105 return 1;
2108 /* We've sent down an abort or reset, but something else
2109 has completed */
2110 if (srl->ncompletions >= (hba[ctlr]->nr_cmds + 2)) {
2111 /* Uh oh. No room to save it for later... */
2112 printk(KERN_WARNING "cciss%d: Sendcmd: Invalid command addr, "
2113 "reject list overflow, command lost!\n", ctlr);
2114 return 1;
2116 /* Save it for later */
2117 srl->complete[srl->ncompletions] = complete;
2118 srl->ncompletions++;
2119 #endif
2120 return 0;
2124 * Send a command to the controller, and wait for it to complete.
2125 * Only used at init time.
2127 static int sendcmd(__u8 cmd, int ctlr, void *buff, size_t size, unsigned int use_unit_num, /* 0: address the controller,
2128 1: address logical volume log_unit,
2129 2: periph device address is scsi3addr */
2130 unsigned int log_unit,
2131 __u8 page_code, unsigned char *scsi3addr, int cmd_type)
2133 CommandList_struct *c;
2134 int i;
2135 unsigned long complete;
2136 ctlr_info_t *info_p = hba[ctlr];
2137 u64bit buff_dma_handle;
2138 int status, done = 0;
2140 if ((c = cmd_alloc(info_p, 1)) == NULL) {
2141 printk(KERN_WARNING "cciss: unable to get memory");
2142 return IO_ERROR;
2144 status = fill_cmd(c, cmd, ctlr, buff, size, use_unit_num,
2145 log_unit, page_code, scsi3addr, cmd_type);
2146 if (status != IO_OK) {
2147 cmd_free(info_p, c, 1);
2148 return status;
2150 resend_cmd1:
2152 * Disable interrupt
2154 #ifdef CCISS_DEBUG
2155 printk(KERN_DEBUG "cciss: turning intr off\n");
2156 #endif /* CCISS_DEBUG */
2157 info_p->access.set_intr_mask(info_p, CCISS_INTR_OFF);
2159 /* Make sure there is room in the command FIFO */
2160 /* Actually it should be completely empty at this time */
2161 /* unless we are in here doing error handling for the scsi */
2162 /* tape side of the driver. */
2163 for (i = 200000; i > 0; i--) {
2164 /* if fifo isn't full go */
2165 if (!(info_p->access.fifo_full(info_p))) {
2167 break;
2169 udelay(10);
2170 printk(KERN_WARNING "cciss cciss%d: SendCmd FIFO full,"
2171 " waiting!\n", ctlr);
2174 * Send the cmd
2176 info_p->access.submit_command(info_p, c);
2177 done = 0;
2178 do {
2179 complete = pollcomplete(ctlr);
2181 #ifdef CCISS_DEBUG
2182 printk(KERN_DEBUG "cciss: command completed\n");
2183 #endif /* CCISS_DEBUG */
2185 if (complete == 1) {
2186 printk(KERN_WARNING
2187 "cciss cciss%d: SendCmd Timeout out, "
2188 "No command list address returned!\n", ctlr);
2189 status = IO_ERROR;
2190 done = 1;
2191 break;
2194 /* This will need to change for direct lookup completions */
2195 if ((complete & CISS_ERROR_BIT)
2196 && (complete & ~CISS_ERROR_BIT) == c->busaddr) {
2197 /* if data overrun or underun on Report command
2198 ignore it
2200 if (((c->Request.CDB[0] == CISS_REPORT_LOG) ||
2201 (c->Request.CDB[0] == CISS_REPORT_PHYS) ||
2202 (c->Request.CDB[0] == CISS_INQUIRY)) &&
2203 ((c->err_info->CommandStatus ==
2204 CMD_DATA_OVERRUN) ||
2205 (c->err_info->CommandStatus == CMD_DATA_UNDERRUN)
2206 )) {
2207 complete = c->busaddr;
2208 } else {
2209 if (c->err_info->CommandStatus ==
2210 CMD_UNSOLICITED_ABORT) {
2211 printk(KERN_WARNING "cciss%d: "
2212 "unsolicited abort %p\n",
2213 ctlr, c);
2214 if (c->retry_count < MAX_CMD_RETRIES) {
2215 printk(KERN_WARNING
2216 "cciss%d: retrying %p\n",
2217 ctlr, c);
2218 c->retry_count++;
2219 /* erase the old error */
2220 /* information */
2221 memset(c->err_info, 0,
2222 sizeof
2223 (ErrorInfo_struct));
2224 goto resend_cmd1;
2225 } else {
2226 printk(KERN_WARNING
2227 "cciss%d: retried %p too "
2228 "many times\n", ctlr, c);
2229 status = IO_ERROR;
2230 goto cleanup1;
2232 } else if (c->err_info->CommandStatus ==
2233 CMD_UNABORTABLE) {
2234 printk(KERN_WARNING
2235 "cciss%d: command could not be aborted.\n",
2236 ctlr);
2237 status = IO_ERROR;
2238 goto cleanup1;
2240 printk(KERN_WARNING "ciss ciss%d: sendcmd"
2241 " Error %x \n", ctlr,
2242 c->err_info->CommandStatus);
2243 printk(KERN_WARNING "ciss ciss%d: sendcmd"
2244 " offensive info\n"
2245 " size %x\n num %x value %x\n",
2246 ctlr,
2247 c->err_info->MoreErrInfo.Invalid_Cmd.
2248 offense_size,
2249 c->err_info->MoreErrInfo.Invalid_Cmd.
2250 offense_num,
2251 c->err_info->MoreErrInfo.Invalid_Cmd.
2252 offense_value);
2253 status = IO_ERROR;
2254 goto cleanup1;
2257 /* This will need changing for direct lookup completions */
2258 if (complete != c->busaddr) {
2259 if (add_sendcmd_reject(cmd, ctlr, complete) != 0) {
2260 BUG(); /* we are pretty much hosed if we get here. */
2262 continue;
2263 } else
2264 done = 1;
2265 } while (!done);
2267 cleanup1:
2268 /* unlock the data buffer from DMA */
2269 buff_dma_handle.val32.lower = c->SG[0].Addr.lower;
2270 buff_dma_handle.val32.upper = c->SG[0].Addr.upper;
2271 pci_unmap_single(info_p->pdev, (dma_addr_t) buff_dma_handle.val,
2272 c->SG[0].Len, PCI_DMA_BIDIRECTIONAL);
2273 #ifdef CONFIG_CISS_SCSI_TAPE
2274 /* if we saved some commands for later, process them now. */
2275 if (info_p->scsi_rejects.ncompletions > 0)
2276 do_cciss_intr(0, info_p);
2277 #endif
2278 cmd_free(info_p, c, 1);
2279 return status;
2283 * Map (physical) PCI mem into (virtual) kernel space
2285 static void __iomem *remap_pci_mem(ulong base, ulong size)
2287 ulong page_base = ((ulong) base) & PAGE_MASK;
2288 ulong page_offs = ((ulong) base) - page_base;
2289 void __iomem *page_remapped = ioremap(page_base, page_offs + size);
2291 return page_remapped ? (page_remapped + page_offs) : NULL;
2295 * Takes jobs of the Q and sends them to the hardware, then puts it on
2296 * the Q to wait for completion.
2298 static void start_io(ctlr_info_t *h)
2300 CommandList_struct *c;
2302 while ((c = h->reqQ) != NULL) {
2303 /* can't do anything if fifo is full */
2304 if ((h->access.fifo_full(h))) {
2305 printk(KERN_WARNING "cciss: fifo full\n");
2306 break;
2309 /* Get the first entry from the Request Q */
2310 removeQ(&(h->reqQ), c);
2311 h->Qdepth--;
2313 /* Tell the controller execute command */
2314 h->access.submit_command(h, c);
2316 /* Put job onto the completed Q */
2317 addQ(&(h->cmpQ), c);
2321 /* Assumes that CCISS_LOCK(h->ctlr) is held. */
2322 /* Zeros out the error record and then resends the command back */
2323 /* to the controller */
2324 static inline void resend_cciss_cmd(ctlr_info_t *h, CommandList_struct *c)
2326 /* erase the old error information */
2327 memset(c->err_info, 0, sizeof(ErrorInfo_struct));
2329 /* add it to software queue and then send it to the controller */
2330 addQ(&(h->reqQ), c);
2331 h->Qdepth++;
2332 if (h->Qdepth > h->maxQsinceinit)
2333 h->maxQsinceinit = h->Qdepth;
2335 start_io(h);
2338 /* checks the status of the job and calls complete buffers to mark all
2339 * buffers for the completed job. Note that this function does not need
2340 * to hold the hba/queue lock.
2342 static inline void complete_command(ctlr_info_t *h, CommandList_struct *cmd,
2343 int timeout)
2345 int status = 1;
2346 int retry_cmd = 0;
2348 if (timeout)
2349 status = 0;
2351 if (cmd->err_info->CommandStatus != 0) { /* an error has occurred */
2352 switch (cmd->err_info->CommandStatus) {
2353 unsigned char sense_key;
2354 case CMD_TARGET_STATUS:
2355 status = 0;
2357 if (cmd->err_info->ScsiStatus == 0x02) {
2358 printk(KERN_WARNING "cciss: cmd %p "
2359 "has CHECK CONDITION "
2360 " byte 2 = 0x%x\n", cmd,
2361 cmd->err_info->SenseInfo[2]
2363 /* check the sense key */
2364 sense_key = 0xf & cmd->err_info->SenseInfo[2];
2365 /* no status or recovered error */
2366 if ((sense_key == 0x0) || (sense_key == 0x1)) {
2367 status = 1;
2369 } else {
2370 printk(KERN_WARNING "cciss: cmd %p "
2371 "has SCSI Status 0x%x\n",
2372 cmd, cmd->err_info->ScsiStatus);
2374 break;
2375 case CMD_DATA_UNDERRUN:
2376 printk(KERN_WARNING "cciss: cmd %p has"
2377 " completed with data underrun "
2378 "reported\n", cmd);
2379 break;
2380 case CMD_DATA_OVERRUN:
2381 printk(KERN_WARNING "cciss: cmd %p has"
2382 " completed with data overrun "
2383 "reported\n", cmd);
2384 break;
2385 case CMD_INVALID:
2386 printk(KERN_WARNING "cciss: cmd %p is "
2387 "reported invalid\n", cmd);
2388 status = 0;
2389 break;
2390 case CMD_PROTOCOL_ERR:
2391 printk(KERN_WARNING "cciss: cmd %p has "
2392 "protocol error \n", cmd);
2393 status = 0;
2394 break;
2395 case CMD_HARDWARE_ERR:
2396 printk(KERN_WARNING "cciss: cmd %p had "
2397 " hardware error\n", cmd);
2398 status = 0;
2399 break;
2400 case CMD_CONNECTION_LOST:
2401 printk(KERN_WARNING "cciss: cmd %p had "
2402 "connection lost\n", cmd);
2403 status = 0;
2404 break;
2405 case CMD_ABORTED:
2406 printk(KERN_WARNING "cciss: cmd %p was "
2407 "aborted\n", cmd);
2408 status = 0;
2409 break;
2410 case CMD_ABORT_FAILED:
2411 printk(KERN_WARNING "cciss: cmd %p reports "
2412 "abort failed\n", cmd);
2413 status = 0;
2414 break;
2415 case CMD_UNSOLICITED_ABORT:
2416 printk(KERN_WARNING "cciss%d: unsolicited "
2417 "abort %p\n", h->ctlr, cmd);
2418 if (cmd->retry_count < MAX_CMD_RETRIES) {
2419 retry_cmd = 1;
2420 printk(KERN_WARNING
2421 "cciss%d: retrying %p\n", h->ctlr, cmd);
2422 cmd->retry_count++;
2423 } else
2424 printk(KERN_WARNING
2425 "cciss%d: %p retried too "
2426 "many times\n", h->ctlr, cmd);
2427 status = 0;
2428 break;
2429 case CMD_TIMEOUT:
2430 printk(KERN_WARNING "cciss: cmd %p timedout\n", cmd);
2431 status = 0;
2432 break;
2433 default:
2434 printk(KERN_WARNING "cciss: cmd %p returned "
2435 "unknown status %x\n", cmd,
2436 cmd->err_info->CommandStatus);
2437 status = 0;
2440 /* We need to return this command */
2441 if (retry_cmd) {
2442 resend_cciss_cmd(h, cmd);
2443 return;
2446 cmd->rq->completion_data = cmd;
2447 cmd->rq->errors = status;
2448 blk_add_trace_rq(cmd->rq->q, cmd->rq, BLK_TA_COMPLETE);
2449 blk_complete_request(cmd->rq);
2453 * Get a request and submit it to the controller.
2455 static void do_cciss_request(request_queue_t *q)
2457 ctlr_info_t *h = q->queuedata;
2458 CommandList_struct *c;
2459 sector_t start_blk;
2460 int seg;
2461 struct request *creq;
2462 u64bit temp64;
2463 struct scatterlist tmp_sg[MAXSGENTRIES];
2464 drive_info_struct *drv;
2465 int i, dir;
2467 /* We call start_io here in case there is a command waiting on the
2468 * queue that has not been sent.
2470 if (blk_queue_plugged(q))
2471 goto startio;
2473 queue:
2474 creq = elv_next_request(q);
2475 if (!creq)
2476 goto startio;
2478 BUG_ON(creq->nr_phys_segments > MAXSGENTRIES);
2480 if ((c = cmd_alloc(h, 1)) == NULL)
2481 goto full;
2483 blkdev_dequeue_request(creq);
2485 spin_unlock_irq(q->queue_lock);
2487 c->cmd_type = CMD_RWREQ;
2488 c->rq = creq;
2490 /* fill in the request */
2491 drv = creq->rq_disk->private_data;
2492 c->Header.ReplyQueue = 0; // unused in simple mode
2493 /* got command from pool, so use the command block index instead */
2494 /* for direct lookups. */
2495 /* The first 2 bits are reserved for controller error reporting. */
2496 c->Header.Tag.lower = (c->cmdindex << 3);
2497 c->Header.Tag.lower |= 0x04; /* flag for direct lookup. */
2498 c->Header.LUN.LogDev.VolId = drv->LunID;
2499 c->Header.LUN.LogDev.Mode = 1;
2500 c->Request.CDBLen = 10; // 12 byte commands not in FW yet;
2501 c->Request.Type.Type = TYPE_CMD; // It is a command.
2502 c->Request.Type.Attribute = ATTR_SIMPLE;
2503 c->Request.Type.Direction =
2504 (rq_data_dir(creq) == READ) ? XFER_READ : XFER_WRITE;
2505 c->Request.Timeout = 0; // Don't time out
2506 c->Request.CDB[0] =
2507 (rq_data_dir(creq) == READ) ? h->cciss_read : h->cciss_write;
2508 start_blk = creq->sector;
2509 #ifdef CCISS_DEBUG
2510 printk(KERN_DEBUG "ciss: sector =%d nr_sectors=%d\n", (int)creq->sector,
2511 (int)creq->nr_sectors);
2512 #endif /* CCISS_DEBUG */
2514 seg = blk_rq_map_sg(q, creq, tmp_sg);
2516 /* get the DMA records for the setup */
2517 if (c->Request.Type.Direction == XFER_READ)
2518 dir = PCI_DMA_FROMDEVICE;
2519 else
2520 dir = PCI_DMA_TODEVICE;
2522 for (i = 0; i < seg; i++) {
2523 c->SG[i].Len = tmp_sg[i].length;
2524 temp64.val = (__u64) pci_map_page(h->pdev, tmp_sg[i].page,
2525 tmp_sg[i].offset,
2526 tmp_sg[i].length, dir);
2527 c->SG[i].Addr.lower = temp64.val32.lower;
2528 c->SG[i].Addr.upper = temp64.val32.upper;
2529 c->SG[i].Ext = 0; // we are not chaining
2531 /* track how many SG entries we are using */
2532 if (seg > h->maxSG)
2533 h->maxSG = seg;
2535 #ifdef CCISS_DEBUG
2536 printk(KERN_DEBUG "cciss: Submitting %d sectors in %d segments\n",
2537 creq->nr_sectors, seg);
2538 #endif /* CCISS_DEBUG */
2540 c->Header.SGList = c->Header.SGTotal = seg;
2541 if(h->cciss_read == CCISS_READ_10) {
2542 c->Request.CDB[1] = 0;
2543 c->Request.CDB[2] = (start_blk >> 24) & 0xff; //MSB
2544 c->Request.CDB[3] = (start_blk >> 16) & 0xff;
2545 c->Request.CDB[4] = (start_blk >> 8) & 0xff;
2546 c->Request.CDB[5] = start_blk & 0xff;
2547 c->Request.CDB[6] = 0; // (sect >> 24) & 0xff; MSB
2548 c->Request.CDB[7] = (creq->nr_sectors >> 8) & 0xff;
2549 c->Request.CDB[8] = creq->nr_sectors & 0xff;
2550 c->Request.CDB[9] = c->Request.CDB[11] = c->Request.CDB[12] = 0;
2551 } else {
2552 c->Request.CDBLen = 16;
2553 c->Request.CDB[1]= 0;
2554 c->Request.CDB[2]= (start_blk >> 56) & 0xff; //MSB
2555 c->Request.CDB[3]= (start_blk >> 48) & 0xff;
2556 c->Request.CDB[4]= (start_blk >> 40) & 0xff;
2557 c->Request.CDB[5]= (start_blk >> 32) & 0xff;
2558 c->Request.CDB[6]= (start_blk >> 24) & 0xff;
2559 c->Request.CDB[7]= (start_blk >> 16) & 0xff;
2560 c->Request.CDB[8]= (start_blk >> 8) & 0xff;
2561 c->Request.CDB[9]= start_blk & 0xff;
2562 c->Request.CDB[10]= (creq->nr_sectors >> 24) & 0xff;
2563 c->Request.CDB[11]= (creq->nr_sectors >> 16) & 0xff;
2564 c->Request.CDB[12]= (creq->nr_sectors >> 8) & 0xff;
2565 c->Request.CDB[13]= creq->nr_sectors & 0xff;
2566 c->Request.CDB[14] = c->Request.CDB[15] = 0;
2569 spin_lock_irq(q->queue_lock);
2571 addQ(&(h->reqQ), c);
2572 h->Qdepth++;
2573 if (h->Qdepth > h->maxQsinceinit)
2574 h->maxQsinceinit = h->Qdepth;
2576 goto queue;
2577 full:
2578 blk_stop_queue(q);
2579 startio:
2580 /* We will already have the driver lock here so not need
2581 * to lock it.
2583 start_io(h);
2586 static inline unsigned long get_next_completion(ctlr_info_t *h)
2588 #ifdef CONFIG_CISS_SCSI_TAPE
2589 /* Any rejects from sendcmd() lying around? Process them first */
2590 if (h->scsi_rejects.ncompletions == 0)
2591 return h->access.command_completed(h);
2592 else {
2593 struct sendcmd_reject_list *srl;
2594 int n;
2595 srl = &h->scsi_rejects;
2596 n = --srl->ncompletions;
2597 /* printk("cciss%d: processing saved reject\n", h->ctlr); */
2598 printk("p");
2599 return srl->complete[n];
2601 #else
2602 return h->access.command_completed(h);
2603 #endif
2606 static inline int interrupt_pending(ctlr_info_t *h)
2608 #ifdef CONFIG_CISS_SCSI_TAPE
2609 return (h->access.intr_pending(h)
2610 || (h->scsi_rejects.ncompletions > 0));
2611 #else
2612 return h->access.intr_pending(h);
2613 #endif
2616 static inline long interrupt_not_for_us(ctlr_info_t *h)
2618 #ifdef CONFIG_CISS_SCSI_TAPE
2619 return (((h->access.intr_pending(h) == 0) ||
2620 (h->interrupts_enabled == 0))
2621 && (h->scsi_rejects.ncompletions == 0));
2622 #else
2623 return (((h->access.intr_pending(h) == 0) ||
2624 (h->interrupts_enabled == 0)));
2625 #endif
2628 static irqreturn_t do_cciss_intr(int irq, void *dev_id)
2630 ctlr_info_t *h = dev_id;
2631 CommandList_struct *c;
2632 unsigned long flags;
2633 __u32 a, a1, a2;
2635 if (interrupt_not_for_us(h))
2636 return IRQ_NONE;
2638 * If there are completed commands in the completion queue,
2639 * we had better do something about it.
2641 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
2642 while (interrupt_pending(h)) {
2643 while ((a = get_next_completion(h)) != FIFO_EMPTY) {
2644 a1 = a;
2645 if ((a & 0x04)) {
2646 a2 = (a >> 3);
2647 if (a2 >= h->nr_cmds) {
2648 printk(KERN_WARNING
2649 "cciss: controller cciss%d failed, stopping.\n",
2650 h->ctlr);
2651 fail_all_cmds(h->ctlr);
2652 return IRQ_HANDLED;
2655 c = h->cmd_pool + a2;
2656 a = c->busaddr;
2658 } else {
2659 a &= ~3;
2660 if ((c = h->cmpQ) == NULL) {
2661 printk(KERN_WARNING
2662 "cciss: Completion of %08x ignored\n",
2663 a1);
2664 continue;
2666 while (c->busaddr != a) {
2667 c = c->next;
2668 if (c == h->cmpQ)
2669 break;
2673 * If we've found the command, take it off the
2674 * completion Q and free it
2676 if (c->busaddr == a) {
2677 removeQ(&h->cmpQ, c);
2678 if (c->cmd_type == CMD_RWREQ) {
2679 complete_command(h, c, 0);
2680 } else if (c->cmd_type == CMD_IOCTL_PEND) {
2681 complete(c->waiting);
2683 # ifdef CONFIG_CISS_SCSI_TAPE
2684 else if (c->cmd_type == CMD_SCSI)
2685 complete_scsi_command(c, 0, a1);
2686 # endif
2687 continue;
2692 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
2693 return IRQ_HANDLED;
2697 * We cannot read the structure directly, for portability we must use
2698 * the io functions.
2699 * This is for debug only.
2701 #ifdef CCISS_DEBUG
2702 static void print_cfg_table(CfgTable_struct *tb)
2704 int i;
2705 char temp_name[17];
2707 printk("Controller Configuration information\n");
2708 printk("------------------------------------\n");
2709 for (i = 0; i < 4; i++)
2710 temp_name[i] = readb(&(tb->Signature[i]));
2711 temp_name[4] = '\0';
2712 printk(" Signature = %s\n", temp_name);
2713 printk(" Spec Number = %d\n", readl(&(tb->SpecValence)));
2714 printk(" Transport methods supported = 0x%x\n",
2715 readl(&(tb->TransportSupport)));
2716 printk(" Transport methods active = 0x%x\n",
2717 readl(&(tb->TransportActive)));
2718 printk(" Requested transport Method = 0x%x\n",
2719 readl(&(tb->HostWrite.TransportRequest)));
2720 printk(" Coalesce Interrupt Delay = 0x%x\n",
2721 readl(&(tb->HostWrite.CoalIntDelay)));
2722 printk(" Coalesce Interrupt Count = 0x%x\n",
2723 readl(&(tb->HostWrite.CoalIntCount)));
2724 printk(" Max outstanding commands = 0x%d\n",
2725 readl(&(tb->CmdsOutMax)));
2726 printk(" Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
2727 for (i = 0; i < 16; i++)
2728 temp_name[i] = readb(&(tb->ServerName[i]));
2729 temp_name[16] = '\0';
2730 printk(" Server Name = %s\n", temp_name);
2731 printk(" Heartbeat Counter = 0x%x\n\n\n", readl(&(tb->HeartBeat)));
2733 #endif /* CCISS_DEBUG */
2735 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
2737 int i, offset, mem_type, bar_type;
2738 if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
2739 return 0;
2740 offset = 0;
2741 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
2742 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
2743 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
2744 offset += 4;
2745 else {
2746 mem_type = pci_resource_flags(pdev, i) &
2747 PCI_BASE_ADDRESS_MEM_TYPE_MASK;
2748 switch (mem_type) {
2749 case PCI_BASE_ADDRESS_MEM_TYPE_32:
2750 case PCI_BASE_ADDRESS_MEM_TYPE_1M:
2751 offset += 4; /* 32 bit */
2752 break;
2753 case PCI_BASE_ADDRESS_MEM_TYPE_64:
2754 offset += 8;
2755 break;
2756 default: /* reserved in PCI 2.2 */
2757 printk(KERN_WARNING
2758 "Base address is invalid\n");
2759 return -1;
2760 break;
2763 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
2764 return i + 1;
2766 return -1;
2769 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
2770 * controllers that are capable. If not, we use IO-APIC mode.
2773 static void __devinit cciss_interrupt_mode(ctlr_info_t *c,
2774 struct pci_dev *pdev, __u32 board_id)
2776 #ifdef CONFIG_PCI_MSI
2777 int err;
2778 struct msix_entry cciss_msix_entries[4] = { {0, 0}, {0, 1},
2779 {0, 2}, {0, 3}
2782 /* Some boards advertise MSI but don't really support it */
2783 if ((board_id == 0x40700E11) ||
2784 (board_id == 0x40800E11) ||
2785 (board_id == 0x40820E11) || (board_id == 0x40830E11))
2786 goto default_int_mode;
2788 if (pci_find_capability(pdev, PCI_CAP_ID_MSIX)) {
2789 err = pci_enable_msix(pdev, cciss_msix_entries, 4);
2790 if (!err) {
2791 c->intr[0] = cciss_msix_entries[0].vector;
2792 c->intr[1] = cciss_msix_entries[1].vector;
2793 c->intr[2] = cciss_msix_entries[2].vector;
2794 c->intr[3] = cciss_msix_entries[3].vector;
2795 c->msix_vector = 1;
2796 return;
2798 if (err > 0) {
2799 printk(KERN_WARNING "cciss: only %d MSI-X vectors "
2800 "available\n", err);
2801 goto default_int_mode;
2802 } else {
2803 printk(KERN_WARNING "cciss: MSI-X init failed %d\n",
2804 err);
2805 goto default_int_mode;
2808 if (pci_find_capability(pdev, PCI_CAP_ID_MSI)) {
2809 if (!pci_enable_msi(pdev)) {
2810 c->msi_vector = 1;
2811 } else {
2812 printk(KERN_WARNING "cciss: MSI init failed\n");
2815 default_int_mode:
2816 #endif /* CONFIG_PCI_MSI */
2817 /* if we get here we're going to use the default interrupt mode */
2818 c->intr[SIMPLE_MODE_INT] = pdev->irq;
2819 return;
2822 static int cciss_pci_init(ctlr_info_t *c, struct pci_dev *pdev)
2824 ushort subsystem_vendor_id, subsystem_device_id, command;
2825 __u32 board_id, scratchpad = 0;
2826 __u64 cfg_offset;
2827 __u32 cfg_base_addr;
2828 __u64 cfg_base_addr_index;
2829 int i, err;
2831 /* check to see if controller has been disabled */
2832 /* BEFORE trying to enable it */
2833 (void)pci_read_config_word(pdev, PCI_COMMAND, &command);
2834 if (!(command & 0x02)) {
2835 printk(KERN_WARNING
2836 "cciss: controller appears to be disabled\n");
2837 return -ENODEV;
2840 err = pci_enable_device(pdev);
2841 if (err) {
2842 printk(KERN_ERR "cciss: Unable to Enable PCI device\n");
2843 return err;
2846 err = pci_request_regions(pdev, "cciss");
2847 if (err) {
2848 printk(KERN_ERR "cciss: Cannot obtain PCI resources, "
2849 "aborting\n");
2850 return err;
2853 subsystem_vendor_id = pdev->subsystem_vendor;
2854 subsystem_device_id = pdev->subsystem_device;
2855 board_id = (((__u32) (subsystem_device_id << 16) & 0xffff0000) |
2856 subsystem_vendor_id);
2858 #ifdef CCISS_DEBUG
2859 printk("command = %x\n", command);
2860 printk("irq = %x\n", pdev->irq);
2861 printk("board_id = %x\n", board_id);
2862 #endif /* CCISS_DEBUG */
2864 /* If the kernel supports MSI/MSI-X we will try to enable that functionality,
2865 * else we use the IO-APIC interrupt assigned to us by system ROM.
2867 cciss_interrupt_mode(c, pdev, board_id);
2870 * Memory base addr is first addr , the second points to the config
2871 * table
2874 c->paddr = pci_resource_start(pdev, 0); /* addressing mode bits already removed */
2875 #ifdef CCISS_DEBUG
2876 printk("address 0 = %x\n", c->paddr);
2877 #endif /* CCISS_DEBUG */
2878 c->vaddr = remap_pci_mem(c->paddr, 0x250);
2880 /* Wait for the board to become ready. (PCI hotplug needs this.)
2881 * We poll for up to 120 secs, once per 100ms. */
2882 for (i = 0; i < 1200; i++) {
2883 scratchpad = readl(c->vaddr + SA5_SCRATCHPAD_OFFSET);
2884 if (scratchpad == CCISS_FIRMWARE_READY)
2885 break;
2886 set_current_state(TASK_INTERRUPTIBLE);
2887 schedule_timeout(HZ / 10); /* wait 100ms */
2889 if (scratchpad != CCISS_FIRMWARE_READY) {
2890 printk(KERN_WARNING "cciss: Board not ready. Timed out.\n");
2891 err = -ENODEV;
2892 goto err_out_free_res;
2895 /* get the address index number */
2896 cfg_base_addr = readl(c->vaddr + SA5_CTCFG_OFFSET);
2897 cfg_base_addr &= (__u32) 0x0000ffff;
2898 #ifdef CCISS_DEBUG
2899 printk("cfg base address = %x\n", cfg_base_addr);
2900 #endif /* CCISS_DEBUG */
2901 cfg_base_addr_index = find_PCI_BAR_index(pdev, cfg_base_addr);
2902 #ifdef CCISS_DEBUG
2903 printk("cfg base address index = %x\n", cfg_base_addr_index);
2904 #endif /* CCISS_DEBUG */
2905 if (cfg_base_addr_index == -1) {
2906 printk(KERN_WARNING "cciss: Cannot find cfg_base_addr_index\n");
2907 err = -ENODEV;
2908 goto err_out_free_res;
2911 cfg_offset = readl(c->vaddr + SA5_CTMEM_OFFSET);
2912 #ifdef CCISS_DEBUG
2913 printk("cfg offset = %x\n", cfg_offset);
2914 #endif /* CCISS_DEBUG */
2915 c->cfgtable = remap_pci_mem(pci_resource_start(pdev,
2916 cfg_base_addr_index) +
2917 cfg_offset, sizeof(CfgTable_struct));
2918 c->board_id = board_id;
2920 #ifdef CCISS_DEBUG
2921 print_cfg_table(c->cfgtable);
2922 #endif /* CCISS_DEBUG */
2924 for (i = 0; i < ARRAY_SIZE(products); i++) {
2925 if (board_id == products[i].board_id) {
2926 c->product_name = products[i].product_name;
2927 c->access = *(products[i].access);
2928 c->nr_cmds = products[i].nr_cmds;
2929 break;
2932 if ((readb(&c->cfgtable->Signature[0]) != 'C') ||
2933 (readb(&c->cfgtable->Signature[1]) != 'I') ||
2934 (readb(&c->cfgtable->Signature[2]) != 'S') ||
2935 (readb(&c->cfgtable->Signature[3]) != 'S')) {
2936 printk("Does not appear to be a valid CISS config table\n");
2937 err = -ENODEV;
2938 goto err_out_free_res;
2940 /* We didn't find the controller in our list. We know the
2941 * signature is valid. If it's an HP device let's try to
2942 * bind to the device and fire it up. Otherwise we bail.
2944 if (i == ARRAY_SIZE(products)) {
2945 if (subsystem_vendor_id == PCI_VENDOR_ID_HP) {
2946 c->product_name = products[i-1].product_name;
2947 c->access = *(products[i-1].access);
2948 c->nr_cmds = products[i-1].nr_cmds;
2949 printk(KERN_WARNING "cciss: This is an unknown "
2950 "Smart Array controller.\n"
2951 "cciss: Please update to the latest driver "
2952 "available from www.hp.com.\n");
2953 } else {
2954 printk(KERN_WARNING "cciss: Sorry, I don't know how"
2955 " to access the Smart Array controller %08lx\n"
2956 , (unsigned long)board_id);
2957 err = -ENODEV;
2958 goto err_out_free_res;
2961 #ifdef CONFIG_X86
2963 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
2964 __u32 prefetch;
2965 prefetch = readl(&(c->cfgtable->SCSI_Prefetch));
2966 prefetch |= 0x100;
2967 writel(prefetch, &(c->cfgtable->SCSI_Prefetch));
2969 #endif
2971 /* Disabling DMA prefetch for the P600
2972 * An ASIC bug may result in a prefetch beyond
2973 * physical memory.
2975 if(board_id == 0x3225103C) {
2976 __u32 dma_prefetch;
2977 dma_prefetch = readl(c->vaddr + I2O_DMA1_CFG);
2978 dma_prefetch |= 0x8000;
2979 writel(dma_prefetch, c->vaddr + I2O_DMA1_CFG);
2982 #ifdef CCISS_DEBUG
2983 printk("Trying to put board into Simple mode\n");
2984 #endif /* CCISS_DEBUG */
2985 c->max_commands = readl(&(c->cfgtable->CmdsOutMax));
2986 /* Update the field, and then ring the doorbell */
2987 writel(CFGTBL_Trans_Simple, &(c->cfgtable->HostWrite.TransportRequest));
2988 writel(CFGTBL_ChangeReq, c->vaddr + SA5_DOORBELL);
2990 /* under certain very rare conditions, this can take awhile.
2991 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
2992 * as we enter this code.) */
2993 for (i = 0; i < MAX_CONFIG_WAIT; i++) {
2994 if (!(readl(c->vaddr + SA5_DOORBELL) & CFGTBL_ChangeReq))
2995 break;
2996 /* delay and try again */
2997 set_current_state(TASK_INTERRUPTIBLE);
2998 schedule_timeout(10);
3001 #ifdef CCISS_DEBUG
3002 printk(KERN_DEBUG "I counter got to %d %x\n", i,
3003 readl(c->vaddr + SA5_DOORBELL));
3004 #endif /* CCISS_DEBUG */
3005 #ifdef CCISS_DEBUG
3006 print_cfg_table(c->cfgtable);
3007 #endif /* CCISS_DEBUG */
3009 if (!(readl(&(c->cfgtable->TransportActive)) & CFGTBL_Trans_Simple)) {
3010 printk(KERN_WARNING "cciss: unable to get board into"
3011 " simple mode\n");
3012 err = -ENODEV;
3013 goto err_out_free_res;
3015 return 0;
3017 err_out_free_res:
3019 * Deliberately omit pci_disable_device(): it does something nasty to
3020 * Smart Array controllers that pci_enable_device does not undo
3022 pci_release_regions(pdev);
3023 return err;
3027 * Gets information about the local volumes attached to the controller.
3029 static void cciss_getgeometry(int cntl_num)
3031 ReportLunData_struct *ld_buff;
3032 InquiryData_struct *inq_buff;
3033 int return_code;
3034 int i;
3035 int listlength = 0;
3036 __u32 lunid = 0;
3037 int block_size;
3038 sector_t total_size;
3040 ld_buff = kzalloc(sizeof(ReportLunData_struct), GFP_KERNEL);
3041 if (ld_buff == NULL) {
3042 printk(KERN_ERR "cciss: out of memory\n");
3043 return;
3045 inq_buff = kmalloc(sizeof(InquiryData_struct), GFP_KERNEL);
3046 if (inq_buff == NULL) {
3047 printk(KERN_ERR "cciss: out of memory\n");
3048 kfree(ld_buff);
3049 return;
3051 /* Get the firmware version */
3052 return_code = sendcmd(CISS_INQUIRY, cntl_num, inq_buff,
3053 sizeof(InquiryData_struct), 0, 0, 0, NULL,
3054 TYPE_CMD);
3055 if (return_code == IO_OK) {
3056 hba[cntl_num]->firm_ver[0] = inq_buff->data_byte[32];
3057 hba[cntl_num]->firm_ver[1] = inq_buff->data_byte[33];
3058 hba[cntl_num]->firm_ver[2] = inq_buff->data_byte[34];
3059 hba[cntl_num]->firm_ver[3] = inq_buff->data_byte[35];
3060 } else { /* send command failed */
3062 printk(KERN_WARNING "cciss: unable to determine firmware"
3063 " version of controller\n");
3065 /* Get the number of logical volumes */
3066 return_code = sendcmd(CISS_REPORT_LOG, cntl_num, ld_buff,
3067 sizeof(ReportLunData_struct), 0, 0, 0, NULL,
3068 TYPE_CMD);
3070 if (return_code == IO_OK) {
3071 #ifdef CCISS_DEBUG
3072 printk("LUN Data\n--------------------------\n");
3073 #endif /* CCISS_DEBUG */
3075 listlength |=
3076 (0xff & (unsigned int)(ld_buff->LUNListLength[0])) << 24;
3077 listlength |=
3078 (0xff & (unsigned int)(ld_buff->LUNListLength[1])) << 16;
3079 listlength |=
3080 (0xff & (unsigned int)(ld_buff->LUNListLength[2])) << 8;
3081 listlength |= 0xff & (unsigned int)(ld_buff->LUNListLength[3]);
3082 } else { /* reading number of logical volumes failed */
3084 printk(KERN_WARNING "cciss: report logical volume"
3085 " command failed\n");
3086 listlength = 0;
3088 hba[cntl_num]->num_luns = listlength / 8; // 8 bytes pre entry
3089 if (hba[cntl_num]->num_luns > CISS_MAX_LUN) {
3090 printk(KERN_ERR
3091 "ciss: only %d number of logical volumes supported\n",
3092 CISS_MAX_LUN);
3093 hba[cntl_num]->num_luns = CISS_MAX_LUN;
3095 #ifdef CCISS_DEBUG
3096 printk(KERN_DEBUG "Length = %x %x %x %x = %d\n",
3097 ld_buff->LUNListLength[0], ld_buff->LUNListLength[1],
3098 ld_buff->LUNListLength[2], ld_buff->LUNListLength[3],
3099 hba[cntl_num]->num_luns);
3100 #endif /* CCISS_DEBUG */
3102 hba[cntl_num]->highest_lun = hba[cntl_num]->num_luns - 1;
3103 for (i = 0; i < CISS_MAX_LUN; i++) {
3104 if (i < hba[cntl_num]->num_luns) {
3105 lunid = (0xff & (unsigned int)(ld_buff->LUN[i][3]))
3106 << 24;
3107 lunid |= (0xff & (unsigned int)(ld_buff->LUN[i][2]))
3108 << 16;
3109 lunid |= (0xff & (unsigned int)(ld_buff->LUN[i][1]))
3110 << 8;
3111 lunid |= 0xff & (unsigned int)(ld_buff->LUN[i][0]);
3113 hba[cntl_num]->drv[i].LunID = lunid;
3115 #ifdef CCISS_DEBUG
3116 printk(KERN_DEBUG "LUN[%d]: %x %x %x %x = %x\n", i,
3117 ld_buff->LUN[i][0], ld_buff->LUN[i][1],
3118 ld_buff->LUN[i][2], ld_buff->LUN[i][3],
3119 hba[cntl_num]->drv[i].LunID);
3120 #endif /* CCISS_DEBUG */
3122 /* testing to see if 16-byte CDBs are already being used */
3123 if(hba[cntl_num]->cciss_read == CCISS_READ_16) {
3124 cciss_read_capacity_16(cntl_num, i, 0,
3125 &total_size, &block_size);
3126 goto geo_inq;
3128 cciss_read_capacity(cntl_num, i, 0, &total_size, &block_size);
3130 /* If read_capacity returns all F's the logical is >2TB */
3131 /* so we switch to 16-byte CDBs for all read/write ops */
3132 if(total_size == 0xFFFFFFFFULL) {
3133 cciss_read_capacity_16(cntl_num, i, 0,
3134 &total_size, &block_size);
3135 hba[cntl_num]->cciss_read = CCISS_READ_16;
3136 hba[cntl_num]->cciss_write = CCISS_WRITE_16;
3137 } else {
3138 hba[cntl_num]->cciss_read = CCISS_READ_10;
3139 hba[cntl_num]->cciss_write = CCISS_WRITE_10;
3141 geo_inq:
3142 cciss_geometry_inquiry(cntl_num, i, 0, total_size,
3143 block_size, inq_buff,
3144 &hba[cntl_num]->drv[i]);
3145 } else {
3146 /* initialize raid_level to indicate a free space */
3147 hba[cntl_num]->drv[i].raid_level = -1;
3150 kfree(ld_buff);
3151 kfree(inq_buff);
3154 /* Function to find the first free pointer into our hba[] array */
3155 /* Returns -1 if no free entries are left. */
3156 static int alloc_cciss_hba(void)
3158 int i;
3160 for (i = 0; i < MAX_CTLR; i++) {
3161 if (!hba[i]) {
3162 ctlr_info_t *p;
3163 p = kzalloc(sizeof(ctlr_info_t), GFP_KERNEL);
3164 if (!p)
3165 goto Enomem;
3166 p->gendisk[0] = alloc_disk(1 << NWD_SHIFT);
3167 if (!p->gendisk[0])
3168 goto Enomem;
3169 hba[i] = p;
3170 return i;
3173 printk(KERN_WARNING "cciss: This driver supports a maximum"
3174 " of %d controllers.\n", MAX_CTLR);
3175 return -1;
3176 Enomem:
3177 printk(KERN_ERR "cciss: out of memory.\n");
3178 return -1;
3181 static void free_hba(int i)
3183 ctlr_info_t *p = hba[i];
3184 int n;
3186 hba[i] = NULL;
3187 for (n = 0; n < CISS_MAX_LUN; n++)
3188 put_disk(p->gendisk[n]);
3189 kfree(p);
3193 * This is it. Find all the controllers and register them. I really hate
3194 * stealing all these major device numbers.
3195 * returns the number of block devices registered.
3197 static int __devinit cciss_init_one(struct pci_dev *pdev,
3198 const struct pci_device_id *ent)
3200 int i;
3201 int j = 0;
3202 int rc;
3203 int dac;
3205 i = alloc_cciss_hba();
3206 if (i < 0)
3207 return -1;
3209 hba[i]->busy_initializing = 1;
3211 if (cciss_pci_init(hba[i], pdev) != 0)
3212 goto clean1;
3214 sprintf(hba[i]->devname, "cciss%d", i);
3215 hba[i]->ctlr = i;
3216 hba[i]->pdev = pdev;
3218 /* configure PCI DMA stuff */
3219 if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK))
3220 dac = 1;
3221 else if (!pci_set_dma_mask(pdev, DMA_32BIT_MASK))
3222 dac = 0;
3223 else {
3224 printk(KERN_ERR "cciss: no suitable DMA available\n");
3225 goto clean1;
3229 * register with the major number, or get a dynamic major number
3230 * by passing 0 as argument. This is done for greater than
3231 * 8 controller support.
3233 if (i < MAX_CTLR_ORIG)
3234 hba[i]->major = COMPAQ_CISS_MAJOR + i;
3235 rc = register_blkdev(hba[i]->major, hba[i]->devname);
3236 if (rc == -EBUSY || rc == -EINVAL) {
3237 printk(KERN_ERR
3238 "cciss: Unable to get major number %d for %s "
3239 "on hba %d\n", hba[i]->major, hba[i]->devname, i);
3240 goto clean1;
3241 } else {
3242 if (i >= MAX_CTLR_ORIG)
3243 hba[i]->major = rc;
3246 /* make sure the board interrupts are off */
3247 hba[i]->access.set_intr_mask(hba[i], CCISS_INTR_OFF);
3248 if (request_irq(hba[i]->intr[SIMPLE_MODE_INT], do_cciss_intr,
3249 IRQF_DISABLED | IRQF_SHARED, hba[i]->devname, hba[i])) {
3250 printk(KERN_ERR "cciss: Unable to get irq %d for %s\n",
3251 hba[i]->intr[SIMPLE_MODE_INT], hba[i]->devname);
3252 goto clean2;
3255 printk(KERN_INFO "%s: <0x%x> at PCI %s IRQ %d%s using DAC\n",
3256 hba[i]->devname, pdev->device, pci_name(pdev),
3257 hba[i]->intr[SIMPLE_MODE_INT], dac ? "" : " not");
3259 hba[i]->cmd_pool_bits =
3260 kmalloc(((hba[i]->nr_cmds + BITS_PER_LONG -
3261 1) / BITS_PER_LONG) * sizeof(unsigned long), GFP_KERNEL);
3262 hba[i]->cmd_pool = (CommandList_struct *)
3263 pci_alloc_consistent(hba[i]->pdev,
3264 hba[i]->nr_cmds * sizeof(CommandList_struct),
3265 &(hba[i]->cmd_pool_dhandle));
3266 hba[i]->errinfo_pool = (ErrorInfo_struct *)
3267 pci_alloc_consistent(hba[i]->pdev,
3268 hba[i]->nr_cmds * sizeof(ErrorInfo_struct),
3269 &(hba[i]->errinfo_pool_dhandle));
3270 if ((hba[i]->cmd_pool_bits == NULL)
3271 || (hba[i]->cmd_pool == NULL)
3272 || (hba[i]->errinfo_pool == NULL)) {
3273 printk(KERN_ERR "cciss: out of memory");
3274 goto clean4;
3276 #ifdef CONFIG_CISS_SCSI_TAPE
3277 hba[i]->scsi_rejects.complete =
3278 kmalloc(sizeof(hba[i]->scsi_rejects.complete[0]) *
3279 (hba[i]->nr_cmds + 5), GFP_KERNEL);
3280 if (hba[i]->scsi_rejects.complete == NULL) {
3281 printk(KERN_ERR "cciss: out of memory");
3282 goto clean4;
3284 #endif
3285 spin_lock_init(&hba[i]->lock);
3287 /* Initialize the pdev driver private data.
3288 have it point to hba[i]. */
3289 pci_set_drvdata(pdev, hba[i]);
3290 /* command and error info recs zeroed out before
3291 they are used */
3292 memset(hba[i]->cmd_pool_bits, 0,
3293 ((hba[i]->nr_cmds + BITS_PER_LONG -
3294 1) / BITS_PER_LONG) * sizeof(unsigned long));
3296 #ifdef CCISS_DEBUG
3297 printk(KERN_DEBUG "Scanning for drives on controller cciss%d\n", i);
3298 #endif /* CCISS_DEBUG */
3300 cciss_getgeometry(i);
3302 cciss_scsi_setup(i);
3304 /* Turn the interrupts on so we can service requests */
3305 hba[i]->access.set_intr_mask(hba[i], CCISS_INTR_ON);
3307 cciss_procinit(i);
3309 hba[i]->cciss_max_sectors = 2048;
3311 hba[i]->busy_initializing = 0;
3313 do {
3314 drive_info_struct *drv = &(hba[i]->drv[j]);
3315 struct gendisk *disk = hba[i]->gendisk[j];
3316 request_queue_t *q;
3318 /* Check if the disk was allocated already */
3319 if (!disk){
3320 hba[i]->gendisk[j] = alloc_disk(1 << NWD_SHIFT);
3321 disk = hba[i]->gendisk[j];
3324 /* Check that the disk was able to be allocated */
3325 if (!disk) {
3326 printk(KERN_ERR "cciss: unable to allocate memory for disk %d\n", j);
3327 goto clean4;
3330 q = blk_init_queue(do_cciss_request, &hba[i]->lock);
3331 if (!q) {
3332 printk(KERN_ERR
3333 "cciss: unable to allocate queue for disk %d\n",
3335 goto clean4;
3337 drv->queue = q;
3339 q->backing_dev_info.ra_pages = READ_AHEAD;
3340 blk_queue_bounce_limit(q, hba[i]->pdev->dma_mask);
3342 /* This is a hardware imposed limit. */
3343 blk_queue_max_hw_segments(q, MAXSGENTRIES);
3345 /* This is a limit in the driver and could be eliminated. */
3346 blk_queue_max_phys_segments(q, MAXSGENTRIES);
3348 blk_queue_max_sectors(q, hba[i]->cciss_max_sectors);
3350 blk_queue_softirq_done(q, cciss_softirq_done);
3352 q->queuedata = hba[i];
3353 sprintf(disk->disk_name, "cciss/c%dd%d", i, j);
3354 disk->major = hba[i]->major;
3355 disk->first_minor = j << NWD_SHIFT;
3356 disk->fops = &cciss_fops;
3357 disk->queue = q;
3358 disk->private_data = drv;
3359 disk->driverfs_dev = &pdev->dev;
3360 /* we must register the controller even if no disks exist */
3361 /* this is for the online array utilities */
3362 if (!drv->heads && j)
3363 continue;
3364 blk_queue_hardsect_size(q, drv->block_size);
3365 set_capacity(disk, drv->nr_blocks);
3366 add_disk(disk);
3367 j++;
3368 } while (j <= hba[i]->highest_lun);
3370 return 1;
3372 clean4:
3373 #ifdef CONFIG_CISS_SCSI_TAPE
3374 kfree(hba[i]->scsi_rejects.complete);
3375 #endif
3376 kfree(hba[i]->cmd_pool_bits);
3377 if (hba[i]->cmd_pool)
3378 pci_free_consistent(hba[i]->pdev,
3379 hba[i]->nr_cmds * sizeof(CommandList_struct),
3380 hba[i]->cmd_pool, hba[i]->cmd_pool_dhandle);
3381 if (hba[i]->errinfo_pool)
3382 pci_free_consistent(hba[i]->pdev,
3383 hba[i]->nr_cmds * sizeof(ErrorInfo_struct),
3384 hba[i]->errinfo_pool,
3385 hba[i]->errinfo_pool_dhandle);
3386 free_irq(hba[i]->intr[SIMPLE_MODE_INT], hba[i]);
3387 clean2:
3388 unregister_blkdev(hba[i]->major, hba[i]->devname);
3389 clean1:
3390 hba[i]->busy_initializing = 0;
3391 /* cleanup any queues that may have been initialized */
3392 for (j=0; j <= hba[i]->highest_lun; j++){
3393 drive_info_struct *drv = &(hba[i]->drv[j]);
3394 if (drv->queue)
3395 blk_cleanup_queue(drv->queue);
3398 * Deliberately omit pci_disable_device(): it does something nasty to
3399 * Smart Array controllers that pci_enable_device does not undo
3401 pci_release_regions(pdev);
3402 pci_set_drvdata(pdev, NULL);
3403 free_hba(i);
3404 return -1;
3407 static void cciss_remove_one(struct pci_dev *pdev)
3409 ctlr_info_t *tmp_ptr;
3410 int i, j;
3411 char flush_buf[4];
3412 int return_code;
3414 if (pci_get_drvdata(pdev) == NULL) {
3415 printk(KERN_ERR "cciss: Unable to remove device \n");
3416 return;
3418 tmp_ptr = pci_get_drvdata(pdev);
3419 i = tmp_ptr->ctlr;
3420 if (hba[i] == NULL) {
3421 printk(KERN_ERR "cciss: device appears to "
3422 "already be removed \n");
3423 return;
3425 /* Turn board interrupts off and send the flush cache command */
3426 /* sendcmd will turn off interrupt, and send the flush...
3427 * To write all data in the battery backed cache to disks */
3428 memset(flush_buf, 0, 4);
3429 return_code = sendcmd(CCISS_CACHE_FLUSH, i, flush_buf, 4, 0, 0, 0, NULL,
3430 TYPE_CMD);
3431 if (return_code == IO_OK) {
3432 printk(KERN_INFO "Completed flushing cache on controller %d\n", i);
3433 } else {
3434 printk(KERN_WARNING "Error flushing cache on controller %d\n", i);
3436 free_irq(hba[i]->intr[2], hba[i]);
3438 #ifdef CONFIG_PCI_MSI
3439 if (hba[i]->msix_vector)
3440 pci_disable_msix(hba[i]->pdev);
3441 else if (hba[i]->msi_vector)
3442 pci_disable_msi(hba[i]->pdev);
3443 #endif /* CONFIG_PCI_MSI */
3445 iounmap(hba[i]->vaddr);
3446 cciss_unregister_scsi(i); /* unhook from SCSI subsystem */
3447 unregister_blkdev(hba[i]->major, hba[i]->devname);
3448 remove_proc_entry(hba[i]->devname, proc_cciss);
3450 /* remove it from the disk list */
3451 for (j = 0; j < CISS_MAX_LUN; j++) {
3452 struct gendisk *disk = hba[i]->gendisk[j];
3453 if (disk) {
3454 request_queue_t *q = disk->queue;
3456 if (disk->flags & GENHD_FL_UP)
3457 del_gendisk(disk);
3458 if (q)
3459 blk_cleanup_queue(q);
3463 pci_free_consistent(hba[i]->pdev, hba[i]->nr_cmds * sizeof(CommandList_struct),
3464 hba[i]->cmd_pool, hba[i]->cmd_pool_dhandle);
3465 pci_free_consistent(hba[i]->pdev, hba[i]->nr_cmds * sizeof(ErrorInfo_struct),
3466 hba[i]->errinfo_pool, hba[i]->errinfo_pool_dhandle);
3467 kfree(hba[i]->cmd_pool_bits);
3468 #ifdef CONFIG_CISS_SCSI_TAPE
3469 kfree(hba[i]->scsi_rejects.complete);
3470 #endif
3472 * Deliberately omit pci_disable_device(): it does something nasty to
3473 * Smart Array controllers that pci_enable_device does not undo
3475 pci_release_regions(pdev);
3476 pci_set_drvdata(pdev, NULL);
3477 free_hba(i);
3480 static struct pci_driver cciss_pci_driver = {
3481 .name = "cciss",
3482 .probe = cciss_init_one,
3483 .remove = __devexit_p(cciss_remove_one),
3484 .id_table = cciss_pci_device_id, /* id_table */
3485 .shutdown = cciss_remove_one,
3489 * This is it. Register the PCI driver information for the cards we control
3490 * the OS will call our registered routines when it finds one of our cards.
3492 static int __init cciss_init(void)
3494 printk(KERN_INFO DRIVER_NAME "\n");
3496 /* Register for our PCI devices */
3497 return pci_register_driver(&cciss_pci_driver);
3500 static void __exit cciss_cleanup(void)
3502 int i;
3504 pci_unregister_driver(&cciss_pci_driver);
3505 /* double check that all controller entrys have been removed */
3506 for (i = 0; i < MAX_CTLR; i++) {
3507 if (hba[i] != NULL) {
3508 printk(KERN_WARNING "cciss: had to remove"
3509 " controller %d\n", i);
3510 cciss_remove_one(hba[i]->pdev);
3513 remove_proc_entry("cciss", proc_root_driver);
3516 static void fail_all_cmds(unsigned long ctlr)
3518 /* If we get here, the board is apparently dead. */
3519 ctlr_info_t *h = hba[ctlr];
3520 CommandList_struct *c;
3521 unsigned long flags;
3523 printk(KERN_WARNING "cciss%d: controller not responding.\n", h->ctlr);
3524 h->alive = 0; /* the controller apparently died... */
3526 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
3528 pci_disable_device(h->pdev); /* Make sure it is really dead. */
3530 /* move everything off the request queue onto the completed queue */
3531 while ((c = h->reqQ) != NULL) {
3532 removeQ(&(h->reqQ), c);
3533 h->Qdepth--;
3534 addQ(&(h->cmpQ), c);
3537 /* Now, fail everything on the completed queue with a HW error */
3538 while ((c = h->cmpQ) != NULL) {
3539 removeQ(&h->cmpQ, c);
3540 c->err_info->CommandStatus = CMD_HARDWARE_ERR;
3541 if (c->cmd_type == CMD_RWREQ) {
3542 complete_command(h, c, 0);
3543 } else if (c->cmd_type == CMD_IOCTL_PEND)
3544 complete(c->waiting);
3545 #ifdef CONFIG_CISS_SCSI_TAPE
3546 else if (c->cmd_type == CMD_SCSI)
3547 complete_scsi_command(c, 0, 0);
3548 #endif
3550 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
3551 return;
3554 module_init(cciss_init);
3555 module_exit(cciss_cleanup);