[MIPS] RTLX: Protect rtlx_{read,write} with mutex.
[linux-2.6/linux-mips/linux-dm7025.git] / drivers / parport / parport_ip32.c
blobec44efdbb84e15d519b5f9553c6a5b07665de4a0
1 /* Low-level parallel port routines for built-in port on SGI IP32
3 * Author: Arnaud Giersch <arnaud.giersch@free.fr>
5 * Based on parport_pc.c by
6 * Phil Blundell, Tim Waugh, Jose Renau, David Campbell,
7 * Andrea Arcangeli, et al.
9 * Thanks to Ilya A. Volynets-Evenbakh for his help.
11 * Copyright (C) 2005, 2006 Arnaud Giersch.
13 * This program is free software; you can redistribute it and/or modify it
14 * under the terms of the GNU General Public License as published by the Free
15 * Software Foundation; either version 2 of the License, or (at your option)
16 * any later version.
18 * This program is distributed in the hope that it will be useful, but WITHOUT
19 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
20 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
21 * more details.
23 * You should have received a copy of the GNU General Public License along
24 * with this program; if not, write to the Free Software Foundation, Inc., 59
25 * Temple Place - Suite 330, Boston, MA 02111-1307, USA.
28 /* Current status:
30 * Basic SPP and PS2 modes are supported.
31 * Support for parallel port IRQ is present.
32 * Hardware SPP (a.k.a. compatibility), EPP, and ECP modes are
33 * supported.
34 * SPP/ECP FIFO can be driven in PIO or DMA mode. PIO mode can work with
35 * or without interrupt support.
37 * Hardware ECP mode is not fully implemented (ecp_read_data and
38 * ecp_write_addr are actually missing).
40 * To do:
42 * Fully implement ECP mode.
43 * EPP and ECP mode need to be tested. I currently do not own any
44 * peripheral supporting these extended mode, and cannot test them.
45 * If DMA mode works well, decide if support for PIO FIFO modes should be
46 * dropped.
47 * Use the io{read,write} family functions when they become available in
48 * the linux-mips.org tree. Note: the MIPS specific functions readsb()
49 * and writesb() are to be translated by ioread8_rep() and iowrite8_rep()
50 * respectively.
53 /* The built-in parallel port on the SGI 02 workstation (a.k.a. IP32) is an
54 * IEEE 1284 parallel port driven by a Texas Instrument TL16PIR552PH chip[1].
55 * This chip supports SPP, bidirectional, EPP and ECP modes. It has a 16 byte
56 * FIFO buffer and supports DMA transfers.
58 * [1] http://focus.ti.com/docs/prod/folders/print/tl16pir552.html
60 * Theoretically, we could simply use the parport_pc module. It is however
61 * not so simple. The parport_pc code assumes that the parallel port
62 * registers are port-mapped. On the O2, they are memory-mapped.
63 * Furthermore, each register is replicated on 256 consecutive addresses (as
64 * it is for the built-in serial ports on the same chip).
67 /*--- Some configuration defines ---------------------------------------*/
69 /* DEBUG_PARPORT_IP32
70 * 0 disable debug
71 * 1 standard level: pr_debug1 is enabled
72 * 2 parport_ip32_dump_state is enabled
73 * >=3 verbose level: pr_debug is enabled
75 #if !defined(DEBUG_PARPORT_IP32)
76 # define DEBUG_PARPORT_IP32 0 /* 0 (disabled) for production */
77 #endif
79 /*----------------------------------------------------------------------*/
81 /* Setup DEBUG macros. This is done before any includes, just in case we
82 * activate pr_debug() with DEBUG_PARPORT_IP32 >= 3.
84 #if DEBUG_PARPORT_IP32 == 1
85 # warning DEBUG_PARPORT_IP32 == 1
86 #elif DEBUG_PARPORT_IP32 == 2
87 # warning DEBUG_PARPORT_IP32 == 2
88 #elif DEBUG_PARPORT_IP32 >= 3
89 # warning DEBUG_PARPORT_IP32 >= 3
90 # if !defined(DEBUG)
91 # define DEBUG /* enable pr_debug() in kernel.h */
92 # endif
93 #endif
95 #include <linux/completion.h>
96 #include <linux/delay.h>
97 #include <linux/dma-mapping.h>
98 #include <linux/err.h>
99 #include <linux/init.h>
100 #include <linux/interrupt.h>
101 #include <linux/jiffies.h>
102 #include <linux/kernel.h>
103 #include <linux/module.h>
104 #include <linux/parport.h>
105 #include <linux/sched.h>
106 #include <linux/spinlock.h>
107 #include <linux/stddef.h>
108 #include <linux/types.h>
109 #include <asm/io.h>
110 #include <asm/ip32/ip32_ints.h>
111 #include <asm/ip32/mace.h>
113 /*--- Global variables -------------------------------------------------*/
115 /* Verbose probing on by default for debugging. */
116 #if DEBUG_PARPORT_IP32 >= 1
117 # define DEFAULT_VERBOSE_PROBING 1
118 #else
119 # define DEFAULT_VERBOSE_PROBING 0
120 #endif
122 /* Default prefix for printk */
123 #define PPIP32 "parport_ip32: "
126 * These are the module parameters:
127 * @features: bit mask of features to enable/disable
128 * (all enabled by default)
129 * @verbose_probing: log chit-chat during initialization
131 #define PARPORT_IP32_ENABLE_IRQ (1U << 0)
132 #define PARPORT_IP32_ENABLE_DMA (1U << 1)
133 #define PARPORT_IP32_ENABLE_SPP (1U << 2)
134 #define PARPORT_IP32_ENABLE_EPP (1U << 3)
135 #define PARPORT_IP32_ENABLE_ECP (1U << 4)
136 static unsigned int features = ~0U;
137 static int verbose_probing = DEFAULT_VERBOSE_PROBING;
139 /* We do not support more than one port. */
140 static struct parport *this_port = NULL;
142 /* Timing constants for FIFO modes. */
143 #define FIFO_NFAULT_TIMEOUT 100 /* milliseconds */
144 #define FIFO_POLLING_INTERVAL 50 /* microseconds */
146 /*--- I/O register definitions -----------------------------------------*/
149 * struct parport_ip32_regs - virtual addresses of parallel port registers
150 * @data: Data Register
151 * @dsr: Device Status Register
152 * @dcr: Device Control Register
153 * @eppAddr: EPP Address Register
154 * @eppData0: EPP Data Register 0
155 * @eppData1: EPP Data Register 1
156 * @eppData2: EPP Data Register 2
157 * @eppData3: EPP Data Register 3
158 * @ecpAFifo: ECP Address FIFO
159 * @fifo: General FIFO register. The same address is used for:
160 * - cFifo, the Parallel Port DATA FIFO
161 * - ecpDFifo, the ECP Data FIFO
162 * - tFifo, the ECP Test FIFO
163 * @cnfgA: Configuration Register A
164 * @cnfgB: Configuration Register B
165 * @ecr: Extended Control Register
167 struct parport_ip32_regs {
168 void __iomem *data;
169 void __iomem *dsr;
170 void __iomem *dcr;
171 void __iomem *eppAddr;
172 void __iomem *eppData0;
173 void __iomem *eppData1;
174 void __iomem *eppData2;
175 void __iomem *eppData3;
176 void __iomem *ecpAFifo;
177 void __iomem *fifo;
178 void __iomem *cnfgA;
179 void __iomem *cnfgB;
180 void __iomem *ecr;
183 /* Device Status Register */
184 #define DSR_nBUSY (1U << 7) /* PARPORT_STATUS_BUSY */
185 #define DSR_nACK (1U << 6) /* PARPORT_STATUS_ACK */
186 #define DSR_PERROR (1U << 5) /* PARPORT_STATUS_PAPEROUT */
187 #define DSR_SELECT (1U << 4) /* PARPORT_STATUS_SELECT */
188 #define DSR_nFAULT (1U << 3) /* PARPORT_STATUS_ERROR */
189 #define DSR_nPRINT (1U << 2) /* specific to TL16PIR552 */
190 /* #define DSR_reserved (1U << 1) */
191 #define DSR_TIMEOUT (1U << 0) /* EPP timeout */
193 /* Device Control Register */
194 /* #define DCR_reserved (1U << 7) | (1U << 6) */
195 #define DCR_DIR (1U << 5) /* direction */
196 #define DCR_IRQ (1U << 4) /* interrupt on nAck */
197 #define DCR_SELECT (1U << 3) /* PARPORT_CONTROL_SELECT */
198 #define DCR_nINIT (1U << 2) /* PARPORT_CONTROL_INIT */
199 #define DCR_AUTOFD (1U << 1) /* PARPORT_CONTROL_AUTOFD */
200 #define DCR_STROBE (1U << 0) /* PARPORT_CONTROL_STROBE */
202 /* ECP Configuration Register A */
203 #define CNFGA_IRQ (1U << 7)
204 #define CNFGA_ID_MASK ((1U << 6) | (1U << 5) | (1U << 4))
205 #define CNFGA_ID_SHIFT 4
206 #define CNFGA_ID_16 (00U << CNFGA_ID_SHIFT)
207 #define CNFGA_ID_8 (01U << CNFGA_ID_SHIFT)
208 #define CNFGA_ID_32 (02U << CNFGA_ID_SHIFT)
209 /* #define CNFGA_reserved (1U << 3) */
210 #define CNFGA_nBYTEINTRANS (1U << 2)
211 #define CNFGA_PWORDLEFT ((1U << 1) | (1U << 0))
213 /* ECP Configuration Register B */
214 #define CNFGB_COMPRESS (1U << 7)
215 #define CNFGB_INTRVAL (1U << 6)
216 #define CNFGB_IRQ_MASK ((1U << 5) | (1U << 4) | (1U << 3))
217 #define CNFGB_IRQ_SHIFT 3
218 #define CNFGB_DMA_MASK ((1U << 2) | (1U << 1) | (1U << 0))
219 #define CNFGB_DMA_SHIFT 0
221 /* Extended Control Register */
222 #define ECR_MODE_MASK ((1U << 7) | (1U << 6) | (1U << 5))
223 #define ECR_MODE_SHIFT 5
224 #define ECR_MODE_SPP (00U << ECR_MODE_SHIFT)
225 #define ECR_MODE_PS2 (01U << ECR_MODE_SHIFT)
226 #define ECR_MODE_PPF (02U << ECR_MODE_SHIFT)
227 #define ECR_MODE_ECP (03U << ECR_MODE_SHIFT)
228 #define ECR_MODE_EPP (04U << ECR_MODE_SHIFT)
229 /* #define ECR_MODE_reserved (05U << ECR_MODE_SHIFT) */
230 #define ECR_MODE_TST (06U << ECR_MODE_SHIFT)
231 #define ECR_MODE_CFG (07U << ECR_MODE_SHIFT)
232 #define ECR_nERRINTR (1U << 4)
233 #define ECR_DMAEN (1U << 3)
234 #define ECR_SERVINTR (1U << 2)
235 #define ECR_F_FULL (1U << 1)
236 #define ECR_F_EMPTY (1U << 0)
238 /*--- Private data -----------------------------------------------------*/
241 * enum parport_ip32_irq_mode - operation mode of interrupt handler
242 * @PARPORT_IP32_IRQ_FWD: forward interrupt to the upper parport layer
243 * @PARPORT_IP32_IRQ_HERE: interrupt is handled locally
245 enum parport_ip32_irq_mode { PARPORT_IP32_IRQ_FWD, PARPORT_IP32_IRQ_HERE };
248 * struct parport_ip32_private - private stuff for &struct parport
249 * @regs: register addresses
250 * @dcr_cache: cached contents of DCR
251 * @dcr_writable: bit mask of writable DCR bits
252 * @pword: number of bytes per PWord
253 * @fifo_depth: number of PWords that FIFO will hold
254 * @readIntrThreshold: minimum number of PWords we can read
255 * if we get an interrupt
256 * @writeIntrThreshold: minimum number of PWords we can write
257 * if we get an interrupt
258 * @irq_mode: operation mode of interrupt handler for this port
259 * @irq_complete: mutex used to wait for an interrupt to occur
261 struct parport_ip32_private {
262 struct parport_ip32_regs regs;
263 unsigned int dcr_cache;
264 unsigned int dcr_writable;
265 unsigned int pword;
266 unsigned int fifo_depth;
267 unsigned int readIntrThreshold;
268 unsigned int writeIntrThreshold;
269 enum parport_ip32_irq_mode irq_mode;
270 struct completion irq_complete;
273 /*--- Debug code -------------------------------------------------------*/
276 * pr_debug1 - print debug messages
278 * This is like pr_debug(), but is defined for %DEBUG_PARPORT_IP32 >= 1
280 #if DEBUG_PARPORT_IP32 >= 1
281 # define pr_debug1(...) printk(KERN_DEBUG __VA_ARGS__)
282 #else /* DEBUG_PARPORT_IP32 < 1 */
283 # define pr_debug1(...) do { } while (0)
284 #endif
287 * pr_trace, pr_trace1 - trace function calls
288 * @p: pointer to &struct parport
289 * @fmt: printk format string
290 * @...: parameters for format string
292 * Macros used to trace function calls. The given string is formatted after
293 * function name. pr_trace() uses pr_debug(), and pr_trace1() uses
294 * pr_debug1(). __pr_trace() is the low-level macro and is not to be used
295 * directly.
297 #define __pr_trace(pr, p, fmt, ...) \
298 pr("%s: %s" fmt "\n", \
299 ({ const struct parport *__p = (p); \
300 __p ? __p->name : "parport_ip32"; }), \
301 __func__ , ##__VA_ARGS__)
302 #define pr_trace(p, fmt, ...) __pr_trace(pr_debug, p, fmt , ##__VA_ARGS__)
303 #define pr_trace1(p, fmt, ...) __pr_trace(pr_debug1, p, fmt , ##__VA_ARGS__)
306 * __pr_probe, pr_probe - print message if @verbose_probing is true
307 * @p: pointer to &struct parport
308 * @fmt: printk format string
309 * @...: parameters for format string
311 * For new lines, use pr_probe(). Use __pr_probe() for continued lines.
313 #define __pr_probe(...) \
314 do { if (verbose_probing) printk(__VA_ARGS__); } while (0)
315 #define pr_probe(p, fmt, ...) \
316 __pr_probe(KERN_INFO PPIP32 "0x%lx: " fmt, (p)->base , ##__VA_ARGS__)
319 * parport_ip32_dump_state - print register status of parport
320 * @p: pointer to &struct parport
321 * @str: string to add in message
322 * @show_ecp_config: shall we dump ECP configuration registers too?
324 * This function is only here for debugging purpose, and should be used with
325 * care. Reading the parallel port registers may have undesired side effects.
326 * Especially if @show_ecp_config is true, the parallel port is resetted.
327 * This function is only defined if %DEBUG_PARPORT_IP32 >= 2.
329 #if DEBUG_PARPORT_IP32 >= 2
330 static void parport_ip32_dump_state(struct parport *p, char *str,
331 unsigned int show_ecp_config)
333 struct parport_ip32_private * const priv = p->physport->private_data;
334 unsigned int i;
336 printk(KERN_DEBUG PPIP32 "%s: state (%s):\n", p->name, str);
338 static const char ecr_modes[8][4] = {"SPP", "PS2", "PPF",
339 "ECP", "EPP", "???",
340 "TST", "CFG"};
341 unsigned int ecr = readb(priv->regs.ecr);
342 printk(KERN_DEBUG PPIP32 " ecr=0x%02x", ecr);
343 printk(" %s",
344 ecr_modes[(ecr & ECR_MODE_MASK) >> ECR_MODE_SHIFT]);
345 if (ecr & ECR_nERRINTR)
346 printk(",nErrIntrEn");
347 if (ecr & ECR_DMAEN)
348 printk(",dmaEn");
349 if (ecr & ECR_SERVINTR)
350 printk(",serviceIntr");
351 if (ecr & ECR_F_FULL)
352 printk(",f_full");
353 if (ecr & ECR_F_EMPTY)
354 printk(",f_empty");
355 printk("\n");
357 if (show_ecp_config) {
358 unsigned int oecr, cnfgA, cnfgB;
359 oecr = readb(priv->regs.ecr);
360 writeb(ECR_MODE_PS2, priv->regs.ecr);
361 writeb(ECR_MODE_CFG, priv->regs.ecr);
362 cnfgA = readb(priv->regs.cnfgA);
363 cnfgB = readb(priv->regs.cnfgB);
364 writeb(ECR_MODE_PS2, priv->regs.ecr);
365 writeb(oecr, priv->regs.ecr);
366 printk(KERN_DEBUG PPIP32 " cnfgA=0x%02x", cnfgA);
367 printk(" ISA-%s", (cnfgA & CNFGA_IRQ) ? "Level" : "Pulses");
368 switch (cnfgA & CNFGA_ID_MASK) {
369 case CNFGA_ID_8:
370 printk(",8 bits");
371 break;
372 case CNFGA_ID_16:
373 printk(",16 bits");
374 break;
375 case CNFGA_ID_32:
376 printk(",32 bits");
377 break;
378 default:
379 printk(",unknown ID");
380 break;
382 if (!(cnfgA & CNFGA_nBYTEINTRANS))
383 printk(",ByteInTrans");
384 if ((cnfgA & CNFGA_ID_MASK) != CNFGA_ID_8)
385 printk(",%d byte%s left", cnfgA & CNFGA_PWORDLEFT,
386 ((cnfgA & CNFGA_PWORDLEFT) > 1) ? "s" : "");
387 printk("\n");
388 printk(KERN_DEBUG PPIP32 " cnfgB=0x%02x", cnfgB);
389 printk(" irq=%u,dma=%u",
390 (cnfgB & CNFGB_IRQ_MASK) >> CNFGB_IRQ_SHIFT,
391 (cnfgB & CNFGB_DMA_MASK) >> CNFGB_DMA_SHIFT);
392 printk(",intrValue=%d", !!(cnfgB & CNFGB_INTRVAL));
393 if (cnfgB & CNFGB_COMPRESS)
394 printk(",compress");
395 printk("\n");
397 for (i = 0; i < 2; i++) {
398 unsigned int dcr = i ? priv->dcr_cache : readb(priv->regs.dcr);
399 printk(KERN_DEBUG PPIP32 " dcr(%s)=0x%02x",
400 i ? "soft" : "hard", dcr);
401 printk(" %s", (dcr & DCR_DIR) ? "rev" : "fwd");
402 if (dcr & DCR_IRQ)
403 printk(",ackIntEn");
404 if (!(dcr & DCR_SELECT))
405 printk(",nSelectIn");
406 if (dcr & DCR_nINIT)
407 printk(",nInit");
408 if (!(dcr & DCR_AUTOFD))
409 printk(",nAutoFD");
410 if (!(dcr & DCR_STROBE))
411 printk(",nStrobe");
412 printk("\n");
414 #define sep (f++ ? ',' : ' ')
416 unsigned int f = 0;
417 unsigned int dsr = readb(priv->regs.dsr);
418 printk(KERN_DEBUG PPIP32 " dsr=0x%02x", dsr);
419 if (!(dsr & DSR_nBUSY))
420 printk("%cBusy", sep);
421 if (dsr & DSR_nACK)
422 printk("%cnAck", sep);
423 if (dsr & DSR_PERROR)
424 printk("%cPError", sep);
425 if (dsr & DSR_SELECT)
426 printk("%cSelect", sep);
427 if (dsr & DSR_nFAULT)
428 printk("%cnFault", sep);
429 if (!(dsr & DSR_nPRINT))
430 printk("%c(Print)", sep);
431 if (dsr & DSR_TIMEOUT)
432 printk("%cTimeout", sep);
433 printk("\n");
435 #undef sep
437 #else /* DEBUG_PARPORT_IP32 < 2 */
438 #define parport_ip32_dump_state(...) do { } while (0)
439 #endif
442 * CHECK_EXTRA_BITS - track and log extra bits
443 * @p: pointer to &struct parport
444 * @b: byte to inspect
445 * @m: bit mask of authorized bits
447 * This is used to track and log extra bits that should not be there in
448 * parport_ip32_write_control() and parport_ip32_frob_control(). It is only
449 * defined if %DEBUG_PARPORT_IP32 >= 1.
451 #if DEBUG_PARPORT_IP32 >= 1
452 #define CHECK_EXTRA_BITS(p, b, m) \
453 do { \
454 unsigned int __b = (b), __m = (m); \
455 if (__b & ~__m) \
456 pr_debug1(PPIP32 "%s: extra bits in %s(%s): " \
457 "0x%02x/0x%02x\n", \
458 (p)->name, __func__, #b, __b, __m); \
459 } while (0)
460 #else /* DEBUG_PARPORT_IP32 < 1 */
461 #define CHECK_EXTRA_BITS(...) do { } while (0)
462 #endif
464 /*--- IP32 parallel port DMA operations --------------------------------*/
467 * struct parport_ip32_dma_data - private data needed for DMA operation
468 * @dir: DMA direction (from or to device)
469 * @buf: buffer physical address
470 * @len: buffer length
471 * @next: address of next bytes to DMA transfer
472 * @left: number of bytes remaining
473 * @ctx: next context to write (0: context_a; 1: context_b)
474 * @irq_on: are the DMA IRQs currently enabled?
475 * @lock: spinlock to protect access to the structure
477 struct parport_ip32_dma_data {
478 enum dma_data_direction dir;
479 dma_addr_t buf;
480 dma_addr_t next;
481 size_t len;
482 size_t left;
483 unsigned int ctx;
484 unsigned int irq_on;
485 spinlock_t lock;
487 static struct parport_ip32_dma_data parport_ip32_dma;
490 * parport_ip32_dma_setup_context - setup next DMA context
491 * @limit: maximum data size for the context
493 * The alignment constraints must be verified in caller function, and the
494 * parameter @limit must be set accordingly.
496 static void parport_ip32_dma_setup_context(unsigned int limit)
498 unsigned long flags;
500 spin_lock_irqsave(&parport_ip32_dma.lock, flags);
501 if (parport_ip32_dma.left > 0) {
502 /* Note: ctxreg is "volatile" here only because
503 * mace->perif.ctrl.parport.context_a and context_b are
504 * "volatile". */
505 volatile u64 __iomem *ctxreg = (parport_ip32_dma.ctx == 0) ?
506 &mace->perif.ctrl.parport.context_a :
507 &mace->perif.ctrl.parport.context_b;
508 u64 count;
509 u64 ctxval;
510 if (parport_ip32_dma.left <= limit) {
511 count = parport_ip32_dma.left;
512 ctxval = MACEPAR_CONTEXT_LASTFLAG;
513 } else {
514 count = limit;
515 ctxval = 0;
518 pr_trace(NULL,
519 "(%u): 0x%04x:0x%04x, %u -> %u%s",
520 limit,
521 (unsigned int)parport_ip32_dma.buf,
522 (unsigned int)parport_ip32_dma.next,
523 (unsigned int)count,
524 parport_ip32_dma.ctx, ctxval ? "*" : "");
526 ctxval |= parport_ip32_dma.next &
527 MACEPAR_CONTEXT_BASEADDR_MASK;
528 ctxval |= ((count - 1) << MACEPAR_CONTEXT_DATALEN_SHIFT) &
529 MACEPAR_CONTEXT_DATALEN_MASK;
530 writeq(ctxval, ctxreg);
531 parport_ip32_dma.next += count;
532 parport_ip32_dma.left -= count;
533 parport_ip32_dma.ctx ^= 1U;
535 /* If there is nothing more to send, disable IRQs to avoid to
536 * face an IRQ storm which can lock the machine. Disable them
537 * only once. */
538 if (parport_ip32_dma.left == 0 && parport_ip32_dma.irq_on) {
539 pr_debug(PPIP32 "IRQ off (ctx)\n");
540 disable_irq_nosync(MACEISA_PAR_CTXA_IRQ);
541 disable_irq_nosync(MACEISA_PAR_CTXB_IRQ);
542 parport_ip32_dma.irq_on = 0;
544 spin_unlock_irqrestore(&parport_ip32_dma.lock, flags);
548 * parport_ip32_dma_interrupt - DMA interrupt handler
549 * @irq: interrupt number
550 * @dev_id: unused
552 static irqreturn_t parport_ip32_dma_interrupt(int irq, void *dev_id)
554 if (parport_ip32_dma.left)
555 pr_trace(NULL, "(%d): ctx=%d", irq, parport_ip32_dma.ctx);
556 parport_ip32_dma_setup_context(MACEPAR_CONTEXT_DATA_BOUND);
557 return IRQ_HANDLED;
560 #if DEBUG_PARPORT_IP32
561 static irqreturn_t parport_ip32_merr_interrupt(int irq, void *dev_id)
563 pr_trace1(NULL, "(%d)", irq);
564 return IRQ_HANDLED;
566 #endif
569 * parport_ip32_dma_start - begins a DMA transfer
570 * @dir: DMA direction: DMA_TO_DEVICE or DMA_FROM_DEVICE
571 * @addr: pointer to data buffer
572 * @count: buffer size
574 * Calls to parport_ip32_dma_start() and parport_ip32_dma_stop() must be
575 * correctly balanced.
577 static int parport_ip32_dma_start(enum dma_data_direction dir,
578 void *addr, size_t count)
580 unsigned int limit;
581 u64 ctrl;
583 pr_trace(NULL, "(%d, %lu)", dir, (unsigned long)count);
585 /* FIXME - add support for DMA_FROM_DEVICE. In this case, buffer must
586 * be 64 bytes aligned. */
587 BUG_ON(dir != DMA_TO_DEVICE);
589 /* Reset DMA controller */
590 ctrl = MACEPAR_CTLSTAT_RESET;
591 writeq(ctrl, &mace->perif.ctrl.parport.cntlstat);
593 /* DMA IRQs should normally be enabled */
594 if (!parport_ip32_dma.irq_on) {
595 WARN_ON(1);
596 enable_irq(MACEISA_PAR_CTXA_IRQ);
597 enable_irq(MACEISA_PAR_CTXB_IRQ);
598 parport_ip32_dma.irq_on = 1;
601 /* Prepare DMA pointers */
602 parport_ip32_dma.dir = dir;
603 parport_ip32_dma.buf = dma_map_single(NULL, addr, count, dir);
604 parport_ip32_dma.len = count;
605 parport_ip32_dma.next = parport_ip32_dma.buf;
606 parport_ip32_dma.left = parport_ip32_dma.len;
607 parport_ip32_dma.ctx = 0;
609 /* Setup DMA direction and first two contexts */
610 ctrl = (dir == DMA_TO_DEVICE) ? 0 : MACEPAR_CTLSTAT_DIRECTION;
611 writeq(ctrl, &mace->perif.ctrl.parport.cntlstat);
612 /* Single transfer should not cross a 4K page boundary */
613 limit = MACEPAR_CONTEXT_DATA_BOUND -
614 (parport_ip32_dma.next & (MACEPAR_CONTEXT_DATA_BOUND - 1));
615 parport_ip32_dma_setup_context(limit);
616 parport_ip32_dma_setup_context(MACEPAR_CONTEXT_DATA_BOUND);
618 /* Real start of DMA transfer */
619 ctrl |= MACEPAR_CTLSTAT_ENABLE;
620 writeq(ctrl, &mace->perif.ctrl.parport.cntlstat);
622 return 0;
626 * parport_ip32_dma_stop - ends a running DMA transfer
628 * Calls to parport_ip32_dma_start() and parport_ip32_dma_stop() must be
629 * correctly balanced.
631 static void parport_ip32_dma_stop(void)
633 u64 ctx_a;
634 u64 ctx_b;
635 u64 ctrl;
636 u64 diag;
637 size_t res[2]; /* {[0] = res_a, [1] = res_b} */
639 pr_trace(NULL, "()");
641 /* Disable IRQs */
642 spin_lock_irq(&parport_ip32_dma.lock);
643 if (parport_ip32_dma.irq_on) {
644 pr_debug(PPIP32 "IRQ off (stop)\n");
645 disable_irq_nosync(MACEISA_PAR_CTXA_IRQ);
646 disable_irq_nosync(MACEISA_PAR_CTXB_IRQ);
647 parport_ip32_dma.irq_on = 0;
649 spin_unlock_irq(&parport_ip32_dma.lock);
650 /* Force IRQ synchronization, even if the IRQs were disabled
651 * elsewhere. */
652 synchronize_irq(MACEISA_PAR_CTXA_IRQ);
653 synchronize_irq(MACEISA_PAR_CTXB_IRQ);
655 /* Stop DMA transfer */
656 ctrl = readq(&mace->perif.ctrl.parport.cntlstat);
657 ctrl &= ~MACEPAR_CTLSTAT_ENABLE;
658 writeq(ctrl, &mace->perif.ctrl.parport.cntlstat);
660 /* Adjust residue (parport_ip32_dma.left) */
661 ctx_a = readq(&mace->perif.ctrl.parport.context_a);
662 ctx_b = readq(&mace->perif.ctrl.parport.context_b);
663 ctrl = readq(&mace->perif.ctrl.parport.cntlstat);
664 diag = readq(&mace->perif.ctrl.parport.diagnostic);
665 res[0] = (ctrl & MACEPAR_CTLSTAT_CTXA_VALID) ?
666 1 + ((ctx_a & MACEPAR_CONTEXT_DATALEN_MASK) >>
667 MACEPAR_CONTEXT_DATALEN_SHIFT) :
669 res[1] = (ctrl & MACEPAR_CTLSTAT_CTXB_VALID) ?
670 1 + ((ctx_b & MACEPAR_CONTEXT_DATALEN_MASK) >>
671 MACEPAR_CONTEXT_DATALEN_SHIFT) :
673 if (diag & MACEPAR_DIAG_DMACTIVE)
674 res[(diag & MACEPAR_DIAG_CTXINUSE) != 0] =
675 1 + ((diag & MACEPAR_DIAG_CTRMASK) >>
676 MACEPAR_DIAG_CTRSHIFT);
677 parport_ip32_dma.left += res[0] + res[1];
679 /* Reset DMA controller, and re-enable IRQs */
680 ctrl = MACEPAR_CTLSTAT_RESET;
681 writeq(ctrl, &mace->perif.ctrl.parport.cntlstat);
682 pr_debug(PPIP32 "IRQ on (stop)\n");
683 enable_irq(MACEISA_PAR_CTXA_IRQ);
684 enable_irq(MACEISA_PAR_CTXB_IRQ);
685 parport_ip32_dma.irq_on = 1;
687 dma_unmap_single(NULL, parport_ip32_dma.buf, parport_ip32_dma.len,
688 parport_ip32_dma.dir);
692 * parport_ip32_dma_get_residue - get residue from last DMA transfer
694 * Returns the number of bytes remaining from last DMA transfer.
696 static inline size_t parport_ip32_dma_get_residue(void)
698 return parport_ip32_dma.left;
702 * parport_ip32_dma_register - initialize DMA engine
704 * Returns zero for success.
706 static int parport_ip32_dma_register(void)
708 int err;
710 spin_lock_init(&parport_ip32_dma.lock);
711 parport_ip32_dma.irq_on = 1;
713 /* Reset DMA controller */
714 writeq(MACEPAR_CTLSTAT_RESET, &mace->perif.ctrl.parport.cntlstat);
716 /* Request IRQs */
717 err = request_irq(MACEISA_PAR_CTXA_IRQ, parport_ip32_dma_interrupt,
718 0, "parport_ip32", NULL);
719 if (err)
720 goto fail_a;
721 err = request_irq(MACEISA_PAR_CTXB_IRQ, parport_ip32_dma_interrupt,
722 0, "parport_ip32", NULL);
723 if (err)
724 goto fail_b;
725 #if DEBUG_PARPORT_IP32
726 /* FIXME - what is this IRQ for? */
727 err = request_irq(MACEISA_PAR_MERR_IRQ, parport_ip32_merr_interrupt,
728 0, "parport_ip32", NULL);
729 if (err)
730 goto fail_merr;
731 #endif
732 return 0;
734 #if DEBUG_PARPORT_IP32
735 fail_merr:
736 free_irq(MACEISA_PAR_CTXB_IRQ, NULL);
737 #endif
738 fail_b:
739 free_irq(MACEISA_PAR_CTXA_IRQ, NULL);
740 fail_a:
741 return err;
745 * parport_ip32_dma_unregister - release and free resources for DMA engine
747 static void parport_ip32_dma_unregister(void)
749 #if DEBUG_PARPORT_IP32
750 free_irq(MACEISA_PAR_MERR_IRQ, NULL);
751 #endif
752 free_irq(MACEISA_PAR_CTXB_IRQ, NULL);
753 free_irq(MACEISA_PAR_CTXA_IRQ, NULL);
756 /*--- Interrupt handlers and associates --------------------------------*/
759 * parport_ip32_wakeup - wakes up code waiting for an interrupt
760 * @p: pointer to &struct parport
762 static inline void parport_ip32_wakeup(struct parport *p)
764 struct parport_ip32_private * const priv = p->physport->private_data;
765 complete(&priv->irq_complete);
769 * parport_ip32_interrupt - interrupt handler
770 * @irq: interrupt number
771 * @dev_id: pointer to &struct parport
773 * Caught interrupts are forwarded to the upper parport layer if IRQ_mode is
774 * %PARPORT_IP32_IRQ_FWD.
776 static irqreturn_t parport_ip32_interrupt(int irq, void *dev_id)
778 struct parport * const p = dev_id;
779 struct parport_ip32_private * const priv = p->physport->private_data;
780 enum parport_ip32_irq_mode irq_mode = priv->irq_mode;
781 switch (irq_mode) {
782 case PARPORT_IP32_IRQ_FWD:
783 parport_generic_irq(irq, p);
784 break;
785 case PARPORT_IP32_IRQ_HERE:
786 parport_ip32_wakeup(p);
787 break;
789 return IRQ_HANDLED;
792 /*--- Some utility function to manipulate ECR register -----------------*/
795 * parport_ip32_read_econtrol - read contents of the ECR register
796 * @p: pointer to &struct parport
798 static inline unsigned int parport_ip32_read_econtrol(struct parport *p)
800 struct parport_ip32_private * const priv = p->physport->private_data;
801 return readb(priv->regs.ecr);
805 * parport_ip32_write_econtrol - write new contents to the ECR register
806 * @p: pointer to &struct parport
807 * @c: new value to write
809 static inline void parport_ip32_write_econtrol(struct parport *p,
810 unsigned int c)
812 struct parport_ip32_private * const priv = p->physport->private_data;
813 writeb(c, priv->regs.ecr);
817 * parport_ip32_frob_econtrol - change bits from the ECR register
818 * @p: pointer to &struct parport
819 * @mask: bit mask of bits to change
820 * @val: new value for changed bits
822 * Read from the ECR, mask out the bits in @mask, exclusive-or with the bits
823 * in @val, and write the result to the ECR.
825 static inline void parport_ip32_frob_econtrol(struct parport *p,
826 unsigned int mask,
827 unsigned int val)
829 unsigned int c;
830 c = (parport_ip32_read_econtrol(p) & ~mask) ^ val;
831 parport_ip32_write_econtrol(p, c);
835 * parport_ip32_set_mode - change mode of ECP port
836 * @p: pointer to &struct parport
837 * @mode: new mode to write in ECR
839 * ECR is reset in a sane state (interrupts and DMA disabled), and placed in
840 * mode @mode. Go through PS2 mode if needed.
842 static void parport_ip32_set_mode(struct parport *p, unsigned int mode)
844 unsigned int omode;
846 mode &= ECR_MODE_MASK;
847 omode = parport_ip32_read_econtrol(p) & ECR_MODE_MASK;
849 if (!(mode == ECR_MODE_SPP || mode == ECR_MODE_PS2
850 || omode == ECR_MODE_SPP || omode == ECR_MODE_PS2)) {
851 /* We have to go through PS2 mode */
852 unsigned int ecr = ECR_MODE_PS2 | ECR_nERRINTR | ECR_SERVINTR;
853 parport_ip32_write_econtrol(p, ecr);
855 parport_ip32_write_econtrol(p, mode | ECR_nERRINTR | ECR_SERVINTR);
858 /*--- Basic functions needed for parport -------------------------------*/
861 * parport_ip32_read_data - return current contents of the DATA register
862 * @p: pointer to &struct parport
864 static inline unsigned char parport_ip32_read_data(struct parport *p)
866 struct parport_ip32_private * const priv = p->physport->private_data;
867 return readb(priv->regs.data);
871 * parport_ip32_write_data - set new contents for the DATA register
872 * @p: pointer to &struct parport
873 * @d: new value to write
875 static inline void parport_ip32_write_data(struct parport *p, unsigned char d)
877 struct parport_ip32_private * const priv = p->physport->private_data;
878 writeb(d, priv->regs.data);
882 * parport_ip32_read_status - return current contents of the DSR register
883 * @p: pointer to &struct parport
885 static inline unsigned char parport_ip32_read_status(struct parport *p)
887 struct parport_ip32_private * const priv = p->physport->private_data;
888 return readb(priv->regs.dsr);
892 * __parport_ip32_read_control - return cached contents of the DCR register
893 * @p: pointer to &struct parport
895 static inline unsigned int __parport_ip32_read_control(struct parport *p)
897 struct parport_ip32_private * const priv = p->physport->private_data;
898 return priv->dcr_cache; /* use soft copy */
902 * __parport_ip32_write_control - set new contents for the DCR register
903 * @p: pointer to &struct parport
904 * @c: new value to write
906 static inline void __parport_ip32_write_control(struct parport *p,
907 unsigned int c)
909 struct parport_ip32_private * const priv = p->physport->private_data;
910 CHECK_EXTRA_BITS(p, c, priv->dcr_writable);
911 c &= priv->dcr_writable; /* only writable bits */
912 writeb(c, priv->regs.dcr);
913 priv->dcr_cache = c; /* update soft copy */
917 * __parport_ip32_frob_control - change bits from the DCR register
918 * @p: pointer to &struct parport
919 * @mask: bit mask of bits to change
920 * @val: new value for changed bits
922 * This is equivalent to read from the DCR, mask out the bits in @mask,
923 * exclusive-or with the bits in @val, and write the result to the DCR.
924 * Actually, the cached contents of the DCR is used.
926 static inline void __parport_ip32_frob_control(struct parport *p,
927 unsigned int mask,
928 unsigned int val)
930 unsigned int c;
931 c = (__parport_ip32_read_control(p) & ~mask) ^ val;
932 __parport_ip32_write_control(p, c);
936 * parport_ip32_read_control - return cached contents of the DCR register
937 * @p: pointer to &struct parport
939 * The return value is masked so as to only return the value of %DCR_STROBE,
940 * %DCR_AUTOFD, %DCR_nINIT, and %DCR_SELECT.
942 static inline unsigned char parport_ip32_read_control(struct parport *p)
944 const unsigned int rm =
945 DCR_STROBE | DCR_AUTOFD | DCR_nINIT | DCR_SELECT;
946 return __parport_ip32_read_control(p) & rm;
950 * parport_ip32_write_control - set new contents for the DCR register
951 * @p: pointer to &struct parport
952 * @c: new value to write
954 * The value is masked so as to only change the value of %DCR_STROBE,
955 * %DCR_AUTOFD, %DCR_nINIT, and %DCR_SELECT.
957 static inline void parport_ip32_write_control(struct parport *p,
958 unsigned char c)
960 const unsigned int wm =
961 DCR_STROBE | DCR_AUTOFD | DCR_nINIT | DCR_SELECT;
962 CHECK_EXTRA_BITS(p, c, wm);
963 __parport_ip32_frob_control(p, wm, c & wm);
967 * parport_ip32_frob_control - change bits from the DCR register
968 * @p: pointer to &struct parport
969 * @mask: bit mask of bits to change
970 * @val: new value for changed bits
972 * This differs from __parport_ip32_frob_control() in that it only allows to
973 * change the value of %DCR_STROBE, %DCR_AUTOFD, %DCR_nINIT, and %DCR_SELECT.
975 static inline unsigned char parport_ip32_frob_control(struct parport *p,
976 unsigned char mask,
977 unsigned char val)
979 const unsigned int wm =
980 DCR_STROBE | DCR_AUTOFD | DCR_nINIT | DCR_SELECT;
981 CHECK_EXTRA_BITS(p, mask, wm);
982 CHECK_EXTRA_BITS(p, val, wm);
983 __parport_ip32_frob_control(p, mask & wm, val & wm);
984 return parport_ip32_read_control(p);
988 * parport_ip32_disable_irq - disable interrupts on the rising edge of nACK
989 * @p: pointer to &struct parport
991 static inline void parport_ip32_disable_irq(struct parport *p)
993 __parport_ip32_frob_control(p, DCR_IRQ, 0);
997 * parport_ip32_enable_irq - enable interrupts on the rising edge of nACK
998 * @p: pointer to &struct parport
1000 static inline void parport_ip32_enable_irq(struct parport *p)
1002 __parport_ip32_frob_control(p, DCR_IRQ, DCR_IRQ);
1006 * parport_ip32_data_forward - enable host-to-peripheral communications
1007 * @p: pointer to &struct parport
1009 * Enable the data line drivers, for 8-bit host-to-peripheral communications.
1011 static inline void parport_ip32_data_forward(struct parport *p)
1013 __parport_ip32_frob_control(p, DCR_DIR, 0);
1017 * parport_ip32_data_reverse - enable peripheral-to-host communications
1018 * @p: pointer to &struct parport
1020 * Place the data bus in a high impedance state, if @p->modes has the
1021 * PARPORT_MODE_TRISTATE bit set.
1023 static inline void parport_ip32_data_reverse(struct parport *p)
1025 __parport_ip32_frob_control(p, DCR_DIR, DCR_DIR);
1029 * parport_ip32_init_state - for core parport code
1030 * @dev: pointer to &struct pardevice
1031 * @s: pointer to &struct parport_state to initialize
1033 static void parport_ip32_init_state(struct pardevice *dev,
1034 struct parport_state *s)
1036 s->u.ip32.dcr = DCR_SELECT | DCR_nINIT;
1037 s->u.ip32.ecr = ECR_MODE_PS2 | ECR_nERRINTR | ECR_SERVINTR;
1041 * parport_ip32_save_state - for core parport code
1042 * @p: pointer to &struct parport
1043 * @s: pointer to &struct parport_state to save state to
1045 static void parport_ip32_save_state(struct parport *p,
1046 struct parport_state *s)
1048 s->u.ip32.dcr = __parport_ip32_read_control(p);
1049 s->u.ip32.ecr = parport_ip32_read_econtrol(p);
1053 * parport_ip32_restore_state - for core parport code
1054 * @p: pointer to &struct parport
1055 * @s: pointer to &struct parport_state to restore state from
1057 static void parport_ip32_restore_state(struct parport *p,
1058 struct parport_state *s)
1060 parport_ip32_set_mode(p, s->u.ip32.ecr & ECR_MODE_MASK);
1061 parport_ip32_write_econtrol(p, s->u.ip32.ecr);
1062 __parport_ip32_write_control(p, s->u.ip32.dcr);
1065 /*--- EPP mode functions -----------------------------------------------*/
1068 * parport_ip32_clear_epp_timeout - clear Timeout bit in EPP mode
1069 * @p: pointer to &struct parport
1071 * Returns 1 if the Timeout bit is clear, and 0 otherwise.
1073 static unsigned int parport_ip32_clear_epp_timeout(struct parport *p)
1075 struct parport_ip32_private * const priv = p->physport->private_data;
1076 unsigned int cleared;
1078 if (!(parport_ip32_read_status(p) & DSR_TIMEOUT))
1079 cleared = 1;
1080 else {
1081 unsigned int r;
1082 /* To clear timeout some chips require double read */
1083 parport_ip32_read_status(p);
1084 r = parport_ip32_read_status(p);
1085 /* Some reset by writing 1 */
1086 writeb(r | DSR_TIMEOUT, priv->regs.dsr);
1087 /* Others by writing 0 */
1088 writeb(r & ~DSR_TIMEOUT, priv->regs.dsr);
1090 r = parport_ip32_read_status(p);
1091 cleared = !(r & DSR_TIMEOUT);
1094 pr_trace(p, "(): %s", cleared ? "cleared" : "failed");
1095 return cleared;
1099 * parport_ip32_epp_read - generic EPP read function
1100 * @eppreg: I/O register to read from
1101 * @p: pointer to &struct parport
1102 * @buf: buffer to store read data
1103 * @len: length of buffer @buf
1104 * @flags: may be PARPORT_EPP_FAST
1106 static size_t parport_ip32_epp_read(void __iomem *eppreg,
1107 struct parport *p, void *buf,
1108 size_t len, int flags)
1110 struct parport_ip32_private * const priv = p->physport->private_data;
1111 size_t got;
1112 parport_ip32_set_mode(p, ECR_MODE_EPP);
1113 parport_ip32_data_reverse(p);
1114 parport_ip32_write_control(p, DCR_nINIT);
1115 if ((flags & PARPORT_EPP_FAST) && (len > 1)) {
1116 readsb(eppreg, buf, len);
1117 if (readb(priv->regs.dsr) & DSR_TIMEOUT) {
1118 parport_ip32_clear_epp_timeout(p);
1119 return -EIO;
1121 got = len;
1122 } else {
1123 u8 *bufp = buf;
1124 for (got = 0; got < len; got++) {
1125 *bufp++ = readb(eppreg);
1126 if (readb(priv->regs.dsr) & DSR_TIMEOUT) {
1127 parport_ip32_clear_epp_timeout(p);
1128 break;
1132 parport_ip32_data_forward(p);
1133 parport_ip32_set_mode(p, ECR_MODE_PS2);
1134 return got;
1138 * parport_ip32_epp_write - generic EPP write function
1139 * @eppreg: I/O register to write to
1140 * @p: pointer to &struct parport
1141 * @buf: buffer of data to write
1142 * @len: length of buffer @buf
1143 * @flags: may be PARPORT_EPP_FAST
1145 static size_t parport_ip32_epp_write(void __iomem *eppreg,
1146 struct parport *p, const void *buf,
1147 size_t len, int flags)
1149 struct parport_ip32_private * const priv = p->physport->private_data;
1150 size_t written;
1151 parport_ip32_set_mode(p, ECR_MODE_EPP);
1152 parport_ip32_data_forward(p);
1153 parport_ip32_write_control(p, DCR_nINIT);
1154 if ((flags & PARPORT_EPP_FAST) && (len > 1)) {
1155 writesb(eppreg, buf, len);
1156 if (readb(priv->regs.dsr) & DSR_TIMEOUT) {
1157 parport_ip32_clear_epp_timeout(p);
1158 return -EIO;
1160 written = len;
1161 } else {
1162 const u8 *bufp = buf;
1163 for (written = 0; written < len; written++) {
1164 writeb(*bufp++, eppreg);
1165 if (readb(priv->regs.dsr) & DSR_TIMEOUT) {
1166 parport_ip32_clear_epp_timeout(p);
1167 break;
1171 parport_ip32_set_mode(p, ECR_MODE_PS2);
1172 return written;
1176 * parport_ip32_epp_read_data - read a block of data in EPP mode
1177 * @p: pointer to &struct parport
1178 * @buf: buffer to store read data
1179 * @len: length of buffer @buf
1180 * @flags: may be PARPORT_EPP_FAST
1182 static size_t parport_ip32_epp_read_data(struct parport *p, void *buf,
1183 size_t len, int flags)
1185 struct parport_ip32_private * const priv = p->physport->private_data;
1186 return parport_ip32_epp_read(priv->regs.eppData0, p, buf, len, flags);
1190 * parport_ip32_epp_write_data - write a block of data in EPP mode
1191 * @p: pointer to &struct parport
1192 * @buf: buffer of data to write
1193 * @len: length of buffer @buf
1194 * @flags: may be PARPORT_EPP_FAST
1196 static size_t parport_ip32_epp_write_data(struct parport *p, const void *buf,
1197 size_t len, int flags)
1199 struct parport_ip32_private * const priv = p->physport->private_data;
1200 return parport_ip32_epp_write(priv->regs.eppData0, p, buf, len, flags);
1204 * parport_ip32_epp_read_addr - read a block of addresses in EPP mode
1205 * @p: pointer to &struct parport
1206 * @buf: buffer to store read data
1207 * @len: length of buffer @buf
1208 * @flags: may be PARPORT_EPP_FAST
1210 static size_t parport_ip32_epp_read_addr(struct parport *p, void *buf,
1211 size_t len, int flags)
1213 struct parport_ip32_private * const priv = p->physport->private_data;
1214 return parport_ip32_epp_read(priv->regs.eppAddr, p, buf, len, flags);
1218 * parport_ip32_epp_write_addr - write a block of addresses in EPP mode
1219 * @p: pointer to &struct parport
1220 * @buf: buffer of data to write
1221 * @len: length of buffer @buf
1222 * @flags: may be PARPORT_EPP_FAST
1224 static size_t parport_ip32_epp_write_addr(struct parport *p, const void *buf,
1225 size_t len, int flags)
1227 struct parport_ip32_private * const priv = p->physport->private_data;
1228 return parport_ip32_epp_write(priv->regs.eppAddr, p, buf, len, flags);
1231 /*--- ECP mode functions (FIFO) ----------------------------------------*/
1234 * parport_ip32_fifo_wait_break - check if the waiting function should return
1235 * @p: pointer to &struct parport
1236 * @expire: timeout expiring date, in jiffies
1238 * parport_ip32_fifo_wait_break() checks if the waiting function should return
1239 * immediately or not. The break conditions are:
1240 * - expired timeout;
1241 * - a pending signal;
1242 * - nFault asserted low.
1243 * This function also calls cond_resched().
1245 static unsigned int parport_ip32_fifo_wait_break(struct parport *p,
1246 unsigned long expire)
1248 cond_resched();
1249 if (time_after(jiffies, expire)) {
1250 pr_debug1(PPIP32 "%s: FIFO write timed out\n", p->name);
1251 return 1;
1253 if (signal_pending(current)) {
1254 pr_debug1(PPIP32 "%s: Signal pending\n", p->name);
1255 return 1;
1257 if (!(parport_ip32_read_status(p) & DSR_nFAULT)) {
1258 pr_debug1(PPIP32 "%s: nFault asserted low\n", p->name);
1259 return 1;
1261 return 0;
1265 * parport_ip32_fwp_wait_polling - wait for FIFO to empty (polling)
1266 * @p: pointer to &struct parport
1268 * Returns the number of bytes that can safely be written in the FIFO. A
1269 * return value of zero means that the calling function should terminate as
1270 * fast as possible.
1272 static unsigned int parport_ip32_fwp_wait_polling(struct parport *p)
1274 struct parport_ip32_private * const priv = p->physport->private_data;
1275 struct parport * const physport = p->physport;
1276 unsigned long expire;
1277 unsigned int count;
1278 unsigned int ecr;
1280 expire = jiffies + physport->cad->timeout;
1281 count = 0;
1282 while (1) {
1283 if (parport_ip32_fifo_wait_break(p, expire))
1284 break;
1286 /* Check FIFO state. We do nothing when the FIFO is nor full,
1287 * nor empty. It appears that the FIFO full bit is not always
1288 * reliable, the FIFO state is sometimes wrongly reported, and
1289 * the chip gets confused if we give it another byte. */
1290 ecr = parport_ip32_read_econtrol(p);
1291 if (ecr & ECR_F_EMPTY) {
1292 /* FIFO is empty, fill it up */
1293 count = priv->fifo_depth;
1294 break;
1297 /* Wait a moment... */
1298 udelay(FIFO_POLLING_INTERVAL);
1299 } /* while (1) */
1301 return count;
1305 * parport_ip32_fwp_wait_interrupt - wait for FIFO to empty (interrupt-driven)
1306 * @p: pointer to &struct parport
1308 * Returns the number of bytes that can safely be written in the FIFO. A
1309 * return value of zero means that the calling function should terminate as
1310 * fast as possible.
1312 static unsigned int parport_ip32_fwp_wait_interrupt(struct parport *p)
1314 static unsigned int lost_interrupt = 0;
1315 struct parport_ip32_private * const priv = p->physport->private_data;
1316 struct parport * const physport = p->physport;
1317 unsigned long nfault_timeout;
1318 unsigned long expire;
1319 unsigned int count;
1320 unsigned int ecr;
1322 nfault_timeout = min((unsigned long)physport->cad->timeout,
1323 msecs_to_jiffies(FIFO_NFAULT_TIMEOUT));
1324 expire = jiffies + physport->cad->timeout;
1325 count = 0;
1326 while (1) {
1327 if (parport_ip32_fifo_wait_break(p, expire))
1328 break;
1330 /* Initialize mutex used to take interrupts into account */
1331 INIT_COMPLETION(priv->irq_complete);
1333 /* Enable serviceIntr */
1334 parport_ip32_frob_econtrol(p, ECR_SERVINTR, 0);
1336 /* Enabling serviceIntr while the FIFO is empty does not
1337 * always generate an interrupt, so check for emptiness
1338 * now. */
1339 ecr = parport_ip32_read_econtrol(p);
1340 if (!(ecr & ECR_F_EMPTY)) {
1341 /* FIFO is not empty: wait for an interrupt or a
1342 * timeout to occur */
1343 wait_for_completion_interruptible_timeout(
1344 &priv->irq_complete, nfault_timeout);
1345 ecr = parport_ip32_read_econtrol(p);
1346 if ((ecr & ECR_F_EMPTY) && !(ecr & ECR_SERVINTR)
1347 && !lost_interrupt) {
1348 printk(KERN_WARNING PPIP32
1349 "%s: lost interrupt in %s\n",
1350 p->name, __func__);
1351 lost_interrupt = 1;
1355 /* Disable serviceIntr */
1356 parport_ip32_frob_econtrol(p, ECR_SERVINTR, ECR_SERVINTR);
1358 /* Check FIFO state */
1359 if (ecr & ECR_F_EMPTY) {
1360 /* FIFO is empty, fill it up */
1361 count = priv->fifo_depth;
1362 break;
1363 } else if (ecr & ECR_SERVINTR) {
1364 /* FIFO is not empty, but we know that can safely push
1365 * writeIntrThreshold bytes into it */
1366 count = priv->writeIntrThreshold;
1367 break;
1369 /* FIFO is not empty, and we did not get any interrupt.
1370 * Either it's time to check for nFault, or a signal is
1371 * pending. This is verified in
1372 * parport_ip32_fifo_wait_break(), so we continue the loop. */
1373 } /* while (1) */
1375 return count;
1379 * parport_ip32_fifo_write_block_pio - write a block of data (PIO mode)
1380 * @p: pointer to &struct parport
1381 * @buf: buffer of data to write
1382 * @len: length of buffer @buf
1384 * Uses PIO to write the contents of the buffer @buf into the parallel port
1385 * FIFO. Returns the number of bytes that were actually written. It can work
1386 * with or without the help of interrupts. The parallel port must be
1387 * correctly initialized before calling parport_ip32_fifo_write_block_pio().
1389 static size_t parport_ip32_fifo_write_block_pio(struct parport *p,
1390 const void *buf, size_t len)
1392 struct parport_ip32_private * const priv = p->physport->private_data;
1393 const u8 *bufp = buf;
1394 size_t left = len;
1396 priv->irq_mode = PARPORT_IP32_IRQ_HERE;
1398 while (left > 0) {
1399 unsigned int count;
1401 count = (p->irq == PARPORT_IRQ_NONE) ?
1402 parport_ip32_fwp_wait_polling(p) :
1403 parport_ip32_fwp_wait_interrupt(p);
1404 if (count == 0)
1405 break; /* Transmission should be stopped */
1406 if (count > left)
1407 count = left;
1408 if (count == 1) {
1409 writeb(*bufp, priv->regs.fifo);
1410 bufp++, left--;
1411 } else {
1412 writesb(priv->regs.fifo, bufp, count);
1413 bufp += count, left -= count;
1417 priv->irq_mode = PARPORT_IP32_IRQ_FWD;
1419 return len - left;
1423 * parport_ip32_fifo_write_block_dma - write a block of data (DMA mode)
1424 * @p: pointer to &struct parport
1425 * @buf: buffer of data to write
1426 * @len: length of buffer @buf
1428 * Uses DMA to write the contents of the buffer @buf into the parallel port
1429 * FIFO. Returns the number of bytes that were actually written. The
1430 * parallel port must be correctly initialized before calling
1431 * parport_ip32_fifo_write_block_dma().
1433 static size_t parport_ip32_fifo_write_block_dma(struct parport *p,
1434 const void *buf, size_t len)
1436 struct parport_ip32_private * const priv = p->physport->private_data;
1437 struct parport * const physport = p->physport;
1438 unsigned long nfault_timeout;
1439 unsigned long expire;
1440 size_t written;
1441 unsigned int ecr;
1443 priv->irq_mode = PARPORT_IP32_IRQ_HERE;
1445 parport_ip32_dma_start(DMA_TO_DEVICE, (void *)buf, len);
1446 INIT_COMPLETION(priv->irq_complete);
1447 parport_ip32_frob_econtrol(p, ECR_DMAEN | ECR_SERVINTR, ECR_DMAEN);
1449 nfault_timeout = min((unsigned long)physport->cad->timeout,
1450 msecs_to_jiffies(FIFO_NFAULT_TIMEOUT));
1451 expire = jiffies + physport->cad->timeout;
1452 while (1) {
1453 if (parport_ip32_fifo_wait_break(p, expire))
1454 break;
1455 wait_for_completion_interruptible_timeout(&priv->irq_complete,
1456 nfault_timeout);
1457 ecr = parport_ip32_read_econtrol(p);
1458 if (ecr & ECR_SERVINTR)
1459 break; /* DMA transfer just finished */
1461 parport_ip32_dma_stop();
1462 written = len - parport_ip32_dma_get_residue();
1464 priv->irq_mode = PARPORT_IP32_IRQ_FWD;
1466 return written;
1470 * parport_ip32_fifo_write_block - write a block of data
1471 * @p: pointer to &struct parport
1472 * @buf: buffer of data to write
1473 * @len: length of buffer @buf
1475 * Uses PIO or DMA to write the contents of the buffer @buf into the parallel
1476 * p FIFO. Returns the number of bytes that were actually written.
1478 static size_t parport_ip32_fifo_write_block(struct parport *p,
1479 const void *buf, size_t len)
1481 size_t written = 0;
1482 if (len)
1483 /* FIXME - Maybe some threshold value should be set for @len
1484 * under which we revert to PIO mode? */
1485 written = (p->modes & PARPORT_MODE_DMA) ?
1486 parport_ip32_fifo_write_block_dma(p, buf, len) :
1487 parport_ip32_fifo_write_block_pio(p, buf, len);
1488 return written;
1492 * parport_ip32_drain_fifo - wait for FIFO to empty
1493 * @p: pointer to &struct parport
1494 * @timeout: timeout, in jiffies
1496 * This function waits for FIFO to empty. It returns 1 when FIFO is empty, or
1497 * 0 if the timeout @timeout is reached before, or if a signal is pending.
1499 static unsigned int parport_ip32_drain_fifo(struct parport *p,
1500 unsigned long timeout)
1502 unsigned long expire = jiffies + timeout;
1503 unsigned int polling_interval;
1504 unsigned int counter;
1506 /* Busy wait for approx. 200us */
1507 for (counter = 0; counter < 40; counter++) {
1508 if (parport_ip32_read_econtrol(p) & ECR_F_EMPTY)
1509 break;
1510 if (time_after(jiffies, expire))
1511 break;
1512 if (signal_pending(current))
1513 break;
1514 udelay(5);
1516 /* Poll slowly. Polling interval starts with 1 millisecond, and is
1517 * increased exponentially until 128. */
1518 polling_interval = 1; /* msecs */
1519 while (!(parport_ip32_read_econtrol(p) & ECR_F_EMPTY)) {
1520 if (time_after_eq(jiffies, expire))
1521 break;
1522 msleep_interruptible(polling_interval);
1523 if (signal_pending(current))
1524 break;
1525 if (polling_interval < 128)
1526 polling_interval *= 2;
1529 return !!(parport_ip32_read_econtrol(p) & ECR_F_EMPTY);
1533 * parport_ip32_get_fifo_residue - reset FIFO
1534 * @p: pointer to &struct parport
1535 * @mode: current operation mode (ECR_MODE_PPF or ECR_MODE_ECP)
1537 * This function resets FIFO, and returns the number of bytes remaining in it.
1539 static unsigned int parport_ip32_get_fifo_residue(struct parport *p,
1540 unsigned int mode)
1542 struct parport_ip32_private * const priv = p->physport->private_data;
1543 unsigned int residue;
1544 unsigned int cnfga;
1546 /* FIXME - We are missing one byte if the printer is off-line. I
1547 * don't know how to detect this. It looks that the full bit is not
1548 * always reliable. For the moment, the problem is avoided in most
1549 * cases by testing for BUSY in parport_ip32_compat_write_data().
1551 if (parport_ip32_read_econtrol(p) & ECR_F_EMPTY)
1552 residue = 0;
1553 else {
1554 pr_debug1(PPIP32 "%s: FIFO is stuck\n", p->name);
1556 /* Stop all transfers.
1558 * Microsoft's document instructs to drive DCR_STROBE to 0,
1559 * but it doesn't work (at least in Compatibility mode, not
1560 * tested in ECP mode). Switching directly to Test mode (as
1561 * in parport_pc) is not an option: it does confuse the port,
1562 * ECP service interrupts are no more working after that. A
1563 * hard reset is then needed to revert to a sane state.
1565 * Let's hope that the FIFO is really stuck and that the
1566 * peripheral doesn't wake up now.
1568 parport_ip32_frob_control(p, DCR_STROBE, 0);
1570 /* Fill up FIFO */
1571 for (residue = priv->fifo_depth; residue > 0; residue--) {
1572 if (parport_ip32_read_econtrol(p) & ECR_F_FULL)
1573 break;
1574 writeb(0x00, priv->regs.fifo);
1577 if (residue)
1578 pr_debug1(PPIP32 "%s: %d PWord%s left in FIFO\n",
1579 p->name, residue,
1580 (residue == 1) ? " was" : "s were");
1582 /* Now reset the FIFO */
1583 parport_ip32_set_mode(p, ECR_MODE_PS2);
1585 /* Host recovery for ECP mode */
1586 if (mode == ECR_MODE_ECP) {
1587 parport_ip32_data_reverse(p);
1588 parport_ip32_frob_control(p, DCR_nINIT, 0);
1589 if (parport_wait_peripheral(p, DSR_PERROR, 0))
1590 pr_debug1(PPIP32 "%s: PEerror timeout 1 in %s\n",
1591 p->name, __func__);
1592 parport_ip32_frob_control(p, DCR_STROBE, DCR_STROBE);
1593 parport_ip32_frob_control(p, DCR_nINIT, DCR_nINIT);
1594 if (parport_wait_peripheral(p, DSR_PERROR, DSR_PERROR))
1595 pr_debug1(PPIP32 "%s: PEerror timeout 2 in %s\n",
1596 p->name, __func__);
1599 /* Adjust residue if needed */
1600 parport_ip32_set_mode(p, ECR_MODE_CFG);
1601 cnfga = readb(priv->regs.cnfgA);
1602 if (!(cnfga & CNFGA_nBYTEINTRANS)) {
1603 pr_debug1(PPIP32 "%s: cnfgA contains 0x%02x\n",
1604 p->name, cnfga);
1605 pr_debug1(PPIP32 "%s: Accounting for extra byte\n",
1606 p->name);
1607 residue++;
1610 /* Don't care about partial PWords since we do not support
1611 * PWord != 1 byte. */
1613 /* Back to forward PS2 mode. */
1614 parport_ip32_set_mode(p, ECR_MODE_PS2);
1615 parport_ip32_data_forward(p);
1617 return residue;
1621 * parport_ip32_compat_write_data - write a block of data in SPP mode
1622 * @p: pointer to &struct parport
1623 * @buf: buffer of data to write
1624 * @len: length of buffer @buf
1625 * @flags: ignored
1627 static size_t parport_ip32_compat_write_data(struct parport *p,
1628 const void *buf, size_t len,
1629 int flags)
1631 static unsigned int ready_before = 1;
1632 struct parport_ip32_private * const priv = p->physport->private_data;
1633 struct parport * const physport = p->physport;
1634 size_t written = 0;
1636 /* Special case: a timeout of zero means we cannot call schedule().
1637 * Also if O_NONBLOCK is set then use the default implementation. */
1638 if (physport->cad->timeout <= PARPORT_INACTIVITY_O_NONBLOCK)
1639 return parport_ieee1284_write_compat(p, buf, len, flags);
1641 /* Reset FIFO, go in forward mode, and disable ackIntEn */
1642 parport_ip32_set_mode(p, ECR_MODE_PS2);
1643 parport_ip32_write_control(p, DCR_SELECT | DCR_nINIT);
1644 parport_ip32_data_forward(p);
1645 parport_ip32_disable_irq(p);
1646 parport_ip32_set_mode(p, ECR_MODE_PPF);
1647 physport->ieee1284.phase = IEEE1284_PH_FWD_DATA;
1649 /* Wait for peripheral to become ready */
1650 if (parport_wait_peripheral(p, DSR_nBUSY | DSR_nFAULT,
1651 DSR_nBUSY | DSR_nFAULT)) {
1652 /* Avoid to flood the logs */
1653 if (ready_before)
1654 printk(KERN_INFO PPIP32 "%s: not ready in %s\n",
1655 p->name, __func__);
1656 ready_before = 0;
1657 goto stop;
1659 ready_before = 1;
1661 written = parport_ip32_fifo_write_block(p, buf, len);
1663 /* Wait FIFO to empty. Timeout is proportional to FIFO_depth. */
1664 parport_ip32_drain_fifo(p, physport->cad->timeout * priv->fifo_depth);
1666 /* Check for a potential residue */
1667 written -= parport_ip32_get_fifo_residue(p, ECR_MODE_PPF);
1669 /* Then, wait for BUSY to get low. */
1670 if (parport_wait_peripheral(p, DSR_nBUSY, DSR_nBUSY))
1671 printk(KERN_DEBUG PPIP32 "%s: BUSY timeout in %s\n",
1672 p->name, __func__);
1674 stop:
1675 /* Reset FIFO */
1676 parport_ip32_set_mode(p, ECR_MODE_PS2);
1677 physport->ieee1284.phase = IEEE1284_PH_FWD_IDLE;
1679 return written;
1683 * FIXME - Insert here parport_ip32_ecp_read_data().
1687 * parport_ip32_ecp_write_data - write a block of data in ECP mode
1688 * @p: pointer to &struct parport
1689 * @buf: buffer of data to write
1690 * @len: length of buffer @buf
1691 * @flags: ignored
1693 static size_t parport_ip32_ecp_write_data(struct parport *p,
1694 const void *buf, size_t len,
1695 int flags)
1697 static unsigned int ready_before = 1;
1698 struct parport_ip32_private * const priv = p->physport->private_data;
1699 struct parport * const physport = p->physport;
1700 size_t written = 0;
1702 /* Special case: a timeout of zero means we cannot call schedule().
1703 * Also if O_NONBLOCK is set then use the default implementation. */
1704 if (physport->cad->timeout <= PARPORT_INACTIVITY_O_NONBLOCK)
1705 return parport_ieee1284_ecp_write_data(p, buf, len, flags);
1707 /* Negotiate to forward mode if necessary. */
1708 if (physport->ieee1284.phase != IEEE1284_PH_FWD_IDLE) {
1709 /* Event 47: Set nInit high. */
1710 parport_ip32_frob_control(p, DCR_nINIT | DCR_AUTOFD,
1711 DCR_nINIT | DCR_AUTOFD);
1713 /* Event 49: PError goes high. */
1714 if (parport_wait_peripheral(p, DSR_PERROR, DSR_PERROR)) {
1715 printk(KERN_DEBUG PPIP32 "%s: PError timeout in %s",
1716 p->name, __func__);
1717 physport->ieee1284.phase = IEEE1284_PH_ECP_DIR_UNKNOWN;
1718 return 0;
1722 /* Reset FIFO, go in forward mode, and disable ackIntEn */
1723 parport_ip32_set_mode(p, ECR_MODE_PS2);
1724 parport_ip32_write_control(p, DCR_SELECT | DCR_nINIT);
1725 parport_ip32_data_forward(p);
1726 parport_ip32_disable_irq(p);
1727 parport_ip32_set_mode(p, ECR_MODE_ECP);
1728 physport->ieee1284.phase = IEEE1284_PH_FWD_DATA;
1730 /* Wait for peripheral to become ready */
1731 if (parport_wait_peripheral(p, DSR_nBUSY | DSR_nFAULT,
1732 DSR_nBUSY | DSR_nFAULT)) {
1733 /* Avoid to flood the logs */
1734 if (ready_before)
1735 printk(KERN_INFO PPIP32 "%s: not ready in %s\n",
1736 p->name, __func__);
1737 ready_before = 0;
1738 goto stop;
1740 ready_before = 1;
1742 written = parport_ip32_fifo_write_block(p, buf, len);
1744 /* Wait FIFO to empty. Timeout is proportional to FIFO_depth. */
1745 parport_ip32_drain_fifo(p, physport->cad->timeout * priv->fifo_depth);
1747 /* Check for a potential residue */
1748 written -= parport_ip32_get_fifo_residue(p, ECR_MODE_ECP);
1750 /* Then, wait for BUSY to get low. */
1751 if (parport_wait_peripheral(p, DSR_nBUSY, DSR_nBUSY))
1752 printk(KERN_DEBUG PPIP32 "%s: BUSY timeout in %s\n",
1753 p->name, __func__);
1755 stop:
1756 /* Reset FIFO */
1757 parport_ip32_set_mode(p, ECR_MODE_PS2);
1758 physport->ieee1284.phase = IEEE1284_PH_FWD_IDLE;
1760 return written;
1764 * FIXME - Insert here parport_ip32_ecp_write_addr().
1767 /*--- Default parport operations ---------------------------------------*/
1769 static __initdata struct parport_operations parport_ip32_ops = {
1770 .write_data = parport_ip32_write_data,
1771 .read_data = parport_ip32_read_data,
1773 .write_control = parport_ip32_write_control,
1774 .read_control = parport_ip32_read_control,
1775 .frob_control = parport_ip32_frob_control,
1777 .read_status = parport_ip32_read_status,
1779 .enable_irq = parport_ip32_enable_irq,
1780 .disable_irq = parport_ip32_disable_irq,
1782 .data_forward = parport_ip32_data_forward,
1783 .data_reverse = parport_ip32_data_reverse,
1785 .init_state = parport_ip32_init_state,
1786 .save_state = parport_ip32_save_state,
1787 .restore_state = parport_ip32_restore_state,
1789 .epp_write_data = parport_ieee1284_epp_write_data,
1790 .epp_read_data = parport_ieee1284_epp_read_data,
1791 .epp_write_addr = parport_ieee1284_epp_write_addr,
1792 .epp_read_addr = parport_ieee1284_epp_read_addr,
1794 .ecp_write_data = parport_ieee1284_ecp_write_data,
1795 .ecp_read_data = parport_ieee1284_ecp_read_data,
1796 .ecp_write_addr = parport_ieee1284_ecp_write_addr,
1798 .compat_write_data = parport_ieee1284_write_compat,
1799 .nibble_read_data = parport_ieee1284_read_nibble,
1800 .byte_read_data = parport_ieee1284_read_byte,
1802 .owner = THIS_MODULE,
1805 /*--- Device detection -------------------------------------------------*/
1808 * parport_ip32_ecp_supported - check for an ECP port
1809 * @p: pointer to the &parport structure
1811 * Returns 1 if an ECP port is found, and 0 otherwise. This function actually
1812 * checks if an Extended Control Register seems to be present. On successful
1813 * return, the port is placed in SPP mode.
1815 static __init unsigned int parport_ip32_ecp_supported(struct parport *p)
1817 struct parport_ip32_private * const priv = p->physport->private_data;
1818 unsigned int ecr;
1820 ecr = ECR_MODE_PS2 | ECR_nERRINTR | ECR_SERVINTR;
1821 writeb(ecr, priv->regs.ecr);
1822 if (readb(priv->regs.ecr) != (ecr | ECR_F_EMPTY))
1823 goto fail;
1825 pr_probe(p, "Found working ECR register\n");
1826 parport_ip32_set_mode(p, ECR_MODE_SPP);
1827 parport_ip32_write_control(p, DCR_SELECT | DCR_nINIT);
1828 return 1;
1830 fail:
1831 pr_probe(p, "ECR register not found\n");
1832 return 0;
1836 * parport_ip32_fifo_supported - check for FIFO parameters
1837 * @p: pointer to the &parport structure
1839 * Check for FIFO parameters of an Extended Capabilities Port. Returns 1 on
1840 * success, and 0 otherwise. Adjust FIFO parameters in the parport structure.
1841 * On return, the port is placed in SPP mode.
1843 static __init unsigned int parport_ip32_fifo_supported(struct parport *p)
1845 struct parport_ip32_private * const priv = p->physport->private_data;
1846 unsigned int configa, configb;
1847 unsigned int pword;
1848 unsigned int i;
1850 /* Configuration mode */
1851 parport_ip32_set_mode(p, ECR_MODE_CFG);
1852 configa = readb(priv->regs.cnfgA);
1853 configb = readb(priv->regs.cnfgB);
1855 /* Find out PWord size */
1856 switch (configa & CNFGA_ID_MASK) {
1857 case CNFGA_ID_8:
1858 pword = 1;
1859 break;
1860 case CNFGA_ID_16:
1861 pword = 2;
1862 break;
1863 case CNFGA_ID_32:
1864 pword = 4;
1865 break;
1866 default:
1867 pr_probe(p, "Unknown implementation ID: 0x%0x\n",
1868 (configa & CNFGA_ID_MASK) >> CNFGA_ID_SHIFT);
1869 goto fail;
1870 break;
1872 if (pword != 1) {
1873 pr_probe(p, "Unsupported PWord size: %u\n", pword);
1874 goto fail;
1876 priv->pword = pword;
1877 pr_probe(p, "PWord is %u bits\n", 8 * priv->pword);
1879 /* Check for compression support */
1880 writeb(configb | CNFGB_COMPRESS, priv->regs.cnfgB);
1881 if (readb(priv->regs.cnfgB) & CNFGB_COMPRESS)
1882 pr_probe(p, "Hardware compression detected (unsupported)\n");
1883 writeb(configb & ~CNFGB_COMPRESS, priv->regs.cnfgB);
1885 /* Reset FIFO and go in test mode (no interrupt, no DMA) */
1886 parport_ip32_set_mode(p, ECR_MODE_TST);
1888 /* FIFO must be empty now */
1889 if (!(readb(priv->regs.ecr) & ECR_F_EMPTY)) {
1890 pr_probe(p, "FIFO not reset\n");
1891 goto fail;
1894 /* Find out FIFO depth. */
1895 priv->fifo_depth = 0;
1896 for (i = 0; i < 1024; i++) {
1897 if (readb(priv->regs.ecr) & ECR_F_FULL) {
1898 /* FIFO full */
1899 priv->fifo_depth = i;
1900 break;
1902 writeb((u8)i, priv->regs.fifo);
1904 if (i >= 1024) {
1905 pr_probe(p, "Can't fill FIFO\n");
1906 goto fail;
1908 if (!priv->fifo_depth) {
1909 pr_probe(p, "Can't get FIFO depth\n");
1910 goto fail;
1912 pr_probe(p, "FIFO is %u PWords deep\n", priv->fifo_depth);
1914 /* Enable interrupts */
1915 parport_ip32_frob_econtrol(p, ECR_SERVINTR, 0);
1917 /* Find out writeIntrThreshold: number of PWords we know we can write
1918 * if we get an interrupt. */
1919 priv->writeIntrThreshold = 0;
1920 for (i = 0; i < priv->fifo_depth; i++) {
1921 if (readb(priv->regs.fifo) != (u8)i) {
1922 pr_probe(p, "Invalid data in FIFO\n");
1923 goto fail;
1925 if (!priv->writeIntrThreshold
1926 && readb(priv->regs.ecr) & ECR_SERVINTR)
1927 /* writeIntrThreshold reached */
1928 priv->writeIntrThreshold = i + 1;
1929 if (i + 1 < priv->fifo_depth
1930 && readb(priv->regs.ecr) & ECR_F_EMPTY) {
1931 /* FIFO empty before the last byte? */
1932 pr_probe(p, "Data lost in FIFO\n");
1933 goto fail;
1936 if (!priv->writeIntrThreshold) {
1937 pr_probe(p, "Can't get writeIntrThreshold\n");
1938 goto fail;
1940 pr_probe(p, "writeIntrThreshold is %u\n", priv->writeIntrThreshold);
1942 /* FIFO must be empty now */
1943 if (!(readb(priv->regs.ecr) & ECR_F_EMPTY)) {
1944 pr_probe(p, "Can't empty FIFO\n");
1945 goto fail;
1948 /* Reset FIFO */
1949 parport_ip32_set_mode(p, ECR_MODE_PS2);
1950 /* Set reverse direction (must be in PS2 mode) */
1951 parport_ip32_data_reverse(p);
1952 /* Test FIFO, no interrupt, no DMA */
1953 parport_ip32_set_mode(p, ECR_MODE_TST);
1954 /* Enable interrupts */
1955 parport_ip32_frob_econtrol(p, ECR_SERVINTR, 0);
1957 /* Find out readIntrThreshold: number of PWords we can read if we get
1958 * an interrupt. */
1959 priv->readIntrThreshold = 0;
1960 for (i = 0; i < priv->fifo_depth; i++) {
1961 writeb(0xaa, priv->regs.fifo);
1962 if (readb(priv->regs.ecr) & ECR_SERVINTR) {
1963 /* readIntrThreshold reached */
1964 priv->readIntrThreshold = i + 1;
1965 break;
1968 if (!priv->readIntrThreshold) {
1969 pr_probe(p, "Can't get readIntrThreshold\n");
1970 goto fail;
1972 pr_probe(p, "readIntrThreshold is %u\n", priv->readIntrThreshold);
1974 /* Reset ECR */
1975 parport_ip32_set_mode(p, ECR_MODE_PS2);
1976 parport_ip32_data_forward(p);
1977 parport_ip32_set_mode(p, ECR_MODE_SPP);
1978 return 1;
1980 fail:
1981 priv->fifo_depth = 0;
1982 parport_ip32_set_mode(p, ECR_MODE_SPP);
1983 return 0;
1986 /*--- Initialization code ----------------------------------------------*/
1989 * parport_ip32_make_isa_registers - compute (ISA) register addresses
1990 * @regs: pointer to &struct parport_ip32_regs to fill
1991 * @base: base address of standard and EPP registers
1992 * @base_hi: base address of ECP registers
1993 * @regshift: how much to shift register offset by
1995 * Compute register addresses, according to the ISA standard. The addresses
1996 * of the standard and EPP registers are computed from address @base. The
1997 * addresses of the ECP registers are computed from address @base_hi.
1999 static void __init
2000 parport_ip32_make_isa_registers(struct parport_ip32_regs *regs,
2001 void __iomem *base, void __iomem *base_hi,
2002 unsigned int regshift)
2004 #define r_base(offset) ((u8 __iomem *)base + ((offset) << regshift))
2005 #define r_base_hi(offset) ((u8 __iomem *)base_hi + ((offset) << regshift))
2006 *regs = (struct parport_ip32_regs){
2007 .data = r_base(0),
2008 .dsr = r_base(1),
2009 .dcr = r_base(2),
2010 .eppAddr = r_base(3),
2011 .eppData0 = r_base(4),
2012 .eppData1 = r_base(5),
2013 .eppData2 = r_base(6),
2014 .eppData3 = r_base(7),
2015 .ecpAFifo = r_base(0),
2016 .fifo = r_base_hi(0),
2017 .cnfgA = r_base_hi(0),
2018 .cnfgB = r_base_hi(1),
2019 .ecr = r_base_hi(2)
2021 #undef r_base_hi
2022 #undef r_base
2026 * parport_ip32_probe_port - probe and register IP32 built-in parallel port
2028 * Returns the new allocated &parport structure. On error, an error code is
2029 * encoded in return value with the ERR_PTR function.
2031 static __init struct parport *parport_ip32_probe_port(void)
2033 struct parport_ip32_regs regs;
2034 struct parport_ip32_private *priv = NULL;
2035 struct parport_operations *ops = NULL;
2036 struct parport *p = NULL;
2037 int err;
2039 parport_ip32_make_isa_registers(&regs, &mace->isa.parallel,
2040 &mace->isa.ecp1284, 8 /* regshift */);
2042 ops = kmalloc(sizeof(struct parport_operations), GFP_KERNEL);
2043 priv = kmalloc(sizeof(struct parport_ip32_private), GFP_KERNEL);
2044 p = parport_register_port(0, PARPORT_IRQ_NONE, PARPORT_DMA_NONE, ops);
2045 if (ops == NULL || priv == NULL || p == NULL) {
2046 err = -ENOMEM;
2047 goto fail;
2049 p->base = MACE_BASE + offsetof(struct sgi_mace, isa.parallel);
2050 p->base_hi = MACE_BASE + offsetof(struct sgi_mace, isa.ecp1284);
2051 p->private_data = priv;
2053 *ops = parport_ip32_ops;
2054 *priv = (struct parport_ip32_private){
2055 .regs = regs,
2056 .dcr_writable = DCR_DIR | DCR_SELECT | DCR_nINIT |
2057 DCR_AUTOFD | DCR_STROBE,
2058 .irq_mode = PARPORT_IP32_IRQ_FWD,
2060 init_completion(&priv->irq_complete);
2062 /* Probe port. */
2063 if (!parport_ip32_ecp_supported(p)) {
2064 err = -ENODEV;
2065 goto fail;
2067 parport_ip32_dump_state(p, "begin init", 0);
2069 /* We found what looks like a working ECR register. Simply assume
2070 * that all modes are correctly supported. Enable basic modes. */
2071 p->modes = PARPORT_MODE_PCSPP | PARPORT_MODE_SAFEININT;
2072 p->modes |= PARPORT_MODE_TRISTATE;
2074 if (!parport_ip32_fifo_supported(p)) {
2075 printk(KERN_WARNING PPIP32
2076 "%s: error: FIFO disabled\n", p->name);
2077 /* Disable hardware modes depending on a working FIFO. */
2078 features &= ~PARPORT_IP32_ENABLE_SPP;
2079 features &= ~PARPORT_IP32_ENABLE_ECP;
2080 /* DMA is not needed if FIFO is not supported. */
2081 features &= ~PARPORT_IP32_ENABLE_DMA;
2084 /* Request IRQ */
2085 if (features & PARPORT_IP32_ENABLE_IRQ) {
2086 int irq = MACEISA_PARALLEL_IRQ;
2087 if (request_irq(irq, parport_ip32_interrupt, 0, p->name, p)) {
2088 printk(KERN_WARNING PPIP32
2089 "%s: error: IRQ disabled\n", p->name);
2090 /* DMA cannot work without interrupts. */
2091 features &= ~PARPORT_IP32_ENABLE_DMA;
2092 } else {
2093 pr_probe(p, "Interrupt support enabled\n");
2094 p->irq = irq;
2095 priv->dcr_writable |= DCR_IRQ;
2099 /* Allocate DMA resources */
2100 if (features & PARPORT_IP32_ENABLE_DMA) {
2101 if (parport_ip32_dma_register())
2102 printk(KERN_WARNING PPIP32
2103 "%s: error: DMA disabled\n", p->name);
2104 else {
2105 pr_probe(p, "DMA support enabled\n");
2106 p->dma = 0; /* arbitrary value != PARPORT_DMA_NONE */
2107 p->modes |= PARPORT_MODE_DMA;
2111 if (features & PARPORT_IP32_ENABLE_SPP) {
2112 /* Enable compatibility FIFO mode */
2113 p->ops->compat_write_data = parport_ip32_compat_write_data;
2114 p->modes |= PARPORT_MODE_COMPAT;
2115 pr_probe(p, "Hardware support for SPP mode enabled\n");
2117 if (features & PARPORT_IP32_ENABLE_EPP) {
2118 /* Set up access functions to use EPP hardware. */
2119 p->ops->epp_read_data = parport_ip32_epp_read_data;
2120 p->ops->epp_write_data = parport_ip32_epp_write_data;
2121 p->ops->epp_read_addr = parport_ip32_epp_read_addr;
2122 p->ops->epp_write_addr = parport_ip32_epp_write_addr;
2123 p->modes |= PARPORT_MODE_EPP;
2124 pr_probe(p, "Hardware support for EPP mode enabled\n");
2126 if (features & PARPORT_IP32_ENABLE_ECP) {
2127 /* Enable ECP FIFO mode */
2128 p->ops->ecp_write_data = parport_ip32_ecp_write_data;
2129 /* FIXME - not implemented */
2130 /* p->ops->ecp_read_data = parport_ip32_ecp_read_data; */
2131 /* p->ops->ecp_write_addr = parport_ip32_ecp_write_addr; */
2132 p->modes |= PARPORT_MODE_ECP;
2133 pr_probe(p, "Hardware support for ECP mode enabled\n");
2136 /* Initialize the port with sensible values */
2137 parport_ip32_set_mode(p, ECR_MODE_PS2);
2138 parport_ip32_write_control(p, DCR_SELECT | DCR_nINIT);
2139 parport_ip32_data_forward(p);
2140 parport_ip32_disable_irq(p);
2141 parport_ip32_write_data(p, 0x00);
2142 parport_ip32_dump_state(p, "end init", 0);
2144 /* Print out what we found */
2145 printk(KERN_INFO "%s: SGI IP32 at 0x%lx (0x%lx)",
2146 p->name, p->base, p->base_hi);
2147 if (p->irq != PARPORT_IRQ_NONE)
2148 printk(", irq %d", p->irq);
2149 printk(" [");
2150 #define printmode(x) if (p->modes & PARPORT_MODE_##x) \
2151 printk("%s%s", f++ ? "," : "", #x)
2153 unsigned int f = 0;
2154 printmode(PCSPP);
2155 printmode(TRISTATE);
2156 printmode(COMPAT);
2157 printmode(EPP);
2158 printmode(ECP);
2159 printmode(DMA);
2161 #undef printmode
2162 printk("]\n");
2164 parport_announce_port(p);
2165 return p;
2167 fail:
2168 if (p)
2169 parport_put_port(p);
2170 kfree(priv);
2171 kfree(ops);
2172 return ERR_PTR(err);
2176 * parport_ip32_unregister_port - unregister a parallel port
2177 * @p: pointer to the &struct parport
2179 * Unregisters a parallel port and free previously allocated resources
2180 * (memory, IRQ, ...).
2182 static __exit void parport_ip32_unregister_port(struct parport *p)
2184 struct parport_ip32_private * const priv = p->physport->private_data;
2185 struct parport_operations *ops = p->ops;
2187 parport_remove_port(p);
2188 if (p->modes & PARPORT_MODE_DMA)
2189 parport_ip32_dma_unregister();
2190 if (p->irq != PARPORT_IRQ_NONE)
2191 free_irq(p->irq, p);
2192 parport_put_port(p);
2193 kfree(priv);
2194 kfree(ops);
2198 * parport_ip32_init - module initialization function
2200 static int __init parport_ip32_init(void)
2202 pr_info(PPIP32 "SGI IP32 built-in parallel port driver v0.6\n");
2203 pr_debug1(PPIP32 "Compiled on %s, %s\n", __DATE__, __TIME__);
2204 this_port = parport_ip32_probe_port();
2205 return IS_ERR(this_port) ? PTR_ERR(this_port) : 0;
2209 * parport_ip32_exit - module termination function
2211 static void __exit parport_ip32_exit(void)
2213 parport_ip32_unregister_port(this_port);
2216 /*--- Module stuff -----------------------------------------------------*/
2218 MODULE_AUTHOR("Arnaud Giersch <arnaud.giersch@free.fr>");
2219 MODULE_DESCRIPTION("SGI IP32 built-in parallel port driver");
2220 MODULE_LICENSE("GPL");
2221 MODULE_VERSION("0.6"); /* update in parport_ip32_init() too */
2223 module_init(parport_ip32_init);
2224 module_exit(parport_ip32_exit);
2226 module_param(verbose_probing, bool, S_IRUGO);
2227 MODULE_PARM_DESC(verbose_probing, "Log chit-chat during initialization");
2229 module_param(features, uint, S_IRUGO);
2230 MODULE_PARM_DESC(features,
2231 "Bit mask of features to enable"
2232 ", bit 0: IRQ support"
2233 ", bit 1: DMA support"
2234 ", bit 2: hardware SPP mode"
2235 ", bit 3: hardware EPP mode"
2236 ", bit 4: hardware ECP mode");
2238 /*--- Inform (X)Emacs about preferred coding style ---------------------*/
2240 * Local Variables:
2241 * mode: c
2242 * c-file-style: "linux"
2243 * indent-tabs-mode: t
2244 * tab-width: 8
2245 * fill-column: 78
2246 * ispell-local-dictionary: "american"
2247 * End: