Merge tag 'v2.6.25-rc6' of git://git.kernel.org/pub/scm/linux/kernel/git/torvalds...
[linux-2.6/linux-mips/linux-dm7025.git] / kernel / posix-timers.c
bloba9b04203a66d217096aab486069995c24757788c
1 /*
2 * linux/kernel/posix-timers.c
5 * 2002-10-15 Posix Clocks & timers
6 * by George Anzinger george@mvista.com
8 * Copyright (C) 2002 2003 by MontaVista Software.
10 * 2004-06-01 Fix CLOCK_REALTIME clock/timer TIMER_ABSTIME bug.
11 * Copyright (C) 2004 Boris Hu
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or (at
16 * your option) any later version.
18 * This program is distributed in the hope that it will be useful, but
19 * WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
21 * General Public License for more details.
23 * You should have received a copy of the GNU General Public License
24 * along with this program; if not, write to the Free Software
25 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
27 * MontaVista Software | 1237 East Arques Avenue | Sunnyvale | CA 94085 | USA
30 /* These are all the functions necessary to implement
31 * POSIX clocks & timers
33 #include <linux/mm.h>
34 #include <linux/interrupt.h>
35 #include <linux/slab.h>
36 #include <linux/time.h>
37 #include <linux/mutex.h>
39 #include <asm/uaccess.h>
40 #include <asm/semaphore.h>
41 #include <linux/list.h>
42 #include <linux/init.h>
43 #include <linux/compiler.h>
44 #include <linux/idr.h>
45 #include <linux/posix-timers.h>
46 #include <linux/syscalls.h>
47 #include <linux/wait.h>
48 #include <linux/workqueue.h>
49 #include <linux/module.h>
52 * Management arrays for POSIX timers. Timers are kept in slab memory
53 * Timer ids are allocated by an external routine that keeps track of the
54 * id and the timer. The external interface is:
56 * void *idr_find(struct idr *idp, int id); to find timer_id <id>
57 * int idr_get_new(struct idr *idp, void *ptr); to get a new id and
58 * related it to <ptr>
59 * void idr_remove(struct idr *idp, int id); to release <id>
60 * void idr_init(struct idr *idp); to initialize <idp>
61 * which we supply.
62 * The idr_get_new *may* call slab for more memory so it must not be
63 * called under a spin lock. Likewise idr_remore may release memory
64 * (but it may be ok to do this under a lock...).
65 * idr_find is just a memory look up and is quite fast. A -1 return
66 * indicates that the requested id does not exist.
70 * Lets keep our timers in a slab cache :-)
72 static struct kmem_cache *posix_timers_cache;
73 static struct idr posix_timers_id;
74 static DEFINE_SPINLOCK(idr_lock);
77 * we assume that the new SIGEV_THREAD_ID shares no bits with the other
78 * SIGEV values. Here we put out an error if this assumption fails.
80 #if SIGEV_THREAD_ID != (SIGEV_THREAD_ID & \
81 ~(SIGEV_SIGNAL | SIGEV_NONE | SIGEV_THREAD))
82 #error "SIGEV_THREAD_ID must not share bit with other SIGEV values!"
83 #endif
87 * The timer ID is turned into a timer address by idr_find().
88 * Verifying a valid ID consists of:
90 * a) checking that idr_find() returns other than -1.
91 * b) checking that the timer id matches the one in the timer itself.
92 * c) that the timer owner is in the callers thread group.
96 * CLOCKs: The POSIX standard calls for a couple of clocks and allows us
97 * to implement others. This structure defines the various
98 * clocks and allows the possibility of adding others. We
99 * provide an interface to add clocks to the table and expect
100 * the "arch" code to add at least one clock that is high
101 * resolution. Here we define the standard CLOCK_REALTIME as a
102 * 1/HZ resolution clock.
104 * RESOLUTION: Clock resolution is used to round up timer and interval
105 * times, NOT to report clock times, which are reported with as
106 * much resolution as the system can muster. In some cases this
107 * resolution may depend on the underlying clock hardware and
108 * may not be quantifiable until run time, and only then is the
109 * necessary code is written. The standard says we should say
110 * something about this issue in the documentation...
112 * FUNCTIONS: The CLOCKs structure defines possible functions to handle
113 * various clock functions. For clocks that use the standard
114 * system timer code these entries should be NULL. This will
115 * allow dispatch without the overhead of indirect function
116 * calls. CLOCKS that depend on other sources (e.g. WWV or GPS)
117 * must supply functions here, even if the function just returns
118 * ENOSYS. The standard POSIX timer management code assumes the
119 * following: 1.) The k_itimer struct (sched.h) is used for the
120 * timer. 2.) The list, it_lock, it_clock, it_id and it_process
121 * fields are not modified by timer code.
123 * At this time all functions EXCEPT clock_nanosleep can be
124 * redirected by the CLOCKS structure. Clock_nanosleep is in
125 * there, but the code ignores it.
127 * Permissions: It is assumed that the clock_settime() function defined
128 * for each clock will take care of permission checks. Some
129 * clocks may be set able by any user (i.e. local process
130 * clocks) others not. Currently the only set able clock we
131 * have is CLOCK_REALTIME and its high res counter part, both of
132 * which we beg off on and pass to do_sys_settimeofday().
135 static struct k_clock posix_clocks[MAX_CLOCKS];
138 * These ones are defined below.
140 static int common_nsleep(const clockid_t, int flags, struct timespec *t,
141 struct timespec __user *rmtp);
142 static void common_timer_get(struct k_itimer *, struct itimerspec *);
143 static int common_timer_set(struct k_itimer *, int,
144 struct itimerspec *, struct itimerspec *);
145 static int common_timer_del(struct k_itimer *timer);
147 static enum hrtimer_restart posix_timer_fn(struct hrtimer *data);
149 static struct k_itimer *lock_timer(timer_t timer_id, unsigned long *flags);
151 static inline void unlock_timer(struct k_itimer *timr, unsigned long flags)
153 spin_unlock_irqrestore(&timr->it_lock, flags);
157 * Call the k_clock hook function if non-null, or the default function.
159 #define CLOCK_DISPATCH(clock, call, arglist) \
160 ((clock) < 0 ? posix_cpu_##call arglist : \
161 (posix_clocks[clock].call != NULL \
162 ? (*posix_clocks[clock].call) arglist : common_##call arglist))
165 * Default clock hook functions when the struct k_clock passed
166 * to register_posix_clock leaves a function pointer null.
168 * The function common_CALL is the default implementation for
169 * the function pointer CALL in struct k_clock.
172 static inline int common_clock_getres(const clockid_t which_clock,
173 struct timespec *tp)
175 tp->tv_sec = 0;
176 tp->tv_nsec = posix_clocks[which_clock].res;
177 return 0;
181 * Get real time for posix timers
183 static int common_clock_get(clockid_t which_clock, struct timespec *tp)
185 ktime_get_real_ts(tp);
186 return 0;
189 static inline int common_clock_set(const clockid_t which_clock,
190 struct timespec *tp)
192 return do_sys_settimeofday(tp, NULL);
195 static int common_timer_create(struct k_itimer *new_timer)
197 hrtimer_init(&new_timer->it.real.timer, new_timer->it_clock, 0);
198 return 0;
202 * Return nonzero if we know a priori this clockid_t value is bogus.
204 static inline int invalid_clockid(const clockid_t which_clock)
206 if (which_clock < 0) /* CPU clock, posix_cpu_* will check it */
207 return 0;
208 if ((unsigned) which_clock >= MAX_CLOCKS)
209 return 1;
210 if (posix_clocks[which_clock].clock_getres != NULL)
211 return 0;
212 if (posix_clocks[which_clock].res != 0)
213 return 0;
214 return 1;
218 * Get monotonic time for posix timers
220 static int posix_ktime_get_ts(clockid_t which_clock, struct timespec *tp)
222 ktime_get_ts(tp);
223 return 0;
227 * Initialize everything, well, just everything in Posix clocks/timers ;)
229 static __init int init_posix_timers(void)
231 struct k_clock clock_realtime = {
232 .clock_getres = hrtimer_get_res,
234 struct k_clock clock_monotonic = {
235 .clock_getres = hrtimer_get_res,
236 .clock_get = posix_ktime_get_ts,
237 .clock_set = do_posix_clock_nosettime,
240 register_posix_clock(CLOCK_REALTIME, &clock_realtime);
241 register_posix_clock(CLOCK_MONOTONIC, &clock_monotonic);
243 posix_timers_cache = kmem_cache_create("posix_timers_cache",
244 sizeof (struct k_itimer), 0, SLAB_PANIC,
245 NULL);
246 idr_init(&posix_timers_id);
247 return 0;
250 __initcall(init_posix_timers);
252 static void schedule_next_timer(struct k_itimer *timr)
254 struct hrtimer *timer = &timr->it.real.timer;
256 if (timr->it.real.interval.tv64 == 0)
257 return;
259 timr->it_overrun += (unsigned int) hrtimer_forward(timer,
260 timer->base->get_time(),
261 timr->it.real.interval);
263 timr->it_overrun_last = timr->it_overrun;
264 timr->it_overrun = -1;
265 ++timr->it_requeue_pending;
266 hrtimer_restart(timer);
270 * This function is exported for use by the signal deliver code. It is
271 * called just prior to the info block being released and passes that
272 * block to us. It's function is to update the overrun entry AND to
273 * restart the timer. It should only be called if the timer is to be
274 * restarted (i.e. we have flagged this in the sys_private entry of the
275 * info block).
277 * To protect aginst the timer going away while the interrupt is queued,
278 * we require that the it_requeue_pending flag be set.
280 void do_schedule_next_timer(struct siginfo *info)
282 struct k_itimer *timr;
283 unsigned long flags;
285 timr = lock_timer(info->si_tid, &flags);
287 if (timr && timr->it_requeue_pending == info->si_sys_private) {
288 if (timr->it_clock < 0)
289 posix_cpu_timer_schedule(timr);
290 else
291 schedule_next_timer(timr);
293 info->si_overrun = timr->it_overrun_last;
296 if (timr)
297 unlock_timer(timr, flags);
300 int posix_timer_event(struct k_itimer *timr,int si_private)
302 memset(&timr->sigq->info, 0, sizeof(siginfo_t));
303 timr->sigq->info.si_sys_private = si_private;
304 /* Send signal to the process that owns this timer.*/
306 timr->sigq->info.si_signo = timr->it_sigev_signo;
307 timr->sigq->info.si_errno = 0;
308 timr->sigq->info.si_code = SI_TIMER;
309 timr->sigq->info.si_tid = timr->it_id;
310 timr->sigq->info.si_value = timr->it_sigev_value;
312 if (timr->it_sigev_notify & SIGEV_THREAD_ID) {
313 struct task_struct *leader;
314 int ret = send_sigqueue(timr->it_sigev_signo, timr->sigq,
315 timr->it_process);
317 if (likely(ret >= 0))
318 return ret;
320 timr->it_sigev_notify = SIGEV_SIGNAL;
321 leader = timr->it_process->group_leader;
322 put_task_struct(timr->it_process);
323 timr->it_process = leader;
326 return send_group_sigqueue(timr->it_sigev_signo, timr->sigq,
327 timr->it_process);
329 EXPORT_SYMBOL_GPL(posix_timer_event);
332 * This function gets called when a POSIX.1b interval timer expires. It
333 * is used as a callback from the kernel internal timer. The
334 * run_timer_list code ALWAYS calls with interrupts on.
336 * This code is for CLOCK_REALTIME* and CLOCK_MONOTONIC* timers.
338 static enum hrtimer_restart posix_timer_fn(struct hrtimer *timer)
340 struct k_itimer *timr;
341 unsigned long flags;
342 int si_private = 0;
343 enum hrtimer_restart ret = HRTIMER_NORESTART;
345 timr = container_of(timer, struct k_itimer, it.real.timer);
346 spin_lock_irqsave(&timr->it_lock, flags);
348 if (timr->it.real.interval.tv64 != 0)
349 si_private = ++timr->it_requeue_pending;
351 if (posix_timer_event(timr, si_private)) {
353 * signal was not sent because of sig_ignor
354 * we will not get a call back to restart it AND
355 * it should be restarted.
357 if (timr->it.real.interval.tv64 != 0) {
358 ktime_t now = hrtimer_cb_get_time(timer);
361 * FIXME: What we really want, is to stop this
362 * timer completely and restart it in case the
363 * SIG_IGN is removed. This is a non trivial
364 * change which involves sighand locking
365 * (sigh !), which we don't want to do late in
366 * the release cycle.
368 * For now we just let timers with an interval
369 * less than a jiffie expire every jiffie to
370 * avoid softirq starvation in case of SIG_IGN
371 * and a very small interval, which would put
372 * the timer right back on the softirq pending
373 * list. By moving now ahead of time we trick
374 * hrtimer_forward() to expire the timer
375 * later, while we still maintain the overrun
376 * accuracy, but have some inconsistency in
377 * the timer_gettime() case. This is at least
378 * better than a starved softirq. A more
379 * complex fix which solves also another related
380 * inconsistency is already in the pipeline.
382 #ifdef CONFIG_HIGH_RES_TIMERS
384 ktime_t kj = ktime_set(0, NSEC_PER_SEC / HZ);
386 if (timr->it.real.interval.tv64 < kj.tv64)
387 now = ktime_add(now, kj);
389 #endif
390 timr->it_overrun += (unsigned int)
391 hrtimer_forward(timer, now,
392 timr->it.real.interval);
393 ret = HRTIMER_RESTART;
394 ++timr->it_requeue_pending;
398 unlock_timer(timr, flags);
399 return ret;
402 static struct task_struct * good_sigevent(sigevent_t * event)
404 struct task_struct *rtn = current->group_leader;
406 if ((event->sigev_notify & SIGEV_THREAD_ID ) &&
407 (!(rtn = find_task_by_vpid(event->sigev_notify_thread_id)) ||
408 !same_thread_group(rtn, current) ||
409 (event->sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_SIGNAL))
410 return NULL;
412 if (((event->sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE) &&
413 ((event->sigev_signo <= 0) || (event->sigev_signo > SIGRTMAX)))
414 return NULL;
416 return rtn;
419 void register_posix_clock(const clockid_t clock_id, struct k_clock *new_clock)
421 if ((unsigned) clock_id >= MAX_CLOCKS) {
422 printk("POSIX clock register failed for clock_id %d\n",
423 clock_id);
424 return;
427 posix_clocks[clock_id] = *new_clock;
429 EXPORT_SYMBOL_GPL(register_posix_clock);
431 static struct k_itimer * alloc_posix_timer(void)
433 struct k_itimer *tmr;
434 tmr = kmem_cache_zalloc(posix_timers_cache, GFP_KERNEL);
435 if (!tmr)
436 return tmr;
437 if (unlikely(!(tmr->sigq = sigqueue_alloc()))) {
438 kmem_cache_free(posix_timers_cache, tmr);
439 tmr = NULL;
441 return tmr;
444 #define IT_ID_SET 1
445 #define IT_ID_NOT_SET 0
446 static void release_posix_timer(struct k_itimer *tmr, int it_id_set)
448 if (it_id_set) {
449 unsigned long flags;
450 spin_lock_irqsave(&idr_lock, flags);
451 idr_remove(&posix_timers_id, tmr->it_id);
452 spin_unlock_irqrestore(&idr_lock, flags);
454 sigqueue_free(tmr->sigq);
455 if (unlikely(tmr->it_process) &&
456 tmr->it_sigev_notify == (SIGEV_SIGNAL|SIGEV_THREAD_ID))
457 put_task_struct(tmr->it_process);
458 kmem_cache_free(posix_timers_cache, tmr);
461 /* Create a POSIX.1b interval timer. */
463 asmlinkage long
464 sys_timer_create(const clockid_t which_clock,
465 struct sigevent __user *timer_event_spec,
466 timer_t __user * created_timer_id)
468 int error = 0;
469 struct k_itimer *new_timer = NULL;
470 int new_timer_id;
471 struct task_struct *process = NULL;
472 unsigned long flags;
473 sigevent_t event;
474 int it_id_set = IT_ID_NOT_SET;
476 if (invalid_clockid(which_clock))
477 return -EINVAL;
479 new_timer = alloc_posix_timer();
480 if (unlikely(!new_timer))
481 return -EAGAIN;
483 spin_lock_init(&new_timer->it_lock);
484 retry:
485 if (unlikely(!idr_pre_get(&posix_timers_id, GFP_KERNEL))) {
486 error = -EAGAIN;
487 goto out;
489 spin_lock_irq(&idr_lock);
490 error = idr_get_new(&posix_timers_id, (void *) new_timer,
491 &new_timer_id);
492 spin_unlock_irq(&idr_lock);
493 if (error == -EAGAIN)
494 goto retry;
495 else if (error) {
497 * Weird looking, but we return EAGAIN if the IDR is
498 * full (proper POSIX return value for this)
500 error = -EAGAIN;
501 goto out;
504 it_id_set = IT_ID_SET;
505 new_timer->it_id = (timer_t) new_timer_id;
506 new_timer->it_clock = which_clock;
507 new_timer->it_overrun = -1;
508 error = CLOCK_DISPATCH(which_clock, timer_create, (new_timer));
509 if (error)
510 goto out;
513 * return the timer_id now. The next step is hard to
514 * back out if there is an error.
516 if (copy_to_user(created_timer_id,
517 &new_timer_id, sizeof (new_timer_id))) {
518 error = -EFAULT;
519 goto out;
521 if (timer_event_spec) {
522 if (copy_from_user(&event, timer_event_spec, sizeof (event))) {
523 error = -EFAULT;
524 goto out;
526 new_timer->it_sigev_notify = event.sigev_notify;
527 new_timer->it_sigev_signo = event.sigev_signo;
528 new_timer->it_sigev_value = event.sigev_value;
530 read_lock(&tasklist_lock);
531 if ((process = good_sigevent(&event))) {
533 * We may be setting up this process for another
534 * thread. It may be exiting. To catch this
535 * case the we check the PF_EXITING flag. If
536 * the flag is not set, the siglock will catch
537 * him before it is too late (in exit_itimers).
539 * The exec case is a bit more invloved but easy
540 * to code. If the process is in our thread
541 * group (and it must be or we would not allow
542 * it here) and is doing an exec, it will cause
543 * us to be killed. In this case it will wait
544 * for us to die which means we can finish this
545 * linkage with our last gasp. I.e. no code :)
547 spin_lock_irqsave(&process->sighand->siglock, flags);
548 if (!(process->flags & PF_EXITING)) {
549 new_timer->it_process = process;
550 list_add(&new_timer->list,
551 &process->signal->posix_timers);
552 if (new_timer->it_sigev_notify == (SIGEV_SIGNAL|SIGEV_THREAD_ID))
553 get_task_struct(process);
554 spin_unlock_irqrestore(&process->sighand->siglock, flags);
555 } else {
556 spin_unlock_irqrestore(&process->sighand->siglock, flags);
557 process = NULL;
560 read_unlock(&tasklist_lock);
561 if (!process) {
562 error = -EINVAL;
563 goto out;
565 } else {
566 new_timer->it_sigev_notify = SIGEV_SIGNAL;
567 new_timer->it_sigev_signo = SIGALRM;
568 new_timer->it_sigev_value.sival_int = new_timer->it_id;
569 process = current->group_leader;
570 spin_lock_irqsave(&process->sighand->siglock, flags);
571 new_timer->it_process = process;
572 list_add(&new_timer->list, &process->signal->posix_timers);
573 spin_unlock_irqrestore(&process->sighand->siglock, flags);
577 * In the case of the timer belonging to another task, after
578 * the task is unlocked, the timer is owned by the other task
579 * and may cease to exist at any time. Don't use or modify
580 * new_timer after the unlock call.
583 out:
584 if (error)
585 release_posix_timer(new_timer, it_id_set);
587 return error;
591 * Locking issues: We need to protect the result of the id look up until
592 * we get the timer locked down so it is not deleted under us. The
593 * removal is done under the idr spinlock so we use that here to bridge
594 * the find to the timer lock. To avoid a dead lock, the timer id MUST
595 * be release with out holding the timer lock.
597 static struct k_itimer * lock_timer(timer_t timer_id, unsigned long *flags)
599 struct k_itimer *timr;
601 * Watch out here. We do a irqsave on the idr_lock and pass the
602 * flags part over to the timer lock. Must not let interrupts in
603 * while we are moving the lock.
606 spin_lock_irqsave(&idr_lock, *flags);
607 timr = (struct k_itimer *) idr_find(&posix_timers_id, (int) timer_id);
608 if (timr) {
609 spin_lock(&timr->it_lock);
611 if ((timr->it_id != timer_id) || !(timr->it_process) ||
612 !same_thread_group(timr->it_process, current)) {
613 spin_unlock(&timr->it_lock);
614 spin_unlock_irqrestore(&idr_lock, *flags);
615 timr = NULL;
616 } else
617 spin_unlock(&idr_lock);
618 } else
619 spin_unlock_irqrestore(&idr_lock, *flags);
621 return timr;
625 * Get the time remaining on a POSIX.1b interval timer. This function
626 * is ALWAYS called with spin_lock_irq on the timer, thus it must not
627 * mess with irq.
629 * We have a couple of messes to clean up here. First there is the case
630 * of a timer that has a requeue pending. These timers should appear to
631 * be in the timer list with an expiry as if we were to requeue them
632 * now.
634 * The second issue is the SIGEV_NONE timer which may be active but is
635 * not really ever put in the timer list (to save system resources).
636 * This timer may be expired, and if so, we will do it here. Otherwise
637 * it is the same as a requeue pending timer WRT to what we should
638 * report.
640 static void
641 common_timer_get(struct k_itimer *timr, struct itimerspec *cur_setting)
643 ktime_t now, remaining, iv;
644 struct hrtimer *timer = &timr->it.real.timer;
646 memset(cur_setting, 0, sizeof(struct itimerspec));
648 iv = timr->it.real.interval;
650 /* interval timer ? */
651 if (iv.tv64)
652 cur_setting->it_interval = ktime_to_timespec(iv);
653 else if (!hrtimer_active(timer) &&
654 (timr->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE)
655 return;
657 now = timer->base->get_time();
660 * When a requeue is pending or this is a SIGEV_NONE
661 * timer move the expiry time forward by intervals, so
662 * expiry is > now.
664 if (iv.tv64 && (timr->it_requeue_pending & REQUEUE_PENDING ||
665 (timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE))
666 timr->it_overrun += (unsigned int) hrtimer_forward(timer, now, iv);
668 remaining = ktime_sub(timer->expires, now);
669 /* Return 0 only, when the timer is expired and not pending */
670 if (remaining.tv64 <= 0) {
672 * A single shot SIGEV_NONE timer must return 0, when
673 * it is expired !
675 if ((timr->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE)
676 cur_setting->it_value.tv_nsec = 1;
677 } else
678 cur_setting->it_value = ktime_to_timespec(remaining);
681 /* Get the time remaining on a POSIX.1b interval timer. */
682 asmlinkage long
683 sys_timer_gettime(timer_t timer_id, struct itimerspec __user *setting)
685 struct k_itimer *timr;
686 struct itimerspec cur_setting;
687 unsigned long flags;
689 timr = lock_timer(timer_id, &flags);
690 if (!timr)
691 return -EINVAL;
693 CLOCK_DISPATCH(timr->it_clock, timer_get, (timr, &cur_setting));
695 unlock_timer(timr, flags);
697 if (copy_to_user(setting, &cur_setting, sizeof (cur_setting)))
698 return -EFAULT;
700 return 0;
704 * Get the number of overruns of a POSIX.1b interval timer. This is to
705 * be the overrun of the timer last delivered. At the same time we are
706 * accumulating overruns on the next timer. The overrun is frozen when
707 * the signal is delivered, either at the notify time (if the info block
708 * is not queued) or at the actual delivery time (as we are informed by
709 * the call back to do_schedule_next_timer(). So all we need to do is
710 * to pick up the frozen overrun.
712 asmlinkage long
713 sys_timer_getoverrun(timer_t timer_id)
715 struct k_itimer *timr;
716 int overrun;
717 unsigned long flags;
719 timr = lock_timer(timer_id, &flags);
720 if (!timr)
721 return -EINVAL;
723 overrun = timr->it_overrun_last;
724 unlock_timer(timr, flags);
726 return overrun;
729 /* Set a POSIX.1b interval timer. */
730 /* timr->it_lock is taken. */
731 static int
732 common_timer_set(struct k_itimer *timr, int flags,
733 struct itimerspec *new_setting, struct itimerspec *old_setting)
735 struct hrtimer *timer = &timr->it.real.timer;
736 enum hrtimer_mode mode;
738 if (old_setting)
739 common_timer_get(timr, old_setting);
741 /* disable the timer */
742 timr->it.real.interval.tv64 = 0;
744 * careful here. If smp we could be in the "fire" routine which will
745 * be spinning as we hold the lock. But this is ONLY an SMP issue.
747 if (hrtimer_try_to_cancel(timer) < 0)
748 return TIMER_RETRY;
750 timr->it_requeue_pending = (timr->it_requeue_pending + 2) &
751 ~REQUEUE_PENDING;
752 timr->it_overrun_last = 0;
754 /* switch off the timer when it_value is zero */
755 if (!new_setting->it_value.tv_sec && !new_setting->it_value.tv_nsec)
756 return 0;
758 mode = flags & TIMER_ABSTIME ? HRTIMER_MODE_ABS : HRTIMER_MODE_REL;
759 hrtimer_init(&timr->it.real.timer, timr->it_clock, mode);
760 timr->it.real.timer.function = posix_timer_fn;
762 timer->expires = timespec_to_ktime(new_setting->it_value);
764 /* Convert interval */
765 timr->it.real.interval = timespec_to_ktime(new_setting->it_interval);
767 /* SIGEV_NONE timers are not queued ! See common_timer_get */
768 if (((timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE)) {
769 /* Setup correct expiry time for relative timers */
770 if (mode == HRTIMER_MODE_REL) {
771 timer->expires =
772 ktime_add_safe(timer->expires,
773 timer->base->get_time());
775 return 0;
778 hrtimer_start(timer, timer->expires, mode);
779 return 0;
782 /* Set a POSIX.1b interval timer */
783 asmlinkage long
784 sys_timer_settime(timer_t timer_id, int flags,
785 const struct itimerspec __user *new_setting,
786 struct itimerspec __user *old_setting)
788 struct k_itimer *timr;
789 struct itimerspec new_spec, old_spec;
790 int error = 0;
791 unsigned long flag;
792 struct itimerspec *rtn = old_setting ? &old_spec : NULL;
794 if (!new_setting)
795 return -EINVAL;
797 if (copy_from_user(&new_spec, new_setting, sizeof (new_spec)))
798 return -EFAULT;
800 if (!timespec_valid(&new_spec.it_interval) ||
801 !timespec_valid(&new_spec.it_value))
802 return -EINVAL;
803 retry:
804 timr = lock_timer(timer_id, &flag);
805 if (!timr)
806 return -EINVAL;
808 error = CLOCK_DISPATCH(timr->it_clock, timer_set,
809 (timr, flags, &new_spec, rtn));
811 unlock_timer(timr, flag);
812 if (error == TIMER_RETRY) {
813 rtn = NULL; // We already got the old time...
814 goto retry;
817 if (old_setting && !error &&
818 copy_to_user(old_setting, &old_spec, sizeof (old_spec)))
819 error = -EFAULT;
821 return error;
824 static inline int common_timer_del(struct k_itimer *timer)
826 timer->it.real.interval.tv64 = 0;
828 if (hrtimer_try_to_cancel(&timer->it.real.timer) < 0)
829 return TIMER_RETRY;
830 return 0;
833 static inline int timer_delete_hook(struct k_itimer *timer)
835 return CLOCK_DISPATCH(timer->it_clock, timer_del, (timer));
838 /* Delete a POSIX.1b interval timer. */
839 asmlinkage long
840 sys_timer_delete(timer_t timer_id)
842 struct k_itimer *timer;
843 unsigned long flags;
845 retry_delete:
846 timer = lock_timer(timer_id, &flags);
847 if (!timer)
848 return -EINVAL;
850 if (timer_delete_hook(timer) == TIMER_RETRY) {
851 unlock_timer(timer, flags);
852 goto retry_delete;
855 spin_lock(&current->sighand->siglock);
856 list_del(&timer->list);
857 spin_unlock(&current->sighand->siglock);
859 * This keeps any tasks waiting on the spin lock from thinking
860 * they got something (see the lock code above).
862 if (timer->it_process) {
863 if (timer->it_sigev_notify == (SIGEV_SIGNAL|SIGEV_THREAD_ID))
864 put_task_struct(timer->it_process);
865 timer->it_process = NULL;
867 unlock_timer(timer, flags);
868 release_posix_timer(timer, IT_ID_SET);
869 return 0;
873 * return timer owned by the process, used by exit_itimers
875 static void itimer_delete(struct k_itimer *timer)
877 unsigned long flags;
879 retry_delete:
880 spin_lock_irqsave(&timer->it_lock, flags);
882 if (timer_delete_hook(timer) == TIMER_RETRY) {
883 unlock_timer(timer, flags);
884 goto retry_delete;
886 list_del(&timer->list);
888 * This keeps any tasks waiting on the spin lock from thinking
889 * they got something (see the lock code above).
891 if (timer->it_process) {
892 if (timer->it_sigev_notify == (SIGEV_SIGNAL|SIGEV_THREAD_ID))
893 put_task_struct(timer->it_process);
894 timer->it_process = NULL;
896 unlock_timer(timer, flags);
897 release_posix_timer(timer, IT_ID_SET);
901 * This is called by do_exit or de_thread, only when there are no more
902 * references to the shared signal_struct.
904 void exit_itimers(struct signal_struct *sig)
906 struct k_itimer *tmr;
908 while (!list_empty(&sig->posix_timers)) {
909 tmr = list_entry(sig->posix_timers.next, struct k_itimer, list);
910 itimer_delete(tmr);
914 /* Not available / possible... functions */
915 int do_posix_clock_nosettime(const clockid_t clockid, struct timespec *tp)
917 return -EINVAL;
919 EXPORT_SYMBOL_GPL(do_posix_clock_nosettime);
921 int do_posix_clock_nonanosleep(const clockid_t clock, int flags,
922 struct timespec *t, struct timespec __user *r)
924 #ifndef ENOTSUP
925 return -EOPNOTSUPP; /* aka ENOTSUP in userland for POSIX */
926 #else /* parisc does define it separately. */
927 return -ENOTSUP;
928 #endif
930 EXPORT_SYMBOL_GPL(do_posix_clock_nonanosleep);
932 asmlinkage long sys_clock_settime(const clockid_t which_clock,
933 const struct timespec __user *tp)
935 struct timespec new_tp;
937 if (invalid_clockid(which_clock))
938 return -EINVAL;
939 if (copy_from_user(&new_tp, tp, sizeof (*tp)))
940 return -EFAULT;
942 return CLOCK_DISPATCH(which_clock, clock_set, (which_clock, &new_tp));
945 asmlinkage long
946 sys_clock_gettime(const clockid_t which_clock, struct timespec __user *tp)
948 struct timespec kernel_tp;
949 int error;
951 if (invalid_clockid(which_clock))
952 return -EINVAL;
953 error = CLOCK_DISPATCH(which_clock, clock_get,
954 (which_clock, &kernel_tp));
955 if (!error && copy_to_user(tp, &kernel_tp, sizeof (kernel_tp)))
956 error = -EFAULT;
958 return error;
962 asmlinkage long
963 sys_clock_getres(const clockid_t which_clock, struct timespec __user *tp)
965 struct timespec rtn_tp;
966 int error;
968 if (invalid_clockid(which_clock))
969 return -EINVAL;
971 error = CLOCK_DISPATCH(which_clock, clock_getres,
972 (which_clock, &rtn_tp));
974 if (!error && tp && copy_to_user(tp, &rtn_tp, sizeof (rtn_tp))) {
975 error = -EFAULT;
978 return error;
982 * nanosleep for monotonic and realtime clocks
984 static int common_nsleep(const clockid_t which_clock, int flags,
985 struct timespec *tsave, struct timespec __user *rmtp)
987 return hrtimer_nanosleep(tsave, rmtp, flags & TIMER_ABSTIME ?
988 HRTIMER_MODE_ABS : HRTIMER_MODE_REL,
989 which_clock);
992 asmlinkage long
993 sys_clock_nanosleep(const clockid_t which_clock, int flags,
994 const struct timespec __user *rqtp,
995 struct timespec __user *rmtp)
997 struct timespec t;
999 if (invalid_clockid(which_clock))
1000 return -EINVAL;
1002 if (copy_from_user(&t, rqtp, sizeof (struct timespec)))
1003 return -EFAULT;
1005 if (!timespec_valid(&t))
1006 return -EINVAL;
1008 return CLOCK_DISPATCH(which_clock, nsleep,
1009 (which_clock, flags, &t, rmtp));
1013 * nanosleep_restart for monotonic and realtime clocks
1015 static int common_nsleep_restart(struct restart_block *restart_block)
1017 return hrtimer_nanosleep_restart(restart_block);
1021 * This will restart clock_nanosleep. This is required only by
1022 * compat_clock_nanosleep_restart for now.
1024 long
1025 clock_nanosleep_restart(struct restart_block *restart_block)
1027 clockid_t which_clock = restart_block->arg0;
1029 return CLOCK_DISPATCH(which_clock, nsleep_restart,
1030 (restart_block));