[MIPS] vr41xx: Removed old v2.4 VRC4173 driver
[linux-2.6/linux-mips/linux-dm7025.git] / drivers / video / pxafb.c
blobbbb07106cd54b1b50f2a3de7cf769590a7a56536
1 /*
2 * linux/drivers/video/pxafb.c
4 * Copyright (C) 1999 Eric A. Thomas.
5 * Copyright (C) 2004 Jean-Frederic Clere.
6 * Copyright (C) 2004 Ian Campbell.
7 * Copyright (C) 2004 Jeff Lackey.
8 * Based on sa1100fb.c Copyright (C) 1999 Eric A. Thomas
9 * which in turn is
10 * Based on acornfb.c Copyright (C) Russell King.
12 * This file is subject to the terms and conditions of the GNU General Public
13 * License. See the file COPYING in the main directory of this archive for
14 * more details.
16 * Intel PXA250/210 LCD Controller Frame Buffer Driver
18 * Please direct your questions and comments on this driver to the following
19 * email address:
21 * linux-arm-kernel@lists.arm.linux.org.uk
25 #include <linux/module.h>
26 #include <linux/moduleparam.h>
27 #include <linux/kernel.h>
28 #include <linux/sched.h>
29 #include <linux/errno.h>
30 #include <linux/string.h>
31 #include <linux/interrupt.h>
32 #include <linux/slab.h>
33 #include <linux/fb.h>
34 #include <linux/delay.h>
35 #include <linux/init.h>
36 #include <linux/ioport.h>
37 #include <linux/cpufreq.h>
38 #include <linux/platform_device.h>
39 #include <linux/dma-mapping.h>
41 #include <asm/hardware.h>
42 #include <asm/io.h>
43 #include <asm/irq.h>
44 #include <asm/uaccess.h>
45 #include <asm/div64.h>
46 #include <asm/arch/pxa-regs.h>
47 #include <asm/arch/bitfield.h>
48 #include <asm/arch/pxafb.h>
51 * Complain if VAR is out of range.
53 #define DEBUG_VAR 1
55 #include "pxafb.h"
57 /* Bits which should not be set in machine configuration structures */
58 #define LCCR0_INVALID_CONFIG_MASK (LCCR0_OUM|LCCR0_BM|LCCR0_QDM|LCCR0_DIS|LCCR0_EFM|LCCR0_IUM|LCCR0_SFM|LCCR0_LDM|LCCR0_ENB)
59 #define LCCR3_INVALID_CONFIG_MASK (LCCR3_HSP|LCCR3_VSP|LCCR3_PCD|LCCR3_BPP)
61 static void (*pxafb_backlight_power)(int);
62 static void (*pxafb_lcd_power)(int);
64 static int pxafb_activate_var(struct fb_var_screeninfo *var, struct pxafb_info *);
65 static void set_ctrlr_state(struct pxafb_info *fbi, u_int state);
67 #ifdef CONFIG_FB_PXA_PARAMETERS
68 #define PXAFB_OPTIONS_SIZE 256
69 static char g_options[PXAFB_OPTIONS_SIZE] __initdata = "";
70 #endif
72 static inline void pxafb_schedule_work(struct pxafb_info *fbi, u_int state)
74 unsigned long flags;
76 local_irq_save(flags);
78 * We need to handle two requests being made at the same time.
79 * There are two important cases:
80 * 1. When we are changing VT (C_REENABLE) while unblanking (C_ENABLE)
81 * We must perform the unblanking, which will do our REENABLE for us.
82 * 2. When we are blanking, but immediately unblank before we have
83 * blanked. We do the "REENABLE" thing here as well, just to be sure.
85 if (fbi->task_state == C_ENABLE && state == C_REENABLE)
86 state = (u_int) -1;
87 if (fbi->task_state == C_DISABLE && state == C_ENABLE)
88 state = C_REENABLE;
90 if (state != (u_int)-1) {
91 fbi->task_state = state;
92 schedule_work(&fbi->task);
94 local_irq_restore(flags);
97 static inline u_int chan_to_field(u_int chan, struct fb_bitfield *bf)
99 chan &= 0xffff;
100 chan >>= 16 - bf->length;
101 return chan << bf->offset;
104 static int
105 pxafb_setpalettereg(u_int regno, u_int red, u_int green, u_int blue,
106 u_int trans, struct fb_info *info)
108 struct pxafb_info *fbi = (struct pxafb_info *)info;
109 u_int val, ret = 1;
111 if (regno < fbi->palette_size) {
112 if (fbi->fb.var.grayscale) {
113 val = ((blue >> 8) & 0x00ff);
114 } else {
115 val = ((red >> 0) & 0xf800);
116 val |= ((green >> 5) & 0x07e0);
117 val |= ((blue >> 11) & 0x001f);
119 fbi->palette_cpu[regno] = val;
120 ret = 0;
122 return ret;
125 static int
126 pxafb_setcolreg(u_int regno, u_int red, u_int green, u_int blue,
127 u_int trans, struct fb_info *info)
129 struct pxafb_info *fbi = (struct pxafb_info *)info;
130 unsigned int val;
131 int ret = 1;
134 * If inverse mode was selected, invert all the colours
135 * rather than the register number. The register number
136 * is what you poke into the framebuffer to produce the
137 * colour you requested.
139 if (fbi->cmap_inverse) {
140 red = 0xffff - red;
141 green = 0xffff - green;
142 blue = 0xffff - blue;
146 * If greyscale is true, then we convert the RGB value
147 * to greyscale no matter what visual we are using.
149 if (fbi->fb.var.grayscale)
150 red = green = blue = (19595 * red + 38470 * green +
151 7471 * blue) >> 16;
153 switch (fbi->fb.fix.visual) {
154 case FB_VISUAL_TRUECOLOR:
156 * 16-bit True Colour. We encode the RGB value
157 * according to the RGB bitfield information.
159 if (regno < 16) {
160 u32 *pal = fbi->fb.pseudo_palette;
162 val = chan_to_field(red, &fbi->fb.var.red);
163 val |= chan_to_field(green, &fbi->fb.var.green);
164 val |= chan_to_field(blue, &fbi->fb.var.blue);
166 pal[regno] = val;
167 ret = 0;
169 break;
171 case FB_VISUAL_STATIC_PSEUDOCOLOR:
172 case FB_VISUAL_PSEUDOCOLOR:
173 ret = pxafb_setpalettereg(regno, red, green, blue, trans, info);
174 break;
177 return ret;
181 * pxafb_bpp_to_lccr3():
182 * Convert a bits per pixel value to the correct bit pattern for LCCR3
184 static int pxafb_bpp_to_lccr3(struct fb_var_screeninfo *var)
186 int ret = 0;
187 switch (var->bits_per_pixel) {
188 case 1: ret = LCCR3_1BPP; break;
189 case 2: ret = LCCR3_2BPP; break;
190 case 4: ret = LCCR3_4BPP; break;
191 case 8: ret = LCCR3_8BPP; break;
192 case 16: ret = LCCR3_16BPP; break;
194 return ret;
197 #ifdef CONFIG_CPU_FREQ
199 * pxafb_display_dma_period()
200 * Calculate the minimum period (in picoseconds) between two DMA
201 * requests for the LCD controller. If we hit this, it means we're
202 * doing nothing but LCD DMA.
204 static unsigned int pxafb_display_dma_period(struct fb_var_screeninfo *var)
207 * Period = pixclock * bits_per_byte * bytes_per_transfer
208 * / memory_bits_per_pixel;
210 return var->pixclock * 8 * 16 / var->bits_per_pixel;
213 extern unsigned int get_clk_frequency_khz(int info);
214 #endif
217 * pxafb_check_var():
218 * Get the video params out of 'var'. If a value doesn't fit, round it up,
219 * if it's too big, return -EINVAL.
221 * Round up in the following order: bits_per_pixel, xres,
222 * yres, xres_virtual, yres_virtual, xoffset, yoffset, grayscale,
223 * bitfields, horizontal timing, vertical timing.
225 static int pxafb_check_var(struct fb_var_screeninfo *var, struct fb_info *info)
227 struct pxafb_info *fbi = (struct pxafb_info *)info;
229 if (var->xres < MIN_XRES)
230 var->xres = MIN_XRES;
231 if (var->yres < MIN_YRES)
232 var->yres = MIN_YRES;
233 if (var->xres > fbi->max_xres)
234 return -EINVAL;
235 if (var->yres > fbi->max_yres)
236 return -EINVAL;
237 var->xres_virtual =
238 max(var->xres_virtual, var->xres);
239 var->yres_virtual =
240 max(var->yres_virtual, var->yres);
243 * Setup the RGB parameters for this display.
245 * The pixel packing format is described on page 7-11 of the
246 * PXA2XX Developer's Manual.
248 if (var->bits_per_pixel == 16) {
249 var->red.offset = 11; var->red.length = 5;
250 var->green.offset = 5; var->green.length = 6;
251 var->blue.offset = 0; var->blue.length = 5;
252 var->transp.offset = var->transp.length = 0;
253 } else {
254 var->red.offset = var->green.offset = var->blue.offset = var->transp.offset = 0;
255 var->red.length = 8;
256 var->green.length = 8;
257 var->blue.length = 8;
258 var->transp.length = 0;
261 #ifdef CONFIG_CPU_FREQ
262 pr_debug("pxafb: dma period = %d ps, clock = %d kHz\n",
263 pxafb_display_dma_period(var),
264 get_clk_frequency_khz(0));
265 #endif
267 return 0;
270 static inline void pxafb_set_truecolor(u_int is_true_color)
272 pr_debug("pxafb: true_color = %d\n", is_true_color);
273 // do your machine-specific setup if needed
277 * pxafb_set_par():
278 * Set the user defined part of the display for the specified console
280 static int pxafb_set_par(struct fb_info *info)
282 struct pxafb_info *fbi = (struct pxafb_info *)info;
283 struct fb_var_screeninfo *var = &info->var;
284 unsigned long palette_mem_size;
286 pr_debug("pxafb: set_par\n");
288 if (var->bits_per_pixel == 16)
289 fbi->fb.fix.visual = FB_VISUAL_TRUECOLOR;
290 else if (!fbi->cmap_static)
291 fbi->fb.fix.visual = FB_VISUAL_PSEUDOCOLOR;
292 else {
294 * Some people have weird ideas about wanting static
295 * pseudocolor maps. I suspect their user space
296 * applications are broken.
298 fbi->fb.fix.visual = FB_VISUAL_STATIC_PSEUDOCOLOR;
301 fbi->fb.fix.line_length = var->xres_virtual *
302 var->bits_per_pixel / 8;
303 if (var->bits_per_pixel == 16)
304 fbi->palette_size = 0;
305 else
306 fbi->palette_size = var->bits_per_pixel == 1 ? 4 : 1 << var->bits_per_pixel;
308 palette_mem_size = fbi->palette_size * sizeof(u16);
310 pr_debug("pxafb: palette_mem_size = 0x%08lx\n", palette_mem_size);
312 fbi->palette_cpu = (u16 *)(fbi->map_cpu + PAGE_SIZE - palette_mem_size);
313 fbi->palette_dma = fbi->map_dma + PAGE_SIZE - palette_mem_size;
316 * Set (any) board control register to handle new color depth
318 pxafb_set_truecolor(fbi->fb.fix.visual == FB_VISUAL_TRUECOLOR);
320 if (fbi->fb.var.bits_per_pixel == 16)
321 fb_dealloc_cmap(&fbi->fb.cmap);
322 else
323 fb_alloc_cmap(&fbi->fb.cmap, 1<<fbi->fb.var.bits_per_pixel, 0);
325 pxafb_activate_var(var, fbi);
327 return 0;
331 * Formal definition of the VESA spec:
332 * On
333 * This refers to the state of the display when it is in full operation
334 * Stand-By
335 * This defines an optional operating state of minimal power reduction with
336 * the shortest recovery time
337 * Suspend
338 * This refers to a level of power management in which substantial power
339 * reduction is achieved by the display. The display can have a longer
340 * recovery time from this state than from the Stand-by state
341 * Off
342 * This indicates that the display is consuming the lowest level of power
343 * and is non-operational. Recovery from this state may optionally require
344 * the user to manually power on the monitor
346 * Now, the fbdev driver adds an additional state, (blank), where they
347 * turn off the video (maybe by colormap tricks), but don't mess with the
348 * video itself: think of it semantically between on and Stand-By.
350 * So here's what we should do in our fbdev blank routine:
352 * VESA_NO_BLANKING (mode 0) Video on, front/back light on
353 * VESA_VSYNC_SUSPEND (mode 1) Video on, front/back light off
354 * VESA_HSYNC_SUSPEND (mode 2) Video on, front/back light off
355 * VESA_POWERDOWN (mode 3) Video off, front/back light off
357 * This will match the matrox implementation.
361 * pxafb_blank():
362 * Blank the display by setting all palette values to zero. Note, the
363 * 16 bpp mode does not really use the palette, so this will not
364 * blank the display in all modes.
366 static int pxafb_blank(int blank, struct fb_info *info)
368 struct pxafb_info *fbi = (struct pxafb_info *)info;
369 int i;
371 pr_debug("pxafb: blank=%d\n", blank);
373 switch (blank) {
374 case FB_BLANK_POWERDOWN:
375 case FB_BLANK_VSYNC_SUSPEND:
376 case FB_BLANK_HSYNC_SUSPEND:
377 case FB_BLANK_NORMAL:
378 if (fbi->fb.fix.visual == FB_VISUAL_PSEUDOCOLOR ||
379 fbi->fb.fix.visual == FB_VISUAL_STATIC_PSEUDOCOLOR)
380 for (i = 0; i < fbi->palette_size; i++)
381 pxafb_setpalettereg(i, 0, 0, 0, 0, info);
383 pxafb_schedule_work(fbi, C_DISABLE);
384 //TODO if (pxafb_blank_helper) pxafb_blank_helper(blank);
385 break;
387 case FB_BLANK_UNBLANK:
388 //TODO if (pxafb_blank_helper) pxafb_blank_helper(blank);
389 if (fbi->fb.fix.visual == FB_VISUAL_PSEUDOCOLOR ||
390 fbi->fb.fix.visual == FB_VISUAL_STATIC_PSEUDOCOLOR)
391 fb_set_cmap(&fbi->fb.cmap, info);
392 pxafb_schedule_work(fbi, C_ENABLE);
394 return 0;
397 static int pxafb_mmap(struct fb_info *info,
398 struct vm_area_struct *vma)
400 struct pxafb_info *fbi = (struct pxafb_info *)info;
401 unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
403 if (off < info->fix.smem_len) {
404 vma->vm_pgoff += 1;
405 return dma_mmap_writecombine(fbi->dev, vma, fbi->map_cpu,
406 fbi->map_dma, fbi->map_size);
408 return -EINVAL;
411 static struct fb_ops pxafb_ops = {
412 .owner = THIS_MODULE,
413 .fb_check_var = pxafb_check_var,
414 .fb_set_par = pxafb_set_par,
415 .fb_setcolreg = pxafb_setcolreg,
416 .fb_fillrect = cfb_fillrect,
417 .fb_copyarea = cfb_copyarea,
418 .fb_imageblit = cfb_imageblit,
419 .fb_blank = pxafb_blank,
420 .fb_mmap = pxafb_mmap,
424 * Calculate the PCD value from the clock rate (in picoseconds).
425 * We take account of the PPCR clock setting.
426 * From PXA Developer's Manual:
428 * PixelClock = LCLK
429 * -------------
430 * 2 ( PCD + 1 )
432 * PCD = LCLK
433 * ------------- - 1
434 * 2(PixelClock)
436 * Where:
437 * LCLK = LCD/Memory Clock
438 * PCD = LCCR3[7:0]
440 * PixelClock here is in Hz while the pixclock argument given is the
441 * period in picoseconds. Hence PixelClock = 1 / ( pixclock * 10^-12 )
443 * The function get_lclk_frequency_10khz returns LCLK in units of
444 * 10khz. Calling the result of this function lclk gives us the
445 * following
447 * PCD = (lclk * 10^4 ) * ( pixclock * 10^-12 )
448 * -------------------------------------- - 1
451 * Factoring the 10^4 and 10^-12 out gives 10^-8 == 1 / 100000000 as used below.
453 static inline unsigned int get_pcd(unsigned int pixclock)
455 unsigned long long pcd;
457 /* FIXME: Need to take into account Double Pixel Clock mode
458 * (DPC) bit? or perhaps set it based on the various clock
459 * speeds */
461 pcd = (unsigned long long)get_lcdclk_frequency_10khz() * pixclock;
462 do_div(pcd, 100000000 * 2);
463 /* no need for this, since we should subtract 1 anyway. they cancel */
464 /* pcd += 1; */ /* make up for integer math truncations */
465 return (unsigned int)pcd;
469 * Some touchscreens need hsync information from the video driver to
470 * function correctly. We export it here.
472 static inline void set_hsync_time(struct pxafb_info *fbi, unsigned int pcd)
474 unsigned long long htime;
476 if ((pcd == 0) || (fbi->fb.var.hsync_len == 0)) {
477 fbi->hsync_time=0;
478 return;
481 htime = (unsigned long long)get_lcdclk_frequency_10khz() * 10000;
482 do_div(htime, pcd * fbi->fb.var.hsync_len);
483 fbi->hsync_time = htime;
486 unsigned long pxafb_get_hsync_time(struct device *dev)
488 struct pxafb_info *fbi = dev_get_drvdata(dev);
490 /* If display is blanked/suspended, hsync isn't active */
491 if (!fbi || (fbi->state != C_ENABLE))
492 return 0;
494 return fbi->hsync_time;
496 EXPORT_SYMBOL(pxafb_get_hsync_time);
499 * pxafb_activate_var():
500 * Configures LCD Controller based on entries in var parameter. Settings are
501 * only written to the controller if changes were made.
503 static int pxafb_activate_var(struct fb_var_screeninfo *var, struct pxafb_info *fbi)
505 struct pxafb_lcd_reg new_regs;
506 u_long flags;
507 u_int lines_per_panel, pcd = get_pcd(var->pixclock);
509 pr_debug("pxafb: Configuring PXA LCD\n");
511 pr_debug("var: xres=%d hslen=%d lm=%d rm=%d\n",
512 var->xres, var->hsync_len,
513 var->left_margin, var->right_margin);
514 pr_debug("var: yres=%d vslen=%d um=%d bm=%d\n",
515 var->yres, var->vsync_len,
516 var->upper_margin, var->lower_margin);
517 pr_debug("var: pixclock=%d pcd=%d\n", var->pixclock, pcd);
519 #if DEBUG_VAR
520 if (var->xres < 16 || var->xres > 1024)
521 printk(KERN_ERR "%s: invalid xres %d\n",
522 fbi->fb.fix.id, var->xres);
523 switch(var->bits_per_pixel) {
524 case 1:
525 case 2:
526 case 4:
527 case 8:
528 case 16:
529 break;
530 default:
531 printk(KERN_ERR "%s: invalid bit depth %d\n",
532 fbi->fb.fix.id, var->bits_per_pixel);
533 break;
535 if (var->hsync_len < 1 || var->hsync_len > 64)
536 printk(KERN_ERR "%s: invalid hsync_len %d\n",
537 fbi->fb.fix.id, var->hsync_len);
538 if (var->left_margin < 1 || var->left_margin > 255)
539 printk(KERN_ERR "%s: invalid left_margin %d\n",
540 fbi->fb.fix.id, var->left_margin);
541 if (var->right_margin < 1 || var->right_margin > 255)
542 printk(KERN_ERR "%s: invalid right_margin %d\n",
543 fbi->fb.fix.id, var->right_margin);
544 if (var->yres < 1 || var->yres > 1024)
545 printk(KERN_ERR "%s: invalid yres %d\n",
546 fbi->fb.fix.id, var->yres);
547 if (var->vsync_len < 1 || var->vsync_len > 64)
548 printk(KERN_ERR "%s: invalid vsync_len %d\n",
549 fbi->fb.fix.id, var->vsync_len);
550 if (var->upper_margin < 0 || var->upper_margin > 255)
551 printk(KERN_ERR "%s: invalid upper_margin %d\n",
552 fbi->fb.fix.id, var->upper_margin);
553 if (var->lower_margin < 0 || var->lower_margin > 255)
554 printk(KERN_ERR "%s: invalid lower_margin %d\n",
555 fbi->fb.fix.id, var->lower_margin);
556 #endif
558 new_regs.lccr0 = fbi->lccr0 |
559 (LCCR0_LDM | LCCR0_SFM | LCCR0_IUM | LCCR0_EFM |
560 LCCR0_QDM | LCCR0_BM | LCCR0_OUM);
562 new_regs.lccr1 =
563 LCCR1_DisWdth(var->xres) +
564 LCCR1_HorSnchWdth(var->hsync_len) +
565 LCCR1_BegLnDel(var->left_margin) +
566 LCCR1_EndLnDel(var->right_margin);
569 * If we have a dual scan LCD, we need to halve
570 * the YRES parameter.
572 lines_per_panel = var->yres;
573 if ((fbi->lccr0 & LCCR0_SDS) == LCCR0_Dual)
574 lines_per_panel /= 2;
576 new_regs.lccr2 =
577 LCCR2_DisHght(lines_per_panel) +
578 LCCR2_VrtSnchWdth(var->vsync_len) +
579 LCCR2_BegFrmDel(var->upper_margin) +
580 LCCR2_EndFrmDel(var->lower_margin);
582 new_regs.lccr3 = fbi->lccr3 |
583 pxafb_bpp_to_lccr3(var) |
584 (var->sync & FB_SYNC_HOR_HIGH_ACT ? LCCR3_HorSnchH : LCCR3_HorSnchL) |
585 (var->sync & FB_SYNC_VERT_HIGH_ACT ? LCCR3_VrtSnchH : LCCR3_VrtSnchL);
587 if (pcd)
588 new_regs.lccr3 |= LCCR3_PixClkDiv(pcd);
590 pr_debug("nlccr0 = 0x%08x\n", new_regs.lccr0);
591 pr_debug("nlccr1 = 0x%08x\n", new_regs.lccr1);
592 pr_debug("nlccr2 = 0x%08x\n", new_regs.lccr2);
593 pr_debug("nlccr3 = 0x%08x\n", new_regs.lccr3);
595 /* Update shadow copy atomically */
596 local_irq_save(flags);
598 /* setup dma descriptors */
599 fbi->dmadesc_fblow_cpu = (struct pxafb_dma_descriptor *)((unsigned int)fbi->palette_cpu - 3*16);
600 fbi->dmadesc_fbhigh_cpu = (struct pxafb_dma_descriptor *)((unsigned int)fbi->palette_cpu - 2*16);
601 fbi->dmadesc_palette_cpu = (struct pxafb_dma_descriptor *)((unsigned int)fbi->palette_cpu - 1*16);
603 fbi->dmadesc_fblow_dma = fbi->palette_dma - 3*16;
604 fbi->dmadesc_fbhigh_dma = fbi->palette_dma - 2*16;
605 fbi->dmadesc_palette_dma = fbi->palette_dma - 1*16;
607 #define BYTES_PER_PANEL (lines_per_panel * fbi->fb.fix.line_length)
609 /* populate descriptors */
610 fbi->dmadesc_fblow_cpu->fdadr = fbi->dmadesc_fblow_dma;
611 fbi->dmadesc_fblow_cpu->fsadr = fbi->screen_dma + BYTES_PER_PANEL;
612 fbi->dmadesc_fblow_cpu->fidr = 0;
613 fbi->dmadesc_fblow_cpu->ldcmd = BYTES_PER_PANEL;
615 fbi->fdadr1 = fbi->dmadesc_fblow_dma; /* only used in dual-panel mode */
617 fbi->dmadesc_fbhigh_cpu->fsadr = fbi->screen_dma;
618 fbi->dmadesc_fbhigh_cpu->fidr = 0;
619 fbi->dmadesc_fbhigh_cpu->ldcmd = BYTES_PER_PANEL;
621 fbi->dmadesc_palette_cpu->fsadr = fbi->palette_dma;
622 fbi->dmadesc_palette_cpu->fidr = 0;
623 fbi->dmadesc_palette_cpu->ldcmd = (fbi->palette_size * 2) | LDCMD_PAL;
625 if (var->bits_per_pixel == 16) {
626 /* palette shouldn't be loaded in true-color mode */
627 fbi->dmadesc_fbhigh_cpu->fdadr = fbi->dmadesc_fbhigh_dma;
628 fbi->fdadr0 = fbi->dmadesc_fbhigh_dma; /* no pal just fbhigh */
629 /* init it to something, even though we won't be using it */
630 fbi->dmadesc_palette_cpu->fdadr = fbi->dmadesc_palette_dma;
631 } else {
632 fbi->dmadesc_palette_cpu->fdadr = fbi->dmadesc_fbhigh_dma;
633 fbi->dmadesc_fbhigh_cpu->fdadr = fbi->dmadesc_palette_dma;
634 fbi->fdadr0 = fbi->dmadesc_palette_dma; /* flips back and forth between pal and fbhigh */
637 #if 0
638 pr_debug("fbi->dmadesc_fblow_cpu = 0x%p\n", fbi->dmadesc_fblow_cpu);
639 pr_debug("fbi->dmadesc_fbhigh_cpu = 0x%p\n", fbi->dmadesc_fbhigh_cpu);
640 pr_debug("fbi->dmadesc_palette_cpu = 0x%p\n", fbi->dmadesc_palette_cpu);
641 pr_debug("fbi->dmadesc_fblow_dma = 0x%x\n", fbi->dmadesc_fblow_dma);
642 pr_debug("fbi->dmadesc_fbhigh_dma = 0x%x\n", fbi->dmadesc_fbhigh_dma);
643 pr_debug("fbi->dmadesc_palette_dma = 0x%x\n", fbi->dmadesc_palette_dma);
645 pr_debug("fbi->dmadesc_fblow_cpu->fdadr = 0x%x\n", fbi->dmadesc_fblow_cpu->fdadr);
646 pr_debug("fbi->dmadesc_fbhigh_cpu->fdadr = 0x%x\n", fbi->dmadesc_fbhigh_cpu->fdadr);
647 pr_debug("fbi->dmadesc_palette_cpu->fdadr = 0x%x\n", fbi->dmadesc_palette_cpu->fdadr);
649 pr_debug("fbi->dmadesc_fblow_cpu->fsadr = 0x%x\n", fbi->dmadesc_fblow_cpu->fsadr);
650 pr_debug("fbi->dmadesc_fbhigh_cpu->fsadr = 0x%x\n", fbi->dmadesc_fbhigh_cpu->fsadr);
651 pr_debug("fbi->dmadesc_palette_cpu->fsadr = 0x%x\n", fbi->dmadesc_palette_cpu->fsadr);
653 pr_debug("fbi->dmadesc_fblow_cpu->ldcmd = 0x%x\n", fbi->dmadesc_fblow_cpu->ldcmd);
654 pr_debug("fbi->dmadesc_fbhigh_cpu->ldcmd = 0x%x\n", fbi->dmadesc_fbhigh_cpu->ldcmd);
655 pr_debug("fbi->dmadesc_palette_cpu->ldcmd = 0x%x\n", fbi->dmadesc_palette_cpu->ldcmd);
656 #endif
658 fbi->reg_lccr0 = new_regs.lccr0;
659 fbi->reg_lccr1 = new_regs.lccr1;
660 fbi->reg_lccr2 = new_regs.lccr2;
661 fbi->reg_lccr3 = new_regs.lccr3;
662 set_hsync_time(fbi, pcd);
663 local_irq_restore(flags);
666 * Only update the registers if the controller is enabled
667 * and something has changed.
669 if ((LCCR0 != fbi->reg_lccr0) || (LCCR1 != fbi->reg_lccr1) ||
670 (LCCR2 != fbi->reg_lccr2) || (LCCR3 != fbi->reg_lccr3) ||
671 (FDADR0 != fbi->fdadr0) || (FDADR1 != fbi->fdadr1))
672 pxafb_schedule_work(fbi, C_REENABLE);
674 return 0;
678 * NOTE! The following functions are purely helpers for set_ctrlr_state.
679 * Do not call them directly; set_ctrlr_state does the correct serialisation
680 * to ensure that things happen in the right way 100% of time time.
681 * -- rmk
683 static inline void __pxafb_backlight_power(struct pxafb_info *fbi, int on)
685 pr_debug("pxafb: backlight o%s\n", on ? "n" : "ff");
687 if (pxafb_backlight_power)
688 pxafb_backlight_power(on);
691 static inline void __pxafb_lcd_power(struct pxafb_info *fbi, int on)
693 pr_debug("pxafb: LCD power o%s\n", on ? "n" : "ff");
695 if (pxafb_lcd_power)
696 pxafb_lcd_power(on);
699 static void pxafb_setup_gpio(struct pxafb_info *fbi)
701 int gpio, ldd_bits;
702 unsigned int lccr0 = fbi->lccr0;
705 * setup is based on type of panel supported
708 /* 4 bit interface */
709 if ((lccr0 & LCCR0_CMS) == LCCR0_Mono &&
710 (lccr0 & LCCR0_SDS) == LCCR0_Sngl &&
711 (lccr0 & LCCR0_DPD) == LCCR0_4PixMono)
712 ldd_bits = 4;
714 /* 8 bit interface */
715 else if (((lccr0 & LCCR0_CMS) == LCCR0_Mono &&
716 ((lccr0 & LCCR0_SDS) == LCCR0_Dual || (lccr0 & LCCR0_DPD) == LCCR0_8PixMono)) ||
717 ((lccr0 & LCCR0_CMS) == LCCR0_Color &&
718 (lccr0 & LCCR0_PAS) == LCCR0_Pas && (lccr0 & LCCR0_SDS) == LCCR0_Sngl))
719 ldd_bits = 8;
721 /* 16 bit interface */
722 else if ((lccr0 & LCCR0_CMS) == LCCR0_Color &&
723 ((lccr0 & LCCR0_SDS) == LCCR0_Dual || (lccr0 & LCCR0_PAS) == LCCR0_Act))
724 ldd_bits = 16;
726 else {
727 printk(KERN_ERR "pxafb_setup_gpio: unable to determine bits per pixel\n");
728 return;
731 for (gpio = 58; ldd_bits; gpio++, ldd_bits--)
732 pxa_gpio_mode(gpio | GPIO_ALT_FN_2_OUT);
733 pxa_gpio_mode(GPIO74_LCD_FCLK_MD);
734 pxa_gpio_mode(GPIO75_LCD_LCLK_MD);
735 pxa_gpio_mode(GPIO76_LCD_PCLK_MD);
736 pxa_gpio_mode(GPIO77_LCD_ACBIAS_MD);
739 static void pxafb_enable_controller(struct pxafb_info *fbi)
741 pr_debug("pxafb: Enabling LCD controller\n");
742 pr_debug("fdadr0 0x%08x\n", (unsigned int) fbi->fdadr0);
743 pr_debug("fdadr1 0x%08x\n", (unsigned int) fbi->fdadr1);
744 pr_debug("reg_lccr0 0x%08x\n", (unsigned int) fbi->reg_lccr0);
745 pr_debug("reg_lccr1 0x%08x\n", (unsigned int) fbi->reg_lccr1);
746 pr_debug("reg_lccr2 0x%08x\n", (unsigned int) fbi->reg_lccr2);
747 pr_debug("reg_lccr3 0x%08x\n", (unsigned int) fbi->reg_lccr3);
749 /* enable LCD controller clock */
750 pxa_set_cken(CKEN16_LCD, 1);
752 /* Sequence from 11.7.10 */
753 LCCR3 = fbi->reg_lccr3;
754 LCCR2 = fbi->reg_lccr2;
755 LCCR1 = fbi->reg_lccr1;
756 LCCR0 = fbi->reg_lccr0 & ~LCCR0_ENB;
758 FDADR0 = fbi->fdadr0;
759 FDADR1 = fbi->fdadr1;
760 LCCR0 |= LCCR0_ENB;
762 pr_debug("FDADR0 0x%08x\n", (unsigned int) FDADR0);
763 pr_debug("FDADR1 0x%08x\n", (unsigned int) FDADR1);
764 pr_debug("LCCR0 0x%08x\n", (unsigned int) LCCR0);
765 pr_debug("LCCR1 0x%08x\n", (unsigned int) LCCR1);
766 pr_debug("LCCR2 0x%08x\n", (unsigned int) LCCR2);
767 pr_debug("LCCR3 0x%08x\n", (unsigned int) LCCR3);
770 static void pxafb_disable_controller(struct pxafb_info *fbi)
772 DECLARE_WAITQUEUE(wait, current);
774 pr_debug("pxafb: disabling LCD controller\n");
776 set_current_state(TASK_UNINTERRUPTIBLE);
777 add_wait_queue(&fbi->ctrlr_wait, &wait);
779 LCSR = 0xffffffff; /* Clear LCD Status Register */
780 LCCR0 &= ~LCCR0_LDM; /* Enable LCD Disable Done Interrupt */
781 LCCR0 |= LCCR0_DIS; /* Disable LCD Controller */
783 schedule_timeout(200 * HZ / 1000);
784 remove_wait_queue(&fbi->ctrlr_wait, &wait);
786 /* disable LCD controller clock */
787 pxa_set_cken(CKEN16_LCD, 0);
791 * pxafb_handle_irq: Handle 'LCD DONE' interrupts.
793 static irqreturn_t pxafb_handle_irq(int irq, void *dev_id, struct pt_regs *regs)
795 struct pxafb_info *fbi = dev_id;
796 unsigned int lcsr = LCSR;
798 if (lcsr & LCSR_LDD) {
799 LCCR0 |= LCCR0_LDM;
800 wake_up(&fbi->ctrlr_wait);
803 LCSR = lcsr;
804 return IRQ_HANDLED;
808 * This function must be called from task context only, since it will
809 * sleep when disabling the LCD controller, or if we get two contending
810 * processes trying to alter state.
812 static void set_ctrlr_state(struct pxafb_info *fbi, u_int state)
814 u_int old_state;
816 down(&fbi->ctrlr_sem);
818 old_state = fbi->state;
821 * Hack around fbcon initialisation.
823 if (old_state == C_STARTUP && state == C_REENABLE)
824 state = C_ENABLE;
826 switch (state) {
827 case C_DISABLE_CLKCHANGE:
829 * Disable controller for clock change. If the
830 * controller is already disabled, then do nothing.
832 if (old_state != C_DISABLE && old_state != C_DISABLE_PM) {
833 fbi->state = state;
834 //TODO __pxafb_lcd_power(fbi, 0);
835 pxafb_disable_controller(fbi);
837 break;
839 case C_DISABLE_PM:
840 case C_DISABLE:
842 * Disable controller
844 if (old_state != C_DISABLE) {
845 fbi->state = state;
846 __pxafb_backlight_power(fbi, 0);
847 __pxafb_lcd_power(fbi, 0);
848 if (old_state != C_DISABLE_CLKCHANGE)
849 pxafb_disable_controller(fbi);
851 break;
853 case C_ENABLE_CLKCHANGE:
855 * Enable the controller after clock change. Only
856 * do this if we were disabled for the clock change.
858 if (old_state == C_DISABLE_CLKCHANGE) {
859 fbi->state = C_ENABLE;
860 pxafb_enable_controller(fbi);
861 //TODO __pxafb_lcd_power(fbi, 1);
863 break;
865 case C_REENABLE:
867 * Re-enable the controller only if it was already
868 * enabled. This is so we reprogram the control
869 * registers.
871 if (old_state == C_ENABLE) {
872 pxafb_disable_controller(fbi);
873 pxafb_setup_gpio(fbi);
874 pxafb_enable_controller(fbi);
876 break;
878 case C_ENABLE_PM:
880 * Re-enable the controller after PM. This is not
881 * perfect - think about the case where we were doing
882 * a clock change, and we suspended half-way through.
884 if (old_state != C_DISABLE_PM)
885 break;
886 /* fall through */
888 case C_ENABLE:
890 * Power up the LCD screen, enable controller, and
891 * turn on the backlight.
893 if (old_state != C_ENABLE) {
894 fbi->state = C_ENABLE;
895 pxafb_setup_gpio(fbi);
896 pxafb_enable_controller(fbi);
897 __pxafb_lcd_power(fbi, 1);
898 __pxafb_backlight_power(fbi, 1);
900 break;
902 up(&fbi->ctrlr_sem);
906 * Our LCD controller task (which is called when we blank or unblank)
907 * via keventd.
909 static void pxafb_task(void *dummy)
911 struct pxafb_info *fbi = dummy;
912 u_int state = xchg(&fbi->task_state, -1);
914 set_ctrlr_state(fbi, state);
917 #ifdef CONFIG_CPU_FREQ
919 * CPU clock speed change handler. We need to adjust the LCD timing
920 * parameters when the CPU clock is adjusted by the power management
921 * subsystem.
923 * TODO: Determine why f->new != 10*get_lclk_frequency_10khz()
925 static int
926 pxafb_freq_transition(struct notifier_block *nb, unsigned long val, void *data)
928 struct pxafb_info *fbi = TO_INF(nb, freq_transition);
929 //TODO struct cpufreq_freqs *f = data;
930 u_int pcd;
932 switch (val) {
933 case CPUFREQ_PRECHANGE:
934 set_ctrlr_state(fbi, C_DISABLE_CLKCHANGE);
935 break;
937 case CPUFREQ_POSTCHANGE:
938 pcd = get_pcd(fbi->fb.var.pixclock);
939 set_hsync_time(fbi, pcd);
940 fbi->reg_lccr3 = (fbi->reg_lccr3 & ~0xff) | LCCR3_PixClkDiv(pcd);
941 set_ctrlr_state(fbi, C_ENABLE_CLKCHANGE);
942 break;
944 return 0;
947 static int
948 pxafb_freq_policy(struct notifier_block *nb, unsigned long val, void *data)
950 struct pxafb_info *fbi = TO_INF(nb, freq_policy);
951 struct fb_var_screeninfo *var = &fbi->fb.var;
952 struct cpufreq_policy *policy = data;
954 switch (val) {
955 case CPUFREQ_ADJUST:
956 case CPUFREQ_INCOMPATIBLE:
957 printk(KERN_DEBUG "min dma period: %d ps, "
958 "new clock %d kHz\n", pxafb_display_dma_period(var),
959 policy->max);
960 // TODO: fill in min/max values
961 break;
962 #if 0
963 case CPUFREQ_NOTIFY:
964 printk(KERN_ERR "%s: got CPUFREQ_NOTIFY\n", __FUNCTION__);
965 do {} while(0);
966 /* todo: panic if min/max values aren't fulfilled
967 * [can't really happen unless there's a bug in the
968 * CPU policy verification process *
970 break;
971 #endif
973 return 0;
975 #endif
977 #ifdef CONFIG_PM
979 * Power management hooks. Note that we won't be called from IRQ context,
980 * unlike the blank functions above, so we may sleep.
982 static int pxafb_suspend(struct platform_device *dev, pm_message_t state)
984 struct pxafb_info *fbi = platform_get_drvdata(dev);
986 set_ctrlr_state(fbi, C_DISABLE_PM);
987 return 0;
990 static int pxafb_resume(struct platform_device *dev)
992 struct pxafb_info *fbi = platform_get_drvdata(dev);
994 set_ctrlr_state(fbi, C_ENABLE_PM);
995 return 0;
997 #else
998 #define pxafb_suspend NULL
999 #define pxafb_resume NULL
1000 #endif
1003 * pxafb_map_video_memory():
1004 * Allocates the DRAM memory for the frame buffer. This buffer is
1005 * remapped into a non-cached, non-buffered, memory region to
1006 * allow palette and pixel writes to occur without flushing the
1007 * cache. Once this area is remapped, all virtual memory
1008 * access to the video memory should occur at the new region.
1010 static int __init pxafb_map_video_memory(struct pxafb_info *fbi)
1012 u_long palette_mem_size;
1015 * We reserve one page for the palette, plus the size
1016 * of the framebuffer.
1018 fbi->map_size = PAGE_ALIGN(fbi->fb.fix.smem_len + PAGE_SIZE);
1019 fbi->map_cpu = dma_alloc_writecombine(fbi->dev, fbi->map_size,
1020 &fbi->map_dma, GFP_KERNEL);
1022 if (fbi->map_cpu) {
1023 /* prevent initial garbage on screen */
1024 memset(fbi->map_cpu, 0, fbi->map_size);
1025 fbi->fb.screen_base = fbi->map_cpu + PAGE_SIZE;
1026 fbi->screen_dma = fbi->map_dma + PAGE_SIZE;
1028 * FIXME: this is actually the wrong thing to place in
1029 * smem_start. But fbdev suffers from the problem that
1030 * it needs an API which doesn't exist (in this case,
1031 * dma_writecombine_mmap)
1033 fbi->fb.fix.smem_start = fbi->screen_dma;
1035 fbi->palette_size = fbi->fb.var.bits_per_pixel == 8 ? 256 : 16;
1037 palette_mem_size = fbi->palette_size * sizeof(u16);
1038 pr_debug("pxafb: palette_mem_size = 0x%08lx\n", palette_mem_size);
1040 fbi->palette_cpu = (u16 *)(fbi->map_cpu + PAGE_SIZE - palette_mem_size);
1041 fbi->palette_dma = fbi->map_dma + PAGE_SIZE - palette_mem_size;
1044 return fbi->map_cpu ? 0 : -ENOMEM;
1047 static struct pxafb_info * __init pxafb_init_fbinfo(struct device *dev)
1049 struct pxafb_info *fbi;
1050 void *addr;
1051 struct pxafb_mach_info *inf = dev->platform_data;
1053 /* Alloc the pxafb_info and pseudo_palette in one step */
1054 fbi = kmalloc(sizeof(struct pxafb_info) + sizeof(u32) * 16, GFP_KERNEL);
1055 if (!fbi)
1056 return NULL;
1058 memset(fbi, 0, sizeof(struct pxafb_info));
1059 fbi->dev = dev;
1061 strcpy(fbi->fb.fix.id, PXA_NAME);
1063 fbi->fb.fix.type = FB_TYPE_PACKED_PIXELS;
1064 fbi->fb.fix.type_aux = 0;
1065 fbi->fb.fix.xpanstep = 0;
1066 fbi->fb.fix.ypanstep = 0;
1067 fbi->fb.fix.ywrapstep = 0;
1068 fbi->fb.fix.accel = FB_ACCEL_NONE;
1070 fbi->fb.var.nonstd = 0;
1071 fbi->fb.var.activate = FB_ACTIVATE_NOW;
1072 fbi->fb.var.height = -1;
1073 fbi->fb.var.width = -1;
1074 fbi->fb.var.accel_flags = 0;
1075 fbi->fb.var.vmode = FB_VMODE_NONINTERLACED;
1077 fbi->fb.fbops = &pxafb_ops;
1078 fbi->fb.flags = FBINFO_DEFAULT;
1079 fbi->fb.node = -1;
1081 addr = fbi;
1082 addr = addr + sizeof(struct pxafb_info);
1083 fbi->fb.pseudo_palette = addr;
1085 fbi->max_xres = inf->xres;
1086 fbi->fb.var.xres = inf->xres;
1087 fbi->fb.var.xres_virtual = inf->xres;
1088 fbi->max_yres = inf->yres;
1089 fbi->fb.var.yres = inf->yres;
1090 fbi->fb.var.yres_virtual = inf->yres;
1091 fbi->max_bpp = inf->bpp;
1092 fbi->fb.var.bits_per_pixel = inf->bpp;
1093 fbi->fb.var.pixclock = inf->pixclock;
1094 fbi->fb.var.hsync_len = inf->hsync_len;
1095 fbi->fb.var.left_margin = inf->left_margin;
1096 fbi->fb.var.right_margin = inf->right_margin;
1097 fbi->fb.var.vsync_len = inf->vsync_len;
1098 fbi->fb.var.upper_margin = inf->upper_margin;
1099 fbi->fb.var.lower_margin = inf->lower_margin;
1100 fbi->fb.var.sync = inf->sync;
1101 fbi->fb.var.grayscale = inf->cmap_greyscale;
1102 fbi->cmap_inverse = inf->cmap_inverse;
1103 fbi->cmap_static = inf->cmap_static;
1104 fbi->lccr0 = inf->lccr0;
1105 fbi->lccr3 = inf->lccr3;
1106 fbi->state = C_STARTUP;
1107 fbi->task_state = (u_char)-1;
1108 fbi->fb.fix.smem_len = fbi->max_xres * fbi->max_yres *
1109 fbi->max_bpp / 8;
1111 init_waitqueue_head(&fbi->ctrlr_wait);
1112 INIT_WORK(&fbi->task, pxafb_task, fbi);
1113 init_MUTEX(&fbi->ctrlr_sem);
1115 return fbi;
1118 #ifdef CONFIG_FB_PXA_PARAMETERS
1119 static int __init pxafb_parse_options(struct device *dev, char *options)
1121 struct pxafb_mach_info *inf = dev->platform_data;
1122 char *this_opt;
1124 if (!options || !*options)
1125 return 0;
1127 dev_dbg(dev, "options are \"%s\"\n", options ? options : "null");
1129 /* could be made table driven or similar?... */
1130 while ((this_opt = strsep(&options, ",")) != NULL) {
1131 if (!strncmp(this_opt, "mode:", 5)) {
1132 const char *name = this_opt+5;
1133 unsigned int namelen = strlen(name);
1134 int res_specified = 0, bpp_specified = 0;
1135 unsigned int xres = 0, yres = 0, bpp = 0;
1136 int yres_specified = 0;
1137 int i;
1138 for (i = namelen-1; i >= 0; i--) {
1139 switch (name[i]) {
1140 case '-':
1141 namelen = i;
1142 if (!bpp_specified && !yres_specified) {
1143 bpp = simple_strtoul(&name[i+1], NULL, 0);
1144 bpp_specified = 1;
1145 } else
1146 goto done;
1147 break;
1148 case 'x':
1149 if (!yres_specified) {
1150 yres = simple_strtoul(&name[i+1], NULL, 0);
1151 yres_specified = 1;
1152 } else
1153 goto done;
1154 break;
1155 case '0'...'9':
1156 break;
1157 default:
1158 goto done;
1161 if (i < 0 && yres_specified) {
1162 xres = simple_strtoul(name, NULL, 0);
1163 res_specified = 1;
1165 done:
1166 if (res_specified) {
1167 dev_info(dev, "overriding resolution: %dx%d\n", xres, yres);
1168 inf->xres = xres; inf->yres = yres;
1170 if (bpp_specified)
1171 switch (bpp) {
1172 case 1:
1173 case 2:
1174 case 4:
1175 case 8:
1176 case 16:
1177 inf->bpp = bpp;
1178 dev_info(dev, "overriding bit depth: %d\n", bpp);
1179 break;
1180 default:
1181 dev_err(dev, "Depth %d is not valid\n", bpp);
1183 } else if (!strncmp(this_opt, "pixclock:", 9)) {
1184 inf->pixclock = simple_strtoul(this_opt+9, NULL, 0);
1185 dev_info(dev, "override pixclock: %ld\n", inf->pixclock);
1186 } else if (!strncmp(this_opt, "left:", 5)) {
1187 inf->left_margin = simple_strtoul(this_opt+5, NULL, 0);
1188 dev_info(dev, "override left: %u\n", inf->left_margin);
1189 } else if (!strncmp(this_opt, "right:", 6)) {
1190 inf->right_margin = simple_strtoul(this_opt+6, NULL, 0);
1191 dev_info(dev, "override right: %u\n", inf->right_margin);
1192 } else if (!strncmp(this_opt, "upper:", 6)) {
1193 inf->upper_margin = simple_strtoul(this_opt+6, NULL, 0);
1194 dev_info(dev, "override upper: %u\n", inf->upper_margin);
1195 } else if (!strncmp(this_opt, "lower:", 6)) {
1196 inf->lower_margin = simple_strtoul(this_opt+6, NULL, 0);
1197 dev_info(dev, "override lower: %u\n", inf->lower_margin);
1198 } else if (!strncmp(this_opt, "hsynclen:", 9)) {
1199 inf->hsync_len = simple_strtoul(this_opt+9, NULL, 0);
1200 dev_info(dev, "override hsynclen: %u\n", inf->hsync_len);
1201 } else if (!strncmp(this_opt, "vsynclen:", 9)) {
1202 inf->vsync_len = simple_strtoul(this_opt+9, NULL, 0);
1203 dev_info(dev, "override vsynclen: %u\n", inf->vsync_len);
1204 } else if (!strncmp(this_opt, "hsync:", 6)) {
1205 if (simple_strtoul(this_opt+6, NULL, 0) == 0) {
1206 dev_info(dev, "override hsync: Active Low\n");
1207 inf->sync &= ~FB_SYNC_HOR_HIGH_ACT;
1208 } else {
1209 dev_info(dev, "override hsync: Active High\n");
1210 inf->sync |= FB_SYNC_HOR_HIGH_ACT;
1212 } else if (!strncmp(this_opt, "vsync:", 6)) {
1213 if (simple_strtoul(this_opt+6, NULL, 0) == 0) {
1214 dev_info(dev, "override vsync: Active Low\n");
1215 inf->sync &= ~FB_SYNC_VERT_HIGH_ACT;
1216 } else {
1217 dev_info(dev, "override vsync: Active High\n");
1218 inf->sync |= FB_SYNC_VERT_HIGH_ACT;
1220 } else if (!strncmp(this_opt, "dpc:", 4)) {
1221 if (simple_strtoul(this_opt+4, NULL, 0) == 0) {
1222 dev_info(dev, "override double pixel clock: false\n");
1223 inf->lccr3 &= ~LCCR3_DPC;
1224 } else {
1225 dev_info(dev, "override double pixel clock: true\n");
1226 inf->lccr3 |= LCCR3_DPC;
1228 } else if (!strncmp(this_opt, "outputen:", 9)) {
1229 if (simple_strtoul(this_opt+9, NULL, 0) == 0) {
1230 dev_info(dev, "override output enable: active low\n");
1231 inf->lccr3 = (inf->lccr3 & ~LCCR3_OEP) | LCCR3_OutEnL;
1232 } else {
1233 dev_info(dev, "override output enable: active high\n");
1234 inf->lccr3 = (inf->lccr3 & ~LCCR3_OEP) | LCCR3_OutEnH;
1236 } else if (!strncmp(this_opt, "pixclockpol:", 12)) {
1237 if (simple_strtoul(this_opt+12, NULL, 0) == 0) {
1238 dev_info(dev, "override pixel clock polarity: falling edge\n");
1239 inf->lccr3 = (inf->lccr3 & ~LCCR3_PCP) | LCCR3_PixFlEdg;
1240 } else {
1241 dev_info(dev, "override pixel clock polarity: rising edge\n");
1242 inf->lccr3 = (inf->lccr3 & ~LCCR3_PCP) | LCCR3_PixRsEdg;
1244 } else if (!strncmp(this_opt, "color", 5)) {
1245 inf->lccr0 = (inf->lccr0 & ~LCCR0_CMS) | LCCR0_Color;
1246 } else if (!strncmp(this_opt, "mono", 4)) {
1247 inf->lccr0 = (inf->lccr0 & ~LCCR0_CMS) | LCCR0_Mono;
1248 } else if (!strncmp(this_opt, "active", 6)) {
1249 inf->lccr0 = (inf->lccr0 & ~LCCR0_PAS) | LCCR0_Act;
1250 } else if (!strncmp(this_opt, "passive", 7)) {
1251 inf->lccr0 = (inf->lccr0 & ~LCCR0_PAS) | LCCR0_Pas;
1252 } else if (!strncmp(this_opt, "single", 6)) {
1253 inf->lccr0 = (inf->lccr0 & ~LCCR0_SDS) | LCCR0_Sngl;
1254 } else if (!strncmp(this_opt, "dual", 4)) {
1255 inf->lccr0 = (inf->lccr0 & ~LCCR0_SDS) | LCCR0_Dual;
1256 } else if (!strncmp(this_opt, "4pix", 4)) {
1257 inf->lccr0 = (inf->lccr0 & ~LCCR0_DPD) | LCCR0_4PixMono;
1258 } else if (!strncmp(this_opt, "8pix", 4)) {
1259 inf->lccr0 = (inf->lccr0 & ~LCCR0_DPD) | LCCR0_8PixMono;
1260 } else {
1261 dev_err(dev, "unknown option: %s\n", this_opt);
1262 return -EINVAL;
1265 return 0;
1268 #endif
1270 int __init pxafb_probe(struct platform_device *dev)
1272 struct pxafb_info *fbi;
1273 struct pxafb_mach_info *inf;
1274 int ret;
1276 dev_dbg(&dev->dev, "pxafb_probe\n");
1278 inf = dev->dev.platform_data;
1279 ret = -ENOMEM;
1280 fbi = NULL;
1281 if (!inf)
1282 goto failed;
1284 #ifdef CONFIG_FB_PXA_PARAMETERS
1285 ret = pxafb_parse_options(&dev->dev, g_options);
1286 if (ret < 0)
1287 goto failed;
1288 #endif
1290 #ifdef DEBUG_VAR
1291 /* Check for various illegal bit-combinations. Currently only
1292 * a warning is given. */
1294 if (inf->lccr0 & LCCR0_INVALID_CONFIG_MASK)
1295 dev_warn(&dev->dev, "machine LCCR0 setting contains illegal bits: %08x\n",
1296 inf->lccr0 & LCCR0_INVALID_CONFIG_MASK);
1297 if (inf->lccr3 & LCCR3_INVALID_CONFIG_MASK)
1298 dev_warn(&dev->dev, "machine LCCR3 setting contains illegal bits: %08x\n",
1299 inf->lccr3 & LCCR3_INVALID_CONFIG_MASK);
1300 if (inf->lccr0 & LCCR0_DPD &&
1301 ((inf->lccr0 & LCCR0_PAS) != LCCR0_Pas ||
1302 (inf->lccr0 & LCCR0_SDS) != LCCR0_Sngl ||
1303 (inf->lccr0 & LCCR0_CMS) != LCCR0_Mono))
1304 dev_warn(&dev->dev, "Double Pixel Data (DPD) mode is only valid in passive mono"
1305 " single panel mode\n");
1306 if ((inf->lccr0 & LCCR0_PAS) == LCCR0_Act &&
1307 (inf->lccr0 & LCCR0_SDS) == LCCR0_Dual)
1308 dev_warn(&dev->dev, "Dual panel only valid in passive mode\n");
1309 if ((inf->lccr0 & LCCR0_PAS) == LCCR0_Pas &&
1310 (inf->upper_margin || inf->lower_margin))
1311 dev_warn(&dev->dev, "Upper and lower margins must be 0 in passive mode\n");
1312 #endif
1314 dev_dbg(&dev->dev, "got a %dx%dx%d LCD\n",inf->xres, inf->yres, inf->bpp);
1315 if (inf->xres == 0 || inf->yres == 0 || inf->bpp == 0) {
1316 dev_err(&dev->dev, "Invalid resolution or bit depth\n");
1317 ret = -EINVAL;
1318 goto failed;
1320 pxafb_backlight_power = inf->pxafb_backlight_power;
1321 pxafb_lcd_power = inf->pxafb_lcd_power;
1322 fbi = pxafb_init_fbinfo(&dev->dev);
1323 if (!fbi) {
1324 dev_err(&dev->dev, "Failed to initialize framebuffer device\n");
1325 ret = -ENOMEM; // only reason for pxafb_init_fbinfo to fail is kmalloc
1326 goto failed;
1329 /* Initialize video memory */
1330 ret = pxafb_map_video_memory(fbi);
1331 if (ret) {
1332 dev_err(&dev->dev, "Failed to allocate video RAM: %d\n", ret);
1333 ret = -ENOMEM;
1334 goto failed;
1337 ret = request_irq(IRQ_LCD, pxafb_handle_irq, IRQF_DISABLED, "LCD", fbi);
1338 if (ret) {
1339 dev_err(&dev->dev, "request_irq failed: %d\n", ret);
1340 ret = -EBUSY;
1341 goto failed;
1345 * This makes sure that our colour bitfield
1346 * descriptors are correctly initialised.
1348 pxafb_check_var(&fbi->fb.var, &fbi->fb);
1349 pxafb_set_par(&fbi->fb);
1351 platform_set_drvdata(dev, fbi);
1353 ret = register_framebuffer(&fbi->fb);
1354 if (ret < 0) {
1355 dev_err(&dev->dev, "Failed to register framebuffer device: %d\n", ret);
1356 goto failed;
1359 #ifdef CONFIG_PM
1360 // TODO
1361 #endif
1363 #ifdef CONFIG_CPU_FREQ
1364 fbi->freq_transition.notifier_call = pxafb_freq_transition;
1365 fbi->freq_policy.notifier_call = pxafb_freq_policy;
1366 cpufreq_register_notifier(&fbi->freq_transition, CPUFREQ_TRANSITION_NOTIFIER);
1367 cpufreq_register_notifier(&fbi->freq_policy, CPUFREQ_POLICY_NOTIFIER);
1368 #endif
1371 * Ok, now enable the LCD controller
1373 set_ctrlr_state(fbi, C_ENABLE);
1375 return 0;
1377 failed:
1378 platform_set_drvdata(dev, NULL);
1379 kfree(fbi);
1380 return ret;
1383 static struct platform_driver pxafb_driver = {
1384 .probe = pxafb_probe,
1385 #ifdef CONFIG_PM
1386 .suspend = pxafb_suspend,
1387 .resume = pxafb_resume,
1388 #endif
1389 .driver = {
1390 .name = "pxa2xx-fb",
1394 #ifndef MODULE
1395 int __devinit pxafb_setup(char *options)
1397 # ifdef CONFIG_FB_PXA_PARAMETERS
1398 if (options)
1399 strlcpy(g_options, options, sizeof(g_options));
1400 # endif
1401 return 0;
1403 #else
1404 # ifdef CONFIG_FB_PXA_PARAMETERS
1405 module_param_string(options, g_options, sizeof(g_options), 0);
1406 MODULE_PARM_DESC(options, "LCD parameters (see Documentation/fb/pxafb.txt)");
1407 # endif
1408 #endif
1410 int __devinit pxafb_init(void)
1412 #ifndef MODULE
1413 char *option = NULL;
1415 if (fb_get_options("pxafb", &option))
1416 return -ENODEV;
1417 pxafb_setup(option);
1418 #endif
1419 return platform_driver_register(&pxafb_driver);
1422 module_init(pxafb_init);
1424 MODULE_DESCRIPTION("loadable framebuffer driver for PXA");
1425 MODULE_LICENSE("GPL");