x86-arch_register_cpu-section-fix
[linux-2.6/linux-trees-mm.git] / kernel / time / tick-sched.c
blob23b2aa8540778e041866d6a806a3a6446dece5ac
1 /*
2 * linux/kernel/time/tick-sched.c
4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
8 * No idle tick implementation for low and high resolution timers
10 * Started by: Thomas Gleixner and Ingo Molnar
12 * For licencing details see kernel-base/COPYING
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/interrupt.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/percpu.h>
20 #include <linux/profile.h>
21 #include <linux/sched.h>
22 #include <linux/tick.h>
24 #include <asm/irq_regs.h>
26 #include "tick-internal.h"
29 * Per cpu nohz control structure
31 static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
34 * The time, when the last jiffy update happened. Protected by xtime_lock.
36 static ktime_t last_jiffies_update;
38 struct tick_sched *tick_get_tick_sched(int cpu)
40 return &per_cpu(tick_cpu_sched, cpu);
44 * Must be called with interrupts disabled !
46 static void tick_do_update_jiffies64(ktime_t now)
48 unsigned long ticks = 0;
49 ktime_t delta;
51 /* Reevalute with xtime_lock held */
52 write_seqlock(&xtime_lock);
54 delta = ktime_sub(now, last_jiffies_update);
55 if (delta.tv64 >= tick_period.tv64) {
57 delta = ktime_sub(delta, tick_period);
58 last_jiffies_update = ktime_add(last_jiffies_update,
59 tick_period);
61 /* Slow path for long timeouts */
62 if (unlikely(delta.tv64 >= tick_period.tv64)) {
63 s64 incr = ktime_to_ns(tick_period);
65 ticks = ktime_divns(delta, incr);
67 last_jiffies_update = ktime_add_ns(last_jiffies_update,
68 incr * ticks);
70 do_timer(++ticks);
72 write_sequnlock(&xtime_lock);
76 * Initialize and return retrieve the jiffies update.
78 static ktime_t tick_init_jiffy_update(void)
80 ktime_t period;
82 write_seqlock(&xtime_lock);
83 /* Did we start the jiffies update yet ? */
84 if (last_jiffies_update.tv64 == 0)
85 last_jiffies_update = tick_next_period;
86 period = last_jiffies_update;
87 write_sequnlock(&xtime_lock);
88 return period;
92 * NOHZ - aka dynamic tick functionality
94 #ifdef CONFIG_NO_HZ
96 * NO HZ enabled ?
98 static int tick_nohz_enabled __read_mostly = 1;
101 * Enable / Disable tickless mode
103 static int __init setup_tick_nohz(char *str)
105 if (!strcmp(str, "off"))
106 tick_nohz_enabled = 0;
107 else if (!strcmp(str, "on"))
108 tick_nohz_enabled = 1;
109 else
110 return 0;
111 return 1;
114 __setup("nohz=", setup_tick_nohz);
117 * tick_nohz_update_jiffies - update jiffies when idle was interrupted
119 * Called from interrupt entry when the CPU was idle
121 * In case the sched_tick was stopped on this CPU, we have to check if jiffies
122 * must be updated. Otherwise an interrupt handler could use a stale jiffy
123 * value. We do this unconditionally on any cpu, as we don't know whether the
124 * cpu, which has the update task assigned is in a long sleep.
126 void tick_nohz_update_jiffies(void)
128 int cpu = smp_processor_id();
129 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
130 unsigned long flags;
131 ktime_t now;
133 if (!ts->tick_stopped)
134 return;
136 cpu_clear(cpu, nohz_cpu_mask);
137 now = ktime_get();
139 local_irq_save(flags);
140 tick_do_update_jiffies64(now);
141 local_irq_restore(flags);
144 void tick_nohz_stop_idle(int cpu)
146 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
148 if (ts->idle_active) {
149 ktime_t now, delta;
150 now = ktime_get();
151 delta = ktime_sub(now, ts->idle_entrytime);
152 ts->idle_lastupdate = now;
153 ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
154 ts->idle_active = 0;
158 static ktime_t tick_nohz_start_idle(int cpu)
160 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
161 ktime_t now, delta;
163 now = ktime_get();
164 if (ts->idle_active) {
165 delta = ktime_sub(now, ts->idle_entrytime);
166 ts->idle_lastupdate = now;
167 ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
169 ts->idle_entrytime = now;
170 ts->idle_active = 1;
171 return now;
174 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
176 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
178 *last_update_time = ktime_to_us(ts->idle_lastupdate);
179 return ktime_to_us(ts->idle_sleeptime);
183 * tick_nohz_stop_sched_tick - stop the idle tick from the idle task
185 * When the next event is more than a tick into the future, stop the idle tick
186 * Called either from the idle loop or from irq_exit() when an idle period was
187 * just interrupted by an interrupt which did not cause a reschedule.
189 void tick_nohz_stop_sched_tick(void)
191 unsigned long seq, last_jiffies, next_jiffies, delta_jiffies, flags;
192 struct tick_sched *ts;
193 ktime_t last_update, expires, now;
194 struct clock_event_device *dev = __get_cpu_var(tick_cpu_device).evtdev;
195 int cpu;
197 local_irq_save(flags);
199 cpu = smp_processor_id();
200 now = tick_nohz_start_idle(cpu);
201 ts = &per_cpu(tick_cpu_sched, cpu);
204 * If this cpu is offline and it is the one which updates
205 * jiffies, then give up the assignment and let it be taken by
206 * the cpu which runs the tick timer next. If we don't drop
207 * this here the jiffies might be stale and do_timer() never
208 * invoked.
210 if (unlikely(!cpu_online(cpu))) {
211 if (cpu == tick_do_timer_cpu)
212 tick_do_timer_cpu = -1;
215 if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE))
216 goto end;
218 if (need_resched())
219 goto end;
221 cpu = smp_processor_id();
222 if (unlikely(local_softirq_pending())) {
223 static int ratelimit;
225 if (ratelimit < 10) {
226 printk(KERN_ERR "NOHZ: local_softirq_pending %02x\n",
227 local_softirq_pending());
228 ratelimit++;
232 ts->idle_calls++;
233 /* Read jiffies and the time when jiffies were updated last */
234 do {
235 seq = read_seqbegin(&xtime_lock);
236 last_update = last_jiffies_update;
237 last_jiffies = jiffies;
238 } while (read_seqretry(&xtime_lock, seq));
240 /* Get the next timer wheel timer */
241 next_jiffies = get_next_timer_interrupt(last_jiffies);
242 delta_jiffies = next_jiffies - last_jiffies;
244 if (rcu_needs_cpu(cpu))
245 delta_jiffies = 1;
247 * Do not stop the tick, if we are only one off
248 * or if the cpu is required for rcu
250 if (!ts->tick_stopped && delta_jiffies == 1)
251 goto out;
253 /* Schedule the tick, if we are at least one jiffie off */
254 if ((long)delta_jiffies >= 1) {
256 if (delta_jiffies > 1)
257 cpu_set(cpu, nohz_cpu_mask);
259 * nohz_stop_sched_tick can be called several times before
260 * the nohz_restart_sched_tick is called. This happens when
261 * interrupts arrive which do not cause a reschedule. In the
262 * first call we save the current tick time, so we can restart
263 * the scheduler tick in nohz_restart_sched_tick.
265 if (!ts->tick_stopped) {
266 if (select_nohz_load_balancer(1)) {
268 * sched tick not stopped!
270 cpu_clear(cpu, nohz_cpu_mask);
271 goto out;
274 ts->idle_tick = ts->sched_timer.expires;
275 ts->tick_stopped = 1;
276 ts->idle_jiffies = last_jiffies;
280 * If this cpu is the one which updates jiffies, then
281 * give up the assignment and let it be taken by the
282 * cpu which runs the tick timer next, which might be
283 * this cpu as well. If we don't drop this here the
284 * jiffies might be stale and do_timer() never
285 * invoked.
287 if (cpu == tick_do_timer_cpu)
288 tick_do_timer_cpu = -1;
290 ts->idle_sleeps++;
293 * delta_jiffies >= NEXT_TIMER_MAX_DELTA signals that
294 * there is no timer pending or at least extremly far
295 * into the future (12 days for HZ=1000). In this case
296 * we simply stop the tick timer:
298 if (unlikely(delta_jiffies >= NEXT_TIMER_MAX_DELTA)) {
299 ts->idle_expires.tv64 = KTIME_MAX;
300 if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
301 hrtimer_cancel(&ts->sched_timer);
302 goto out;
306 * calculate the expiry time for the next timer wheel
307 * timer
309 expires = ktime_add_ns(last_update, tick_period.tv64 *
310 delta_jiffies);
311 ts->idle_expires = expires;
313 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
314 hrtimer_start(&ts->sched_timer, expires,
315 HRTIMER_MODE_ABS);
316 /* Check, if the timer was already in the past */
317 if (hrtimer_active(&ts->sched_timer))
318 goto out;
319 } else if(!tick_program_event(expires, 0))
320 goto out;
322 * We are past the event already. So we crossed a
323 * jiffie boundary. Update jiffies and raise the
324 * softirq.
326 tick_do_update_jiffies64(ktime_get());
327 cpu_clear(cpu, nohz_cpu_mask);
329 raise_softirq_irqoff(TIMER_SOFTIRQ);
330 out:
331 ts->next_jiffies = next_jiffies;
332 ts->last_jiffies = last_jiffies;
333 ts->sleep_length = ktime_sub(dev->next_event, now);
334 end:
335 local_irq_restore(flags);
339 * tick_nohz_get_sleep_length - return the length of the current sleep
341 * Called from power state control code with interrupts disabled
343 ktime_t tick_nohz_get_sleep_length(void)
345 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
347 return ts->sleep_length;
351 * tick_nohz_restart_sched_tick - restart the idle tick from the idle task
353 * Restart the idle tick when the CPU is woken up from idle
355 void tick_nohz_restart_sched_tick(void)
357 int cpu = smp_processor_id();
358 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
359 unsigned long ticks;
360 ktime_t now;
362 local_irq_disable();
363 tick_nohz_stop_idle(cpu);
365 if (!ts->tick_stopped) {
366 local_irq_enable();
367 return;
370 /* Update jiffies first */
371 select_nohz_load_balancer(0);
372 now = ktime_get();
373 tick_do_update_jiffies64(now);
374 cpu_clear(cpu, nohz_cpu_mask);
377 * We stopped the tick in idle. Update process times would miss the
378 * time we slept as update_process_times does only a 1 tick
379 * accounting. Enforce that this is accounted to idle !
381 ticks = jiffies - ts->idle_jiffies;
383 * We might be one off. Do not randomly account a huge number of ticks!
385 if (ticks && ticks < LONG_MAX) {
386 add_preempt_count(HARDIRQ_OFFSET);
387 account_system_time(current, HARDIRQ_OFFSET,
388 jiffies_to_cputime(ticks));
389 sub_preempt_count(HARDIRQ_OFFSET);
393 * Cancel the scheduled timer and restore the tick
395 ts->tick_stopped = 0;
396 hrtimer_cancel(&ts->sched_timer);
397 ts->sched_timer.expires = ts->idle_tick;
399 while (1) {
400 /* Forward the time to expire in the future */
401 hrtimer_forward(&ts->sched_timer, now, tick_period);
403 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
404 hrtimer_start(&ts->sched_timer,
405 ts->sched_timer.expires,
406 HRTIMER_MODE_ABS);
407 /* Check, if the timer was already in the past */
408 if (hrtimer_active(&ts->sched_timer))
409 break;
410 } else {
411 if (!tick_program_event(ts->sched_timer.expires, 0))
412 break;
414 /* Update jiffies and reread time */
415 tick_do_update_jiffies64(now);
416 now = ktime_get();
418 local_irq_enable();
421 static int tick_nohz_reprogram(struct tick_sched *ts, ktime_t now)
423 hrtimer_forward(&ts->sched_timer, now, tick_period);
424 return tick_program_event(ts->sched_timer.expires, 0);
428 * The nohz low res interrupt handler
430 static void tick_nohz_handler(struct clock_event_device *dev)
432 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
433 struct pt_regs *regs = get_irq_regs();
434 int cpu = smp_processor_id();
435 ktime_t now = ktime_get();
437 dev->next_event.tv64 = KTIME_MAX;
440 * Check if the do_timer duty was dropped. We don't care about
441 * concurrency: This happens only when the cpu in charge went
442 * into a long sleep. If two cpus happen to assign themself to
443 * this duty, then the jiffies update is still serialized by
444 * xtime_lock.
446 if (unlikely(tick_do_timer_cpu == -1))
447 tick_do_timer_cpu = cpu;
449 /* Check, if the jiffies need an update */
450 if (tick_do_timer_cpu == cpu)
451 tick_do_update_jiffies64(now);
454 * When we are idle and the tick is stopped, we have to touch
455 * the watchdog as we might not schedule for a really long
456 * time. This happens on complete idle SMP systems while
457 * waiting on the login prompt. We also increment the "start
458 * of idle" jiffy stamp so the idle accounting adjustment we
459 * do when we go busy again does not account too much ticks.
461 if (ts->tick_stopped) {
462 touch_softlockup_watchdog();
463 ts->idle_jiffies++;
466 update_process_times(user_mode(regs));
467 profile_tick(CPU_PROFILING);
469 /* Do not restart, when we are in the idle loop */
470 if (ts->tick_stopped)
471 return;
473 while (tick_nohz_reprogram(ts, now)) {
474 now = ktime_get();
475 tick_do_update_jiffies64(now);
480 * tick_nohz_switch_to_nohz - switch to nohz mode
482 static void tick_nohz_switch_to_nohz(void)
484 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
485 ktime_t next;
487 if (!tick_nohz_enabled)
488 return;
490 local_irq_disable();
491 if (tick_switch_to_oneshot(tick_nohz_handler)) {
492 local_irq_enable();
493 return;
496 ts->nohz_mode = NOHZ_MODE_LOWRES;
499 * Recycle the hrtimer in ts, so we can share the
500 * hrtimer_forward with the highres code.
502 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
503 /* Get the next period */
504 next = tick_init_jiffy_update();
506 for (;;) {
507 ts->sched_timer.expires = next;
508 if (!tick_program_event(next, 0))
509 break;
510 next = ktime_add(next, tick_period);
512 local_irq_enable();
514 printk(KERN_INFO "Switched to NOHz mode on CPU #%d\n",
515 smp_processor_id());
518 #else
520 static inline void tick_nohz_switch_to_nohz(void) { }
522 #endif /* NO_HZ */
525 * High resolution timer specific code
527 #ifdef CONFIG_HIGH_RES_TIMERS
529 * We rearm the timer until we get disabled by the idle code
530 * Called with interrupts disabled and timer->base->cpu_base->lock held.
532 static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
534 struct tick_sched *ts =
535 container_of(timer, struct tick_sched, sched_timer);
536 struct hrtimer_cpu_base *base = timer->base->cpu_base;
537 struct pt_regs *regs = get_irq_regs();
538 ktime_t now = ktime_get();
539 int cpu = smp_processor_id();
541 #ifdef CONFIG_NO_HZ
543 * Check if the do_timer duty was dropped. We don't care about
544 * concurrency: This happens only when the cpu in charge went
545 * into a long sleep. If two cpus happen to assign themself to
546 * this duty, then the jiffies update is still serialized by
547 * xtime_lock.
549 if (unlikely(tick_do_timer_cpu == -1))
550 tick_do_timer_cpu = cpu;
551 #endif
553 /* Check, if the jiffies need an update */
554 if (tick_do_timer_cpu == cpu)
555 tick_do_update_jiffies64(now);
558 * Do not call, when we are not in irq context and have
559 * no valid regs pointer
561 if (regs) {
563 * When we are idle and the tick is stopped, we have to touch
564 * the watchdog as we might not schedule for a really long
565 * time. This happens on complete idle SMP systems while
566 * waiting on the login prompt. We also increment the "start of
567 * idle" jiffy stamp so the idle accounting adjustment we do
568 * when we go busy again does not account too much ticks.
570 if (ts->tick_stopped) {
571 touch_softlockup_watchdog();
572 ts->idle_jiffies++;
575 * update_process_times() might take tasklist_lock, hence
576 * drop the base lock. sched-tick hrtimers are per-CPU and
577 * never accessible by userspace APIs, so this is safe to do.
579 spin_unlock(&base->lock);
580 update_process_times(user_mode(regs));
581 profile_tick(CPU_PROFILING);
582 spin_lock(&base->lock);
585 /* Do not restart, when we are in the idle loop */
586 if (ts->tick_stopped)
587 return HRTIMER_NORESTART;
589 hrtimer_forward(timer, now, tick_period);
591 return HRTIMER_RESTART;
595 * tick_setup_sched_timer - setup the tick emulation timer
597 void tick_setup_sched_timer(void)
599 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
600 ktime_t now = ktime_get();
601 u64 offset;
604 * Emulate tick processing via per-CPU hrtimers:
606 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
607 ts->sched_timer.function = tick_sched_timer;
608 ts->sched_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
610 /* Get the next period (per cpu) */
611 ts->sched_timer.expires = tick_init_jiffy_update();
612 offset = ktime_to_ns(tick_period) >> 1;
613 do_div(offset, num_possible_cpus());
614 offset *= smp_processor_id();
615 ts->sched_timer.expires = ktime_add_ns(ts->sched_timer.expires, offset);
617 for (;;) {
618 hrtimer_forward(&ts->sched_timer, now, tick_period);
619 hrtimer_start(&ts->sched_timer, ts->sched_timer.expires,
620 HRTIMER_MODE_ABS);
621 /* Check, if the timer was already in the past */
622 if (hrtimer_active(&ts->sched_timer))
623 break;
624 now = ktime_get();
627 #ifdef CONFIG_NO_HZ
628 if (tick_nohz_enabled)
629 ts->nohz_mode = NOHZ_MODE_HIGHRES;
630 #endif
633 void tick_cancel_sched_timer(int cpu)
635 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
637 if (ts->sched_timer.base)
638 hrtimer_cancel(&ts->sched_timer);
639 ts->tick_stopped = 0;
640 ts->nohz_mode = NOHZ_MODE_INACTIVE;
642 #endif /* HIGH_RES_TIMERS */
645 * Async notification about clocksource changes
647 void tick_clock_notify(void)
649 int cpu;
651 for_each_possible_cpu(cpu)
652 set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
656 * Async notification about clock event changes
658 void tick_oneshot_notify(void)
660 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
662 set_bit(0, &ts->check_clocks);
666 * Check, if a change happened, which makes oneshot possible.
668 * Called cyclic from the hrtimer softirq (driven by the timer
669 * softirq) allow_nohz signals, that we can switch into low-res nohz
670 * mode, because high resolution timers are disabled (either compile
671 * or runtime).
673 int tick_check_oneshot_change(int allow_nohz)
675 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
677 if (!test_and_clear_bit(0, &ts->check_clocks))
678 return 0;
680 if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
681 return 0;
683 if (!timekeeping_is_continuous() || !tick_is_oneshot_available())
684 return 0;
686 if (!allow_nohz)
687 return 1;
689 tick_nohz_switch_to_nohz();
690 return 0;