jiffies_round-jiffies_round_relative-conversion-rt2x00-checkpatch-fixes
[linux-2.6/linux-trees-mm.git] / drivers / net / ipg.c
blobdbd23bb65d1ec4cc634704f75db7e35f199cf06b
1 /*
2 * ipg.c: Device Driver for the IP1000 Gigabit Ethernet Adapter
4 * Copyright (C) 2003, 2007 IC Plus Corp
6 * Original Author:
8 * Craig Rich
9 * Sundance Technology, Inc.
10 * www.sundanceti.com
11 * craig_rich@sundanceti.com
13 * Current Maintainer:
15 * Sorbica Shieh.
16 * http://www.icplus.com.tw
17 * sorbica@icplus.com.tw
19 * Jesse Huang
20 * http://www.icplus.com.tw
21 * jesse@icplus.com.tw
23 #include <linux/crc32.h>
24 #include <linux/ethtool.h>
25 #include <linux/mii.h>
26 #include <linux/mutex.h>
28 #include <asm/div64.h>
30 #define IPG_RX_RING_BYTES (sizeof(struct ipg_rx) * IPG_RFDLIST_LENGTH)
31 #define IPG_TX_RING_BYTES (sizeof(struct ipg_tx) * IPG_TFDLIST_LENGTH)
32 #define IPG_RESET_MASK \
33 (IPG_AC_GLOBAL_RESET | IPG_AC_RX_RESET | IPG_AC_TX_RESET | \
34 IPG_AC_DMA | IPG_AC_FIFO | IPG_AC_NETWORK | IPG_AC_HOST | \
35 IPG_AC_AUTO_INIT)
37 #define ipg_w32(val32,reg) iowrite32((val32), ioaddr + (reg))
38 #define ipg_w16(val16,reg) iowrite16((val16), ioaddr + (reg))
39 #define ipg_w8(val8,reg) iowrite8((val8), ioaddr + (reg))
41 #define ipg_r32(reg) ioread32(ioaddr + (reg))
42 #define ipg_r16(reg) ioread16(ioaddr + (reg))
43 #define ipg_r8(reg) ioread8(ioaddr + (reg))
45 #define JUMBO_FRAME_4k_ONLY
46 enum {
47 netdev_io_size = 128
50 #include "ipg.h"
51 #define DRV_NAME "ipg"
53 MODULE_AUTHOR("IC Plus Corp. 2003");
54 MODULE_DESCRIPTION("IC Plus IP1000 Gigabit Ethernet Adapter Linux Driver "
55 DrvVer);
56 MODULE_LICENSE("GPL");
58 //variable record -- index by leading revision/length
59 //Revision/Length(=N*4), Address1, Data1, Address2, Data2,...,AddressN,DataN
60 static unsigned short DefaultPhyParam[] = {
61 // 11/12/03 IP1000A v1-3 rev=0x40
62 /*--------------------------------------------------------------------------
63 (0x4000|(15*4)), 31, 0x0001, 27, 0x01e0, 31, 0x0002, 22, 0x85bd, 24, 0xfff2,
64 27, 0x0c10, 28, 0x0c10, 29, 0x2c10, 31, 0x0003, 23, 0x92f6,
65 31, 0x0000, 23, 0x003d, 30, 0x00de, 20, 0x20e7, 9, 0x0700,
66 --------------------------------------------------------------------------*/
67 // 12/17/03 IP1000A v1-4 rev=0x40
68 (0x4000 | (07 * 4)), 31, 0x0001, 27, 0x01e0, 31, 0x0002, 27, 0xeb8e, 31,
69 0x0000,
70 30, 0x005e, 9, 0x0700,
71 // 01/09/04 IP1000A v1-5 rev=0x41
72 (0x4100 | (07 * 4)), 31, 0x0001, 27, 0x01e0, 31, 0x0002, 27, 0xeb8e, 31,
73 0x0000,
74 30, 0x005e, 9, 0x0700,
75 0x0000
78 static const char *ipg_brand_name[] = {
79 "IC PLUS IP1000 1000/100/10 based NIC",
80 "Sundance Technology ST2021 based NIC",
81 "Tamarack Microelectronics TC9020/9021 based NIC",
82 "Tamarack Microelectronics TC9020/9021 based NIC",
83 "D-Link NIC",
84 "D-Link NIC IP1000A"
87 static struct pci_device_id ipg_pci_tbl[] __devinitdata = {
88 { PCI_VDEVICE(SUNDANCE, 0x1023), 0 },
89 { PCI_VDEVICE(SUNDANCE, 0x2021), 1 },
90 { PCI_VDEVICE(SUNDANCE, 0x1021), 2 },
91 { PCI_VDEVICE(DLINK, 0x9021), 3 },
92 { PCI_VDEVICE(DLINK, 0x4000), 4 },
93 { PCI_VDEVICE(DLINK, 0x4020), 5 },
94 { 0, }
97 MODULE_DEVICE_TABLE(pci, ipg_pci_tbl);
99 static inline void __iomem *ipg_ioaddr(struct net_device *dev)
101 struct ipg_nic_private *sp = netdev_priv(dev);
102 return sp->ioaddr;
105 #ifdef IPG_DEBUG
106 static void ipg_dump_rfdlist(struct net_device *dev)
108 struct ipg_nic_private *sp = netdev_priv(dev);
109 void __iomem *ioaddr = sp->ioaddr;
110 unsigned int i;
111 u32 offset;
113 IPG_DEBUG_MSG("_dump_rfdlist\n");
115 printk(KERN_INFO "rx_current = %2.2x\n", sp->rx_current);
116 printk(KERN_INFO "rx_dirty = %2.2x\n", sp->rx_dirty);
117 printk(KERN_INFO "RFDList start address = %16.16lx\n",
118 (unsigned long) sp->rxd_map);
119 printk(KERN_INFO "RFDListPtr register = %8.8x%8.8x\n",
120 ipg_r32(IPG_RFDLISTPTR1), ipg_r32(IPG_RFDLISTPTR0));
122 for (i = 0; i < IPG_RFDLIST_LENGTH; i++) {
123 offset = (u32) &sp->rxd[i].next_desc - (u32) sp->rxd;
124 printk(KERN_INFO "%2.2x %4.4x RFDNextPtr = %16.16lx\n", i,
125 offset, (unsigned long) sp->rxd[i].next_desc);
126 offset = (u32) &sp->rxd[i].rfs - (u32) sp->rxd;
127 printk(KERN_INFO "%2.2x %4.4x RFS = %16.16lx\n", i,
128 offset, (unsigned long) sp->rxd[i].rfs);
129 offset = (u32) &sp->rxd[i].frag_info - (u32) sp->rxd;
130 printk(KERN_INFO "%2.2x %4.4x frag_info = %16.16lx\n", i,
131 offset, (unsigned long) sp->rxd[i].frag_info);
135 static void ipg_dump_tfdlist(struct net_device *dev)
137 struct ipg_nic_private *sp = netdev_priv(dev);
138 void __iomem *ioaddr = sp->ioaddr;
139 unsigned int i;
140 u32 offset;
142 IPG_DEBUG_MSG("_dump_tfdlist\n");
144 printk(KERN_INFO "tx_current = %2.2x\n", sp->tx_current);
145 printk(KERN_INFO "tx_dirty = %2.2x\n", sp->tx_dirty);
146 printk(KERN_INFO "TFDList start address = %16.16lx\n",
147 (unsigned long) sp->txd_map);
148 printk(KERN_INFO "TFDListPtr register = %8.8x%8.8x\n",
149 ipg_r32(IPG_TFDLISTPTR1), ipg_r32(IPG_TFDLISTPTR0));
151 for (i = 0; i < IPG_TFDLIST_LENGTH; i++) {
152 offset = (u32) &sp->txd[i].next_desc - (u32) sp->txd;
153 printk(KERN_INFO "%2.2x %4.4x TFDNextPtr = %16.16lx\n", i,
154 offset, (unsigned long) sp->txd[i].next_desc);
156 offset = (u32) &sp->txd[i].tfc - (u32) sp->txd;
157 printk(KERN_INFO "%2.2x %4.4x TFC = %16.16lx\n", i,
158 offset, (unsigned long) sp->txd[i].tfc);
159 offset = (u32) &sp->txd[i].frag_info - (u32) sp->txd;
160 printk(KERN_INFO "%2.2x %4.4x frag_info = %16.16lx\n", i,
161 offset, (unsigned long) sp->txd[i].frag_info);
164 #endif
166 static void ipg_write_phy_ctl(void __iomem *ioaddr, u8 data)
168 ipg_w8(IPG_PC_RSVD_MASK & data, PHY_CTRL);
169 ndelay(IPG_PC_PHYCTRLWAIT_NS);
172 static void ipg_drive_phy_ctl_low_high(void __iomem *ioaddr, u8 data)
174 ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_LO | data);
175 ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_HI | data);
178 static void send_three_state(void __iomem *ioaddr, u8 phyctrlpolarity)
180 phyctrlpolarity |= (IPG_PC_MGMTDATA & 0) | IPG_PC_MGMTDIR;
182 ipg_drive_phy_ctl_low_high(ioaddr, phyctrlpolarity);
185 static void send_end(void __iomem *ioaddr, u8 phyctrlpolarity)
187 ipg_w8((IPG_PC_MGMTCLK_LO | (IPG_PC_MGMTDATA & 0) | IPG_PC_MGMTDIR |
188 phyctrlpolarity) & IPG_PC_RSVD_MASK, PHY_CTRL);
191 static u16 read_phy_bit(void __iomem * ioaddr, u8 phyctrlpolarity)
193 u16 bit_data;
195 ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_LO | phyctrlpolarity);
197 bit_data = ((ipg_r8(PHY_CTRL) & IPG_PC_MGMTDATA) >> 1) & 1;
199 ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_HI | phyctrlpolarity);
201 return bit_data;
205 * Read a register from the Physical Layer device located
206 * on the IPG NIC, using the IPG PHYCTRL register.
208 static int mdio_read(struct net_device * dev, int phy_id, int phy_reg)
210 void __iomem *ioaddr = ipg_ioaddr(dev);
212 * The GMII mangement frame structure for a read is as follows:
214 * |Preamble|st|op|phyad|regad|ta| data |idle|
215 * |< 32 1s>|01|10|AAAAA|RRRRR|z0|DDDDDDDDDDDDDDDD|z |
217 * <32 1s> = 32 consecutive logic 1 values
218 * A = bit of Physical Layer device address (MSB first)
219 * R = bit of register address (MSB first)
220 * z = High impedance state
221 * D = bit of read data (MSB first)
223 * Transmission order is 'Preamble' field first, bits transmitted
224 * left to right (first to last).
226 struct {
227 u32 field;
228 unsigned int len;
229 } p[] = {
230 { GMII_PREAMBLE, 32 }, /* Preamble */
231 { GMII_ST, 2 }, /* ST */
232 { GMII_READ, 2 }, /* OP */
233 { phy_id, 5 }, /* PHYAD */
234 { phy_reg, 5 }, /* REGAD */
235 { 0x0000, 2 }, /* TA */
236 { 0x0000, 16 }, /* DATA */
237 { 0x0000, 1 } /* IDLE */
239 unsigned int i, j;
240 u8 polarity, data;
242 polarity = ipg_r8(PHY_CTRL);
243 polarity &= (IPG_PC_DUPLEX_POLARITY | IPG_PC_LINK_POLARITY);
245 /* Create the Preamble, ST, OP, PHYAD, and REGAD field. */
246 for (j = 0; j < 5; j++) {
247 for (i = 0; i < p[j].len; i++) {
248 /* For each variable length field, the MSB must be
249 * transmitted first. Rotate through the field bits,
250 * starting with the MSB, and move each bit into the
251 * the 1st (2^1) bit position (this is the bit position
252 * corresponding to the MgmtData bit of the PhyCtrl
253 * register for the IPG).
255 * Example: ST = 01;
257 * First write a '0' to bit 1 of the PhyCtrl
258 * register, then write a '1' to bit 1 of the
259 * PhyCtrl register.
261 * To do this, right shift the MSB of ST by the value:
262 * [field length - 1 - #ST bits already written]
263 * then left shift this result by 1.
265 data = (p[j].field >> (p[j].len - 1 - i)) << 1;
266 data &= IPG_PC_MGMTDATA;
267 data |= polarity | IPG_PC_MGMTDIR;
269 ipg_drive_phy_ctl_low_high(ioaddr, data);
273 send_three_state(ioaddr, polarity);
275 read_phy_bit(ioaddr, polarity);
278 * For a read cycle, the bits for the next two fields (TA and
279 * DATA) are driven by the PHY (the IPG reads these bits).
281 for (i = 0; i < p[6].len; i++) {
282 p[6].field |=
283 (read_phy_bit(ioaddr, polarity) << (p[6].len - 1 - i));
286 send_three_state(ioaddr, polarity);
287 send_three_state(ioaddr, polarity);
288 send_three_state(ioaddr, polarity);
289 send_end(ioaddr, polarity);
291 /* Return the value of the DATA field. */
292 return p[6].field;
296 * Write to a register from the Physical Layer device located
297 * on the IPG NIC, using the IPG PHYCTRL register.
299 static void mdio_write(struct net_device *dev, int phy_id, int phy_reg, int val)
301 void __iomem *ioaddr = ipg_ioaddr(dev);
303 * The GMII mangement frame structure for a read is as follows:
305 * |Preamble|st|op|phyad|regad|ta| data |idle|
306 * |< 32 1s>|01|10|AAAAA|RRRRR|z0|DDDDDDDDDDDDDDDD|z |
308 * <32 1s> = 32 consecutive logic 1 values
309 * A = bit of Physical Layer device address (MSB first)
310 * R = bit of register address (MSB first)
311 * z = High impedance state
312 * D = bit of write data (MSB first)
314 * Transmission order is 'Preamble' field first, bits transmitted
315 * left to right (first to last).
317 struct {
318 u32 field;
319 unsigned int len;
320 } p[] = {
321 { GMII_PREAMBLE, 32 }, /* Preamble */
322 { GMII_ST, 2 }, /* ST */
323 { GMII_WRITE, 2 }, /* OP */
324 { phy_id, 5 }, /* PHYAD */
325 { phy_reg, 5 }, /* REGAD */
326 { 0x0002, 2 }, /* TA */
327 { val & 0xffff, 16 }, /* DATA */
328 { 0x0000, 1 } /* IDLE */
330 unsigned int i, j;
331 u8 polarity, data;
333 polarity = ipg_r8(PHY_CTRL);
334 polarity &= (IPG_PC_DUPLEX_POLARITY | IPG_PC_LINK_POLARITY);
336 /* Create the Preamble, ST, OP, PHYAD, and REGAD field. */
337 for (j = 0; j < 7; j++) {
338 for (i = 0; i < p[j].len; i++) {
339 /* For each variable length field, the MSB must be
340 * transmitted first. Rotate through the field bits,
341 * starting with the MSB, and move each bit into the
342 * the 1st (2^1) bit position (this is the bit position
343 * corresponding to the MgmtData bit of the PhyCtrl
344 * register for the IPG).
346 * Example: ST = 01;
348 * First write a '0' to bit 1 of the PhyCtrl
349 * register, then write a '1' to bit 1 of the
350 * PhyCtrl register.
352 * To do this, right shift the MSB of ST by the value:
353 * [field length - 1 - #ST bits already written]
354 * then left shift this result by 1.
356 data = (p[j].field >> (p[j].len - 1 - i)) << 1;
357 data &= IPG_PC_MGMTDATA;
358 data |= polarity | IPG_PC_MGMTDIR;
360 ipg_drive_phy_ctl_low_high(ioaddr, data);
364 /* The last cycle is a tri-state, so read from the PHY. */
365 for (j = 7; j < 8; j++) {
366 for (i = 0; i < p[j].len; i++) {
367 ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_LO | polarity);
369 p[j].field |= ((ipg_r8(PHY_CTRL) &
370 IPG_PC_MGMTDATA) >> 1) << (p[j].len - 1 - i);
372 ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_HI | polarity);
377 /* Set LED_Mode JES20040127EEPROM */
378 static void ipg_set_led_mode(struct net_device *dev)
380 struct ipg_nic_private *sp = netdev_priv(dev);
381 void __iomem *ioaddr = sp->ioaddr;
382 u32 mode;
384 mode = ipg_r32(ASIC_CTRL);
385 mode &= ~(IPG_AC_LED_MODE_BIT_1 | IPG_AC_LED_MODE | IPG_AC_LED_SPEED);
387 if ((sp->LED_Mode & 0x03) > 1)
388 mode |= IPG_AC_LED_MODE_BIT_1; /* Write Asic Control Bit 29 */
390 if ((sp->LED_Mode & 0x01) == 1)
391 mode |= IPG_AC_LED_MODE; /* Write Asic Control Bit 14 */
393 if ((sp->LED_Mode & 0x08) == 8)
394 mode |= IPG_AC_LED_SPEED; /* Write Asic Control Bit 27 */
396 ipg_w32(mode, ASIC_CTRL);
399 /* Set PHYSet JES20040127EEPROM */
400 static void ipg_set_phy_set(struct net_device *dev)
402 struct ipg_nic_private *sp = netdev_priv(dev);
403 void __iomem *ioaddr = sp->ioaddr;
404 int physet;
406 physet = ipg_r8(PHY_SET);
407 physet &= ~(IPG_PS_MEM_LENB9B | IPG_PS_MEM_LEN9 | IPG_PS_NON_COMPDET);
408 physet |= ((sp->LED_Mode & 0x70) >> 4);
409 ipg_w8(physet, PHY_SET);
412 static int ipg_reset(struct net_device *dev, u32 resetflags)
414 /* Assert functional resets via the IPG AsicCtrl
415 * register as specified by the 'resetflags' input
416 * parameter.
418 void __iomem *ioaddr = ipg_ioaddr(dev); //JES20040127EEPROM:
419 unsigned int timeout_count = 0;
421 IPG_DEBUG_MSG("_reset\n");
423 ipg_w32(ipg_r32(ASIC_CTRL) | resetflags, ASIC_CTRL);
425 /* Delay added to account for problem with 10Mbps reset. */
426 mdelay(IPG_AC_RESETWAIT);
428 while (IPG_AC_RESET_BUSY & ipg_r32(ASIC_CTRL)) {
429 mdelay(IPG_AC_RESETWAIT);
430 if (++timeout_count > IPG_AC_RESET_TIMEOUT)
431 return -ETIME;
433 /* Set LED Mode in Asic Control JES20040127EEPROM */
434 ipg_set_led_mode(dev);
436 /* Set PHYSet Register Value JES20040127EEPROM */
437 ipg_set_phy_set(dev);
438 return 0;
441 /* Find the GMII PHY address. */
442 static int ipg_find_phyaddr(struct net_device *dev)
444 unsigned int phyaddr, i;
446 for (i = 0; i < 32; i++) {
447 u32 status;
449 /* Search for the correct PHY address among 32 possible. */
450 phyaddr = (IPG_NIC_PHY_ADDRESS + i) % 32;
452 /* 10/22/03 Grace change verify from GMII_PHY_STATUS to
453 GMII_PHY_ID1
456 status = mdio_read(dev, phyaddr, MII_BMSR);
458 if ((status != 0xFFFF) && (status != 0))
459 return phyaddr;
462 return 0x1f;
466 * Configure IPG based on result of IEEE 802.3 PHY
467 * auto-negotiation.
469 static int ipg_config_autoneg(struct net_device *dev)
471 struct ipg_nic_private *sp = netdev_priv(dev);
472 void __iomem *ioaddr = sp->ioaddr;
473 unsigned int txflowcontrol;
474 unsigned int rxflowcontrol;
475 unsigned int fullduplex;
476 unsigned int gig;
477 u32 mac_ctrl_val;
478 u32 asicctrl;
479 u8 phyctrl;
481 IPG_DEBUG_MSG("_config_autoneg\n");
483 asicctrl = ipg_r32(ASIC_CTRL);
484 phyctrl = ipg_r8(PHY_CTRL);
485 mac_ctrl_val = ipg_r32(MAC_CTRL);
487 /* Set flags for use in resolving auto-negotation, assuming
488 * non-1000Mbps, half duplex, no flow control.
490 fullduplex = 0;
491 txflowcontrol = 0;
492 rxflowcontrol = 0;
493 gig = 0;
495 /* To accomodate a problem in 10Mbps operation,
496 * set a global flag if PHY running in 10Mbps mode.
498 sp->tenmbpsmode = 0;
500 printk(KERN_INFO "%s: Link speed = ", dev->name);
502 /* Determine actual speed of operation. */
503 switch (phyctrl & IPG_PC_LINK_SPEED) {
504 case IPG_PC_LINK_SPEED_10MBPS:
505 printk("10Mbps.\n");
506 printk(KERN_INFO "%s: 10Mbps operational mode enabled.\n",
507 dev->name);
508 sp->tenmbpsmode = 1;
509 break;
510 case IPG_PC_LINK_SPEED_100MBPS:
511 printk("100Mbps.\n");
512 break;
513 case IPG_PC_LINK_SPEED_1000MBPS:
514 printk("1000Mbps.\n");
515 gig = 1;
516 break;
517 default:
518 printk("undefined!\n");
519 return 0;
522 if (phyctrl & IPG_PC_DUPLEX_STATUS) {
523 fullduplex = 1;
524 txflowcontrol = 1;
525 rxflowcontrol = 1;
528 /* Configure full duplex, and flow control. */
529 if (fullduplex == 1) {
530 /* Configure IPG for full duplex operation. */
531 printk(KERN_INFO "%s: setting full duplex, ", dev->name);
533 mac_ctrl_val |= IPG_MC_DUPLEX_SELECT_FD;
535 if (txflowcontrol == 1) {
536 printk("TX flow control");
537 mac_ctrl_val |= IPG_MC_TX_FLOW_CONTROL_ENABLE;
538 } else {
539 printk("no TX flow control");
540 mac_ctrl_val &= ~IPG_MC_TX_FLOW_CONTROL_ENABLE;
543 if (rxflowcontrol == 1) {
544 printk(", RX flow control.");
545 mac_ctrl_val |= IPG_MC_RX_FLOW_CONTROL_ENABLE;
546 } else {
547 printk(", no RX flow control.");
548 mac_ctrl_val &= ~IPG_MC_RX_FLOW_CONTROL_ENABLE;
551 printk("\n");
552 } else {
553 /* Configure IPG for half duplex operation. */
554 printk(KERN_INFO "%s: setting half duplex, "
555 "no TX flow control, no RX flow control.\n", dev->name);
557 mac_ctrl_val &= ~IPG_MC_DUPLEX_SELECT_FD &
558 ~IPG_MC_TX_FLOW_CONTROL_ENABLE &
559 ~IPG_MC_RX_FLOW_CONTROL_ENABLE;
561 ipg_w32(mac_ctrl_val, MAC_CTRL);
562 return 0;
565 /* Determine and configure multicast operation and set
566 * receive mode for IPG.
568 static void ipg_nic_set_multicast_list(struct net_device *dev)
570 void __iomem *ioaddr = ipg_ioaddr(dev);
571 struct dev_mc_list *mc_list_ptr;
572 unsigned int hashindex;
573 u32 hashtable[2];
574 u8 receivemode;
576 IPG_DEBUG_MSG("_nic_set_multicast_list\n");
578 receivemode = IPG_RM_RECEIVEUNICAST | IPG_RM_RECEIVEBROADCAST;
580 if (dev->flags & IFF_PROMISC) {
581 /* NIC to be configured in promiscuous mode. */
582 receivemode = IPG_RM_RECEIVEALLFRAMES;
583 } else if ((dev->flags & IFF_ALLMULTI) ||
584 (dev->flags & IFF_MULTICAST &
585 (dev->mc_count > IPG_MULTICAST_HASHTABLE_SIZE))) {
586 /* NIC to be configured to receive all multicast
587 * frames. */
588 receivemode |= IPG_RM_RECEIVEMULTICAST;
589 } else if (dev->flags & IFF_MULTICAST & (dev->mc_count > 0)) {
590 /* NIC to be configured to receive selected
591 * multicast addresses. */
592 receivemode |= IPG_RM_RECEIVEMULTICASTHASH;
595 /* Calculate the bits to set for the 64 bit, IPG HASHTABLE.
596 * The IPG applies a cyclic-redundancy-check (the same CRC
597 * used to calculate the frame data FCS) to the destination
598 * address all incoming multicast frames whose destination
599 * address has the multicast bit set. The least significant
600 * 6 bits of the CRC result are used as an addressing index
601 * into the hash table. If the value of the bit addressed by
602 * this index is a 1, the frame is passed to the host system.
605 /* Clear hashtable. */
606 hashtable[0] = 0x00000000;
607 hashtable[1] = 0x00000000;
609 /* Cycle through all multicast addresses to filter. */
610 for (mc_list_ptr = dev->mc_list;
611 mc_list_ptr != NULL; mc_list_ptr = mc_list_ptr->next) {
612 /* Calculate CRC result for each multicast address. */
613 hashindex = crc32_le(0xffffffff, mc_list_ptr->dmi_addr,
614 ETH_ALEN);
616 /* Use only the least significant 6 bits. */
617 hashindex = hashindex & 0x3F;
619 /* Within "hashtable", set bit number "hashindex"
620 * to a logic 1.
622 set_bit(hashindex, (void *)hashtable);
625 /* Write the value of the hashtable, to the 4, 16 bit
626 * HASHTABLE IPG registers.
628 ipg_w32(hashtable[0], HASHTABLE_0);
629 ipg_w32(hashtable[1], HASHTABLE_1);
631 ipg_w8(IPG_RM_RSVD_MASK & receivemode, RECEIVE_MODE);
633 IPG_DEBUG_MSG("ReceiveMode = %x\n", ipg_r8(RECEIVE_MODE));
636 static int ipg_io_config(struct net_device *dev)
638 void __iomem *ioaddr = ipg_ioaddr(dev);
639 u32 origmacctrl;
640 u32 restoremacctrl;
642 IPG_DEBUG_MSG("_io_config\n");
644 origmacctrl = ipg_r32(MAC_CTRL);
646 restoremacctrl = origmacctrl | IPG_MC_STATISTICS_ENABLE;
648 /* Based on compilation option, determine if FCS is to be
649 * stripped on receive frames by IPG.
651 if (!IPG_STRIP_FCS_ON_RX)
652 restoremacctrl |= IPG_MC_RCV_FCS;
654 /* Determine if transmitter and/or receiver are
655 * enabled so we may restore MACCTRL correctly.
657 if (origmacctrl & IPG_MC_TX_ENABLED)
658 restoremacctrl |= IPG_MC_TX_ENABLE;
660 if (origmacctrl & IPG_MC_RX_ENABLED)
661 restoremacctrl |= IPG_MC_RX_ENABLE;
663 /* Transmitter and receiver must be disabled before setting
664 * IFSSelect.
666 ipg_w32((origmacctrl & (IPG_MC_RX_DISABLE | IPG_MC_TX_DISABLE)) &
667 IPG_MC_RSVD_MASK, MAC_CTRL);
669 /* Now that transmitter and receiver are disabled, write
670 * to IFSSelect.
672 ipg_w32((origmacctrl & IPG_MC_IFS_96BIT) & IPG_MC_RSVD_MASK, MAC_CTRL);
674 /* Set RECEIVEMODE register. */
675 ipg_nic_set_multicast_list(dev);
677 ipg_w16(IPG_MAX_RXFRAME_SIZE, MAX_FRAME_SIZE);
679 ipg_w8(IPG_RXDMAPOLLPERIOD_VALUE, RX_DMA_POLL_PERIOD);
680 ipg_w8(IPG_RXDMAURGENTTHRESH_VALUE, RX_DMA_URGENT_THRESH);
681 ipg_w8(IPG_RXDMABURSTTHRESH_VALUE, RX_DMA_BURST_THRESH);
682 ipg_w8(IPG_TXDMAPOLLPERIOD_VALUE, TX_DMA_POLL_PERIOD);
683 ipg_w8(IPG_TXDMAURGENTTHRESH_VALUE, TX_DMA_URGENT_THRESH);
684 ipg_w8(IPG_TXDMABURSTTHRESH_VALUE, TX_DMA_BURST_THRESH);
685 ipg_w16((IPG_IE_HOST_ERROR | IPG_IE_TX_DMA_COMPLETE |
686 IPG_IE_TX_COMPLETE | IPG_IE_INT_REQUESTED |
687 IPG_IE_UPDATE_STATS | IPG_IE_LINK_EVENT |
688 IPG_IE_RX_DMA_COMPLETE | IPG_IE_RX_DMA_PRIORITY), INT_ENABLE);
689 ipg_w16(IPG_FLOWONTHRESH_VALUE, FLOW_ON_THRESH);
690 ipg_w16(IPG_FLOWOFFTHRESH_VALUE, FLOW_OFF_THRESH);
692 /* IPG multi-frag frame bug workaround.
693 * Per silicon revision B3 eratta.
695 ipg_w16(ipg_r16(DEBUG_CTRL) | 0x0200, DEBUG_CTRL);
697 /* IPG TX poll now bug workaround.
698 * Per silicon revision B3 eratta.
700 ipg_w16(ipg_r16(DEBUG_CTRL) | 0x0010, DEBUG_CTRL);
702 /* IPG RX poll now bug workaround.
703 * Per silicon revision B3 eratta.
705 ipg_w16(ipg_r16(DEBUG_CTRL) | 0x0020, DEBUG_CTRL);
707 /* Now restore MACCTRL to original setting. */
708 ipg_w32(IPG_MC_RSVD_MASK & restoremacctrl, MAC_CTRL);
710 /* Disable unused RMON statistics. */
711 ipg_w32(IPG_RZ_ALL, RMON_STATISTICS_MASK);
713 /* Disable unused MIB statistics. */
714 ipg_w32(IPG_SM_MACCONTROLFRAMESXMTD | IPG_SM_MACCONTROLFRAMESRCVD |
715 IPG_SM_BCSTOCTETXMTOK_BCSTFRAMESXMTDOK | IPG_SM_TXJUMBOFRAMES |
716 IPG_SM_MCSTOCTETXMTOK_MCSTFRAMESXMTDOK | IPG_SM_RXJUMBOFRAMES |
717 IPG_SM_BCSTOCTETRCVDOK_BCSTFRAMESRCVDOK |
718 IPG_SM_UDPCHECKSUMERRORS | IPG_SM_TCPCHECKSUMERRORS |
719 IPG_SM_IPCHECKSUMERRORS, STATISTICS_MASK);
721 return 0;
725 * Create a receive buffer within system memory and update
726 * NIC private structure appropriately.
728 static int ipg_get_rxbuff(struct net_device *dev, int entry)
730 struct ipg_nic_private *sp = netdev_priv(dev);
731 struct ipg_rx *rxfd = sp->rxd + entry;
732 struct sk_buff *skb;
733 u64 rxfragsize;
735 IPG_DEBUG_MSG("_get_rxbuff\n");
737 skb = netdev_alloc_skb(dev, IPG_RXSUPPORT_SIZE + NET_IP_ALIGN);
738 if (!skb) {
739 sp->RxBuff[entry] = NULL;
740 return -ENOMEM;
743 /* Adjust the data start location within the buffer to
744 * align IP address field to a 16 byte boundary.
746 skb_reserve(skb, NET_IP_ALIGN);
748 /* Associate the receive buffer with the IPG NIC. */
749 skb->dev = dev;
751 /* Save the address of the sk_buff structure. */
752 sp->RxBuff[entry] = skb;
754 rxfd->frag_info = cpu_to_le64(pci_map_single(sp->pdev, skb->data,
755 sp->rx_buf_sz, PCI_DMA_FROMDEVICE));
757 /* Set the RFD fragment length. */
758 rxfragsize = IPG_RXFRAG_SIZE;
759 rxfd->frag_info |= cpu_to_le64((rxfragsize << 48) & IPG_RFI_FRAGLEN);
761 return 0;
764 static int init_rfdlist(struct net_device *dev)
766 struct ipg_nic_private *sp = netdev_priv(dev);
767 void __iomem *ioaddr = sp->ioaddr;
768 unsigned int i;
770 IPG_DEBUG_MSG("_init_rfdlist\n");
772 for (i = 0; i < IPG_RFDLIST_LENGTH; i++) {
773 struct ipg_rx *rxfd = sp->rxd + i;
775 if (sp->RxBuff[i]) {
776 pci_unmap_single(sp->pdev,
777 le64_to_cpu(rxfd->frag_info) & ~IPG_RFI_FRAGLEN,
778 sp->rx_buf_sz, PCI_DMA_FROMDEVICE);
779 IPG_DEV_KFREE_SKB(sp->RxBuff[i]);
780 sp->RxBuff[i] = NULL;
783 /* Clear out the RFS field. */
784 rxfd->rfs = 0x0000000000000000;
786 if (ipg_get_rxbuff(dev, i) < 0) {
788 * A receive buffer was not ready, break the
789 * RFD list here.
791 IPG_DEBUG_MSG("Cannot allocate Rx buffer.\n");
793 /* Just in case we cannot allocate a single RFD.
794 * Should not occur.
796 if (i == 0) {
797 printk(KERN_ERR "%s: No memory available"
798 " for RFD list.\n", dev->name);
799 return -ENOMEM;
803 rxfd->next_desc = cpu_to_le64(sp->rxd_map +
804 sizeof(struct ipg_rx)*(i + 1));
806 sp->rxd[i - 1].next_desc = cpu_to_le64(sp->rxd_map);
808 sp->rx_current = 0;
809 sp->rx_dirty = 0;
811 /* Write the location of the RFDList to the IPG. */
812 ipg_w32((u32) sp->rxd_map, RFD_LIST_PTR_0);
813 ipg_w32(0x00000000, RFD_LIST_PTR_1);
815 return 0;
818 static void init_tfdlist(struct net_device *dev)
820 struct ipg_nic_private *sp = netdev_priv(dev);
821 void __iomem *ioaddr = sp->ioaddr;
822 unsigned int i;
824 IPG_DEBUG_MSG("_init_tfdlist\n");
826 for (i = 0; i < IPG_TFDLIST_LENGTH; i++) {
827 struct ipg_tx *txfd = sp->txd + i;
829 txfd->tfc = cpu_to_le64(IPG_TFC_TFDDONE);
831 if (sp->TxBuff[i]) {
832 IPG_DEV_KFREE_SKB(sp->TxBuff[i]);
833 sp->TxBuff[i] = NULL;
836 txfd->next_desc = cpu_to_le64(sp->txd_map +
837 sizeof(struct ipg_tx)*(i + 1));
839 sp->txd[i - 1].next_desc = cpu_to_le64(sp->txd_map);
841 sp->tx_current = 0;
842 sp->tx_dirty = 0;
844 /* Write the location of the TFDList to the IPG. */
845 IPG_DDEBUG_MSG("Starting TFDListPtr = %8.8x\n",
846 (u32) sp->txd_map);
847 ipg_w32((u32) sp->txd_map, TFD_LIST_PTR_0);
848 ipg_w32(0x00000000, TFD_LIST_PTR_1);
850 sp->ResetCurrentTFD = 1;
854 * Free all transmit buffers which have already been transfered
855 * via DMA to the IPG.
857 static void ipg_nic_txfree(struct net_device *dev)
859 struct ipg_nic_private *sp = netdev_priv(dev);
860 void __iomem *ioaddr = sp->ioaddr;
861 unsigned int curr;
862 u64 txd_map;
863 unsigned int released, pending;
865 txd_map = (u64)sp->txd_map;
866 curr = ipg_r32(TFD_LIST_PTR_0) -
867 do_div(txd_map, sizeof(struct ipg_tx)) - 1;
869 IPG_DEBUG_MSG("_nic_txfree\n");
871 pending = sp->tx_current - sp->tx_dirty;
873 for (released = 0; released < pending; released++) {
874 unsigned int dirty = sp->tx_dirty % IPG_TFDLIST_LENGTH;
875 struct sk_buff *skb = sp->TxBuff[dirty];
876 struct ipg_tx *txfd = sp->txd + dirty;
878 IPG_DEBUG_MSG("TFC = %16.16lx\n", (unsigned long) txfd->tfc);
880 /* Look at each TFD's TFC field beginning
881 * at the last freed TFD up to the current TFD.
882 * If the TFDDone bit is set, free the associated
883 * buffer.
885 if (dirty == curr)
886 break;
888 /* Setup TFDDONE for compatible issue. */
889 txfd->tfc |= cpu_to_le64(IPG_TFC_TFDDONE);
891 /* Free the transmit buffer. */
892 if (skb) {
893 pci_unmap_single(sp->pdev,
894 le64_to_cpu(txfd->frag_info) & ~IPG_TFI_FRAGLEN,
895 skb->len, PCI_DMA_TODEVICE);
897 IPG_DEV_KFREE_SKB(skb);
899 sp->TxBuff[dirty] = NULL;
903 sp->tx_dirty += released;
905 if (netif_queue_stopped(dev) &&
906 (sp->tx_current != (sp->tx_dirty + IPG_TFDLIST_LENGTH))) {
907 netif_wake_queue(dev);
911 static void ipg_tx_timeout(struct net_device *dev)
913 struct ipg_nic_private *sp = netdev_priv(dev);
914 void __iomem *ioaddr = sp->ioaddr;
916 ipg_reset(dev, IPG_AC_TX_RESET | IPG_AC_DMA | IPG_AC_NETWORK |
917 IPG_AC_FIFO);
919 spin_lock_irq(&sp->lock);
921 /* Re-configure after DMA reset. */
922 if (ipg_io_config(dev) < 0) {
923 printk(KERN_INFO "%s: Error during re-configuration.\n",
924 dev->name);
927 init_tfdlist(dev);
929 spin_unlock_irq(&sp->lock);
931 ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_TX_ENABLE) & IPG_MC_RSVD_MASK,
932 MAC_CTRL);
936 * For TxComplete interrupts, free all transmit
937 * buffers which have already been transfered via DMA
938 * to the IPG.
940 static void ipg_nic_txcleanup(struct net_device *dev)
942 struct ipg_nic_private *sp = netdev_priv(dev);
943 void __iomem *ioaddr = sp->ioaddr;
944 unsigned int i;
946 IPG_DEBUG_MSG("_nic_txcleanup\n");
948 for (i = 0; i < IPG_TFDLIST_LENGTH; i++) {
949 /* Reading the TXSTATUS register clears the
950 * TX_COMPLETE interrupt.
952 u32 txstatusdword = ipg_r32(TX_STATUS);
954 IPG_DEBUG_MSG("TxStatus = %8.8x\n", txstatusdword);
956 /* Check for Transmit errors. Error bits only valid if
957 * TX_COMPLETE bit in the TXSTATUS register is a 1.
959 if (!(txstatusdword & IPG_TS_TX_COMPLETE))
960 break;
962 /* If in 10Mbps mode, indicate transmit is ready. */
963 if (sp->tenmbpsmode) {
964 netif_wake_queue(dev);
967 /* Transmit error, increment stat counters. */
968 if (txstatusdword & IPG_TS_TX_ERROR) {
969 IPG_DEBUG_MSG("Transmit error.\n");
970 sp->stats.tx_errors++;
973 /* Late collision, re-enable transmitter. */
974 if (txstatusdword & IPG_TS_LATE_COLLISION) {
975 IPG_DEBUG_MSG("Late collision on transmit.\n");
976 ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_TX_ENABLE) &
977 IPG_MC_RSVD_MASK, MAC_CTRL);
980 /* Maximum collisions, re-enable transmitter. */
981 if (txstatusdword & IPG_TS_TX_MAX_COLL) {
982 IPG_DEBUG_MSG("Maximum collisions on transmit.\n");
983 ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_TX_ENABLE) &
984 IPG_MC_RSVD_MASK, MAC_CTRL);
987 /* Transmit underrun, reset and re-enable
988 * transmitter.
990 if (txstatusdword & IPG_TS_TX_UNDERRUN) {
991 IPG_DEBUG_MSG("Transmitter underrun.\n");
992 sp->stats.tx_fifo_errors++;
993 ipg_reset(dev, IPG_AC_TX_RESET | IPG_AC_DMA |
994 IPG_AC_NETWORK | IPG_AC_FIFO);
996 /* Re-configure after DMA reset. */
997 if (ipg_io_config(dev) < 0) {
998 printk(KERN_INFO
999 "%s: Error during re-configuration.\n",
1000 dev->name);
1002 init_tfdlist(dev);
1004 ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_TX_ENABLE) &
1005 IPG_MC_RSVD_MASK, MAC_CTRL);
1009 ipg_nic_txfree(dev);
1012 /* Provides statistical information about the IPG NIC. */
1013 static struct net_device_stats *ipg_nic_get_stats(struct net_device *dev)
1015 struct ipg_nic_private *sp = netdev_priv(dev);
1016 void __iomem *ioaddr = sp->ioaddr;
1017 u16 temp1;
1018 u16 temp2;
1020 IPG_DEBUG_MSG("_nic_get_stats\n");
1022 /* Check to see if the NIC has been initialized via nic_open,
1023 * before trying to read statistic registers.
1025 if (!test_bit(__LINK_STATE_START, &dev->state))
1026 return &sp->stats;
1028 sp->stats.rx_packets += ipg_r32(IPG_FRAMESRCVDOK);
1029 sp->stats.tx_packets += ipg_r32(IPG_FRAMESXMTDOK);
1030 sp->stats.rx_bytes += ipg_r32(IPG_OCTETRCVOK);
1031 sp->stats.tx_bytes += ipg_r32(IPG_OCTETXMTOK);
1032 temp1 = ipg_r16(IPG_FRAMESLOSTRXERRORS);
1033 sp->stats.rx_errors += temp1;
1034 sp->stats.rx_missed_errors += temp1;
1035 temp1 = ipg_r32(IPG_SINGLECOLFRAMES) + ipg_r32(IPG_MULTICOLFRAMES) +
1036 ipg_r32(IPG_LATECOLLISIONS);
1037 temp2 = ipg_r16(IPG_CARRIERSENSEERRORS);
1038 sp->stats.collisions += temp1;
1039 sp->stats.tx_dropped += ipg_r16(IPG_FRAMESABORTXSCOLLS);
1040 sp->stats.tx_errors += ipg_r16(IPG_FRAMESWEXDEFERRAL) +
1041 ipg_r32(IPG_FRAMESWDEFERREDXMT) + temp1 + temp2;
1042 sp->stats.multicast += ipg_r32(IPG_MCSTOCTETRCVDOK);
1044 /* detailed tx_errors */
1045 sp->stats.tx_carrier_errors += temp2;
1047 /* detailed rx_errors */
1048 sp->stats.rx_length_errors += ipg_r16(IPG_INRANGELENGTHERRORS) +
1049 ipg_r16(IPG_FRAMETOOLONGERRRORS);
1050 sp->stats.rx_crc_errors += ipg_r16(IPG_FRAMECHECKSEQERRORS);
1052 /* Unutilized IPG statistic registers. */
1053 ipg_r32(IPG_MCSTFRAMESRCVDOK);
1055 return &sp->stats;
1058 /* Restore used receive buffers. */
1059 static int ipg_nic_rxrestore(struct net_device *dev)
1061 struct ipg_nic_private *sp = netdev_priv(dev);
1062 const unsigned int curr = sp->rx_current;
1063 unsigned int dirty = sp->rx_dirty;
1065 IPG_DEBUG_MSG("_nic_rxrestore\n");
1067 for (dirty = sp->rx_dirty; curr - dirty > 0; dirty++) {
1068 unsigned int entry = dirty % IPG_RFDLIST_LENGTH;
1070 /* rx_copybreak may poke hole here and there. */
1071 if (sp->RxBuff[entry])
1072 continue;
1074 /* Generate a new receive buffer to replace the
1075 * current buffer (which will be released by the
1076 * Linux system).
1078 if (ipg_get_rxbuff(dev, entry) < 0) {
1079 IPG_DEBUG_MSG("Cannot allocate new Rx buffer.\n");
1081 break;
1084 /* Reset the RFS field. */
1085 sp->rxd[entry].rfs = 0x0000000000000000;
1087 sp->rx_dirty = dirty;
1089 return 0;
1092 #ifdef JUMBO_FRAME
1094 /* use jumboindex and jumbosize to control jumbo frame status
1095 initial status is jumboindex=-1 and jumbosize=0
1096 1. jumboindex = -1 and jumbosize=0 : previous jumbo frame has been done.
1097 2. jumboindex != -1 and jumbosize != 0 : jumbo frame is not over size and receiving
1098 3. jumboindex = -1 and jumbosize != 0 : jumbo frame is over size, already dump
1099 previous receiving and need to continue dumping the current one
1101 enum {
1102 NormalPacket,
1103 ErrorPacket
1106 enum {
1107 Frame_NoStart_NoEnd = 0,
1108 Frame_WithStart = 1,
1109 Frame_WithEnd = 10,
1110 Frame_WithStart_WithEnd = 11
1113 inline void ipg_nic_rx_free_skb(struct net_device *dev)
1115 struct ipg_nic_private *sp = netdev_priv(dev);
1116 unsigned int entry = sp->rx_current % IPG_RFDLIST_LENGTH;
1118 if (sp->RxBuff[entry]) {
1119 struct ipg_rx *rxfd = sp->rxd + entry;
1121 pci_unmap_single(sp->pdev,
1122 le64_to_cpu(rxfd->frag_info & ~IPG_RFI_FRAGLEN),
1123 sp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1124 IPG_DEV_KFREE_SKB(sp->RxBuff[entry]);
1125 sp->RxBuff[entry] = NULL;
1129 inline int ipg_nic_rx_check_frame_type(struct net_device *dev)
1131 struct ipg_nic_private *sp = netdev_priv(dev);
1132 struct ipg_rx *rxfd = sp->rxd + (sp->rx_current % IPG_RFDLIST_LENGTH);
1133 int type = Frame_NoStart_NoEnd;
1135 if (le64_to_cpu(rxfd->rfs) & IPG_RFS_FRAMESTART)
1136 type += Frame_WithStart;
1137 if (le64_to_cpu(rxfd->rfs) & IPG_RFS_FRAMEEND)
1138 type += Frame_WithEnd;
1139 return type;
1142 inline int ipg_nic_rx_check_error(struct net_device *dev)
1144 struct ipg_nic_private *sp = netdev_priv(dev);
1145 unsigned int entry = sp->rx_current % IPG_RFDLIST_LENGTH;
1146 struct ipg_rx *rxfd = sp->rxd + entry;
1148 if (IPG_DROP_ON_RX_ETH_ERRORS && (le64_to_cpu(rxfd->rfs) &
1149 (IPG_RFS_RXFIFOOVERRUN | IPG_RFS_RXRUNTFRAME |
1150 IPG_RFS_RXALIGNMENTERROR | IPG_RFS_RXFCSERROR |
1151 IPG_RFS_RXOVERSIZEDFRAME | IPG_RFS_RXLENGTHERROR))) {
1152 IPG_DEBUG_MSG("Rx error, RFS = %16.16lx\n",
1153 (unsigned long) rxfd->rfs);
1155 /* Increment general receive error statistic. */
1156 sp->stats.rx_errors++;
1158 /* Increment detailed receive error statistics. */
1159 if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFIFOOVERRUN) {
1160 IPG_DEBUG_MSG("RX FIFO overrun occured.\n");
1162 sp->stats.rx_fifo_errors++;
1165 if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXRUNTFRAME) {
1166 IPG_DEBUG_MSG("RX runt occured.\n");
1167 sp->stats.rx_length_errors++;
1170 /* Do nothing for IPG_RFS_RXOVERSIZEDFRAME,
1171 * error count handled by a IPG statistic register.
1174 if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXALIGNMENTERROR) {
1175 IPG_DEBUG_MSG("RX alignment error occured.\n");
1176 sp->stats.rx_frame_errors++;
1179 /* Do nothing for IPG_RFS_RXFCSERROR, error count
1180 * handled by a IPG statistic register.
1183 /* Free the memory associated with the RX
1184 * buffer since it is erroneous and we will
1185 * not pass it to higher layer processes.
1187 if (sp->RxBuff[entry]) {
1188 pci_unmap_single(sp->pdev,
1189 le64_to_cpu(rxfd->frag_info & ~IPG_RFI_FRAGLEN),
1190 sp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1192 IPG_DEV_KFREE_SKB(sp->RxBuff[entry]);
1193 sp->RxBuff[entry] = NULL;
1195 return ErrorPacket;
1197 return NormalPacket;
1200 static void ipg_nic_rx_with_start_and_end(struct net_device *dev,
1201 struct ipg_nic_private *sp,
1202 struct ipg_rx *rxfd, unsigned entry)
1204 struct SJumbo *jumbo = &sp->Jumbo;
1205 struct sk_buff *skb;
1206 int framelen;
1208 if (jumbo->FoundStart) {
1209 IPG_DEV_KFREE_SKB(jumbo->skb);
1210 jumbo->FoundStart = 0;
1211 jumbo->CurrentSize = 0;
1212 jumbo->skb = NULL;
1215 // 1: found error, 0 no error
1216 if (ipg_nic_rx_check_error(dev) != NormalPacket)
1217 return;
1219 skb = sp->RxBuff[entry];
1220 if (!skb)
1221 return;
1223 // accept this frame and send to upper layer
1224 framelen = le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFRAMELEN;
1225 if (framelen > IPG_RXFRAG_SIZE)
1226 framelen = IPG_RXFRAG_SIZE;
1228 skb_put(skb, framelen);
1229 skb->protocol = eth_type_trans(skb, dev);
1230 skb->ip_summed = CHECKSUM_NONE;
1231 netif_rx(skb);
1232 dev->last_rx = jiffies;
1233 sp->RxBuff[entry] = NULL;
1236 static void ipg_nic_rx_with_start(struct net_device *dev,
1237 struct ipg_nic_private *sp,
1238 struct ipg_rx *rxfd, unsigned entry)
1240 struct SJumbo *jumbo = &sp->Jumbo;
1241 struct pci_dev *pdev = sp->pdev;
1242 struct sk_buff *skb;
1244 // 1: found error, 0 no error
1245 if (ipg_nic_rx_check_error(dev) != NormalPacket)
1246 return;
1248 // accept this frame and send to upper layer
1249 skb = sp->RxBuff[entry];
1250 if (!skb)
1251 return;
1253 if (jumbo->FoundStart)
1254 IPG_DEV_KFREE_SKB(jumbo->skb);
1256 pci_unmap_single(pdev, le64_to_cpu(rxfd->frag_info & ~IPG_RFI_FRAGLEN),
1257 sp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1259 skb_put(skb, IPG_RXFRAG_SIZE);
1261 jumbo->FoundStart = 1;
1262 jumbo->CurrentSize = IPG_RXFRAG_SIZE;
1263 jumbo->skb = skb;
1265 sp->RxBuff[entry] = NULL;
1266 dev->last_rx = jiffies;
1269 static void ipg_nic_rx_with_end(struct net_device *dev,
1270 struct ipg_nic_private *sp,
1271 struct ipg_rx *rxfd, unsigned entry)
1273 struct SJumbo *jumbo = &sp->Jumbo;
1275 //1: found error, 0 no error
1276 if (ipg_nic_rx_check_error(dev) == NormalPacket) {
1277 struct sk_buff *skb = sp->RxBuff[entry];
1279 if (!skb)
1280 return;
1282 if (jumbo->FoundStart) {
1283 int framelen, endframelen;
1285 framelen = le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFRAMELEN;
1287 endframeLen = framelen - jumbo->CurrentSize;
1289 if (framelen > IPG_RXFRAG_SIZE)
1290 framelen=IPG_RXFRAG_SIZE;
1292 if (framelen > IPG_RXSUPPORT_SIZE)
1293 IPG_DEV_KFREE_SKB(jumbo->skb);
1294 else {
1295 memcpy(skb_put(jumbo->skb, endframeLen),
1296 skb->data, endframeLen);
1298 jumbo->skb->protocol =
1299 eth_type_trans(jumbo->skb, dev);
1301 jumbo->skb->ip_summed = CHECKSUM_NONE;
1302 netif_rx(jumbo->skb);
1306 dev->last_rx = jiffies;
1307 jumbo->FoundStart = 0;
1308 jumbo->CurrentSize = 0;
1309 jumbo->skb = NULL;
1311 ipg_nic_rx_free_skb(dev);
1312 } else {
1313 IPG_DEV_KFREE_SKB(jumbo->skb);
1314 jumbo->FoundStart = 0;
1315 jumbo->CurrentSize = 0;
1316 jumbo->skb = NULL;
1320 static void ipg_nic_rx_no_start_no_end(struct net_device *dev,
1321 struct ipg_nic_private *sp,
1322 struct ipg_rx *rxfd, unsigned entry)
1324 struct SJumbo *jumbo = &sp->Jumbo;
1326 //1: found error, 0 no error
1327 if (ipg_nic_rx_check_error(dev) == NormalPacket) {
1328 struct sk_buff *skb = sp->RxBuff[entry];
1330 if (skb) {
1331 if (jumbo->FoundStart) {
1332 jumbo->CurrentSize += IPG_RXFRAG_SIZE;
1333 if (jumbo->CurrentSize <= IPG_RXSUPPORT_SIZE) {
1334 memcpy(skb_put(jumbo->skb,
1335 IPG_RXFRAG_SIZE),
1336 skb->data, IPG_RXFRAG_SIZE);
1339 dev->last_rx = jiffies;
1340 ipg_nic_rx_free_skb(dev);
1342 } else {
1343 IPG_DEV_KFREE_SKB(jumbo->skb);
1344 jumbo->FoundStart = 0;
1345 jumbo->CurrentSize = 0;
1346 jumbo->skb = NULL;
1350 static int ipg_nic_rx(struct net_device *dev)
1352 struct ipg_nic_private *sp = netdev_priv(dev);
1353 unsigned int curr = sp->rx_current;
1354 void __iomem *ioaddr = sp->ioaddr;
1355 unsigned int i;
1357 IPG_DEBUG_MSG("_nic_rx\n");
1359 for (i = 0; i < IPG_MAXRFDPROCESS_COUNT; i++, curr++) {
1360 unsigned int entry = curr % IPG_RFDLIST_LENGTH;
1361 struct ipg_rx *rxfd = sp->rxd + entry;
1363 if (!(rxfd->rfs & le64_to_cpu(IPG_RFS_RFDDONE)))
1364 break;
1366 switch (ipg_nic_rx_check_frame_type(dev)) {
1367 case Frame_WithStart_WithEnd:
1368 ipg_nic_rx_with_start_and_end(dev, tp, rxfd, entry);
1369 break;
1370 case Frame_WithStart:
1371 ipg_nic_rx_with_start(dev, tp, rxfd, entry);
1372 break;
1373 case Frame_WithEnd:
1374 ipg_nic_rx_with_end(dev, tp, rxfd, entry);
1375 break;
1376 case Frame_NoStart_NoEnd:
1377 ipg_nic_rx_no_start_no_end(dev, tp, rxfd, entry);
1378 break;
1382 sp->rx_current = curr;
1384 if (i == IPG_MAXRFDPROCESS_COUNT) {
1385 /* There are more RFDs to process, however the
1386 * allocated amount of RFD processing time has
1387 * expired. Assert Interrupt Requested to make
1388 * sure we come back to process the remaining RFDs.
1390 ipg_w32(ipg_r32(ASIC_CTRL) | IPG_AC_INT_REQUEST, ASIC_CTRL);
1393 ipg_nic_rxrestore(dev);
1395 return 0;
1398 #else
1399 static int ipg_nic_rx(struct net_device *dev)
1401 /* Transfer received Ethernet frames to higher network layers. */
1402 struct ipg_nic_private *sp = netdev_priv(dev);
1403 unsigned int curr = sp->rx_current;
1404 void __iomem *ioaddr = sp->ioaddr;
1405 struct ipg_rx *rxfd;
1406 unsigned int i;
1408 IPG_DEBUG_MSG("_nic_rx\n");
1410 #define __RFS_MASK \
1411 cpu_to_le64(IPG_RFS_RFDDONE | IPG_RFS_FRAMESTART | IPG_RFS_FRAMEEND)
1413 for (i = 0; i < IPG_MAXRFDPROCESS_COUNT; i++, curr++) {
1414 unsigned int entry = curr % IPG_RFDLIST_LENGTH;
1415 struct sk_buff *skb = sp->RxBuff[entry];
1416 unsigned int framelen;
1418 rxfd = sp->rxd + entry;
1420 if (((rxfd->rfs & __RFS_MASK) != __RFS_MASK) || !skb)
1421 break;
1423 /* Get received frame length. */
1424 framelen = le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFRAMELEN;
1426 /* Check for jumbo frame arrival with too small
1427 * RXFRAG_SIZE.
1429 if (framelen > IPG_RXFRAG_SIZE) {
1430 IPG_DEBUG_MSG
1431 ("RFS FrameLen > allocated fragment size.\n");
1433 framelen = IPG_RXFRAG_SIZE;
1436 if ((IPG_DROP_ON_RX_ETH_ERRORS && (le64_to_cpu(rxfd->rfs) &
1437 (IPG_RFS_RXFIFOOVERRUN | IPG_RFS_RXRUNTFRAME |
1438 IPG_RFS_RXALIGNMENTERROR | IPG_RFS_RXFCSERROR |
1439 IPG_RFS_RXOVERSIZEDFRAME | IPG_RFS_RXLENGTHERROR)))) {
1441 IPG_DEBUG_MSG("Rx error, RFS = %16.16lx\n",
1442 (unsigned long int) rxfd->rfs);
1444 /* Increment general receive error statistic. */
1445 sp->stats.rx_errors++;
1447 /* Increment detailed receive error statistics. */
1448 if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFIFOOVERRUN) {
1449 IPG_DEBUG_MSG("RX FIFO overrun occured.\n");
1450 sp->stats.rx_fifo_errors++;
1453 if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXRUNTFRAME) {
1454 IPG_DEBUG_MSG("RX runt occured.\n");
1455 sp->stats.rx_length_errors++;
1458 if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXOVERSIZEDFRAME) ;
1459 /* Do nothing, error count handled by a IPG
1460 * statistic register.
1463 if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXALIGNMENTERROR) {
1464 IPG_DEBUG_MSG("RX alignment error occured.\n");
1465 sp->stats.rx_frame_errors++;
1468 if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFCSERROR) ;
1469 /* Do nothing, error count handled by a IPG
1470 * statistic register.
1473 /* Free the memory associated with the RX
1474 * buffer since it is erroneous and we will
1475 * not pass it to higher layer processes.
1477 if (skb) {
1478 __le64 info = rxfd->frag_info;
1480 pci_unmap_single(sp->pdev,
1481 le64_to_cpu(info) & ~IPG_RFI_FRAGLEN,
1482 sp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1484 IPG_DEV_KFREE_SKB(skb);
1486 } else {
1488 /* Adjust the new buffer length to accomodate the size
1489 * of the received frame.
1491 skb_put(skb, framelen);
1493 /* Set the buffer's protocol field to Ethernet. */
1494 skb->protocol = eth_type_trans(skb, dev);
1496 /* If the frame contains an IP/TCP/UDP frame,
1497 * determine if upper layer must check IP/TCP/UDP
1498 * checksums.
1500 * NOTE: DO NOT RELY ON THE TCP/UDP CHECKSUM
1501 * VERIFICATION FOR SILICON REVISIONS B3
1502 * AND EARLIER!
1504 if ((le64_to_cpu(rxfd->rfs &
1505 (IPG_RFS_TCPDETECTED | IPG_RFS_UDPDETECTED |
1506 IPG_RFS_IPDETECTED))) &&
1507 !(le64_to_cpu(rxfd->rfs &
1508 (IPG_RFS_TCPERROR | IPG_RFS_UDPERROR |
1509 IPG_RFS_IPERROR)))) {
1510 * Indicate IP checksums were performed
1511 * by the IPG.
1513 skb->ip_summed = CHECKSUM_UNNECESSARY;
1514 } else
1517 /* The IPG encountered an error with (or
1518 * there were no) IP/TCP/UDP checksums.
1519 * This may or may not indicate an invalid
1520 * IP/TCP/UDP frame was received. Let the
1521 * upper layer decide.
1523 skb->ip_summed = CHECKSUM_NONE;
1526 /* Hand off frame for higher layer processing.
1527 * The function netif_rx() releases the sk_buff
1528 * when processing completes.
1530 netif_rx(skb);
1532 /* Record frame receive time (jiffies = Linux
1533 * kernel current time stamp).
1535 dev->last_rx = jiffies;
1538 /* Assure RX buffer is not reused by IPG. */
1539 sp->RxBuff[entry] = NULL;
1543 * If there are more RFDs to proces and the allocated amount of RFD
1544 * processing time has expired, assert Interrupt Requested to make
1545 * sure we come back to process the remaining RFDs.
1547 if (i == IPG_MAXRFDPROCESS_COUNT)
1548 ipg_w32(ipg_r32(ASIC_CTRL) | IPG_AC_INT_REQUEST, ASIC_CTRL);
1550 #ifdef IPG_DEBUG
1551 /* Check if the RFD list contained no receive frame data. */
1552 if (!i)
1553 sp->EmptyRFDListCount++;
1554 #endif
1555 while ((le64_to_cpu(rxfd->rfs) & IPG_RFS_RFDDONE) &&
1556 !((le64_to_cpu(rxfd->rfs) & IPG_RFS_FRAMESTART) &&
1557 (le64_to_cpu(rxfd->rfs) & IPG_RFS_FRAMEEND))) {
1558 unsigned int entry = curr++ % IPG_RFDLIST_LENGTH;
1560 rxfd = sp->rxd + entry;
1562 IPG_DEBUG_MSG("Frame requires multiple RFDs.\n");
1564 /* An unexpected event, additional code needed to handle
1565 * properly. So for the time being, just disregard the
1566 * frame.
1569 /* Free the memory associated with the RX
1570 * buffer since it is erroneous and we will
1571 * not pass it to higher layer processes.
1573 if (sp->RxBuff[entry]) {
1574 pci_unmap_single(sp->pdev,
1575 le64_to_cpu(rxfd->frag_info) & ~IPG_RFI_FRAGLEN,
1576 sp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1577 IPG_DEV_KFREE_SKB(sp->RxBuff[entry]);
1580 /* Assure RX buffer is not reused by IPG. */
1581 sp->RxBuff[entry] = NULL;
1584 sp->rx_current = curr;
1586 /* Check to see if there are a minimum number of used
1587 * RFDs before restoring any (should improve performance.)
1589 if ((curr - sp->rx_dirty) >= IPG_MINUSEDRFDSTOFREE)
1590 ipg_nic_rxrestore(dev);
1592 return 0;
1594 #endif
1596 static void ipg_reset_after_host_error(struct work_struct *work)
1598 struct ipg_nic_private *sp =
1599 container_of(work, struct ipg_nic_private, task.work);
1600 struct net_device *dev = sp->dev;
1602 IPG_DDEBUG_MSG("DMACtrl = %8.8x\n", ioread32(sp->ioaddr + IPG_DMACTRL));
1605 * Acknowledge HostError interrupt by resetting
1606 * IPG DMA and HOST.
1608 ipg_reset(dev, IPG_AC_GLOBAL_RESET | IPG_AC_HOST | IPG_AC_DMA);
1610 init_rfdlist(dev);
1611 init_tfdlist(dev);
1613 if (ipg_io_config(dev) < 0) {
1614 printk(KERN_INFO "%s: Cannot recover from PCI error.\n",
1615 dev->name);
1616 schedule_delayed_work(&sp->task, HZ);
1620 static irqreturn_t ipg_interrupt_handler(int irq, void *dev_inst)
1622 struct net_device *dev = dev_inst;
1623 struct ipg_nic_private *sp = netdev_priv(dev);
1624 void __iomem *ioaddr = sp->ioaddr;
1625 unsigned int handled = 0;
1626 u16 status;
1628 IPG_DEBUG_MSG("_interrupt_handler\n");
1630 #ifdef JUMBO_FRAME
1631 ipg_nic_rxrestore(dev);
1632 #endif
1633 /* Get interrupt source information, and acknowledge
1634 * some (i.e. TxDMAComplete, RxDMAComplete, RxEarly,
1635 * IntRequested, MacControlFrame, LinkEvent) interrupts
1636 * if issued. Also, all IPG interrupts are disabled by
1637 * reading IntStatusAck.
1639 status = ipg_r16(INT_STATUS_ACK);
1641 IPG_DEBUG_MSG("IntStatusAck = %4.4x\n", status);
1643 /* Shared IRQ of remove event. */
1644 if (!(status & IPG_IS_RSVD_MASK))
1645 goto out_enable;
1647 handled = 1;
1649 if (unlikely(!netif_running(dev)))
1650 goto out;
1652 spin_lock(&sp->lock);
1654 /* If RFDListEnd interrupt, restore all used RFDs. */
1655 if (status & IPG_IS_RFD_LIST_END) {
1656 IPG_DEBUG_MSG("RFDListEnd Interrupt.\n");
1658 /* The RFD list end indicates an RFD was encountered
1659 * with a 0 NextPtr, or with an RFDDone bit set to 1
1660 * (indicating the RFD is not read for use by the
1661 * IPG.) Try to restore all RFDs.
1663 ipg_nic_rxrestore(dev);
1665 #ifdef IPG_DEBUG
1666 /* Increment the RFDlistendCount counter. */
1667 sp->RFDlistendCount++;
1668 #endif
1671 /* If RFDListEnd, RxDMAPriority, RxDMAComplete, or
1672 * IntRequested interrupt, process received frames. */
1673 if ((status & IPG_IS_RX_DMA_PRIORITY) ||
1674 (status & IPG_IS_RFD_LIST_END) ||
1675 (status & IPG_IS_RX_DMA_COMPLETE) ||
1676 (status & IPG_IS_INT_REQUESTED)) {
1677 #ifdef IPG_DEBUG
1678 /* Increment the RFD list checked counter if interrupted
1679 * only to check the RFD list. */
1680 if (status & (~(IPG_IS_RX_DMA_PRIORITY | IPG_IS_RFD_LIST_END |
1681 IPG_IS_RX_DMA_COMPLETE | IPG_IS_INT_REQUESTED) &
1682 (IPG_IS_HOST_ERROR | IPG_IS_TX_DMA_COMPLETE |
1683 IPG_IS_LINK_EVENT | IPG_IS_TX_COMPLETE |
1684 IPG_IS_UPDATE_STATS)))
1685 sp->RFDListCheckedCount++;
1686 #endif
1688 ipg_nic_rx(dev);
1691 /* If TxDMAComplete interrupt, free used TFDs. */
1692 if (status & IPG_IS_TX_DMA_COMPLETE)
1693 ipg_nic_txfree(dev);
1695 /* TxComplete interrupts indicate one of numerous actions.
1696 * Determine what action to take based on TXSTATUS register.
1698 if (status & IPG_IS_TX_COMPLETE)
1699 ipg_nic_txcleanup(dev);
1701 /* If UpdateStats interrupt, update Linux Ethernet statistics */
1702 if (status & IPG_IS_UPDATE_STATS)
1703 ipg_nic_get_stats(dev);
1705 /* If HostError interrupt, reset IPG. */
1706 if (status & IPG_IS_HOST_ERROR) {
1707 IPG_DDEBUG_MSG("HostError Interrupt\n");
1709 schedule_delayed_work(&sp->task, 0);
1712 /* If LinkEvent interrupt, resolve autonegotiation. */
1713 if (status & IPG_IS_LINK_EVENT) {
1714 if (ipg_config_autoneg(dev) < 0)
1715 printk(KERN_INFO "%s: Auto-negotiation error.\n",
1716 dev->name);
1719 /* If MACCtrlFrame interrupt, do nothing. */
1720 if (status & IPG_IS_MAC_CTRL_FRAME)
1721 IPG_DEBUG_MSG("MACCtrlFrame interrupt.\n");
1723 /* If RxComplete interrupt, do nothing. */
1724 if (status & IPG_IS_RX_COMPLETE)
1725 IPG_DEBUG_MSG("RxComplete interrupt.\n");
1727 /* If RxEarly interrupt, do nothing. */
1728 if (status & IPG_IS_RX_EARLY)
1729 IPG_DEBUG_MSG("RxEarly interrupt.\n");
1731 out_enable:
1732 /* Re-enable IPG interrupts. */
1733 ipg_w16(IPG_IE_TX_DMA_COMPLETE | IPG_IE_RX_DMA_COMPLETE |
1734 IPG_IE_HOST_ERROR | IPG_IE_INT_REQUESTED | IPG_IE_TX_COMPLETE |
1735 IPG_IE_LINK_EVENT | IPG_IE_UPDATE_STATS, INT_ENABLE);
1737 spin_unlock(&sp->lock);
1738 out:
1739 return IRQ_RETVAL(handled);
1742 static void ipg_rx_clear(struct ipg_nic_private *sp)
1744 unsigned int i;
1746 for (i = 0; i < IPG_RFDLIST_LENGTH; i++) {
1747 if (sp->RxBuff[i]) {
1748 struct ipg_rx *rxfd = sp->rxd + i;
1750 IPG_DEV_KFREE_SKB(sp->RxBuff[i]);
1751 sp->RxBuff[i] = NULL;
1752 pci_unmap_single(sp->pdev,
1753 le64_to_cpu(rxfd->frag_info) & ~IPG_RFI_FRAGLEN,
1754 sp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1759 static void ipg_tx_clear(struct ipg_nic_private *sp)
1761 unsigned int i;
1763 for (i = 0; i < IPG_TFDLIST_LENGTH; i++) {
1764 if (sp->TxBuff[i]) {
1765 struct ipg_tx *txfd = sp->txd + i;
1767 pci_unmap_single(sp->pdev,
1768 le64_to_cpu(txfd->frag_info) & ~IPG_TFI_FRAGLEN,
1769 sp->TxBuff[i]->len, PCI_DMA_TODEVICE);
1771 IPG_DEV_KFREE_SKB(sp->TxBuff[i]);
1773 sp->TxBuff[i] = NULL;
1778 static int ipg_nic_open(struct net_device *dev)
1780 struct ipg_nic_private *sp = netdev_priv(dev);
1781 void __iomem *ioaddr = sp->ioaddr;
1782 struct pci_dev *pdev = sp->pdev;
1783 int rc;
1785 IPG_DEBUG_MSG("_nic_open\n");
1787 sp->rx_buf_sz = IPG_RXSUPPORT_SIZE;
1789 /* Check for interrupt line conflicts, and request interrupt
1790 * line for IPG.
1792 * IMPORTANT: Disable IPG interrupts prior to registering
1793 * IRQ.
1795 ipg_w16(0x0000, INT_ENABLE);
1797 /* Register the interrupt line to be used by the IPG within
1798 * the Linux system.
1800 rc = request_irq(pdev->irq, &ipg_interrupt_handler, IRQF_SHARED,
1801 dev->name, dev);
1802 if (rc < 0) {
1803 printk(KERN_INFO "%s: Error when requesting interrupt.\n",
1804 dev->name);
1805 goto out;
1808 dev->irq = pdev->irq;
1810 rc = -ENOMEM;
1812 sp->rxd = dma_alloc_coherent(&pdev->dev, IPG_RX_RING_BYTES,
1813 &sp->rxd_map, GFP_KERNEL);
1814 if (!sp->rxd)
1815 goto err_free_irq_0;
1817 sp->txd = dma_alloc_coherent(&pdev->dev, IPG_TX_RING_BYTES,
1818 &sp->txd_map, GFP_KERNEL);
1819 if (!sp->txd)
1820 goto err_free_rx_1;
1822 rc = init_rfdlist(dev);
1823 if (rc < 0) {
1824 printk(KERN_INFO "%s: Error during configuration.\n",
1825 dev->name);
1826 goto err_free_tx_2;
1829 init_tfdlist(dev);
1831 rc = ipg_io_config(dev);
1832 if (rc < 0) {
1833 printk(KERN_INFO "%s: Error during configuration.\n",
1834 dev->name);
1835 goto err_release_tfdlist_3;
1838 /* Resolve autonegotiation. */
1839 if (ipg_config_autoneg(dev) < 0)
1840 printk(KERN_INFO "%s: Auto-negotiation error.\n", dev->name);
1842 #ifdef JUMBO_FRAME
1843 /* initialize JUMBO Frame control variable */
1844 sp->Jumbo.FoundStart = 0;
1845 sp->Jumbo.CurrentSize = 0;
1846 sp->Jumbo.skb = 0;
1847 dev->mtu = IPG_TXFRAG_SIZE;
1848 #endif
1850 /* Enable transmit and receive operation of the IPG. */
1851 ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_RX_ENABLE | IPG_MC_TX_ENABLE) &
1852 IPG_MC_RSVD_MASK, MAC_CTRL);
1854 netif_start_queue(dev);
1855 out:
1856 return rc;
1858 err_release_tfdlist_3:
1859 ipg_tx_clear(sp);
1860 ipg_rx_clear(sp);
1861 err_free_tx_2:
1862 dma_free_coherent(&pdev->dev, IPG_TX_RING_BYTES, sp->txd, sp->txd_map);
1863 err_free_rx_1:
1864 dma_free_coherent(&pdev->dev, IPG_RX_RING_BYTES, sp->rxd, sp->rxd_map);
1865 err_free_irq_0:
1866 free_irq(pdev->irq, dev);
1867 goto out;
1870 static int ipg_nic_stop(struct net_device *dev)
1872 struct ipg_nic_private *sp = netdev_priv(dev);
1873 void __iomem *ioaddr = sp->ioaddr;
1874 struct pci_dev *pdev = sp->pdev;
1876 IPG_DEBUG_MSG("_nic_stop\n");
1878 netif_stop_queue(dev);
1880 IPG_DDEBUG_MSG("RFDlistendCount = %i\n", sp->RFDlistendCount);
1881 IPG_DDEBUG_MSG("RFDListCheckedCount = %i\n", sp->rxdCheckedCount);
1882 IPG_DDEBUG_MSG("EmptyRFDListCount = %i\n", sp->EmptyRFDListCount);
1883 IPG_DUMPTFDLIST(dev);
1885 do {
1886 (void) ipg_r16(INT_STATUS_ACK);
1888 ipg_reset(dev, IPG_AC_GLOBAL_RESET | IPG_AC_HOST | IPG_AC_DMA);
1890 synchronize_irq(pdev->irq);
1891 } while (ipg_r16(INT_ENABLE) & IPG_IE_RSVD_MASK);
1893 ipg_rx_clear(sp);
1895 ipg_tx_clear(sp);
1897 pci_free_consistent(pdev, IPG_RX_RING_BYTES, sp->rxd, sp->rxd_map);
1898 pci_free_consistent(pdev, IPG_TX_RING_BYTES, sp->txd, sp->txd_map);
1900 free_irq(pdev->irq, dev);
1902 return 0;
1905 static int ipg_nic_hard_start_xmit(struct sk_buff *skb, struct net_device *dev)
1907 struct ipg_nic_private *sp = netdev_priv(dev);
1908 void __iomem *ioaddr = sp->ioaddr;
1909 unsigned int entry = sp->tx_current % IPG_TFDLIST_LENGTH;
1910 unsigned long flags;
1911 struct ipg_tx *txfd;
1913 IPG_DDEBUG_MSG("_nic_hard_start_xmit\n");
1915 /* If in 10Mbps mode, stop the transmit queue so
1916 * no more transmit frames are accepted.
1918 if (sp->tenmbpsmode)
1919 netif_stop_queue(dev);
1921 if (sp->ResetCurrentTFD) {
1922 sp->ResetCurrentTFD = 0;
1923 entry = 0;
1926 txfd = sp->txd + entry;
1928 sp->TxBuff[entry] = skb;
1930 /* Clear all TFC fields, except TFDDONE. */
1931 txfd->tfc = cpu_to_le64(IPG_TFC_TFDDONE);
1933 /* Specify the TFC field within the TFD. */
1934 txfd->tfc |= cpu_to_le64(IPG_TFC_WORDALIGNDISABLED |
1935 (IPG_TFC_FRAMEID & cpu_to_le64(sp->tx_current)) |
1936 (IPG_TFC_FRAGCOUNT & (1 << 24)));
1938 /* Request TxComplete interrupts at an interval defined
1939 * by the constant IPG_FRAMESBETWEENTXCOMPLETES.
1940 * Request TxComplete interrupt for every frame
1941 * if in 10Mbps mode to accomodate problem with 10Mbps
1942 * processing.
1944 if (sp->tenmbpsmode)
1945 txfd->tfc |= cpu_to_le64(IPG_TFC_TXINDICATE);
1946 else if (!((sp->tx_current - sp->tx_dirty + 1) >
1947 IPG_FRAMESBETWEENTXDMACOMPLETES)) {
1948 txfd->tfc |= cpu_to_le64(IPG_TFC_TXDMAINDICATE);
1950 /* Based on compilation option, determine if FCS is to be
1951 * appended to transmit frame by IPG.
1953 if (!(IPG_APPEND_FCS_ON_TX))
1954 txfd->tfc |= cpu_to_le64(IPG_TFC_FCSAPPENDDISABLE);
1956 /* Based on compilation option, determine if IP, TCP and/or
1957 * UDP checksums are to be added to transmit frame by IPG.
1959 if (IPG_ADD_IPCHECKSUM_ON_TX)
1960 txfd->tfc |= cpu_to_le64(IPG_TFC_IPCHECKSUMENABLE);
1962 if (IPG_ADD_TCPCHECKSUM_ON_TX)
1963 txfd->tfc |= cpu_to_le64(IPG_TFC_TCPCHECKSUMENABLE);
1965 if (IPG_ADD_UDPCHECKSUM_ON_TX)
1966 txfd->tfc |= cpu_to_le64(IPG_TFC_UDPCHECKSUMENABLE);
1968 /* Based on compilation option, determine if VLAN tag info is to be
1969 * inserted into transmit frame by IPG.
1971 if (IPG_INSERT_MANUAL_VLAN_TAG) {
1972 txfd->tfc |= cpu_to_le64(IPG_TFC_VLANTAGINSERT |
1973 ((u64) IPG_MANUAL_VLAN_VID << 32) |
1974 ((u64) IPG_MANUAL_VLAN_CFI << 44) |
1975 ((u64) IPG_MANUAL_VLAN_USERPRIORITY << 45));
1978 /* The fragment start location within system memory is defined
1979 * by the sk_buff structure's data field. The physical address
1980 * of this location within the system's virtual memory space
1981 * is determined using the IPG_HOST2BUS_MAP function.
1983 txfd->frag_info = cpu_to_le64(pci_map_single(sp->pdev, skb->data,
1984 skb->len, PCI_DMA_TODEVICE));
1986 /* The length of the fragment within system memory is defined by
1987 * the sk_buff structure's len field.
1989 txfd->frag_info |= cpu_to_le64(IPG_TFI_FRAGLEN &
1990 ((u64) (skb->len & 0xffff) << 48));
1992 /* Clear the TFDDone bit last to indicate the TFD is ready
1993 * for transfer to the IPG.
1995 txfd->tfc &= cpu_to_le64(~IPG_TFC_TFDDONE);
1997 spin_lock_irqsave(&sp->lock, flags);
1999 sp->tx_current++;
2001 mmiowb();
2003 ipg_w32(IPG_DC_TX_DMA_POLL_NOW, DMA_CTRL);
2005 if (sp->tx_current == (sp->tx_dirty + IPG_TFDLIST_LENGTH))
2006 netif_wake_queue(dev);
2008 spin_unlock_irqrestore(&sp->lock, flags);
2010 return NETDEV_TX_OK;
2013 static void ipg_set_phy_default_param(unsigned char rev,
2014 struct net_device *dev, int phy_address)
2016 unsigned short length;
2017 unsigned char revision;
2018 unsigned short *phy_param;
2019 unsigned short address, value;
2021 phy_param = &DefaultPhyParam[0];
2022 length = *phy_param & 0x00FF;
2023 revision = (unsigned char)((*phy_param) >> 8);
2024 phy_param++;
2025 while (length != 0) {
2026 if (rev == revision) {
2027 while (length > 1) {
2028 address = *phy_param;
2029 value = *(phy_param + 1);
2030 phy_param += 2;
2031 mdio_write(dev, phy_address, address, value);
2032 length -= 4;
2034 break;
2035 } else {
2036 phy_param += length / 2;
2037 length = *phy_param & 0x00FF;
2038 revision = (unsigned char)((*phy_param) >> 8);
2039 phy_param++;
2044 /* JES20040127EEPROM */
2045 static int read_eeprom(struct net_device *dev, int eep_addr)
2047 void __iomem *ioaddr = ipg_ioaddr(dev);
2048 unsigned int i;
2049 int ret = 0;
2050 u16 value;
2052 value = IPG_EC_EEPROM_READOPCODE | (eep_addr & 0xff);
2053 ipg_w16(value, EEPROM_CTRL);
2055 for (i = 0; i < 1000; i++) {
2056 u16 data;
2058 mdelay(10);
2059 data = ipg_r16(EEPROM_CTRL);
2060 if (!(data & IPG_EC_EEPROM_BUSY)) {
2061 ret = ipg_r16(EEPROM_DATA);
2062 break;
2065 return ret;
2068 static void ipg_init_mii(struct net_device *dev)
2070 struct ipg_nic_private *sp = netdev_priv(dev);
2071 struct mii_if_info *mii_if = &sp->mii_if;
2072 int phyaddr;
2074 mii_if->dev = dev;
2075 mii_if->mdio_read = mdio_read;
2076 mii_if->mdio_write = mdio_write;
2077 mii_if->phy_id_mask = 0x1f;
2078 mii_if->reg_num_mask = 0x1f;
2080 mii_if->phy_id = phyaddr = ipg_find_phyaddr(dev);
2082 if (phyaddr != 0x1f) {
2083 u16 mii_phyctrl, mii_1000cr;
2084 u8 revisionid = 0;
2086 mii_1000cr = mdio_read(dev, phyaddr, MII_CTRL1000);
2087 mii_1000cr |= ADVERTISE_1000FULL | ADVERTISE_1000HALF |
2088 GMII_PHY_1000BASETCONTROL_PreferMaster;
2089 mdio_write(dev, phyaddr, MII_CTRL1000, mii_1000cr);
2091 mii_phyctrl = mdio_read(dev, phyaddr, MII_BMCR);
2093 /* Set default phyparam */
2094 pci_read_config_byte(sp->pdev, PCI_REVISION_ID, &revisionid);
2095 ipg_set_phy_default_param(revisionid, dev, phyaddr);
2097 /* Reset PHY */
2098 mii_phyctrl |= BMCR_RESET | BMCR_ANRESTART;
2099 mdio_write(dev, phyaddr, MII_BMCR, mii_phyctrl);
2104 static int ipg_hw_init(struct net_device *dev)
2106 struct ipg_nic_private *sp = netdev_priv(dev);
2107 void __iomem *ioaddr = sp->ioaddr;
2108 unsigned int i;
2109 int rc;
2111 /* Read/Write and Reset EEPROM Value Jesse20040128EEPROM_VALUE */
2112 /* Read LED Mode Configuration from EEPROM */
2113 sp->LED_Mode = read_eeprom(dev, 6);
2115 /* Reset all functions within the IPG. Do not assert
2116 * RST_OUT as not compatible with some PHYs.
2118 rc = ipg_reset(dev, IPG_RESET_MASK);
2119 if (rc < 0)
2120 goto out;
2122 ipg_init_mii(dev);
2124 /* Read MAC Address from EEPROM */
2125 for (i = 0; i < 3; i++)
2126 sp->station_addr[i] = read_eeprom(dev, 16 + i);
2128 for (i = 0; i < 3; i++)
2129 ipg_w16(sp->station_addr[i], STATION_ADDRESS_0 + 2*i);
2131 /* Set station address in ethernet_device structure. */
2132 dev->dev_addr[0] = ipg_r16(STATION_ADDRESS_0) & 0x00ff;
2133 dev->dev_addr[1] = (ipg_r16(STATION_ADDRESS_0) & 0xff00) >> 8;
2134 dev->dev_addr[2] = ipg_r16(STATION_ADDRESS_1) & 0x00ff;
2135 dev->dev_addr[3] = (ipg_r16(STATION_ADDRESS_1) & 0xff00) >> 8;
2136 dev->dev_addr[4] = ipg_r16(STATION_ADDRESS_2) & 0x00ff;
2137 dev->dev_addr[5] = (ipg_r16(STATION_ADDRESS_2) & 0xff00) >> 8;
2138 out:
2139 return rc;
2142 static int ipg_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
2144 struct ipg_nic_private *sp = netdev_priv(dev);
2145 int rc;
2147 mutex_lock(&sp->mii_mutex);
2148 rc = generic_mii_ioctl(&sp->mii_if, if_mii(ifr), cmd, NULL);
2149 mutex_unlock(&sp->mii_mutex);
2151 return rc;
2154 static int ipg_nic_change_mtu(struct net_device *dev, int new_mtu)
2156 /* Function to accomodate changes to Maximum Transfer Unit
2157 * (or MTU) of IPG NIC. Cannot use default function since
2158 * the default will not allow for MTU > 1500 bytes.
2161 IPG_DEBUG_MSG("_nic_change_mtu\n");
2163 /* Check that the new MTU value is between 68 (14 byte header, 46
2164 * byte payload, 4 byte FCS) and IPG_MAX_RXFRAME_SIZE, which
2165 * corresponds to the MAXFRAMESIZE register in the IPG.
2167 if ((new_mtu < 68) || (new_mtu > IPG_MAX_RXFRAME_SIZE))
2168 return -EINVAL;
2170 dev->mtu = new_mtu;
2172 return 0;
2175 static int ipg_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2177 struct ipg_nic_private *sp = netdev_priv(dev);
2178 int rc;
2180 mutex_lock(&sp->mii_mutex);
2181 rc = mii_ethtool_gset(&sp->mii_if, cmd);
2182 mutex_unlock(&sp->mii_mutex);
2184 return rc;
2187 static int ipg_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2189 struct ipg_nic_private *sp = netdev_priv(dev);
2190 int rc;
2192 mutex_lock(&sp->mii_mutex);
2193 rc = mii_ethtool_sset(&sp->mii_if, cmd);
2194 mutex_unlock(&sp->mii_mutex);
2196 return rc;
2199 static int ipg_nway_reset(struct net_device *dev)
2201 struct ipg_nic_private *sp = netdev_priv(dev);
2202 int rc;
2204 mutex_lock(&sp->mii_mutex);
2205 rc = mii_nway_restart(&sp->mii_if);
2206 mutex_unlock(&sp->mii_mutex);
2208 return rc;
2211 static struct ethtool_ops ipg_ethtool_ops = {
2212 .get_settings = ipg_get_settings,
2213 .set_settings = ipg_set_settings,
2214 .nway_reset = ipg_nway_reset,
2217 static void ipg_remove(struct pci_dev *pdev)
2219 struct net_device *dev = pci_get_drvdata(pdev);
2220 struct ipg_nic_private *sp = netdev_priv(dev);
2222 IPG_DEBUG_MSG("_remove\n");
2224 /* Un-register Ethernet device. */
2225 unregister_netdev(dev);
2227 pci_iounmap(pdev, sp->ioaddr);
2229 pci_release_regions(pdev);
2231 free_netdev(dev);
2232 pci_disable_device(pdev);
2233 pci_set_drvdata(pdev, NULL);
2236 static int __devinit ipg_probe(struct pci_dev *pdev,
2237 const struct pci_device_id *id)
2239 unsigned int i = id->driver_data;
2240 struct ipg_nic_private *sp;
2241 struct net_device *dev;
2242 void __iomem *ioaddr;
2243 int rc;
2245 rc = pci_enable_device(pdev);
2246 if (rc < 0)
2247 goto out;
2249 printk(KERN_INFO "%s: %s\n", pci_name(pdev), ipg_brand_name[i]);
2251 pci_set_master(pdev);
2253 rc = pci_set_dma_mask(pdev, DMA_40BIT_MASK);
2254 if (rc < 0) {
2255 rc = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
2256 if (rc < 0) {
2257 printk(KERN_ERR "%s: DMA config failed.\n",
2258 pci_name(pdev));
2259 goto err_disable_0;
2264 * Initialize net device.
2266 dev = alloc_etherdev(sizeof(struct ipg_nic_private));
2267 if (!dev) {
2268 printk(KERN_ERR "%s: alloc_etherdev failed\n", pci_name(pdev));
2269 rc = -ENOMEM;
2270 goto err_disable_0;
2273 sp = netdev_priv(dev);
2274 spin_lock_init(&sp->lock);
2275 mutex_init(&sp->mii_mutex);
2277 /* Declare IPG NIC functions for Ethernet device methods.
2279 dev->open = &ipg_nic_open;
2280 dev->stop = &ipg_nic_stop;
2281 dev->hard_start_xmit = &ipg_nic_hard_start_xmit;
2282 dev->get_stats = &ipg_nic_get_stats;
2283 dev->set_multicast_list = &ipg_nic_set_multicast_list;
2284 dev->do_ioctl = ipg_ioctl;
2285 dev->tx_timeout = ipg_tx_timeout;
2286 dev->change_mtu = &ipg_nic_change_mtu;
2288 SET_NETDEV_DEV(dev, &pdev->dev);
2289 SET_ETHTOOL_OPS(dev, &ipg_ethtool_ops);
2291 rc = pci_request_regions(pdev, DRV_NAME);
2292 if (rc)
2293 goto err_free_dev_1;
2295 ioaddr = pci_iomap(pdev, 1, pci_resource_len(pdev, 1));
2296 if (!ioaddr) {
2297 printk(KERN_ERR "%s cannot map MMIO\n", pci_name(pdev));
2298 rc = -EIO;
2299 goto err_release_regions_2;
2302 /* Save the pointer to the PCI device information. */
2303 sp->ioaddr = ioaddr;
2304 sp->pdev = pdev;
2305 sp->dev = dev;
2307 INIT_DELAYED_WORK(&sp->task, ipg_reset_after_host_error);
2309 pci_set_drvdata(pdev, dev);
2311 rc = ipg_hw_init(dev);
2312 if (rc < 0)
2313 goto err_unmap_3;
2315 rc = register_netdev(dev);
2316 if (rc < 0)
2317 goto err_unmap_3;
2319 printk(KERN_INFO "Ethernet device registered as: %s\n", dev->name);
2320 out:
2321 return rc;
2323 err_unmap_3:
2324 pci_iounmap(pdev, ioaddr);
2325 err_release_regions_2:
2326 pci_release_regions(pdev);
2327 err_free_dev_1:
2328 free_netdev(dev);
2329 err_disable_0:
2330 pci_disable_device(pdev);
2331 goto out;
2334 static struct pci_driver ipg_pci_driver = {
2335 .name = IPG_DRIVER_NAME,
2336 .id_table = ipg_pci_tbl,
2337 .probe = ipg_probe,
2338 .remove = __devexit_p(ipg_remove),
2341 static int __init ipg_init_module(void)
2343 return pci_register_driver(&ipg_pci_driver);
2346 static void __exit ipg_exit_module(void)
2348 pci_unregister_driver(&ipg_pci_driver);
2351 module_init(ipg_init_module);
2352 module_exit(ipg_exit_module);