jiffies_round-jiffies_round_relative-conversion-rt2x00-checkpatch-fixes
[linux-2.6/linux-trees-mm.git] / drivers / net / skge.c
blobb9961dc47606bb28b9528c8764e95e488ff1ca36
1 /*
2 * New driver for Marvell Yukon chipset and SysKonnect Gigabit
3 * Ethernet adapters. Based on earlier sk98lin, e100 and
4 * FreeBSD if_sk drivers.
6 * This driver intentionally does not support all the features
7 * of the original driver such as link fail-over and link management because
8 * those should be done at higher levels.
10 * Copyright (C) 2004, 2005 Stephen Hemminger <shemminger@osdl.org>
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License.
16 * This program is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 * GNU General Public License for more details.
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, write to the Free Software
23 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
26 #include <linux/in.h>
27 #include <linux/kernel.h>
28 #include <linux/module.h>
29 #include <linux/moduleparam.h>
30 #include <linux/netdevice.h>
31 #include <linux/etherdevice.h>
32 #include <linux/ethtool.h>
33 #include <linux/pci.h>
34 #include <linux/if_vlan.h>
35 #include <linux/ip.h>
36 #include <linux/delay.h>
37 #include <linux/crc32.h>
38 #include <linux/dma-mapping.h>
39 #include <linux/debugfs.h>
40 #include <linux/seq_file.h>
41 #include <linux/mii.h>
42 #include <asm/irq.h>
44 #include "skge.h"
46 #define DRV_NAME "skge"
47 #define DRV_VERSION "1.12"
48 #define PFX DRV_NAME " "
50 #define DEFAULT_TX_RING_SIZE 128
51 #define DEFAULT_RX_RING_SIZE 512
52 #define MAX_TX_RING_SIZE 1024
53 #define TX_LOW_WATER (MAX_SKB_FRAGS + 1)
54 #define MAX_RX_RING_SIZE 4096
55 #define RX_COPY_THRESHOLD 128
56 #define RX_BUF_SIZE 1536
57 #define PHY_RETRIES 1000
58 #define ETH_JUMBO_MTU 9000
59 #define TX_WATCHDOG (5 * HZ)
60 #define NAPI_WEIGHT 64
61 #define BLINK_MS 250
62 #define LINK_HZ HZ
64 #define SKGE_EEPROM_MAGIC 0x9933aabb
67 MODULE_DESCRIPTION("SysKonnect Gigabit Ethernet driver");
68 MODULE_AUTHOR("Stephen Hemminger <shemminger@linux-foundation.org>");
69 MODULE_LICENSE("GPL");
70 MODULE_VERSION(DRV_VERSION);
72 static const u32 default_msg
73 = NETIF_MSG_DRV| NETIF_MSG_PROBE| NETIF_MSG_LINK
74 | NETIF_MSG_IFUP| NETIF_MSG_IFDOWN;
76 static int debug = -1; /* defaults above */
77 module_param(debug, int, 0);
78 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
80 static const struct pci_device_id skge_id_table[] = {
81 { PCI_DEVICE(PCI_VENDOR_ID_3COM, PCI_DEVICE_ID_3COM_3C940) },
82 { PCI_DEVICE(PCI_VENDOR_ID_3COM, PCI_DEVICE_ID_3COM_3C940B) },
83 { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, PCI_DEVICE_ID_SYSKONNECT_GE) },
84 { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, PCI_DEVICE_ID_SYSKONNECT_YU) },
85 { PCI_DEVICE(PCI_VENDOR_ID_DLINK, PCI_DEVICE_ID_DLINK_DGE510T) },
86 { PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4b01) }, /* DGE-530T */
87 { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4320) },
88 { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x5005) }, /* Belkin */
89 { PCI_DEVICE(PCI_VENDOR_ID_CNET, PCI_DEVICE_ID_CNET_GIGACARD) },
90 { PCI_DEVICE(PCI_VENDOR_ID_LINKSYS, PCI_DEVICE_ID_LINKSYS_EG1064) },
91 { PCI_VENDOR_ID_LINKSYS, 0x1032, PCI_ANY_ID, 0x0015 },
92 { 0 }
94 MODULE_DEVICE_TABLE(pci, skge_id_table);
96 static int skge_up(struct net_device *dev);
97 static int skge_down(struct net_device *dev);
98 static void skge_phy_reset(struct skge_port *skge);
99 static void skge_tx_clean(struct net_device *dev);
100 static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
101 static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
102 static void genesis_get_stats(struct skge_port *skge, u64 *data);
103 static void yukon_get_stats(struct skge_port *skge, u64 *data);
104 static void yukon_init(struct skge_hw *hw, int port);
105 static void genesis_mac_init(struct skge_hw *hw, int port);
106 static void genesis_link_up(struct skge_port *skge);
108 /* Avoid conditionals by using array */
109 static const int txqaddr[] = { Q_XA1, Q_XA2 };
110 static const int rxqaddr[] = { Q_R1, Q_R2 };
111 static const u32 rxirqmask[] = { IS_R1_F, IS_R2_F };
112 static const u32 txirqmask[] = { IS_XA1_F, IS_XA2_F };
113 static const u32 napimask[] = { IS_R1_F|IS_XA1_F, IS_R2_F|IS_XA2_F };
114 static const u32 portmask[] = { IS_PORT_1, IS_PORT_2 };
116 static int skge_get_regs_len(struct net_device *dev)
118 return 0x4000;
122 * Returns copy of whole control register region
123 * Note: skip RAM address register because accessing it will
124 * cause bus hangs!
126 static void skge_get_regs(struct net_device *dev, struct ethtool_regs *regs,
127 void *p)
129 const struct skge_port *skge = netdev_priv(dev);
130 const void __iomem *io = skge->hw->regs;
132 regs->version = 1;
133 memset(p, 0, regs->len);
134 memcpy_fromio(p, io, B3_RAM_ADDR);
136 memcpy_fromio(p + B3_RI_WTO_R1, io + B3_RI_WTO_R1,
137 regs->len - B3_RI_WTO_R1);
140 /* Wake on Lan only supported on Yukon chips with rev 1 or above */
141 static u32 wol_supported(const struct skge_hw *hw)
143 if (hw->chip_id == CHIP_ID_GENESIS)
144 return 0;
146 if (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0)
147 return 0;
149 return WAKE_MAGIC | WAKE_PHY;
152 static u32 pci_wake_enabled(struct pci_dev *dev)
154 int pm = pci_find_capability(dev, PCI_CAP_ID_PM);
155 u16 value;
157 /* If device doesn't support PM Capabilities, but request is to disable
158 * wake events, it's a nop; otherwise fail */
159 if (!pm)
160 return 0;
162 pci_read_config_word(dev, pm + PCI_PM_PMC, &value);
164 value &= PCI_PM_CAP_PME_MASK;
165 value >>= ffs(PCI_PM_CAP_PME_MASK) - 1; /* First bit of mask */
167 return value != 0;
170 static void skge_wol_init(struct skge_port *skge)
172 struct skge_hw *hw = skge->hw;
173 int port = skge->port;
174 u16 ctrl;
176 skge_write16(hw, B0_CTST, CS_RST_CLR);
177 skge_write16(hw, SK_REG(port, GMAC_LINK_CTRL), GMLC_RST_CLR);
179 /* Turn on Vaux */
180 skge_write8(hw, B0_POWER_CTRL,
181 PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_ON | PC_VCC_OFF);
183 /* WA code for COMA mode -- clear PHY reset */
184 if (hw->chip_id == CHIP_ID_YUKON_LITE &&
185 hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
186 u32 reg = skge_read32(hw, B2_GP_IO);
187 reg |= GP_DIR_9;
188 reg &= ~GP_IO_9;
189 skge_write32(hw, B2_GP_IO, reg);
192 skge_write32(hw, SK_REG(port, GPHY_CTRL),
193 GPC_DIS_SLEEP |
194 GPC_HWCFG_M_3 | GPC_HWCFG_M_2 | GPC_HWCFG_M_1 | GPC_HWCFG_M_0 |
195 GPC_ANEG_1 | GPC_RST_SET);
197 skge_write32(hw, SK_REG(port, GPHY_CTRL),
198 GPC_DIS_SLEEP |
199 GPC_HWCFG_M_3 | GPC_HWCFG_M_2 | GPC_HWCFG_M_1 | GPC_HWCFG_M_0 |
200 GPC_ANEG_1 | GPC_RST_CLR);
202 skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_RST_CLR);
204 /* Force to 10/100 skge_reset will re-enable on resume */
205 gm_phy_write(hw, port, PHY_MARV_AUNE_ADV,
206 PHY_AN_100FULL | PHY_AN_100HALF |
207 PHY_AN_10FULL | PHY_AN_10HALF| PHY_AN_CSMA);
208 /* no 1000 HD/FD */
209 gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, 0);
210 gm_phy_write(hw, port, PHY_MARV_CTRL,
211 PHY_CT_RESET | PHY_CT_SPS_LSB | PHY_CT_ANE |
212 PHY_CT_RE_CFG | PHY_CT_DUP_MD);
215 /* Set GMAC to no flow control and auto update for speed/duplex */
216 gma_write16(hw, port, GM_GP_CTRL,
217 GM_GPCR_FC_TX_DIS|GM_GPCR_TX_ENA|GM_GPCR_RX_ENA|
218 GM_GPCR_DUP_FULL|GM_GPCR_FC_RX_DIS|GM_GPCR_AU_FCT_DIS);
220 /* Set WOL address */
221 memcpy_toio(hw->regs + WOL_REGS(port, WOL_MAC_ADDR),
222 skge->netdev->dev_addr, ETH_ALEN);
224 /* Turn on appropriate WOL control bits */
225 skge_write16(hw, WOL_REGS(port, WOL_CTRL_STAT), WOL_CTL_CLEAR_RESULT);
226 ctrl = 0;
227 if (skge->wol & WAKE_PHY)
228 ctrl |= WOL_CTL_ENA_PME_ON_LINK_CHG|WOL_CTL_ENA_LINK_CHG_UNIT;
229 else
230 ctrl |= WOL_CTL_DIS_PME_ON_LINK_CHG|WOL_CTL_DIS_LINK_CHG_UNIT;
232 if (skge->wol & WAKE_MAGIC)
233 ctrl |= WOL_CTL_ENA_PME_ON_MAGIC_PKT|WOL_CTL_ENA_MAGIC_PKT_UNIT;
234 else
235 ctrl |= WOL_CTL_DIS_PME_ON_MAGIC_PKT|WOL_CTL_DIS_MAGIC_PKT_UNIT;;
237 ctrl |= WOL_CTL_DIS_PME_ON_PATTERN|WOL_CTL_DIS_PATTERN_UNIT;
238 skge_write16(hw, WOL_REGS(port, WOL_CTRL_STAT), ctrl);
240 /* block receiver */
241 skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET);
244 static void skge_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
246 struct skge_port *skge = netdev_priv(dev);
248 wol->supported = wol_supported(skge->hw);
249 wol->wolopts = skge->wol;
252 static int skge_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
254 struct skge_port *skge = netdev_priv(dev);
255 struct skge_hw *hw = skge->hw;
257 if (wol->wolopts & ~wol_supported(hw))
258 return -EOPNOTSUPP;
260 skge->wol = wol->wolopts;
261 return 0;
264 /* Determine supported/advertised modes based on hardware.
265 * Note: ethtool ADVERTISED_xxx == SUPPORTED_xxx
267 static u32 skge_supported_modes(const struct skge_hw *hw)
269 u32 supported;
271 if (hw->copper) {
272 supported = SUPPORTED_10baseT_Half
273 | SUPPORTED_10baseT_Full
274 | SUPPORTED_100baseT_Half
275 | SUPPORTED_100baseT_Full
276 | SUPPORTED_1000baseT_Half
277 | SUPPORTED_1000baseT_Full
278 | SUPPORTED_Autoneg| SUPPORTED_TP;
280 if (hw->chip_id == CHIP_ID_GENESIS)
281 supported &= ~(SUPPORTED_10baseT_Half
282 | SUPPORTED_10baseT_Full
283 | SUPPORTED_100baseT_Half
284 | SUPPORTED_100baseT_Full);
286 else if (hw->chip_id == CHIP_ID_YUKON)
287 supported &= ~SUPPORTED_1000baseT_Half;
288 } else
289 supported = SUPPORTED_1000baseT_Full | SUPPORTED_1000baseT_Half
290 | SUPPORTED_FIBRE | SUPPORTED_Autoneg;
292 return supported;
295 static int skge_get_settings(struct net_device *dev,
296 struct ethtool_cmd *ecmd)
298 struct skge_port *skge = netdev_priv(dev);
299 struct skge_hw *hw = skge->hw;
301 ecmd->transceiver = XCVR_INTERNAL;
302 ecmd->supported = skge_supported_modes(hw);
304 if (hw->copper) {
305 ecmd->port = PORT_TP;
306 ecmd->phy_address = hw->phy_addr;
307 } else
308 ecmd->port = PORT_FIBRE;
310 ecmd->advertising = skge->advertising;
311 ecmd->autoneg = skge->autoneg;
312 ecmd->speed = skge->speed;
313 ecmd->duplex = skge->duplex;
314 return 0;
317 static int skge_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
319 struct skge_port *skge = netdev_priv(dev);
320 const struct skge_hw *hw = skge->hw;
321 u32 supported = skge_supported_modes(hw);
323 if (ecmd->autoneg == AUTONEG_ENABLE) {
324 ecmd->advertising = supported;
325 skge->duplex = -1;
326 skge->speed = -1;
327 } else {
328 u32 setting;
330 switch (ecmd->speed) {
331 case SPEED_1000:
332 if (ecmd->duplex == DUPLEX_FULL)
333 setting = SUPPORTED_1000baseT_Full;
334 else if (ecmd->duplex == DUPLEX_HALF)
335 setting = SUPPORTED_1000baseT_Half;
336 else
337 return -EINVAL;
338 break;
339 case SPEED_100:
340 if (ecmd->duplex == DUPLEX_FULL)
341 setting = SUPPORTED_100baseT_Full;
342 else if (ecmd->duplex == DUPLEX_HALF)
343 setting = SUPPORTED_100baseT_Half;
344 else
345 return -EINVAL;
346 break;
348 case SPEED_10:
349 if (ecmd->duplex == DUPLEX_FULL)
350 setting = SUPPORTED_10baseT_Full;
351 else if (ecmd->duplex == DUPLEX_HALF)
352 setting = SUPPORTED_10baseT_Half;
353 else
354 return -EINVAL;
355 break;
356 default:
357 return -EINVAL;
360 if ((setting & supported) == 0)
361 return -EINVAL;
363 skge->speed = ecmd->speed;
364 skge->duplex = ecmd->duplex;
367 skge->autoneg = ecmd->autoneg;
368 skge->advertising = ecmd->advertising;
370 if (netif_running(dev))
371 skge_phy_reset(skge);
373 return (0);
376 static void skge_get_drvinfo(struct net_device *dev,
377 struct ethtool_drvinfo *info)
379 struct skge_port *skge = netdev_priv(dev);
381 strcpy(info->driver, DRV_NAME);
382 strcpy(info->version, DRV_VERSION);
383 strcpy(info->fw_version, "N/A");
384 strcpy(info->bus_info, pci_name(skge->hw->pdev));
387 static const struct skge_stat {
388 char name[ETH_GSTRING_LEN];
389 u16 xmac_offset;
390 u16 gma_offset;
391 } skge_stats[] = {
392 { "tx_bytes", XM_TXO_OK_HI, GM_TXO_OK_HI },
393 { "rx_bytes", XM_RXO_OK_HI, GM_RXO_OK_HI },
395 { "tx_broadcast", XM_TXF_BC_OK, GM_TXF_BC_OK },
396 { "rx_broadcast", XM_RXF_BC_OK, GM_RXF_BC_OK },
397 { "tx_multicast", XM_TXF_MC_OK, GM_TXF_MC_OK },
398 { "rx_multicast", XM_RXF_MC_OK, GM_RXF_MC_OK },
399 { "tx_unicast", XM_TXF_UC_OK, GM_TXF_UC_OK },
400 { "rx_unicast", XM_RXF_UC_OK, GM_RXF_UC_OK },
401 { "tx_mac_pause", XM_TXF_MPAUSE, GM_TXF_MPAUSE },
402 { "rx_mac_pause", XM_RXF_MPAUSE, GM_RXF_MPAUSE },
404 { "collisions", XM_TXF_SNG_COL, GM_TXF_SNG_COL },
405 { "multi_collisions", XM_TXF_MUL_COL, GM_TXF_MUL_COL },
406 { "aborted", XM_TXF_ABO_COL, GM_TXF_ABO_COL },
407 { "late_collision", XM_TXF_LAT_COL, GM_TXF_LAT_COL },
408 { "fifo_underrun", XM_TXE_FIFO_UR, GM_TXE_FIFO_UR },
409 { "fifo_overflow", XM_RXE_FIFO_OV, GM_RXE_FIFO_OV },
411 { "rx_toolong", XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
412 { "rx_jabber", XM_RXF_JAB_PKT, GM_RXF_JAB_PKT },
413 { "rx_runt", XM_RXE_RUNT, GM_RXE_FRAG },
414 { "rx_too_long", XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
415 { "rx_fcs_error", XM_RXF_FCS_ERR, GM_RXF_FCS_ERR },
418 static int skge_get_sset_count(struct net_device *dev, int sset)
420 switch (sset) {
421 case ETH_SS_STATS:
422 return ARRAY_SIZE(skge_stats);
423 default:
424 return -EOPNOTSUPP;
428 static void skge_get_ethtool_stats(struct net_device *dev,
429 struct ethtool_stats *stats, u64 *data)
431 struct skge_port *skge = netdev_priv(dev);
433 if (skge->hw->chip_id == CHIP_ID_GENESIS)
434 genesis_get_stats(skge, data);
435 else
436 yukon_get_stats(skge, data);
439 /* Use hardware MIB variables for critical path statistics and
440 * transmit feedback not reported at interrupt.
441 * Other errors are accounted for in interrupt handler.
443 static struct net_device_stats *skge_get_stats(struct net_device *dev)
445 struct skge_port *skge = netdev_priv(dev);
446 u64 data[ARRAY_SIZE(skge_stats)];
448 if (skge->hw->chip_id == CHIP_ID_GENESIS)
449 genesis_get_stats(skge, data);
450 else
451 yukon_get_stats(skge, data);
453 dev->stats.tx_bytes = data[0];
454 dev->stats.rx_bytes = data[1];
455 dev->stats.tx_packets = data[2] + data[4] + data[6];
456 dev->stats.rx_packets = data[3] + data[5] + data[7];
457 dev->stats.multicast = data[3] + data[5];
458 dev->stats.collisions = data[10];
459 dev->stats.tx_aborted_errors = data[12];
461 return &dev->stats;
464 static void skge_get_strings(struct net_device *dev, u32 stringset, u8 *data)
466 int i;
468 switch (stringset) {
469 case ETH_SS_STATS:
470 for (i = 0; i < ARRAY_SIZE(skge_stats); i++)
471 memcpy(data + i * ETH_GSTRING_LEN,
472 skge_stats[i].name, ETH_GSTRING_LEN);
473 break;
477 static void skge_get_ring_param(struct net_device *dev,
478 struct ethtool_ringparam *p)
480 struct skge_port *skge = netdev_priv(dev);
482 p->rx_max_pending = MAX_RX_RING_SIZE;
483 p->tx_max_pending = MAX_TX_RING_SIZE;
484 p->rx_mini_max_pending = 0;
485 p->rx_jumbo_max_pending = 0;
487 p->rx_pending = skge->rx_ring.count;
488 p->tx_pending = skge->tx_ring.count;
489 p->rx_mini_pending = 0;
490 p->rx_jumbo_pending = 0;
493 static int skge_set_ring_param(struct net_device *dev,
494 struct ethtool_ringparam *p)
496 struct skge_port *skge = netdev_priv(dev);
497 int err;
499 if (p->rx_pending == 0 || p->rx_pending > MAX_RX_RING_SIZE ||
500 p->tx_pending < TX_LOW_WATER || p->tx_pending > MAX_TX_RING_SIZE)
501 return -EINVAL;
503 skge->rx_ring.count = p->rx_pending;
504 skge->tx_ring.count = p->tx_pending;
506 if (netif_running(dev)) {
507 skge_down(dev);
508 err = skge_up(dev);
509 if (err)
510 dev_close(dev);
513 return 0;
516 static u32 skge_get_msglevel(struct net_device *netdev)
518 struct skge_port *skge = netdev_priv(netdev);
519 return skge->msg_enable;
522 static void skge_set_msglevel(struct net_device *netdev, u32 value)
524 struct skge_port *skge = netdev_priv(netdev);
525 skge->msg_enable = value;
528 static int skge_nway_reset(struct net_device *dev)
530 struct skge_port *skge = netdev_priv(dev);
532 if (skge->autoneg != AUTONEG_ENABLE || !netif_running(dev))
533 return -EINVAL;
535 skge_phy_reset(skge);
536 return 0;
539 static int skge_set_sg(struct net_device *dev, u32 data)
541 struct skge_port *skge = netdev_priv(dev);
542 struct skge_hw *hw = skge->hw;
544 if (hw->chip_id == CHIP_ID_GENESIS && data)
545 return -EOPNOTSUPP;
546 return ethtool_op_set_sg(dev, data);
549 static int skge_set_tx_csum(struct net_device *dev, u32 data)
551 struct skge_port *skge = netdev_priv(dev);
552 struct skge_hw *hw = skge->hw;
554 if (hw->chip_id == CHIP_ID_GENESIS && data)
555 return -EOPNOTSUPP;
557 return ethtool_op_set_tx_csum(dev, data);
560 static u32 skge_get_rx_csum(struct net_device *dev)
562 struct skge_port *skge = netdev_priv(dev);
564 return skge->rx_csum;
567 /* Only Yukon supports checksum offload. */
568 static int skge_set_rx_csum(struct net_device *dev, u32 data)
570 struct skge_port *skge = netdev_priv(dev);
572 if (skge->hw->chip_id == CHIP_ID_GENESIS && data)
573 return -EOPNOTSUPP;
575 skge->rx_csum = data;
576 return 0;
579 static void skge_get_pauseparam(struct net_device *dev,
580 struct ethtool_pauseparam *ecmd)
582 struct skge_port *skge = netdev_priv(dev);
584 ecmd->rx_pause = (skge->flow_control == FLOW_MODE_SYMMETRIC)
585 || (skge->flow_control == FLOW_MODE_SYM_OR_REM);
586 ecmd->tx_pause = ecmd->rx_pause || (skge->flow_control == FLOW_MODE_LOC_SEND);
588 ecmd->autoneg = ecmd->rx_pause || ecmd->tx_pause;
591 static int skge_set_pauseparam(struct net_device *dev,
592 struct ethtool_pauseparam *ecmd)
594 struct skge_port *skge = netdev_priv(dev);
595 struct ethtool_pauseparam old;
597 skge_get_pauseparam(dev, &old);
599 if (ecmd->autoneg != old.autoneg)
600 skge->flow_control = ecmd->autoneg ? FLOW_MODE_NONE : FLOW_MODE_SYMMETRIC;
601 else {
602 if (ecmd->rx_pause && ecmd->tx_pause)
603 skge->flow_control = FLOW_MODE_SYMMETRIC;
604 else if (ecmd->rx_pause && !ecmd->tx_pause)
605 skge->flow_control = FLOW_MODE_SYM_OR_REM;
606 else if (!ecmd->rx_pause && ecmd->tx_pause)
607 skge->flow_control = FLOW_MODE_LOC_SEND;
608 else
609 skge->flow_control = FLOW_MODE_NONE;
612 if (netif_running(dev))
613 skge_phy_reset(skge);
615 return 0;
618 /* Chip internal frequency for clock calculations */
619 static inline u32 hwkhz(const struct skge_hw *hw)
621 return (hw->chip_id == CHIP_ID_GENESIS) ? 53125 : 78125;
624 /* Chip HZ to microseconds */
625 static inline u32 skge_clk2usec(const struct skge_hw *hw, u32 ticks)
627 return (ticks * 1000) / hwkhz(hw);
630 /* Microseconds to chip HZ */
631 static inline u32 skge_usecs2clk(const struct skge_hw *hw, u32 usec)
633 return hwkhz(hw) * usec / 1000;
636 static int skge_get_coalesce(struct net_device *dev,
637 struct ethtool_coalesce *ecmd)
639 struct skge_port *skge = netdev_priv(dev);
640 struct skge_hw *hw = skge->hw;
641 int port = skge->port;
643 ecmd->rx_coalesce_usecs = 0;
644 ecmd->tx_coalesce_usecs = 0;
646 if (skge_read32(hw, B2_IRQM_CTRL) & TIM_START) {
647 u32 delay = skge_clk2usec(hw, skge_read32(hw, B2_IRQM_INI));
648 u32 msk = skge_read32(hw, B2_IRQM_MSK);
650 if (msk & rxirqmask[port])
651 ecmd->rx_coalesce_usecs = delay;
652 if (msk & txirqmask[port])
653 ecmd->tx_coalesce_usecs = delay;
656 return 0;
659 /* Note: interrupt timer is per board, but can turn on/off per port */
660 static int skge_set_coalesce(struct net_device *dev,
661 struct ethtool_coalesce *ecmd)
663 struct skge_port *skge = netdev_priv(dev);
664 struct skge_hw *hw = skge->hw;
665 int port = skge->port;
666 u32 msk = skge_read32(hw, B2_IRQM_MSK);
667 u32 delay = 25;
669 if (ecmd->rx_coalesce_usecs == 0)
670 msk &= ~rxirqmask[port];
671 else if (ecmd->rx_coalesce_usecs < 25 ||
672 ecmd->rx_coalesce_usecs > 33333)
673 return -EINVAL;
674 else {
675 msk |= rxirqmask[port];
676 delay = ecmd->rx_coalesce_usecs;
679 if (ecmd->tx_coalesce_usecs == 0)
680 msk &= ~txirqmask[port];
681 else if (ecmd->tx_coalesce_usecs < 25 ||
682 ecmd->tx_coalesce_usecs > 33333)
683 return -EINVAL;
684 else {
685 msk |= txirqmask[port];
686 delay = min(delay, ecmd->rx_coalesce_usecs);
689 skge_write32(hw, B2_IRQM_MSK, msk);
690 if (msk == 0)
691 skge_write32(hw, B2_IRQM_CTRL, TIM_STOP);
692 else {
693 skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, delay));
694 skge_write32(hw, B2_IRQM_CTRL, TIM_START);
696 return 0;
699 enum led_mode { LED_MODE_OFF, LED_MODE_ON, LED_MODE_TST };
700 static void skge_led(struct skge_port *skge, enum led_mode mode)
702 struct skge_hw *hw = skge->hw;
703 int port = skge->port;
705 spin_lock_bh(&hw->phy_lock);
706 if (hw->chip_id == CHIP_ID_GENESIS) {
707 switch (mode) {
708 case LED_MODE_OFF:
709 if (hw->phy_type == SK_PHY_BCOM)
710 xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_OFF);
711 else {
712 skge_write32(hw, SK_REG(port, TX_LED_VAL), 0);
713 skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_T_OFF);
715 skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_OFF);
716 skge_write32(hw, SK_REG(port, RX_LED_VAL), 0);
717 skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_T_OFF);
718 break;
720 case LED_MODE_ON:
721 skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_ON);
722 skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_LINKSYNC_ON);
724 skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
725 skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START);
727 break;
729 case LED_MODE_TST:
730 skge_write8(hw, SK_REG(port, RX_LED_TST), LED_T_ON);
731 skge_write32(hw, SK_REG(port, RX_LED_VAL), 100);
732 skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
734 if (hw->phy_type == SK_PHY_BCOM)
735 xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_ON);
736 else {
737 skge_write8(hw, SK_REG(port, TX_LED_TST), LED_T_ON);
738 skge_write32(hw, SK_REG(port, TX_LED_VAL), 100);
739 skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START);
743 } else {
744 switch (mode) {
745 case LED_MODE_OFF:
746 gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
747 gm_phy_write(hw, port, PHY_MARV_LED_OVER,
748 PHY_M_LED_MO_DUP(MO_LED_OFF) |
749 PHY_M_LED_MO_10(MO_LED_OFF) |
750 PHY_M_LED_MO_100(MO_LED_OFF) |
751 PHY_M_LED_MO_1000(MO_LED_OFF) |
752 PHY_M_LED_MO_RX(MO_LED_OFF));
753 break;
754 case LED_MODE_ON:
755 gm_phy_write(hw, port, PHY_MARV_LED_CTRL,
756 PHY_M_LED_PULS_DUR(PULS_170MS) |
757 PHY_M_LED_BLINK_RT(BLINK_84MS) |
758 PHY_M_LEDC_TX_CTRL |
759 PHY_M_LEDC_DP_CTRL);
761 gm_phy_write(hw, port, PHY_MARV_LED_OVER,
762 PHY_M_LED_MO_RX(MO_LED_OFF) |
763 (skge->speed == SPEED_100 ?
764 PHY_M_LED_MO_100(MO_LED_ON) : 0));
765 break;
766 case LED_MODE_TST:
767 gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
768 gm_phy_write(hw, port, PHY_MARV_LED_OVER,
769 PHY_M_LED_MO_DUP(MO_LED_ON) |
770 PHY_M_LED_MO_10(MO_LED_ON) |
771 PHY_M_LED_MO_100(MO_LED_ON) |
772 PHY_M_LED_MO_1000(MO_LED_ON) |
773 PHY_M_LED_MO_RX(MO_LED_ON));
776 spin_unlock_bh(&hw->phy_lock);
779 /* blink LED's for finding board */
780 static int skge_phys_id(struct net_device *dev, u32 data)
782 struct skge_port *skge = netdev_priv(dev);
783 unsigned long ms;
784 enum led_mode mode = LED_MODE_TST;
786 if (!data || data > (u32)(MAX_SCHEDULE_TIMEOUT / HZ))
787 ms = jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT / HZ) * 1000;
788 else
789 ms = data * 1000;
791 while (ms > 0) {
792 skge_led(skge, mode);
793 mode ^= LED_MODE_TST;
795 if (msleep_interruptible(BLINK_MS))
796 break;
797 ms -= BLINK_MS;
800 /* back to regular LED state */
801 skge_led(skge, netif_running(dev) ? LED_MODE_ON : LED_MODE_OFF);
803 return 0;
806 static int skge_get_eeprom_len(struct net_device *dev)
808 struct skge_port *skge = netdev_priv(dev);
809 u32 reg2;
811 pci_read_config_dword(skge->hw->pdev, PCI_DEV_REG2, &reg2);
812 return 1 << ( ((reg2 & PCI_VPD_ROM_SZ) >> 14) + 8);
815 static u32 skge_vpd_read(struct pci_dev *pdev, int cap, u16 offset)
817 u32 val;
819 pci_write_config_word(pdev, cap + PCI_VPD_ADDR, offset);
821 do {
822 pci_read_config_word(pdev, cap + PCI_VPD_ADDR, &offset);
823 } while (!(offset & PCI_VPD_ADDR_F));
825 pci_read_config_dword(pdev, cap + PCI_VPD_DATA, &val);
826 return val;
829 static void skge_vpd_write(struct pci_dev *pdev, int cap, u16 offset, u32 val)
831 pci_write_config_dword(pdev, cap + PCI_VPD_DATA, val);
832 pci_write_config_word(pdev, cap + PCI_VPD_ADDR,
833 offset | PCI_VPD_ADDR_F);
835 do {
836 pci_read_config_word(pdev, cap + PCI_VPD_ADDR, &offset);
837 } while (offset & PCI_VPD_ADDR_F);
840 static int skge_get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
841 u8 *data)
843 struct skge_port *skge = netdev_priv(dev);
844 struct pci_dev *pdev = skge->hw->pdev;
845 int cap = pci_find_capability(pdev, PCI_CAP_ID_VPD);
846 int length = eeprom->len;
847 u16 offset = eeprom->offset;
849 if (!cap)
850 return -EINVAL;
852 eeprom->magic = SKGE_EEPROM_MAGIC;
854 while (length > 0) {
855 u32 val = skge_vpd_read(pdev, cap, offset);
856 int n = min_t(int, length, sizeof(val));
858 memcpy(data, &val, n);
859 length -= n;
860 data += n;
861 offset += n;
863 return 0;
866 static int skge_set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
867 u8 *data)
869 struct skge_port *skge = netdev_priv(dev);
870 struct pci_dev *pdev = skge->hw->pdev;
871 int cap = pci_find_capability(pdev, PCI_CAP_ID_VPD);
872 int length = eeprom->len;
873 u16 offset = eeprom->offset;
875 if (!cap)
876 return -EINVAL;
878 if (eeprom->magic != SKGE_EEPROM_MAGIC)
879 return -EINVAL;
881 while (length > 0) {
882 u32 val;
883 int n = min_t(int, length, sizeof(val));
885 if (n < sizeof(val))
886 val = skge_vpd_read(pdev, cap, offset);
887 memcpy(&val, data, n);
889 skge_vpd_write(pdev, cap, offset, val);
891 length -= n;
892 data += n;
893 offset += n;
895 return 0;
898 static const struct ethtool_ops skge_ethtool_ops = {
899 .get_settings = skge_get_settings,
900 .set_settings = skge_set_settings,
901 .get_drvinfo = skge_get_drvinfo,
902 .get_regs_len = skge_get_regs_len,
903 .get_regs = skge_get_regs,
904 .get_wol = skge_get_wol,
905 .set_wol = skge_set_wol,
906 .get_msglevel = skge_get_msglevel,
907 .set_msglevel = skge_set_msglevel,
908 .nway_reset = skge_nway_reset,
909 .get_link = ethtool_op_get_link,
910 .get_eeprom_len = skge_get_eeprom_len,
911 .get_eeprom = skge_get_eeprom,
912 .set_eeprom = skge_set_eeprom,
913 .get_ringparam = skge_get_ring_param,
914 .set_ringparam = skge_set_ring_param,
915 .get_pauseparam = skge_get_pauseparam,
916 .set_pauseparam = skge_set_pauseparam,
917 .get_coalesce = skge_get_coalesce,
918 .set_coalesce = skge_set_coalesce,
919 .set_sg = skge_set_sg,
920 .set_tx_csum = skge_set_tx_csum,
921 .get_rx_csum = skge_get_rx_csum,
922 .set_rx_csum = skge_set_rx_csum,
923 .get_strings = skge_get_strings,
924 .phys_id = skge_phys_id,
925 .get_sset_count = skge_get_sset_count,
926 .get_ethtool_stats = skge_get_ethtool_stats,
930 * Allocate ring elements and chain them together
931 * One-to-one association of board descriptors with ring elements
933 static int skge_ring_alloc(struct skge_ring *ring, void *vaddr, u32 base)
935 struct skge_tx_desc *d;
936 struct skge_element *e;
937 int i;
939 ring->start = kcalloc(ring->count, sizeof(*e), GFP_KERNEL);
940 if (!ring->start)
941 return -ENOMEM;
943 for (i = 0, e = ring->start, d = vaddr; i < ring->count; i++, e++, d++) {
944 e->desc = d;
945 if (i == ring->count - 1) {
946 e->next = ring->start;
947 d->next_offset = base;
948 } else {
949 e->next = e + 1;
950 d->next_offset = base + (i+1) * sizeof(*d);
953 ring->to_use = ring->to_clean = ring->start;
955 return 0;
958 /* Allocate and setup a new buffer for receiving */
959 static void skge_rx_setup(struct skge_port *skge, struct skge_element *e,
960 struct sk_buff *skb, unsigned int bufsize)
962 struct skge_rx_desc *rd = e->desc;
963 u64 map;
965 map = pci_map_single(skge->hw->pdev, skb->data, bufsize,
966 PCI_DMA_FROMDEVICE);
968 rd->dma_lo = map;
969 rd->dma_hi = map >> 32;
970 e->skb = skb;
971 rd->csum1_start = ETH_HLEN;
972 rd->csum2_start = ETH_HLEN;
973 rd->csum1 = 0;
974 rd->csum2 = 0;
976 wmb();
978 rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | bufsize;
979 pci_unmap_addr_set(e, mapaddr, map);
980 pci_unmap_len_set(e, maplen, bufsize);
983 /* Resume receiving using existing skb,
984 * Note: DMA address is not changed by chip.
985 * MTU not changed while receiver active.
987 static inline void skge_rx_reuse(struct skge_element *e, unsigned int size)
989 struct skge_rx_desc *rd = e->desc;
991 rd->csum2 = 0;
992 rd->csum2_start = ETH_HLEN;
994 wmb();
996 rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | size;
1000 /* Free all buffers in receive ring, assumes receiver stopped */
1001 static void skge_rx_clean(struct skge_port *skge)
1003 struct skge_hw *hw = skge->hw;
1004 struct skge_ring *ring = &skge->rx_ring;
1005 struct skge_element *e;
1007 e = ring->start;
1008 do {
1009 struct skge_rx_desc *rd = e->desc;
1010 rd->control = 0;
1011 if (e->skb) {
1012 pci_unmap_single(hw->pdev,
1013 pci_unmap_addr(e, mapaddr),
1014 pci_unmap_len(e, maplen),
1015 PCI_DMA_FROMDEVICE);
1016 dev_kfree_skb(e->skb);
1017 e->skb = NULL;
1019 } while ((e = e->next) != ring->start);
1023 /* Allocate buffers for receive ring
1024 * For receive: to_clean is next received frame.
1026 static int skge_rx_fill(struct net_device *dev)
1028 struct skge_port *skge = netdev_priv(dev);
1029 struct skge_ring *ring = &skge->rx_ring;
1030 struct skge_element *e;
1032 e = ring->start;
1033 do {
1034 struct sk_buff *skb;
1036 skb = __netdev_alloc_skb(dev, skge->rx_buf_size + NET_IP_ALIGN,
1037 GFP_KERNEL);
1038 if (!skb)
1039 return -ENOMEM;
1041 skb_reserve(skb, NET_IP_ALIGN);
1042 skge_rx_setup(skge, e, skb, skge->rx_buf_size);
1043 } while ( (e = e->next) != ring->start);
1045 ring->to_clean = ring->start;
1046 return 0;
1049 static const char *skge_pause(enum pause_status status)
1051 switch(status) {
1052 case FLOW_STAT_NONE:
1053 return "none";
1054 case FLOW_STAT_REM_SEND:
1055 return "rx only";
1056 case FLOW_STAT_LOC_SEND:
1057 return "tx_only";
1058 case FLOW_STAT_SYMMETRIC: /* Both station may send PAUSE */
1059 return "both";
1060 default:
1061 return "indeterminated";
1066 static void skge_link_up(struct skge_port *skge)
1068 skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG),
1069 LED_BLK_OFF|LED_SYNC_OFF|LED_ON);
1071 netif_carrier_on(skge->netdev);
1072 netif_wake_queue(skge->netdev);
1074 if (netif_msg_link(skge)) {
1075 printk(KERN_INFO PFX
1076 "%s: Link is up at %d Mbps, %s duplex, flow control %s\n",
1077 skge->netdev->name, skge->speed,
1078 skge->duplex == DUPLEX_FULL ? "full" : "half",
1079 skge_pause(skge->flow_status));
1083 static void skge_link_down(struct skge_port *skge)
1085 skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_OFF);
1086 netif_carrier_off(skge->netdev);
1087 netif_stop_queue(skge->netdev);
1089 if (netif_msg_link(skge))
1090 printk(KERN_INFO PFX "%s: Link is down.\n", skge->netdev->name);
1094 static void xm_link_down(struct skge_hw *hw, int port)
1096 struct net_device *dev = hw->dev[port];
1097 struct skge_port *skge = netdev_priv(dev);
1098 u16 cmd = xm_read16(hw, port, XM_MMU_CMD);
1100 xm_write16(hw, port, XM_IMSK, XM_IMSK_DISABLE);
1102 cmd &= ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX);
1103 xm_write16(hw, port, XM_MMU_CMD, cmd);
1105 /* dummy read to ensure writing */
1106 xm_read16(hw, port, XM_MMU_CMD);
1108 if (netif_carrier_ok(dev))
1109 skge_link_down(skge);
1112 static int __xm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val)
1114 int i;
1116 xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
1117 *val = xm_read16(hw, port, XM_PHY_DATA);
1119 if (hw->phy_type == SK_PHY_XMAC)
1120 goto ready;
1122 for (i = 0; i < PHY_RETRIES; i++) {
1123 if (xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_RDY)
1124 goto ready;
1125 udelay(1);
1128 return -ETIMEDOUT;
1129 ready:
1130 *val = xm_read16(hw, port, XM_PHY_DATA);
1132 return 0;
1135 static u16 xm_phy_read(struct skge_hw *hw, int port, u16 reg)
1137 u16 v = 0;
1138 if (__xm_phy_read(hw, port, reg, &v))
1139 printk(KERN_WARNING PFX "%s: phy read timed out\n",
1140 hw->dev[port]->name);
1141 return v;
1144 static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
1146 int i;
1148 xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
1149 for (i = 0; i < PHY_RETRIES; i++) {
1150 if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
1151 goto ready;
1152 udelay(1);
1154 return -EIO;
1156 ready:
1157 xm_write16(hw, port, XM_PHY_DATA, val);
1158 for (i = 0; i < PHY_RETRIES; i++) {
1159 if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
1160 return 0;
1161 udelay(1);
1163 return -ETIMEDOUT;
1166 static void genesis_init(struct skge_hw *hw)
1168 /* set blink source counter */
1169 skge_write32(hw, B2_BSC_INI, (SK_BLK_DUR * SK_FACT_53) / 100);
1170 skge_write8(hw, B2_BSC_CTRL, BSC_START);
1172 /* configure mac arbiter */
1173 skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
1175 /* configure mac arbiter timeout values */
1176 skge_write8(hw, B3_MA_TOINI_RX1, SK_MAC_TO_53);
1177 skge_write8(hw, B3_MA_TOINI_RX2, SK_MAC_TO_53);
1178 skge_write8(hw, B3_MA_TOINI_TX1, SK_MAC_TO_53);
1179 skge_write8(hw, B3_MA_TOINI_TX2, SK_MAC_TO_53);
1181 skge_write8(hw, B3_MA_RCINI_RX1, 0);
1182 skge_write8(hw, B3_MA_RCINI_RX2, 0);
1183 skge_write8(hw, B3_MA_RCINI_TX1, 0);
1184 skge_write8(hw, B3_MA_RCINI_TX2, 0);
1186 /* configure packet arbiter timeout */
1187 skge_write16(hw, B3_PA_CTRL, PA_RST_CLR);
1188 skge_write16(hw, B3_PA_TOINI_RX1, SK_PKT_TO_MAX);
1189 skge_write16(hw, B3_PA_TOINI_TX1, SK_PKT_TO_MAX);
1190 skge_write16(hw, B3_PA_TOINI_RX2, SK_PKT_TO_MAX);
1191 skge_write16(hw, B3_PA_TOINI_TX2, SK_PKT_TO_MAX);
1194 static void genesis_reset(struct skge_hw *hw, int port)
1196 const u8 zero[8] = { 0 };
1198 skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
1200 /* reset the statistics module */
1201 xm_write32(hw, port, XM_GP_PORT, XM_GP_RES_STAT);
1202 xm_write16(hw, port, XM_IMSK, XM_IMSK_DISABLE);
1203 xm_write32(hw, port, XM_MODE, 0); /* clear Mode Reg */
1204 xm_write16(hw, port, XM_TX_CMD, 0); /* reset TX CMD Reg */
1205 xm_write16(hw, port, XM_RX_CMD, 0); /* reset RX CMD Reg */
1207 /* disable Broadcom PHY IRQ */
1208 if (hw->phy_type == SK_PHY_BCOM)
1209 xm_write16(hw, port, PHY_BCOM_INT_MASK, 0xffff);
1211 xm_outhash(hw, port, XM_HSM, zero);
1215 /* Convert mode to MII values */
1216 static const u16 phy_pause_map[] = {
1217 [FLOW_MODE_NONE] = 0,
1218 [FLOW_MODE_LOC_SEND] = PHY_AN_PAUSE_ASYM,
1219 [FLOW_MODE_SYMMETRIC] = PHY_AN_PAUSE_CAP,
1220 [FLOW_MODE_SYM_OR_REM] = PHY_AN_PAUSE_CAP | PHY_AN_PAUSE_ASYM,
1223 /* special defines for FIBER (88E1011S only) */
1224 static const u16 fiber_pause_map[] = {
1225 [FLOW_MODE_NONE] = PHY_X_P_NO_PAUSE,
1226 [FLOW_MODE_LOC_SEND] = PHY_X_P_ASYM_MD,
1227 [FLOW_MODE_SYMMETRIC] = PHY_X_P_SYM_MD,
1228 [FLOW_MODE_SYM_OR_REM] = PHY_X_P_BOTH_MD,
1232 /* Check status of Broadcom phy link */
1233 static void bcom_check_link(struct skge_hw *hw, int port)
1235 struct net_device *dev = hw->dev[port];
1236 struct skge_port *skge = netdev_priv(dev);
1237 u16 status;
1239 /* read twice because of latch */
1240 xm_phy_read(hw, port, PHY_BCOM_STAT);
1241 status = xm_phy_read(hw, port, PHY_BCOM_STAT);
1243 if ((status & PHY_ST_LSYNC) == 0) {
1244 xm_link_down(hw, port);
1245 return;
1248 if (skge->autoneg == AUTONEG_ENABLE) {
1249 u16 lpa, aux;
1251 if (!(status & PHY_ST_AN_OVER))
1252 return;
1254 lpa = xm_phy_read(hw, port, PHY_XMAC_AUNE_LP);
1255 if (lpa & PHY_B_AN_RF) {
1256 printk(KERN_NOTICE PFX "%s: remote fault\n",
1257 dev->name);
1258 return;
1261 aux = xm_phy_read(hw, port, PHY_BCOM_AUX_STAT);
1263 /* Check Duplex mismatch */
1264 switch (aux & PHY_B_AS_AN_RES_MSK) {
1265 case PHY_B_RES_1000FD:
1266 skge->duplex = DUPLEX_FULL;
1267 break;
1268 case PHY_B_RES_1000HD:
1269 skge->duplex = DUPLEX_HALF;
1270 break;
1271 default:
1272 printk(KERN_NOTICE PFX "%s: duplex mismatch\n",
1273 dev->name);
1274 return;
1277 /* We are using IEEE 802.3z/D5.0 Table 37-4 */
1278 switch (aux & PHY_B_AS_PAUSE_MSK) {
1279 case PHY_B_AS_PAUSE_MSK:
1280 skge->flow_status = FLOW_STAT_SYMMETRIC;
1281 break;
1282 case PHY_B_AS_PRR:
1283 skge->flow_status = FLOW_STAT_REM_SEND;
1284 break;
1285 case PHY_B_AS_PRT:
1286 skge->flow_status = FLOW_STAT_LOC_SEND;
1287 break;
1288 default:
1289 skge->flow_status = FLOW_STAT_NONE;
1291 skge->speed = SPEED_1000;
1294 if (!netif_carrier_ok(dev))
1295 genesis_link_up(skge);
1298 /* Broadcom 5400 only supports giagabit! SysKonnect did not put an additional
1299 * Phy on for 100 or 10Mbit operation
1301 static void bcom_phy_init(struct skge_port *skge)
1303 struct skge_hw *hw = skge->hw;
1304 int port = skge->port;
1305 int i;
1306 u16 id1, r, ext, ctl;
1308 /* magic workaround patterns for Broadcom */
1309 static const struct {
1310 u16 reg;
1311 u16 val;
1312 } A1hack[] = {
1313 { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 },
1314 { 0x17, 0x0013 }, { 0x15, 0x0404 }, { 0x17, 0x8006 },
1315 { 0x15, 0x0132 }, { 0x17, 0x8006 }, { 0x15, 0x0232 },
1316 { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
1317 }, C0hack[] = {
1318 { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1204 },
1319 { 0x17, 0x0013 }, { 0x15, 0x0A04 }, { 0x18, 0x0420 },
1322 /* read Id from external PHY (all have the same address) */
1323 id1 = xm_phy_read(hw, port, PHY_XMAC_ID1);
1325 /* Optimize MDIO transfer by suppressing preamble. */
1326 r = xm_read16(hw, port, XM_MMU_CMD);
1327 r |= XM_MMU_NO_PRE;
1328 xm_write16(hw, port, XM_MMU_CMD,r);
1330 switch (id1) {
1331 case PHY_BCOM_ID1_C0:
1333 * Workaround BCOM Errata for the C0 type.
1334 * Write magic patterns to reserved registers.
1336 for (i = 0; i < ARRAY_SIZE(C0hack); i++)
1337 xm_phy_write(hw, port,
1338 C0hack[i].reg, C0hack[i].val);
1340 break;
1341 case PHY_BCOM_ID1_A1:
1343 * Workaround BCOM Errata for the A1 type.
1344 * Write magic patterns to reserved registers.
1346 for (i = 0; i < ARRAY_SIZE(A1hack); i++)
1347 xm_phy_write(hw, port,
1348 A1hack[i].reg, A1hack[i].val);
1349 break;
1353 * Workaround BCOM Errata (#10523) for all BCom PHYs.
1354 * Disable Power Management after reset.
1356 r = xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL);
1357 r |= PHY_B_AC_DIS_PM;
1358 xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL, r);
1360 /* Dummy read */
1361 xm_read16(hw, port, XM_ISRC);
1363 ext = PHY_B_PEC_EN_LTR; /* enable tx led */
1364 ctl = PHY_CT_SP1000; /* always 1000mbit */
1366 if (skge->autoneg == AUTONEG_ENABLE) {
1368 * Workaround BCOM Errata #1 for the C5 type.
1369 * 1000Base-T Link Acquisition Failure in Slave Mode
1370 * Set Repeater/DTE bit 10 of the 1000Base-T Control Register
1372 u16 adv = PHY_B_1000C_RD;
1373 if (skge->advertising & ADVERTISED_1000baseT_Half)
1374 adv |= PHY_B_1000C_AHD;
1375 if (skge->advertising & ADVERTISED_1000baseT_Full)
1376 adv |= PHY_B_1000C_AFD;
1377 xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, adv);
1379 ctl |= PHY_CT_ANE | PHY_CT_RE_CFG;
1380 } else {
1381 if (skge->duplex == DUPLEX_FULL)
1382 ctl |= PHY_CT_DUP_MD;
1383 /* Force to slave */
1384 xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, PHY_B_1000C_MSE);
1387 /* Set autonegotiation pause parameters */
1388 xm_phy_write(hw, port, PHY_BCOM_AUNE_ADV,
1389 phy_pause_map[skge->flow_control] | PHY_AN_CSMA);
1391 /* Handle Jumbo frames */
1392 if (hw->dev[port]->mtu > ETH_DATA_LEN) {
1393 xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
1394 PHY_B_AC_TX_TST | PHY_B_AC_LONG_PACK);
1396 ext |= PHY_B_PEC_HIGH_LA;
1400 xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, ext);
1401 xm_phy_write(hw, port, PHY_BCOM_CTRL, ctl);
1403 /* Use link status change interrupt */
1404 xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);
1407 static void xm_phy_init(struct skge_port *skge)
1409 struct skge_hw *hw = skge->hw;
1410 int port = skge->port;
1411 u16 ctrl = 0;
1413 if (skge->autoneg == AUTONEG_ENABLE) {
1414 if (skge->advertising & ADVERTISED_1000baseT_Half)
1415 ctrl |= PHY_X_AN_HD;
1416 if (skge->advertising & ADVERTISED_1000baseT_Full)
1417 ctrl |= PHY_X_AN_FD;
1419 ctrl |= fiber_pause_map[skge->flow_control];
1421 xm_phy_write(hw, port, PHY_XMAC_AUNE_ADV, ctrl);
1423 /* Restart Auto-negotiation */
1424 ctrl = PHY_CT_ANE | PHY_CT_RE_CFG;
1425 } else {
1426 /* Set DuplexMode in Config register */
1427 if (skge->duplex == DUPLEX_FULL)
1428 ctrl |= PHY_CT_DUP_MD;
1430 * Do NOT enable Auto-negotiation here. This would hold
1431 * the link down because no IDLEs are transmitted
1435 xm_phy_write(hw, port, PHY_XMAC_CTRL, ctrl);
1437 /* Poll PHY for status changes */
1438 mod_timer(&skge->link_timer, jiffies + LINK_HZ);
1441 static int xm_check_link(struct net_device *dev)
1443 struct skge_port *skge = netdev_priv(dev);
1444 struct skge_hw *hw = skge->hw;
1445 int port = skge->port;
1446 u16 status;
1448 /* read twice because of latch */
1449 xm_phy_read(hw, port, PHY_XMAC_STAT);
1450 status = xm_phy_read(hw, port, PHY_XMAC_STAT);
1452 if ((status & PHY_ST_LSYNC) == 0) {
1453 xm_link_down(hw, port);
1454 return 0;
1457 if (skge->autoneg == AUTONEG_ENABLE) {
1458 u16 lpa, res;
1460 if (!(status & PHY_ST_AN_OVER))
1461 return 0;
1463 lpa = xm_phy_read(hw, port, PHY_XMAC_AUNE_LP);
1464 if (lpa & PHY_B_AN_RF) {
1465 printk(KERN_NOTICE PFX "%s: remote fault\n",
1466 dev->name);
1467 return 0;
1470 res = xm_phy_read(hw, port, PHY_XMAC_RES_ABI);
1472 /* Check Duplex mismatch */
1473 switch (res & (PHY_X_RS_HD | PHY_X_RS_FD)) {
1474 case PHY_X_RS_FD:
1475 skge->duplex = DUPLEX_FULL;
1476 break;
1477 case PHY_X_RS_HD:
1478 skge->duplex = DUPLEX_HALF;
1479 break;
1480 default:
1481 printk(KERN_NOTICE PFX "%s: duplex mismatch\n",
1482 dev->name);
1483 return 0;
1486 /* We are using IEEE 802.3z/D5.0 Table 37-4 */
1487 if ((skge->flow_control == FLOW_MODE_SYMMETRIC ||
1488 skge->flow_control == FLOW_MODE_SYM_OR_REM) &&
1489 (lpa & PHY_X_P_SYM_MD))
1490 skge->flow_status = FLOW_STAT_SYMMETRIC;
1491 else if (skge->flow_control == FLOW_MODE_SYM_OR_REM &&
1492 (lpa & PHY_X_RS_PAUSE) == PHY_X_P_ASYM_MD)
1493 /* Enable PAUSE receive, disable PAUSE transmit */
1494 skge->flow_status = FLOW_STAT_REM_SEND;
1495 else if (skge->flow_control == FLOW_MODE_LOC_SEND &&
1496 (lpa & PHY_X_RS_PAUSE) == PHY_X_P_BOTH_MD)
1497 /* Disable PAUSE receive, enable PAUSE transmit */
1498 skge->flow_status = FLOW_STAT_LOC_SEND;
1499 else
1500 skge->flow_status = FLOW_STAT_NONE;
1502 skge->speed = SPEED_1000;
1505 if (!netif_carrier_ok(dev))
1506 genesis_link_up(skge);
1507 return 1;
1510 /* Poll to check for link coming up.
1512 * Since internal PHY is wired to a level triggered pin, can't
1513 * get an interrupt when carrier is detected, need to poll for
1514 * link coming up.
1516 static void xm_link_timer(unsigned long arg)
1518 struct skge_port *skge = (struct skge_port *) arg;
1519 struct net_device *dev = skge->netdev;
1520 struct skge_hw *hw = skge->hw;
1521 int port = skge->port;
1522 int i;
1523 unsigned long flags;
1525 if (!netif_running(dev))
1526 return;
1528 spin_lock_irqsave(&hw->phy_lock, flags);
1531 * Verify that the link by checking GPIO register three times.
1532 * This pin has the signal from the link_sync pin connected to it.
1534 for (i = 0; i < 3; i++) {
1535 if (xm_read16(hw, port, XM_GP_PORT) & XM_GP_INP_ASS)
1536 goto link_down;
1539 /* Re-enable interrupt to detect link down */
1540 if (xm_check_link(dev)) {
1541 u16 msk = xm_read16(hw, port, XM_IMSK);
1542 msk &= ~XM_IS_INP_ASS;
1543 xm_write16(hw, port, XM_IMSK, msk);
1544 xm_read16(hw, port, XM_ISRC);
1545 } else {
1546 link_down:
1547 mod_timer(&skge->link_timer,
1548 round_jiffies(jiffies + LINK_HZ));
1550 spin_unlock_irqrestore(&hw->phy_lock, flags);
1553 static void genesis_mac_init(struct skge_hw *hw, int port)
1555 struct net_device *dev = hw->dev[port];
1556 struct skge_port *skge = netdev_priv(dev);
1557 int jumbo = hw->dev[port]->mtu > ETH_DATA_LEN;
1558 int i;
1559 u32 r;
1560 const u8 zero[6] = { 0 };
1562 for (i = 0; i < 10; i++) {
1563 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1),
1564 MFF_SET_MAC_RST);
1565 if (skge_read16(hw, SK_REG(port, TX_MFF_CTRL1)) & MFF_SET_MAC_RST)
1566 goto reset_ok;
1567 udelay(1);
1570 printk(KERN_WARNING PFX "%s: genesis reset failed\n", dev->name);
1572 reset_ok:
1573 /* Unreset the XMAC. */
1574 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_CLR_MAC_RST);
1577 * Perform additional initialization for external PHYs,
1578 * namely for the 1000baseTX cards that use the XMAC's
1579 * GMII mode.
1581 if (hw->phy_type != SK_PHY_XMAC) {
1582 /* Take external Phy out of reset */
1583 r = skge_read32(hw, B2_GP_IO);
1584 if (port == 0)
1585 r |= GP_DIR_0|GP_IO_0;
1586 else
1587 r |= GP_DIR_2|GP_IO_2;
1589 skge_write32(hw, B2_GP_IO, r);
1591 /* Enable GMII interface */
1592 xm_write16(hw, port, XM_HW_CFG, XM_HW_GMII_MD);
1596 switch(hw->phy_type) {
1597 case SK_PHY_XMAC:
1598 xm_phy_init(skge);
1599 break;
1600 case SK_PHY_BCOM:
1601 bcom_phy_init(skge);
1602 bcom_check_link(hw, port);
1605 /* Set Station Address */
1606 xm_outaddr(hw, port, XM_SA, dev->dev_addr);
1608 /* We don't use match addresses so clear */
1609 for (i = 1; i < 16; i++)
1610 xm_outaddr(hw, port, XM_EXM(i), zero);
1612 /* Clear MIB counters */
1613 xm_write16(hw, port, XM_STAT_CMD,
1614 XM_SC_CLR_RXC | XM_SC_CLR_TXC);
1615 /* Clear two times according to Errata #3 */
1616 xm_write16(hw, port, XM_STAT_CMD,
1617 XM_SC_CLR_RXC | XM_SC_CLR_TXC);
1619 /* configure Rx High Water Mark (XM_RX_HI_WM) */
1620 xm_write16(hw, port, XM_RX_HI_WM, 1450);
1622 /* We don't need the FCS appended to the packet. */
1623 r = XM_RX_LENERR_OK | XM_RX_STRIP_FCS;
1624 if (jumbo)
1625 r |= XM_RX_BIG_PK_OK;
1627 if (skge->duplex == DUPLEX_HALF) {
1629 * If in manual half duplex mode the other side might be in
1630 * full duplex mode, so ignore if a carrier extension is not seen
1631 * on frames received
1633 r |= XM_RX_DIS_CEXT;
1635 xm_write16(hw, port, XM_RX_CMD, r);
1638 /* We want short frames padded to 60 bytes. */
1639 xm_write16(hw, port, XM_TX_CMD, XM_TX_AUTO_PAD);
1642 * Bump up the transmit threshold. This helps hold off transmit
1643 * underruns when we're blasting traffic from both ports at once.
1645 xm_write16(hw, port, XM_TX_THR, 512);
1648 * Enable the reception of all error frames. This is is
1649 * a necessary evil due to the design of the XMAC. The
1650 * XMAC's receive FIFO is only 8K in size, however jumbo
1651 * frames can be up to 9000 bytes in length. When bad
1652 * frame filtering is enabled, the XMAC's RX FIFO operates
1653 * in 'store and forward' mode. For this to work, the
1654 * entire frame has to fit into the FIFO, but that means
1655 * that jumbo frames larger than 8192 bytes will be
1656 * truncated. Disabling all bad frame filtering causes
1657 * the RX FIFO to operate in streaming mode, in which
1658 * case the XMAC will start transferring frames out of the
1659 * RX FIFO as soon as the FIFO threshold is reached.
1661 xm_write32(hw, port, XM_MODE, XM_DEF_MODE);
1665 * Initialize the Receive Counter Event Mask (XM_RX_EV_MSK)
1666 * - Enable all bits excepting 'Octets Rx OK Low CntOv'
1667 * and 'Octets Rx OK Hi Cnt Ov'.
1669 xm_write32(hw, port, XM_RX_EV_MSK, XMR_DEF_MSK);
1672 * Initialize the Transmit Counter Event Mask (XM_TX_EV_MSK)
1673 * - Enable all bits excepting 'Octets Tx OK Low CntOv'
1674 * and 'Octets Tx OK Hi Cnt Ov'.
1676 xm_write32(hw, port, XM_TX_EV_MSK, XMT_DEF_MSK);
1678 /* Configure MAC arbiter */
1679 skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
1681 /* configure timeout values */
1682 skge_write8(hw, B3_MA_TOINI_RX1, 72);
1683 skge_write8(hw, B3_MA_TOINI_RX2, 72);
1684 skge_write8(hw, B3_MA_TOINI_TX1, 72);
1685 skge_write8(hw, B3_MA_TOINI_TX2, 72);
1687 skge_write8(hw, B3_MA_RCINI_RX1, 0);
1688 skge_write8(hw, B3_MA_RCINI_RX2, 0);
1689 skge_write8(hw, B3_MA_RCINI_TX1, 0);
1690 skge_write8(hw, B3_MA_RCINI_TX2, 0);
1692 /* Configure Rx MAC FIFO */
1693 skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_CLR);
1694 skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_TIM_PAT);
1695 skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_ENA_OP_MD);
1697 /* Configure Tx MAC FIFO */
1698 skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_CLR);
1699 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_TX_CTRL_DEF);
1700 skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_ENA_OP_MD);
1702 if (jumbo) {
1703 /* Enable frame flushing if jumbo frames used */
1704 skge_write16(hw, SK_REG(port,RX_MFF_CTRL1), MFF_ENA_FLUSH);
1705 } else {
1706 /* enable timeout timers if normal frames */
1707 skge_write16(hw, B3_PA_CTRL,
1708 (port == 0) ? PA_ENA_TO_TX1 : PA_ENA_TO_TX2);
1712 static void genesis_stop(struct skge_port *skge)
1714 struct skge_hw *hw = skge->hw;
1715 int port = skge->port;
1716 u32 reg;
1718 genesis_reset(hw, port);
1720 /* Clear Tx packet arbiter timeout IRQ */
1721 skge_write16(hw, B3_PA_CTRL,
1722 port == 0 ? PA_CLR_TO_TX1 : PA_CLR_TO_TX2);
1725 * If the transfer sticks at the MAC the STOP command will not
1726 * terminate if we don't flush the XMAC's transmit FIFO !
1728 xm_write32(hw, port, XM_MODE,
1729 xm_read32(hw, port, XM_MODE)|XM_MD_FTF);
1732 /* Reset the MAC */
1733 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_SET_MAC_RST);
1735 /* For external PHYs there must be special handling */
1736 if (hw->phy_type != SK_PHY_XMAC) {
1737 reg = skge_read32(hw, B2_GP_IO);
1738 if (port == 0) {
1739 reg |= GP_DIR_0;
1740 reg &= ~GP_IO_0;
1741 } else {
1742 reg |= GP_DIR_2;
1743 reg &= ~GP_IO_2;
1745 skge_write32(hw, B2_GP_IO, reg);
1746 skge_read32(hw, B2_GP_IO);
1749 xm_write16(hw, port, XM_MMU_CMD,
1750 xm_read16(hw, port, XM_MMU_CMD)
1751 & ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX));
1753 xm_read16(hw, port, XM_MMU_CMD);
1757 static void genesis_get_stats(struct skge_port *skge, u64 *data)
1759 struct skge_hw *hw = skge->hw;
1760 int port = skge->port;
1761 int i;
1762 unsigned long timeout = jiffies + HZ;
1764 xm_write16(hw, port,
1765 XM_STAT_CMD, XM_SC_SNP_TXC | XM_SC_SNP_RXC);
1767 /* wait for update to complete */
1768 while (xm_read16(hw, port, XM_STAT_CMD)
1769 & (XM_SC_SNP_TXC | XM_SC_SNP_RXC)) {
1770 if (time_after(jiffies, timeout))
1771 break;
1772 udelay(10);
1775 /* special case for 64 bit octet counter */
1776 data[0] = (u64) xm_read32(hw, port, XM_TXO_OK_HI) << 32
1777 | xm_read32(hw, port, XM_TXO_OK_LO);
1778 data[1] = (u64) xm_read32(hw, port, XM_RXO_OK_HI) << 32
1779 | xm_read32(hw, port, XM_RXO_OK_LO);
1781 for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
1782 data[i] = xm_read32(hw, port, skge_stats[i].xmac_offset);
1785 static void genesis_mac_intr(struct skge_hw *hw, int port)
1787 struct net_device *dev = hw->dev[port];
1788 struct skge_port *skge = netdev_priv(dev);
1789 u16 status = xm_read16(hw, port, XM_ISRC);
1791 if (netif_msg_intr(skge))
1792 printk(KERN_DEBUG PFX "%s: mac interrupt status 0x%x\n",
1793 dev->name, status);
1795 if (hw->phy_type == SK_PHY_XMAC && (status & XM_IS_INP_ASS)) {
1796 xm_link_down(hw, port);
1797 mod_timer(&skge->link_timer, jiffies + 1);
1800 if (status & XM_IS_TXF_UR) {
1801 xm_write32(hw, port, XM_MODE, XM_MD_FTF);
1802 ++dev->stats.tx_fifo_errors;
1805 if (status & XM_IS_RXF_OV) {
1806 xm_write32(hw, port, XM_MODE, XM_MD_FRF);
1807 ++dev->stats.rx_fifo_errors;
1811 static void genesis_link_up(struct skge_port *skge)
1813 struct skge_hw *hw = skge->hw;
1814 int port = skge->port;
1815 u16 cmd, msk;
1816 u32 mode;
1818 cmd = xm_read16(hw, port, XM_MMU_CMD);
1821 * enabling pause frame reception is required for 1000BT
1822 * because the XMAC is not reset if the link is going down
1824 if (skge->flow_status == FLOW_STAT_NONE ||
1825 skge->flow_status == FLOW_STAT_LOC_SEND)
1826 /* Disable Pause Frame Reception */
1827 cmd |= XM_MMU_IGN_PF;
1828 else
1829 /* Enable Pause Frame Reception */
1830 cmd &= ~XM_MMU_IGN_PF;
1832 xm_write16(hw, port, XM_MMU_CMD, cmd);
1834 mode = xm_read32(hw, port, XM_MODE);
1835 if (skge->flow_status== FLOW_STAT_SYMMETRIC ||
1836 skge->flow_status == FLOW_STAT_LOC_SEND) {
1838 * Configure Pause Frame Generation
1839 * Use internal and external Pause Frame Generation.
1840 * Sending pause frames is edge triggered.
1841 * Send a Pause frame with the maximum pause time if
1842 * internal oder external FIFO full condition occurs.
1843 * Send a zero pause time frame to re-start transmission.
1845 /* XM_PAUSE_DA = '010000C28001' (default) */
1846 /* XM_MAC_PTIME = 0xffff (maximum) */
1847 /* remember this value is defined in big endian (!) */
1848 xm_write16(hw, port, XM_MAC_PTIME, 0xffff);
1850 mode |= XM_PAUSE_MODE;
1851 skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_PAUSE);
1852 } else {
1854 * disable pause frame generation is required for 1000BT
1855 * because the XMAC is not reset if the link is going down
1857 /* Disable Pause Mode in Mode Register */
1858 mode &= ~XM_PAUSE_MODE;
1860 skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_DIS_PAUSE);
1863 xm_write32(hw, port, XM_MODE, mode);
1865 /* Turn on detection of Tx underrun, Rx overrun */
1866 msk = xm_read16(hw, port, XM_IMSK);
1867 msk &= ~(XM_IS_RXF_OV | XM_IS_TXF_UR);
1868 xm_write16(hw, port, XM_IMSK, msk);
1870 xm_read16(hw, port, XM_ISRC);
1872 /* get MMU Command Reg. */
1873 cmd = xm_read16(hw, port, XM_MMU_CMD);
1874 if (hw->phy_type != SK_PHY_XMAC && skge->duplex == DUPLEX_FULL)
1875 cmd |= XM_MMU_GMII_FD;
1878 * Workaround BCOM Errata (#10523) for all BCom Phys
1879 * Enable Power Management after link up
1881 if (hw->phy_type == SK_PHY_BCOM) {
1882 xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
1883 xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL)
1884 & ~PHY_B_AC_DIS_PM);
1885 xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);
1888 /* enable Rx/Tx */
1889 xm_write16(hw, port, XM_MMU_CMD,
1890 cmd | XM_MMU_ENA_RX | XM_MMU_ENA_TX);
1891 skge_link_up(skge);
1895 static inline void bcom_phy_intr(struct skge_port *skge)
1897 struct skge_hw *hw = skge->hw;
1898 int port = skge->port;
1899 u16 isrc;
1901 isrc = xm_phy_read(hw, port, PHY_BCOM_INT_STAT);
1902 if (netif_msg_intr(skge))
1903 printk(KERN_DEBUG PFX "%s: phy interrupt status 0x%x\n",
1904 skge->netdev->name, isrc);
1906 if (isrc & PHY_B_IS_PSE)
1907 printk(KERN_ERR PFX "%s: uncorrectable pair swap error\n",
1908 hw->dev[port]->name);
1910 /* Workaround BCom Errata:
1911 * enable and disable loopback mode if "NO HCD" occurs.
1913 if (isrc & PHY_B_IS_NO_HDCL) {
1914 u16 ctrl = xm_phy_read(hw, port, PHY_BCOM_CTRL);
1915 xm_phy_write(hw, port, PHY_BCOM_CTRL,
1916 ctrl | PHY_CT_LOOP);
1917 xm_phy_write(hw, port, PHY_BCOM_CTRL,
1918 ctrl & ~PHY_CT_LOOP);
1921 if (isrc & (PHY_B_IS_AN_PR | PHY_B_IS_LST_CHANGE))
1922 bcom_check_link(hw, port);
1926 static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
1928 int i;
1930 gma_write16(hw, port, GM_SMI_DATA, val);
1931 gma_write16(hw, port, GM_SMI_CTRL,
1932 GM_SMI_CT_PHY_AD(hw->phy_addr) | GM_SMI_CT_REG_AD(reg));
1933 for (i = 0; i < PHY_RETRIES; i++) {
1934 udelay(1);
1936 if (!(gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_BUSY))
1937 return 0;
1940 printk(KERN_WARNING PFX "%s: phy write timeout\n",
1941 hw->dev[port]->name);
1942 return -EIO;
1945 static int __gm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val)
1947 int i;
1949 gma_write16(hw, port, GM_SMI_CTRL,
1950 GM_SMI_CT_PHY_AD(hw->phy_addr)
1951 | GM_SMI_CT_REG_AD(reg) | GM_SMI_CT_OP_RD);
1953 for (i = 0; i < PHY_RETRIES; i++) {
1954 udelay(1);
1955 if (gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_RD_VAL)
1956 goto ready;
1959 return -ETIMEDOUT;
1960 ready:
1961 *val = gma_read16(hw, port, GM_SMI_DATA);
1962 return 0;
1965 static u16 gm_phy_read(struct skge_hw *hw, int port, u16 reg)
1967 u16 v = 0;
1968 if (__gm_phy_read(hw, port, reg, &v))
1969 printk(KERN_WARNING PFX "%s: phy read timeout\n",
1970 hw->dev[port]->name);
1971 return v;
1974 /* Marvell Phy Initialization */
1975 static void yukon_init(struct skge_hw *hw, int port)
1977 struct skge_port *skge = netdev_priv(hw->dev[port]);
1978 u16 ctrl, ct1000, adv;
1980 if (skge->autoneg == AUTONEG_ENABLE) {
1981 u16 ectrl = gm_phy_read(hw, port, PHY_MARV_EXT_CTRL);
1983 ectrl &= ~(PHY_M_EC_M_DSC_MSK | PHY_M_EC_S_DSC_MSK |
1984 PHY_M_EC_MAC_S_MSK);
1985 ectrl |= PHY_M_EC_MAC_S(MAC_TX_CLK_25_MHZ);
1987 ectrl |= PHY_M_EC_M_DSC(0) | PHY_M_EC_S_DSC(1);
1989 gm_phy_write(hw, port, PHY_MARV_EXT_CTRL, ectrl);
1992 ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
1993 if (skge->autoneg == AUTONEG_DISABLE)
1994 ctrl &= ~PHY_CT_ANE;
1996 ctrl |= PHY_CT_RESET;
1997 gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
1999 ctrl = 0;
2000 ct1000 = 0;
2001 adv = PHY_AN_CSMA;
2003 if (skge->autoneg == AUTONEG_ENABLE) {
2004 if (hw->copper) {
2005 if (skge->advertising & ADVERTISED_1000baseT_Full)
2006 ct1000 |= PHY_M_1000C_AFD;
2007 if (skge->advertising & ADVERTISED_1000baseT_Half)
2008 ct1000 |= PHY_M_1000C_AHD;
2009 if (skge->advertising & ADVERTISED_100baseT_Full)
2010 adv |= PHY_M_AN_100_FD;
2011 if (skge->advertising & ADVERTISED_100baseT_Half)
2012 adv |= PHY_M_AN_100_HD;
2013 if (skge->advertising & ADVERTISED_10baseT_Full)
2014 adv |= PHY_M_AN_10_FD;
2015 if (skge->advertising & ADVERTISED_10baseT_Half)
2016 adv |= PHY_M_AN_10_HD;
2018 /* Set Flow-control capabilities */
2019 adv |= phy_pause_map[skge->flow_control];
2020 } else {
2021 if (skge->advertising & ADVERTISED_1000baseT_Full)
2022 adv |= PHY_M_AN_1000X_AFD;
2023 if (skge->advertising & ADVERTISED_1000baseT_Half)
2024 adv |= PHY_M_AN_1000X_AHD;
2026 adv |= fiber_pause_map[skge->flow_control];
2029 /* Restart Auto-negotiation */
2030 ctrl |= PHY_CT_ANE | PHY_CT_RE_CFG;
2031 } else {
2032 /* forced speed/duplex settings */
2033 ct1000 = PHY_M_1000C_MSE;
2035 if (skge->duplex == DUPLEX_FULL)
2036 ctrl |= PHY_CT_DUP_MD;
2038 switch (skge->speed) {
2039 case SPEED_1000:
2040 ctrl |= PHY_CT_SP1000;
2041 break;
2042 case SPEED_100:
2043 ctrl |= PHY_CT_SP100;
2044 break;
2047 ctrl |= PHY_CT_RESET;
2050 gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, ct1000);
2052 gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, adv);
2053 gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
2055 /* Enable phy interrupt on autonegotiation complete (or link up) */
2056 if (skge->autoneg == AUTONEG_ENABLE)
2057 gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_AN_MSK);
2058 else
2059 gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK);
2062 static void yukon_reset(struct skge_hw *hw, int port)
2064 gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0);/* disable PHY IRQs */
2065 gma_write16(hw, port, GM_MC_ADDR_H1, 0); /* clear MC hash */
2066 gma_write16(hw, port, GM_MC_ADDR_H2, 0);
2067 gma_write16(hw, port, GM_MC_ADDR_H3, 0);
2068 gma_write16(hw, port, GM_MC_ADDR_H4, 0);
2070 gma_write16(hw, port, GM_RX_CTRL,
2071 gma_read16(hw, port, GM_RX_CTRL)
2072 | GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
2075 /* Apparently, early versions of Yukon-Lite had wrong chip_id? */
2076 static int is_yukon_lite_a0(struct skge_hw *hw)
2078 u32 reg;
2079 int ret;
2081 if (hw->chip_id != CHIP_ID_YUKON)
2082 return 0;
2084 reg = skge_read32(hw, B2_FAR);
2085 skge_write8(hw, B2_FAR + 3, 0xff);
2086 ret = (skge_read8(hw, B2_FAR + 3) != 0);
2087 skge_write32(hw, B2_FAR, reg);
2088 return ret;
2091 static void yukon_mac_init(struct skge_hw *hw, int port)
2093 struct skge_port *skge = netdev_priv(hw->dev[port]);
2094 int i;
2095 u32 reg;
2096 const u8 *addr = hw->dev[port]->dev_addr;
2098 /* WA code for COMA mode -- set PHY reset */
2099 if (hw->chip_id == CHIP_ID_YUKON_LITE &&
2100 hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
2101 reg = skge_read32(hw, B2_GP_IO);
2102 reg |= GP_DIR_9 | GP_IO_9;
2103 skge_write32(hw, B2_GP_IO, reg);
2106 /* hard reset */
2107 skge_write32(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
2108 skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
2110 /* WA code for COMA mode -- clear PHY reset */
2111 if (hw->chip_id == CHIP_ID_YUKON_LITE &&
2112 hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
2113 reg = skge_read32(hw, B2_GP_IO);
2114 reg |= GP_DIR_9;
2115 reg &= ~GP_IO_9;
2116 skge_write32(hw, B2_GP_IO, reg);
2119 /* Set hardware config mode */
2120 reg = GPC_INT_POL_HI | GPC_DIS_FC | GPC_DIS_SLEEP |
2121 GPC_ENA_XC | GPC_ANEG_ADV_ALL_M | GPC_ENA_PAUSE;
2122 reg |= hw->copper ? GPC_HWCFG_GMII_COP : GPC_HWCFG_GMII_FIB;
2124 /* Clear GMC reset */
2125 skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_SET);
2126 skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_CLR);
2127 skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON | GMC_RST_CLR);
2129 if (skge->autoneg == AUTONEG_DISABLE) {
2130 reg = GM_GPCR_AU_ALL_DIS;
2131 gma_write16(hw, port, GM_GP_CTRL,
2132 gma_read16(hw, port, GM_GP_CTRL) | reg);
2134 switch (skge->speed) {
2135 case SPEED_1000:
2136 reg &= ~GM_GPCR_SPEED_100;
2137 reg |= GM_GPCR_SPEED_1000;
2138 break;
2139 case SPEED_100:
2140 reg &= ~GM_GPCR_SPEED_1000;
2141 reg |= GM_GPCR_SPEED_100;
2142 break;
2143 case SPEED_10:
2144 reg &= ~(GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100);
2145 break;
2148 if (skge->duplex == DUPLEX_FULL)
2149 reg |= GM_GPCR_DUP_FULL;
2150 } else
2151 reg = GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100 | GM_GPCR_DUP_FULL;
2153 switch (skge->flow_control) {
2154 case FLOW_MODE_NONE:
2155 skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
2156 reg |= GM_GPCR_FC_TX_DIS | GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
2157 break;
2158 case FLOW_MODE_LOC_SEND:
2159 /* disable Rx flow-control */
2160 reg |= GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
2161 break;
2162 case FLOW_MODE_SYMMETRIC:
2163 case FLOW_MODE_SYM_OR_REM:
2164 /* enable Tx & Rx flow-control */
2165 break;
2168 gma_write16(hw, port, GM_GP_CTRL, reg);
2169 skge_read16(hw, SK_REG(port, GMAC_IRQ_SRC));
2171 yukon_init(hw, port);
2173 /* MIB clear */
2174 reg = gma_read16(hw, port, GM_PHY_ADDR);
2175 gma_write16(hw, port, GM_PHY_ADDR, reg | GM_PAR_MIB_CLR);
2177 for (i = 0; i < GM_MIB_CNT_SIZE; i++)
2178 gma_read16(hw, port, GM_MIB_CNT_BASE + 8*i);
2179 gma_write16(hw, port, GM_PHY_ADDR, reg);
2181 /* transmit control */
2182 gma_write16(hw, port, GM_TX_CTRL, TX_COL_THR(TX_COL_DEF));
2184 /* receive control reg: unicast + multicast + no FCS */
2185 gma_write16(hw, port, GM_RX_CTRL,
2186 GM_RXCR_UCF_ENA | GM_RXCR_CRC_DIS | GM_RXCR_MCF_ENA);
2188 /* transmit flow control */
2189 gma_write16(hw, port, GM_TX_FLOW_CTRL, 0xffff);
2191 /* transmit parameter */
2192 gma_write16(hw, port, GM_TX_PARAM,
2193 TX_JAM_LEN_VAL(TX_JAM_LEN_DEF) |
2194 TX_JAM_IPG_VAL(TX_JAM_IPG_DEF) |
2195 TX_IPG_JAM_DATA(TX_IPG_JAM_DEF));
2197 /* serial mode register */
2198 reg = GM_SMOD_VLAN_ENA | IPG_DATA_VAL(IPG_DATA_DEF);
2199 if (hw->dev[port]->mtu > 1500)
2200 reg |= GM_SMOD_JUMBO_ENA;
2202 gma_write16(hw, port, GM_SERIAL_MODE, reg);
2204 /* physical address: used for pause frames */
2205 gma_set_addr(hw, port, GM_SRC_ADDR_1L, addr);
2206 /* virtual address for data */
2207 gma_set_addr(hw, port, GM_SRC_ADDR_2L, addr);
2209 /* enable interrupt mask for counter overflows */
2210 gma_write16(hw, port, GM_TX_IRQ_MSK, 0);
2211 gma_write16(hw, port, GM_RX_IRQ_MSK, 0);
2212 gma_write16(hw, port, GM_TR_IRQ_MSK, 0);
2214 /* Initialize Mac Fifo */
2216 /* Configure Rx MAC FIFO */
2217 skge_write16(hw, SK_REG(port, RX_GMF_FL_MSK), RX_FF_FL_DEF_MSK);
2218 reg = GMF_OPER_ON | GMF_RX_F_FL_ON;
2220 /* disable Rx GMAC FIFO Flush for YUKON-Lite Rev. A0 only */
2221 if (is_yukon_lite_a0(hw))
2222 reg &= ~GMF_RX_F_FL_ON;
2224 skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_CLR);
2225 skge_write16(hw, SK_REG(port, RX_GMF_CTRL_T), reg);
2227 * because Pause Packet Truncation in GMAC is not working
2228 * we have to increase the Flush Threshold to 64 bytes
2229 * in order to flush pause packets in Rx FIFO on Yukon-1
2231 skge_write16(hw, SK_REG(port, RX_GMF_FL_THR), RX_GMF_FL_THR_DEF+1);
2233 /* Configure Tx MAC FIFO */
2234 skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_CLR);
2235 skge_write16(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_OPER_ON);
2238 /* Go into power down mode */
2239 static void yukon_suspend(struct skge_hw *hw, int port)
2241 u16 ctrl;
2243 ctrl = gm_phy_read(hw, port, PHY_MARV_PHY_CTRL);
2244 ctrl |= PHY_M_PC_POL_R_DIS;
2245 gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, ctrl);
2247 ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
2248 ctrl |= PHY_CT_RESET;
2249 gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
2251 /* switch IEEE compatible power down mode on */
2252 ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
2253 ctrl |= PHY_CT_PDOWN;
2254 gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
2257 static void yukon_stop(struct skge_port *skge)
2259 struct skge_hw *hw = skge->hw;
2260 int port = skge->port;
2262 skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
2263 yukon_reset(hw, port);
2265 gma_write16(hw, port, GM_GP_CTRL,
2266 gma_read16(hw, port, GM_GP_CTRL)
2267 & ~(GM_GPCR_TX_ENA|GM_GPCR_RX_ENA));
2268 gma_read16(hw, port, GM_GP_CTRL);
2270 yukon_suspend(hw, port);
2272 /* set GPHY Control reset */
2273 skge_write8(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
2274 skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
2277 static void yukon_get_stats(struct skge_port *skge, u64 *data)
2279 struct skge_hw *hw = skge->hw;
2280 int port = skge->port;
2281 int i;
2283 data[0] = (u64) gma_read32(hw, port, GM_TXO_OK_HI) << 32
2284 | gma_read32(hw, port, GM_TXO_OK_LO);
2285 data[1] = (u64) gma_read32(hw, port, GM_RXO_OK_HI) << 32
2286 | gma_read32(hw, port, GM_RXO_OK_LO);
2288 for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
2289 data[i] = gma_read32(hw, port,
2290 skge_stats[i].gma_offset);
2293 static void yukon_mac_intr(struct skge_hw *hw, int port)
2295 struct net_device *dev = hw->dev[port];
2296 struct skge_port *skge = netdev_priv(dev);
2297 u8 status = skge_read8(hw, SK_REG(port, GMAC_IRQ_SRC));
2299 if (netif_msg_intr(skge))
2300 printk(KERN_DEBUG PFX "%s: mac interrupt status 0x%x\n",
2301 dev->name, status);
2303 if (status & GM_IS_RX_FF_OR) {
2304 ++dev->stats.rx_fifo_errors;
2305 skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_CLI_RX_FO);
2308 if (status & GM_IS_TX_FF_UR) {
2309 ++dev->stats.tx_fifo_errors;
2310 skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_CLI_TX_FU);
2315 static u16 yukon_speed(const struct skge_hw *hw, u16 aux)
2317 switch (aux & PHY_M_PS_SPEED_MSK) {
2318 case PHY_M_PS_SPEED_1000:
2319 return SPEED_1000;
2320 case PHY_M_PS_SPEED_100:
2321 return SPEED_100;
2322 default:
2323 return SPEED_10;
2327 static void yukon_link_up(struct skge_port *skge)
2329 struct skge_hw *hw = skge->hw;
2330 int port = skge->port;
2331 u16 reg;
2333 /* Enable Transmit FIFO Underrun */
2334 skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), GMAC_DEF_MSK);
2336 reg = gma_read16(hw, port, GM_GP_CTRL);
2337 if (skge->duplex == DUPLEX_FULL || skge->autoneg == AUTONEG_ENABLE)
2338 reg |= GM_GPCR_DUP_FULL;
2340 /* enable Rx/Tx */
2341 reg |= GM_GPCR_RX_ENA | GM_GPCR_TX_ENA;
2342 gma_write16(hw, port, GM_GP_CTRL, reg);
2344 gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK);
2345 skge_link_up(skge);
2348 static void yukon_link_down(struct skge_port *skge)
2350 struct skge_hw *hw = skge->hw;
2351 int port = skge->port;
2352 u16 ctrl;
2354 ctrl = gma_read16(hw, port, GM_GP_CTRL);
2355 ctrl &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
2356 gma_write16(hw, port, GM_GP_CTRL, ctrl);
2358 if (skge->flow_status == FLOW_STAT_REM_SEND) {
2359 ctrl = gm_phy_read(hw, port, PHY_MARV_AUNE_ADV);
2360 ctrl |= PHY_M_AN_ASP;
2361 /* restore Asymmetric Pause bit */
2362 gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, ctrl);
2365 skge_link_down(skge);
2367 yukon_init(hw, port);
2370 static void yukon_phy_intr(struct skge_port *skge)
2372 struct skge_hw *hw = skge->hw;
2373 int port = skge->port;
2374 const char *reason = NULL;
2375 u16 istatus, phystat;
2377 istatus = gm_phy_read(hw, port, PHY_MARV_INT_STAT);
2378 phystat = gm_phy_read(hw, port, PHY_MARV_PHY_STAT);
2380 if (netif_msg_intr(skge))
2381 printk(KERN_DEBUG PFX "%s: phy interrupt status 0x%x 0x%x\n",
2382 skge->netdev->name, istatus, phystat);
2384 if (istatus & PHY_M_IS_AN_COMPL) {
2385 if (gm_phy_read(hw, port, PHY_MARV_AUNE_LP)
2386 & PHY_M_AN_RF) {
2387 reason = "remote fault";
2388 goto failed;
2391 if (gm_phy_read(hw, port, PHY_MARV_1000T_STAT) & PHY_B_1000S_MSF) {
2392 reason = "master/slave fault";
2393 goto failed;
2396 if (!(phystat & PHY_M_PS_SPDUP_RES)) {
2397 reason = "speed/duplex";
2398 goto failed;
2401 skge->duplex = (phystat & PHY_M_PS_FULL_DUP)
2402 ? DUPLEX_FULL : DUPLEX_HALF;
2403 skge->speed = yukon_speed(hw, phystat);
2405 /* We are using IEEE 802.3z/D5.0 Table 37-4 */
2406 switch (phystat & PHY_M_PS_PAUSE_MSK) {
2407 case PHY_M_PS_PAUSE_MSK:
2408 skge->flow_status = FLOW_STAT_SYMMETRIC;
2409 break;
2410 case PHY_M_PS_RX_P_EN:
2411 skge->flow_status = FLOW_STAT_REM_SEND;
2412 break;
2413 case PHY_M_PS_TX_P_EN:
2414 skge->flow_status = FLOW_STAT_LOC_SEND;
2415 break;
2416 default:
2417 skge->flow_status = FLOW_STAT_NONE;
2420 if (skge->flow_status == FLOW_STAT_NONE ||
2421 (skge->speed < SPEED_1000 && skge->duplex == DUPLEX_HALF))
2422 skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
2423 else
2424 skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON);
2425 yukon_link_up(skge);
2426 return;
2429 if (istatus & PHY_M_IS_LSP_CHANGE)
2430 skge->speed = yukon_speed(hw, phystat);
2432 if (istatus & PHY_M_IS_DUP_CHANGE)
2433 skge->duplex = (phystat & PHY_M_PS_FULL_DUP) ? DUPLEX_FULL : DUPLEX_HALF;
2434 if (istatus & PHY_M_IS_LST_CHANGE) {
2435 if (phystat & PHY_M_PS_LINK_UP)
2436 yukon_link_up(skge);
2437 else
2438 yukon_link_down(skge);
2440 return;
2441 failed:
2442 printk(KERN_ERR PFX "%s: autonegotiation failed (%s)\n",
2443 skge->netdev->name, reason);
2445 /* XXX restart autonegotiation? */
2448 static void skge_phy_reset(struct skge_port *skge)
2450 struct skge_hw *hw = skge->hw;
2451 int port = skge->port;
2452 struct net_device *dev = hw->dev[port];
2454 netif_stop_queue(skge->netdev);
2455 netif_carrier_off(skge->netdev);
2457 spin_lock_bh(&hw->phy_lock);
2458 if (hw->chip_id == CHIP_ID_GENESIS) {
2459 genesis_reset(hw, port);
2460 genesis_mac_init(hw, port);
2461 } else {
2462 yukon_reset(hw, port);
2463 yukon_init(hw, port);
2465 spin_unlock_bh(&hw->phy_lock);
2467 dev->set_multicast_list(dev);
2470 /* Basic MII support */
2471 static int skge_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
2473 struct mii_ioctl_data *data = if_mii(ifr);
2474 struct skge_port *skge = netdev_priv(dev);
2475 struct skge_hw *hw = skge->hw;
2476 int err = -EOPNOTSUPP;
2478 if (!netif_running(dev))
2479 return -ENODEV; /* Phy still in reset */
2481 switch(cmd) {
2482 case SIOCGMIIPHY:
2483 data->phy_id = hw->phy_addr;
2485 /* fallthru */
2486 case SIOCGMIIREG: {
2487 u16 val = 0;
2488 spin_lock_bh(&hw->phy_lock);
2489 if (hw->chip_id == CHIP_ID_GENESIS)
2490 err = __xm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val);
2491 else
2492 err = __gm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val);
2493 spin_unlock_bh(&hw->phy_lock);
2494 data->val_out = val;
2495 break;
2498 case SIOCSMIIREG:
2499 if (!capable(CAP_NET_ADMIN))
2500 return -EPERM;
2502 spin_lock_bh(&hw->phy_lock);
2503 if (hw->chip_id == CHIP_ID_GENESIS)
2504 err = xm_phy_write(hw, skge->port, data->reg_num & 0x1f,
2505 data->val_in);
2506 else
2507 err = gm_phy_write(hw, skge->port, data->reg_num & 0x1f,
2508 data->val_in);
2509 spin_unlock_bh(&hw->phy_lock);
2510 break;
2512 return err;
2515 /* Assign Ram Buffer allocation to queue */
2516 static void skge_ramset(struct skge_hw *hw, u16 q, u32 start, u32 space)
2518 u32 end;
2520 /* convert from K bytes to qwords used for hw register */
2521 start *= 1024/8;
2522 space *= 1024/8;
2523 end = start + space - 1;
2525 skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_RST_CLR);
2526 skge_write32(hw, RB_ADDR(q, RB_START), start);
2527 skge_write32(hw, RB_ADDR(q, RB_END), end);
2528 skge_write32(hw, RB_ADDR(q, RB_WP), start);
2529 skge_write32(hw, RB_ADDR(q, RB_RP), start);
2531 if (q == Q_R1 || q == Q_R2) {
2532 u32 tp = space - space/4;
2534 /* Set thresholds on receive queue's */
2535 skge_write32(hw, RB_ADDR(q, RB_RX_UTPP), tp);
2536 skge_write32(hw, RB_ADDR(q, RB_RX_LTPP), space/4);
2537 } else if (hw->chip_id != CHIP_ID_GENESIS)
2538 /* Genesis Tx Fifo is too small for normal store/forward */
2539 skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_STFWD);
2541 skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_OP_MD);
2544 /* Setup Bus Memory Interface */
2545 static void skge_qset(struct skge_port *skge, u16 q,
2546 const struct skge_element *e)
2548 struct skge_hw *hw = skge->hw;
2549 u32 watermark = 0x600;
2550 u64 base = skge->dma + (e->desc - skge->mem);
2552 /* optimization to reduce window on 32bit/33mhz */
2553 if ((skge_read16(hw, B0_CTST) & (CS_BUS_CLOCK | CS_BUS_SLOT_SZ)) == 0)
2554 watermark /= 2;
2556 skge_write32(hw, Q_ADDR(q, Q_CSR), CSR_CLR_RESET);
2557 skge_write32(hw, Q_ADDR(q, Q_F), watermark);
2558 skge_write32(hw, Q_ADDR(q, Q_DA_H), (u32)(base >> 32));
2559 skge_write32(hw, Q_ADDR(q, Q_DA_L), (u32)base);
2562 static int skge_up(struct net_device *dev)
2564 struct skge_port *skge = netdev_priv(dev);
2565 struct skge_hw *hw = skge->hw;
2566 int port = skge->port;
2567 u32 ramaddr, ramsize, rxspace;
2568 size_t rx_size, tx_size;
2569 int err;
2571 if (!is_valid_ether_addr(dev->dev_addr))
2572 return -EINVAL;
2574 if (netif_msg_ifup(skge))
2575 printk(KERN_INFO PFX "%s: enabling interface\n", dev->name);
2577 if (dev->mtu > RX_BUF_SIZE)
2578 skge->rx_buf_size = dev->mtu + ETH_HLEN;
2579 else
2580 skge->rx_buf_size = RX_BUF_SIZE;
2583 rx_size = skge->rx_ring.count * sizeof(struct skge_rx_desc);
2584 tx_size = skge->tx_ring.count * sizeof(struct skge_tx_desc);
2585 skge->mem_size = tx_size + rx_size;
2586 skge->mem = pci_alloc_consistent(hw->pdev, skge->mem_size, &skge->dma);
2587 if (!skge->mem)
2588 return -ENOMEM;
2590 BUG_ON(skge->dma & 7);
2592 if ((u64)skge->dma >> 32 != ((u64) skge->dma + skge->mem_size) >> 32) {
2593 dev_err(&hw->pdev->dev, "pci_alloc_consistent region crosses 4G boundary\n");
2594 err = -EINVAL;
2595 goto free_pci_mem;
2598 memset(skge->mem, 0, skge->mem_size);
2600 err = skge_ring_alloc(&skge->rx_ring, skge->mem, skge->dma);
2601 if (err)
2602 goto free_pci_mem;
2604 err = skge_rx_fill(dev);
2605 if (err)
2606 goto free_rx_ring;
2608 err = skge_ring_alloc(&skge->tx_ring, skge->mem + rx_size,
2609 skge->dma + rx_size);
2610 if (err)
2611 goto free_rx_ring;
2613 /* Initialize MAC */
2614 spin_lock_bh(&hw->phy_lock);
2615 if (hw->chip_id == CHIP_ID_GENESIS)
2616 genesis_mac_init(hw, port);
2617 else
2618 yukon_mac_init(hw, port);
2619 spin_unlock_bh(&hw->phy_lock);
2621 /* Configure RAMbuffers */
2622 ramsize = (hw->ram_size - hw->ram_offset) / hw->ports;
2623 ramaddr = hw->ram_offset + port * ramsize;
2624 rxspace = 8 + (2*(ramsize - 16))/3;
2626 skge_ramset(hw, rxqaddr[port], ramaddr, rxspace);
2627 skge_ramset(hw, txqaddr[port], ramaddr + rxspace, ramsize - rxspace);
2629 skge_qset(skge, rxqaddr[port], skge->rx_ring.to_clean);
2630 BUG_ON(skge->tx_ring.to_use != skge->tx_ring.to_clean);
2631 skge_qset(skge, txqaddr[port], skge->tx_ring.to_use);
2633 /* Start receiver BMU */
2634 wmb();
2635 skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_START | CSR_IRQ_CL_F);
2636 skge_led(skge, LED_MODE_ON);
2638 spin_lock_irq(&hw->hw_lock);
2639 hw->intr_mask |= portmask[port];
2640 skge_write32(hw, B0_IMSK, hw->intr_mask);
2641 spin_unlock_irq(&hw->hw_lock);
2643 napi_enable(&skge->napi);
2644 return 0;
2646 free_rx_ring:
2647 skge_rx_clean(skge);
2648 kfree(skge->rx_ring.start);
2649 free_pci_mem:
2650 pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma);
2651 skge->mem = NULL;
2653 return err;
2656 /* stop receiver */
2657 static void skge_rx_stop(struct skge_hw *hw, int port)
2659 skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_STOP);
2660 skge_write32(hw, RB_ADDR(port ? Q_R2 : Q_R1, RB_CTRL),
2661 RB_RST_SET|RB_DIS_OP_MD);
2662 skge_write32(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_SET_RESET);
2665 static int skge_down(struct net_device *dev)
2667 struct skge_port *skge = netdev_priv(dev);
2668 struct skge_hw *hw = skge->hw;
2669 int port = skge->port;
2671 if (skge->mem == NULL)
2672 return 0;
2674 if (netif_msg_ifdown(skge))
2675 printk(KERN_INFO PFX "%s: disabling interface\n", dev->name);
2677 netif_stop_queue(dev);
2679 if (hw->chip_id == CHIP_ID_GENESIS && hw->phy_type == SK_PHY_XMAC)
2680 del_timer_sync(&skge->link_timer);
2682 napi_disable(&skge->napi);
2683 netif_carrier_off(dev);
2685 spin_lock_irq(&hw->hw_lock);
2686 hw->intr_mask &= ~portmask[port];
2687 skge_write32(hw, B0_IMSK, hw->intr_mask);
2688 spin_unlock_irq(&hw->hw_lock);
2690 skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_OFF);
2691 if (hw->chip_id == CHIP_ID_GENESIS)
2692 genesis_stop(skge);
2693 else
2694 yukon_stop(skge);
2696 /* Stop transmitter */
2697 skge_write8(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_STOP);
2698 skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL),
2699 RB_RST_SET|RB_DIS_OP_MD);
2702 /* Disable Force Sync bit and Enable Alloc bit */
2703 skge_write8(hw, SK_REG(port, TXA_CTRL),
2704 TXA_DIS_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC);
2706 /* Stop Interval Timer and Limit Counter of Tx Arbiter */
2707 skge_write32(hw, SK_REG(port, TXA_ITI_INI), 0L);
2708 skge_write32(hw, SK_REG(port, TXA_LIM_INI), 0L);
2710 /* Reset PCI FIFO */
2711 skge_write32(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_SET_RESET);
2712 skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL), RB_RST_SET);
2714 /* Reset the RAM Buffer async Tx queue */
2715 skge_write8(hw, RB_ADDR(port == 0 ? Q_XA1 : Q_XA2, RB_CTRL), RB_RST_SET);
2717 skge_rx_stop(hw, port);
2719 if (hw->chip_id == CHIP_ID_GENESIS) {
2720 skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_SET);
2721 skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_SET);
2722 } else {
2723 skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET);
2724 skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_SET);
2727 skge_led(skge, LED_MODE_OFF);
2729 netif_tx_lock_bh(dev);
2730 skge_tx_clean(dev);
2731 netif_tx_unlock_bh(dev);
2733 skge_rx_clean(skge);
2735 kfree(skge->rx_ring.start);
2736 kfree(skge->tx_ring.start);
2737 pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma);
2738 skge->mem = NULL;
2739 return 0;
2742 static inline int skge_avail(const struct skge_ring *ring)
2744 smp_mb();
2745 return ((ring->to_clean > ring->to_use) ? 0 : ring->count)
2746 + (ring->to_clean - ring->to_use) - 1;
2749 static int skge_xmit_frame(struct sk_buff *skb, struct net_device *dev)
2751 struct skge_port *skge = netdev_priv(dev);
2752 struct skge_hw *hw = skge->hw;
2753 struct skge_element *e;
2754 struct skge_tx_desc *td;
2755 int i;
2756 u32 control, len;
2757 u64 map;
2759 if (skb_padto(skb, ETH_ZLEN))
2760 return NETDEV_TX_OK;
2762 if (unlikely(skge_avail(&skge->tx_ring) < skb_shinfo(skb)->nr_frags + 1))
2763 return NETDEV_TX_BUSY;
2765 e = skge->tx_ring.to_use;
2766 td = e->desc;
2767 BUG_ON(td->control & BMU_OWN);
2768 e->skb = skb;
2769 len = skb_headlen(skb);
2770 map = pci_map_single(hw->pdev, skb->data, len, PCI_DMA_TODEVICE);
2771 pci_unmap_addr_set(e, mapaddr, map);
2772 pci_unmap_len_set(e, maplen, len);
2774 td->dma_lo = map;
2775 td->dma_hi = map >> 32;
2777 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2778 const int offset = skb_transport_offset(skb);
2780 /* This seems backwards, but it is what the sk98lin
2781 * does. Looks like hardware is wrong?
2783 if (ipip_hdr(skb)->protocol == IPPROTO_UDP
2784 && hw->chip_rev == 0 && hw->chip_id == CHIP_ID_YUKON)
2785 control = BMU_TCP_CHECK;
2786 else
2787 control = BMU_UDP_CHECK;
2789 td->csum_offs = 0;
2790 td->csum_start = offset;
2791 td->csum_write = offset + skb->csum_offset;
2792 } else
2793 control = BMU_CHECK;
2795 if (!skb_shinfo(skb)->nr_frags) /* single buffer i.e. no fragments */
2796 control |= BMU_EOF| BMU_IRQ_EOF;
2797 else {
2798 struct skge_tx_desc *tf = td;
2800 control |= BMU_STFWD;
2801 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2802 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2804 map = pci_map_page(hw->pdev, frag->page, frag->page_offset,
2805 frag->size, PCI_DMA_TODEVICE);
2807 e = e->next;
2808 e->skb = skb;
2809 tf = e->desc;
2810 BUG_ON(tf->control & BMU_OWN);
2812 tf->dma_lo = map;
2813 tf->dma_hi = (u64) map >> 32;
2814 pci_unmap_addr_set(e, mapaddr, map);
2815 pci_unmap_len_set(e, maplen, frag->size);
2817 tf->control = BMU_OWN | BMU_SW | control | frag->size;
2819 tf->control |= BMU_EOF | BMU_IRQ_EOF;
2821 /* Make sure all the descriptors written */
2822 wmb();
2823 td->control = BMU_OWN | BMU_SW | BMU_STF | control | len;
2824 wmb();
2826 skge_write8(hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_START);
2828 if (unlikely(netif_msg_tx_queued(skge)))
2829 printk(KERN_DEBUG "%s: tx queued, slot %td, len %d\n",
2830 dev->name, e - skge->tx_ring.start, skb->len);
2832 skge->tx_ring.to_use = e->next;
2833 smp_wmb();
2835 if (skge_avail(&skge->tx_ring) <= TX_LOW_WATER) {
2836 pr_debug("%s: transmit queue full\n", dev->name);
2837 netif_stop_queue(dev);
2840 dev->trans_start = jiffies;
2842 return NETDEV_TX_OK;
2846 /* Free resources associated with this reing element */
2847 static void skge_tx_free(struct skge_port *skge, struct skge_element *e,
2848 u32 control)
2850 struct pci_dev *pdev = skge->hw->pdev;
2852 /* skb header vs. fragment */
2853 if (control & BMU_STF)
2854 pci_unmap_single(pdev, pci_unmap_addr(e, mapaddr),
2855 pci_unmap_len(e, maplen),
2856 PCI_DMA_TODEVICE);
2857 else
2858 pci_unmap_page(pdev, pci_unmap_addr(e, mapaddr),
2859 pci_unmap_len(e, maplen),
2860 PCI_DMA_TODEVICE);
2862 if (control & BMU_EOF) {
2863 if (unlikely(netif_msg_tx_done(skge)))
2864 printk(KERN_DEBUG PFX "%s: tx done slot %td\n",
2865 skge->netdev->name, e - skge->tx_ring.start);
2867 dev_kfree_skb(e->skb);
2871 /* Free all buffers in transmit ring */
2872 static void skge_tx_clean(struct net_device *dev)
2874 struct skge_port *skge = netdev_priv(dev);
2875 struct skge_element *e;
2877 for (e = skge->tx_ring.to_clean; e != skge->tx_ring.to_use; e = e->next) {
2878 struct skge_tx_desc *td = e->desc;
2879 skge_tx_free(skge, e, td->control);
2880 td->control = 0;
2883 skge->tx_ring.to_clean = e;
2884 netif_wake_queue(dev);
2887 static void skge_tx_timeout(struct net_device *dev)
2889 struct skge_port *skge = netdev_priv(dev);
2891 if (netif_msg_timer(skge))
2892 printk(KERN_DEBUG PFX "%s: tx timeout\n", dev->name);
2894 skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_STOP);
2895 skge_tx_clean(dev);
2898 static int skge_change_mtu(struct net_device *dev, int new_mtu)
2900 struct skge_port *skge = netdev_priv(dev);
2901 struct skge_hw *hw = skge->hw;
2902 int port = skge->port;
2903 int err;
2904 u16 ctl, reg;
2906 if (new_mtu < ETH_ZLEN || new_mtu > ETH_JUMBO_MTU)
2907 return -EINVAL;
2909 if (!netif_running(dev)) {
2910 dev->mtu = new_mtu;
2911 return 0;
2914 skge_write32(hw, B0_IMSK, 0);
2915 dev->trans_start = jiffies; /* prevent tx timeout */
2916 netif_stop_queue(dev);
2917 napi_disable(&skge->napi);
2919 ctl = gma_read16(hw, port, GM_GP_CTRL);
2920 gma_write16(hw, port, GM_GP_CTRL, ctl & ~GM_GPCR_RX_ENA);
2922 skge_rx_clean(skge);
2923 skge_rx_stop(hw, port);
2925 dev->mtu = new_mtu;
2927 reg = GM_SMOD_VLAN_ENA | IPG_DATA_VAL(IPG_DATA_DEF);
2928 if (new_mtu > 1500)
2929 reg |= GM_SMOD_JUMBO_ENA;
2930 gma_write16(hw, port, GM_SERIAL_MODE, reg);
2932 skge_write8(hw, RB_ADDR(rxqaddr[port], RB_CTRL), RB_ENA_OP_MD);
2934 err = skge_rx_fill(dev);
2935 wmb();
2936 if (!err)
2937 skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_START | CSR_IRQ_CL_F);
2938 skge_write32(hw, B0_IMSK, hw->intr_mask);
2940 if (err)
2941 dev_close(dev);
2942 else {
2943 gma_write16(hw, port, GM_GP_CTRL, ctl);
2945 napi_enable(&skge->napi);
2946 netif_wake_queue(dev);
2949 return err;
2952 static const u8 pause_mc_addr[ETH_ALEN] = { 0x1, 0x80, 0xc2, 0x0, 0x0, 0x1 };
2954 static void genesis_add_filter(u8 filter[8], const u8 *addr)
2956 u32 crc, bit;
2958 crc = ether_crc_le(ETH_ALEN, addr);
2959 bit = ~crc & 0x3f;
2960 filter[bit/8] |= 1 << (bit%8);
2963 static void genesis_set_multicast(struct net_device *dev)
2965 struct skge_port *skge = netdev_priv(dev);
2966 struct skge_hw *hw = skge->hw;
2967 int port = skge->port;
2968 int i, count = dev->mc_count;
2969 struct dev_mc_list *list = dev->mc_list;
2970 u32 mode;
2971 u8 filter[8];
2973 mode = xm_read32(hw, port, XM_MODE);
2974 mode |= XM_MD_ENA_HASH;
2975 if (dev->flags & IFF_PROMISC)
2976 mode |= XM_MD_ENA_PROM;
2977 else
2978 mode &= ~XM_MD_ENA_PROM;
2980 if (dev->flags & IFF_ALLMULTI)
2981 memset(filter, 0xff, sizeof(filter));
2982 else {
2983 memset(filter, 0, sizeof(filter));
2985 if (skge->flow_status == FLOW_STAT_REM_SEND
2986 || skge->flow_status == FLOW_STAT_SYMMETRIC)
2987 genesis_add_filter(filter, pause_mc_addr);
2989 for (i = 0; list && i < count; i++, list = list->next)
2990 genesis_add_filter(filter, list->dmi_addr);
2993 xm_write32(hw, port, XM_MODE, mode);
2994 xm_outhash(hw, port, XM_HSM, filter);
2997 static void yukon_add_filter(u8 filter[8], const u8 *addr)
2999 u32 bit = ether_crc(ETH_ALEN, addr) & 0x3f;
3000 filter[bit/8] |= 1 << (bit%8);
3003 static void yukon_set_multicast(struct net_device *dev)
3005 struct skge_port *skge = netdev_priv(dev);
3006 struct skge_hw *hw = skge->hw;
3007 int port = skge->port;
3008 struct dev_mc_list *list = dev->mc_list;
3009 int rx_pause = (skge->flow_status == FLOW_STAT_REM_SEND
3010 || skge->flow_status == FLOW_STAT_SYMMETRIC);
3011 u16 reg;
3012 u8 filter[8];
3014 memset(filter, 0, sizeof(filter));
3016 reg = gma_read16(hw, port, GM_RX_CTRL);
3017 reg |= GM_RXCR_UCF_ENA;
3019 if (dev->flags & IFF_PROMISC) /* promiscuous */
3020 reg &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
3021 else if (dev->flags & IFF_ALLMULTI) /* all multicast */
3022 memset(filter, 0xff, sizeof(filter));
3023 else if (dev->mc_count == 0 && !rx_pause)/* no multicast */
3024 reg &= ~GM_RXCR_MCF_ENA;
3025 else {
3026 int i;
3027 reg |= GM_RXCR_MCF_ENA;
3029 if (rx_pause)
3030 yukon_add_filter(filter, pause_mc_addr);
3032 for (i = 0; list && i < dev->mc_count; i++, list = list->next)
3033 yukon_add_filter(filter, list->dmi_addr);
3037 gma_write16(hw, port, GM_MC_ADDR_H1,
3038 (u16)filter[0] | ((u16)filter[1] << 8));
3039 gma_write16(hw, port, GM_MC_ADDR_H2,
3040 (u16)filter[2] | ((u16)filter[3] << 8));
3041 gma_write16(hw, port, GM_MC_ADDR_H3,
3042 (u16)filter[4] | ((u16)filter[5] << 8));
3043 gma_write16(hw, port, GM_MC_ADDR_H4,
3044 (u16)filter[6] | ((u16)filter[7] << 8));
3046 gma_write16(hw, port, GM_RX_CTRL, reg);
3049 static inline u16 phy_length(const struct skge_hw *hw, u32 status)
3051 if (hw->chip_id == CHIP_ID_GENESIS)
3052 return status >> XMR_FS_LEN_SHIFT;
3053 else
3054 return status >> GMR_FS_LEN_SHIFT;
3057 static inline int bad_phy_status(const struct skge_hw *hw, u32 status)
3059 if (hw->chip_id == CHIP_ID_GENESIS)
3060 return (status & (XMR_FS_ERR | XMR_FS_2L_VLAN)) != 0;
3061 else
3062 return (status & GMR_FS_ANY_ERR) ||
3063 (status & GMR_FS_RX_OK) == 0;
3067 /* Get receive buffer from descriptor.
3068 * Handles copy of small buffers and reallocation failures
3070 static struct sk_buff *skge_rx_get(struct net_device *dev,
3071 struct skge_element *e,
3072 u32 control, u32 status, u16 csum)
3074 struct skge_port *skge = netdev_priv(dev);
3075 struct sk_buff *skb;
3076 u16 len = control & BMU_BBC;
3078 if (unlikely(netif_msg_rx_status(skge)))
3079 printk(KERN_DEBUG PFX "%s: rx slot %td status 0x%x len %d\n",
3080 dev->name, e - skge->rx_ring.start,
3081 status, len);
3083 if (len > skge->rx_buf_size)
3084 goto error;
3086 if ((control & (BMU_EOF|BMU_STF)) != (BMU_STF|BMU_EOF))
3087 goto error;
3089 if (bad_phy_status(skge->hw, status))
3090 goto error;
3092 if (phy_length(skge->hw, status) != len)
3093 goto error;
3095 if (len < RX_COPY_THRESHOLD) {
3096 skb = netdev_alloc_skb(dev, len + 2);
3097 if (!skb)
3098 goto resubmit;
3100 skb_reserve(skb, 2);
3101 pci_dma_sync_single_for_cpu(skge->hw->pdev,
3102 pci_unmap_addr(e, mapaddr),
3103 len, PCI_DMA_FROMDEVICE);
3104 skb_copy_from_linear_data(e->skb, skb->data, len);
3105 pci_dma_sync_single_for_device(skge->hw->pdev,
3106 pci_unmap_addr(e, mapaddr),
3107 len, PCI_DMA_FROMDEVICE);
3108 skge_rx_reuse(e, skge->rx_buf_size);
3109 } else {
3110 struct sk_buff *nskb;
3111 nskb = netdev_alloc_skb(dev, skge->rx_buf_size + NET_IP_ALIGN);
3112 if (!nskb)
3113 goto resubmit;
3115 skb_reserve(nskb, NET_IP_ALIGN);
3116 pci_unmap_single(skge->hw->pdev,
3117 pci_unmap_addr(e, mapaddr),
3118 pci_unmap_len(e, maplen),
3119 PCI_DMA_FROMDEVICE);
3120 skb = e->skb;
3121 prefetch(skb->data);
3122 skge_rx_setup(skge, e, nskb, skge->rx_buf_size);
3125 skb_put(skb, len);
3126 if (skge->rx_csum) {
3127 skb->csum = csum;
3128 skb->ip_summed = CHECKSUM_COMPLETE;
3131 skb->protocol = eth_type_trans(skb, dev);
3133 return skb;
3134 error:
3136 if (netif_msg_rx_err(skge))
3137 printk(KERN_DEBUG PFX "%s: rx err, slot %td control 0x%x status 0x%x\n",
3138 dev->name, e - skge->rx_ring.start,
3139 control, status);
3141 if (skge->hw->chip_id == CHIP_ID_GENESIS) {
3142 if (status & (XMR_FS_RUNT|XMR_FS_LNG_ERR))
3143 dev->stats.rx_length_errors++;
3144 if (status & XMR_FS_FRA_ERR)
3145 dev->stats.rx_frame_errors++;
3146 if (status & XMR_FS_FCS_ERR)
3147 dev->stats.rx_crc_errors++;
3148 } else {
3149 if (status & (GMR_FS_LONG_ERR|GMR_FS_UN_SIZE))
3150 dev->stats.rx_length_errors++;
3151 if (status & GMR_FS_FRAGMENT)
3152 dev->stats.rx_frame_errors++;
3153 if (status & GMR_FS_CRC_ERR)
3154 dev->stats.rx_crc_errors++;
3157 resubmit:
3158 skge_rx_reuse(e, skge->rx_buf_size);
3159 return NULL;
3162 /* Free all buffers in Tx ring which are no longer owned by device */
3163 static void skge_tx_done(struct net_device *dev)
3165 struct skge_port *skge = netdev_priv(dev);
3166 struct skge_ring *ring = &skge->tx_ring;
3167 struct skge_element *e;
3169 skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F);
3171 for (e = ring->to_clean; e != ring->to_use; e = e->next) {
3172 u32 control = ((const struct skge_tx_desc *) e->desc)->control;
3174 if (control & BMU_OWN)
3175 break;
3177 skge_tx_free(skge, e, control);
3179 skge->tx_ring.to_clean = e;
3181 /* Can run lockless until we need to synchronize to restart queue. */
3182 smp_mb();
3184 if (unlikely(netif_queue_stopped(dev) &&
3185 skge_avail(&skge->tx_ring) > TX_LOW_WATER)) {
3186 netif_tx_lock(dev);
3187 if (unlikely(netif_queue_stopped(dev) &&
3188 skge_avail(&skge->tx_ring) > TX_LOW_WATER)) {
3189 netif_wake_queue(dev);
3192 netif_tx_unlock(dev);
3196 static int skge_poll(struct napi_struct *napi, int to_do)
3198 struct skge_port *skge = container_of(napi, struct skge_port, napi);
3199 struct net_device *dev = skge->netdev;
3200 struct skge_hw *hw = skge->hw;
3201 struct skge_ring *ring = &skge->rx_ring;
3202 struct skge_element *e;
3203 int work_done = 0;
3205 skge_tx_done(dev);
3207 skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F);
3209 for (e = ring->to_clean; prefetch(e->next), work_done < to_do; e = e->next) {
3210 struct skge_rx_desc *rd = e->desc;
3211 struct sk_buff *skb;
3212 u32 control;
3214 rmb();
3215 control = rd->control;
3216 if (control & BMU_OWN)
3217 break;
3219 skb = skge_rx_get(dev, e, control, rd->status, rd->csum2);
3220 if (likely(skb)) {
3221 dev->last_rx = jiffies;
3222 netif_receive_skb(skb);
3224 ++work_done;
3227 ring->to_clean = e;
3229 /* restart receiver */
3230 wmb();
3231 skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR), CSR_START);
3233 if (work_done < to_do) {
3234 spin_lock_irq(&hw->hw_lock);
3235 __netif_rx_complete(dev, napi);
3236 hw->intr_mask |= napimask[skge->port];
3237 skge_write32(hw, B0_IMSK, hw->intr_mask);
3238 skge_read32(hw, B0_IMSK);
3239 spin_unlock_irq(&hw->hw_lock);
3242 return work_done;
3245 /* Parity errors seem to happen when Genesis is connected to a switch
3246 * with no other ports present. Heartbeat error??
3248 static void skge_mac_parity(struct skge_hw *hw, int port)
3250 struct net_device *dev = hw->dev[port];
3252 ++dev->stats.tx_heartbeat_errors;
3254 if (hw->chip_id == CHIP_ID_GENESIS)
3255 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1),
3256 MFF_CLR_PERR);
3257 else
3258 /* HW-Bug #8: cleared by GMF_CLI_TX_FC instead of GMF_CLI_TX_PE */
3259 skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T),
3260 (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0)
3261 ? GMF_CLI_TX_FC : GMF_CLI_TX_PE);
3264 static void skge_mac_intr(struct skge_hw *hw, int port)
3266 if (hw->chip_id == CHIP_ID_GENESIS)
3267 genesis_mac_intr(hw, port);
3268 else
3269 yukon_mac_intr(hw, port);
3272 /* Handle device specific framing and timeout interrupts */
3273 static void skge_error_irq(struct skge_hw *hw)
3275 struct pci_dev *pdev = hw->pdev;
3276 u32 hwstatus = skge_read32(hw, B0_HWE_ISRC);
3278 if (hw->chip_id == CHIP_ID_GENESIS) {
3279 /* clear xmac errors */
3280 if (hwstatus & (IS_NO_STAT_M1|IS_NO_TIST_M1))
3281 skge_write16(hw, RX_MFF_CTRL1, MFF_CLR_INSTAT);
3282 if (hwstatus & (IS_NO_STAT_M2|IS_NO_TIST_M2))
3283 skge_write16(hw, RX_MFF_CTRL2, MFF_CLR_INSTAT);
3284 } else {
3285 /* Timestamp (unused) overflow */
3286 if (hwstatus & IS_IRQ_TIST_OV)
3287 skge_write8(hw, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
3290 if (hwstatus & IS_RAM_RD_PAR) {
3291 dev_err(&pdev->dev, "Ram read data parity error\n");
3292 skge_write16(hw, B3_RI_CTRL, RI_CLR_RD_PERR);
3295 if (hwstatus & IS_RAM_WR_PAR) {
3296 dev_err(&pdev->dev, "Ram write data parity error\n");
3297 skge_write16(hw, B3_RI_CTRL, RI_CLR_WR_PERR);
3300 if (hwstatus & IS_M1_PAR_ERR)
3301 skge_mac_parity(hw, 0);
3303 if (hwstatus & IS_M2_PAR_ERR)
3304 skge_mac_parity(hw, 1);
3306 if (hwstatus & IS_R1_PAR_ERR) {
3307 dev_err(&pdev->dev, "%s: receive queue parity error\n",
3308 hw->dev[0]->name);
3309 skge_write32(hw, B0_R1_CSR, CSR_IRQ_CL_P);
3312 if (hwstatus & IS_R2_PAR_ERR) {
3313 dev_err(&pdev->dev, "%s: receive queue parity error\n",
3314 hw->dev[1]->name);
3315 skge_write32(hw, B0_R2_CSR, CSR_IRQ_CL_P);
3318 if (hwstatus & (IS_IRQ_MST_ERR|IS_IRQ_STAT)) {
3319 u16 pci_status, pci_cmd;
3321 pci_read_config_word(pdev, PCI_COMMAND, &pci_cmd);
3322 pci_read_config_word(pdev, PCI_STATUS, &pci_status);
3324 dev_err(&pdev->dev, "PCI error cmd=%#x status=%#x\n",
3325 pci_cmd, pci_status);
3327 /* Write the error bits back to clear them. */
3328 pci_status &= PCI_STATUS_ERROR_BITS;
3329 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3330 pci_write_config_word(pdev, PCI_COMMAND,
3331 pci_cmd | PCI_COMMAND_SERR | PCI_COMMAND_PARITY);
3332 pci_write_config_word(pdev, PCI_STATUS, pci_status);
3333 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3335 /* if error still set then just ignore it */
3336 hwstatus = skge_read32(hw, B0_HWE_ISRC);
3337 if (hwstatus & IS_IRQ_STAT) {
3338 dev_warn(&hw->pdev->dev, "unable to clear error (so ignoring them)\n");
3339 hw->intr_mask &= ~IS_HW_ERR;
3345 * Interrupt from PHY are handled in tasklet (softirq)
3346 * because accessing phy registers requires spin wait which might
3347 * cause excess interrupt latency.
3349 static void skge_extirq(unsigned long arg)
3351 struct skge_hw *hw = (struct skge_hw *) arg;
3352 int port;
3354 for (port = 0; port < hw->ports; port++) {
3355 struct net_device *dev = hw->dev[port];
3357 if (netif_running(dev)) {
3358 struct skge_port *skge = netdev_priv(dev);
3360 spin_lock(&hw->phy_lock);
3361 if (hw->chip_id != CHIP_ID_GENESIS)
3362 yukon_phy_intr(skge);
3363 else if (hw->phy_type == SK_PHY_BCOM)
3364 bcom_phy_intr(skge);
3365 spin_unlock(&hw->phy_lock);
3369 spin_lock_irq(&hw->hw_lock);
3370 hw->intr_mask |= IS_EXT_REG;
3371 skge_write32(hw, B0_IMSK, hw->intr_mask);
3372 skge_read32(hw, B0_IMSK);
3373 spin_unlock_irq(&hw->hw_lock);
3376 static irqreturn_t skge_intr(int irq, void *dev_id)
3378 struct skge_hw *hw = dev_id;
3379 u32 status;
3380 int handled = 0;
3382 spin_lock(&hw->hw_lock);
3383 /* Reading this register masks IRQ */
3384 status = skge_read32(hw, B0_SP_ISRC);
3385 if (status == 0 || status == ~0)
3386 goto out;
3388 handled = 1;
3389 status &= hw->intr_mask;
3390 if (status & IS_EXT_REG) {
3391 hw->intr_mask &= ~IS_EXT_REG;
3392 tasklet_schedule(&hw->phy_task);
3395 if (status & (IS_XA1_F|IS_R1_F)) {
3396 struct skge_port *skge = netdev_priv(hw->dev[0]);
3397 hw->intr_mask &= ~(IS_XA1_F|IS_R1_F);
3398 netif_rx_schedule(hw->dev[0], &skge->napi);
3401 if (status & IS_PA_TO_TX1)
3402 skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX1);
3404 if (status & IS_PA_TO_RX1) {
3405 ++hw->dev[0]->stats.rx_over_errors;
3406 skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX1);
3410 if (status & IS_MAC1)
3411 skge_mac_intr(hw, 0);
3413 if (hw->dev[1]) {
3414 struct skge_port *skge = netdev_priv(hw->dev[1]);
3416 if (status & (IS_XA2_F|IS_R2_F)) {
3417 hw->intr_mask &= ~(IS_XA2_F|IS_R2_F);
3418 netif_rx_schedule(hw->dev[1], &skge->napi);
3421 if (status & IS_PA_TO_RX2) {
3422 ++hw->dev[1]->stats.rx_over_errors;
3423 skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX2);
3426 if (status & IS_PA_TO_TX2)
3427 skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX2);
3429 if (status & IS_MAC2)
3430 skge_mac_intr(hw, 1);
3433 if (status & IS_HW_ERR)
3434 skge_error_irq(hw);
3436 skge_write32(hw, B0_IMSK, hw->intr_mask);
3437 skge_read32(hw, B0_IMSK);
3438 out:
3439 spin_unlock(&hw->hw_lock);
3441 return IRQ_RETVAL(handled);
3444 #ifdef CONFIG_NET_POLL_CONTROLLER
3445 static void skge_netpoll(struct net_device *dev)
3447 struct skge_port *skge = netdev_priv(dev);
3449 disable_irq(dev->irq);
3450 skge_intr(dev->irq, skge->hw);
3451 enable_irq(dev->irq);
3453 #endif
3455 static int skge_set_mac_address(struct net_device *dev, void *p)
3457 struct skge_port *skge = netdev_priv(dev);
3458 struct skge_hw *hw = skge->hw;
3459 unsigned port = skge->port;
3460 const struct sockaddr *addr = p;
3461 u16 ctrl;
3463 if (!is_valid_ether_addr(addr->sa_data))
3464 return -EADDRNOTAVAIL;
3466 memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN);
3468 if (!netif_running(dev)) {
3469 memcpy_toio(hw->regs + B2_MAC_1 + port*8, dev->dev_addr, ETH_ALEN);
3470 memcpy_toio(hw->regs + B2_MAC_2 + port*8, dev->dev_addr, ETH_ALEN);
3471 } else {
3472 /* disable Rx */
3473 spin_lock_bh(&hw->phy_lock);
3474 ctrl = gma_read16(hw, port, GM_GP_CTRL);
3475 gma_write16(hw, port, GM_GP_CTRL, ctrl & ~GM_GPCR_RX_ENA);
3477 memcpy_toio(hw->regs + B2_MAC_1 + port*8, dev->dev_addr, ETH_ALEN);
3478 memcpy_toio(hw->regs + B2_MAC_2 + port*8, dev->dev_addr, ETH_ALEN);
3480 if (hw->chip_id == CHIP_ID_GENESIS)
3481 xm_outaddr(hw, port, XM_SA, dev->dev_addr);
3482 else {
3483 gma_set_addr(hw, port, GM_SRC_ADDR_1L, dev->dev_addr);
3484 gma_set_addr(hw, port, GM_SRC_ADDR_2L, dev->dev_addr);
3487 gma_write16(hw, port, GM_GP_CTRL, ctrl);
3488 spin_unlock_bh(&hw->phy_lock);
3491 return 0;
3494 static const struct {
3495 u8 id;
3496 const char *name;
3497 } skge_chips[] = {
3498 { CHIP_ID_GENESIS, "Genesis" },
3499 { CHIP_ID_YUKON, "Yukon" },
3500 { CHIP_ID_YUKON_LITE, "Yukon-Lite"},
3501 { CHIP_ID_YUKON_LP, "Yukon-LP"},
3504 static const char *skge_board_name(const struct skge_hw *hw)
3506 int i;
3507 static char buf[16];
3509 for (i = 0; i < ARRAY_SIZE(skge_chips); i++)
3510 if (skge_chips[i].id == hw->chip_id)
3511 return skge_chips[i].name;
3513 snprintf(buf, sizeof buf, "chipid 0x%x", hw->chip_id);
3514 return buf;
3519 * Setup the board data structure, but don't bring up
3520 * the port(s)
3522 static int skge_reset(struct skge_hw *hw)
3524 u32 reg;
3525 u16 ctst, pci_status;
3526 u8 t8, mac_cfg, pmd_type;
3527 int i;
3529 ctst = skge_read16(hw, B0_CTST);
3531 /* do a SW reset */
3532 skge_write8(hw, B0_CTST, CS_RST_SET);
3533 skge_write8(hw, B0_CTST, CS_RST_CLR);
3535 /* clear PCI errors, if any */
3536 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3537 skge_write8(hw, B2_TST_CTRL2, 0);
3539 pci_read_config_word(hw->pdev, PCI_STATUS, &pci_status);
3540 pci_write_config_word(hw->pdev, PCI_STATUS,
3541 pci_status | PCI_STATUS_ERROR_BITS);
3542 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3543 skge_write8(hw, B0_CTST, CS_MRST_CLR);
3545 /* restore CLK_RUN bits (for Yukon-Lite) */
3546 skge_write16(hw, B0_CTST,
3547 ctst & (CS_CLK_RUN_HOT|CS_CLK_RUN_RST|CS_CLK_RUN_ENA));
3549 hw->chip_id = skge_read8(hw, B2_CHIP_ID);
3550 hw->phy_type = skge_read8(hw, B2_E_1) & 0xf;
3551 pmd_type = skge_read8(hw, B2_PMD_TYP);
3552 hw->copper = (pmd_type == 'T' || pmd_type == '1');
3554 switch (hw->chip_id) {
3555 case CHIP_ID_GENESIS:
3556 switch (hw->phy_type) {
3557 case SK_PHY_XMAC:
3558 hw->phy_addr = PHY_ADDR_XMAC;
3559 break;
3560 case SK_PHY_BCOM:
3561 hw->phy_addr = PHY_ADDR_BCOM;
3562 break;
3563 default:
3564 dev_err(&hw->pdev->dev, "unsupported phy type 0x%x\n",
3565 hw->phy_type);
3566 return -EOPNOTSUPP;
3568 break;
3570 case CHIP_ID_YUKON:
3571 case CHIP_ID_YUKON_LITE:
3572 case CHIP_ID_YUKON_LP:
3573 if (hw->phy_type < SK_PHY_MARV_COPPER && pmd_type != 'S')
3574 hw->copper = 1;
3576 hw->phy_addr = PHY_ADDR_MARV;
3577 break;
3579 default:
3580 dev_err(&hw->pdev->dev, "unsupported chip type 0x%x\n",
3581 hw->chip_id);
3582 return -EOPNOTSUPP;
3585 mac_cfg = skge_read8(hw, B2_MAC_CFG);
3586 hw->ports = (mac_cfg & CFG_SNG_MAC) ? 1 : 2;
3587 hw->chip_rev = (mac_cfg & CFG_CHIP_R_MSK) >> 4;
3589 /* read the adapters RAM size */
3590 t8 = skge_read8(hw, B2_E_0);
3591 if (hw->chip_id == CHIP_ID_GENESIS) {
3592 if (t8 == 3) {
3593 /* special case: 4 x 64k x 36, offset = 0x80000 */
3594 hw->ram_size = 1024;
3595 hw->ram_offset = 512;
3596 } else
3597 hw->ram_size = t8 * 512;
3598 } else /* Yukon */
3599 hw->ram_size = t8 ? t8 * 4 : 128;
3601 hw->intr_mask = IS_HW_ERR;
3603 /* Use PHY IRQ for all but fiber based Genesis board */
3604 if (!(hw->chip_id == CHIP_ID_GENESIS && hw->phy_type == SK_PHY_XMAC))
3605 hw->intr_mask |= IS_EXT_REG;
3607 if (hw->chip_id == CHIP_ID_GENESIS)
3608 genesis_init(hw);
3609 else {
3610 /* switch power to VCC (WA for VAUX problem) */
3611 skge_write8(hw, B0_POWER_CTRL,
3612 PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_OFF | PC_VCC_ON);
3614 /* avoid boards with stuck Hardware error bits */
3615 if ((skge_read32(hw, B0_ISRC) & IS_HW_ERR) &&
3616 (skge_read32(hw, B0_HWE_ISRC) & IS_IRQ_SENSOR)) {
3617 dev_warn(&hw->pdev->dev, "stuck hardware sensor bit\n");
3618 hw->intr_mask &= ~IS_HW_ERR;
3621 /* Clear PHY COMA */
3622 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3623 pci_read_config_dword(hw->pdev, PCI_DEV_REG1, &reg);
3624 reg &= ~PCI_PHY_COMA;
3625 pci_write_config_dword(hw->pdev, PCI_DEV_REG1, reg);
3626 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3629 for (i = 0; i < hw->ports; i++) {
3630 skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_SET);
3631 skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_CLR);
3635 /* turn off hardware timer (unused) */
3636 skge_write8(hw, B2_TI_CTRL, TIM_STOP);
3637 skge_write8(hw, B2_TI_CTRL, TIM_CLR_IRQ);
3638 skge_write8(hw, B0_LED, LED_STAT_ON);
3640 /* enable the Tx Arbiters */
3641 for (i = 0; i < hw->ports; i++)
3642 skge_write8(hw, SK_REG(i, TXA_CTRL), TXA_ENA_ARB);
3644 /* Initialize ram interface */
3645 skge_write16(hw, B3_RI_CTRL, RI_RST_CLR);
3647 skge_write8(hw, B3_RI_WTO_R1, SK_RI_TO_53);
3648 skge_write8(hw, B3_RI_WTO_XA1, SK_RI_TO_53);
3649 skge_write8(hw, B3_RI_WTO_XS1, SK_RI_TO_53);
3650 skge_write8(hw, B3_RI_RTO_R1, SK_RI_TO_53);
3651 skge_write8(hw, B3_RI_RTO_XA1, SK_RI_TO_53);
3652 skge_write8(hw, B3_RI_RTO_XS1, SK_RI_TO_53);
3653 skge_write8(hw, B3_RI_WTO_R2, SK_RI_TO_53);
3654 skge_write8(hw, B3_RI_WTO_XA2, SK_RI_TO_53);
3655 skge_write8(hw, B3_RI_WTO_XS2, SK_RI_TO_53);
3656 skge_write8(hw, B3_RI_RTO_R2, SK_RI_TO_53);
3657 skge_write8(hw, B3_RI_RTO_XA2, SK_RI_TO_53);
3658 skge_write8(hw, B3_RI_RTO_XS2, SK_RI_TO_53);
3660 skge_write32(hw, B0_HWE_IMSK, IS_ERR_MSK);
3662 /* Set interrupt moderation for Transmit only
3663 * Receive interrupts avoided by NAPI
3665 skge_write32(hw, B2_IRQM_MSK, IS_XA1_F|IS_XA2_F);
3666 skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, 100));
3667 skge_write32(hw, B2_IRQM_CTRL, TIM_START);
3669 skge_write32(hw, B0_IMSK, hw->intr_mask);
3671 for (i = 0; i < hw->ports; i++) {
3672 if (hw->chip_id == CHIP_ID_GENESIS)
3673 genesis_reset(hw, i);
3674 else
3675 yukon_reset(hw, i);
3678 return 0;
3682 #ifdef CONFIG_SKGE_DEBUG
3684 static struct dentry *skge_debug;
3686 static int skge_debug_show(struct seq_file *seq, void *v)
3688 struct net_device *dev = seq->private;
3689 const struct skge_port *skge = netdev_priv(dev);
3690 const struct skge_hw *hw = skge->hw;
3691 const struct skge_element *e;
3693 if (!netif_running(dev))
3694 return -ENETDOWN;
3696 seq_printf(seq, "IRQ src=%x mask=%x\n", skge_read32(hw, B0_ISRC),
3697 skge_read32(hw, B0_IMSK));
3699 seq_printf(seq, "Tx Ring: (%d)\n", skge_avail(&skge->tx_ring));
3700 for (e = skge->tx_ring.to_clean; e != skge->tx_ring.to_use; e = e->next) {
3701 const struct skge_tx_desc *t = e->desc;
3702 seq_printf(seq, "%#x dma=%#x%08x %#x csum=%#x/%x/%x\n",
3703 t->control, t->dma_hi, t->dma_lo, t->status,
3704 t->csum_offs, t->csum_write, t->csum_start);
3707 seq_printf(seq, "\nRx Ring: \n");
3708 for (e = skge->rx_ring.to_clean; ; e = e->next) {
3709 const struct skge_rx_desc *r = e->desc;
3711 if (r->control & BMU_OWN)
3712 break;
3714 seq_printf(seq, "%#x dma=%#x%08x %#x %#x csum=%#x/%x\n",
3715 r->control, r->dma_hi, r->dma_lo, r->status,
3716 r->timestamp, r->csum1, r->csum1_start);
3719 return 0;
3722 static int skge_debug_open(struct inode *inode, struct file *file)
3724 return single_open(file, skge_debug_show, inode->i_private);
3727 static const struct file_operations skge_debug_fops = {
3728 .owner = THIS_MODULE,
3729 .open = skge_debug_open,
3730 .read = seq_read,
3731 .llseek = seq_lseek,
3732 .release = single_release,
3736 * Use network device events to create/remove/rename
3737 * debugfs file entries
3739 static int skge_device_event(struct notifier_block *unused,
3740 unsigned long event, void *ptr)
3742 struct net_device *dev = ptr;
3743 struct skge_port *skge;
3744 struct dentry *d;
3746 if (dev->open != &skge_up || !skge_debug)
3747 goto done;
3749 skge = netdev_priv(dev);
3750 switch(event) {
3751 case NETDEV_CHANGENAME:
3752 if (skge->debugfs) {
3753 d = debugfs_rename(skge_debug, skge->debugfs,
3754 skge_debug, dev->name);
3755 if (d)
3756 skge->debugfs = d;
3757 else {
3758 pr_info(PFX "%s: rename failed\n", dev->name);
3759 debugfs_remove(skge->debugfs);
3762 break;
3764 case NETDEV_GOING_DOWN:
3765 if (skge->debugfs) {
3766 debugfs_remove(skge->debugfs);
3767 skge->debugfs = NULL;
3769 break;
3771 case NETDEV_UP:
3772 d = debugfs_create_file(dev->name, S_IRUGO,
3773 skge_debug, dev,
3774 &skge_debug_fops);
3775 if (!d || IS_ERR(d))
3776 pr_info(PFX "%s: debugfs create failed\n",
3777 dev->name);
3778 else
3779 skge->debugfs = d;
3780 break;
3783 done:
3784 return NOTIFY_DONE;
3787 static struct notifier_block skge_notifier = {
3788 .notifier_call = skge_device_event,
3792 static __init void skge_debug_init(void)
3794 struct dentry *ent;
3796 ent = debugfs_create_dir("skge", NULL);
3797 if (!ent || IS_ERR(ent)) {
3798 pr_info(PFX "debugfs create directory failed\n");
3799 return;
3802 skge_debug = ent;
3803 register_netdevice_notifier(&skge_notifier);
3806 static __exit void skge_debug_cleanup(void)
3808 if (skge_debug) {
3809 unregister_netdevice_notifier(&skge_notifier);
3810 debugfs_remove(skge_debug);
3811 skge_debug = NULL;
3815 #else
3816 #define skge_debug_init()
3817 #define skge_debug_cleanup()
3818 #endif
3820 /* Initialize network device */
3821 static struct net_device *skge_devinit(struct skge_hw *hw, int port,
3822 int highmem)
3824 struct skge_port *skge;
3825 struct net_device *dev = alloc_etherdev(sizeof(*skge));
3827 if (!dev) {
3828 dev_err(&hw->pdev->dev, "etherdev alloc failed\n");
3829 return NULL;
3832 SET_NETDEV_DEV(dev, &hw->pdev->dev);
3833 dev->open = skge_up;
3834 dev->stop = skge_down;
3835 dev->do_ioctl = skge_ioctl;
3836 dev->hard_start_xmit = skge_xmit_frame;
3837 dev->get_stats = skge_get_stats;
3838 if (hw->chip_id == CHIP_ID_GENESIS)
3839 dev->set_multicast_list = genesis_set_multicast;
3840 else
3841 dev->set_multicast_list = yukon_set_multicast;
3843 dev->set_mac_address = skge_set_mac_address;
3844 dev->change_mtu = skge_change_mtu;
3845 SET_ETHTOOL_OPS(dev, &skge_ethtool_ops);
3846 dev->tx_timeout = skge_tx_timeout;
3847 dev->watchdog_timeo = TX_WATCHDOG;
3848 #ifdef CONFIG_NET_POLL_CONTROLLER
3849 dev->poll_controller = skge_netpoll;
3850 #endif
3851 dev->irq = hw->pdev->irq;
3853 if (highmem)
3854 dev->features |= NETIF_F_HIGHDMA;
3856 skge = netdev_priv(dev);
3857 netif_napi_add(dev, &skge->napi, skge_poll, NAPI_WEIGHT);
3858 skge->netdev = dev;
3859 skge->hw = hw;
3860 skge->msg_enable = netif_msg_init(debug, default_msg);
3862 skge->tx_ring.count = DEFAULT_TX_RING_SIZE;
3863 skge->rx_ring.count = DEFAULT_RX_RING_SIZE;
3865 /* Auto speed and flow control */
3866 skge->autoneg = AUTONEG_ENABLE;
3867 skge->flow_control = FLOW_MODE_SYM_OR_REM;
3868 skge->duplex = -1;
3869 skge->speed = -1;
3870 skge->advertising = skge_supported_modes(hw);
3872 if (pci_wake_enabled(hw->pdev))
3873 skge->wol = wol_supported(hw) & WAKE_MAGIC;
3875 hw->dev[port] = dev;
3877 skge->port = port;
3879 /* Only used for Genesis XMAC */
3880 setup_timer(&skge->link_timer, xm_link_timer, (unsigned long) skge);
3882 if (hw->chip_id != CHIP_ID_GENESIS) {
3883 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
3884 skge->rx_csum = 1;
3887 /* read the mac address */
3888 memcpy_fromio(dev->dev_addr, hw->regs + B2_MAC_1 + port*8, ETH_ALEN);
3889 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
3891 /* device is off until link detection */
3892 netif_carrier_off(dev);
3893 netif_stop_queue(dev);
3895 return dev;
3898 static void __devinit skge_show_addr(struct net_device *dev)
3900 const struct skge_port *skge = netdev_priv(dev);
3901 DECLARE_MAC_BUF(mac);
3903 if (netif_msg_probe(skge))
3904 printk(KERN_INFO PFX "%s: addr %s\n",
3905 dev->name, print_mac(mac, dev->dev_addr));
3908 static int __devinit skge_probe(struct pci_dev *pdev,
3909 const struct pci_device_id *ent)
3911 struct net_device *dev, *dev1;
3912 struct skge_hw *hw;
3913 int err, using_dac = 0;
3915 err = pci_enable_device(pdev);
3916 if (err) {
3917 dev_err(&pdev->dev, "cannot enable PCI device\n");
3918 goto err_out;
3921 err = pci_request_regions(pdev, DRV_NAME);
3922 if (err) {
3923 dev_err(&pdev->dev, "cannot obtain PCI resources\n");
3924 goto err_out_disable_pdev;
3927 pci_set_master(pdev);
3929 if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
3930 using_dac = 1;
3931 err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
3932 } else if (!(err = pci_set_dma_mask(pdev, DMA_32BIT_MASK))) {
3933 using_dac = 0;
3934 err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
3937 if (err) {
3938 dev_err(&pdev->dev, "no usable DMA configuration\n");
3939 goto err_out_free_regions;
3942 #ifdef __BIG_ENDIAN
3943 /* byte swap descriptors in hardware */
3945 u32 reg;
3947 pci_read_config_dword(pdev, PCI_DEV_REG2, &reg);
3948 reg |= PCI_REV_DESC;
3949 pci_write_config_dword(pdev, PCI_DEV_REG2, reg);
3951 #endif
3953 err = -ENOMEM;
3954 hw = kzalloc(sizeof(*hw), GFP_KERNEL);
3955 if (!hw) {
3956 dev_err(&pdev->dev, "cannot allocate hardware struct\n");
3957 goto err_out_free_regions;
3960 hw->pdev = pdev;
3961 spin_lock_init(&hw->hw_lock);
3962 spin_lock_init(&hw->phy_lock);
3963 tasklet_init(&hw->phy_task, &skge_extirq, (unsigned long) hw);
3965 hw->regs = ioremap_nocache(pci_resource_start(pdev, 0), 0x4000);
3966 if (!hw->regs) {
3967 dev_err(&pdev->dev, "cannot map device registers\n");
3968 goto err_out_free_hw;
3971 err = skge_reset(hw);
3972 if (err)
3973 goto err_out_iounmap;
3975 printk(KERN_INFO PFX DRV_VERSION " addr 0x%llx irq %d chip %s rev %d\n",
3976 (unsigned long long)pci_resource_start(pdev, 0), pdev->irq,
3977 skge_board_name(hw), hw->chip_rev);
3979 dev = skge_devinit(hw, 0, using_dac);
3980 if (!dev)
3981 goto err_out_led_off;
3983 /* Some motherboards are broken and has zero in ROM. */
3984 if (!is_valid_ether_addr(dev->dev_addr))
3985 dev_warn(&pdev->dev, "bad (zero?) ethernet address in rom\n");
3987 err = register_netdev(dev);
3988 if (err) {
3989 dev_err(&pdev->dev, "cannot register net device\n");
3990 goto err_out_free_netdev;
3993 err = request_irq(pdev->irq, skge_intr, IRQF_SHARED, dev->name, hw);
3994 if (err) {
3995 dev_err(&pdev->dev, "%s: cannot assign irq %d\n",
3996 dev->name, pdev->irq);
3997 goto err_out_unregister;
3999 skge_show_addr(dev);
4001 if (hw->ports > 1 && (dev1 = skge_devinit(hw, 1, using_dac))) {
4002 if (register_netdev(dev1) == 0)
4003 skge_show_addr(dev1);
4004 else {
4005 /* Failure to register second port need not be fatal */
4006 dev_warn(&pdev->dev, "register of second port failed\n");
4007 hw->dev[1] = NULL;
4008 free_netdev(dev1);
4011 pci_set_drvdata(pdev, hw);
4013 return 0;
4015 err_out_unregister:
4016 unregister_netdev(dev);
4017 err_out_free_netdev:
4018 free_netdev(dev);
4019 err_out_led_off:
4020 skge_write16(hw, B0_LED, LED_STAT_OFF);
4021 err_out_iounmap:
4022 iounmap(hw->regs);
4023 err_out_free_hw:
4024 kfree(hw);
4025 err_out_free_regions:
4026 pci_release_regions(pdev);
4027 err_out_disable_pdev:
4028 pci_disable_device(pdev);
4029 pci_set_drvdata(pdev, NULL);
4030 err_out:
4031 return err;
4034 static void __devexit skge_remove(struct pci_dev *pdev)
4036 struct skge_hw *hw = pci_get_drvdata(pdev);
4037 struct net_device *dev0, *dev1;
4039 if (!hw)
4040 return;
4042 flush_scheduled_work();
4044 if ((dev1 = hw->dev[1]))
4045 unregister_netdev(dev1);
4046 dev0 = hw->dev[0];
4047 unregister_netdev(dev0);
4049 tasklet_disable(&hw->phy_task);
4051 spin_lock_irq(&hw->hw_lock);
4052 hw->intr_mask = 0;
4053 skge_write32(hw, B0_IMSK, 0);
4054 skge_read32(hw, B0_IMSK);
4055 spin_unlock_irq(&hw->hw_lock);
4057 skge_write16(hw, B0_LED, LED_STAT_OFF);
4058 skge_write8(hw, B0_CTST, CS_RST_SET);
4060 free_irq(pdev->irq, hw);
4061 pci_release_regions(pdev);
4062 pci_disable_device(pdev);
4063 if (dev1)
4064 free_netdev(dev1);
4065 free_netdev(dev0);
4067 iounmap(hw->regs);
4068 kfree(hw);
4069 pci_set_drvdata(pdev, NULL);
4072 #ifdef CONFIG_PM
4073 static int skge_suspend(struct pci_dev *pdev, pm_message_t state)
4075 struct skge_hw *hw = pci_get_drvdata(pdev);
4076 int i, err, wol = 0;
4078 if (!hw)
4079 return 0;
4081 err = pci_save_state(pdev);
4082 if (err)
4083 return err;
4085 for (i = 0; i < hw->ports; i++) {
4086 struct net_device *dev = hw->dev[i];
4087 struct skge_port *skge = netdev_priv(dev);
4089 if (netif_running(dev))
4090 skge_down(dev);
4091 if (skge->wol)
4092 skge_wol_init(skge);
4094 wol |= skge->wol;
4097 skge_write32(hw, B0_IMSK, 0);
4098 pci_enable_wake(pdev, pci_choose_state(pdev, state), wol);
4099 pci_set_power_state(pdev, pci_choose_state(pdev, state));
4101 return 0;
4104 static int skge_resume(struct pci_dev *pdev)
4106 struct skge_hw *hw = pci_get_drvdata(pdev);
4107 int i, err;
4109 if (!hw)
4110 return 0;
4112 err = pci_set_power_state(pdev, PCI_D0);
4113 if (err)
4114 goto out;
4116 err = pci_restore_state(pdev);
4117 if (err)
4118 goto out;
4120 pci_enable_wake(pdev, PCI_D0, 0);
4122 err = skge_reset(hw);
4123 if (err)
4124 goto out;
4126 for (i = 0; i < hw->ports; i++) {
4127 struct net_device *dev = hw->dev[i];
4129 if (netif_running(dev)) {
4130 err = skge_up(dev);
4132 if (err) {
4133 printk(KERN_ERR PFX "%s: could not up: %d\n",
4134 dev->name, err);
4135 dev_close(dev);
4136 goto out;
4140 out:
4141 return err;
4143 #endif
4145 static void skge_shutdown(struct pci_dev *pdev)
4147 struct skge_hw *hw = pci_get_drvdata(pdev);
4148 int i, wol = 0;
4150 if (!hw)
4151 return;
4153 for (i = 0; i < hw->ports; i++) {
4154 struct net_device *dev = hw->dev[i];
4155 struct skge_port *skge = netdev_priv(dev);
4157 if (skge->wol)
4158 skge_wol_init(skge);
4159 wol |= skge->wol;
4162 pci_enable_wake(pdev, PCI_D3hot, wol);
4163 pci_enable_wake(pdev, PCI_D3cold, wol);
4165 pci_disable_device(pdev);
4166 pci_set_power_state(pdev, PCI_D3hot);
4170 static struct pci_driver skge_driver = {
4171 .name = DRV_NAME,
4172 .id_table = skge_id_table,
4173 .probe = skge_probe,
4174 .remove = __devexit_p(skge_remove),
4175 #ifdef CONFIG_PM
4176 .suspend = skge_suspend,
4177 .resume = skge_resume,
4178 #endif
4179 .shutdown = skge_shutdown,
4182 static int __init skge_init_module(void)
4184 skge_debug_init();
4185 return pci_register_driver(&skge_driver);
4188 static void __exit skge_cleanup_module(void)
4190 pci_unregister_driver(&skge_driver);
4191 skge_debug_cleanup();
4194 module_init(skge_init_module);
4195 module_exit(skge_cleanup_module);