gfs2: new export ops
[linux-2.6/linux-trees-mm.git] / arch / mips / sgi-ip22 / ip22-time.c
blob10e50549165588b13cfc5a63e17a57539f7812ba
1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
6 * Time operations for IP22 machines. Original code may come from
7 * Ralf Baechle or David S. Miller (sorry guys, i'm really not sure)
9 * Copyright (C) 2001 by Ladislav Michl
10 * Copyright (C) 2003, 06 Ralf Baechle (ralf@linux-mips.org)
12 #include <linux/bcd.h>
13 #include <linux/ds1286.h>
14 #include <linux/init.h>
15 #include <linux/irq.h>
16 #include <linux/kernel.h>
17 #include <linux/interrupt.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/time.h>
21 #include <asm/cpu.h>
22 #include <asm/mipsregs.h>
23 #include <asm/i8253.h>
24 #include <asm/io.h>
25 #include <asm/irq.h>
26 #include <asm/time.h>
27 #include <asm/sgialib.h>
28 #include <asm/sgi/ioc.h>
29 #include <asm/sgi/hpc3.h>
30 #include <asm/sgi/ip22.h>
33 * Note that mktime uses month from 1 to 12 while rtc_time_to_tm
34 * uses 0 to 11.
36 unsigned long read_persistent_clock(void)
38 unsigned int yrs, mon, day, hrs, min, sec;
39 unsigned int save_control;
40 unsigned long flags;
42 spin_lock_irqsave(&rtc_lock, flags);
43 save_control = hpc3c0->rtcregs[RTC_CMD] & 0xff;
44 hpc3c0->rtcregs[RTC_CMD] = save_control | RTC_TE;
46 sec = BCD2BIN(hpc3c0->rtcregs[RTC_SECONDS] & 0xff);
47 min = BCD2BIN(hpc3c0->rtcregs[RTC_MINUTES] & 0xff);
48 hrs = BCD2BIN(hpc3c0->rtcregs[RTC_HOURS] & 0x3f);
49 day = BCD2BIN(hpc3c0->rtcregs[RTC_DATE] & 0xff);
50 mon = BCD2BIN(hpc3c0->rtcregs[RTC_MONTH] & 0x1f);
51 yrs = BCD2BIN(hpc3c0->rtcregs[RTC_YEAR] & 0xff);
53 hpc3c0->rtcregs[RTC_CMD] = save_control;
54 spin_unlock_irqrestore(&rtc_lock, flags);
56 if (yrs < 45)
57 yrs += 30;
58 if ((yrs += 40) < 70)
59 yrs += 100;
61 return mktime(yrs + 1900, mon, day, hrs, min, sec);
64 int rtc_mips_set_time(unsigned long tim)
66 struct rtc_time tm;
67 unsigned int save_control;
68 unsigned long flags;
70 rtc_time_to_tm(tim, &tm);
72 tm.tm_mon += 1; /* tm_mon starts at zero */
73 tm.tm_year -= 40;
74 if (tm.tm_year >= 100)
75 tm.tm_year -= 100;
77 spin_lock_irqsave(&rtc_lock, flags);
78 save_control = hpc3c0->rtcregs[RTC_CMD] & 0xff;
79 hpc3c0->rtcregs[RTC_CMD] = save_control | RTC_TE;
81 hpc3c0->rtcregs[RTC_YEAR] = BIN2BCD(tm.tm_year);
82 hpc3c0->rtcregs[RTC_MONTH] = BIN2BCD(tm.tm_mon);
83 hpc3c0->rtcregs[RTC_DATE] = BIN2BCD(tm.tm_mday);
84 hpc3c0->rtcregs[RTC_HOURS] = BIN2BCD(tm.tm_hour);
85 hpc3c0->rtcregs[RTC_MINUTES] = BIN2BCD(tm.tm_min);
86 hpc3c0->rtcregs[RTC_SECONDS] = BIN2BCD(tm.tm_sec);
87 hpc3c0->rtcregs[RTC_HUNDREDTH_SECOND] = 0;
89 hpc3c0->rtcregs[RTC_CMD] = save_control;
90 spin_unlock_irqrestore(&rtc_lock, flags);
92 return 0;
95 static unsigned long dosample(void)
97 u32 ct0, ct1;
98 u8 msb, lsb;
100 /* Start the counter. */
101 sgint->tcword = (SGINT_TCWORD_CNT2 | SGINT_TCWORD_CALL |
102 SGINT_TCWORD_MRGEN);
103 sgint->tcnt2 = SGINT_TCSAMP_COUNTER & 0xff;
104 sgint->tcnt2 = SGINT_TCSAMP_COUNTER >> 8;
106 /* Get initial counter invariant */
107 ct0 = read_c0_count();
109 /* Latch and spin until top byte of counter2 is zero */
110 do {
111 writeb(SGINT_TCWORD_CNT2 | SGINT_TCWORD_CLAT, &sgint->tcword);
112 lsb = readb(&sgint->tcnt2);
113 msb = readb(&sgint->tcnt2);
114 ct1 = read_c0_count();
115 } while (msb);
117 /* Stop the counter. */
118 writeb(SGINT_TCWORD_CNT2 | SGINT_TCWORD_CALL | SGINT_TCWORD_MSWST,
119 &sgint->tcword);
121 * Return the difference, this is how far the r4k counter increments
122 * for every 1/HZ seconds. We round off the nearest 1 MHz of master
123 * clock (= 1000000 / HZ / 2).
126 return (ct1 - ct0) / (500000/HZ) * (500000/HZ);
130 * Here we need to calibrate the cycle counter to at least be close.
132 __init void plat_time_init(void)
134 unsigned long r4k_ticks[3];
135 unsigned long r4k_tick;
138 * Figure out the r4k offset, the algorithm is very simple and works in
139 * _all_ cases as long as the 8254 counter register itself works ok (as
140 * an interrupt driving timer it does not because of bug, this is why
141 * we are using the onchip r4k counter/compare register to serve this
142 * purpose, but for r4k_offset calculation it will work ok for us).
143 * There are other very complicated ways of performing this calculation
144 * but this one works just fine so I am not going to futz around. ;-)
146 printk(KERN_INFO "Calibrating system timer... ");
147 dosample(); /* Prime cache. */
148 dosample(); /* Prime cache. */
149 /* Zero is NOT an option. */
150 do {
151 r4k_ticks[0] = dosample();
152 } while (!r4k_ticks[0]);
153 do {
154 r4k_ticks[1] = dosample();
155 } while (!r4k_ticks[1]);
157 if (r4k_ticks[0] != r4k_ticks[1]) {
158 printk("warning: timer counts differ, retrying... ");
159 r4k_ticks[2] = dosample();
160 if (r4k_ticks[2] == r4k_ticks[0]
161 || r4k_ticks[2] == r4k_ticks[1])
162 r4k_tick = r4k_ticks[2];
163 else {
164 printk("disagreement, using average... ");
165 r4k_tick = (r4k_ticks[0] + r4k_ticks[1]
166 + r4k_ticks[2]) / 3;
168 } else
169 r4k_tick = r4k_ticks[0];
171 printk("%d [%d.%04d MHz CPU]\n", (int) r4k_tick,
172 (int) (r4k_tick / (500000 / HZ)),
173 (int) (r4k_tick % (500000 / HZ)));
175 mips_hpt_frequency = r4k_tick * HZ;
177 if (ip22_is_fullhouse())
178 setup_pit_timer();
181 /* Generic SGI handler for (spurious) 8254 interrupts */
182 void indy_8254timer_irq(void)
184 int irq = SGI_8254_0_IRQ;
185 ULONG cnt;
186 char c;
188 irq_enter();
189 kstat_this_cpu.irqs[irq]++;
190 printk(KERN_ALERT "Oops, got 8254 interrupt.\n");
191 ArcRead(0, &c, 1, &cnt);
192 ArcEnterInteractiveMode();
193 irq_exit();