[XFS] call common xfs vfs-level helpers directly and remove vfs operations
[linux-2.6/linux-trees-mm.git] / fs / xfs / xfs_inode.c
blob0c376bd9e173944a03a86fce2c614cbc4de62a3c
1 /*
2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3 * All Rights Reserved.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_bit.h"
22 #include "xfs_log.h"
23 #include "xfs_inum.h"
24 #include "xfs_imap.h"
25 #include "xfs_trans.h"
26 #include "xfs_trans_priv.h"
27 #include "xfs_sb.h"
28 #include "xfs_ag.h"
29 #include "xfs_dir2.h"
30 #include "xfs_dmapi.h"
31 #include "xfs_mount.h"
32 #include "xfs_bmap_btree.h"
33 #include "xfs_alloc_btree.h"
34 #include "xfs_ialloc_btree.h"
35 #include "xfs_dir2_sf.h"
36 #include "xfs_attr_sf.h"
37 #include "xfs_dinode.h"
38 #include "xfs_inode.h"
39 #include "xfs_buf_item.h"
40 #include "xfs_inode_item.h"
41 #include "xfs_btree.h"
42 #include "xfs_alloc.h"
43 #include "xfs_ialloc.h"
44 #include "xfs_bmap.h"
45 #include "xfs_rw.h"
46 #include "xfs_error.h"
47 #include "xfs_utils.h"
48 #include "xfs_dir2_trace.h"
49 #include "xfs_quota.h"
50 #include "xfs_acl.h"
51 #include "xfs_filestream.h"
52 #include "xfs_vnodeops.h"
54 kmem_zone_t *xfs_ifork_zone;
55 kmem_zone_t *xfs_inode_zone;
56 kmem_zone_t *xfs_icluster_zone;
59 * Used in xfs_itruncate(). This is the maximum number of extents
60 * freed from a file in a single transaction.
62 #define XFS_ITRUNC_MAX_EXTENTS 2
64 STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *);
65 STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int);
66 STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int);
67 STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int);
69 #ifdef DEBUG
71 * Make sure that the extents in the given memory buffer
72 * are valid.
74 STATIC void
75 xfs_validate_extents(
76 xfs_ifork_t *ifp,
77 int nrecs,
78 xfs_exntfmt_t fmt)
80 xfs_bmbt_irec_t irec;
81 xfs_bmbt_rec_host_t rec;
82 int i;
84 for (i = 0; i < nrecs; i++) {
85 xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
86 rec.l0 = get_unaligned(&ep->l0);
87 rec.l1 = get_unaligned(&ep->l1);
88 xfs_bmbt_get_all(&rec, &irec);
89 if (fmt == XFS_EXTFMT_NOSTATE)
90 ASSERT(irec.br_state == XFS_EXT_NORM);
93 #else /* DEBUG */
94 #define xfs_validate_extents(ifp, nrecs, fmt)
95 #endif /* DEBUG */
98 * Check that none of the inode's in the buffer have a next
99 * unlinked field of 0.
101 #if defined(DEBUG)
102 void
103 xfs_inobp_check(
104 xfs_mount_t *mp,
105 xfs_buf_t *bp)
107 int i;
108 int j;
109 xfs_dinode_t *dip;
111 j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
113 for (i = 0; i < j; i++) {
114 dip = (xfs_dinode_t *)xfs_buf_offset(bp,
115 i * mp->m_sb.sb_inodesize);
116 if (!dip->di_next_unlinked) {
117 xfs_fs_cmn_err(CE_ALERT, mp,
118 "Detected a bogus zero next_unlinked field in incore inode buffer 0x%p. About to pop an ASSERT.",
119 bp);
120 ASSERT(dip->di_next_unlinked);
124 #endif
127 * This routine is called to map an inode number within a file
128 * system to the buffer containing the on-disk version of the
129 * inode. It returns a pointer to the buffer containing the
130 * on-disk inode in the bpp parameter, and in the dip parameter
131 * it returns a pointer to the on-disk inode within that buffer.
133 * If a non-zero error is returned, then the contents of bpp and
134 * dipp are undefined.
136 * Use xfs_imap() to determine the size and location of the
137 * buffer to read from disk.
139 STATIC int
140 xfs_inotobp(
141 xfs_mount_t *mp,
142 xfs_trans_t *tp,
143 xfs_ino_t ino,
144 xfs_dinode_t **dipp,
145 xfs_buf_t **bpp,
146 int *offset)
148 int di_ok;
149 xfs_imap_t imap;
150 xfs_buf_t *bp;
151 int error;
152 xfs_dinode_t *dip;
155 * Call the space management code to find the location of the
156 * inode on disk.
158 imap.im_blkno = 0;
159 error = xfs_imap(mp, tp, ino, &imap, XFS_IMAP_LOOKUP);
160 if (error != 0) {
161 cmn_err(CE_WARN,
162 "xfs_inotobp: xfs_imap() returned an "
163 "error %d on %s. Returning error.", error, mp->m_fsname);
164 return error;
168 * If the inode number maps to a block outside the bounds of the
169 * file system then return NULL rather than calling read_buf
170 * and panicing when we get an error from the driver.
172 if ((imap.im_blkno + imap.im_len) >
173 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
174 cmn_err(CE_WARN,
175 "xfs_inotobp: inode number (%llu + %d) maps to a block outside the bounds "
176 "of the file system %s. Returning EINVAL.",
177 (unsigned long long)imap.im_blkno,
178 imap.im_len, mp->m_fsname);
179 return XFS_ERROR(EINVAL);
183 * Read in the buffer. If tp is NULL, xfs_trans_read_buf() will
184 * default to just a read_buf() call.
186 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap.im_blkno,
187 (int)imap.im_len, XFS_BUF_LOCK, &bp);
189 if (error) {
190 cmn_err(CE_WARN,
191 "xfs_inotobp: xfs_trans_read_buf() returned an "
192 "error %d on %s. Returning error.", error, mp->m_fsname);
193 return error;
195 dip = (xfs_dinode_t *)xfs_buf_offset(bp, 0);
196 di_ok =
197 be16_to_cpu(dip->di_core.di_magic) == XFS_DINODE_MAGIC &&
198 XFS_DINODE_GOOD_VERSION(dip->di_core.di_version);
199 if (unlikely(XFS_TEST_ERROR(!di_ok, mp, XFS_ERRTAG_ITOBP_INOTOBP,
200 XFS_RANDOM_ITOBP_INOTOBP))) {
201 XFS_CORRUPTION_ERROR("xfs_inotobp", XFS_ERRLEVEL_LOW, mp, dip);
202 xfs_trans_brelse(tp, bp);
203 cmn_err(CE_WARN,
204 "xfs_inotobp: XFS_TEST_ERROR() returned an "
205 "error on %s. Returning EFSCORRUPTED.", mp->m_fsname);
206 return XFS_ERROR(EFSCORRUPTED);
209 xfs_inobp_check(mp, bp);
212 * Set *dipp to point to the on-disk inode in the buffer.
214 *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
215 *bpp = bp;
216 *offset = imap.im_boffset;
217 return 0;
222 * This routine is called to map an inode to the buffer containing
223 * the on-disk version of the inode. It returns a pointer to the
224 * buffer containing the on-disk inode in the bpp parameter, and in
225 * the dip parameter it returns a pointer to the on-disk inode within
226 * that buffer.
228 * If a non-zero error is returned, then the contents of bpp and
229 * dipp are undefined.
231 * If the inode is new and has not yet been initialized, use xfs_imap()
232 * to determine the size and location of the buffer to read from disk.
233 * If the inode has already been mapped to its buffer and read in once,
234 * then use the mapping information stored in the inode rather than
235 * calling xfs_imap(). This allows us to avoid the overhead of looking
236 * at the inode btree for small block file systems (see xfs_dilocate()).
237 * We can tell whether the inode has been mapped in before by comparing
238 * its disk block address to 0. Only uninitialized inodes will have
239 * 0 for the disk block address.
242 xfs_itobp(
243 xfs_mount_t *mp,
244 xfs_trans_t *tp,
245 xfs_inode_t *ip,
246 xfs_dinode_t **dipp,
247 xfs_buf_t **bpp,
248 xfs_daddr_t bno,
249 uint imap_flags)
251 xfs_imap_t imap;
252 xfs_buf_t *bp;
253 int error;
254 int i;
255 int ni;
257 if (ip->i_blkno == (xfs_daddr_t)0) {
259 * Call the space management code to find the location of the
260 * inode on disk.
262 imap.im_blkno = bno;
263 if ((error = xfs_imap(mp, tp, ip->i_ino, &imap,
264 XFS_IMAP_LOOKUP | imap_flags)))
265 return error;
268 * If the inode number maps to a block outside the bounds
269 * of the file system then return NULL rather than calling
270 * read_buf and panicing when we get an error from the
271 * driver.
273 if ((imap.im_blkno + imap.im_len) >
274 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
275 #ifdef DEBUG
276 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_itobp: "
277 "(imap.im_blkno (0x%llx) "
278 "+ imap.im_len (0x%llx)) > "
279 " XFS_FSB_TO_BB(mp, "
280 "mp->m_sb.sb_dblocks) (0x%llx)",
281 (unsigned long long) imap.im_blkno,
282 (unsigned long long) imap.im_len,
283 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks));
284 #endif /* DEBUG */
285 return XFS_ERROR(EINVAL);
289 * Fill in the fields in the inode that will be used to
290 * map the inode to its buffer from now on.
292 ip->i_blkno = imap.im_blkno;
293 ip->i_len = imap.im_len;
294 ip->i_boffset = imap.im_boffset;
295 } else {
297 * We've already mapped the inode once, so just use the
298 * mapping that we saved the first time.
300 imap.im_blkno = ip->i_blkno;
301 imap.im_len = ip->i_len;
302 imap.im_boffset = ip->i_boffset;
304 ASSERT(bno == 0 || bno == imap.im_blkno);
307 * Read in the buffer. If tp is NULL, xfs_trans_read_buf() will
308 * default to just a read_buf() call.
310 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap.im_blkno,
311 (int)imap.im_len, XFS_BUF_LOCK, &bp);
312 if (error) {
313 #ifdef DEBUG
314 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_itobp: "
315 "xfs_trans_read_buf() returned error %d, "
316 "imap.im_blkno 0x%llx, imap.im_len 0x%llx",
317 error, (unsigned long long) imap.im_blkno,
318 (unsigned long long) imap.im_len);
319 #endif /* DEBUG */
320 return error;
324 * Validate the magic number and version of every inode in the buffer
325 * (if DEBUG kernel) or the first inode in the buffer, otherwise.
326 * No validation is done here in userspace (xfs_repair).
328 #if !defined(__KERNEL__)
329 ni = 0;
330 #elif defined(DEBUG)
331 ni = BBTOB(imap.im_len) >> mp->m_sb.sb_inodelog;
332 #else /* usual case */
333 ni = 1;
334 #endif
336 for (i = 0; i < ni; i++) {
337 int di_ok;
338 xfs_dinode_t *dip;
340 dip = (xfs_dinode_t *)xfs_buf_offset(bp,
341 (i << mp->m_sb.sb_inodelog));
342 di_ok = be16_to_cpu(dip->di_core.di_magic) == XFS_DINODE_MAGIC &&
343 XFS_DINODE_GOOD_VERSION(dip->di_core.di_version);
344 if (unlikely(XFS_TEST_ERROR(!di_ok, mp,
345 XFS_ERRTAG_ITOBP_INOTOBP,
346 XFS_RANDOM_ITOBP_INOTOBP))) {
347 if (imap_flags & XFS_IMAP_BULKSTAT) {
348 xfs_trans_brelse(tp, bp);
349 return XFS_ERROR(EINVAL);
351 #ifdef DEBUG
352 cmn_err(CE_ALERT,
353 "Device %s - bad inode magic/vsn "
354 "daddr %lld #%d (magic=%x)",
355 XFS_BUFTARG_NAME(mp->m_ddev_targp),
356 (unsigned long long)imap.im_blkno, i,
357 be16_to_cpu(dip->di_core.di_magic));
358 #endif
359 XFS_CORRUPTION_ERROR("xfs_itobp", XFS_ERRLEVEL_HIGH,
360 mp, dip);
361 xfs_trans_brelse(tp, bp);
362 return XFS_ERROR(EFSCORRUPTED);
366 xfs_inobp_check(mp, bp);
369 * Mark the buffer as an inode buffer now that it looks good
371 XFS_BUF_SET_VTYPE(bp, B_FS_INO);
374 * Set *dipp to point to the on-disk inode in the buffer.
376 *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
377 *bpp = bp;
378 return 0;
382 * Move inode type and inode format specific information from the
383 * on-disk inode to the in-core inode. For fifos, devs, and sockets
384 * this means set if_rdev to the proper value. For files, directories,
385 * and symlinks this means to bring in the in-line data or extent
386 * pointers. For a file in B-tree format, only the root is immediately
387 * brought in-core. The rest will be in-lined in if_extents when it
388 * is first referenced (see xfs_iread_extents()).
390 STATIC int
391 xfs_iformat(
392 xfs_inode_t *ip,
393 xfs_dinode_t *dip)
395 xfs_attr_shortform_t *atp;
396 int size;
397 int error;
398 xfs_fsize_t di_size;
399 ip->i_df.if_ext_max =
400 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
401 error = 0;
403 if (unlikely(be32_to_cpu(dip->di_core.di_nextents) +
404 be16_to_cpu(dip->di_core.di_anextents) >
405 be64_to_cpu(dip->di_core.di_nblocks))) {
406 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
407 "corrupt dinode %Lu, extent total = %d, nblocks = %Lu.",
408 (unsigned long long)ip->i_ino,
409 (int)(be32_to_cpu(dip->di_core.di_nextents) +
410 be16_to_cpu(dip->di_core.di_anextents)),
411 (unsigned long long)
412 be64_to_cpu(dip->di_core.di_nblocks));
413 XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW,
414 ip->i_mount, dip);
415 return XFS_ERROR(EFSCORRUPTED);
418 if (unlikely(dip->di_core.di_forkoff > ip->i_mount->m_sb.sb_inodesize)) {
419 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
420 "corrupt dinode %Lu, forkoff = 0x%x.",
421 (unsigned long long)ip->i_ino,
422 dip->di_core.di_forkoff);
423 XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW,
424 ip->i_mount, dip);
425 return XFS_ERROR(EFSCORRUPTED);
428 switch (ip->i_d.di_mode & S_IFMT) {
429 case S_IFIFO:
430 case S_IFCHR:
431 case S_IFBLK:
432 case S_IFSOCK:
433 if (unlikely(dip->di_core.di_format != XFS_DINODE_FMT_DEV)) {
434 XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW,
435 ip->i_mount, dip);
436 return XFS_ERROR(EFSCORRUPTED);
438 ip->i_d.di_size = 0;
439 ip->i_size = 0;
440 ip->i_df.if_u2.if_rdev = be32_to_cpu(dip->di_u.di_dev);
441 break;
443 case S_IFREG:
444 case S_IFLNK:
445 case S_IFDIR:
446 switch (dip->di_core.di_format) {
447 case XFS_DINODE_FMT_LOCAL:
449 * no local regular files yet
451 if (unlikely((be16_to_cpu(dip->di_core.di_mode) & S_IFMT) == S_IFREG)) {
452 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
453 "corrupt inode %Lu "
454 "(local format for regular file).",
455 (unsigned long long) ip->i_ino);
456 XFS_CORRUPTION_ERROR("xfs_iformat(4)",
457 XFS_ERRLEVEL_LOW,
458 ip->i_mount, dip);
459 return XFS_ERROR(EFSCORRUPTED);
462 di_size = be64_to_cpu(dip->di_core.di_size);
463 if (unlikely(di_size > XFS_DFORK_DSIZE(dip, ip->i_mount))) {
464 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
465 "corrupt inode %Lu "
466 "(bad size %Ld for local inode).",
467 (unsigned long long) ip->i_ino,
468 (long long) di_size);
469 XFS_CORRUPTION_ERROR("xfs_iformat(5)",
470 XFS_ERRLEVEL_LOW,
471 ip->i_mount, dip);
472 return XFS_ERROR(EFSCORRUPTED);
475 size = (int)di_size;
476 error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size);
477 break;
478 case XFS_DINODE_FMT_EXTENTS:
479 error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK);
480 break;
481 case XFS_DINODE_FMT_BTREE:
482 error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK);
483 break;
484 default:
485 XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW,
486 ip->i_mount);
487 return XFS_ERROR(EFSCORRUPTED);
489 break;
491 default:
492 XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW, ip->i_mount);
493 return XFS_ERROR(EFSCORRUPTED);
495 if (error) {
496 return error;
498 if (!XFS_DFORK_Q(dip))
499 return 0;
500 ASSERT(ip->i_afp == NULL);
501 ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP);
502 ip->i_afp->if_ext_max =
503 XFS_IFORK_ASIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
504 switch (dip->di_core.di_aformat) {
505 case XFS_DINODE_FMT_LOCAL:
506 atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip);
507 size = be16_to_cpu(atp->hdr.totsize);
508 error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size);
509 break;
510 case XFS_DINODE_FMT_EXTENTS:
511 error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK);
512 break;
513 case XFS_DINODE_FMT_BTREE:
514 error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK);
515 break;
516 default:
517 error = XFS_ERROR(EFSCORRUPTED);
518 break;
520 if (error) {
521 kmem_zone_free(xfs_ifork_zone, ip->i_afp);
522 ip->i_afp = NULL;
523 xfs_idestroy_fork(ip, XFS_DATA_FORK);
525 return error;
529 * The file is in-lined in the on-disk inode.
530 * If it fits into if_inline_data, then copy
531 * it there, otherwise allocate a buffer for it
532 * and copy the data there. Either way, set
533 * if_data to point at the data.
534 * If we allocate a buffer for the data, make
535 * sure that its size is a multiple of 4 and
536 * record the real size in i_real_bytes.
538 STATIC int
539 xfs_iformat_local(
540 xfs_inode_t *ip,
541 xfs_dinode_t *dip,
542 int whichfork,
543 int size)
545 xfs_ifork_t *ifp;
546 int real_size;
549 * If the size is unreasonable, then something
550 * is wrong and we just bail out rather than crash in
551 * kmem_alloc() or memcpy() below.
553 if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
554 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
555 "corrupt inode %Lu "
556 "(bad size %d for local fork, size = %d).",
557 (unsigned long long) ip->i_ino, size,
558 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork));
559 XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW,
560 ip->i_mount, dip);
561 return XFS_ERROR(EFSCORRUPTED);
563 ifp = XFS_IFORK_PTR(ip, whichfork);
564 real_size = 0;
565 if (size == 0)
566 ifp->if_u1.if_data = NULL;
567 else if (size <= sizeof(ifp->if_u2.if_inline_data))
568 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
569 else {
570 real_size = roundup(size, 4);
571 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
573 ifp->if_bytes = size;
574 ifp->if_real_bytes = real_size;
575 if (size)
576 memcpy(ifp->if_u1.if_data, XFS_DFORK_PTR(dip, whichfork), size);
577 ifp->if_flags &= ~XFS_IFEXTENTS;
578 ifp->if_flags |= XFS_IFINLINE;
579 return 0;
583 * The file consists of a set of extents all
584 * of which fit into the on-disk inode.
585 * If there are few enough extents to fit into
586 * the if_inline_ext, then copy them there.
587 * Otherwise allocate a buffer for them and copy
588 * them into it. Either way, set if_extents
589 * to point at the extents.
591 STATIC int
592 xfs_iformat_extents(
593 xfs_inode_t *ip,
594 xfs_dinode_t *dip,
595 int whichfork)
597 xfs_bmbt_rec_t *dp;
598 xfs_ifork_t *ifp;
599 int nex;
600 int size;
601 int i;
603 ifp = XFS_IFORK_PTR(ip, whichfork);
604 nex = XFS_DFORK_NEXTENTS(dip, whichfork);
605 size = nex * (uint)sizeof(xfs_bmbt_rec_t);
608 * If the number of extents is unreasonable, then something
609 * is wrong and we just bail out rather than crash in
610 * kmem_alloc() or memcpy() below.
612 if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
613 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
614 "corrupt inode %Lu ((a)extents = %d).",
615 (unsigned long long) ip->i_ino, nex);
616 XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW,
617 ip->i_mount, dip);
618 return XFS_ERROR(EFSCORRUPTED);
621 ifp->if_real_bytes = 0;
622 if (nex == 0)
623 ifp->if_u1.if_extents = NULL;
624 else if (nex <= XFS_INLINE_EXTS)
625 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
626 else
627 xfs_iext_add(ifp, 0, nex);
629 ifp->if_bytes = size;
630 if (size) {
631 dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork);
632 xfs_validate_extents(ifp, nex, XFS_EXTFMT_INODE(ip));
633 for (i = 0; i < nex; i++, dp++) {
634 xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
635 ep->l0 = be64_to_cpu(get_unaligned(&dp->l0));
636 ep->l1 = be64_to_cpu(get_unaligned(&dp->l1));
638 XFS_BMAP_TRACE_EXLIST(ip, nex, whichfork);
639 if (whichfork != XFS_DATA_FORK ||
640 XFS_EXTFMT_INODE(ip) == XFS_EXTFMT_NOSTATE)
641 if (unlikely(xfs_check_nostate_extents(
642 ifp, 0, nex))) {
643 XFS_ERROR_REPORT("xfs_iformat_extents(2)",
644 XFS_ERRLEVEL_LOW,
645 ip->i_mount);
646 return XFS_ERROR(EFSCORRUPTED);
649 ifp->if_flags |= XFS_IFEXTENTS;
650 return 0;
654 * The file has too many extents to fit into
655 * the inode, so they are in B-tree format.
656 * Allocate a buffer for the root of the B-tree
657 * and copy the root into it. The i_extents
658 * field will remain NULL until all of the
659 * extents are read in (when they are needed).
661 STATIC int
662 xfs_iformat_btree(
663 xfs_inode_t *ip,
664 xfs_dinode_t *dip,
665 int whichfork)
667 xfs_bmdr_block_t *dfp;
668 xfs_ifork_t *ifp;
669 /* REFERENCED */
670 int nrecs;
671 int size;
673 ifp = XFS_IFORK_PTR(ip, whichfork);
674 dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork);
675 size = XFS_BMAP_BROOT_SPACE(dfp);
676 nrecs = XFS_BMAP_BROOT_NUMRECS(dfp);
679 * blow out if -- fork has less extents than can fit in
680 * fork (fork shouldn't be a btree format), root btree
681 * block has more records than can fit into the fork,
682 * or the number of extents is greater than the number of
683 * blocks.
685 if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <= ifp->if_ext_max
686 || XFS_BMDR_SPACE_CALC(nrecs) >
687 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork)
688 || XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks)) {
689 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
690 "corrupt inode %Lu (btree).",
691 (unsigned long long) ip->i_ino);
692 XFS_ERROR_REPORT("xfs_iformat_btree", XFS_ERRLEVEL_LOW,
693 ip->i_mount);
694 return XFS_ERROR(EFSCORRUPTED);
697 ifp->if_broot_bytes = size;
698 ifp->if_broot = kmem_alloc(size, KM_SLEEP);
699 ASSERT(ifp->if_broot != NULL);
701 * Copy and convert from the on-disk structure
702 * to the in-memory structure.
704 xfs_bmdr_to_bmbt(dfp, XFS_DFORK_SIZE(dip, ip->i_mount, whichfork),
705 ifp->if_broot, size);
706 ifp->if_flags &= ~XFS_IFEXTENTS;
707 ifp->if_flags |= XFS_IFBROOT;
709 return 0;
712 void
713 xfs_dinode_from_disk(
714 xfs_icdinode_t *to,
715 xfs_dinode_core_t *from)
717 to->di_magic = be16_to_cpu(from->di_magic);
718 to->di_mode = be16_to_cpu(from->di_mode);
719 to->di_version = from ->di_version;
720 to->di_format = from->di_format;
721 to->di_onlink = be16_to_cpu(from->di_onlink);
722 to->di_uid = be32_to_cpu(from->di_uid);
723 to->di_gid = be32_to_cpu(from->di_gid);
724 to->di_nlink = be32_to_cpu(from->di_nlink);
725 to->di_projid = be16_to_cpu(from->di_projid);
726 memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
727 to->di_flushiter = be16_to_cpu(from->di_flushiter);
728 to->di_atime.t_sec = be32_to_cpu(from->di_atime.t_sec);
729 to->di_atime.t_nsec = be32_to_cpu(from->di_atime.t_nsec);
730 to->di_mtime.t_sec = be32_to_cpu(from->di_mtime.t_sec);
731 to->di_mtime.t_nsec = be32_to_cpu(from->di_mtime.t_nsec);
732 to->di_ctime.t_sec = be32_to_cpu(from->di_ctime.t_sec);
733 to->di_ctime.t_nsec = be32_to_cpu(from->di_ctime.t_nsec);
734 to->di_size = be64_to_cpu(from->di_size);
735 to->di_nblocks = be64_to_cpu(from->di_nblocks);
736 to->di_extsize = be32_to_cpu(from->di_extsize);
737 to->di_nextents = be32_to_cpu(from->di_nextents);
738 to->di_anextents = be16_to_cpu(from->di_anextents);
739 to->di_forkoff = from->di_forkoff;
740 to->di_aformat = from->di_aformat;
741 to->di_dmevmask = be32_to_cpu(from->di_dmevmask);
742 to->di_dmstate = be16_to_cpu(from->di_dmstate);
743 to->di_flags = be16_to_cpu(from->di_flags);
744 to->di_gen = be32_to_cpu(from->di_gen);
747 void
748 xfs_dinode_to_disk(
749 xfs_dinode_core_t *to,
750 xfs_icdinode_t *from)
752 to->di_magic = cpu_to_be16(from->di_magic);
753 to->di_mode = cpu_to_be16(from->di_mode);
754 to->di_version = from ->di_version;
755 to->di_format = from->di_format;
756 to->di_onlink = cpu_to_be16(from->di_onlink);
757 to->di_uid = cpu_to_be32(from->di_uid);
758 to->di_gid = cpu_to_be32(from->di_gid);
759 to->di_nlink = cpu_to_be32(from->di_nlink);
760 to->di_projid = cpu_to_be16(from->di_projid);
761 memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
762 to->di_flushiter = cpu_to_be16(from->di_flushiter);
763 to->di_atime.t_sec = cpu_to_be32(from->di_atime.t_sec);
764 to->di_atime.t_nsec = cpu_to_be32(from->di_atime.t_nsec);
765 to->di_mtime.t_sec = cpu_to_be32(from->di_mtime.t_sec);
766 to->di_mtime.t_nsec = cpu_to_be32(from->di_mtime.t_nsec);
767 to->di_ctime.t_sec = cpu_to_be32(from->di_ctime.t_sec);
768 to->di_ctime.t_nsec = cpu_to_be32(from->di_ctime.t_nsec);
769 to->di_size = cpu_to_be64(from->di_size);
770 to->di_nblocks = cpu_to_be64(from->di_nblocks);
771 to->di_extsize = cpu_to_be32(from->di_extsize);
772 to->di_nextents = cpu_to_be32(from->di_nextents);
773 to->di_anextents = cpu_to_be16(from->di_anextents);
774 to->di_forkoff = from->di_forkoff;
775 to->di_aformat = from->di_aformat;
776 to->di_dmevmask = cpu_to_be32(from->di_dmevmask);
777 to->di_dmstate = cpu_to_be16(from->di_dmstate);
778 to->di_flags = cpu_to_be16(from->di_flags);
779 to->di_gen = cpu_to_be32(from->di_gen);
782 STATIC uint
783 _xfs_dic2xflags(
784 __uint16_t di_flags)
786 uint flags = 0;
788 if (di_flags & XFS_DIFLAG_ANY) {
789 if (di_flags & XFS_DIFLAG_REALTIME)
790 flags |= XFS_XFLAG_REALTIME;
791 if (di_flags & XFS_DIFLAG_PREALLOC)
792 flags |= XFS_XFLAG_PREALLOC;
793 if (di_flags & XFS_DIFLAG_IMMUTABLE)
794 flags |= XFS_XFLAG_IMMUTABLE;
795 if (di_flags & XFS_DIFLAG_APPEND)
796 flags |= XFS_XFLAG_APPEND;
797 if (di_flags & XFS_DIFLAG_SYNC)
798 flags |= XFS_XFLAG_SYNC;
799 if (di_flags & XFS_DIFLAG_NOATIME)
800 flags |= XFS_XFLAG_NOATIME;
801 if (di_flags & XFS_DIFLAG_NODUMP)
802 flags |= XFS_XFLAG_NODUMP;
803 if (di_flags & XFS_DIFLAG_RTINHERIT)
804 flags |= XFS_XFLAG_RTINHERIT;
805 if (di_flags & XFS_DIFLAG_PROJINHERIT)
806 flags |= XFS_XFLAG_PROJINHERIT;
807 if (di_flags & XFS_DIFLAG_NOSYMLINKS)
808 flags |= XFS_XFLAG_NOSYMLINKS;
809 if (di_flags & XFS_DIFLAG_EXTSIZE)
810 flags |= XFS_XFLAG_EXTSIZE;
811 if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
812 flags |= XFS_XFLAG_EXTSZINHERIT;
813 if (di_flags & XFS_DIFLAG_NODEFRAG)
814 flags |= XFS_XFLAG_NODEFRAG;
815 if (di_flags & XFS_DIFLAG_FILESTREAM)
816 flags |= XFS_XFLAG_FILESTREAM;
819 return flags;
822 uint
823 xfs_ip2xflags(
824 xfs_inode_t *ip)
826 xfs_icdinode_t *dic = &ip->i_d;
828 return _xfs_dic2xflags(dic->di_flags) |
829 (XFS_CFORK_Q(dic) ? XFS_XFLAG_HASATTR : 0);
832 uint
833 xfs_dic2xflags(
834 xfs_dinode_core_t *dic)
836 return _xfs_dic2xflags(be16_to_cpu(dic->di_flags)) |
837 (XFS_CFORK_Q_DISK(dic) ? XFS_XFLAG_HASATTR : 0);
841 * Given a mount structure and an inode number, return a pointer
842 * to a newly allocated in-core inode corresponding to the given
843 * inode number.
845 * Initialize the inode's attributes and extent pointers if it
846 * already has them (it will not if the inode has no links).
849 xfs_iread(
850 xfs_mount_t *mp,
851 xfs_trans_t *tp,
852 xfs_ino_t ino,
853 xfs_inode_t **ipp,
854 xfs_daddr_t bno,
855 uint imap_flags)
857 xfs_buf_t *bp;
858 xfs_dinode_t *dip;
859 xfs_inode_t *ip;
860 int error;
862 ASSERT(xfs_inode_zone != NULL);
864 ip = kmem_zone_zalloc(xfs_inode_zone, KM_SLEEP);
865 ip->i_ino = ino;
866 ip->i_mount = mp;
867 atomic_set(&ip->i_iocount, 0);
868 spin_lock_init(&ip->i_flags_lock);
871 * Get pointer's to the on-disk inode and the buffer containing it.
872 * If the inode number refers to a block outside the file system
873 * then xfs_itobp() will return NULL. In this case we should
874 * return NULL as well. Set i_blkno to 0 so that xfs_itobp() will
875 * know that this is a new incore inode.
877 error = xfs_itobp(mp, tp, ip, &dip, &bp, bno, imap_flags);
878 if (error) {
879 kmem_zone_free(xfs_inode_zone, ip);
880 return error;
884 * Initialize inode's trace buffers.
885 * Do this before xfs_iformat in case it adds entries.
887 #ifdef XFS_VNODE_TRACE
888 ip->i_trace = ktrace_alloc(VNODE_TRACE_SIZE, KM_SLEEP);
889 #endif
890 #ifdef XFS_BMAP_TRACE
891 ip->i_xtrace = ktrace_alloc(XFS_BMAP_KTRACE_SIZE, KM_SLEEP);
892 #endif
893 #ifdef XFS_BMBT_TRACE
894 ip->i_btrace = ktrace_alloc(XFS_BMBT_KTRACE_SIZE, KM_SLEEP);
895 #endif
896 #ifdef XFS_RW_TRACE
897 ip->i_rwtrace = ktrace_alloc(XFS_RW_KTRACE_SIZE, KM_SLEEP);
898 #endif
899 #ifdef XFS_ILOCK_TRACE
900 ip->i_lock_trace = ktrace_alloc(XFS_ILOCK_KTRACE_SIZE, KM_SLEEP);
901 #endif
902 #ifdef XFS_DIR2_TRACE
903 ip->i_dir_trace = ktrace_alloc(XFS_DIR2_KTRACE_SIZE, KM_SLEEP);
904 #endif
907 * If we got something that isn't an inode it means someone
908 * (nfs or dmi) has a stale handle.
910 if (be16_to_cpu(dip->di_core.di_magic) != XFS_DINODE_MAGIC) {
911 kmem_zone_free(xfs_inode_zone, ip);
912 xfs_trans_brelse(tp, bp);
913 #ifdef DEBUG
914 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
915 "dip->di_core.di_magic (0x%x) != "
916 "XFS_DINODE_MAGIC (0x%x)",
917 be16_to_cpu(dip->di_core.di_magic),
918 XFS_DINODE_MAGIC);
919 #endif /* DEBUG */
920 return XFS_ERROR(EINVAL);
924 * If the on-disk inode is already linked to a directory
925 * entry, copy all of the inode into the in-core inode.
926 * xfs_iformat() handles copying in the inode format
927 * specific information.
928 * Otherwise, just get the truly permanent information.
930 if (dip->di_core.di_mode) {
931 xfs_dinode_from_disk(&ip->i_d, &dip->di_core);
932 error = xfs_iformat(ip, dip);
933 if (error) {
934 kmem_zone_free(xfs_inode_zone, ip);
935 xfs_trans_brelse(tp, bp);
936 #ifdef DEBUG
937 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
938 "xfs_iformat() returned error %d",
939 error);
940 #endif /* DEBUG */
941 return error;
943 } else {
944 ip->i_d.di_magic = be16_to_cpu(dip->di_core.di_magic);
945 ip->i_d.di_version = dip->di_core.di_version;
946 ip->i_d.di_gen = be32_to_cpu(dip->di_core.di_gen);
947 ip->i_d.di_flushiter = be16_to_cpu(dip->di_core.di_flushiter);
949 * Make sure to pull in the mode here as well in
950 * case the inode is released without being used.
951 * This ensures that xfs_inactive() will see that
952 * the inode is already free and not try to mess
953 * with the uninitialized part of it.
955 ip->i_d.di_mode = 0;
957 * Initialize the per-fork minima and maxima for a new
958 * inode here. xfs_iformat will do it for old inodes.
960 ip->i_df.if_ext_max =
961 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
964 INIT_LIST_HEAD(&ip->i_reclaim);
967 * The inode format changed when we moved the link count and
968 * made it 32 bits long. If this is an old format inode,
969 * convert it in memory to look like a new one. If it gets
970 * flushed to disk we will convert back before flushing or
971 * logging it. We zero out the new projid field and the old link
972 * count field. We'll handle clearing the pad field (the remains
973 * of the old uuid field) when we actually convert the inode to
974 * the new format. We don't change the version number so that we
975 * can distinguish this from a real new format inode.
977 if (ip->i_d.di_version == XFS_DINODE_VERSION_1) {
978 ip->i_d.di_nlink = ip->i_d.di_onlink;
979 ip->i_d.di_onlink = 0;
980 ip->i_d.di_projid = 0;
983 ip->i_delayed_blks = 0;
984 ip->i_size = ip->i_d.di_size;
987 * Mark the buffer containing the inode as something to keep
988 * around for a while. This helps to keep recently accessed
989 * meta-data in-core longer.
991 XFS_BUF_SET_REF(bp, XFS_INO_REF);
994 * Use xfs_trans_brelse() to release the buffer containing the
995 * on-disk inode, because it was acquired with xfs_trans_read_buf()
996 * in xfs_itobp() above. If tp is NULL, this is just a normal
997 * brelse(). If we're within a transaction, then xfs_trans_brelse()
998 * will only release the buffer if it is not dirty within the
999 * transaction. It will be OK to release the buffer in this case,
1000 * because inodes on disk are never destroyed and we will be
1001 * locking the new in-core inode before putting it in the hash
1002 * table where other processes can find it. Thus we don't have
1003 * to worry about the inode being changed just because we released
1004 * the buffer.
1006 xfs_trans_brelse(tp, bp);
1007 *ipp = ip;
1008 return 0;
1012 * Read in extents from a btree-format inode.
1013 * Allocate and fill in if_extents. Real work is done in xfs_bmap.c.
1016 xfs_iread_extents(
1017 xfs_trans_t *tp,
1018 xfs_inode_t *ip,
1019 int whichfork)
1021 int error;
1022 xfs_ifork_t *ifp;
1023 xfs_extnum_t nextents;
1024 size_t size;
1026 if (unlikely(XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_BTREE)) {
1027 XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW,
1028 ip->i_mount);
1029 return XFS_ERROR(EFSCORRUPTED);
1031 nextents = XFS_IFORK_NEXTENTS(ip, whichfork);
1032 size = nextents * sizeof(xfs_bmbt_rec_t);
1033 ifp = XFS_IFORK_PTR(ip, whichfork);
1036 * We know that the size is valid (it's checked in iformat_btree)
1038 ifp->if_lastex = NULLEXTNUM;
1039 ifp->if_bytes = ifp->if_real_bytes = 0;
1040 ifp->if_flags |= XFS_IFEXTENTS;
1041 xfs_iext_add(ifp, 0, nextents);
1042 error = xfs_bmap_read_extents(tp, ip, whichfork);
1043 if (error) {
1044 xfs_iext_destroy(ifp);
1045 ifp->if_flags &= ~XFS_IFEXTENTS;
1046 return error;
1048 xfs_validate_extents(ifp, nextents, XFS_EXTFMT_INODE(ip));
1049 return 0;
1053 * Allocate an inode on disk and return a copy of its in-core version.
1054 * The in-core inode is locked exclusively. Set mode, nlink, and rdev
1055 * appropriately within the inode. The uid and gid for the inode are
1056 * set according to the contents of the given cred structure.
1058 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
1059 * has a free inode available, call xfs_iget()
1060 * to obtain the in-core version of the allocated inode. Finally,
1061 * fill in the inode and log its initial contents. In this case,
1062 * ialloc_context would be set to NULL and call_again set to false.
1064 * If xfs_dialloc() does not have an available inode,
1065 * it will replenish its supply by doing an allocation. Since we can
1066 * only do one allocation within a transaction without deadlocks, we
1067 * must commit the current transaction before returning the inode itself.
1068 * In this case, therefore, we will set call_again to true and return.
1069 * The caller should then commit the current transaction, start a new
1070 * transaction, and call xfs_ialloc() again to actually get the inode.
1072 * To ensure that some other process does not grab the inode that
1073 * was allocated during the first call to xfs_ialloc(), this routine
1074 * also returns the [locked] bp pointing to the head of the freelist
1075 * as ialloc_context. The caller should hold this buffer across
1076 * the commit and pass it back into this routine on the second call.
1078 * If we are allocating quota inodes, we do not have a parent inode
1079 * to attach to or associate with (i.e. pip == NULL) because they
1080 * are not linked into the directory structure - they are attached
1081 * directly to the superblock - and so have no parent.
1084 xfs_ialloc(
1085 xfs_trans_t *tp,
1086 xfs_inode_t *pip,
1087 mode_t mode,
1088 xfs_nlink_t nlink,
1089 xfs_dev_t rdev,
1090 cred_t *cr,
1091 xfs_prid_t prid,
1092 int okalloc,
1093 xfs_buf_t **ialloc_context,
1094 boolean_t *call_again,
1095 xfs_inode_t **ipp)
1097 xfs_ino_t ino;
1098 xfs_inode_t *ip;
1099 bhv_vnode_t *vp;
1100 uint flags;
1101 int error;
1104 * Call the space management code to pick
1105 * the on-disk inode to be allocated.
1107 error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc,
1108 ialloc_context, call_again, &ino);
1109 if (error != 0) {
1110 return error;
1112 if (*call_again || ino == NULLFSINO) {
1113 *ipp = NULL;
1114 return 0;
1116 ASSERT(*ialloc_context == NULL);
1119 * Get the in-core inode with the lock held exclusively.
1120 * This is because we're setting fields here we need
1121 * to prevent others from looking at until we're done.
1123 error = xfs_trans_iget(tp->t_mountp, tp, ino,
1124 XFS_IGET_CREATE, XFS_ILOCK_EXCL, &ip);
1125 if (error != 0) {
1126 return error;
1128 ASSERT(ip != NULL);
1130 vp = XFS_ITOV(ip);
1131 ip->i_d.di_mode = (__uint16_t)mode;
1132 ip->i_d.di_onlink = 0;
1133 ip->i_d.di_nlink = nlink;
1134 ASSERT(ip->i_d.di_nlink == nlink);
1135 ip->i_d.di_uid = current_fsuid(cr);
1136 ip->i_d.di_gid = current_fsgid(cr);
1137 ip->i_d.di_projid = prid;
1138 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
1141 * If the superblock version is up to where we support new format
1142 * inodes and this is currently an old format inode, then change
1143 * the inode version number now. This way we only do the conversion
1144 * here rather than here and in the flush/logging code.
1146 if (XFS_SB_VERSION_HASNLINK(&tp->t_mountp->m_sb) &&
1147 ip->i_d.di_version == XFS_DINODE_VERSION_1) {
1148 ip->i_d.di_version = XFS_DINODE_VERSION_2;
1150 * We've already zeroed the old link count, the projid field,
1151 * and the pad field.
1156 * Project ids won't be stored on disk if we are using a version 1 inode.
1158 if ((prid != 0) && (ip->i_d.di_version == XFS_DINODE_VERSION_1))
1159 xfs_bump_ino_vers2(tp, ip);
1161 if (pip && XFS_INHERIT_GID(pip, XFS_MTOVFS(pip->i_mount))) {
1162 ip->i_d.di_gid = pip->i_d.di_gid;
1163 if ((pip->i_d.di_mode & S_ISGID) && (mode & S_IFMT) == S_IFDIR) {
1164 ip->i_d.di_mode |= S_ISGID;
1169 * If the group ID of the new file does not match the effective group
1170 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
1171 * (and only if the irix_sgid_inherit compatibility variable is set).
1173 if ((irix_sgid_inherit) &&
1174 (ip->i_d.di_mode & S_ISGID) &&
1175 (!in_group_p((gid_t)ip->i_d.di_gid))) {
1176 ip->i_d.di_mode &= ~S_ISGID;
1179 ip->i_d.di_size = 0;
1180 ip->i_size = 0;
1181 ip->i_d.di_nextents = 0;
1182 ASSERT(ip->i_d.di_nblocks == 0);
1183 xfs_ichgtime(ip, XFS_ICHGTIME_CHG|XFS_ICHGTIME_ACC|XFS_ICHGTIME_MOD);
1185 * di_gen will have been taken care of in xfs_iread.
1187 ip->i_d.di_extsize = 0;
1188 ip->i_d.di_dmevmask = 0;
1189 ip->i_d.di_dmstate = 0;
1190 ip->i_d.di_flags = 0;
1191 flags = XFS_ILOG_CORE;
1192 switch (mode & S_IFMT) {
1193 case S_IFIFO:
1194 case S_IFCHR:
1195 case S_IFBLK:
1196 case S_IFSOCK:
1197 ip->i_d.di_format = XFS_DINODE_FMT_DEV;
1198 ip->i_df.if_u2.if_rdev = rdev;
1199 ip->i_df.if_flags = 0;
1200 flags |= XFS_ILOG_DEV;
1201 break;
1202 case S_IFREG:
1203 if (pip && xfs_inode_is_filestream(pip)) {
1204 error = xfs_filestream_associate(pip, ip);
1205 if (error < 0)
1206 return -error;
1207 if (!error)
1208 xfs_iflags_set(ip, XFS_IFILESTREAM);
1210 /* fall through */
1211 case S_IFDIR:
1212 if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
1213 uint di_flags = 0;
1215 if ((mode & S_IFMT) == S_IFDIR) {
1216 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
1217 di_flags |= XFS_DIFLAG_RTINHERIT;
1218 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1219 di_flags |= XFS_DIFLAG_EXTSZINHERIT;
1220 ip->i_d.di_extsize = pip->i_d.di_extsize;
1222 } else if ((mode & S_IFMT) == S_IFREG) {
1223 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT) {
1224 di_flags |= XFS_DIFLAG_REALTIME;
1225 ip->i_iocore.io_flags |= XFS_IOCORE_RT;
1227 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1228 di_flags |= XFS_DIFLAG_EXTSIZE;
1229 ip->i_d.di_extsize = pip->i_d.di_extsize;
1232 if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
1233 xfs_inherit_noatime)
1234 di_flags |= XFS_DIFLAG_NOATIME;
1235 if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
1236 xfs_inherit_nodump)
1237 di_flags |= XFS_DIFLAG_NODUMP;
1238 if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
1239 xfs_inherit_sync)
1240 di_flags |= XFS_DIFLAG_SYNC;
1241 if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
1242 xfs_inherit_nosymlinks)
1243 di_flags |= XFS_DIFLAG_NOSYMLINKS;
1244 if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
1245 di_flags |= XFS_DIFLAG_PROJINHERIT;
1246 if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
1247 xfs_inherit_nodefrag)
1248 di_flags |= XFS_DIFLAG_NODEFRAG;
1249 if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
1250 di_flags |= XFS_DIFLAG_FILESTREAM;
1251 ip->i_d.di_flags |= di_flags;
1253 /* FALLTHROUGH */
1254 case S_IFLNK:
1255 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
1256 ip->i_df.if_flags = XFS_IFEXTENTS;
1257 ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
1258 ip->i_df.if_u1.if_extents = NULL;
1259 break;
1260 default:
1261 ASSERT(0);
1264 * Attribute fork settings for new inode.
1266 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
1267 ip->i_d.di_anextents = 0;
1270 * Log the new values stuffed into the inode.
1272 xfs_trans_log_inode(tp, ip, flags);
1274 /* now that we have an i_mode we can setup inode ops and unlock */
1275 xfs_initialize_vnode(tp->t_mountp, vp, ip);
1277 *ipp = ip;
1278 return 0;
1282 * Check to make sure that there are no blocks allocated to the
1283 * file beyond the size of the file. We don't check this for
1284 * files with fixed size extents or real time extents, but we
1285 * at least do it for regular files.
1287 #ifdef DEBUG
1288 void
1289 xfs_isize_check(
1290 xfs_mount_t *mp,
1291 xfs_inode_t *ip,
1292 xfs_fsize_t isize)
1294 xfs_fileoff_t map_first;
1295 int nimaps;
1296 xfs_bmbt_irec_t imaps[2];
1298 if ((ip->i_d.di_mode & S_IFMT) != S_IFREG)
1299 return;
1301 if (ip->i_d.di_flags & (XFS_DIFLAG_REALTIME | XFS_DIFLAG_EXTSIZE))
1302 return;
1304 nimaps = 2;
1305 map_first = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
1307 * The filesystem could be shutting down, so bmapi may return
1308 * an error.
1310 if (xfs_bmapi(NULL, ip, map_first,
1311 (XFS_B_TO_FSB(mp,
1312 (xfs_ufsize_t)XFS_MAXIOFFSET(mp)) -
1313 map_first),
1314 XFS_BMAPI_ENTIRE, NULL, 0, imaps, &nimaps,
1315 NULL, NULL))
1316 return;
1317 ASSERT(nimaps == 1);
1318 ASSERT(imaps[0].br_startblock == HOLESTARTBLOCK);
1320 #endif /* DEBUG */
1323 * Calculate the last possible buffered byte in a file. This must
1324 * include data that was buffered beyond the EOF by the write code.
1325 * This also needs to deal with overflowing the xfs_fsize_t type
1326 * which can happen for sizes near the limit.
1328 * We also need to take into account any blocks beyond the EOF. It
1329 * may be the case that they were buffered by a write which failed.
1330 * In that case the pages will still be in memory, but the inode size
1331 * will never have been updated.
1333 xfs_fsize_t
1334 xfs_file_last_byte(
1335 xfs_inode_t *ip)
1337 xfs_mount_t *mp;
1338 xfs_fsize_t last_byte;
1339 xfs_fileoff_t last_block;
1340 xfs_fileoff_t size_last_block;
1341 int error;
1343 ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE | MR_ACCESS));
1345 mp = ip->i_mount;
1347 * Only check for blocks beyond the EOF if the extents have
1348 * been read in. This eliminates the need for the inode lock,
1349 * and it also saves us from looking when it really isn't
1350 * necessary.
1352 if (ip->i_df.if_flags & XFS_IFEXTENTS) {
1353 error = xfs_bmap_last_offset(NULL, ip, &last_block,
1354 XFS_DATA_FORK);
1355 if (error) {
1356 last_block = 0;
1358 } else {
1359 last_block = 0;
1361 size_last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)ip->i_size);
1362 last_block = XFS_FILEOFF_MAX(last_block, size_last_block);
1364 last_byte = XFS_FSB_TO_B(mp, last_block);
1365 if (last_byte < 0) {
1366 return XFS_MAXIOFFSET(mp);
1368 last_byte += (1 << mp->m_writeio_log);
1369 if (last_byte < 0) {
1370 return XFS_MAXIOFFSET(mp);
1372 return last_byte;
1375 #if defined(XFS_RW_TRACE)
1376 STATIC void
1377 xfs_itrunc_trace(
1378 int tag,
1379 xfs_inode_t *ip,
1380 int flag,
1381 xfs_fsize_t new_size,
1382 xfs_off_t toss_start,
1383 xfs_off_t toss_finish)
1385 if (ip->i_rwtrace == NULL) {
1386 return;
1389 ktrace_enter(ip->i_rwtrace,
1390 (void*)((long)tag),
1391 (void*)ip,
1392 (void*)(unsigned long)((ip->i_d.di_size >> 32) & 0xffffffff),
1393 (void*)(unsigned long)(ip->i_d.di_size & 0xffffffff),
1394 (void*)((long)flag),
1395 (void*)(unsigned long)((new_size >> 32) & 0xffffffff),
1396 (void*)(unsigned long)(new_size & 0xffffffff),
1397 (void*)(unsigned long)((toss_start >> 32) & 0xffffffff),
1398 (void*)(unsigned long)(toss_start & 0xffffffff),
1399 (void*)(unsigned long)((toss_finish >> 32) & 0xffffffff),
1400 (void*)(unsigned long)(toss_finish & 0xffffffff),
1401 (void*)(unsigned long)current_cpu(),
1402 (void*)(unsigned long)current_pid(),
1403 (void*)NULL,
1404 (void*)NULL,
1405 (void*)NULL);
1407 #else
1408 #define xfs_itrunc_trace(tag, ip, flag, new_size, toss_start, toss_finish)
1409 #endif
1412 * Start the truncation of the file to new_size. The new size
1413 * must be smaller than the current size. This routine will
1414 * clear the buffer and page caches of file data in the removed
1415 * range, and xfs_itruncate_finish() will remove the underlying
1416 * disk blocks.
1418 * The inode must have its I/O lock locked EXCLUSIVELY, and it
1419 * must NOT have the inode lock held at all. This is because we're
1420 * calling into the buffer/page cache code and we can't hold the
1421 * inode lock when we do so.
1423 * We need to wait for any direct I/Os in flight to complete before we
1424 * proceed with the truncate. This is needed to prevent the extents
1425 * being read or written by the direct I/Os from being removed while the
1426 * I/O is in flight as there is no other method of synchronising
1427 * direct I/O with the truncate operation. Also, because we hold
1428 * the IOLOCK in exclusive mode, we prevent new direct I/Os from being
1429 * started until the truncate completes and drops the lock. Essentially,
1430 * the vn_iowait() call forms an I/O barrier that provides strict ordering
1431 * between direct I/Os and the truncate operation.
1433 * The flags parameter can have either the value XFS_ITRUNC_DEFINITE
1434 * or XFS_ITRUNC_MAYBE. The XFS_ITRUNC_MAYBE value should be used
1435 * in the case that the caller is locking things out of order and
1436 * may not be able to call xfs_itruncate_finish() with the inode lock
1437 * held without dropping the I/O lock. If the caller must drop the
1438 * I/O lock before calling xfs_itruncate_finish(), then xfs_itruncate_start()
1439 * must be called again with all the same restrictions as the initial
1440 * call.
1443 xfs_itruncate_start(
1444 xfs_inode_t *ip,
1445 uint flags,
1446 xfs_fsize_t new_size)
1448 xfs_fsize_t last_byte;
1449 xfs_off_t toss_start;
1450 xfs_mount_t *mp;
1451 bhv_vnode_t *vp;
1452 int error = 0;
1454 ASSERT(ismrlocked(&ip->i_iolock, MR_UPDATE) != 0);
1455 ASSERT((new_size == 0) || (new_size <= ip->i_size));
1456 ASSERT((flags == XFS_ITRUNC_DEFINITE) ||
1457 (flags == XFS_ITRUNC_MAYBE));
1459 mp = ip->i_mount;
1460 vp = XFS_ITOV(ip);
1462 vn_iowait(ip); /* wait for the completion of any pending DIOs */
1465 * Call toss_pages or flushinval_pages to get rid of pages
1466 * overlapping the region being removed. We have to use
1467 * the less efficient flushinval_pages in the case that the
1468 * caller may not be able to finish the truncate without
1469 * dropping the inode's I/O lock. Make sure
1470 * to catch any pages brought in by buffers overlapping
1471 * the EOF by searching out beyond the isize by our
1472 * block size. We round new_size up to a block boundary
1473 * so that we don't toss things on the same block as
1474 * new_size but before it.
1476 * Before calling toss_page or flushinval_pages, make sure to
1477 * call remapf() over the same region if the file is mapped.
1478 * This frees up mapped file references to the pages in the
1479 * given range and for the flushinval_pages case it ensures
1480 * that we get the latest mapped changes flushed out.
1482 toss_start = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1483 toss_start = XFS_FSB_TO_B(mp, toss_start);
1484 if (toss_start < 0) {
1486 * The place to start tossing is beyond our maximum
1487 * file size, so there is no way that the data extended
1488 * out there.
1490 return 0;
1492 last_byte = xfs_file_last_byte(ip);
1493 xfs_itrunc_trace(XFS_ITRUNC_START, ip, flags, new_size, toss_start,
1494 last_byte);
1495 if (last_byte > toss_start) {
1496 if (flags & XFS_ITRUNC_DEFINITE) {
1497 xfs_tosspages(ip, toss_start,
1498 -1, FI_REMAPF_LOCKED);
1499 } else {
1500 error = xfs_flushinval_pages(ip, toss_start,
1501 -1, FI_REMAPF_LOCKED);
1505 #ifdef DEBUG
1506 if (new_size == 0) {
1507 ASSERT(VN_CACHED(vp) == 0);
1509 #endif
1510 return error;
1514 * Shrink the file to the given new_size. The new
1515 * size must be smaller than the current size.
1516 * This will free up the underlying blocks
1517 * in the removed range after a call to xfs_itruncate_start()
1518 * or xfs_atruncate_start().
1520 * The transaction passed to this routine must have made
1521 * a permanent log reservation of at least XFS_ITRUNCATE_LOG_RES.
1522 * This routine may commit the given transaction and
1523 * start new ones, so make sure everything involved in
1524 * the transaction is tidy before calling here.
1525 * Some transaction will be returned to the caller to be
1526 * committed. The incoming transaction must already include
1527 * the inode, and both inode locks must be held exclusively.
1528 * The inode must also be "held" within the transaction. On
1529 * return the inode will be "held" within the returned transaction.
1530 * This routine does NOT require any disk space to be reserved
1531 * for it within the transaction.
1533 * The fork parameter must be either xfs_attr_fork or xfs_data_fork,
1534 * and it indicates the fork which is to be truncated. For the
1535 * attribute fork we only support truncation to size 0.
1537 * We use the sync parameter to indicate whether or not the first
1538 * transaction we perform might have to be synchronous. For the attr fork,
1539 * it needs to be so if the unlink of the inode is not yet known to be
1540 * permanent in the log. This keeps us from freeing and reusing the
1541 * blocks of the attribute fork before the unlink of the inode becomes
1542 * permanent.
1544 * For the data fork, we normally have to run synchronously if we're
1545 * being called out of the inactive path or we're being called
1546 * out of the create path where we're truncating an existing file.
1547 * Either way, the truncate needs to be sync so blocks don't reappear
1548 * in the file with altered data in case of a crash. wsync filesystems
1549 * can run the first case async because anything that shrinks the inode
1550 * has to run sync so by the time we're called here from inactive, the
1551 * inode size is permanently set to 0.
1553 * Calls from the truncate path always need to be sync unless we're
1554 * in a wsync filesystem and the file has already been unlinked.
1556 * The caller is responsible for correctly setting the sync parameter.
1557 * It gets too hard for us to guess here which path we're being called
1558 * out of just based on inode state.
1561 xfs_itruncate_finish(
1562 xfs_trans_t **tp,
1563 xfs_inode_t *ip,
1564 xfs_fsize_t new_size,
1565 int fork,
1566 int sync)
1568 xfs_fsblock_t first_block;
1569 xfs_fileoff_t first_unmap_block;
1570 xfs_fileoff_t last_block;
1571 xfs_filblks_t unmap_len=0;
1572 xfs_mount_t *mp;
1573 xfs_trans_t *ntp;
1574 int done;
1575 int committed;
1576 xfs_bmap_free_t free_list;
1577 int error;
1579 ASSERT(ismrlocked(&ip->i_iolock, MR_UPDATE) != 0);
1580 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE) != 0);
1581 ASSERT((new_size == 0) || (new_size <= ip->i_size));
1582 ASSERT(*tp != NULL);
1583 ASSERT((*tp)->t_flags & XFS_TRANS_PERM_LOG_RES);
1584 ASSERT(ip->i_transp == *tp);
1585 ASSERT(ip->i_itemp != NULL);
1586 ASSERT(ip->i_itemp->ili_flags & XFS_ILI_HOLD);
1589 ntp = *tp;
1590 mp = (ntp)->t_mountp;
1591 ASSERT(! XFS_NOT_DQATTACHED(mp, ip));
1594 * We only support truncating the entire attribute fork.
1596 if (fork == XFS_ATTR_FORK) {
1597 new_size = 0LL;
1599 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1600 xfs_itrunc_trace(XFS_ITRUNC_FINISH1, ip, 0, new_size, 0, 0);
1602 * The first thing we do is set the size to new_size permanently
1603 * on disk. This way we don't have to worry about anyone ever
1604 * being able to look at the data being freed even in the face
1605 * of a crash. What we're getting around here is the case where
1606 * we free a block, it is allocated to another file, it is written
1607 * to, and then we crash. If the new data gets written to the
1608 * file but the log buffers containing the free and reallocation
1609 * don't, then we'd end up with garbage in the blocks being freed.
1610 * As long as we make the new_size permanent before actually
1611 * freeing any blocks it doesn't matter if they get writtten to.
1613 * The callers must signal into us whether or not the size
1614 * setting here must be synchronous. There are a few cases
1615 * where it doesn't have to be synchronous. Those cases
1616 * occur if the file is unlinked and we know the unlink is
1617 * permanent or if the blocks being truncated are guaranteed
1618 * to be beyond the inode eof (regardless of the link count)
1619 * and the eof value is permanent. Both of these cases occur
1620 * only on wsync-mounted filesystems. In those cases, we're
1621 * guaranteed that no user will ever see the data in the blocks
1622 * that are being truncated so the truncate can run async.
1623 * In the free beyond eof case, the file may wind up with
1624 * more blocks allocated to it than it needs if we crash
1625 * and that won't get fixed until the next time the file
1626 * is re-opened and closed but that's ok as that shouldn't
1627 * be too many blocks.
1629 * However, we can't just make all wsync xactions run async
1630 * because there's one call out of the create path that needs
1631 * to run sync where it's truncating an existing file to size
1632 * 0 whose size is > 0.
1634 * It's probably possible to come up with a test in this
1635 * routine that would correctly distinguish all the above
1636 * cases from the values of the function parameters and the
1637 * inode state but for sanity's sake, I've decided to let the
1638 * layers above just tell us. It's simpler to correctly figure
1639 * out in the layer above exactly under what conditions we
1640 * can run async and I think it's easier for others read and
1641 * follow the logic in case something has to be changed.
1642 * cscope is your friend -- rcc.
1644 * The attribute fork is much simpler.
1646 * For the attribute fork we allow the caller to tell us whether
1647 * the unlink of the inode that led to this call is yet permanent
1648 * in the on disk log. If it is not and we will be freeing extents
1649 * in this inode then we make the first transaction synchronous
1650 * to make sure that the unlink is permanent by the time we free
1651 * the blocks.
1653 if (fork == XFS_DATA_FORK) {
1654 if (ip->i_d.di_nextents > 0) {
1656 * If we are not changing the file size then do
1657 * not update the on-disk file size - we may be
1658 * called from xfs_inactive_free_eofblocks(). If we
1659 * update the on-disk file size and then the system
1660 * crashes before the contents of the file are
1661 * flushed to disk then the files may be full of
1662 * holes (ie NULL files bug).
1664 if (ip->i_size != new_size) {
1665 ip->i_d.di_size = new_size;
1666 ip->i_size = new_size;
1667 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1670 } else if (sync) {
1671 ASSERT(!(mp->m_flags & XFS_MOUNT_WSYNC));
1672 if (ip->i_d.di_anextents > 0)
1673 xfs_trans_set_sync(ntp);
1675 ASSERT(fork == XFS_DATA_FORK ||
1676 (fork == XFS_ATTR_FORK &&
1677 ((sync && !(mp->m_flags & XFS_MOUNT_WSYNC)) ||
1678 (sync == 0 && (mp->m_flags & XFS_MOUNT_WSYNC)))));
1681 * Since it is possible for space to become allocated beyond
1682 * the end of the file (in a crash where the space is allocated
1683 * but the inode size is not yet updated), simply remove any
1684 * blocks which show up between the new EOF and the maximum
1685 * possible file size. If the first block to be removed is
1686 * beyond the maximum file size (ie it is the same as last_block),
1687 * then there is nothing to do.
1689 last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_MAXIOFFSET(mp));
1690 ASSERT(first_unmap_block <= last_block);
1691 done = 0;
1692 if (last_block == first_unmap_block) {
1693 done = 1;
1694 } else {
1695 unmap_len = last_block - first_unmap_block + 1;
1697 while (!done) {
1699 * Free up up to XFS_ITRUNC_MAX_EXTENTS. xfs_bunmapi()
1700 * will tell us whether it freed the entire range or
1701 * not. If this is a synchronous mount (wsync),
1702 * then we can tell bunmapi to keep all the
1703 * transactions asynchronous since the unlink
1704 * transaction that made this inode inactive has
1705 * already hit the disk. There's no danger of
1706 * the freed blocks being reused, there being a
1707 * crash, and the reused blocks suddenly reappearing
1708 * in this file with garbage in them once recovery
1709 * runs.
1711 XFS_BMAP_INIT(&free_list, &first_block);
1712 error = XFS_BUNMAPI(mp, ntp, &ip->i_iocore,
1713 first_unmap_block, unmap_len,
1714 XFS_BMAPI_AFLAG(fork) |
1715 (sync ? 0 : XFS_BMAPI_ASYNC),
1716 XFS_ITRUNC_MAX_EXTENTS,
1717 &first_block, &free_list,
1718 NULL, &done);
1719 if (error) {
1721 * If the bunmapi call encounters an error,
1722 * return to the caller where the transaction
1723 * can be properly aborted. We just need to
1724 * make sure we're not holding any resources
1725 * that we were not when we came in.
1727 xfs_bmap_cancel(&free_list);
1728 return error;
1732 * Duplicate the transaction that has the permanent
1733 * reservation and commit the old transaction.
1735 error = xfs_bmap_finish(tp, &free_list, &committed);
1736 ntp = *tp;
1737 if (error) {
1739 * If the bmap finish call encounters an error,
1740 * return to the caller where the transaction
1741 * can be properly aborted. We just need to
1742 * make sure we're not holding any resources
1743 * that we were not when we came in.
1745 * Aborting from this point might lose some
1746 * blocks in the file system, but oh well.
1748 xfs_bmap_cancel(&free_list);
1749 if (committed) {
1751 * If the passed in transaction committed
1752 * in xfs_bmap_finish(), then we want to
1753 * add the inode to this one before returning.
1754 * This keeps things simple for the higher
1755 * level code, because it always knows that
1756 * the inode is locked and held in the
1757 * transaction that returns to it whether
1758 * errors occur or not. We don't mark the
1759 * inode dirty so that this transaction can
1760 * be easily aborted if possible.
1762 xfs_trans_ijoin(ntp, ip,
1763 XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
1764 xfs_trans_ihold(ntp, ip);
1766 return error;
1769 if (committed) {
1771 * The first xact was committed,
1772 * so add the inode to the new one.
1773 * Mark it dirty so it will be logged
1774 * and moved forward in the log as
1775 * part of every commit.
1777 xfs_trans_ijoin(ntp, ip,
1778 XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
1779 xfs_trans_ihold(ntp, ip);
1780 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1782 ntp = xfs_trans_dup(ntp);
1783 (void) xfs_trans_commit(*tp, 0);
1784 *tp = ntp;
1785 error = xfs_trans_reserve(ntp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0,
1786 XFS_TRANS_PERM_LOG_RES,
1787 XFS_ITRUNCATE_LOG_COUNT);
1789 * Add the inode being truncated to the next chained
1790 * transaction.
1792 xfs_trans_ijoin(ntp, ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
1793 xfs_trans_ihold(ntp, ip);
1794 if (error)
1795 return (error);
1798 * Only update the size in the case of the data fork, but
1799 * always re-log the inode so that our permanent transaction
1800 * can keep on rolling it forward in the log.
1802 if (fork == XFS_DATA_FORK) {
1803 xfs_isize_check(mp, ip, new_size);
1805 * If we are not changing the file size then do
1806 * not update the on-disk file size - we may be
1807 * called from xfs_inactive_free_eofblocks(). If we
1808 * update the on-disk file size and then the system
1809 * crashes before the contents of the file are
1810 * flushed to disk then the files may be full of
1811 * holes (ie NULL files bug).
1813 if (ip->i_size != new_size) {
1814 ip->i_d.di_size = new_size;
1815 ip->i_size = new_size;
1818 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1819 ASSERT((new_size != 0) ||
1820 (fork == XFS_ATTR_FORK) ||
1821 (ip->i_delayed_blks == 0));
1822 ASSERT((new_size != 0) ||
1823 (fork == XFS_ATTR_FORK) ||
1824 (ip->i_d.di_nextents == 0));
1825 xfs_itrunc_trace(XFS_ITRUNC_FINISH2, ip, 0, new_size, 0, 0);
1826 return 0;
1831 * xfs_igrow_start
1833 * Do the first part of growing a file: zero any data in the last
1834 * block that is beyond the old EOF. We need to do this before
1835 * the inode is joined to the transaction to modify the i_size.
1836 * That way we can drop the inode lock and call into the buffer
1837 * cache to get the buffer mapping the EOF.
1840 xfs_igrow_start(
1841 xfs_inode_t *ip,
1842 xfs_fsize_t new_size,
1843 cred_t *credp)
1845 int error;
1847 ASSERT(ismrlocked(&(ip->i_lock), MR_UPDATE) != 0);
1848 ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE) != 0);
1849 ASSERT(new_size > ip->i_size);
1852 * Zero any pages that may have been created by
1853 * xfs_write_file() beyond the end of the file
1854 * and any blocks between the old and new file sizes.
1856 error = xfs_zero_eof(XFS_ITOV(ip), &ip->i_iocore, new_size,
1857 ip->i_size);
1858 return error;
1862 * xfs_igrow_finish
1864 * This routine is called to extend the size of a file.
1865 * The inode must have both the iolock and the ilock locked
1866 * for update and it must be a part of the current transaction.
1867 * The xfs_igrow_start() function must have been called previously.
1868 * If the change_flag is not zero, the inode change timestamp will
1869 * be updated.
1871 void
1872 xfs_igrow_finish(
1873 xfs_trans_t *tp,
1874 xfs_inode_t *ip,
1875 xfs_fsize_t new_size,
1876 int change_flag)
1878 ASSERT(ismrlocked(&(ip->i_lock), MR_UPDATE) != 0);
1879 ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE) != 0);
1880 ASSERT(ip->i_transp == tp);
1881 ASSERT(new_size > ip->i_size);
1884 * Update the file size. Update the inode change timestamp
1885 * if change_flag set.
1887 ip->i_d.di_size = new_size;
1888 ip->i_size = new_size;
1889 if (change_flag)
1890 xfs_ichgtime(ip, XFS_ICHGTIME_CHG);
1891 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1897 * This is called when the inode's link count goes to 0.
1898 * We place the on-disk inode on a list in the AGI. It
1899 * will be pulled from this list when the inode is freed.
1902 xfs_iunlink(
1903 xfs_trans_t *tp,
1904 xfs_inode_t *ip)
1906 xfs_mount_t *mp;
1907 xfs_agi_t *agi;
1908 xfs_dinode_t *dip;
1909 xfs_buf_t *agibp;
1910 xfs_buf_t *ibp;
1911 xfs_agnumber_t agno;
1912 xfs_daddr_t agdaddr;
1913 xfs_agino_t agino;
1914 short bucket_index;
1915 int offset;
1916 int error;
1917 int agi_ok;
1919 ASSERT(ip->i_d.di_nlink == 0);
1920 ASSERT(ip->i_d.di_mode != 0);
1921 ASSERT(ip->i_transp == tp);
1923 mp = tp->t_mountp;
1925 agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
1926 agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
1929 * Get the agi buffer first. It ensures lock ordering
1930 * on the list.
1932 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr,
1933 XFS_FSS_TO_BB(mp, 1), 0, &agibp);
1934 if (error) {
1935 return error;
1938 * Validate the magic number of the agi block.
1940 agi = XFS_BUF_TO_AGI(agibp);
1941 agi_ok =
1942 be32_to_cpu(agi->agi_magicnum) == XFS_AGI_MAGIC &&
1943 XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum));
1944 if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK,
1945 XFS_RANDOM_IUNLINK))) {
1946 XFS_CORRUPTION_ERROR("xfs_iunlink", XFS_ERRLEVEL_LOW, mp, agi);
1947 xfs_trans_brelse(tp, agibp);
1948 return XFS_ERROR(EFSCORRUPTED);
1951 * Get the index into the agi hash table for the
1952 * list this inode will go on.
1954 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1955 ASSERT(agino != 0);
1956 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1957 ASSERT(agi->agi_unlinked[bucket_index]);
1958 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
1960 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO) {
1962 * There is already another inode in the bucket we need
1963 * to add ourselves to. Add us at the front of the list.
1964 * Here we put the head pointer into our next pointer,
1965 * and then we fall through to point the head at us.
1967 error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0);
1968 if (error) {
1969 return error;
1971 ASSERT(be32_to_cpu(dip->di_next_unlinked) == NULLAGINO);
1972 /* both on-disk, don't endian flip twice */
1973 dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
1974 offset = ip->i_boffset +
1975 offsetof(xfs_dinode_t, di_next_unlinked);
1976 xfs_trans_inode_buf(tp, ibp);
1977 xfs_trans_log_buf(tp, ibp, offset,
1978 (offset + sizeof(xfs_agino_t) - 1));
1979 xfs_inobp_check(mp, ibp);
1983 * Point the bucket head pointer at the inode being inserted.
1985 ASSERT(agino != 0);
1986 agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
1987 offset = offsetof(xfs_agi_t, agi_unlinked) +
1988 (sizeof(xfs_agino_t) * bucket_index);
1989 xfs_trans_log_buf(tp, agibp, offset,
1990 (offset + sizeof(xfs_agino_t) - 1));
1991 return 0;
1995 * Pull the on-disk inode from the AGI unlinked list.
1997 STATIC int
1998 xfs_iunlink_remove(
1999 xfs_trans_t *tp,
2000 xfs_inode_t *ip)
2002 xfs_ino_t next_ino;
2003 xfs_mount_t *mp;
2004 xfs_agi_t *agi;
2005 xfs_dinode_t *dip;
2006 xfs_buf_t *agibp;
2007 xfs_buf_t *ibp;
2008 xfs_agnumber_t agno;
2009 xfs_daddr_t agdaddr;
2010 xfs_agino_t agino;
2011 xfs_agino_t next_agino;
2012 xfs_buf_t *last_ibp;
2013 xfs_dinode_t *last_dip = NULL;
2014 short bucket_index;
2015 int offset, last_offset = 0;
2016 int error;
2017 int agi_ok;
2020 * First pull the on-disk inode from the AGI unlinked list.
2022 mp = tp->t_mountp;
2024 agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
2025 agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
2028 * Get the agi buffer first. It ensures lock ordering
2029 * on the list.
2031 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr,
2032 XFS_FSS_TO_BB(mp, 1), 0, &agibp);
2033 if (error) {
2034 cmn_err(CE_WARN,
2035 "xfs_iunlink_remove: xfs_trans_read_buf() returned an error %d on %s. Returning error.",
2036 error, mp->m_fsname);
2037 return error;
2040 * Validate the magic number of the agi block.
2042 agi = XFS_BUF_TO_AGI(agibp);
2043 agi_ok =
2044 be32_to_cpu(agi->agi_magicnum) == XFS_AGI_MAGIC &&
2045 XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum));
2046 if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK_REMOVE,
2047 XFS_RANDOM_IUNLINK_REMOVE))) {
2048 XFS_CORRUPTION_ERROR("xfs_iunlink_remove", XFS_ERRLEVEL_LOW,
2049 mp, agi);
2050 xfs_trans_brelse(tp, agibp);
2051 cmn_err(CE_WARN,
2052 "xfs_iunlink_remove: XFS_TEST_ERROR() returned an error on %s. Returning EFSCORRUPTED.",
2053 mp->m_fsname);
2054 return XFS_ERROR(EFSCORRUPTED);
2057 * Get the index into the agi hash table for the
2058 * list this inode will go on.
2060 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2061 ASSERT(agino != 0);
2062 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2063 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO);
2064 ASSERT(agi->agi_unlinked[bucket_index]);
2066 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
2068 * We're at the head of the list. Get the inode's
2069 * on-disk buffer to see if there is anyone after us
2070 * on the list. Only modify our next pointer if it
2071 * is not already NULLAGINO. This saves us the overhead
2072 * of dealing with the buffer when there is no need to
2073 * change it.
2075 error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0);
2076 if (error) {
2077 cmn_err(CE_WARN,
2078 "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
2079 error, mp->m_fsname);
2080 return error;
2082 next_agino = be32_to_cpu(dip->di_next_unlinked);
2083 ASSERT(next_agino != 0);
2084 if (next_agino != NULLAGINO) {
2085 dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
2086 offset = ip->i_boffset +
2087 offsetof(xfs_dinode_t, di_next_unlinked);
2088 xfs_trans_inode_buf(tp, ibp);
2089 xfs_trans_log_buf(tp, ibp, offset,
2090 (offset + sizeof(xfs_agino_t) - 1));
2091 xfs_inobp_check(mp, ibp);
2092 } else {
2093 xfs_trans_brelse(tp, ibp);
2096 * Point the bucket head pointer at the next inode.
2098 ASSERT(next_agino != 0);
2099 ASSERT(next_agino != agino);
2100 agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
2101 offset = offsetof(xfs_agi_t, agi_unlinked) +
2102 (sizeof(xfs_agino_t) * bucket_index);
2103 xfs_trans_log_buf(tp, agibp, offset,
2104 (offset + sizeof(xfs_agino_t) - 1));
2105 } else {
2107 * We need to search the list for the inode being freed.
2109 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2110 last_ibp = NULL;
2111 while (next_agino != agino) {
2113 * If the last inode wasn't the one pointing to
2114 * us, then release its buffer since we're not
2115 * going to do anything with it.
2117 if (last_ibp != NULL) {
2118 xfs_trans_brelse(tp, last_ibp);
2120 next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
2121 error = xfs_inotobp(mp, tp, next_ino, &last_dip,
2122 &last_ibp, &last_offset);
2123 if (error) {
2124 cmn_err(CE_WARN,
2125 "xfs_iunlink_remove: xfs_inotobp() returned an error %d on %s. Returning error.",
2126 error, mp->m_fsname);
2127 return error;
2129 next_agino = be32_to_cpu(last_dip->di_next_unlinked);
2130 ASSERT(next_agino != NULLAGINO);
2131 ASSERT(next_agino != 0);
2134 * Now last_ibp points to the buffer previous to us on
2135 * the unlinked list. Pull us from the list.
2137 error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0);
2138 if (error) {
2139 cmn_err(CE_WARN,
2140 "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
2141 error, mp->m_fsname);
2142 return error;
2144 next_agino = be32_to_cpu(dip->di_next_unlinked);
2145 ASSERT(next_agino != 0);
2146 ASSERT(next_agino != agino);
2147 if (next_agino != NULLAGINO) {
2148 dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
2149 offset = ip->i_boffset +
2150 offsetof(xfs_dinode_t, di_next_unlinked);
2151 xfs_trans_inode_buf(tp, ibp);
2152 xfs_trans_log_buf(tp, ibp, offset,
2153 (offset + sizeof(xfs_agino_t) - 1));
2154 xfs_inobp_check(mp, ibp);
2155 } else {
2156 xfs_trans_brelse(tp, ibp);
2159 * Point the previous inode on the list to the next inode.
2161 last_dip->di_next_unlinked = cpu_to_be32(next_agino);
2162 ASSERT(next_agino != 0);
2163 offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
2164 xfs_trans_inode_buf(tp, last_ibp);
2165 xfs_trans_log_buf(tp, last_ibp, offset,
2166 (offset + sizeof(xfs_agino_t) - 1));
2167 xfs_inobp_check(mp, last_ibp);
2169 return 0;
2172 STATIC_INLINE int xfs_inode_clean(xfs_inode_t *ip)
2174 return (((ip->i_itemp == NULL) ||
2175 !(ip->i_itemp->ili_format.ilf_fields & XFS_ILOG_ALL)) &&
2176 (ip->i_update_core == 0));
2179 STATIC void
2180 xfs_ifree_cluster(
2181 xfs_inode_t *free_ip,
2182 xfs_trans_t *tp,
2183 xfs_ino_t inum)
2185 xfs_mount_t *mp = free_ip->i_mount;
2186 int blks_per_cluster;
2187 int nbufs;
2188 int ninodes;
2189 int i, j, found, pre_flushed;
2190 xfs_daddr_t blkno;
2191 xfs_buf_t *bp;
2192 xfs_inode_t *ip, **ip_found;
2193 xfs_inode_log_item_t *iip;
2194 xfs_log_item_t *lip;
2195 xfs_perag_t *pag = xfs_get_perag(mp, inum);
2196 SPLDECL(s);
2198 if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) {
2199 blks_per_cluster = 1;
2200 ninodes = mp->m_sb.sb_inopblock;
2201 nbufs = XFS_IALLOC_BLOCKS(mp);
2202 } else {
2203 blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) /
2204 mp->m_sb.sb_blocksize;
2205 ninodes = blks_per_cluster * mp->m_sb.sb_inopblock;
2206 nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster;
2209 ip_found = kmem_alloc(ninodes * sizeof(xfs_inode_t *), KM_NOFS);
2211 for (j = 0; j < nbufs; j++, inum += ninodes) {
2212 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2213 XFS_INO_TO_AGBNO(mp, inum));
2217 * Look for each inode in memory and attempt to lock it,
2218 * we can be racing with flush and tail pushing here.
2219 * any inode we get the locks on, add to an array of
2220 * inode items to process later.
2222 * The get the buffer lock, we could beat a flush
2223 * or tail pushing thread to the lock here, in which
2224 * case they will go looking for the inode buffer
2225 * and fail, we need some other form of interlock
2226 * here.
2228 found = 0;
2229 for (i = 0; i < ninodes; i++) {
2230 read_lock(&pag->pag_ici_lock);
2231 ip = radix_tree_lookup(&pag->pag_ici_root,
2232 XFS_INO_TO_AGINO(mp, (inum + i)));
2234 /* Inode not in memory or we found it already,
2235 * nothing to do
2237 if (!ip || xfs_iflags_test(ip, XFS_ISTALE)) {
2238 read_unlock(&pag->pag_ici_lock);
2239 continue;
2242 if (xfs_inode_clean(ip)) {
2243 read_unlock(&pag->pag_ici_lock);
2244 continue;
2247 /* If we can get the locks then add it to the
2248 * list, otherwise by the time we get the bp lock
2249 * below it will already be attached to the
2250 * inode buffer.
2253 /* This inode will already be locked - by us, lets
2254 * keep it that way.
2257 if (ip == free_ip) {
2258 if (xfs_iflock_nowait(ip)) {
2259 xfs_iflags_set(ip, XFS_ISTALE);
2260 if (xfs_inode_clean(ip)) {
2261 xfs_ifunlock(ip);
2262 } else {
2263 ip_found[found++] = ip;
2266 read_unlock(&pag->pag_ici_lock);
2267 continue;
2270 if (xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2271 if (xfs_iflock_nowait(ip)) {
2272 xfs_iflags_set(ip, XFS_ISTALE);
2274 if (xfs_inode_clean(ip)) {
2275 xfs_ifunlock(ip);
2276 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2277 } else {
2278 ip_found[found++] = ip;
2280 } else {
2281 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2284 read_unlock(&pag->pag_ici_lock);
2287 bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
2288 mp->m_bsize * blks_per_cluster,
2289 XFS_BUF_LOCK);
2291 pre_flushed = 0;
2292 lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *);
2293 while (lip) {
2294 if (lip->li_type == XFS_LI_INODE) {
2295 iip = (xfs_inode_log_item_t *)lip;
2296 ASSERT(iip->ili_logged == 1);
2297 lip->li_cb = (void(*)(xfs_buf_t*,xfs_log_item_t*)) xfs_istale_done;
2298 AIL_LOCK(mp,s);
2299 iip->ili_flush_lsn = iip->ili_item.li_lsn;
2300 AIL_UNLOCK(mp, s);
2301 xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
2302 pre_flushed++;
2304 lip = lip->li_bio_list;
2307 for (i = 0; i < found; i++) {
2308 ip = ip_found[i];
2309 iip = ip->i_itemp;
2311 if (!iip) {
2312 ip->i_update_core = 0;
2313 xfs_ifunlock(ip);
2314 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2315 continue;
2318 iip->ili_last_fields = iip->ili_format.ilf_fields;
2319 iip->ili_format.ilf_fields = 0;
2320 iip->ili_logged = 1;
2321 AIL_LOCK(mp,s);
2322 iip->ili_flush_lsn = iip->ili_item.li_lsn;
2323 AIL_UNLOCK(mp, s);
2325 xfs_buf_attach_iodone(bp,
2326 (void(*)(xfs_buf_t*,xfs_log_item_t*))
2327 xfs_istale_done, (xfs_log_item_t *)iip);
2328 if (ip != free_ip) {
2329 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2333 if (found || pre_flushed)
2334 xfs_trans_stale_inode_buf(tp, bp);
2335 xfs_trans_binval(tp, bp);
2338 kmem_free(ip_found, ninodes * sizeof(xfs_inode_t *));
2339 xfs_put_perag(mp, pag);
2343 * This is called to return an inode to the inode free list.
2344 * The inode should already be truncated to 0 length and have
2345 * no pages associated with it. This routine also assumes that
2346 * the inode is already a part of the transaction.
2348 * The on-disk copy of the inode will have been added to the list
2349 * of unlinked inodes in the AGI. We need to remove the inode from
2350 * that list atomically with respect to freeing it here.
2353 xfs_ifree(
2354 xfs_trans_t *tp,
2355 xfs_inode_t *ip,
2356 xfs_bmap_free_t *flist)
2358 int error;
2359 int delete;
2360 xfs_ino_t first_ino;
2362 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE));
2363 ASSERT(ip->i_transp == tp);
2364 ASSERT(ip->i_d.di_nlink == 0);
2365 ASSERT(ip->i_d.di_nextents == 0);
2366 ASSERT(ip->i_d.di_anextents == 0);
2367 ASSERT((ip->i_d.di_size == 0 && ip->i_size == 0) ||
2368 ((ip->i_d.di_mode & S_IFMT) != S_IFREG));
2369 ASSERT(ip->i_d.di_nblocks == 0);
2372 * Pull the on-disk inode from the AGI unlinked list.
2374 error = xfs_iunlink_remove(tp, ip);
2375 if (error != 0) {
2376 return error;
2379 error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino);
2380 if (error != 0) {
2381 return error;
2383 ip->i_d.di_mode = 0; /* mark incore inode as free */
2384 ip->i_d.di_flags = 0;
2385 ip->i_d.di_dmevmask = 0;
2386 ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */
2387 ip->i_df.if_ext_max =
2388 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
2389 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
2390 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
2392 * Bump the generation count so no one will be confused
2393 * by reincarnations of this inode.
2395 ip->i_d.di_gen++;
2396 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2398 if (delete) {
2399 xfs_ifree_cluster(ip, tp, first_ino);
2402 return 0;
2406 * Reallocate the space for if_broot based on the number of records
2407 * being added or deleted as indicated in rec_diff. Move the records
2408 * and pointers in if_broot to fit the new size. When shrinking this
2409 * will eliminate holes between the records and pointers created by
2410 * the caller. When growing this will create holes to be filled in
2411 * by the caller.
2413 * The caller must not request to add more records than would fit in
2414 * the on-disk inode root. If the if_broot is currently NULL, then
2415 * if we adding records one will be allocated. The caller must also
2416 * not request that the number of records go below zero, although
2417 * it can go to zero.
2419 * ip -- the inode whose if_broot area is changing
2420 * ext_diff -- the change in the number of records, positive or negative,
2421 * requested for the if_broot array.
2423 void
2424 xfs_iroot_realloc(
2425 xfs_inode_t *ip,
2426 int rec_diff,
2427 int whichfork)
2429 int cur_max;
2430 xfs_ifork_t *ifp;
2431 xfs_bmbt_block_t *new_broot;
2432 int new_max;
2433 size_t new_size;
2434 char *np;
2435 char *op;
2438 * Handle the degenerate case quietly.
2440 if (rec_diff == 0) {
2441 return;
2444 ifp = XFS_IFORK_PTR(ip, whichfork);
2445 if (rec_diff > 0) {
2447 * If there wasn't any memory allocated before, just
2448 * allocate it now and get out.
2450 if (ifp->if_broot_bytes == 0) {
2451 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff);
2452 ifp->if_broot = (xfs_bmbt_block_t*)kmem_alloc(new_size,
2453 KM_SLEEP);
2454 ifp->if_broot_bytes = (int)new_size;
2455 return;
2459 * If there is already an existing if_broot, then we need
2460 * to realloc() it and shift the pointers to their new
2461 * location. The records don't change location because
2462 * they are kept butted up against the btree block header.
2464 cur_max = XFS_BMAP_BROOT_MAXRECS(ifp->if_broot_bytes);
2465 new_max = cur_max + rec_diff;
2466 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
2467 ifp->if_broot = (xfs_bmbt_block_t *)
2468 kmem_realloc(ifp->if_broot,
2469 new_size,
2470 (size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max), /* old size */
2471 KM_SLEEP);
2472 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
2473 ifp->if_broot_bytes);
2474 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
2475 (int)new_size);
2476 ifp->if_broot_bytes = (int)new_size;
2477 ASSERT(ifp->if_broot_bytes <=
2478 XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
2479 memmove(np, op, cur_max * (uint)sizeof(xfs_dfsbno_t));
2480 return;
2484 * rec_diff is less than 0. In this case, we are shrinking the
2485 * if_broot buffer. It must already exist. If we go to zero
2486 * records, just get rid of the root and clear the status bit.
2488 ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0));
2489 cur_max = XFS_BMAP_BROOT_MAXRECS(ifp->if_broot_bytes);
2490 new_max = cur_max + rec_diff;
2491 ASSERT(new_max >= 0);
2492 if (new_max > 0)
2493 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
2494 else
2495 new_size = 0;
2496 if (new_size > 0) {
2497 new_broot = (xfs_bmbt_block_t *)kmem_alloc(new_size, KM_SLEEP);
2499 * First copy over the btree block header.
2501 memcpy(new_broot, ifp->if_broot, sizeof(xfs_bmbt_block_t));
2502 } else {
2503 new_broot = NULL;
2504 ifp->if_flags &= ~XFS_IFBROOT;
2508 * Only copy the records and pointers if there are any.
2510 if (new_max > 0) {
2512 * First copy the records.
2514 op = (char *)XFS_BMAP_BROOT_REC_ADDR(ifp->if_broot, 1,
2515 ifp->if_broot_bytes);
2516 np = (char *)XFS_BMAP_BROOT_REC_ADDR(new_broot, 1,
2517 (int)new_size);
2518 memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t));
2521 * Then copy the pointers.
2523 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
2524 ifp->if_broot_bytes);
2525 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(new_broot, 1,
2526 (int)new_size);
2527 memcpy(np, op, new_max * (uint)sizeof(xfs_dfsbno_t));
2529 kmem_free(ifp->if_broot, ifp->if_broot_bytes);
2530 ifp->if_broot = new_broot;
2531 ifp->if_broot_bytes = (int)new_size;
2532 ASSERT(ifp->if_broot_bytes <=
2533 XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
2534 return;
2539 * This is called when the amount of space needed for if_data
2540 * is increased or decreased. The change in size is indicated by
2541 * the number of bytes that need to be added or deleted in the
2542 * byte_diff parameter.
2544 * If the amount of space needed has decreased below the size of the
2545 * inline buffer, then switch to using the inline buffer. Otherwise,
2546 * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
2547 * to what is needed.
2549 * ip -- the inode whose if_data area is changing
2550 * byte_diff -- the change in the number of bytes, positive or negative,
2551 * requested for the if_data array.
2553 void
2554 xfs_idata_realloc(
2555 xfs_inode_t *ip,
2556 int byte_diff,
2557 int whichfork)
2559 xfs_ifork_t *ifp;
2560 int new_size;
2561 int real_size;
2563 if (byte_diff == 0) {
2564 return;
2567 ifp = XFS_IFORK_PTR(ip, whichfork);
2568 new_size = (int)ifp->if_bytes + byte_diff;
2569 ASSERT(new_size >= 0);
2571 if (new_size == 0) {
2572 if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2573 kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
2575 ifp->if_u1.if_data = NULL;
2576 real_size = 0;
2577 } else if (new_size <= sizeof(ifp->if_u2.if_inline_data)) {
2579 * If the valid extents/data can fit in if_inline_ext/data,
2580 * copy them from the malloc'd vector and free it.
2582 if (ifp->if_u1.if_data == NULL) {
2583 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
2584 } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2585 ASSERT(ifp->if_real_bytes != 0);
2586 memcpy(ifp->if_u2.if_inline_data, ifp->if_u1.if_data,
2587 new_size);
2588 kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
2589 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
2591 real_size = 0;
2592 } else {
2594 * Stuck with malloc/realloc.
2595 * For inline data, the underlying buffer must be
2596 * a multiple of 4 bytes in size so that it can be
2597 * logged and stay on word boundaries. We enforce
2598 * that here.
2600 real_size = roundup(new_size, 4);
2601 if (ifp->if_u1.if_data == NULL) {
2602 ASSERT(ifp->if_real_bytes == 0);
2603 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
2604 } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2606 * Only do the realloc if the underlying size
2607 * is really changing.
2609 if (ifp->if_real_bytes != real_size) {
2610 ifp->if_u1.if_data =
2611 kmem_realloc(ifp->if_u1.if_data,
2612 real_size,
2613 ifp->if_real_bytes,
2614 KM_SLEEP);
2616 } else {
2617 ASSERT(ifp->if_real_bytes == 0);
2618 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
2619 memcpy(ifp->if_u1.if_data, ifp->if_u2.if_inline_data,
2620 ifp->if_bytes);
2623 ifp->if_real_bytes = real_size;
2624 ifp->if_bytes = new_size;
2625 ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2632 * Map inode to disk block and offset.
2634 * mp -- the mount point structure for the current file system
2635 * tp -- the current transaction
2636 * ino -- the inode number of the inode to be located
2637 * imap -- this structure is filled in with the information necessary
2638 * to retrieve the given inode from disk
2639 * flags -- flags to pass to xfs_dilocate indicating whether or not
2640 * lookups in the inode btree were OK or not
2643 xfs_imap(
2644 xfs_mount_t *mp,
2645 xfs_trans_t *tp,
2646 xfs_ino_t ino,
2647 xfs_imap_t *imap,
2648 uint flags)
2650 xfs_fsblock_t fsbno;
2651 int len;
2652 int off;
2653 int error;
2655 fsbno = imap->im_blkno ?
2656 XFS_DADDR_TO_FSB(mp, imap->im_blkno) : NULLFSBLOCK;
2657 error = xfs_dilocate(mp, tp, ino, &fsbno, &len, &off, flags);
2658 if (error != 0) {
2659 return error;
2661 imap->im_blkno = XFS_FSB_TO_DADDR(mp, fsbno);
2662 imap->im_len = XFS_FSB_TO_BB(mp, len);
2663 imap->im_agblkno = XFS_FSB_TO_AGBNO(mp, fsbno);
2664 imap->im_ioffset = (ushort)off;
2665 imap->im_boffset = (ushort)(off << mp->m_sb.sb_inodelog);
2666 return 0;
2669 void
2670 xfs_idestroy_fork(
2671 xfs_inode_t *ip,
2672 int whichfork)
2674 xfs_ifork_t *ifp;
2676 ifp = XFS_IFORK_PTR(ip, whichfork);
2677 if (ifp->if_broot != NULL) {
2678 kmem_free(ifp->if_broot, ifp->if_broot_bytes);
2679 ifp->if_broot = NULL;
2683 * If the format is local, then we can't have an extents
2684 * array so just look for an inline data array. If we're
2685 * not local then we may or may not have an extents list,
2686 * so check and free it up if we do.
2688 if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) {
2689 if ((ifp->if_u1.if_data != ifp->if_u2.if_inline_data) &&
2690 (ifp->if_u1.if_data != NULL)) {
2691 ASSERT(ifp->if_real_bytes != 0);
2692 kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
2693 ifp->if_u1.if_data = NULL;
2694 ifp->if_real_bytes = 0;
2696 } else if ((ifp->if_flags & XFS_IFEXTENTS) &&
2697 ((ifp->if_flags & XFS_IFEXTIREC) ||
2698 ((ifp->if_u1.if_extents != NULL) &&
2699 (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext)))) {
2700 ASSERT(ifp->if_real_bytes != 0);
2701 xfs_iext_destroy(ifp);
2703 ASSERT(ifp->if_u1.if_extents == NULL ||
2704 ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext);
2705 ASSERT(ifp->if_real_bytes == 0);
2706 if (whichfork == XFS_ATTR_FORK) {
2707 kmem_zone_free(xfs_ifork_zone, ip->i_afp);
2708 ip->i_afp = NULL;
2713 * This is called free all the memory associated with an inode.
2714 * It must free the inode itself and any buffers allocated for
2715 * if_extents/if_data and if_broot. It must also free the lock
2716 * associated with the inode.
2718 void
2719 xfs_idestroy(
2720 xfs_inode_t *ip)
2723 switch (ip->i_d.di_mode & S_IFMT) {
2724 case S_IFREG:
2725 case S_IFDIR:
2726 case S_IFLNK:
2727 xfs_idestroy_fork(ip, XFS_DATA_FORK);
2728 break;
2730 if (ip->i_afp)
2731 xfs_idestroy_fork(ip, XFS_ATTR_FORK);
2732 mrfree(&ip->i_lock);
2733 mrfree(&ip->i_iolock);
2734 freesema(&ip->i_flock);
2736 #ifdef XFS_VNODE_TRACE
2737 ktrace_free(ip->i_trace);
2738 #endif
2739 #ifdef XFS_BMAP_TRACE
2740 ktrace_free(ip->i_xtrace);
2741 #endif
2742 #ifdef XFS_BMBT_TRACE
2743 ktrace_free(ip->i_btrace);
2744 #endif
2745 #ifdef XFS_RW_TRACE
2746 ktrace_free(ip->i_rwtrace);
2747 #endif
2748 #ifdef XFS_ILOCK_TRACE
2749 ktrace_free(ip->i_lock_trace);
2750 #endif
2751 #ifdef XFS_DIR2_TRACE
2752 ktrace_free(ip->i_dir_trace);
2753 #endif
2754 if (ip->i_itemp) {
2756 * Only if we are shutting down the fs will we see an
2757 * inode still in the AIL. If it is there, we should remove
2758 * it to prevent a use-after-free from occurring.
2760 xfs_mount_t *mp = ip->i_mount;
2761 xfs_log_item_t *lip = &ip->i_itemp->ili_item;
2762 int s;
2764 ASSERT(((lip->li_flags & XFS_LI_IN_AIL) == 0) ||
2765 XFS_FORCED_SHUTDOWN(ip->i_mount));
2766 if (lip->li_flags & XFS_LI_IN_AIL) {
2767 AIL_LOCK(mp, s);
2768 if (lip->li_flags & XFS_LI_IN_AIL)
2769 xfs_trans_delete_ail(mp, lip, s);
2770 else
2771 AIL_UNLOCK(mp, s);
2773 xfs_inode_item_destroy(ip);
2775 kmem_zone_free(xfs_inode_zone, ip);
2780 * Increment the pin count of the given buffer.
2781 * This value is protected by ipinlock spinlock in the mount structure.
2783 void
2784 xfs_ipin(
2785 xfs_inode_t *ip)
2787 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE));
2789 atomic_inc(&ip->i_pincount);
2793 * Decrement the pin count of the given inode, and wake up
2794 * anyone in xfs_iwait_unpin() if the count goes to 0. The
2795 * inode must have been previously pinned with a call to xfs_ipin().
2797 void
2798 xfs_iunpin(
2799 xfs_inode_t *ip)
2801 ASSERT(atomic_read(&ip->i_pincount) > 0);
2803 if (atomic_dec_and_lock(&ip->i_pincount, &ip->i_flags_lock)) {
2806 * If the inode is currently being reclaimed, the link between
2807 * the bhv_vnode and the xfs_inode will be broken after the
2808 * XFS_IRECLAIM* flag is set. Hence, if these flags are not
2809 * set, then we can move forward and mark the linux inode dirty
2810 * knowing that it is still valid as it won't freed until after
2811 * the bhv_vnode<->xfs_inode link is broken in xfs_reclaim. The
2812 * i_flags_lock is used to synchronise the setting of the
2813 * XFS_IRECLAIM* flags and the breaking of the link, and so we
2814 * can execute atomically w.r.t to reclaim by holding this lock
2815 * here.
2817 * However, we still need to issue the unpin wakeup call as the
2818 * inode reclaim may be blocked waiting for the inode to become
2819 * unpinned.
2822 if (!__xfs_iflags_test(ip, XFS_IRECLAIM|XFS_IRECLAIMABLE)) {
2823 bhv_vnode_t *vp = XFS_ITOV_NULL(ip);
2824 struct inode *inode = NULL;
2826 BUG_ON(vp == NULL);
2827 inode = vn_to_inode(vp);
2828 BUG_ON(inode->i_state & I_CLEAR);
2830 /* make sync come back and flush this inode */
2831 if (!(inode->i_state & (I_NEW|I_FREEING)))
2832 mark_inode_dirty_sync(inode);
2834 spin_unlock(&ip->i_flags_lock);
2835 wake_up(&ip->i_ipin_wait);
2840 * This is called to wait for the given inode to be unpinned.
2841 * It will sleep until this happens. The caller must have the
2842 * inode locked in at least shared mode so that the buffer cannot
2843 * be subsequently pinned once someone is waiting for it to be
2844 * unpinned.
2846 STATIC void
2847 xfs_iunpin_wait(
2848 xfs_inode_t *ip)
2850 xfs_inode_log_item_t *iip;
2851 xfs_lsn_t lsn;
2853 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE | MR_ACCESS));
2855 if (atomic_read(&ip->i_pincount) == 0) {
2856 return;
2859 iip = ip->i_itemp;
2860 if (iip && iip->ili_last_lsn) {
2861 lsn = iip->ili_last_lsn;
2862 } else {
2863 lsn = (xfs_lsn_t)0;
2867 * Give the log a push so we don't wait here too long.
2869 xfs_log_force(ip->i_mount, lsn, XFS_LOG_FORCE);
2871 wait_event(ip->i_ipin_wait, (atomic_read(&ip->i_pincount) == 0));
2876 * xfs_iextents_copy()
2878 * This is called to copy the REAL extents (as opposed to the delayed
2879 * allocation extents) from the inode into the given buffer. It
2880 * returns the number of bytes copied into the buffer.
2882 * If there are no delayed allocation extents, then we can just
2883 * memcpy() the extents into the buffer. Otherwise, we need to
2884 * examine each extent in turn and skip those which are delayed.
2887 xfs_iextents_copy(
2888 xfs_inode_t *ip,
2889 xfs_bmbt_rec_t *dp,
2890 int whichfork)
2892 int copied;
2893 int i;
2894 xfs_ifork_t *ifp;
2895 int nrecs;
2896 xfs_fsblock_t start_block;
2898 ifp = XFS_IFORK_PTR(ip, whichfork);
2899 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
2900 ASSERT(ifp->if_bytes > 0);
2902 nrecs = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
2903 XFS_BMAP_TRACE_EXLIST(ip, nrecs, whichfork);
2904 ASSERT(nrecs > 0);
2907 * There are some delayed allocation extents in the
2908 * inode, so copy the extents one at a time and skip
2909 * the delayed ones. There must be at least one
2910 * non-delayed extent.
2912 copied = 0;
2913 for (i = 0; i < nrecs; i++) {
2914 xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
2915 start_block = xfs_bmbt_get_startblock(ep);
2916 if (ISNULLSTARTBLOCK(start_block)) {
2918 * It's a delayed allocation extent, so skip it.
2920 continue;
2923 /* Translate to on disk format */
2924 put_unaligned(cpu_to_be64(ep->l0), &dp->l0);
2925 put_unaligned(cpu_to_be64(ep->l1), &dp->l1);
2926 dp++;
2927 copied++;
2929 ASSERT(copied != 0);
2930 xfs_validate_extents(ifp, copied, XFS_EXTFMT_INODE(ip));
2932 return (copied * (uint)sizeof(xfs_bmbt_rec_t));
2936 * Each of the following cases stores data into the same region
2937 * of the on-disk inode, so only one of them can be valid at
2938 * any given time. While it is possible to have conflicting formats
2939 * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
2940 * in EXTENTS format, this can only happen when the fork has
2941 * changed formats after being modified but before being flushed.
2942 * In these cases, the format always takes precedence, because the
2943 * format indicates the current state of the fork.
2945 /*ARGSUSED*/
2946 STATIC int
2947 xfs_iflush_fork(
2948 xfs_inode_t *ip,
2949 xfs_dinode_t *dip,
2950 xfs_inode_log_item_t *iip,
2951 int whichfork,
2952 xfs_buf_t *bp)
2954 char *cp;
2955 xfs_ifork_t *ifp;
2956 xfs_mount_t *mp;
2957 #ifdef XFS_TRANS_DEBUG
2958 int first;
2959 #endif
2960 static const short brootflag[2] =
2961 { XFS_ILOG_DBROOT, XFS_ILOG_ABROOT };
2962 static const short dataflag[2] =
2963 { XFS_ILOG_DDATA, XFS_ILOG_ADATA };
2964 static const short extflag[2] =
2965 { XFS_ILOG_DEXT, XFS_ILOG_AEXT };
2967 if (iip == NULL)
2968 return 0;
2969 ifp = XFS_IFORK_PTR(ip, whichfork);
2971 * This can happen if we gave up in iformat in an error path,
2972 * for the attribute fork.
2974 if (ifp == NULL) {
2975 ASSERT(whichfork == XFS_ATTR_FORK);
2976 return 0;
2978 cp = XFS_DFORK_PTR(dip, whichfork);
2979 mp = ip->i_mount;
2980 switch (XFS_IFORK_FORMAT(ip, whichfork)) {
2981 case XFS_DINODE_FMT_LOCAL:
2982 if ((iip->ili_format.ilf_fields & dataflag[whichfork]) &&
2983 (ifp->if_bytes > 0)) {
2984 ASSERT(ifp->if_u1.if_data != NULL);
2985 ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2986 memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes);
2988 break;
2990 case XFS_DINODE_FMT_EXTENTS:
2991 ASSERT((ifp->if_flags & XFS_IFEXTENTS) ||
2992 !(iip->ili_format.ilf_fields & extflag[whichfork]));
2993 ASSERT((xfs_iext_get_ext(ifp, 0) != NULL) ||
2994 (ifp->if_bytes == 0));
2995 ASSERT((xfs_iext_get_ext(ifp, 0) == NULL) ||
2996 (ifp->if_bytes > 0));
2997 if ((iip->ili_format.ilf_fields & extflag[whichfork]) &&
2998 (ifp->if_bytes > 0)) {
2999 ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0);
3000 (void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp,
3001 whichfork);
3003 break;
3005 case XFS_DINODE_FMT_BTREE:
3006 if ((iip->ili_format.ilf_fields & brootflag[whichfork]) &&
3007 (ifp->if_broot_bytes > 0)) {
3008 ASSERT(ifp->if_broot != NULL);
3009 ASSERT(ifp->if_broot_bytes <=
3010 (XFS_IFORK_SIZE(ip, whichfork) +
3011 XFS_BROOT_SIZE_ADJ));
3012 xfs_bmbt_to_bmdr(ifp->if_broot, ifp->if_broot_bytes,
3013 (xfs_bmdr_block_t *)cp,
3014 XFS_DFORK_SIZE(dip, mp, whichfork));
3016 break;
3018 case XFS_DINODE_FMT_DEV:
3019 if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) {
3020 ASSERT(whichfork == XFS_DATA_FORK);
3021 dip->di_u.di_dev = cpu_to_be32(ip->i_df.if_u2.if_rdev);
3023 break;
3025 case XFS_DINODE_FMT_UUID:
3026 if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) {
3027 ASSERT(whichfork == XFS_DATA_FORK);
3028 memcpy(&dip->di_u.di_muuid, &ip->i_df.if_u2.if_uuid,
3029 sizeof(uuid_t));
3031 break;
3033 default:
3034 ASSERT(0);
3035 break;
3038 return 0;
3042 * xfs_iflush() will write a modified inode's changes out to the
3043 * inode's on disk home. The caller must have the inode lock held
3044 * in at least shared mode and the inode flush semaphore must be
3045 * held as well. The inode lock will still be held upon return from
3046 * the call and the caller is free to unlock it.
3047 * The inode flush lock will be unlocked when the inode reaches the disk.
3048 * The flags indicate how the inode's buffer should be written out.
3051 xfs_iflush(
3052 xfs_inode_t *ip,
3053 uint flags)
3055 xfs_inode_log_item_t *iip;
3056 xfs_buf_t *bp;
3057 xfs_dinode_t *dip;
3058 xfs_mount_t *mp;
3059 int error;
3060 /* REFERENCED */
3061 xfs_inode_t *iq;
3062 int clcount; /* count of inodes clustered */
3063 int bufwasdelwri;
3064 struct hlist_node *entry;
3065 enum { INT_DELWRI = (1 << 0), INT_ASYNC = (1 << 1) };
3067 XFS_STATS_INC(xs_iflush_count);
3069 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
3070 ASSERT(issemalocked(&(ip->i_flock)));
3071 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3072 ip->i_d.di_nextents > ip->i_df.if_ext_max);
3074 iip = ip->i_itemp;
3075 mp = ip->i_mount;
3078 * If the inode isn't dirty, then just release the inode
3079 * flush lock and do nothing.
3081 if ((ip->i_update_core == 0) &&
3082 ((iip == NULL) || !(iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
3083 ASSERT((iip != NULL) ?
3084 !(iip->ili_item.li_flags & XFS_LI_IN_AIL) : 1);
3085 xfs_ifunlock(ip);
3086 return 0;
3090 * We can't flush the inode until it is unpinned, so
3091 * wait for it. We know noone new can pin it, because
3092 * we are holding the inode lock shared and you need
3093 * to hold it exclusively to pin the inode.
3095 xfs_iunpin_wait(ip);
3098 * This may have been unpinned because the filesystem is shutting
3099 * down forcibly. If that's the case we must not write this inode
3100 * to disk, because the log record didn't make it to disk!
3102 if (XFS_FORCED_SHUTDOWN(mp)) {
3103 ip->i_update_core = 0;
3104 if (iip)
3105 iip->ili_format.ilf_fields = 0;
3106 xfs_ifunlock(ip);
3107 return XFS_ERROR(EIO);
3111 * Get the buffer containing the on-disk inode.
3113 error = xfs_itobp(mp, NULL, ip, &dip, &bp, 0, 0);
3114 if (error) {
3115 xfs_ifunlock(ip);
3116 return error;
3120 * Decide how buffer will be flushed out. This is done before
3121 * the call to xfs_iflush_int because this field is zeroed by it.
3123 if (iip != NULL && iip->ili_format.ilf_fields != 0) {
3125 * Flush out the inode buffer according to the directions
3126 * of the caller. In the cases where the caller has given
3127 * us a choice choose the non-delwri case. This is because
3128 * the inode is in the AIL and we need to get it out soon.
3130 switch (flags) {
3131 case XFS_IFLUSH_SYNC:
3132 case XFS_IFLUSH_DELWRI_ELSE_SYNC:
3133 flags = 0;
3134 break;
3135 case XFS_IFLUSH_ASYNC:
3136 case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
3137 flags = INT_ASYNC;
3138 break;
3139 case XFS_IFLUSH_DELWRI:
3140 flags = INT_DELWRI;
3141 break;
3142 default:
3143 ASSERT(0);
3144 flags = 0;
3145 break;
3147 } else {
3148 switch (flags) {
3149 case XFS_IFLUSH_DELWRI_ELSE_SYNC:
3150 case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
3151 case XFS_IFLUSH_DELWRI:
3152 flags = INT_DELWRI;
3153 break;
3154 case XFS_IFLUSH_ASYNC:
3155 flags = INT_ASYNC;
3156 break;
3157 case XFS_IFLUSH_SYNC:
3158 flags = 0;
3159 break;
3160 default:
3161 ASSERT(0);
3162 flags = 0;
3163 break;
3168 * First flush out the inode that xfs_iflush was called with.
3170 error = xfs_iflush_int(ip, bp);
3171 if (error) {
3172 goto corrupt_out;
3176 * inode clustering:
3177 * see if other inodes can be gathered into this write
3179 spin_lock(&ip->i_cluster->icl_lock);
3180 ip->i_cluster->icl_buf = bp;
3182 clcount = 0;
3183 hlist_for_each_entry(iq, entry, &ip->i_cluster->icl_inodes, i_cnode) {
3184 if (iq == ip)
3185 continue;
3188 * Do an un-protected check to see if the inode is dirty and
3189 * is a candidate for flushing. These checks will be repeated
3190 * later after the appropriate locks are acquired.
3192 iip = iq->i_itemp;
3193 if ((iq->i_update_core == 0) &&
3194 ((iip == NULL) ||
3195 !(iip->ili_format.ilf_fields & XFS_ILOG_ALL)) &&
3196 xfs_ipincount(iq) == 0) {
3197 continue;
3201 * Try to get locks. If any are unavailable,
3202 * then this inode cannot be flushed and is skipped.
3205 /* get inode locks (just i_lock) */
3206 if (xfs_ilock_nowait(iq, XFS_ILOCK_SHARED)) {
3207 /* get inode flush lock */
3208 if (xfs_iflock_nowait(iq)) {
3209 /* check if pinned */
3210 if (xfs_ipincount(iq) == 0) {
3211 /* arriving here means that
3212 * this inode can be flushed.
3213 * first re-check that it's
3214 * dirty
3216 iip = iq->i_itemp;
3217 if ((iq->i_update_core != 0)||
3218 ((iip != NULL) &&
3219 (iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
3220 clcount++;
3221 error = xfs_iflush_int(iq, bp);
3222 if (error) {
3223 xfs_iunlock(iq,
3224 XFS_ILOCK_SHARED);
3225 goto cluster_corrupt_out;
3227 } else {
3228 xfs_ifunlock(iq);
3230 } else {
3231 xfs_ifunlock(iq);
3234 xfs_iunlock(iq, XFS_ILOCK_SHARED);
3237 spin_unlock(&ip->i_cluster->icl_lock);
3239 if (clcount) {
3240 XFS_STATS_INC(xs_icluster_flushcnt);
3241 XFS_STATS_ADD(xs_icluster_flushinode, clcount);
3245 * If the buffer is pinned then push on the log so we won't
3246 * get stuck waiting in the write for too long.
3248 if (XFS_BUF_ISPINNED(bp)){
3249 xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE);
3252 if (flags & INT_DELWRI) {
3253 xfs_bdwrite(mp, bp);
3254 } else if (flags & INT_ASYNC) {
3255 xfs_bawrite(mp, bp);
3256 } else {
3257 error = xfs_bwrite(mp, bp);
3259 return error;
3261 corrupt_out:
3262 xfs_buf_relse(bp);
3263 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3264 xfs_iflush_abort(ip);
3266 * Unlocks the flush lock
3268 return XFS_ERROR(EFSCORRUPTED);
3270 cluster_corrupt_out:
3271 /* Corruption detected in the clustering loop. Invalidate the
3272 * inode buffer and shut down the filesystem.
3274 spin_unlock(&ip->i_cluster->icl_lock);
3277 * Clean up the buffer. If it was B_DELWRI, just release it --
3278 * brelse can handle it with no problems. If not, shut down the
3279 * filesystem before releasing the buffer.
3281 if ((bufwasdelwri= XFS_BUF_ISDELAYWRITE(bp))) {
3282 xfs_buf_relse(bp);
3285 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3287 if(!bufwasdelwri) {
3289 * Just like incore_relse: if we have b_iodone functions,
3290 * mark the buffer as an error and call them. Otherwise
3291 * mark it as stale and brelse.
3293 if (XFS_BUF_IODONE_FUNC(bp)) {
3294 XFS_BUF_CLR_BDSTRAT_FUNC(bp);
3295 XFS_BUF_UNDONE(bp);
3296 XFS_BUF_STALE(bp);
3297 XFS_BUF_SHUT(bp);
3298 XFS_BUF_ERROR(bp,EIO);
3299 xfs_biodone(bp);
3300 } else {
3301 XFS_BUF_STALE(bp);
3302 xfs_buf_relse(bp);
3306 xfs_iflush_abort(iq);
3308 * Unlocks the flush lock
3310 return XFS_ERROR(EFSCORRUPTED);
3314 STATIC int
3315 xfs_iflush_int(
3316 xfs_inode_t *ip,
3317 xfs_buf_t *bp)
3319 xfs_inode_log_item_t *iip;
3320 xfs_dinode_t *dip;
3321 xfs_mount_t *mp;
3322 #ifdef XFS_TRANS_DEBUG
3323 int first;
3324 #endif
3325 SPLDECL(s);
3327 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
3328 ASSERT(issemalocked(&(ip->i_flock)));
3329 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3330 ip->i_d.di_nextents > ip->i_df.if_ext_max);
3332 iip = ip->i_itemp;
3333 mp = ip->i_mount;
3337 * If the inode isn't dirty, then just release the inode
3338 * flush lock and do nothing.
3340 if ((ip->i_update_core == 0) &&
3341 ((iip == NULL) || !(iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
3342 xfs_ifunlock(ip);
3343 return 0;
3346 /* set *dip = inode's place in the buffer */
3347 dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_boffset);
3350 * Clear i_update_core before copying out the data.
3351 * This is for coordination with our timestamp updates
3352 * that don't hold the inode lock. They will always
3353 * update the timestamps BEFORE setting i_update_core,
3354 * so if we clear i_update_core after they set it we
3355 * are guaranteed to see their updates to the timestamps.
3356 * I believe that this depends on strongly ordered memory
3357 * semantics, but we have that. We use the SYNCHRONIZE
3358 * macro to make sure that the compiler does not reorder
3359 * the i_update_core access below the data copy below.
3361 ip->i_update_core = 0;
3362 SYNCHRONIZE();
3365 * Make sure to get the latest atime from the Linux inode.
3367 xfs_synchronize_atime(ip);
3369 if (XFS_TEST_ERROR(be16_to_cpu(dip->di_core.di_magic) != XFS_DINODE_MAGIC,
3370 mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
3371 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3372 "xfs_iflush: Bad inode %Lu magic number 0x%x, ptr 0x%p",
3373 ip->i_ino, be16_to_cpu(dip->di_core.di_magic), dip);
3374 goto corrupt_out;
3376 if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC,
3377 mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) {
3378 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3379 "xfs_iflush: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
3380 ip->i_ino, ip, ip->i_d.di_magic);
3381 goto corrupt_out;
3383 if ((ip->i_d.di_mode & S_IFMT) == S_IFREG) {
3384 if (XFS_TEST_ERROR(
3385 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3386 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
3387 mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
3388 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3389 "xfs_iflush: Bad regular inode %Lu, ptr 0x%p",
3390 ip->i_ino, ip);
3391 goto corrupt_out;
3393 } else if ((ip->i_d.di_mode & S_IFMT) == S_IFDIR) {
3394 if (XFS_TEST_ERROR(
3395 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3396 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
3397 (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
3398 mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
3399 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3400 "xfs_iflush: Bad directory inode %Lu, ptr 0x%p",
3401 ip->i_ino, ip);
3402 goto corrupt_out;
3405 if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
3406 ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
3407 XFS_RANDOM_IFLUSH_5)) {
3408 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3409 "xfs_iflush: detected corrupt incore inode %Lu, total extents = %d, nblocks = %Ld, ptr 0x%p",
3410 ip->i_ino,
3411 ip->i_d.di_nextents + ip->i_d.di_anextents,
3412 ip->i_d.di_nblocks,
3413 ip);
3414 goto corrupt_out;
3416 if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
3417 mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
3418 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3419 "xfs_iflush: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
3420 ip->i_ino, ip->i_d.di_forkoff, ip);
3421 goto corrupt_out;
3424 * bump the flush iteration count, used to detect flushes which
3425 * postdate a log record during recovery.
3428 ip->i_d.di_flushiter++;
3431 * Copy the dirty parts of the inode into the on-disk
3432 * inode. We always copy out the core of the inode,
3433 * because if the inode is dirty at all the core must
3434 * be.
3436 xfs_dinode_to_disk(&dip->di_core, &ip->i_d);
3438 /* Wrap, we never let the log put out DI_MAX_FLUSH */
3439 if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
3440 ip->i_d.di_flushiter = 0;
3443 * If this is really an old format inode and the superblock version
3444 * has not been updated to support only new format inodes, then
3445 * convert back to the old inode format. If the superblock version
3446 * has been updated, then make the conversion permanent.
3448 ASSERT(ip->i_d.di_version == XFS_DINODE_VERSION_1 ||
3449 XFS_SB_VERSION_HASNLINK(&mp->m_sb));
3450 if (ip->i_d.di_version == XFS_DINODE_VERSION_1) {
3451 if (!XFS_SB_VERSION_HASNLINK(&mp->m_sb)) {
3453 * Convert it back.
3455 ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
3456 dip->di_core.di_onlink = cpu_to_be16(ip->i_d.di_nlink);
3457 } else {
3459 * The superblock version has already been bumped,
3460 * so just make the conversion to the new inode
3461 * format permanent.
3463 ip->i_d.di_version = XFS_DINODE_VERSION_2;
3464 dip->di_core.di_version = XFS_DINODE_VERSION_2;
3465 ip->i_d.di_onlink = 0;
3466 dip->di_core.di_onlink = 0;
3467 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
3468 memset(&(dip->di_core.di_pad[0]), 0,
3469 sizeof(dip->di_core.di_pad));
3470 ASSERT(ip->i_d.di_projid == 0);
3474 if (xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp) == EFSCORRUPTED) {
3475 goto corrupt_out;
3478 if (XFS_IFORK_Q(ip)) {
3480 * The only error from xfs_iflush_fork is on the data fork.
3482 (void) xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp);
3484 xfs_inobp_check(mp, bp);
3487 * We've recorded everything logged in the inode, so we'd
3488 * like to clear the ilf_fields bits so we don't log and
3489 * flush things unnecessarily. However, we can't stop
3490 * logging all this information until the data we've copied
3491 * into the disk buffer is written to disk. If we did we might
3492 * overwrite the copy of the inode in the log with all the
3493 * data after re-logging only part of it, and in the face of
3494 * a crash we wouldn't have all the data we need to recover.
3496 * What we do is move the bits to the ili_last_fields field.
3497 * When logging the inode, these bits are moved back to the
3498 * ilf_fields field. In the xfs_iflush_done() routine we
3499 * clear ili_last_fields, since we know that the information
3500 * those bits represent is permanently on disk. As long as
3501 * the flush completes before the inode is logged again, then
3502 * both ilf_fields and ili_last_fields will be cleared.
3504 * We can play with the ilf_fields bits here, because the inode
3505 * lock must be held exclusively in order to set bits there
3506 * and the flush lock protects the ili_last_fields bits.
3507 * Set ili_logged so the flush done
3508 * routine can tell whether or not to look in the AIL.
3509 * Also, store the current LSN of the inode so that we can tell
3510 * whether the item has moved in the AIL from xfs_iflush_done().
3511 * In order to read the lsn we need the AIL lock, because
3512 * it is a 64 bit value that cannot be read atomically.
3514 if (iip != NULL && iip->ili_format.ilf_fields != 0) {
3515 iip->ili_last_fields = iip->ili_format.ilf_fields;
3516 iip->ili_format.ilf_fields = 0;
3517 iip->ili_logged = 1;
3519 ASSERT(sizeof(xfs_lsn_t) == 8); /* don't lock if it shrinks */
3520 AIL_LOCK(mp,s);
3521 iip->ili_flush_lsn = iip->ili_item.li_lsn;
3522 AIL_UNLOCK(mp, s);
3525 * Attach the function xfs_iflush_done to the inode's
3526 * buffer. This will remove the inode from the AIL
3527 * and unlock the inode's flush lock when the inode is
3528 * completely written to disk.
3530 xfs_buf_attach_iodone(bp, (void(*)(xfs_buf_t*,xfs_log_item_t*))
3531 xfs_iflush_done, (xfs_log_item_t *)iip);
3533 ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL);
3534 ASSERT(XFS_BUF_IODONE_FUNC(bp) != NULL);
3535 } else {
3537 * We're flushing an inode which is not in the AIL and has
3538 * not been logged but has i_update_core set. For this
3539 * case we can use a B_DELWRI flush and immediately drop
3540 * the inode flush lock because we can avoid the whole
3541 * AIL state thing. It's OK to drop the flush lock now,
3542 * because we've already locked the buffer and to do anything
3543 * you really need both.
3545 if (iip != NULL) {
3546 ASSERT(iip->ili_logged == 0);
3547 ASSERT(iip->ili_last_fields == 0);
3548 ASSERT((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0);
3550 xfs_ifunlock(ip);
3553 return 0;
3555 corrupt_out:
3556 return XFS_ERROR(EFSCORRUPTED);
3561 * Flush all inactive inodes in mp.
3563 void
3564 xfs_iflush_all(
3565 xfs_mount_t *mp)
3567 xfs_inode_t *ip;
3568 bhv_vnode_t *vp;
3570 again:
3571 XFS_MOUNT_ILOCK(mp);
3572 ip = mp->m_inodes;
3573 if (ip == NULL)
3574 goto out;
3576 do {
3577 /* Make sure we skip markers inserted by sync */
3578 if (ip->i_mount == NULL) {
3579 ip = ip->i_mnext;
3580 continue;
3583 vp = XFS_ITOV_NULL(ip);
3584 if (!vp) {
3585 XFS_MOUNT_IUNLOCK(mp);
3586 xfs_finish_reclaim(ip, 0, XFS_IFLUSH_ASYNC);
3587 goto again;
3590 ASSERT(vn_count(vp) == 0);
3592 ip = ip->i_mnext;
3593 } while (ip != mp->m_inodes);
3594 out:
3595 XFS_MOUNT_IUNLOCK(mp);
3599 * xfs_iaccess: check accessibility of inode for mode.
3602 xfs_iaccess(
3603 xfs_inode_t *ip,
3604 mode_t mode,
3605 cred_t *cr)
3607 int error;
3608 mode_t orgmode = mode;
3609 struct inode *inode = vn_to_inode(XFS_ITOV(ip));
3611 if (mode & S_IWUSR) {
3612 umode_t imode = inode->i_mode;
3614 if (IS_RDONLY(inode) &&
3615 (S_ISREG(imode) || S_ISDIR(imode) || S_ISLNK(imode)))
3616 return XFS_ERROR(EROFS);
3618 if (IS_IMMUTABLE(inode))
3619 return XFS_ERROR(EACCES);
3623 * If there's an Access Control List it's used instead of
3624 * the mode bits.
3626 if ((error = _ACL_XFS_IACCESS(ip, mode, cr)) != -1)
3627 return error ? XFS_ERROR(error) : 0;
3629 if (current_fsuid(cr) != ip->i_d.di_uid) {
3630 mode >>= 3;
3631 if (!in_group_p((gid_t)ip->i_d.di_gid))
3632 mode >>= 3;
3636 * If the DACs are ok we don't need any capability check.
3638 if ((ip->i_d.di_mode & mode) == mode)
3639 return 0;
3641 * Read/write DACs are always overridable.
3642 * Executable DACs are overridable if at least one exec bit is set.
3644 if (!(orgmode & S_IXUSR) ||
3645 (inode->i_mode & S_IXUGO) || S_ISDIR(inode->i_mode))
3646 if (capable_cred(cr, CAP_DAC_OVERRIDE))
3647 return 0;
3649 if ((orgmode == S_IRUSR) ||
3650 (S_ISDIR(inode->i_mode) && (!(orgmode & S_IWUSR)))) {
3651 if (capable_cred(cr, CAP_DAC_READ_SEARCH))
3652 return 0;
3653 #ifdef NOISE
3654 cmn_err(CE_NOTE, "Ick: mode=%o, orgmode=%o", mode, orgmode);
3655 #endif /* NOISE */
3656 return XFS_ERROR(EACCES);
3658 return XFS_ERROR(EACCES);
3662 * xfs_iroundup: round up argument to next power of two
3664 uint
3665 xfs_iroundup(
3666 uint v)
3668 int i;
3669 uint m;
3671 if ((v & (v - 1)) == 0)
3672 return v;
3673 ASSERT((v & 0x80000000) == 0);
3674 if ((v & (v + 1)) == 0)
3675 return v + 1;
3676 for (i = 0, m = 1; i < 31; i++, m <<= 1) {
3677 if (v & m)
3678 continue;
3679 v |= m;
3680 if ((v & (v + 1)) == 0)
3681 return v + 1;
3683 ASSERT(0);
3684 return( 0 );
3687 #ifdef XFS_ILOCK_TRACE
3688 ktrace_t *xfs_ilock_trace_buf;
3690 void
3691 xfs_ilock_trace(xfs_inode_t *ip, int lock, unsigned int lockflags, inst_t *ra)
3693 ktrace_enter(ip->i_lock_trace,
3694 (void *)ip,
3695 (void *)(unsigned long)lock, /* 1 = LOCK, 3=UNLOCK, etc */
3696 (void *)(unsigned long)lockflags, /* XFS_ILOCK_EXCL etc */
3697 (void *)ra, /* caller of ilock */
3698 (void *)(unsigned long)current_cpu(),
3699 (void *)(unsigned long)current_pid(),
3700 NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL);
3702 #endif
3705 * Return a pointer to the extent record at file index idx.
3707 xfs_bmbt_rec_host_t *
3708 xfs_iext_get_ext(
3709 xfs_ifork_t *ifp, /* inode fork pointer */
3710 xfs_extnum_t idx) /* index of target extent */
3712 ASSERT(idx >= 0);
3713 if ((ifp->if_flags & XFS_IFEXTIREC) && (idx == 0)) {
3714 return ifp->if_u1.if_ext_irec->er_extbuf;
3715 } else if (ifp->if_flags & XFS_IFEXTIREC) {
3716 xfs_ext_irec_t *erp; /* irec pointer */
3717 int erp_idx = 0; /* irec index */
3718 xfs_extnum_t page_idx = idx; /* ext index in target list */
3720 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
3721 return &erp->er_extbuf[page_idx];
3722 } else if (ifp->if_bytes) {
3723 return &ifp->if_u1.if_extents[idx];
3724 } else {
3725 return NULL;
3730 * Insert new item(s) into the extent records for incore inode
3731 * fork 'ifp'. 'count' new items are inserted at index 'idx'.
3733 void
3734 xfs_iext_insert(
3735 xfs_ifork_t *ifp, /* inode fork pointer */
3736 xfs_extnum_t idx, /* starting index of new items */
3737 xfs_extnum_t count, /* number of inserted items */
3738 xfs_bmbt_irec_t *new) /* items to insert */
3740 xfs_extnum_t i; /* extent record index */
3742 ASSERT(ifp->if_flags & XFS_IFEXTENTS);
3743 xfs_iext_add(ifp, idx, count);
3744 for (i = idx; i < idx + count; i++, new++)
3745 xfs_bmbt_set_all(xfs_iext_get_ext(ifp, i), new);
3749 * This is called when the amount of space required for incore file
3750 * extents needs to be increased. The ext_diff parameter stores the
3751 * number of new extents being added and the idx parameter contains
3752 * the extent index where the new extents will be added. If the new
3753 * extents are being appended, then we just need to (re)allocate and
3754 * initialize the space. Otherwise, if the new extents are being
3755 * inserted into the middle of the existing entries, a bit more work
3756 * is required to make room for the new extents to be inserted. The
3757 * caller is responsible for filling in the new extent entries upon
3758 * return.
3760 void
3761 xfs_iext_add(
3762 xfs_ifork_t *ifp, /* inode fork pointer */
3763 xfs_extnum_t idx, /* index to begin adding exts */
3764 int ext_diff) /* number of extents to add */
3766 int byte_diff; /* new bytes being added */
3767 int new_size; /* size of extents after adding */
3768 xfs_extnum_t nextents; /* number of extents in file */
3770 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3771 ASSERT((idx >= 0) && (idx <= nextents));
3772 byte_diff = ext_diff * sizeof(xfs_bmbt_rec_t);
3773 new_size = ifp->if_bytes + byte_diff;
3775 * If the new number of extents (nextents + ext_diff)
3776 * fits inside the inode, then continue to use the inline
3777 * extent buffer.
3779 if (nextents + ext_diff <= XFS_INLINE_EXTS) {
3780 if (idx < nextents) {
3781 memmove(&ifp->if_u2.if_inline_ext[idx + ext_diff],
3782 &ifp->if_u2.if_inline_ext[idx],
3783 (nextents - idx) * sizeof(xfs_bmbt_rec_t));
3784 memset(&ifp->if_u2.if_inline_ext[idx], 0, byte_diff);
3786 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
3787 ifp->if_real_bytes = 0;
3788 ifp->if_lastex = nextents + ext_diff;
3791 * Otherwise use a linear (direct) extent list.
3792 * If the extents are currently inside the inode,
3793 * xfs_iext_realloc_direct will switch us from
3794 * inline to direct extent allocation mode.
3796 else if (nextents + ext_diff <= XFS_LINEAR_EXTS) {
3797 xfs_iext_realloc_direct(ifp, new_size);
3798 if (idx < nextents) {
3799 memmove(&ifp->if_u1.if_extents[idx + ext_diff],
3800 &ifp->if_u1.if_extents[idx],
3801 (nextents - idx) * sizeof(xfs_bmbt_rec_t));
3802 memset(&ifp->if_u1.if_extents[idx], 0, byte_diff);
3805 /* Indirection array */
3806 else {
3807 xfs_ext_irec_t *erp;
3808 int erp_idx = 0;
3809 int page_idx = idx;
3811 ASSERT(nextents + ext_diff > XFS_LINEAR_EXTS);
3812 if (ifp->if_flags & XFS_IFEXTIREC) {
3813 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 1);
3814 } else {
3815 xfs_iext_irec_init(ifp);
3816 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3817 erp = ifp->if_u1.if_ext_irec;
3819 /* Extents fit in target extent page */
3820 if (erp && erp->er_extcount + ext_diff <= XFS_LINEAR_EXTS) {
3821 if (page_idx < erp->er_extcount) {
3822 memmove(&erp->er_extbuf[page_idx + ext_diff],
3823 &erp->er_extbuf[page_idx],
3824 (erp->er_extcount - page_idx) *
3825 sizeof(xfs_bmbt_rec_t));
3826 memset(&erp->er_extbuf[page_idx], 0, byte_diff);
3828 erp->er_extcount += ext_diff;
3829 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3831 /* Insert a new extent page */
3832 else if (erp) {
3833 xfs_iext_add_indirect_multi(ifp,
3834 erp_idx, page_idx, ext_diff);
3837 * If extent(s) are being appended to the last page in
3838 * the indirection array and the new extent(s) don't fit
3839 * in the page, then erp is NULL and erp_idx is set to
3840 * the next index needed in the indirection array.
3842 else {
3843 int count = ext_diff;
3845 while (count) {
3846 erp = xfs_iext_irec_new(ifp, erp_idx);
3847 erp->er_extcount = count;
3848 count -= MIN(count, (int)XFS_LINEAR_EXTS);
3849 if (count) {
3850 erp_idx++;
3855 ifp->if_bytes = new_size;
3859 * This is called when incore extents are being added to the indirection
3860 * array and the new extents do not fit in the target extent list. The
3861 * erp_idx parameter contains the irec index for the target extent list
3862 * in the indirection array, and the idx parameter contains the extent
3863 * index within the list. The number of extents being added is stored
3864 * in the count parameter.
3866 * |-------| |-------|
3867 * | | | | idx - number of extents before idx
3868 * | idx | | count |
3869 * | | | | count - number of extents being inserted at idx
3870 * |-------| |-------|
3871 * | count | | nex2 | nex2 - number of extents after idx + count
3872 * |-------| |-------|
3874 void
3875 xfs_iext_add_indirect_multi(
3876 xfs_ifork_t *ifp, /* inode fork pointer */
3877 int erp_idx, /* target extent irec index */
3878 xfs_extnum_t idx, /* index within target list */
3879 int count) /* new extents being added */
3881 int byte_diff; /* new bytes being added */
3882 xfs_ext_irec_t *erp; /* pointer to irec entry */
3883 xfs_extnum_t ext_diff; /* number of extents to add */
3884 xfs_extnum_t ext_cnt; /* new extents still needed */
3885 xfs_extnum_t nex2; /* extents after idx + count */
3886 xfs_bmbt_rec_t *nex2_ep = NULL; /* temp list for nex2 extents */
3887 int nlists; /* number of irec's (lists) */
3889 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3890 erp = &ifp->if_u1.if_ext_irec[erp_idx];
3891 nex2 = erp->er_extcount - idx;
3892 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3895 * Save second part of target extent list
3896 * (all extents past */
3897 if (nex2) {
3898 byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
3899 nex2_ep = (xfs_bmbt_rec_t *) kmem_alloc(byte_diff, KM_SLEEP);
3900 memmove(nex2_ep, &erp->er_extbuf[idx], byte_diff);
3901 erp->er_extcount -= nex2;
3902 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -nex2);
3903 memset(&erp->er_extbuf[idx], 0, byte_diff);
3907 * Add the new extents to the end of the target
3908 * list, then allocate new irec record(s) and
3909 * extent buffer(s) as needed to store the rest
3910 * of the new extents.
3912 ext_cnt = count;
3913 ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS - erp->er_extcount);
3914 if (ext_diff) {
3915 erp->er_extcount += ext_diff;
3916 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3917 ext_cnt -= ext_diff;
3919 while (ext_cnt) {
3920 erp_idx++;
3921 erp = xfs_iext_irec_new(ifp, erp_idx);
3922 ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS);
3923 erp->er_extcount = ext_diff;
3924 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3925 ext_cnt -= ext_diff;
3928 /* Add nex2 extents back to indirection array */
3929 if (nex2) {
3930 xfs_extnum_t ext_avail;
3931 int i;
3933 byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
3934 ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
3935 i = 0;
3937 * If nex2 extents fit in the current page, append
3938 * nex2_ep after the new extents.
3940 if (nex2 <= ext_avail) {
3941 i = erp->er_extcount;
3944 * Otherwise, check if space is available in the
3945 * next page.
3947 else if ((erp_idx < nlists - 1) &&
3948 (nex2 <= (ext_avail = XFS_LINEAR_EXTS -
3949 ifp->if_u1.if_ext_irec[erp_idx+1].er_extcount))) {
3950 erp_idx++;
3951 erp++;
3952 /* Create a hole for nex2 extents */
3953 memmove(&erp->er_extbuf[nex2], erp->er_extbuf,
3954 erp->er_extcount * sizeof(xfs_bmbt_rec_t));
3957 * Final choice, create a new extent page for
3958 * nex2 extents.
3960 else {
3961 erp_idx++;
3962 erp = xfs_iext_irec_new(ifp, erp_idx);
3964 memmove(&erp->er_extbuf[i], nex2_ep, byte_diff);
3965 kmem_free(nex2_ep, byte_diff);
3966 erp->er_extcount += nex2;
3967 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, nex2);
3972 * This is called when the amount of space required for incore file
3973 * extents needs to be decreased. The ext_diff parameter stores the
3974 * number of extents to be removed and the idx parameter contains
3975 * the extent index where the extents will be removed from.
3977 * If the amount of space needed has decreased below the linear
3978 * limit, XFS_IEXT_BUFSZ, then switch to using the contiguous
3979 * extent array. Otherwise, use kmem_realloc() to adjust the
3980 * size to what is needed.
3982 void
3983 xfs_iext_remove(
3984 xfs_ifork_t *ifp, /* inode fork pointer */
3985 xfs_extnum_t idx, /* index to begin removing exts */
3986 int ext_diff) /* number of extents to remove */
3988 xfs_extnum_t nextents; /* number of extents in file */
3989 int new_size; /* size of extents after removal */
3991 ASSERT(ext_diff > 0);
3992 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3993 new_size = (nextents - ext_diff) * sizeof(xfs_bmbt_rec_t);
3995 if (new_size == 0) {
3996 xfs_iext_destroy(ifp);
3997 } else if (ifp->if_flags & XFS_IFEXTIREC) {
3998 xfs_iext_remove_indirect(ifp, idx, ext_diff);
3999 } else if (ifp->if_real_bytes) {
4000 xfs_iext_remove_direct(ifp, idx, ext_diff);
4001 } else {
4002 xfs_iext_remove_inline(ifp, idx, ext_diff);
4004 ifp->if_bytes = new_size;
4008 * This removes ext_diff extents from the inline buffer, beginning
4009 * at extent index idx.
4011 void
4012 xfs_iext_remove_inline(
4013 xfs_ifork_t *ifp, /* inode fork pointer */
4014 xfs_extnum_t idx, /* index to begin removing exts */
4015 int ext_diff) /* number of extents to remove */
4017 int nextents; /* number of extents in file */
4019 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
4020 ASSERT(idx < XFS_INLINE_EXTS);
4021 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4022 ASSERT(((nextents - ext_diff) > 0) &&
4023 (nextents - ext_diff) < XFS_INLINE_EXTS);
4025 if (idx + ext_diff < nextents) {
4026 memmove(&ifp->if_u2.if_inline_ext[idx],
4027 &ifp->if_u2.if_inline_ext[idx + ext_diff],
4028 (nextents - (idx + ext_diff)) *
4029 sizeof(xfs_bmbt_rec_t));
4030 memset(&ifp->if_u2.if_inline_ext[nextents - ext_diff],
4031 0, ext_diff * sizeof(xfs_bmbt_rec_t));
4032 } else {
4033 memset(&ifp->if_u2.if_inline_ext[idx], 0,
4034 ext_diff * sizeof(xfs_bmbt_rec_t));
4039 * This removes ext_diff extents from a linear (direct) extent list,
4040 * beginning at extent index idx. If the extents are being removed
4041 * from the end of the list (ie. truncate) then we just need to re-
4042 * allocate the list to remove the extra space. Otherwise, if the
4043 * extents are being removed from the middle of the existing extent
4044 * entries, then we first need to move the extent records beginning
4045 * at idx + ext_diff up in the list to overwrite the records being
4046 * removed, then remove the extra space via kmem_realloc.
4048 void
4049 xfs_iext_remove_direct(
4050 xfs_ifork_t *ifp, /* inode fork pointer */
4051 xfs_extnum_t idx, /* index to begin removing exts */
4052 int ext_diff) /* number of extents to remove */
4054 xfs_extnum_t nextents; /* number of extents in file */
4055 int new_size; /* size of extents after removal */
4057 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
4058 new_size = ifp->if_bytes -
4059 (ext_diff * sizeof(xfs_bmbt_rec_t));
4060 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4062 if (new_size == 0) {
4063 xfs_iext_destroy(ifp);
4064 return;
4066 /* Move extents up in the list (if needed) */
4067 if (idx + ext_diff < nextents) {
4068 memmove(&ifp->if_u1.if_extents[idx],
4069 &ifp->if_u1.if_extents[idx + ext_diff],
4070 (nextents - (idx + ext_diff)) *
4071 sizeof(xfs_bmbt_rec_t));
4073 memset(&ifp->if_u1.if_extents[nextents - ext_diff],
4074 0, ext_diff * sizeof(xfs_bmbt_rec_t));
4076 * Reallocate the direct extent list. If the extents
4077 * will fit inside the inode then xfs_iext_realloc_direct
4078 * will switch from direct to inline extent allocation
4079 * mode for us.
4081 xfs_iext_realloc_direct(ifp, new_size);
4082 ifp->if_bytes = new_size;
4086 * This is called when incore extents are being removed from the
4087 * indirection array and the extents being removed span multiple extent
4088 * buffers. The idx parameter contains the file extent index where we
4089 * want to begin removing extents, and the count parameter contains
4090 * how many extents need to be removed.
4092 * |-------| |-------|
4093 * | nex1 | | | nex1 - number of extents before idx
4094 * |-------| | count |
4095 * | | | | count - number of extents being removed at idx
4096 * | count | |-------|
4097 * | | | nex2 | nex2 - number of extents after idx + count
4098 * |-------| |-------|
4100 void
4101 xfs_iext_remove_indirect(
4102 xfs_ifork_t *ifp, /* inode fork pointer */
4103 xfs_extnum_t idx, /* index to begin removing extents */
4104 int count) /* number of extents to remove */
4106 xfs_ext_irec_t *erp; /* indirection array pointer */
4107 int erp_idx = 0; /* indirection array index */
4108 xfs_extnum_t ext_cnt; /* extents left to remove */
4109 xfs_extnum_t ext_diff; /* extents to remove in current list */
4110 xfs_extnum_t nex1; /* number of extents before idx */
4111 xfs_extnum_t nex2; /* extents after idx + count */
4112 int nlists; /* entries in indirection array */
4113 int page_idx = idx; /* index in target extent list */
4115 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4116 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
4117 ASSERT(erp != NULL);
4118 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4119 nex1 = page_idx;
4120 ext_cnt = count;
4121 while (ext_cnt) {
4122 nex2 = MAX((erp->er_extcount - (nex1 + ext_cnt)), 0);
4123 ext_diff = MIN(ext_cnt, (erp->er_extcount - nex1));
4125 * Check for deletion of entire list;
4126 * xfs_iext_irec_remove() updates extent offsets.
4128 if (ext_diff == erp->er_extcount) {
4129 xfs_iext_irec_remove(ifp, erp_idx);
4130 ext_cnt -= ext_diff;
4131 nex1 = 0;
4132 if (ext_cnt) {
4133 ASSERT(erp_idx < ifp->if_real_bytes /
4134 XFS_IEXT_BUFSZ);
4135 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4136 nex1 = 0;
4137 continue;
4138 } else {
4139 break;
4142 /* Move extents up (if needed) */
4143 if (nex2) {
4144 memmove(&erp->er_extbuf[nex1],
4145 &erp->er_extbuf[nex1 + ext_diff],
4146 nex2 * sizeof(xfs_bmbt_rec_t));
4148 /* Zero out rest of page */
4149 memset(&erp->er_extbuf[nex1 + nex2], 0, (XFS_IEXT_BUFSZ -
4150 ((nex1 + nex2) * sizeof(xfs_bmbt_rec_t))));
4151 /* Update remaining counters */
4152 erp->er_extcount -= ext_diff;
4153 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -ext_diff);
4154 ext_cnt -= ext_diff;
4155 nex1 = 0;
4156 erp_idx++;
4157 erp++;
4159 ifp->if_bytes -= count * sizeof(xfs_bmbt_rec_t);
4160 xfs_iext_irec_compact(ifp);
4164 * Create, destroy, or resize a linear (direct) block of extents.
4166 void
4167 xfs_iext_realloc_direct(
4168 xfs_ifork_t *ifp, /* inode fork pointer */
4169 int new_size) /* new size of extents */
4171 int rnew_size; /* real new size of extents */
4173 rnew_size = new_size;
4175 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC) ||
4176 ((new_size >= 0) && (new_size <= XFS_IEXT_BUFSZ) &&
4177 (new_size != ifp->if_real_bytes)));
4179 /* Free extent records */
4180 if (new_size == 0) {
4181 xfs_iext_destroy(ifp);
4183 /* Resize direct extent list and zero any new bytes */
4184 else if (ifp->if_real_bytes) {
4185 /* Check if extents will fit inside the inode */
4186 if (new_size <= XFS_INLINE_EXTS * sizeof(xfs_bmbt_rec_t)) {
4187 xfs_iext_direct_to_inline(ifp, new_size /
4188 (uint)sizeof(xfs_bmbt_rec_t));
4189 ifp->if_bytes = new_size;
4190 return;
4192 if (!is_power_of_2(new_size)){
4193 rnew_size = xfs_iroundup(new_size);
4195 if (rnew_size != ifp->if_real_bytes) {
4196 ifp->if_u1.if_extents =
4197 kmem_realloc(ifp->if_u1.if_extents,
4198 rnew_size,
4199 ifp->if_real_bytes,
4200 KM_SLEEP);
4202 if (rnew_size > ifp->if_real_bytes) {
4203 memset(&ifp->if_u1.if_extents[ifp->if_bytes /
4204 (uint)sizeof(xfs_bmbt_rec_t)], 0,
4205 rnew_size - ifp->if_real_bytes);
4209 * Switch from the inline extent buffer to a direct
4210 * extent list. Be sure to include the inline extent
4211 * bytes in new_size.
4213 else {
4214 new_size += ifp->if_bytes;
4215 if (!is_power_of_2(new_size)) {
4216 rnew_size = xfs_iroundup(new_size);
4218 xfs_iext_inline_to_direct(ifp, rnew_size);
4220 ifp->if_real_bytes = rnew_size;
4221 ifp->if_bytes = new_size;
4225 * Switch from linear (direct) extent records to inline buffer.
4227 void
4228 xfs_iext_direct_to_inline(
4229 xfs_ifork_t *ifp, /* inode fork pointer */
4230 xfs_extnum_t nextents) /* number of extents in file */
4232 ASSERT(ifp->if_flags & XFS_IFEXTENTS);
4233 ASSERT(nextents <= XFS_INLINE_EXTS);
4235 * The inline buffer was zeroed when we switched
4236 * from inline to direct extent allocation mode,
4237 * so we don't need to clear it here.
4239 memcpy(ifp->if_u2.if_inline_ext, ifp->if_u1.if_extents,
4240 nextents * sizeof(xfs_bmbt_rec_t));
4241 kmem_free(ifp->if_u1.if_extents, ifp->if_real_bytes);
4242 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
4243 ifp->if_real_bytes = 0;
4247 * Switch from inline buffer to linear (direct) extent records.
4248 * new_size should already be rounded up to the next power of 2
4249 * by the caller (when appropriate), so use new_size as it is.
4250 * However, since new_size may be rounded up, we can't update
4251 * if_bytes here. It is the caller's responsibility to update
4252 * if_bytes upon return.
4254 void
4255 xfs_iext_inline_to_direct(
4256 xfs_ifork_t *ifp, /* inode fork pointer */
4257 int new_size) /* number of extents in file */
4259 ifp->if_u1.if_extents = kmem_alloc(new_size, KM_SLEEP);
4260 memset(ifp->if_u1.if_extents, 0, new_size);
4261 if (ifp->if_bytes) {
4262 memcpy(ifp->if_u1.if_extents, ifp->if_u2.if_inline_ext,
4263 ifp->if_bytes);
4264 memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
4265 sizeof(xfs_bmbt_rec_t));
4267 ifp->if_real_bytes = new_size;
4271 * Resize an extent indirection array to new_size bytes.
4273 void
4274 xfs_iext_realloc_indirect(
4275 xfs_ifork_t *ifp, /* inode fork pointer */
4276 int new_size) /* new indirection array size */
4278 int nlists; /* number of irec's (ex lists) */
4279 int size; /* current indirection array size */
4281 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4282 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4283 size = nlists * sizeof(xfs_ext_irec_t);
4284 ASSERT(ifp->if_real_bytes);
4285 ASSERT((new_size >= 0) && (new_size != size));
4286 if (new_size == 0) {
4287 xfs_iext_destroy(ifp);
4288 } else {
4289 ifp->if_u1.if_ext_irec = (xfs_ext_irec_t *)
4290 kmem_realloc(ifp->if_u1.if_ext_irec,
4291 new_size, size, KM_SLEEP);
4296 * Switch from indirection array to linear (direct) extent allocations.
4298 void
4299 xfs_iext_indirect_to_direct(
4300 xfs_ifork_t *ifp) /* inode fork pointer */
4302 xfs_bmbt_rec_host_t *ep; /* extent record pointer */
4303 xfs_extnum_t nextents; /* number of extents in file */
4304 int size; /* size of file extents */
4306 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4307 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4308 ASSERT(nextents <= XFS_LINEAR_EXTS);
4309 size = nextents * sizeof(xfs_bmbt_rec_t);
4311 xfs_iext_irec_compact_full(ifp);
4312 ASSERT(ifp->if_real_bytes == XFS_IEXT_BUFSZ);
4314 ep = ifp->if_u1.if_ext_irec->er_extbuf;
4315 kmem_free(ifp->if_u1.if_ext_irec, sizeof(xfs_ext_irec_t));
4316 ifp->if_flags &= ~XFS_IFEXTIREC;
4317 ifp->if_u1.if_extents = ep;
4318 ifp->if_bytes = size;
4319 if (nextents < XFS_LINEAR_EXTS) {
4320 xfs_iext_realloc_direct(ifp, size);
4325 * Free incore file extents.
4327 void
4328 xfs_iext_destroy(
4329 xfs_ifork_t *ifp) /* inode fork pointer */
4331 if (ifp->if_flags & XFS_IFEXTIREC) {
4332 int erp_idx;
4333 int nlists;
4335 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4336 for (erp_idx = nlists - 1; erp_idx >= 0 ; erp_idx--) {
4337 xfs_iext_irec_remove(ifp, erp_idx);
4339 ifp->if_flags &= ~XFS_IFEXTIREC;
4340 } else if (ifp->if_real_bytes) {
4341 kmem_free(ifp->if_u1.if_extents, ifp->if_real_bytes);
4342 } else if (ifp->if_bytes) {
4343 memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
4344 sizeof(xfs_bmbt_rec_t));
4346 ifp->if_u1.if_extents = NULL;
4347 ifp->if_real_bytes = 0;
4348 ifp->if_bytes = 0;
4352 * Return a pointer to the extent record for file system block bno.
4354 xfs_bmbt_rec_host_t * /* pointer to found extent record */
4355 xfs_iext_bno_to_ext(
4356 xfs_ifork_t *ifp, /* inode fork pointer */
4357 xfs_fileoff_t bno, /* block number to search for */
4358 xfs_extnum_t *idxp) /* index of target extent */
4360 xfs_bmbt_rec_host_t *base; /* pointer to first extent */
4361 xfs_filblks_t blockcount = 0; /* number of blocks in extent */
4362 xfs_bmbt_rec_host_t *ep = NULL; /* pointer to target extent */
4363 xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
4364 int high; /* upper boundary in search */
4365 xfs_extnum_t idx = 0; /* index of target extent */
4366 int low; /* lower boundary in search */
4367 xfs_extnum_t nextents; /* number of file extents */
4368 xfs_fileoff_t startoff = 0; /* start offset of extent */
4370 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4371 if (nextents == 0) {
4372 *idxp = 0;
4373 return NULL;
4375 low = 0;
4376 if (ifp->if_flags & XFS_IFEXTIREC) {
4377 /* Find target extent list */
4378 int erp_idx = 0;
4379 erp = xfs_iext_bno_to_irec(ifp, bno, &erp_idx);
4380 base = erp->er_extbuf;
4381 high = erp->er_extcount - 1;
4382 } else {
4383 base = ifp->if_u1.if_extents;
4384 high = nextents - 1;
4386 /* Binary search extent records */
4387 while (low <= high) {
4388 idx = (low + high) >> 1;
4389 ep = base + idx;
4390 startoff = xfs_bmbt_get_startoff(ep);
4391 blockcount = xfs_bmbt_get_blockcount(ep);
4392 if (bno < startoff) {
4393 high = idx - 1;
4394 } else if (bno >= startoff + blockcount) {
4395 low = idx + 1;
4396 } else {
4397 /* Convert back to file-based extent index */
4398 if (ifp->if_flags & XFS_IFEXTIREC) {
4399 idx += erp->er_extoff;
4401 *idxp = idx;
4402 return ep;
4405 /* Convert back to file-based extent index */
4406 if (ifp->if_flags & XFS_IFEXTIREC) {
4407 idx += erp->er_extoff;
4409 if (bno >= startoff + blockcount) {
4410 if (++idx == nextents) {
4411 ep = NULL;
4412 } else {
4413 ep = xfs_iext_get_ext(ifp, idx);
4416 *idxp = idx;
4417 return ep;
4421 * Return a pointer to the indirection array entry containing the
4422 * extent record for filesystem block bno. Store the index of the
4423 * target irec in *erp_idxp.
4425 xfs_ext_irec_t * /* pointer to found extent record */
4426 xfs_iext_bno_to_irec(
4427 xfs_ifork_t *ifp, /* inode fork pointer */
4428 xfs_fileoff_t bno, /* block number to search for */
4429 int *erp_idxp) /* irec index of target ext list */
4431 xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
4432 xfs_ext_irec_t *erp_next; /* next indirection array entry */
4433 int erp_idx; /* indirection array index */
4434 int nlists; /* number of extent irec's (lists) */
4435 int high; /* binary search upper limit */
4436 int low; /* binary search lower limit */
4438 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4439 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4440 erp_idx = 0;
4441 low = 0;
4442 high = nlists - 1;
4443 while (low <= high) {
4444 erp_idx = (low + high) >> 1;
4445 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4446 erp_next = erp_idx < nlists - 1 ? erp + 1 : NULL;
4447 if (bno < xfs_bmbt_get_startoff(erp->er_extbuf)) {
4448 high = erp_idx - 1;
4449 } else if (erp_next && bno >=
4450 xfs_bmbt_get_startoff(erp_next->er_extbuf)) {
4451 low = erp_idx + 1;
4452 } else {
4453 break;
4456 *erp_idxp = erp_idx;
4457 return erp;
4461 * Return a pointer to the indirection array entry containing the
4462 * extent record at file extent index *idxp. Store the index of the
4463 * target irec in *erp_idxp and store the page index of the target
4464 * extent record in *idxp.
4466 xfs_ext_irec_t *
4467 xfs_iext_idx_to_irec(
4468 xfs_ifork_t *ifp, /* inode fork pointer */
4469 xfs_extnum_t *idxp, /* extent index (file -> page) */
4470 int *erp_idxp, /* pointer to target irec */
4471 int realloc) /* new bytes were just added */
4473 xfs_ext_irec_t *prev; /* pointer to previous irec */
4474 xfs_ext_irec_t *erp = NULL; /* pointer to current irec */
4475 int erp_idx; /* indirection array index */
4476 int nlists; /* number of irec's (ex lists) */
4477 int high; /* binary search upper limit */
4478 int low; /* binary search lower limit */
4479 xfs_extnum_t page_idx = *idxp; /* extent index in target list */
4481 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4482 ASSERT(page_idx >= 0 && page_idx <=
4483 ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t));
4484 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4485 erp_idx = 0;
4486 low = 0;
4487 high = nlists - 1;
4489 /* Binary search extent irec's */
4490 while (low <= high) {
4491 erp_idx = (low + high) >> 1;
4492 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4493 prev = erp_idx > 0 ? erp - 1 : NULL;
4494 if (page_idx < erp->er_extoff || (page_idx == erp->er_extoff &&
4495 realloc && prev && prev->er_extcount < XFS_LINEAR_EXTS)) {
4496 high = erp_idx - 1;
4497 } else if (page_idx > erp->er_extoff + erp->er_extcount ||
4498 (page_idx == erp->er_extoff + erp->er_extcount &&
4499 !realloc)) {
4500 low = erp_idx + 1;
4501 } else if (page_idx == erp->er_extoff + erp->er_extcount &&
4502 erp->er_extcount == XFS_LINEAR_EXTS) {
4503 ASSERT(realloc);
4504 page_idx = 0;
4505 erp_idx++;
4506 erp = erp_idx < nlists ? erp + 1 : NULL;
4507 break;
4508 } else {
4509 page_idx -= erp->er_extoff;
4510 break;
4513 *idxp = page_idx;
4514 *erp_idxp = erp_idx;
4515 return(erp);
4519 * Allocate and initialize an indirection array once the space needed
4520 * for incore extents increases above XFS_IEXT_BUFSZ.
4522 void
4523 xfs_iext_irec_init(
4524 xfs_ifork_t *ifp) /* inode fork pointer */
4526 xfs_ext_irec_t *erp; /* indirection array pointer */
4527 xfs_extnum_t nextents; /* number of extents in file */
4529 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
4530 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4531 ASSERT(nextents <= XFS_LINEAR_EXTS);
4533 erp = (xfs_ext_irec_t *)
4534 kmem_alloc(sizeof(xfs_ext_irec_t), KM_SLEEP);
4536 if (nextents == 0) {
4537 ifp->if_u1.if_extents = kmem_alloc(XFS_IEXT_BUFSZ, KM_SLEEP);
4538 } else if (!ifp->if_real_bytes) {
4539 xfs_iext_inline_to_direct(ifp, XFS_IEXT_BUFSZ);
4540 } else if (ifp->if_real_bytes < XFS_IEXT_BUFSZ) {
4541 xfs_iext_realloc_direct(ifp, XFS_IEXT_BUFSZ);
4543 erp->er_extbuf = ifp->if_u1.if_extents;
4544 erp->er_extcount = nextents;
4545 erp->er_extoff = 0;
4547 ifp->if_flags |= XFS_IFEXTIREC;
4548 ifp->if_real_bytes = XFS_IEXT_BUFSZ;
4549 ifp->if_bytes = nextents * sizeof(xfs_bmbt_rec_t);
4550 ifp->if_u1.if_ext_irec = erp;
4552 return;
4556 * Allocate and initialize a new entry in the indirection array.
4558 xfs_ext_irec_t *
4559 xfs_iext_irec_new(
4560 xfs_ifork_t *ifp, /* inode fork pointer */
4561 int erp_idx) /* index for new irec */
4563 xfs_ext_irec_t *erp; /* indirection array pointer */
4564 int i; /* loop counter */
4565 int nlists; /* number of irec's (ex lists) */
4567 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4568 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4570 /* Resize indirection array */
4571 xfs_iext_realloc_indirect(ifp, ++nlists *
4572 sizeof(xfs_ext_irec_t));
4574 * Move records down in the array so the
4575 * new page can use erp_idx.
4577 erp = ifp->if_u1.if_ext_irec;
4578 for (i = nlists - 1; i > erp_idx; i--) {
4579 memmove(&erp[i], &erp[i-1], sizeof(xfs_ext_irec_t));
4581 ASSERT(i == erp_idx);
4583 /* Initialize new extent record */
4584 erp = ifp->if_u1.if_ext_irec;
4585 erp[erp_idx].er_extbuf = kmem_alloc(XFS_IEXT_BUFSZ, KM_SLEEP);
4586 ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
4587 memset(erp[erp_idx].er_extbuf, 0, XFS_IEXT_BUFSZ);
4588 erp[erp_idx].er_extcount = 0;
4589 erp[erp_idx].er_extoff = erp_idx > 0 ?
4590 erp[erp_idx-1].er_extoff + erp[erp_idx-1].er_extcount : 0;
4591 return (&erp[erp_idx]);
4595 * Remove a record from the indirection array.
4597 void
4598 xfs_iext_irec_remove(
4599 xfs_ifork_t *ifp, /* inode fork pointer */
4600 int erp_idx) /* irec index to remove */
4602 xfs_ext_irec_t *erp; /* indirection array pointer */
4603 int i; /* loop counter */
4604 int nlists; /* number of irec's (ex lists) */
4606 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4607 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4608 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4609 if (erp->er_extbuf) {
4610 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1,
4611 -erp->er_extcount);
4612 kmem_free(erp->er_extbuf, XFS_IEXT_BUFSZ);
4614 /* Compact extent records */
4615 erp = ifp->if_u1.if_ext_irec;
4616 for (i = erp_idx; i < nlists - 1; i++) {
4617 memmove(&erp[i], &erp[i+1], sizeof(xfs_ext_irec_t));
4620 * Manually free the last extent record from the indirection
4621 * array. A call to xfs_iext_realloc_indirect() with a size
4622 * of zero would result in a call to xfs_iext_destroy() which
4623 * would in turn call this function again, creating a nasty
4624 * infinite loop.
4626 if (--nlists) {
4627 xfs_iext_realloc_indirect(ifp,
4628 nlists * sizeof(xfs_ext_irec_t));
4629 } else {
4630 kmem_free(ifp->if_u1.if_ext_irec,
4631 sizeof(xfs_ext_irec_t));
4633 ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
4637 * This is called to clean up large amounts of unused memory allocated
4638 * by the indirection array. Before compacting anything though, verify
4639 * that the indirection array is still needed and switch back to the
4640 * linear extent list (or even the inline buffer) if possible. The
4641 * compaction policy is as follows:
4643 * Full Compaction: Extents fit into a single page (or inline buffer)
4644 * Full Compaction: Extents occupy less than 10% of allocated space
4645 * Partial Compaction: Extents occupy > 10% and < 50% of allocated space
4646 * No Compaction: Extents occupy at least 50% of allocated space
4648 void
4649 xfs_iext_irec_compact(
4650 xfs_ifork_t *ifp) /* inode fork pointer */
4652 xfs_extnum_t nextents; /* number of extents in file */
4653 int nlists; /* number of irec's (ex lists) */
4655 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4656 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4657 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4659 if (nextents == 0) {
4660 xfs_iext_destroy(ifp);
4661 } else if (nextents <= XFS_INLINE_EXTS) {
4662 xfs_iext_indirect_to_direct(ifp);
4663 xfs_iext_direct_to_inline(ifp, nextents);
4664 } else if (nextents <= XFS_LINEAR_EXTS) {
4665 xfs_iext_indirect_to_direct(ifp);
4666 } else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 3) {
4667 xfs_iext_irec_compact_full(ifp);
4668 } else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 1) {
4669 xfs_iext_irec_compact_pages(ifp);
4674 * Combine extents from neighboring extent pages.
4676 void
4677 xfs_iext_irec_compact_pages(
4678 xfs_ifork_t *ifp) /* inode fork pointer */
4680 xfs_ext_irec_t *erp, *erp_next;/* pointers to irec entries */
4681 int erp_idx = 0; /* indirection array index */
4682 int nlists; /* number of irec's (ex lists) */
4684 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4685 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4686 while (erp_idx < nlists - 1) {
4687 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4688 erp_next = erp + 1;
4689 if (erp_next->er_extcount <=
4690 (XFS_LINEAR_EXTS - erp->er_extcount)) {
4691 memmove(&erp->er_extbuf[erp->er_extcount],
4692 erp_next->er_extbuf, erp_next->er_extcount *
4693 sizeof(xfs_bmbt_rec_t));
4694 erp->er_extcount += erp_next->er_extcount;
4696 * Free page before removing extent record
4697 * so er_extoffs don't get modified in
4698 * xfs_iext_irec_remove.
4700 kmem_free(erp_next->er_extbuf, XFS_IEXT_BUFSZ);
4701 erp_next->er_extbuf = NULL;
4702 xfs_iext_irec_remove(ifp, erp_idx + 1);
4703 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4704 } else {
4705 erp_idx++;
4711 * Fully compact the extent records managed by the indirection array.
4713 void
4714 xfs_iext_irec_compact_full(
4715 xfs_ifork_t *ifp) /* inode fork pointer */
4717 xfs_bmbt_rec_host_t *ep, *ep_next; /* extent record pointers */
4718 xfs_ext_irec_t *erp, *erp_next; /* extent irec pointers */
4719 int erp_idx = 0; /* extent irec index */
4720 int ext_avail; /* empty entries in ex list */
4721 int ext_diff; /* number of exts to add */
4722 int nlists; /* number of irec's (ex lists) */
4724 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4725 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4726 erp = ifp->if_u1.if_ext_irec;
4727 ep = &erp->er_extbuf[erp->er_extcount];
4728 erp_next = erp + 1;
4729 ep_next = erp_next->er_extbuf;
4730 while (erp_idx < nlists - 1) {
4731 ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
4732 ext_diff = MIN(ext_avail, erp_next->er_extcount);
4733 memcpy(ep, ep_next, ext_diff * sizeof(xfs_bmbt_rec_t));
4734 erp->er_extcount += ext_diff;
4735 erp_next->er_extcount -= ext_diff;
4736 /* Remove next page */
4737 if (erp_next->er_extcount == 0) {
4739 * Free page before removing extent record
4740 * so er_extoffs don't get modified in
4741 * xfs_iext_irec_remove.
4743 kmem_free(erp_next->er_extbuf,
4744 erp_next->er_extcount * sizeof(xfs_bmbt_rec_t));
4745 erp_next->er_extbuf = NULL;
4746 xfs_iext_irec_remove(ifp, erp_idx + 1);
4747 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4748 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4749 /* Update next page */
4750 } else {
4751 /* Move rest of page up to become next new page */
4752 memmove(erp_next->er_extbuf, ep_next,
4753 erp_next->er_extcount * sizeof(xfs_bmbt_rec_t));
4754 ep_next = erp_next->er_extbuf;
4755 memset(&ep_next[erp_next->er_extcount], 0,
4756 (XFS_LINEAR_EXTS - erp_next->er_extcount) *
4757 sizeof(xfs_bmbt_rec_t));
4759 if (erp->er_extcount == XFS_LINEAR_EXTS) {
4760 erp_idx++;
4761 if (erp_idx < nlists)
4762 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4763 else
4764 break;
4766 ep = &erp->er_extbuf[erp->er_extcount];
4767 erp_next = erp + 1;
4768 ep_next = erp_next->er_extbuf;
4773 * This is called to update the er_extoff field in the indirection
4774 * array when extents have been added or removed from one of the
4775 * extent lists. erp_idx contains the irec index to begin updating
4776 * at and ext_diff contains the number of extents that were added
4777 * or removed.
4779 void
4780 xfs_iext_irec_update_extoffs(
4781 xfs_ifork_t *ifp, /* inode fork pointer */
4782 int erp_idx, /* irec index to update */
4783 int ext_diff) /* number of new extents */
4785 int i; /* loop counter */
4786 int nlists; /* number of irec's (ex lists */
4788 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4789 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4790 for (i = erp_idx; i < nlists; i++) {
4791 ifp->if_u1.if_ext_irec[i].er_extoff += ext_diff;