revert-mm-fix-blkdev-size-calculation-in-generic_write_checks
[linux-2.6/linux-trees-mm.git] / fs / xfs / xfs_mount.c
blob2806d43d7d233b4e8032a428924c1de392f96249
1 /*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_bit.h"
22 #include "xfs_log.h"
23 #include "xfs_inum.h"
24 #include "xfs_trans.h"
25 #include "xfs_sb.h"
26 #include "xfs_ag.h"
27 #include "xfs_dir2.h"
28 #include "xfs_dmapi.h"
29 #include "xfs_mount.h"
30 #include "xfs_bmap_btree.h"
31 #include "xfs_alloc_btree.h"
32 #include "xfs_ialloc_btree.h"
33 #include "xfs_dir2_sf.h"
34 #include "xfs_attr_sf.h"
35 #include "xfs_dinode.h"
36 #include "xfs_inode.h"
37 #include "xfs_btree.h"
38 #include "xfs_ialloc.h"
39 #include "xfs_alloc.h"
40 #include "xfs_rtalloc.h"
41 #include "xfs_bmap.h"
42 #include "xfs_error.h"
43 #include "xfs_rw.h"
44 #include "xfs_quota.h"
45 #include "xfs_fsops.h"
47 STATIC void xfs_mount_log_sbunit(xfs_mount_t *, __int64_t);
48 STATIC int xfs_uuid_mount(xfs_mount_t *);
49 STATIC void xfs_uuid_unmount(xfs_mount_t *mp);
50 STATIC void xfs_unmountfs_wait(xfs_mount_t *);
53 #ifdef HAVE_PERCPU_SB
54 STATIC void xfs_icsb_destroy_counters(xfs_mount_t *);
55 STATIC void xfs_icsb_balance_counter(xfs_mount_t *, xfs_sb_field_t,
56 int, int);
57 STATIC void xfs_icsb_sync_counters(xfs_mount_t *);
58 STATIC int xfs_icsb_modify_counters(xfs_mount_t *, xfs_sb_field_t,
59 int64_t, int);
60 STATIC int xfs_icsb_disable_counter(xfs_mount_t *, xfs_sb_field_t);
62 #else
64 #define xfs_icsb_destroy_counters(mp) do { } while (0)
65 #define xfs_icsb_balance_counter(mp, a, b, c) do { } while (0)
66 #define xfs_icsb_sync_counters(mp) do { } while (0)
67 #define xfs_icsb_modify_counters(mp, a, b, c) do { } while (0)
69 #endif
71 static const struct {
72 short offset;
73 short type; /* 0 = integer
74 * 1 = binary / string (no translation)
76 } xfs_sb_info[] = {
77 { offsetof(xfs_sb_t, sb_magicnum), 0 },
78 { offsetof(xfs_sb_t, sb_blocksize), 0 },
79 { offsetof(xfs_sb_t, sb_dblocks), 0 },
80 { offsetof(xfs_sb_t, sb_rblocks), 0 },
81 { offsetof(xfs_sb_t, sb_rextents), 0 },
82 { offsetof(xfs_sb_t, sb_uuid), 1 },
83 { offsetof(xfs_sb_t, sb_logstart), 0 },
84 { offsetof(xfs_sb_t, sb_rootino), 0 },
85 { offsetof(xfs_sb_t, sb_rbmino), 0 },
86 { offsetof(xfs_sb_t, sb_rsumino), 0 },
87 { offsetof(xfs_sb_t, sb_rextsize), 0 },
88 { offsetof(xfs_sb_t, sb_agblocks), 0 },
89 { offsetof(xfs_sb_t, sb_agcount), 0 },
90 { offsetof(xfs_sb_t, sb_rbmblocks), 0 },
91 { offsetof(xfs_sb_t, sb_logblocks), 0 },
92 { offsetof(xfs_sb_t, sb_versionnum), 0 },
93 { offsetof(xfs_sb_t, sb_sectsize), 0 },
94 { offsetof(xfs_sb_t, sb_inodesize), 0 },
95 { offsetof(xfs_sb_t, sb_inopblock), 0 },
96 { offsetof(xfs_sb_t, sb_fname[0]), 1 },
97 { offsetof(xfs_sb_t, sb_blocklog), 0 },
98 { offsetof(xfs_sb_t, sb_sectlog), 0 },
99 { offsetof(xfs_sb_t, sb_inodelog), 0 },
100 { offsetof(xfs_sb_t, sb_inopblog), 0 },
101 { offsetof(xfs_sb_t, sb_agblklog), 0 },
102 { offsetof(xfs_sb_t, sb_rextslog), 0 },
103 { offsetof(xfs_sb_t, sb_inprogress), 0 },
104 { offsetof(xfs_sb_t, sb_imax_pct), 0 },
105 { offsetof(xfs_sb_t, sb_icount), 0 },
106 { offsetof(xfs_sb_t, sb_ifree), 0 },
107 { offsetof(xfs_sb_t, sb_fdblocks), 0 },
108 { offsetof(xfs_sb_t, sb_frextents), 0 },
109 { offsetof(xfs_sb_t, sb_uquotino), 0 },
110 { offsetof(xfs_sb_t, sb_gquotino), 0 },
111 { offsetof(xfs_sb_t, sb_qflags), 0 },
112 { offsetof(xfs_sb_t, sb_flags), 0 },
113 { offsetof(xfs_sb_t, sb_shared_vn), 0 },
114 { offsetof(xfs_sb_t, sb_inoalignmt), 0 },
115 { offsetof(xfs_sb_t, sb_unit), 0 },
116 { offsetof(xfs_sb_t, sb_width), 0 },
117 { offsetof(xfs_sb_t, sb_dirblklog), 0 },
118 { offsetof(xfs_sb_t, sb_logsectlog), 0 },
119 { offsetof(xfs_sb_t, sb_logsectsize),0 },
120 { offsetof(xfs_sb_t, sb_logsunit), 0 },
121 { offsetof(xfs_sb_t, sb_features2), 0 },
122 { sizeof(xfs_sb_t), 0 }
126 * Return a pointer to an initialized xfs_mount structure.
128 xfs_mount_t *
129 xfs_mount_init(void)
131 xfs_mount_t *mp;
133 mp = kmem_zalloc(sizeof(xfs_mount_t), KM_SLEEP);
135 if (xfs_icsb_init_counters(mp)) {
136 mp->m_flags |= XFS_MOUNT_NO_PERCPU_SB;
139 spin_lock_init(&mp->m_ail_lock);
140 spin_lock_init(&mp->m_sb_lock);
141 mutex_init(&mp->m_ilock);
142 mutex_init(&mp->m_growlock);
144 * Initialize the AIL.
146 xfs_trans_ail_init(mp);
148 atomic_set(&mp->m_active_trans, 0);
150 return mp;
154 * Free up the resources associated with a mount structure. Assume that
155 * the structure was initially zeroed, so we can tell which fields got
156 * initialized.
158 void
159 xfs_mount_free(
160 xfs_mount_t *mp)
162 if (mp->m_perag) {
163 int agno;
165 for (agno = 0; agno < mp->m_maxagi; agno++)
166 if (mp->m_perag[agno].pagb_list)
167 kmem_free(mp->m_perag[agno].pagb_list,
168 sizeof(xfs_perag_busy_t) *
169 XFS_PAGB_NUM_SLOTS);
170 kmem_free(mp->m_perag,
171 sizeof(xfs_perag_t) * mp->m_sb.sb_agcount);
174 spinlock_destroy(&mp->m_ail_lock);
175 spinlock_destroy(&mp->m_sb_lock);
176 mutex_destroy(&mp->m_ilock);
177 mutex_destroy(&mp->m_growlock);
178 if (mp->m_quotainfo)
179 XFS_QM_DONE(mp);
181 if (mp->m_fsname != NULL)
182 kmem_free(mp->m_fsname, mp->m_fsname_len);
183 if (mp->m_rtname != NULL)
184 kmem_free(mp->m_rtname, strlen(mp->m_rtname) + 1);
185 if (mp->m_logname != NULL)
186 kmem_free(mp->m_logname, strlen(mp->m_logname) + 1);
188 xfs_icsb_destroy_counters(mp);
192 * Check size of device based on the (data/realtime) block count.
193 * Note: this check is used by the growfs code as well as mount.
196 xfs_sb_validate_fsb_count(
197 xfs_sb_t *sbp,
198 __uint64_t nblocks)
200 ASSERT(PAGE_SHIFT >= sbp->sb_blocklog);
201 ASSERT(sbp->sb_blocklog >= BBSHIFT);
203 #if XFS_BIG_BLKNOS /* Limited by ULONG_MAX of page cache index */
204 if (nblocks >> (PAGE_CACHE_SHIFT - sbp->sb_blocklog) > ULONG_MAX)
205 return E2BIG;
206 #else /* Limited by UINT_MAX of sectors */
207 if (nblocks << (sbp->sb_blocklog - BBSHIFT) > UINT_MAX)
208 return E2BIG;
209 #endif
210 return 0;
214 * Check the validity of the SB found.
216 STATIC int
217 xfs_mount_validate_sb(
218 xfs_mount_t *mp,
219 xfs_sb_t *sbp,
220 int flags)
223 * If the log device and data device have the
224 * same device number, the log is internal.
225 * Consequently, the sb_logstart should be non-zero. If
226 * we have a zero sb_logstart in this case, we may be trying to mount
227 * a volume filesystem in a non-volume manner.
229 if (sbp->sb_magicnum != XFS_SB_MAGIC) {
230 xfs_fs_mount_cmn_err(flags, "bad magic number");
231 return XFS_ERROR(EWRONGFS);
234 if (!XFS_SB_GOOD_VERSION(sbp)) {
235 xfs_fs_mount_cmn_err(flags, "bad version");
236 return XFS_ERROR(EWRONGFS);
239 if (unlikely(
240 sbp->sb_logstart == 0 && mp->m_logdev_targp == mp->m_ddev_targp)) {
241 xfs_fs_mount_cmn_err(flags,
242 "filesystem is marked as having an external log; "
243 "specify logdev on the\nmount command line.");
244 return XFS_ERROR(EINVAL);
247 if (unlikely(
248 sbp->sb_logstart != 0 && mp->m_logdev_targp != mp->m_ddev_targp)) {
249 xfs_fs_mount_cmn_err(flags,
250 "filesystem is marked as having an internal log; "
251 "do not specify logdev on\nthe mount command line.");
252 return XFS_ERROR(EINVAL);
256 * More sanity checking. These were stolen directly from
257 * xfs_repair.
259 if (unlikely(
260 sbp->sb_agcount <= 0 ||
261 sbp->sb_sectsize < XFS_MIN_SECTORSIZE ||
262 sbp->sb_sectsize > XFS_MAX_SECTORSIZE ||
263 sbp->sb_sectlog < XFS_MIN_SECTORSIZE_LOG ||
264 sbp->sb_sectlog > XFS_MAX_SECTORSIZE_LOG ||
265 sbp->sb_blocksize < XFS_MIN_BLOCKSIZE ||
266 sbp->sb_blocksize > XFS_MAX_BLOCKSIZE ||
267 sbp->sb_blocklog < XFS_MIN_BLOCKSIZE_LOG ||
268 sbp->sb_blocklog > XFS_MAX_BLOCKSIZE_LOG ||
269 sbp->sb_inodesize < XFS_DINODE_MIN_SIZE ||
270 sbp->sb_inodesize > XFS_DINODE_MAX_SIZE ||
271 sbp->sb_inodelog < XFS_DINODE_MIN_LOG ||
272 sbp->sb_inodelog > XFS_DINODE_MAX_LOG ||
273 (sbp->sb_blocklog - sbp->sb_inodelog != sbp->sb_inopblog) ||
274 (sbp->sb_rextsize * sbp->sb_blocksize > XFS_MAX_RTEXTSIZE) ||
275 (sbp->sb_rextsize * sbp->sb_blocksize < XFS_MIN_RTEXTSIZE) ||
276 (sbp->sb_imax_pct > 100 /* zero sb_imax_pct is valid */))) {
277 xfs_fs_mount_cmn_err(flags, "SB sanity check 1 failed");
278 return XFS_ERROR(EFSCORRUPTED);
282 * Sanity check AG count, size fields against data size field
284 if (unlikely(
285 sbp->sb_dblocks == 0 ||
286 sbp->sb_dblocks >
287 (xfs_drfsbno_t)sbp->sb_agcount * sbp->sb_agblocks ||
288 sbp->sb_dblocks < (xfs_drfsbno_t)(sbp->sb_agcount - 1) *
289 sbp->sb_agblocks + XFS_MIN_AG_BLOCKS)) {
290 xfs_fs_mount_cmn_err(flags, "SB sanity check 2 failed");
291 return XFS_ERROR(EFSCORRUPTED);
294 if (xfs_sb_validate_fsb_count(sbp, sbp->sb_dblocks) ||
295 xfs_sb_validate_fsb_count(sbp, sbp->sb_rblocks)) {
296 xfs_fs_mount_cmn_err(flags,
297 "file system too large to be mounted on this system.");
298 return XFS_ERROR(E2BIG);
301 if (unlikely(sbp->sb_inprogress)) {
302 xfs_fs_mount_cmn_err(flags, "file system busy");
303 return XFS_ERROR(EFSCORRUPTED);
307 * Version 1 directory format has never worked on Linux.
309 if (unlikely(!XFS_SB_VERSION_HASDIRV2(sbp))) {
310 xfs_fs_mount_cmn_err(flags,
311 "file system using version 1 directory format");
312 return XFS_ERROR(ENOSYS);
316 * Until this is fixed only page-sized or smaller data blocks work.
318 if (unlikely(sbp->sb_blocksize > PAGE_SIZE)) {
319 xfs_fs_mount_cmn_err(flags,
320 "file system with blocksize %d bytes",
321 sbp->sb_blocksize);
322 xfs_fs_mount_cmn_err(flags,
323 "only pagesize (%ld) or less will currently work.",
324 PAGE_SIZE);
325 return XFS_ERROR(ENOSYS);
328 return 0;
331 STATIC void
332 xfs_initialize_perag_icache(
333 xfs_perag_t *pag)
335 if (!pag->pag_ici_init) {
336 rwlock_init(&pag->pag_ici_lock);
337 INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC);
338 pag->pag_ici_init = 1;
342 xfs_agnumber_t
343 xfs_initialize_perag(
344 xfs_mount_t *mp,
345 xfs_agnumber_t agcount)
347 xfs_agnumber_t index, max_metadata;
348 xfs_perag_t *pag;
349 xfs_agino_t agino;
350 xfs_ino_t ino;
351 xfs_sb_t *sbp = &mp->m_sb;
352 xfs_ino_t max_inum = XFS_MAXINUMBER_32;
354 /* Check to see if the filesystem can overflow 32 bit inodes */
355 agino = XFS_OFFBNO_TO_AGINO(mp, sbp->sb_agblocks - 1, 0);
356 ino = XFS_AGINO_TO_INO(mp, agcount - 1, agino);
358 /* Clear the mount flag if no inode can overflow 32 bits
359 * on this filesystem, or if specifically requested..
361 if ((mp->m_flags & XFS_MOUNT_SMALL_INUMS) && ino > max_inum) {
362 mp->m_flags |= XFS_MOUNT_32BITINODES;
363 } else {
364 mp->m_flags &= ~XFS_MOUNT_32BITINODES;
367 /* If we can overflow then setup the ag headers accordingly */
368 if (mp->m_flags & XFS_MOUNT_32BITINODES) {
369 /* Calculate how much should be reserved for inodes to
370 * meet the max inode percentage.
372 if (mp->m_maxicount) {
373 __uint64_t icount;
375 icount = sbp->sb_dblocks * sbp->sb_imax_pct;
376 do_div(icount, 100);
377 icount += sbp->sb_agblocks - 1;
378 do_div(icount, sbp->sb_agblocks);
379 max_metadata = icount;
380 } else {
381 max_metadata = agcount;
383 for (index = 0; index < agcount; index++) {
384 ino = XFS_AGINO_TO_INO(mp, index, agino);
385 if (ino > max_inum) {
386 index++;
387 break;
390 /* This ag is preferred for inodes */
391 pag = &mp->m_perag[index];
392 pag->pagi_inodeok = 1;
393 if (index < max_metadata)
394 pag->pagf_metadata = 1;
395 xfs_initialize_perag_icache(pag);
397 } else {
398 /* Setup default behavior for smaller filesystems */
399 for (index = 0; index < agcount; index++) {
400 pag = &mp->m_perag[index];
401 pag->pagi_inodeok = 1;
402 xfs_initialize_perag_icache(pag);
405 return index;
408 void
409 xfs_sb_from_disk(
410 xfs_sb_t *to,
411 xfs_dsb_t *from)
413 to->sb_magicnum = be32_to_cpu(from->sb_magicnum);
414 to->sb_blocksize = be32_to_cpu(from->sb_blocksize);
415 to->sb_dblocks = be64_to_cpu(from->sb_dblocks);
416 to->sb_rblocks = be64_to_cpu(from->sb_rblocks);
417 to->sb_rextents = be64_to_cpu(from->sb_rextents);
418 memcpy(&to->sb_uuid, &from->sb_uuid, sizeof(to->sb_uuid));
419 to->sb_logstart = be64_to_cpu(from->sb_logstart);
420 to->sb_rootino = be64_to_cpu(from->sb_rootino);
421 to->sb_rbmino = be64_to_cpu(from->sb_rbmino);
422 to->sb_rsumino = be64_to_cpu(from->sb_rsumino);
423 to->sb_rextsize = be32_to_cpu(from->sb_rextsize);
424 to->sb_agblocks = be32_to_cpu(from->sb_agblocks);
425 to->sb_agcount = be32_to_cpu(from->sb_agcount);
426 to->sb_rbmblocks = be32_to_cpu(from->sb_rbmblocks);
427 to->sb_logblocks = be32_to_cpu(from->sb_logblocks);
428 to->sb_versionnum = be16_to_cpu(from->sb_versionnum);
429 to->sb_sectsize = be16_to_cpu(from->sb_sectsize);
430 to->sb_inodesize = be16_to_cpu(from->sb_inodesize);
431 to->sb_inopblock = be16_to_cpu(from->sb_inopblock);
432 memcpy(&to->sb_fname, &from->sb_fname, sizeof(to->sb_fname));
433 to->sb_blocklog = from->sb_blocklog;
434 to->sb_sectlog = from->sb_sectlog;
435 to->sb_inodelog = from->sb_inodelog;
436 to->sb_inopblog = from->sb_inopblog;
437 to->sb_agblklog = from->sb_agblklog;
438 to->sb_rextslog = from->sb_rextslog;
439 to->sb_inprogress = from->sb_inprogress;
440 to->sb_imax_pct = from->sb_imax_pct;
441 to->sb_icount = be64_to_cpu(from->sb_icount);
442 to->sb_ifree = be64_to_cpu(from->sb_ifree);
443 to->sb_fdblocks = be64_to_cpu(from->sb_fdblocks);
444 to->sb_frextents = be64_to_cpu(from->sb_frextents);
445 to->sb_uquotino = be64_to_cpu(from->sb_uquotino);
446 to->sb_gquotino = be64_to_cpu(from->sb_gquotino);
447 to->sb_qflags = be16_to_cpu(from->sb_qflags);
448 to->sb_flags = from->sb_flags;
449 to->sb_shared_vn = from->sb_shared_vn;
450 to->sb_inoalignmt = be32_to_cpu(from->sb_inoalignmt);
451 to->sb_unit = be32_to_cpu(from->sb_unit);
452 to->sb_width = be32_to_cpu(from->sb_width);
453 to->sb_dirblklog = from->sb_dirblklog;
454 to->sb_logsectlog = from->sb_logsectlog;
455 to->sb_logsectsize = be16_to_cpu(from->sb_logsectsize);
456 to->sb_logsunit = be32_to_cpu(from->sb_logsunit);
457 to->sb_features2 = be32_to_cpu(from->sb_features2);
461 * Copy in core superblock to ondisk one.
463 * The fields argument is mask of superblock fields to copy.
465 void
466 xfs_sb_to_disk(
467 xfs_dsb_t *to,
468 xfs_sb_t *from,
469 __int64_t fields)
471 xfs_caddr_t to_ptr = (xfs_caddr_t)to;
472 xfs_caddr_t from_ptr = (xfs_caddr_t)from;
473 xfs_sb_field_t f;
474 int first;
475 int size;
477 ASSERT(fields);
478 if (!fields)
479 return;
481 while (fields) {
482 f = (xfs_sb_field_t)xfs_lowbit64((__uint64_t)fields);
483 first = xfs_sb_info[f].offset;
484 size = xfs_sb_info[f + 1].offset - first;
486 ASSERT(xfs_sb_info[f].type == 0 || xfs_sb_info[f].type == 1);
488 if (size == 1 || xfs_sb_info[f].type == 1) {
489 memcpy(to_ptr + first, from_ptr + first, size);
490 } else {
491 switch (size) {
492 case 2:
493 *(__be16 *)(to_ptr + first) =
494 cpu_to_be16(*(__u16 *)(from_ptr + first));
495 break;
496 case 4:
497 *(__be32 *)(to_ptr + first) =
498 cpu_to_be32(*(__u32 *)(from_ptr + first));
499 break;
500 case 8:
501 *(__be64 *)(to_ptr + first) =
502 cpu_to_be64(*(__u64 *)(from_ptr + first));
503 break;
504 default:
505 ASSERT(0);
509 fields &= ~(1LL << f);
514 * xfs_readsb
516 * Does the initial read of the superblock.
519 xfs_readsb(xfs_mount_t *mp, int flags)
521 unsigned int sector_size;
522 unsigned int extra_flags;
523 xfs_buf_t *bp;
524 int error;
526 ASSERT(mp->m_sb_bp == NULL);
527 ASSERT(mp->m_ddev_targp != NULL);
530 * Allocate a (locked) buffer to hold the superblock.
531 * This will be kept around at all times to optimize
532 * access to the superblock.
534 sector_size = xfs_getsize_buftarg(mp->m_ddev_targp);
535 extra_flags = XFS_BUF_LOCK | XFS_BUF_MANAGE | XFS_BUF_MAPPED;
537 bp = xfs_buf_read_flags(mp->m_ddev_targp, XFS_SB_DADDR,
538 BTOBB(sector_size), extra_flags);
539 if (!bp || XFS_BUF_ISERROR(bp)) {
540 xfs_fs_mount_cmn_err(flags, "SB read failed");
541 error = bp ? XFS_BUF_GETERROR(bp) : ENOMEM;
542 goto fail;
544 ASSERT(XFS_BUF_ISBUSY(bp));
545 ASSERT(XFS_BUF_VALUSEMA(bp) <= 0);
548 * Initialize the mount structure from the superblock.
549 * But first do some basic consistency checking.
551 xfs_sb_from_disk(&mp->m_sb, XFS_BUF_TO_SBP(bp));
553 error = xfs_mount_validate_sb(mp, &(mp->m_sb), flags);
554 if (error) {
555 xfs_fs_mount_cmn_err(flags, "SB validate failed");
556 goto fail;
560 * We must be able to do sector-sized and sector-aligned IO.
562 if (sector_size > mp->m_sb.sb_sectsize) {
563 xfs_fs_mount_cmn_err(flags,
564 "device supports only %u byte sectors (not %u)",
565 sector_size, mp->m_sb.sb_sectsize);
566 error = ENOSYS;
567 goto fail;
571 * If device sector size is smaller than the superblock size,
572 * re-read the superblock so the buffer is correctly sized.
574 if (sector_size < mp->m_sb.sb_sectsize) {
575 XFS_BUF_UNMANAGE(bp);
576 xfs_buf_relse(bp);
577 sector_size = mp->m_sb.sb_sectsize;
578 bp = xfs_buf_read_flags(mp->m_ddev_targp, XFS_SB_DADDR,
579 BTOBB(sector_size), extra_flags);
580 if (!bp || XFS_BUF_ISERROR(bp)) {
581 xfs_fs_mount_cmn_err(flags, "SB re-read failed");
582 error = bp ? XFS_BUF_GETERROR(bp) : ENOMEM;
583 goto fail;
585 ASSERT(XFS_BUF_ISBUSY(bp));
586 ASSERT(XFS_BUF_VALUSEMA(bp) <= 0);
589 /* Initialize per-cpu counters */
590 xfs_icsb_reinit_counters(mp);
592 mp->m_sb_bp = bp;
593 xfs_buf_relse(bp);
594 ASSERT(XFS_BUF_VALUSEMA(bp) > 0);
595 return 0;
597 fail:
598 if (bp) {
599 XFS_BUF_UNMANAGE(bp);
600 xfs_buf_relse(bp);
602 return error;
607 * xfs_mount_common
609 * Mount initialization code establishing various mount
610 * fields from the superblock associated with the given
611 * mount structure
613 STATIC void
614 xfs_mount_common(xfs_mount_t *mp, xfs_sb_t *sbp)
616 int i;
618 mp->m_agfrotor = mp->m_agirotor = 0;
619 spin_lock_init(&mp->m_agirotor_lock);
620 mp->m_maxagi = mp->m_sb.sb_agcount;
621 mp->m_blkbit_log = sbp->sb_blocklog + XFS_NBBYLOG;
622 mp->m_blkbb_log = sbp->sb_blocklog - BBSHIFT;
623 mp->m_sectbb_log = sbp->sb_sectlog - BBSHIFT;
624 mp->m_agno_log = xfs_highbit32(sbp->sb_agcount - 1) + 1;
625 mp->m_agino_log = sbp->sb_inopblog + sbp->sb_agblklog;
626 mp->m_litino = sbp->sb_inodesize -
627 ((uint)sizeof(xfs_dinode_core_t) + (uint)sizeof(xfs_agino_t));
628 mp->m_blockmask = sbp->sb_blocksize - 1;
629 mp->m_blockwsize = sbp->sb_blocksize >> XFS_WORDLOG;
630 mp->m_blockwmask = mp->m_blockwsize - 1;
631 INIT_LIST_HEAD(&mp->m_del_inodes);
634 * Setup for attributes, in case they get created.
635 * This value is for inodes getting attributes for the first time,
636 * the per-inode value is for old attribute values.
638 ASSERT(sbp->sb_inodesize >= 256 && sbp->sb_inodesize <= 2048);
639 switch (sbp->sb_inodesize) {
640 case 256:
641 mp->m_attroffset = XFS_LITINO(mp) -
642 XFS_BMDR_SPACE_CALC(MINABTPTRS);
643 break;
644 case 512:
645 case 1024:
646 case 2048:
647 mp->m_attroffset = XFS_BMDR_SPACE_CALC(6 * MINABTPTRS);
648 break;
649 default:
650 ASSERT(0);
652 ASSERT(mp->m_attroffset < XFS_LITINO(mp));
654 for (i = 0; i < 2; i++) {
655 mp->m_alloc_mxr[i] = XFS_BTREE_BLOCK_MAXRECS(sbp->sb_blocksize,
656 xfs_alloc, i == 0);
657 mp->m_alloc_mnr[i] = XFS_BTREE_BLOCK_MINRECS(sbp->sb_blocksize,
658 xfs_alloc, i == 0);
660 for (i = 0; i < 2; i++) {
661 mp->m_bmap_dmxr[i] = XFS_BTREE_BLOCK_MAXRECS(sbp->sb_blocksize,
662 xfs_bmbt, i == 0);
663 mp->m_bmap_dmnr[i] = XFS_BTREE_BLOCK_MINRECS(sbp->sb_blocksize,
664 xfs_bmbt, i == 0);
666 for (i = 0; i < 2; i++) {
667 mp->m_inobt_mxr[i] = XFS_BTREE_BLOCK_MAXRECS(sbp->sb_blocksize,
668 xfs_inobt, i == 0);
669 mp->m_inobt_mnr[i] = XFS_BTREE_BLOCK_MINRECS(sbp->sb_blocksize,
670 xfs_inobt, i == 0);
673 mp->m_bsize = XFS_FSB_TO_BB(mp, 1);
674 mp->m_ialloc_inos = (int)MAX((__uint16_t)XFS_INODES_PER_CHUNK,
675 sbp->sb_inopblock);
676 mp->m_ialloc_blks = mp->m_ialloc_inos >> sbp->sb_inopblog;
680 * xfs_initialize_perag_data
682 * Read in each per-ag structure so we can count up the number of
683 * allocated inodes, free inodes and used filesystem blocks as this
684 * information is no longer persistent in the superblock. Once we have
685 * this information, write it into the in-core superblock structure.
687 STATIC int
688 xfs_initialize_perag_data(xfs_mount_t *mp, xfs_agnumber_t agcount)
690 xfs_agnumber_t index;
691 xfs_perag_t *pag;
692 xfs_sb_t *sbp = &mp->m_sb;
693 uint64_t ifree = 0;
694 uint64_t ialloc = 0;
695 uint64_t bfree = 0;
696 uint64_t bfreelst = 0;
697 uint64_t btree = 0;
698 int error;
700 for (index = 0; index < agcount; index++) {
702 * read the agf, then the agi. This gets us
703 * all the inforamtion we need and populates the
704 * per-ag structures for us.
706 error = xfs_alloc_pagf_init(mp, NULL, index, 0);
707 if (error)
708 return error;
710 error = xfs_ialloc_pagi_init(mp, NULL, index);
711 if (error)
712 return error;
713 pag = &mp->m_perag[index];
714 ifree += pag->pagi_freecount;
715 ialloc += pag->pagi_count;
716 bfree += pag->pagf_freeblks;
717 bfreelst += pag->pagf_flcount;
718 btree += pag->pagf_btreeblks;
721 * Overwrite incore superblock counters with just-read data
723 spin_lock(&mp->m_sb_lock);
724 sbp->sb_ifree = ifree;
725 sbp->sb_icount = ialloc;
726 sbp->sb_fdblocks = bfree + bfreelst + btree;
727 spin_unlock(&mp->m_sb_lock);
729 /* Fixup the per-cpu counters as well. */
730 xfs_icsb_reinit_counters(mp);
732 return 0;
736 * Update alignment values based on mount options and sb values
738 STATIC int
739 xfs_update_alignment(xfs_mount_t *mp, int mfsi_flags, __uint64_t *update_flags)
741 xfs_sb_t *sbp = &(mp->m_sb);
743 if (mp->m_dalign && !(mfsi_flags & XFS_MFSI_SECOND)) {
745 * If stripe unit and stripe width are not multiples
746 * of the fs blocksize turn off alignment.
748 if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
749 (BBTOB(mp->m_swidth) & mp->m_blockmask)) {
750 if (mp->m_flags & XFS_MOUNT_RETERR) {
751 cmn_err(CE_WARN,
752 "XFS: alignment check 1 failed");
753 return XFS_ERROR(EINVAL);
755 mp->m_dalign = mp->m_swidth = 0;
756 } else {
758 * Convert the stripe unit and width to FSBs.
760 mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
761 if (mp->m_dalign && (sbp->sb_agblocks % mp->m_dalign)) {
762 if (mp->m_flags & XFS_MOUNT_RETERR) {
763 return XFS_ERROR(EINVAL);
765 xfs_fs_cmn_err(CE_WARN, mp,
766 "stripe alignment turned off: sunit(%d)/swidth(%d) incompatible with agsize(%d)",
767 mp->m_dalign, mp->m_swidth,
768 sbp->sb_agblocks);
770 mp->m_dalign = 0;
771 mp->m_swidth = 0;
772 } else if (mp->m_dalign) {
773 mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
774 } else {
775 if (mp->m_flags & XFS_MOUNT_RETERR) {
776 xfs_fs_cmn_err(CE_WARN, mp,
777 "stripe alignment turned off: sunit(%d) less than bsize(%d)",
778 mp->m_dalign,
779 mp->m_blockmask +1);
780 return XFS_ERROR(EINVAL);
782 mp->m_swidth = 0;
787 * Update superblock with new values
788 * and log changes
790 if (XFS_SB_VERSION_HASDALIGN(sbp)) {
791 if (sbp->sb_unit != mp->m_dalign) {
792 sbp->sb_unit = mp->m_dalign;
793 *update_flags |= XFS_SB_UNIT;
795 if (sbp->sb_width != mp->m_swidth) {
796 sbp->sb_width = mp->m_swidth;
797 *update_flags |= XFS_SB_WIDTH;
800 } else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN &&
801 XFS_SB_VERSION_HASDALIGN(&mp->m_sb)) {
802 mp->m_dalign = sbp->sb_unit;
803 mp->m_swidth = sbp->sb_width;
806 return 0;
810 * Set the maximum inode count for this filesystem
812 STATIC void
813 xfs_set_maxicount(xfs_mount_t *mp)
815 xfs_sb_t *sbp = &(mp->m_sb);
816 __uint64_t icount;
818 if (sbp->sb_imax_pct) {
820 * Make sure the maximum inode count is a multiple
821 * of the units we allocate inodes in.
823 icount = sbp->sb_dblocks * sbp->sb_imax_pct;
824 do_div(icount, 100);
825 do_div(icount, mp->m_ialloc_blks);
826 mp->m_maxicount = (icount * mp->m_ialloc_blks) <<
827 sbp->sb_inopblog;
828 } else {
829 mp->m_maxicount = 0;
834 * Set the default minimum read and write sizes unless
835 * already specified in a mount option.
836 * We use smaller I/O sizes when the file system
837 * is being used for NFS service (wsync mount option).
839 STATIC void
840 xfs_set_rw_sizes(xfs_mount_t *mp)
842 xfs_sb_t *sbp = &(mp->m_sb);
843 int readio_log, writeio_log;
845 if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)) {
846 if (mp->m_flags & XFS_MOUNT_WSYNC) {
847 readio_log = XFS_WSYNC_READIO_LOG;
848 writeio_log = XFS_WSYNC_WRITEIO_LOG;
849 } else {
850 readio_log = XFS_READIO_LOG_LARGE;
851 writeio_log = XFS_WRITEIO_LOG_LARGE;
853 } else {
854 readio_log = mp->m_readio_log;
855 writeio_log = mp->m_writeio_log;
858 if (sbp->sb_blocklog > readio_log) {
859 mp->m_readio_log = sbp->sb_blocklog;
860 } else {
861 mp->m_readio_log = readio_log;
863 mp->m_readio_blocks = 1 << (mp->m_readio_log - sbp->sb_blocklog);
864 if (sbp->sb_blocklog > writeio_log) {
865 mp->m_writeio_log = sbp->sb_blocklog;
866 } else {
867 mp->m_writeio_log = writeio_log;
869 mp->m_writeio_blocks = 1 << (mp->m_writeio_log - sbp->sb_blocklog);
873 * Set whether we're using inode alignment.
875 STATIC void
876 xfs_set_inoalignment(xfs_mount_t *mp)
878 if (XFS_SB_VERSION_HASALIGN(&mp->m_sb) &&
879 mp->m_sb.sb_inoalignmt >=
880 XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size))
881 mp->m_inoalign_mask = mp->m_sb.sb_inoalignmt - 1;
882 else
883 mp->m_inoalign_mask = 0;
885 * If we are using stripe alignment, check whether
886 * the stripe unit is a multiple of the inode alignment
888 if (mp->m_dalign && mp->m_inoalign_mask &&
889 !(mp->m_dalign & mp->m_inoalign_mask))
890 mp->m_sinoalign = mp->m_dalign;
891 else
892 mp->m_sinoalign = 0;
896 * Check that the data (and log if separate) are an ok size.
898 STATIC int
899 xfs_check_sizes(xfs_mount_t *mp, int mfsi_flags)
901 xfs_buf_t *bp;
902 xfs_daddr_t d;
903 int error;
905 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
906 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
907 cmn_err(CE_WARN, "XFS: size check 1 failed");
908 return XFS_ERROR(E2BIG);
910 error = xfs_read_buf(mp, mp->m_ddev_targp,
911 d - XFS_FSS_TO_BB(mp, 1),
912 XFS_FSS_TO_BB(mp, 1), 0, &bp);
913 if (!error) {
914 xfs_buf_relse(bp);
915 } else {
916 cmn_err(CE_WARN, "XFS: size check 2 failed");
917 if (error == ENOSPC)
918 error = XFS_ERROR(E2BIG);
919 return error;
922 if (((mfsi_flags & XFS_MFSI_CLIENT) == 0) &&
923 mp->m_logdev_targp != mp->m_ddev_targp) {
924 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
925 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
926 cmn_err(CE_WARN, "XFS: size check 3 failed");
927 return XFS_ERROR(E2BIG);
929 error = xfs_read_buf(mp, mp->m_logdev_targp,
930 d - XFS_FSB_TO_BB(mp, 1),
931 XFS_FSB_TO_BB(mp, 1), 0, &bp);
932 if (!error) {
933 xfs_buf_relse(bp);
934 } else {
935 cmn_err(CE_WARN, "XFS: size check 3 failed");
936 if (error == ENOSPC)
937 error = XFS_ERROR(E2BIG);
938 return error;
941 return 0;
945 * xfs_mountfs
947 * This function does the following on an initial mount of a file system:
948 * - reads the superblock from disk and init the mount struct
949 * - if we're a 32-bit kernel, do a size check on the superblock
950 * so we don't mount terabyte filesystems
951 * - init mount struct realtime fields
952 * - allocate inode hash table for fs
953 * - init directory manager
954 * - perform recovery and init the log manager
957 xfs_mountfs(
958 xfs_mount_t *mp,
959 int mfsi_flags)
961 xfs_sb_t *sbp = &(mp->m_sb);
962 xfs_inode_t *rip;
963 bhv_vnode_t *rvp = NULL;
964 __uint64_t resblks;
965 __int64_t update_flags = 0LL;
966 uint quotamount, quotaflags;
967 int agno;
968 int uuid_mounted = 0;
969 int error = 0;
971 if (mp->m_sb_bp == NULL) {
972 error = xfs_readsb(mp, mfsi_flags);
973 if (error)
974 return error;
976 xfs_mount_common(mp, sbp);
979 * Check if sb_agblocks is aligned at stripe boundary
980 * If sb_agblocks is NOT aligned turn off m_dalign since
981 * allocator alignment is within an ag, therefore ag has
982 * to be aligned at stripe boundary.
984 error = xfs_update_alignment(mp, mfsi_flags, &update_flags);
985 if (error)
986 goto error1;
988 xfs_alloc_compute_maxlevels(mp);
989 xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
990 xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
991 xfs_ialloc_compute_maxlevels(mp);
993 xfs_set_maxicount(mp);
995 mp->m_maxioffset = xfs_max_file_offset(sbp->sb_blocklog);
998 * XFS uses the uuid from the superblock as the unique
999 * identifier for fsid. We can not use the uuid from the volume
1000 * since a single partition filesystem is identical to a single
1001 * partition volume/filesystem.
1003 if ((mfsi_flags & XFS_MFSI_SECOND) == 0 &&
1004 (mp->m_flags & XFS_MOUNT_NOUUID) == 0) {
1005 if (xfs_uuid_mount(mp)) {
1006 error = XFS_ERROR(EINVAL);
1007 goto error1;
1009 uuid_mounted=1;
1013 * Set the minimum read and write sizes
1015 xfs_set_rw_sizes(mp);
1018 * Set the inode cluster size.
1019 * This may still be overridden by the file system
1020 * block size if it is larger than the chosen cluster size.
1022 mp->m_inode_cluster_size = XFS_INODE_BIG_CLUSTER_SIZE;
1025 * Set inode alignment fields
1027 xfs_set_inoalignment(mp);
1030 * Check that the data (and log if separate) are an ok size.
1032 error = xfs_check_sizes(mp, mfsi_flags);
1033 if (error)
1034 goto error1;
1037 * Initialize realtime fields in the mount structure
1039 error = xfs_rtmount_init(mp);
1040 if (error) {
1041 cmn_err(CE_WARN, "XFS: RT mount failed");
1042 goto error1;
1046 * For client case we are done now
1048 if (mfsi_flags & XFS_MFSI_CLIENT) {
1049 return 0;
1053 * Copies the low order bits of the timestamp and the randomly
1054 * set "sequence" number out of a UUID.
1056 uuid_getnodeuniq(&sbp->sb_uuid, mp->m_fixedfsid);
1058 mp->m_dmevmask = 0; /* not persistent; set after each mount */
1060 xfs_dir_mount(mp);
1063 * Initialize the attribute manager's entries.
1065 mp->m_attr_magicpct = (mp->m_sb.sb_blocksize * 37) / 100;
1068 * Initialize the precomputed transaction reservations values.
1070 xfs_trans_init(mp);
1073 * Allocate and initialize the per-ag data.
1075 init_rwsem(&mp->m_peraglock);
1076 mp->m_perag =
1077 kmem_zalloc(sbp->sb_agcount * sizeof(xfs_perag_t), KM_SLEEP);
1079 mp->m_maxagi = xfs_initialize_perag(mp, sbp->sb_agcount);
1082 * log's mount-time initialization. Perform 1st part recovery if needed
1084 if (likely(sbp->sb_logblocks > 0)) { /* check for volume case */
1085 error = xfs_log_mount(mp, mp->m_logdev_targp,
1086 XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
1087 XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
1088 if (error) {
1089 cmn_err(CE_WARN, "XFS: log mount failed");
1090 goto error2;
1092 } else { /* No log has been defined */
1093 cmn_err(CE_WARN, "XFS: no log defined");
1094 XFS_ERROR_REPORT("xfs_mountfs_int(1)", XFS_ERRLEVEL_LOW, mp);
1095 error = XFS_ERROR(EFSCORRUPTED);
1096 goto error2;
1100 * Now the log is mounted, we know if it was an unclean shutdown or
1101 * not. If it was, with the first phase of recovery has completed, we
1102 * have consistent AG blocks on disk. We have not recovered EFIs yet,
1103 * but they are recovered transactionally in the second recovery phase
1104 * later.
1106 * Hence we can safely re-initialise incore superblock counters from
1107 * the per-ag data. These may not be correct if the filesystem was not
1108 * cleanly unmounted, so we need to wait for recovery to finish before
1109 * doing this.
1111 * If the filesystem was cleanly unmounted, then we can trust the
1112 * values in the superblock to be correct and we don't need to do
1113 * anything here.
1115 * If we are currently making the filesystem, the initialisation will
1116 * fail as the perag data is in an undefined state.
1119 if (xfs_sb_version_haslazysbcount(&mp->m_sb) &&
1120 !XFS_LAST_UNMOUNT_WAS_CLEAN(mp) &&
1121 !mp->m_sb.sb_inprogress) {
1122 error = xfs_initialize_perag_data(mp, sbp->sb_agcount);
1123 if (error) {
1124 goto error2;
1128 * Get and sanity-check the root inode.
1129 * Save the pointer to it in the mount structure.
1131 error = xfs_iget(mp, NULL, sbp->sb_rootino, 0, XFS_ILOCK_EXCL, &rip, 0);
1132 if (error) {
1133 cmn_err(CE_WARN, "XFS: failed to read root inode");
1134 goto error3;
1137 ASSERT(rip != NULL);
1138 rvp = XFS_ITOV(rip);
1140 if (unlikely((rip->i_d.di_mode & S_IFMT) != S_IFDIR)) {
1141 cmn_err(CE_WARN, "XFS: corrupted root inode");
1142 cmn_err(CE_WARN, "Device %s - root %llu is not a directory",
1143 XFS_BUFTARG_NAME(mp->m_ddev_targp),
1144 (unsigned long long)rip->i_ino);
1145 xfs_iunlock(rip, XFS_ILOCK_EXCL);
1146 XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW,
1147 mp);
1148 error = XFS_ERROR(EFSCORRUPTED);
1149 goto error4;
1151 mp->m_rootip = rip; /* save it */
1153 xfs_iunlock(rip, XFS_ILOCK_EXCL);
1156 * Initialize realtime inode pointers in the mount structure
1158 error = xfs_rtmount_inodes(mp);
1159 if (error) {
1161 * Free up the root inode.
1163 cmn_err(CE_WARN, "XFS: failed to read RT inodes");
1164 goto error4;
1168 * If fs is not mounted readonly, then update the superblock
1169 * unit and width changes.
1171 if (update_flags && !(mp->m_flags & XFS_MOUNT_RDONLY))
1172 xfs_mount_log_sbunit(mp, update_flags);
1175 * Initialise the XFS quota management subsystem for this mount
1177 error = XFS_QM_INIT(mp, &quotamount, &quotaflags);
1178 if (error)
1179 goto error4;
1182 * Finish recovering the file system. This part needed to be
1183 * delayed until after the root and real-time bitmap inodes
1184 * were consistently read in.
1186 error = xfs_log_mount_finish(mp, mfsi_flags);
1187 if (error) {
1188 cmn_err(CE_WARN, "XFS: log mount finish failed");
1189 goto error4;
1193 * Complete the quota initialisation, post-log-replay component.
1195 error = XFS_QM_MOUNT(mp, quotamount, quotaflags, mfsi_flags);
1196 if (error)
1197 goto error4;
1200 * Now we are mounted, reserve a small amount of unused space for
1201 * privileged transactions. This is needed so that transaction
1202 * space required for critical operations can dip into this pool
1203 * when at ENOSPC. This is needed for operations like create with
1204 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
1205 * are not allowed to use this reserved space.
1207 * We default to 5% or 1024 fsbs of space reserved, whichever is smaller.
1208 * This may drive us straight to ENOSPC on mount, but that implies
1209 * we were already there on the last unmount.
1211 resblks = mp->m_sb.sb_dblocks;
1212 do_div(resblks, 20);
1213 resblks = min_t(__uint64_t, resblks, 1024);
1214 xfs_reserve_blocks(mp, &resblks, NULL);
1216 return 0;
1218 error4:
1220 * Free up the root inode.
1222 VN_RELE(rvp);
1223 error3:
1224 xfs_log_unmount_dealloc(mp);
1225 error2:
1226 for (agno = 0; agno < sbp->sb_agcount; agno++)
1227 if (mp->m_perag[agno].pagb_list)
1228 kmem_free(mp->m_perag[agno].pagb_list,
1229 sizeof(xfs_perag_busy_t) * XFS_PAGB_NUM_SLOTS);
1230 kmem_free(mp->m_perag, sbp->sb_agcount * sizeof(xfs_perag_t));
1231 mp->m_perag = NULL;
1232 /* FALLTHROUGH */
1233 error1:
1234 if (uuid_mounted)
1235 xfs_uuid_unmount(mp);
1236 xfs_freesb(mp);
1237 return error;
1241 * xfs_unmountfs
1243 * This flushes out the inodes,dquots and the superblock, unmounts the
1244 * log and makes sure that incore structures are freed.
1247 xfs_unmountfs(xfs_mount_t *mp, struct cred *cr)
1249 __uint64_t resblks;
1252 * We can potentially deadlock here if we have an inode cluster
1253 * that has been freed has it's buffer still pinned in memory because
1254 * the transaction is still sitting in a iclog. The stale inodes
1255 * on that buffer will have their flush locks held until the
1256 * transaction hits the disk and the callbacks run. the inode
1257 * flush takes the flush lock unconditionally and with nothing to
1258 * push out the iclog we will never get that unlocked. hence we
1259 * need to force the log first.
1261 xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE | XFS_LOG_SYNC);
1262 xfs_iflush_all(mp);
1264 XFS_QM_DQPURGEALL(mp, XFS_QMOPT_QUOTALL | XFS_QMOPT_UMOUNTING);
1267 * Flush out the log synchronously so that we know for sure
1268 * that nothing is pinned. This is important because bflush()
1269 * will skip pinned buffers.
1271 xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE | XFS_LOG_SYNC);
1273 xfs_binval(mp->m_ddev_targp);
1274 if (mp->m_rtdev_targp) {
1275 xfs_binval(mp->m_rtdev_targp);
1279 * Unreserve any blocks we have so that when we unmount we don't account
1280 * the reserved free space as used. This is really only necessary for
1281 * lazy superblock counting because it trusts the incore superblock
1282 * counters to be aboslutely correct on clean unmount.
1284 * We don't bother correcting this elsewhere for lazy superblock
1285 * counting because on mount of an unclean filesystem we reconstruct the
1286 * correct counter value and this is irrelevant.
1288 * For non-lazy counter filesystems, this doesn't matter at all because
1289 * we only every apply deltas to the superblock and hence the incore
1290 * value does not matter....
1292 resblks = 0;
1293 xfs_reserve_blocks(mp, &resblks, NULL);
1295 xfs_log_sbcount(mp, 1);
1296 xfs_unmountfs_writesb(mp);
1297 xfs_unmountfs_wait(mp); /* wait for async bufs */
1298 xfs_log_unmount(mp); /* Done! No more fs ops. */
1300 xfs_freesb(mp);
1303 * All inodes from this mount point should be freed.
1305 ASSERT(mp->m_inodes == NULL);
1307 xfs_unmountfs_close(mp, cr);
1308 if ((mp->m_flags & XFS_MOUNT_NOUUID) == 0)
1309 xfs_uuid_unmount(mp);
1311 #if defined(DEBUG) || defined(INDUCE_IO_ERROR)
1312 xfs_errortag_clearall(mp, 0);
1313 #endif
1314 xfs_mount_free(mp);
1315 return 0;
1318 void
1319 xfs_unmountfs_close(xfs_mount_t *mp, struct cred *cr)
1321 if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp)
1322 xfs_free_buftarg(mp->m_logdev_targp, 1);
1323 if (mp->m_rtdev_targp)
1324 xfs_free_buftarg(mp->m_rtdev_targp, 1);
1325 xfs_free_buftarg(mp->m_ddev_targp, 0);
1328 STATIC void
1329 xfs_unmountfs_wait(xfs_mount_t *mp)
1331 if (mp->m_logdev_targp != mp->m_ddev_targp)
1332 xfs_wait_buftarg(mp->m_logdev_targp);
1333 if (mp->m_rtdev_targp)
1334 xfs_wait_buftarg(mp->m_rtdev_targp);
1335 xfs_wait_buftarg(mp->m_ddev_targp);
1339 xfs_fs_writable(xfs_mount_t *mp)
1341 return !(xfs_test_for_freeze(mp) || XFS_FORCED_SHUTDOWN(mp) ||
1342 (mp->m_flags & XFS_MOUNT_RDONLY));
1346 * xfs_log_sbcount
1348 * Called either periodically to keep the on disk superblock values
1349 * roughly up to date or from unmount to make sure the values are
1350 * correct on a clean unmount.
1352 * Note this code can be called during the process of freezing, so
1353 * we may need to use the transaction allocator which does not not
1354 * block when the transaction subsystem is in its frozen state.
1357 xfs_log_sbcount(
1358 xfs_mount_t *mp,
1359 uint sync)
1361 xfs_trans_t *tp;
1362 int error;
1364 if (!xfs_fs_writable(mp))
1365 return 0;
1367 xfs_icsb_sync_counters(mp);
1370 * we don't need to do this if we are updating the superblock
1371 * counters on every modification.
1373 if (!xfs_sb_version_haslazysbcount(&mp->m_sb))
1374 return 0;
1376 tp = _xfs_trans_alloc(mp, XFS_TRANS_SB_COUNT);
1377 error = xfs_trans_reserve(tp, 0, mp->m_sb.sb_sectsize + 128, 0, 0,
1378 XFS_DEFAULT_LOG_COUNT);
1379 if (error) {
1380 xfs_trans_cancel(tp, 0);
1381 return error;
1384 xfs_mod_sb(tp, XFS_SB_IFREE | XFS_SB_ICOUNT | XFS_SB_FDBLOCKS);
1385 if (sync)
1386 xfs_trans_set_sync(tp);
1387 xfs_trans_commit(tp, 0);
1389 return 0;
1392 STATIC void
1393 xfs_mark_shared_ro(
1394 xfs_mount_t *mp,
1395 xfs_buf_t *bp)
1397 xfs_dsb_t *sb = XFS_BUF_TO_SBP(bp);
1398 __uint16_t version;
1400 if (!(sb->sb_flags & XFS_SBF_READONLY))
1401 sb->sb_flags |= XFS_SBF_READONLY;
1403 version = be16_to_cpu(sb->sb_versionnum);
1404 if ((version & XFS_SB_VERSION_NUMBITS) != XFS_SB_VERSION_4 ||
1405 !(version & XFS_SB_VERSION_SHAREDBIT))
1406 version |= XFS_SB_VERSION_SHAREDBIT;
1407 sb->sb_versionnum = cpu_to_be16(version);
1411 xfs_unmountfs_writesb(xfs_mount_t *mp)
1413 xfs_buf_t *sbp;
1414 int error = 0;
1417 * skip superblock write if fs is read-only, or
1418 * if we are doing a forced umount.
1420 if (!((mp->m_flags & XFS_MOUNT_RDONLY) ||
1421 XFS_FORCED_SHUTDOWN(mp))) {
1423 sbp = xfs_getsb(mp, 0);
1426 * mark shared-readonly if desired
1428 if (mp->m_mk_sharedro)
1429 xfs_mark_shared_ro(mp, sbp);
1431 XFS_BUF_UNDONE(sbp);
1432 XFS_BUF_UNREAD(sbp);
1433 XFS_BUF_UNDELAYWRITE(sbp);
1434 XFS_BUF_WRITE(sbp);
1435 XFS_BUF_UNASYNC(sbp);
1436 ASSERT(XFS_BUF_TARGET(sbp) == mp->m_ddev_targp);
1437 xfsbdstrat(mp, sbp);
1438 /* Nevermind errors we might get here. */
1439 error = xfs_iowait(sbp);
1440 if (error)
1441 xfs_ioerror_alert("xfs_unmountfs_writesb",
1442 mp, sbp, XFS_BUF_ADDR(sbp));
1443 if (error && mp->m_mk_sharedro)
1444 xfs_fs_cmn_err(CE_ALERT, mp, "Superblock write error detected while unmounting. Filesystem may not be marked shared readonly");
1445 xfs_buf_relse(sbp);
1447 return error;
1451 * xfs_mod_sb() can be used to copy arbitrary changes to the
1452 * in-core superblock into the superblock buffer to be logged.
1453 * It does not provide the higher level of locking that is
1454 * needed to protect the in-core superblock from concurrent
1455 * access.
1457 void
1458 xfs_mod_sb(xfs_trans_t *tp, __int64_t fields)
1460 xfs_buf_t *bp;
1461 int first;
1462 int last;
1463 xfs_mount_t *mp;
1464 xfs_sb_field_t f;
1466 ASSERT(fields);
1467 if (!fields)
1468 return;
1469 mp = tp->t_mountp;
1470 bp = xfs_trans_getsb(tp, mp, 0);
1471 first = sizeof(xfs_sb_t);
1472 last = 0;
1474 /* translate/copy */
1476 xfs_sb_to_disk(XFS_BUF_TO_SBP(bp), &mp->m_sb, fields);
1478 /* find modified range */
1480 f = (xfs_sb_field_t)xfs_lowbit64((__uint64_t)fields);
1481 ASSERT((1LL << f) & XFS_SB_MOD_BITS);
1482 first = xfs_sb_info[f].offset;
1484 f = (xfs_sb_field_t)xfs_highbit64((__uint64_t)fields);
1485 ASSERT((1LL << f) & XFS_SB_MOD_BITS);
1486 last = xfs_sb_info[f + 1].offset - 1;
1488 xfs_trans_log_buf(tp, bp, first, last);
1493 * xfs_mod_incore_sb_unlocked() is a utility routine common used to apply
1494 * a delta to a specified field in the in-core superblock. Simply
1495 * switch on the field indicated and apply the delta to that field.
1496 * Fields are not allowed to dip below zero, so if the delta would
1497 * do this do not apply it and return EINVAL.
1499 * The m_sb_lock must be held when this routine is called.
1502 xfs_mod_incore_sb_unlocked(
1503 xfs_mount_t *mp,
1504 xfs_sb_field_t field,
1505 int64_t delta,
1506 int rsvd)
1508 int scounter; /* short counter for 32 bit fields */
1509 long long lcounter; /* long counter for 64 bit fields */
1510 long long res_used, rem;
1513 * With the in-core superblock spin lock held, switch
1514 * on the indicated field. Apply the delta to the
1515 * proper field. If the fields value would dip below
1516 * 0, then do not apply the delta and return EINVAL.
1518 switch (field) {
1519 case XFS_SBS_ICOUNT:
1520 lcounter = (long long)mp->m_sb.sb_icount;
1521 lcounter += delta;
1522 if (lcounter < 0) {
1523 ASSERT(0);
1524 return XFS_ERROR(EINVAL);
1526 mp->m_sb.sb_icount = lcounter;
1527 return 0;
1528 case XFS_SBS_IFREE:
1529 lcounter = (long long)mp->m_sb.sb_ifree;
1530 lcounter += delta;
1531 if (lcounter < 0) {
1532 ASSERT(0);
1533 return XFS_ERROR(EINVAL);
1535 mp->m_sb.sb_ifree = lcounter;
1536 return 0;
1537 case XFS_SBS_FDBLOCKS:
1538 lcounter = (long long)
1539 mp->m_sb.sb_fdblocks - XFS_ALLOC_SET_ASIDE(mp);
1540 res_used = (long long)(mp->m_resblks - mp->m_resblks_avail);
1542 if (delta > 0) { /* Putting blocks back */
1543 if (res_used > delta) {
1544 mp->m_resblks_avail += delta;
1545 } else {
1546 rem = delta - res_used;
1547 mp->m_resblks_avail = mp->m_resblks;
1548 lcounter += rem;
1550 } else { /* Taking blocks away */
1552 lcounter += delta;
1555 * If were out of blocks, use any available reserved blocks if
1556 * were allowed to.
1559 if (lcounter < 0) {
1560 if (rsvd) {
1561 lcounter = (long long)mp->m_resblks_avail + delta;
1562 if (lcounter < 0) {
1563 return XFS_ERROR(ENOSPC);
1565 mp->m_resblks_avail = lcounter;
1566 return 0;
1567 } else { /* not reserved */
1568 return XFS_ERROR(ENOSPC);
1573 mp->m_sb.sb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp);
1574 return 0;
1575 case XFS_SBS_FREXTENTS:
1576 lcounter = (long long)mp->m_sb.sb_frextents;
1577 lcounter += delta;
1578 if (lcounter < 0) {
1579 return XFS_ERROR(ENOSPC);
1581 mp->m_sb.sb_frextents = lcounter;
1582 return 0;
1583 case XFS_SBS_DBLOCKS:
1584 lcounter = (long long)mp->m_sb.sb_dblocks;
1585 lcounter += delta;
1586 if (lcounter < 0) {
1587 ASSERT(0);
1588 return XFS_ERROR(EINVAL);
1590 mp->m_sb.sb_dblocks = lcounter;
1591 return 0;
1592 case XFS_SBS_AGCOUNT:
1593 scounter = mp->m_sb.sb_agcount;
1594 scounter += delta;
1595 if (scounter < 0) {
1596 ASSERT(0);
1597 return XFS_ERROR(EINVAL);
1599 mp->m_sb.sb_agcount = scounter;
1600 return 0;
1601 case XFS_SBS_IMAX_PCT:
1602 scounter = mp->m_sb.sb_imax_pct;
1603 scounter += delta;
1604 if (scounter < 0) {
1605 ASSERT(0);
1606 return XFS_ERROR(EINVAL);
1608 mp->m_sb.sb_imax_pct = scounter;
1609 return 0;
1610 case XFS_SBS_REXTSIZE:
1611 scounter = mp->m_sb.sb_rextsize;
1612 scounter += delta;
1613 if (scounter < 0) {
1614 ASSERT(0);
1615 return XFS_ERROR(EINVAL);
1617 mp->m_sb.sb_rextsize = scounter;
1618 return 0;
1619 case XFS_SBS_RBMBLOCKS:
1620 scounter = mp->m_sb.sb_rbmblocks;
1621 scounter += delta;
1622 if (scounter < 0) {
1623 ASSERT(0);
1624 return XFS_ERROR(EINVAL);
1626 mp->m_sb.sb_rbmblocks = scounter;
1627 return 0;
1628 case XFS_SBS_RBLOCKS:
1629 lcounter = (long long)mp->m_sb.sb_rblocks;
1630 lcounter += delta;
1631 if (lcounter < 0) {
1632 ASSERT(0);
1633 return XFS_ERROR(EINVAL);
1635 mp->m_sb.sb_rblocks = lcounter;
1636 return 0;
1637 case XFS_SBS_REXTENTS:
1638 lcounter = (long long)mp->m_sb.sb_rextents;
1639 lcounter += delta;
1640 if (lcounter < 0) {
1641 ASSERT(0);
1642 return XFS_ERROR(EINVAL);
1644 mp->m_sb.sb_rextents = lcounter;
1645 return 0;
1646 case XFS_SBS_REXTSLOG:
1647 scounter = mp->m_sb.sb_rextslog;
1648 scounter += delta;
1649 if (scounter < 0) {
1650 ASSERT(0);
1651 return XFS_ERROR(EINVAL);
1653 mp->m_sb.sb_rextslog = scounter;
1654 return 0;
1655 default:
1656 ASSERT(0);
1657 return XFS_ERROR(EINVAL);
1662 * xfs_mod_incore_sb() is used to change a field in the in-core
1663 * superblock structure by the specified delta. This modification
1664 * is protected by the m_sb_lock. Just use the xfs_mod_incore_sb_unlocked()
1665 * routine to do the work.
1668 xfs_mod_incore_sb(
1669 xfs_mount_t *mp,
1670 xfs_sb_field_t field,
1671 int64_t delta,
1672 int rsvd)
1674 int status;
1676 /* check for per-cpu counters */
1677 switch (field) {
1678 #ifdef HAVE_PERCPU_SB
1679 case XFS_SBS_ICOUNT:
1680 case XFS_SBS_IFREE:
1681 case XFS_SBS_FDBLOCKS:
1682 if (!(mp->m_flags & XFS_MOUNT_NO_PERCPU_SB)) {
1683 status = xfs_icsb_modify_counters(mp, field,
1684 delta, rsvd);
1685 break;
1687 /* FALLTHROUGH */
1688 #endif
1689 default:
1690 spin_lock(&mp->m_sb_lock);
1691 status = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd);
1692 spin_unlock(&mp->m_sb_lock);
1693 break;
1696 return status;
1700 * xfs_mod_incore_sb_batch() is used to change more than one field
1701 * in the in-core superblock structure at a time. This modification
1702 * is protected by a lock internal to this module. The fields and
1703 * changes to those fields are specified in the array of xfs_mod_sb
1704 * structures passed in.
1706 * Either all of the specified deltas will be applied or none of
1707 * them will. If any modified field dips below 0, then all modifications
1708 * will be backed out and EINVAL will be returned.
1711 xfs_mod_incore_sb_batch(xfs_mount_t *mp, xfs_mod_sb_t *msb, uint nmsb, int rsvd)
1713 int status=0;
1714 xfs_mod_sb_t *msbp;
1717 * Loop through the array of mod structures and apply each
1718 * individually. If any fail, then back out all those
1719 * which have already been applied. Do all of this within
1720 * the scope of the m_sb_lock so that all of the changes will
1721 * be atomic.
1723 spin_lock(&mp->m_sb_lock);
1724 msbp = &msb[0];
1725 for (msbp = &msbp[0]; msbp < (msb + nmsb); msbp++) {
1727 * Apply the delta at index n. If it fails, break
1728 * from the loop so we'll fall into the undo loop
1729 * below.
1731 switch (msbp->msb_field) {
1732 #ifdef HAVE_PERCPU_SB
1733 case XFS_SBS_ICOUNT:
1734 case XFS_SBS_IFREE:
1735 case XFS_SBS_FDBLOCKS:
1736 if (!(mp->m_flags & XFS_MOUNT_NO_PERCPU_SB)) {
1737 spin_unlock(&mp->m_sb_lock);
1738 status = xfs_icsb_modify_counters(mp,
1739 msbp->msb_field,
1740 msbp->msb_delta, rsvd);
1741 spin_lock(&mp->m_sb_lock);
1742 break;
1744 /* FALLTHROUGH */
1745 #endif
1746 default:
1747 status = xfs_mod_incore_sb_unlocked(mp,
1748 msbp->msb_field,
1749 msbp->msb_delta, rsvd);
1750 break;
1753 if (status != 0) {
1754 break;
1759 * If we didn't complete the loop above, then back out
1760 * any changes made to the superblock. If you add code
1761 * between the loop above and here, make sure that you
1762 * preserve the value of status. Loop back until
1763 * we step below the beginning of the array. Make sure
1764 * we don't touch anything back there.
1766 if (status != 0) {
1767 msbp--;
1768 while (msbp >= msb) {
1769 switch (msbp->msb_field) {
1770 #ifdef HAVE_PERCPU_SB
1771 case XFS_SBS_ICOUNT:
1772 case XFS_SBS_IFREE:
1773 case XFS_SBS_FDBLOCKS:
1774 if (!(mp->m_flags & XFS_MOUNT_NO_PERCPU_SB)) {
1775 spin_unlock(&mp->m_sb_lock);
1776 status = xfs_icsb_modify_counters(mp,
1777 msbp->msb_field,
1778 -(msbp->msb_delta),
1779 rsvd);
1780 spin_lock(&mp->m_sb_lock);
1781 break;
1783 /* FALLTHROUGH */
1784 #endif
1785 default:
1786 status = xfs_mod_incore_sb_unlocked(mp,
1787 msbp->msb_field,
1788 -(msbp->msb_delta),
1789 rsvd);
1790 break;
1792 ASSERT(status == 0);
1793 msbp--;
1796 spin_unlock(&mp->m_sb_lock);
1797 return status;
1801 * xfs_getsb() is called to obtain the buffer for the superblock.
1802 * The buffer is returned locked and read in from disk.
1803 * The buffer should be released with a call to xfs_brelse().
1805 * If the flags parameter is BUF_TRYLOCK, then we'll only return
1806 * the superblock buffer if it can be locked without sleeping.
1807 * If it can't then we'll return NULL.
1809 xfs_buf_t *
1810 xfs_getsb(
1811 xfs_mount_t *mp,
1812 int flags)
1814 xfs_buf_t *bp;
1816 ASSERT(mp->m_sb_bp != NULL);
1817 bp = mp->m_sb_bp;
1818 if (flags & XFS_BUF_TRYLOCK) {
1819 if (!XFS_BUF_CPSEMA(bp)) {
1820 return NULL;
1822 } else {
1823 XFS_BUF_PSEMA(bp, PRIBIO);
1825 XFS_BUF_HOLD(bp);
1826 ASSERT(XFS_BUF_ISDONE(bp));
1827 return bp;
1831 * Used to free the superblock along various error paths.
1833 void
1834 xfs_freesb(
1835 xfs_mount_t *mp)
1837 xfs_buf_t *bp;
1840 * Use xfs_getsb() so that the buffer will be locked
1841 * when we call xfs_buf_relse().
1843 bp = xfs_getsb(mp, 0);
1844 XFS_BUF_UNMANAGE(bp);
1845 xfs_buf_relse(bp);
1846 mp->m_sb_bp = NULL;
1850 * See if the UUID is unique among mounted XFS filesystems.
1851 * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
1853 STATIC int
1854 xfs_uuid_mount(
1855 xfs_mount_t *mp)
1857 if (uuid_is_nil(&mp->m_sb.sb_uuid)) {
1858 cmn_err(CE_WARN,
1859 "XFS: Filesystem %s has nil UUID - can't mount",
1860 mp->m_fsname);
1861 return -1;
1863 if (!uuid_table_insert(&mp->m_sb.sb_uuid)) {
1864 cmn_err(CE_WARN,
1865 "XFS: Filesystem %s has duplicate UUID - can't mount",
1866 mp->m_fsname);
1867 return -1;
1869 return 0;
1873 * Remove filesystem from the UUID table.
1875 STATIC void
1876 xfs_uuid_unmount(
1877 xfs_mount_t *mp)
1879 uuid_table_remove(&mp->m_sb.sb_uuid);
1883 * Used to log changes to the superblock unit and width fields which could
1884 * be altered by the mount options. Only the first superblock is updated.
1886 STATIC void
1887 xfs_mount_log_sbunit(
1888 xfs_mount_t *mp,
1889 __int64_t fields)
1891 xfs_trans_t *tp;
1893 ASSERT(fields & (XFS_SB_UNIT|XFS_SB_WIDTH|XFS_SB_UUID));
1895 tp = xfs_trans_alloc(mp, XFS_TRANS_SB_UNIT);
1896 if (xfs_trans_reserve(tp, 0, mp->m_sb.sb_sectsize + 128, 0, 0,
1897 XFS_DEFAULT_LOG_COUNT)) {
1898 xfs_trans_cancel(tp, 0);
1899 return;
1901 xfs_mod_sb(tp, fields);
1902 xfs_trans_commit(tp, 0);
1906 #ifdef HAVE_PERCPU_SB
1908 * Per-cpu incore superblock counters
1910 * Simple concept, difficult implementation
1912 * Basically, replace the incore superblock counters with a distributed per cpu
1913 * counter for contended fields (e.g. free block count).
1915 * Difficulties arise in that the incore sb is used for ENOSPC checking, and
1916 * hence needs to be accurately read when we are running low on space. Hence
1917 * there is a method to enable and disable the per-cpu counters based on how
1918 * much "stuff" is available in them.
1920 * Basically, a counter is enabled if there is enough free resource to justify
1921 * running a per-cpu fast-path. If the per-cpu counter runs out (i.e. a local
1922 * ENOSPC), then we disable the counters to synchronise all callers and
1923 * re-distribute the available resources.
1925 * If, once we redistributed the available resources, we still get a failure,
1926 * we disable the per-cpu counter and go through the slow path.
1928 * The slow path is the current xfs_mod_incore_sb() function. This means that
1929 * when we disable a per-cpu counter, we need to drain it's resources back to
1930 * the global superblock. We do this after disabling the counter to prevent
1931 * more threads from queueing up on the counter.
1933 * Essentially, this means that we still need a lock in the fast path to enable
1934 * synchronisation between the global counters and the per-cpu counters. This
1935 * is not a problem because the lock will be local to a CPU almost all the time
1936 * and have little contention except when we get to ENOSPC conditions.
1938 * Basically, this lock becomes a barrier that enables us to lock out the fast
1939 * path while we do things like enabling and disabling counters and
1940 * synchronising the counters.
1942 * Locking rules:
1944 * 1. m_sb_lock before picking up per-cpu locks
1945 * 2. per-cpu locks always picked up via for_each_online_cpu() order
1946 * 3. accurate counter sync requires m_sb_lock + per cpu locks
1947 * 4. modifying per-cpu counters requires holding per-cpu lock
1948 * 5. modifying global counters requires holding m_sb_lock
1949 * 6. enabling or disabling a counter requires holding the m_sb_lock
1950 * and _none_ of the per-cpu locks.
1952 * Disabled counters are only ever re-enabled by a balance operation
1953 * that results in more free resources per CPU than a given threshold.
1954 * To ensure counters don't remain disabled, they are rebalanced when
1955 * the global resource goes above a higher threshold (i.e. some hysteresis
1956 * is present to prevent thrashing).
1959 #ifdef CONFIG_HOTPLUG_CPU
1961 * hot-plug CPU notifier support.
1963 * We need a notifier per filesystem as we need to be able to identify
1964 * the filesystem to balance the counters out. This is achieved by
1965 * having a notifier block embedded in the xfs_mount_t and doing pointer
1966 * magic to get the mount pointer from the notifier block address.
1968 STATIC int
1969 xfs_icsb_cpu_notify(
1970 struct notifier_block *nfb,
1971 unsigned long action,
1972 void *hcpu)
1974 xfs_icsb_cnts_t *cntp;
1975 xfs_mount_t *mp;
1977 mp = (xfs_mount_t *)container_of(nfb, xfs_mount_t, m_icsb_notifier);
1978 cntp = (xfs_icsb_cnts_t *)
1979 per_cpu_ptr(mp->m_sb_cnts, (unsigned long)hcpu);
1980 switch (action) {
1981 case CPU_UP_PREPARE:
1982 case CPU_UP_PREPARE_FROZEN:
1983 /* Easy Case - initialize the area and locks, and
1984 * then rebalance when online does everything else for us. */
1985 memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
1986 break;
1987 case CPU_ONLINE:
1988 case CPU_ONLINE_FROZEN:
1989 xfs_icsb_lock(mp);
1990 xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0, 0);
1991 xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0, 0);
1992 xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0, 0);
1993 xfs_icsb_unlock(mp);
1994 break;
1995 case CPU_DEAD:
1996 case CPU_DEAD_FROZEN:
1997 /* Disable all the counters, then fold the dead cpu's
1998 * count into the total on the global superblock and
1999 * re-enable the counters. */
2000 xfs_icsb_lock(mp);
2001 spin_lock(&mp->m_sb_lock);
2002 xfs_icsb_disable_counter(mp, XFS_SBS_ICOUNT);
2003 xfs_icsb_disable_counter(mp, XFS_SBS_IFREE);
2004 xfs_icsb_disable_counter(mp, XFS_SBS_FDBLOCKS);
2006 mp->m_sb.sb_icount += cntp->icsb_icount;
2007 mp->m_sb.sb_ifree += cntp->icsb_ifree;
2008 mp->m_sb.sb_fdblocks += cntp->icsb_fdblocks;
2010 memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
2012 xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT,
2013 XFS_ICSB_SB_LOCKED, 0);
2014 xfs_icsb_balance_counter(mp, XFS_SBS_IFREE,
2015 XFS_ICSB_SB_LOCKED, 0);
2016 xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS,
2017 XFS_ICSB_SB_LOCKED, 0);
2018 spin_unlock(&mp->m_sb_lock);
2019 xfs_icsb_unlock(mp);
2020 break;
2023 return NOTIFY_OK;
2025 #endif /* CONFIG_HOTPLUG_CPU */
2028 xfs_icsb_init_counters(
2029 xfs_mount_t *mp)
2031 xfs_icsb_cnts_t *cntp;
2032 int i;
2034 mp->m_sb_cnts = alloc_percpu(xfs_icsb_cnts_t);
2035 if (mp->m_sb_cnts == NULL)
2036 return -ENOMEM;
2038 #ifdef CONFIG_HOTPLUG_CPU
2039 mp->m_icsb_notifier.notifier_call = xfs_icsb_cpu_notify;
2040 mp->m_icsb_notifier.priority = 0;
2041 register_hotcpu_notifier(&mp->m_icsb_notifier);
2042 #endif /* CONFIG_HOTPLUG_CPU */
2044 for_each_online_cpu(i) {
2045 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2046 memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
2049 mutex_init(&mp->m_icsb_mutex);
2052 * start with all counters disabled so that the
2053 * initial balance kicks us off correctly
2055 mp->m_icsb_counters = -1;
2056 return 0;
2059 void
2060 xfs_icsb_reinit_counters(
2061 xfs_mount_t *mp)
2063 xfs_icsb_lock(mp);
2065 * start with all counters disabled so that the
2066 * initial balance kicks us off correctly
2068 mp->m_icsb_counters = -1;
2069 xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0, 0);
2070 xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0, 0);
2071 xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0, 0);
2072 xfs_icsb_unlock(mp);
2075 STATIC void
2076 xfs_icsb_destroy_counters(
2077 xfs_mount_t *mp)
2079 if (mp->m_sb_cnts) {
2080 unregister_hotcpu_notifier(&mp->m_icsb_notifier);
2081 free_percpu(mp->m_sb_cnts);
2083 mutex_destroy(&mp->m_icsb_mutex);
2086 STATIC_INLINE void
2087 xfs_icsb_lock_cntr(
2088 xfs_icsb_cnts_t *icsbp)
2090 while (test_and_set_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags)) {
2091 ndelay(1000);
2095 STATIC_INLINE void
2096 xfs_icsb_unlock_cntr(
2097 xfs_icsb_cnts_t *icsbp)
2099 clear_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags);
2103 STATIC_INLINE void
2104 xfs_icsb_lock_all_counters(
2105 xfs_mount_t *mp)
2107 xfs_icsb_cnts_t *cntp;
2108 int i;
2110 for_each_online_cpu(i) {
2111 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2112 xfs_icsb_lock_cntr(cntp);
2116 STATIC_INLINE void
2117 xfs_icsb_unlock_all_counters(
2118 xfs_mount_t *mp)
2120 xfs_icsb_cnts_t *cntp;
2121 int i;
2123 for_each_online_cpu(i) {
2124 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2125 xfs_icsb_unlock_cntr(cntp);
2129 STATIC void
2130 xfs_icsb_count(
2131 xfs_mount_t *mp,
2132 xfs_icsb_cnts_t *cnt,
2133 int flags)
2135 xfs_icsb_cnts_t *cntp;
2136 int i;
2138 memset(cnt, 0, sizeof(xfs_icsb_cnts_t));
2140 if (!(flags & XFS_ICSB_LAZY_COUNT))
2141 xfs_icsb_lock_all_counters(mp);
2143 for_each_online_cpu(i) {
2144 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2145 cnt->icsb_icount += cntp->icsb_icount;
2146 cnt->icsb_ifree += cntp->icsb_ifree;
2147 cnt->icsb_fdblocks += cntp->icsb_fdblocks;
2150 if (!(flags & XFS_ICSB_LAZY_COUNT))
2151 xfs_icsb_unlock_all_counters(mp);
2154 STATIC int
2155 xfs_icsb_counter_disabled(
2156 xfs_mount_t *mp,
2157 xfs_sb_field_t field)
2159 ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
2160 return test_bit(field, &mp->m_icsb_counters);
2163 STATIC int
2164 xfs_icsb_disable_counter(
2165 xfs_mount_t *mp,
2166 xfs_sb_field_t field)
2168 xfs_icsb_cnts_t cnt;
2170 ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
2173 * If we are already disabled, then there is nothing to do
2174 * here. We check before locking all the counters to avoid
2175 * the expensive lock operation when being called in the
2176 * slow path and the counter is already disabled. This is
2177 * safe because the only time we set or clear this state is under
2178 * the m_icsb_mutex.
2180 if (xfs_icsb_counter_disabled(mp, field))
2181 return 0;
2183 xfs_icsb_lock_all_counters(mp);
2184 if (!test_and_set_bit(field, &mp->m_icsb_counters)) {
2185 /* drain back to superblock */
2187 xfs_icsb_count(mp, &cnt, XFS_ICSB_SB_LOCKED|XFS_ICSB_LAZY_COUNT);
2188 switch(field) {
2189 case XFS_SBS_ICOUNT:
2190 mp->m_sb.sb_icount = cnt.icsb_icount;
2191 break;
2192 case XFS_SBS_IFREE:
2193 mp->m_sb.sb_ifree = cnt.icsb_ifree;
2194 break;
2195 case XFS_SBS_FDBLOCKS:
2196 mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks;
2197 break;
2198 default:
2199 BUG();
2203 xfs_icsb_unlock_all_counters(mp);
2205 return 0;
2208 STATIC void
2209 xfs_icsb_enable_counter(
2210 xfs_mount_t *mp,
2211 xfs_sb_field_t field,
2212 uint64_t count,
2213 uint64_t resid)
2215 xfs_icsb_cnts_t *cntp;
2216 int i;
2218 ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
2220 xfs_icsb_lock_all_counters(mp);
2221 for_each_online_cpu(i) {
2222 cntp = per_cpu_ptr(mp->m_sb_cnts, i);
2223 switch (field) {
2224 case XFS_SBS_ICOUNT:
2225 cntp->icsb_icount = count + resid;
2226 break;
2227 case XFS_SBS_IFREE:
2228 cntp->icsb_ifree = count + resid;
2229 break;
2230 case XFS_SBS_FDBLOCKS:
2231 cntp->icsb_fdblocks = count + resid;
2232 break;
2233 default:
2234 BUG();
2235 break;
2237 resid = 0;
2239 clear_bit(field, &mp->m_icsb_counters);
2240 xfs_icsb_unlock_all_counters(mp);
2243 void
2244 xfs_icsb_sync_counters_flags(
2245 xfs_mount_t *mp,
2246 int flags)
2248 xfs_icsb_cnts_t cnt;
2250 /* Pass 1: lock all counters */
2251 if ((flags & XFS_ICSB_SB_LOCKED) == 0)
2252 spin_lock(&mp->m_sb_lock);
2254 xfs_icsb_count(mp, &cnt, flags);
2256 /* Step 3: update mp->m_sb fields */
2257 if (!xfs_icsb_counter_disabled(mp, XFS_SBS_ICOUNT))
2258 mp->m_sb.sb_icount = cnt.icsb_icount;
2259 if (!xfs_icsb_counter_disabled(mp, XFS_SBS_IFREE))
2260 mp->m_sb.sb_ifree = cnt.icsb_ifree;
2261 if (!xfs_icsb_counter_disabled(mp, XFS_SBS_FDBLOCKS))
2262 mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks;
2264 if ((flags & XFS_ICSB_SB_LOCKED) == 0)
2265 spin_unlock(&mp->m_sb_lock);
2269 * Accurate update of per-cpu counters to incore superblock
2271 STATIC void
2272 xfs_icsb_sync_counters(
2273 xfs_mount_t *mp)
2275 xfs_icsb_sync_counters_flags(mp, 0);
2279 * Balance and enable/disable counters as necessary.
2281 * Thresholds for re-enabling counters are somewhat magic. inode counts are
2282 * chosen to be the same number as single on disk allocation chunk per CPU, and
2283 * free blocks is something far enough zero that we aren't going thrash when we
2284 * get near ENOSPC. We also need to supply a minimum we require per cpu to
2285 * prevent looping endlessly when xfs_alloc_space asks for more than will
2286 * be distributed to a single CPU but each CPU has enough blocks to be
2287 * reenabled.
2289 * Note that we can be called when counters are already disabled.
2290 * xfs_icsb_disable_counter() optimises the counter locking in this case to
2291 * prevent locking every per-cpu counter needlessly.
2294 #define XFS_ICSB_INO_CNTR_REENABLE (uint64_t)64
2295 #define XFS_ICSB_FDBLK_CNTR_REENABLE(mp) \
2296 (uint64_t)(512 + XFS_ALLOC_SET_ASIDE(mp))
2297 STATIC void
2298 xfs_icsb_balance_counter(
2299 xfs_mount_t *mp,
2300 xfs_sb_field_t field,
2301 int flags,
2302 int min_per_cpu)
2304 uint64_t count, resid;
2305 int weight = num_online_cpus();
2306 uint64_t min = (uint64_t)min_per_cpu;
2308 if (!(flags & XFS_ICSB_SB_LOCKED))
2309 spin_lock(&mp->m_sb_lock);
2311 /* disable counter and sync counter */
2312 xfs_icsb_disable_counter(mp, field);
2314 /* update counters - first CPU gets residual*/
2315 switch (field) {
2316 case XFS_SBS_ICOUNT:
2317 count = mp->m_sb.sb_icount;
2318 resid = do_div(count, weight);
2319 if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE))
2320 goto out;
2321 break;
2322 case XFS_SBS_IFREE:
2323 count = mp->m_sb.sb_ifree;
2324 resid = do_div(count, weight);
2325 if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE))
2326 goto out;
2327 break;
2328 case XFS_SBS_FDBLOCKS:
2329 count = mp->m_sb.sb_fdblocks;
2330 resid = do_div(count, weight);
2331 if (count < max(min, XFS_ICSB_FDBLK_CNTR_REENABLE(mp)))
2332 goto out;
2333 break;
2334 default:
2335 BUG();
2336 count = resid = 0; /* quiet, gcc */
2337 break;
2340 xfs_icsb_enable_counter(mp, field, count, resid);
2341 out:
2342 if (!(flags & XFS_ICSB_SB_LOCKED))
2343 spin_unlock(&mp->m_sb_lock);
2347 xfs_icsb_modify_counters(
2348 xfs_mount_t *mp,
2349 xfs_sb_field_t field,
2350 int64_t delta,
2351 int rsvd)
2353 xfs_icsb_cnts_t *icsbp;
2354 long long lcounter; /* long counter for 64 bit fields */
2355 int cpu, ret = 0;
2357 might_sleep();
2358 again:
2359 cpu = get_cpu();
2360 icsbp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, cpu);
2363 * if the counter is disabled, go to slow path
2365 if (unlikely(xfs_icsb_counter_disabled(mp, field)))
2366 goto slow_path;
2367 xfs_icsb_lock_cntr(icsbp);
2368 if (unlikely(xfs_icsb_counter_disabled(mp, field))) {
2369 xfs_icsb_unlock_cntr(icsbp);
2370 goto slow_path;
2373 switch (field) {
2374 case XFS_SBS_ICOUNT:
2375 lcounter = icsbp->icsb_icount;
2376 lcounter += delta;
2377 if (unlikely(lcounter < 0))
2378 goto balance_counter;
2379 icsbp->icsb_icount = lcounter;
2380 break;
2382 case XFS_SBS_IFREE:
2383 lcounter = icsbp->icsb_ifree;
2384 lcounter += delta;
2385 if (unlikely(lcounter < 0))
2386 goto balance_counter;
2387 icsbp->icsb_ifree = lcounter;
2388 break;
2390 case XFS_SBS_FDBLOCKS:
2391 BUG_ON((mp->m_resblks - mp->m_resblks_avail) != 0);
2393 lcounter = icsbp->icsb_fdblocks - XFS_ALLOC_SET_ASIDE(mp);
2394 lcounter += delta;
2395 if (unlikely(lcounter < 0))
2396 goto balance_counter;
2397 icsbp->icsb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp);
2398 break;
2399 default:
2400 BUG();
2401 break;
2403 xfs_icsb_unlock_cntr(icsbp);
2404 put_cpu();
2405 return 0;
2407 slow_path:
2408 put_cpu();
2411 * serialise with a mutex so we don't burn lots of cpu on
2412 * the superblock lock. We still need to hold the superblock
2413 * lock, however, when we modify the global structures.
2415 xfs_icsb_lock(mp);
2418 * Now running atomically.
2420 * If the counter is enabled, someone has beaten us to rebalancing.
2421 * Drop the lock and try again in the fast path....
2423 if (!(xfs_icsb_counter_disabled(mp, field))) {
2424 xfs_icsb_unlock(mp);
2425 goto again;
2429 * The counter is currently disabled. Because we are
2430 * running atomically here, we know a rebalance cannot
2431 * be in progress. Hence we can go straight to operating
2432 * on the global superblock. We do not call xfs_mod_incore_sb()
2433 * here even though we need to get the m_sb_lock. Doing so
2434 * will cause us to re-enter this function and deadlock.
2435 * Hence we get the m_sb_lock ourselves and then call
2436 * xfs_mod_incore_sb_unlocked() as the unlocked path operates
2437 * directly on the global counters.
2439 spin_lock(&mp->m_sb_lock);
2440 ret = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd);
2441 spin_unlock(&mp->m_sb_lock);
2444 * Now that we've modified the global superblock, we
2445 * may be able to re-enable the distributed counters
2446 * (e.g. lots of space just got freed). After that
2447 * we are done.
2449 if (ret != ENOSPC)
2450 xfs_icsb_balance_counter(mp, field, 0, 0);
2451 xfs_icsb_unlock(mp);
2452 return ret;
2454 balance_counter:
2455 xfs_icsb_unlock_cntr(icsbp);
2456 put_cpu();
2459 * We may have multiple threads here if multiple per-cpu
2460 * counters run dry at the same time. This will mean we can
2461 * do more balances than strictly necessary but it is not
2462 * the common slowpath case.
2464 xfs_icsb_lock(mp);
2467 * running atomically.
2469 * This will leave the counter in the correct state for future
2470 * accesses. After the rebalance, we simply try again and our retry
2471 * will either succeed through the fast path or slow path without
2472 * another balance operation being required.
2474 xfs_icsb_balance_counter(mp, field, 0, delta);
2475 xfs_icsb_unlock(mp);
2476 goto again;
2479 #endif