revert-mm-fix-blkdev-size-calculation-in-generic_write_checks
[linux-2.6/linux-trees-mm.git] / kernel / sched.c
blob7ef19fe45207a795dcd0b9500aeee659449b55cc
1 /*
2 * kernel/sched.c
4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
27 #include <linux/mm.h>
28 #include <linux/module.h>
29 #include <linux/nmi.h>
30 #include <linux/init.h>
31 #include <linux/uaccess.h>
32 #include <linux/highmem.h>
33 #include <linux/smp_lock.h>
34 #include <asm/mmu_context.h>
35 #include <linux/interrupt.h>
36 #include <linux/capability.h>
37 #include <linux/completion.h>
38 #include <linux/kernel_stat.h>
39 #include <linux/debug_locks.h>
40 #include <linux/security.h>
41 #include <linux/notifier.h>
42 #include <linux/profile.h>
43 #include <linux/freezer.h>
44 #include <linux/vmalloc.h>
45 #include <linux/blkdev.h>
46 #include <linux/delay.h>
47 #include <linux/pid_namespace.h>
48 #include <linux/smp.h>
49 #include <linux/threads.h>
50 #include <linux/timer.h>
51 #include <linux/rcupdate.h>
52 #include <linux/cpu.h>
53 #include <linux/cpuset.h>
54 #include <linux/percpu.h>
55 #include <linux/kthread.h>
56 #include <linux/seq_file.h>
57 #include <linux/sysctl.h>
58 #include <linux/syscalls.h>
59 #include <linux/times.h>
60 #include <linux/tsacct_kern.h>
61 #include <linux/kprobes.h>
62 #include <linux/delayacct.h>
63 #include <linux/reciprocal_div.h>
64 #include <linux/unistd.h>
65 #include <linux/pagemap.h>
67 #include <asm/tlb.h>
68 #include <asm/irq_regs.h>
71 * Scheduler clock - returns current time in nanosec units.
72 * This is default implementation.
73 * Architectures and sub-architectures can override this.
75 unsigned long long __attribute__((weak)) sched_clock(void)
77 return (unsigned long long)jiffies * (NSEC_PER_SEC / HZ);
81 * Convert user-nice values [ -20 ... 0 ... 19 ]
82 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
83 * and back.
85 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
86 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
87 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
90 * 'User priority' is the nice value converted to something we
91 * can work with better when scaling various scheduler parameters,
92 * it's a [ 0 ... 39 ] range.
94 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
95 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
96 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
99 * Some helpers for converting nanosecond timing to jiffy resolution
101 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
102 #define JIFFIES_TO_NS(TIME) ((TIME) * (NSEC_PER_SEC / HZ))
104 #define NICE_0_LOAD SCHED_LOAD_SCALE
105 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
108 * These are the 'tuning knobs' of the scheduler:
110 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
111 * Timeslices get refilled after they expire.
113 #define DEF_TIMESLICE (100 * HZ / 1000)
115 #ifdef CONFIG_SMP
117 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
118 * Since cpu_power is a 'constant', we can use a reciprocal divide.
120 static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
122 return reciprocal_divide(load, sg->reciprocal_cpu_power);
126 * Each time a sched group cpu_power is changed,
127 * we must compute its reciprocal value
129 static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
131 sg->__cpu_power += val;
132 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
134 #endif
136 static inline int rt_policy(int policy)
138 if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
139 return 1;
140 return 0;
143 static inline int task_has_rt_policy(struct task_struct *p)
145 return rt_policy(p->policy);
149 * This is the priority-queue data structure of the RT scheduling class:
151 struct rt_prio_array {
152 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
153 struct list_head queue[MAX_RT_PRIO];
156 #ifdef CONFIG_FAIR_GROUP_SCHED
158 #include <linux/cgroup.h>
160 struct cfs_rq;
162 /* task group related information */
163 struct task_group {
164 #ifdef CONFIG_FAIR_CGROUP_SCHED
165 struct cgroup_subsys_state css;
166 #endif
167 /* schedulable entities of this group on each cpu */
168 struct sched_entity **se;
169 /* runqueue "owned" by this group on each cpu */
170 struct cfs_rq **cfs_rq;
171 unsigned long shares;
172 /* spinlock to serialize modification to shares */
173 spinlock_t lock;
174 struct rcu_head rcu;
177 /* Default task group's sched entity on each cpu */
178 static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
179 /* Default task group's cfs_rq on each cpu */
180 static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
182 static struct sched_entity *init_sched_entity_p[NR_CPUS];
183 static struct cfs_rq *init_cfs_rq_p[NR_CPUS];
185 /* Default task group.
186 * Every task in system belong to this group at bootup.
188 struct task_group init_task_group = {
189 .se = init_sched_entity_p,
190 .cfs_rq = init_cfs_rq_p,
193 #ifdef CONFIG_FAIR_USER_SCHED
194 # define INIT_TASK_GRP_LOAD 2*NICE_0_LOAD
195 #else
196 # define INIT_TASK_GRP_LOAD NICE_0_LOAD
197 #endif
199 static int init_task_group_load = INIT_TASK_GRP_LOAD;
201 /* return group to which a task belongs */
202 static inline struct task_group *task_group(struct task_struct *p)
204 struct task_group *tg;
206 #ifdef CONFIG_FAIR_USER_SCHED
207 tg = p->user->tg;
208 #elif defined(CONFIG_FAIR_CGROUP_SCHED)
209 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
210 struct task_group, css);
211 #else
212 tg = &init_task_group;
213 #endif
215 return tg;
218 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
219 static inline void set_task_cfs_rq(struct task_struct *p)
221 p->se.cfs_rq = task_group(p)->cfs_rq[task_cpu(p)];
222 p->se.parent = task_group(p)->se[task_cpu(p)];
225 #else
227 static inline void set_task_cfs_rq(struct task_struct *p) { }
229 #endif /* CONFIG_FAIR_GROUP_SCHED */
231 /* CFS-related fields in a runqueue */
232 struct cfs_rq {
233 struct load_weight load;
234 unsigned long nr_running;
236 u64 exec_clock;
237 u64 min_vruntime;
239 struct rb_root tasks_timeline;
240 struct rb_node *rb_leftmost;
241 struct rb_node *rb_load_balance_curr;
242 /* 'curr' points to currently running entity on this cfs_rq.
243 * It is set to NULL otherwise (i.e when none are currently running).
245 struct sched_entity *curr;
247 unsigned long nr_spread_over;
249 #ifdef CONFIG_FAIR_GROUP_SCHED
250 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
252 /* leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
253 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
254 * (like users, containers etc.)
256 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
257 * list is used during load balance.
259 struct list_head leaf_cfs_rq_list; /* Better name : task_cfs_rq_list? */
260 struct task_group *tg; /* group that "owns" this runqueue */
261 #endif
264 /* Real-Time classes' related field in a runqueue: */
265 struct rt_rq {
266 struct rt_prio_array active;
267 int rt_load_balance_idx;
268 struct list_head *rt_load_balance_head, *rt_load_balance_curr;
272 * This is the main, per-CPU runqueue data structure.
274 * Locking rule: those places that want to lock multiple runqueues
275 * (such as the load balancing or the thread migration code), lock
276 * acquire operations must be ordered by ascending &runqueue.
278 struct rq {
279 /* runqueue lock: */
280 spinlock_t lock;
283 * nr_running and cpu_load should be in the same cacheline because
284 * remote CPUs use both these fields when doing load calculation.
286 unsigned long nr_running;
287 #define CPU_LOAD_IDX_MAX 5
288 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
289 unsigned char idle_at_tick;
290 #ifdef CONFIG_NO_HZ
291 unsigned char in_nohz_recently;
292 #endif
293 /* capture load from *all* tasks on this cpu: */
294 struct load_weight load;
295 unsigned long nr_load_updates;
296 u64 nr_switches;
298 struct cfs_rq cfs;
299 #ifdef CONFIG_FAIR_GROUP_SCHED
300 /* list of leaf cfs_rq on this cpu: */
301 struct list_head leaf_cfs_rq_list;
302 #endif
303 struct rt_rq rt;
306 * This is part of a global counter where only the total sum
307 * over all CPUs matters. A task can increase this counter on
308 * one CPU and if it got migrated afterwards it may decrease
309 * it on another CPU. Always updated under the runqueue lock:
311 unsigned long nr_uninterruptible;
313 struct task_struct *curr, *idle;
314 unsigned long next_balance;
315 struct mm_struct *prev_mm;
317 u64 clock, prev_clock_raw;
318 s64 clock_max_delta;
320 unsigned int clock_warps, clock_overflows;
321 u64 idle_clock;
322 unsigned int clock_deep_idle_events;
323 u64 tick_timestamp;
325 atomic_t nr_iowait;
327 #ifdef CONFIG_SMP
328 struct sched_domain *sd;
330 /* For active balancing */
331 int active_balance;
332 int push_cpu;
333 /* cpu of this runqueue: */
334 int cpu;
336 struct task_struct *migration_thread;
337 struct list_head migration_queue;
338 #endif
340 #ifdef CONFIG_SCHEDSTATS
341 /* latency stats */
342 struct sched_info rq_sched_info;
344 /* sys_sched_yield() stats */
345 unsigned int yld_exp_empty;
346 unsigned int yld_act_empty;
347 unsigned int yld_both_empty;
348 unsigned int yld_count;
350 /* schedule() stats */
351 unsigned int sched_switch;
352 unsigned int sched_count;
353 unsigned int sched_goidle;
355 /* try_to_wake_up() stats */
356 unsigned int ttwu_count;
357 unsigned int ttwu_local;
359 /* BKL stats */
360 unsigned int bkl_count;
361 #endif
362 struct lock_class_key rq_lock_key;
365 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
366 static DEFINE_MUTEX(sched_hotcpu_mutex);
368 static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
370 rq->curr->sched_class->check_preempt_curr(rq, p);
373 static inline int cpu_of(struct rq *rq)
375 #ifdef CONFIG_SMP
376 return rq->cpu;
377 #else
378 return 0;
379 #endif
383 * Update the per-runqueue clock, as finegrained as the platform can give
384 * us, but without assuming monotonicity, etc.:
386 static void __update_rq_clock(struct rq *rq)
388 u64 prev_raw = rq->prev_clock_raw;
389 u64 now = sched_clock();
390 s64 delta = now - prev_raw;
391 u64 clock = rq->clock;
393 #ifdef CONFIG_SCHED_DEBUG
394 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
395 #endif
397 * Protect against sched_clock() occasionally going backwards:
399 if (unlikely(delta < 0)) {
400 clock++;
401 rq->clock_warps++;
402 } else {
404 * Catch too large forward jumps too:
406 if (unlikely(clock + delta > rq->tick_timestamp + TICK_NSEC)) {
407 if (clock < rq->tick_timestamp + TICK_NSEC)
408 clock = rq->tick_timestamp + TICK_NSEC;
409 else
410 clock++;
411 rq->clock_overflows++;
412 } else {
413 if (unlikely(delta > rq->clock_max_delta))
414 rq->clock_max_delta = delta;
415 clock += delta;
419 rq->prev_clock_raw = now;
420 rq->clock = clock;
423 static void update_rq_clock(struct rq *rq)
425 if (likely(smp_processor_id() == cpu_of(rq)))
426 __update_rq_clock(rq);
430 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
431 * See detach_destroy_domains: synchronize_sched for details.
433 * The domain tree of any CPU may only be accessed from within
434 * preempt-disabled sections.
436 #define for_each_domain(cpu, __sd) \
437 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
439 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
440 #define this_rq() (&__get_cpu_var(runqueues))
441 #define task_rq(p) cpu_rq(task_cpu(p))
442 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
445 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
447 #ifdef CONFIG_SCHED_DEBUG
448 # define const_debug __read_mostly
449 #else
450 # define const_debug static const
451 #endif
454 * Debugging: various feature bits
456 enum {
457 SCHED_FEAT_NEW_FAIR_SLEEPERS = 1,
458 SCHED_FEAT_START_DEBIT = 2,
459 SCHED_FEAT_TREE_AVG = 4,
460 SCHED_FEAT_APPROX_AVG = 8,
461 SCHED_FEAT_WAKEUP_PREEMPT = 16,
464 const_debug unsigned int sysctl_sched_features =
465 SCHED_FEAT_NEW_FAIR_SLEEPERS * 1 |
466 SCHED_FEAT_START_DEBIT * 1 |
467 SCHED_FEAT_TREE_AVG * 0 |
468 SCHED_FEAT_APPROX_AVG * 0 |
469 SCHED_FEAT_WAKEUP_PREEMPT * 1;
471 #define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)
474 * Number of tasks to iterate in a single balance run.
475 * Limited because this is done with IRQs disabled.
477 const_debug unsigned int sysctl_sched_nr_migrate = 32;
480 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
481 * clock constructed from sched_clock():
483 unsigned long long cpu_clock(int cpu)
485 unsigned long long now;
486 unsigned long flags;
487 struct rq *rq;
489 local_irq_save(flags);
490 rq = cpu_rq(cpu);
491 update_rq_clock(rq);
492 now = rq->clock;
493 local_irq_restore(flags);
495 return now;
497 EXPORT_SYMBOL_GPL(cpu_clock);
499 #ifndef prepare_arch_switch
500 # define prepare_arch_switch(next) do { } while (0)
501 #endif
502 #ifndef finish_arch_switch
503 # define finish_arch_switch(prev) do { } while (0)
504 #endif
506 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
507 static inline int task_running(struct rq *rq, struct task_struct *p)
509 return rq->curr == p;
512 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
516 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
518 #ifdef CONFIG_DEBUG_SPINLOCK
519 /* this is a valid case when another task releases the spinlock */
520 rq->lock.owner = current;
521 #endif
523 * If we are tracking spinlock dependencies then we have to
524 * fix up the runqueue lock - which gets 'carried over' from
525 * prev into current:
527 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
529 spin_unlock_irq(&rq->lock);
532 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
533 static inline int task_running(struct rq *rq, struct task_struct *p)
535 #ifdef CONFIG_SMP
536 return p->oncpu;
537 #else
538 return rq->curr == p;
539 #endif
542 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
544 #ifdef CONFIG_SMP
546 * We can optimise this out completely for !SMP, because the
547 * SMP rebalancing from interrupt is the only thing that cares
548 * here.
550 next->oncpu = 1;
551 #endif
552 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
553 spin_unlock_irq(&rq->lock);
554 #else
555 spin_unlock(&rq->lock);
556 #endif
559 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
561 #ifdef CONFIG_SMP
563 * After ->oncpu is cleared, the task can be moved to a different CPU.
564 * We must ensure this doesn't happen until the switch is completely
565 * finished.
567 smp_wmb();
568 prev->oncpu = 0;
569 #endif
570 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
571 local_irq_enable();
572 #endif
574 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
577 * __task_rq_lock - lock the runqueue a given task resides on.
578 * Must be called interrupts disabled.
580 static inline struct rq *__task_rq_lock(struct task_struct *p)
581 __acquires(rq->lock)
583 for (;;) {
584 struct rq *rq = task_rq(p);
585 spin_lock(&rq->lock);
586 if (likely(rq == task_rq(p)))
587 return rq;
588 spin_unlock(&rq->lock);
593 * task_rq_lock - lock the runqueue a given task resides on and disable
594 * interrupts. Note the ordering: we can safely lookup the task_rq without
595 * explicitly disabling preemption.
597 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
598 __acquires(rq->lock)
600 struct rq *rq;
602 for (;;) {
603 local_irq_save(*flags);
604 rq = task_rq(p);
605 spin_lock(&rq->lock);
606 if (likely(rq == task_rq(p)))
607 return rq;
608 spin_unlock_irqrestore(&rq->lock, *flags);
612 static void __task_rq_unlock(struct rq *rq)
613 __releases(rq->lock)
615 spin_unlock(&rq->lock);
618 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
619 __releases(rq->lock)
621 spin_unlock_irqrestore(&rq->lock, *flags);
625 * this_rq_lock - lock this runqueue and disable interrupts.
627 static struct rq *this_rq_lock(void)
628 __acquires(rq->lock)
630 struct rq *rq;
632 local_irq_disable();
633 rq = this_rq();
634 spin_lock(&rq->lock);
636 return rq;
640 * We are going deep-idle (irqs are disabled):
642 void sched_clock_idle_sleep_event(void)
644 struct rq *rq = cpu_rq(smp_processor_id());
646 spin_lock(&rq->lock);
647 __update_rq_clock(rq);
648 spin_unlock(&rq->lock);
649 rq->clock_deep_idle_events++;
651 EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
654 * We just idled delta nanoseconds (called with irqs disabled):
656 void sched_clock_idle_wakeup_event(u64 delta_ns)
658 struct rq *rq = cpu_rq(smp_processor_id());
659 u64 now = sched_clock();
661 rq->idle_clock += delta_ns;
663 * Override the previous timestamp and ignore all
664 * sched_clock() deltas that occured while we idled,
665 * and use the PM-provided delta_ns to advance the
666 * rq clock:
668 spin_lock(&rq->lock);
669 rq->prev_clock_raw = now;
670 rq->clock += delta_ns;
671 spin_unlock(&rq->lock);
673 EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
676 * resched_task - mark a task 'to be rescheduled now'.
678 * On UP this means the setting of the need_resched flag, on SMP it
679 * might also involve a cross-CPU call to trigger the scheduler on
680 * the target CPU.
682 #ifdef CONFIG_SMP
684 #ifndef tsk_is_polling
685 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
686 #endif
688 static void resched_task(struct task_struct *p)
690 int cpu;
692 assert_spin_locked(&task_rq(p)->lock);
694 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
695 return;
697 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
699 cpu = task_cpu(p);
700 if (cpu == smp_processor_id())
701 return;
703 /* NEED_RESCHED must be visible before we test polling */
704 smp_mb();
705 if (!tsk_is_polling(p))
706 smp_send_reschedule(cpu);
709 static void resched_cpu(int cpu)
711 struct rq *rq = cpu_rq(cpu);
712 unsigned long flags;
714 if (!spin_trylock_irqsave(&rq->lock, flags))
715 return;
716 resched_task(cpu_curr(cpu));
717 spin_unlock_irqrestore(&rq->lock, flags);
719 #else
720 static inline void resched_task(struct task_struct *p)
722 assert_spin_locked(&task_rq(p)->lock);
723 set_tsk_need_resched(p);
725 #endif
727 #if BITS_PER_LONG == 32
728 # define WMULT_CONST (~0UL)
729 #else
730 # define WMULT_CONST (1UL << 32)
731 #endif
733 #define WMULT_SHIFT 32
736 * Shift right and round:
738 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
740 static unsigned long
741 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
742 struct load_weight *lw)
744 u64 tmp;
746 if (unlikely(!lw->inv_weight))
747 lw->inv_weight = (WMULT_CONST - lw->weight/2) / lw->weight + 1;
749 tmp = (u64)delta_exec * weight;
751 * Check whether we'd overflow the 64-bit multiplication:
753 if (unlikely(tmp > WMULT_CONST))
754 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
755 WMULT_SHIFT/2);
756 else
757 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
759 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
762 static inline unsigned long
763 calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
765 return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
768 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
770 lw->weight += inc;
773 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
775 lw->weight -= dec;
779 * To aid in avoiding the subversion of "niceness" due to uneven distribution
780 * of tasks with abnormal "nice" values across CPUs the contribution that
781 * each task makes to its run queue's load is weighted according to its
782 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
783 * scaled version of the new time slice allocation that they receive on time
784 * slice expiry etc.
787 #define WEIGHT_IDLEPRIO 2
788 #define WMULT_IDLEPRIO (1 << 31)
791 * Nice levels are multiplicative, with a gentle 10% change for every
792 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
793 * nice 1, it will get ~10% less CPU time than another CPU-bound task
794 * that remained on nice 0.
796 * The "10% effect" is relative and cumulative: from _any_ nice level,
797 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
798 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
799 * If a task goes up by ~10% and another task goes down by ~10% then
800 * the relative distance between them is ~25%.)
802 static const int prio_to_weight[40] = {
803 /* -20 */ 88761, 71755, 56483, 46273, 36291,
804 /* -15 */ 29154, 23254, 18705, 14949, 11916,
805 /* -10 */ 9548, 7620, 6100, 4904, 3906,
806 /* -5 */ 3121, 2501, 1991, 1586, 1277,
807 /* 0 */ 1024, 820, 655, 526, 423,
808 /* 5 */ 335, 272, 215, 172, 137,
809 /* 10 */ 110, 87, 70, 56, 45,
810 /* 15 */ 36, 29, 23, 18, 15,
814 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
816 * In cases where the weight does not change often, we can use the
817 * precalculated inverse to speed up arithmetics by turning divisions
818 * into multiplications:
820 static const u32 prio_to_wmult[40] = {
821 /* -20 */ 48388, 59856, 76040, 92818, 118348,
822 /* -15 */ 147320, 184698, 229616, 287308, 360437,
823 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
824 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
825 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
826 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
827 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
828 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
831 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
834 * runqueue iterator, to support SMP load-balancing between different
835 * scheduling classes, without having to expose their internal data
836 * structures to the load-balancing proper:
838 struct rq_iterator {
839 void *arg;
840 struct task_struct *(*start)(void *);
841 struct task_struct *(*next)(void *);
844 #ifdef CONFIG_SMP
845 static unsigned long
846 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
847 unsigned long max_load_move, struct sched_domain *sd,
848 enum cpu_idle_type idle, int *all_pinned,
849 int *this_best_prio, struct rq_iterator *iterator);
851 static int
852 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
853 struct sched_domain *sd, enum cpu_idle_type idle,
854 struct rq_iterator *iterator);
855 #endif
857 #include "sched_stats.h"
858 #include "sched_idletask.c"
859 #include "sched_fair.c"
860 #include "sched_rt.c"
861 #ifdef CONFIG_SCHED_DEBUG
862 # include "sched_debug.c"
863 #endif
865 #define sched_class_highest (&rt_sched_class)
868 * Update delta_exec, delta_fair fields for rq.
870 * delta_fair clock advances at a rate inversely proportional to
871 * total load (rq->load.weight) on the runqueue, while
872 * delta_exec advances at the same rate as wall-clock (provided
873 * cpu is not idle).
875 * delta_exec / delta_fair is a measure of the (smoothened) load on this
876 * runqueue over any given interval. This (smoothened) load is used
877 * during load balance.
879 * This function is called /before/ updating rq->load
880 * and when switching tasks.
882 static inline void inc_load(struct rq *rq, const struct task_struct *p)
884 update_load_add(&rq->load, p->se.load.weight);
887 static inline void dec_load(struct rq *rq, const struct task_struct *p)
889 update_load_sub(&rq->load, p->se.load.weight);
892 static void inc_nr_running(struct task_struct *p, struct rq *rq)
894 rq->nr_running++;
895 inc_load(rq, p);
898 static void dec_nr_running(struct task_struct *p, struct rq *rq)
900 rq->nr_running--;
901 dec_load(rq, p);
904 static void set_load_weight(struct task_struct *p)
906 if (task_has_rt_policy(p)) {
907 p->se.load.weight = prio_to_weight[0] * 2;
908 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
909 return;
913 * SCHED_IDLE tasks get minimal weight:
915 if (p->policy == SCHED_IDLE) {
916 p->se.load.weight = WEIGHT_IDLEPRIO;
917 p->se.load.inv_weight = WMULT_IDLEPRIO;
918 return;
921 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
922 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
925 static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
927 sched_info_queued(p);
928 p->sched_class->enqueue_task(rq, p, wakeup);
929 p->se.on_rq = 1;
932 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
934 p->sched_class->dequeue_task(rq, p, sleep);
935 p->se.on_rq = 0;
939 * __normal_prio - return the priority that is based on the static prio
941 static inline int __normal_prio(struct task_struct *p)
943 return p->static_prio;
947 * Calculate the expected normal priority: i.e. priority
948 * without taking RT-inheritance into account. Might be
949 * boosted by interactivity modifiers. Changes upon fork,
950 * setprio syscalls, and whenever the interactivity
951 * estimator recalculates.
953 static inline int normal_prio(struct task_struct *p)
955 int prio;
957 if (task_has_rt_policy(p))
958 prio = MAX_RT_PRIO-1 - p->rt_priority;
959 else
960 prio = __normal_prio(p);
961 return prio;
965 * Calculate the current priority, i.e. the priority
966 * taken into account by the scheduler. This value might
967 * be boosted by RT tasks, or might be boosted by
968 * interactivity modifiers. Will be RT if the task got
969 * RT-boosted. If not then it returns p->normal_prio.
971 static int effective_prio(struct task_struct *p)
973 p->normal_prio = normal_prio(p);
975 * If we are RT tasks or we were boosted to RT priority,
976 * keep the priority unchanged. Otherwise, update priority
977 * to the normal priority:
979 if (!rt_prio(p->prio))
980 return p->normal_prio;
981 return p->prio;
985 * activate_task - move a task to the runqueue.
987 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
989 if (is_task_loadavg(p))
990 rq->nr_uninterruptible--;
992 enqueue_task(rq, p, wakeup);
993 inc_nr_running(p, rq);
997 * deactivate_task - remove a task from the runqueue.
999 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1001 if (is_task_loadavg(p))
1002 rq->nr_uninterruptible++;
1004 dequeue_task(rq, p, sleep);
1005 dec_nr_running(p, rq);
1009 * task_curr - is this task currently executing on a CPU?
1010 * @p: the task in question.
1012 inline int task_curr(const struct task_struct *p)
1014 return cpu_curr(task_cpu(p)) == p;
1017 /* Used instead of source_load when we know the type == 0 */
1018 unsigned long weighted_cpuload(const int cpu)
1020 return cpu_rq(cpu)->load.weight;
1023 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1025 #ifdef CONFIG_SMP
1026 task_thread_info(p)->cpu = cpu;
1027 #endif
1028 set_task_cfs_rq(p);
1031 #ifdef CONFIG_SMP
1034 * Is this task likely cache-hot:
1036 static inline int
1037 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1039 s64 delta;
1041 if (p->sched_class != &fair_sched_class)
1042 return 0;
1044 if (sysctl_sched_migration_cost == -1)
1045 return 1;
1046 if (sysctl_sched_migration_cost == 0)
1047 return 0;
1049 delta = now - p->se.exec_start;
1051 return delta < (s64)sysctl_sched_migration_cost;
1055 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1057 int old_cpu = task_cpu(p);
1058 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1059 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1060 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1061 u64 clock_offset;
1063 clock_offset = old_rq->clock - new_rq->clock;
1065 #ifdef CONFIG_SCHEDSTATS
1066 if (p->se.wait_start)
1067 p->se.wait_start -= clock_offset;
1068 if (p->se.sleep_start)
1069 p->se.sleep_start -= clock_offset;
1070 if (p->se.block_start)
1071 p->se.block_start -= clock_offset;
1072 if (old_cpu != new_cpu) {
1073 schedstat_inc(p, se.nr_migrations);
1074 if (task_hot(p, old_rq->clock, NULL))
1075 schedstat_inc(p, se.nr_forced2_migrations);
1077 #endif
1078 p->se.vruntime -= old_cfsrq->min_vruntime -
1079 new_cfsrq->min_vruntime;
1081 __set_task_cpu(p, new_cpu);
1084 struct migration_req {
1085 struct list_head list;
1087 struct task_struct *task;
1088 int dest_cpu;
1090 struct completion done;
1094 * The task's runqueue lock must be held.
1095 * Returns true if you have to wait for migration thread.
1097 static int
1098 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1100 struct rq *rq = task_rq(p);
1103 * If the task is not on a runqueue (and not running), then
1104 * it is sufficient to simply update the task's cpu field.
1106 if (!p->se.on_rq && !task_running(rq, p)) {
1107 set_task_cpu(p, dest_cpu);
1108 return 0;
1111 init_completion(&req->done);
1112 req->task = p;
1113 req->dest_cpu = dest_cpu;
1114 list_add(&req->list, &rq->migration_queue);
1116 return 1;
1120 * wait_task_inactive - wait for a thread to unschedule.
1122 * The caller must ensure that the task *will* unschedule sometime soon,
1123 * else this function might spin for a *long* time. This function can't
1124 * be called with interrupts off, or it may introduce deadlock with
1125 * smp_call_function() if an IPI is sent by the same process we are
1126 * waiting to become inactive.
1128 void wait_task_inactive(struct task_struct *p)
1130 unsigned long flags;
1131 int running, on_rq;
1132 struct rq *rq;
1134 for (;;) {
1136 * We do the initial early heuristics without holding
1137 * any task-queue locks at all. We'll only try to get
1138 * the runqueue lock when things look like they will
1139 * work out!
1141 rq = task_rq(p);
1144 * If the task is actively running on another CPU
1145 * still, just relax and busy-wait without holding
1146 * any locks.
1148 * NOTE! Since we don't hold any locks, it's not
1149 * even sure that "rq" stays as the right runqueue!
1150 * But we don't care, since "task_running()" will
1151 * return false if the runqueue has changed and p
1152 * is actually now running somewhere else!
1154 while (task_running(rq, p))
1155 cpu_relax();
1158 * Ok, time to look more closely! We need the rq
1159 * lock now, to be *sure*. If we're wrong, we'll
1160 * just go back and repeat.
1162 rq = task_rq_lock(p, &flags);
1163 running = task_running(rq, p);
1164 on_rq = p->se.on_rq;
1165 task_rq_unlock(rq, &flags);
1168 * Was it really running after all now that we
1169 * checked with the proper locks actually held?
1171 * Oops. Go back and try again..
1173 if (unlikely(running)) {
1174 cpu_relax();
1175 continue;
1179 * It's not enough that it's not actively running,
1180 * it must be off the runqueue _entirely_, and not
1181 * preempted!
1183 * So if it wa still runnable (but just not actively
1184 * running right now), it's preempted, and we should
1185 * yield - it could be a while.
1187 if (unlikely(on_rq)) {
1188 schedule_timeout_uninterruptible(1);
1189 continue;
1193 * Ahh, all good. It wasn't running, and it wasn't
1194 * runnable, which means that it will never become
1195 * running in the future either. We're all done!
1197 break;
1201 /***
1202 * kick_process - kick a running thread to enter/exit the kernel
1203 * @p: the to-be-kicked thread
1205 * Cause a process which is running on another CPU to enter
1206 * kernel-mode, without any delay. (to get signals handled.)
1208 * NOTE: this function doesnt have to take the runqueue lock,
1209 * because all it wants to ensure is that the remote task enters
1210 * the kernel. If the IPI races and the task has been migrated
1211 * to another CPU then no harm is done and the purpose has been
1212 * achieved as well.
1214 void kick_process(struct task_struct *p)
1216 int cpu;
1218 preempt_disable();
1219 cpu = task_cpu(p);
1220 if ((cpu != smp_processor_id()) && task_curr(p))
1221 smp_send_reschedule(cpu);
1222 preempt_enable();
1226 * Return a low guess at the load of a migration-source cpu weighted
1227 * according to the scheduling class and "nice" value.
1229 * We want to under-estimate the load of migration sources, to
1230 * balance conservatively.
1232 static unsigned long source_load(int cpu, int type)
1234 struct rq *rq = cpu_rq(cpu);
1235 unsigned long total = weighted_cpuload(cpu);
1237 if (type == 0)
1238 return total;
1240 return min(rq->cpu_load[type-1], total);
1244 * Return a high guess at the load of a migration-target cpu weighted
1245 * according to the scheduling class and "nice" value.
1247 static unsigned long target_load(int cpu, int type)
1249 struct rq *rq = cpu_rq(cpu);
1250 unsigned long total = weighted_cpuload(cpu);
1252 if (type == 0)
1253 return total;
1255 return max(rq->cpu_load[type-1], total);
1259 * Return the average load per task on the cpu's run queue
1261 static inline unsigned long cpu_avg_load_per_task(int cpu)
1263 struct rq *rq = cpu_rq(cpu);
1264 unsigned long total = weighted_cpuload(cpu);
1265 unsigned long n = rq->nr_running;
1267 return n ? total / n : SCHED_LOAD_SCALE;
1271 * find_idlest_group finds and returns the least busy CPU group within the
1272 * domain.
1274 static struct sched_group *
1275 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1277 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1278 unsigned long min_load = ULONG_MAX, this_load = 0;
1279 int load_idx = sd->forkexec_idx;
1280 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1282 do {
1283 unsigned long load, avg_load;
1284 int local_group;
1285 int i;
1287 /* Skip over this group if it has no CPUs allowed */
1288 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1289 continue;
1291 local_group = cpu_isset(this_cpu, group->cpumask);
1293 /* Tally up the load of all CPUs in the group */
1294 avg_load = 0;
1296 for_each_cpu_mask(i, group->cpumask) {
1297 /* Bias balancing toward cpus of our domain */
1298 if (local_group)
1299 load = source_load(i, load_idx);
1300 else
1301 load = target_load(i, load_idx);
1303 avg_load += load;
1306 /* Adjust by relative CPU power of the group */
1307 avg_load = sg_div_cpu_power(group,
1308 avg_load * SCHED_LOAD_SCALE);
1310 if (local_group) {
1311 this_load = avg_load;
1312 this = group;
1313 } else if (avg_load < min_load) {
1314 min_load = avg_load;
1315 idlest = group;
1317 } while (group = group->next, group != sd->groups);
1319 if (!idlest || 100*this_load < imbalance*min_load)
1320 return NULL;
1321 return idlest;
1325 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1327 static int
1328 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1330 cpumask_t tmp;
1331 unsigned long load, min_load = ULONG_MAX;
1332 int idlest = -1;
1333 int i;
1335 /* Traverse only the allowed CPUs */
1336 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1338 for_each_cpu_mask(i, tmp) {
1339 load = weighted_cpuload(i);
1341 if (load < min_load || (load == min_load && i == this_cpu)) {
1342 min_load = load;
1343 idlest = i;
1347 return idlest;
1351 * sched_balance_self: balance the current task (running on cpu) in domains
1352 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1353 * SD_BALANCE_EXEC.
1355 * Balance, ie. select the least loaded group.
1357 * Returns the target CPU number, or the same CPU if no balancing is needed.
1359 * preempt must be disabled.
1361 static int sched_balance_self(int cpu, int flag)
1363 struct task_struct *t = current;
1364 struct sched_domain *tmp, *sd = NULL;
1366 for_each_domain(cpu, tmp) {
1368 * If power savings logic is enabled for a domain, stop there.
1370 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1371 break;
1372 if (tmp->flags & flag)
1373 sd = tmp;
1376 while (sd) {
1377 cpumask_t span;
1378 struct sched_group *group;
1379 int new_cpu, weight;
1381 if (!(sd->flags & flag)) {
1382 sd = sd->child;
1383 continue;
1386 span = sd->span;
1387 group = find_idlest_group(sd, t, cpu);
1388 if (!group) {
1389 sd = sd->child;
1390 continue;
1393 new_cpu = find_idlest_cpu(group, t, cpu);
1394 if (new_cpu == -1 || new_cpu == cpu) {
1395 /* Now try balancing at a lower domain level of cpu */
1396 sd = sd->child;
1397 continue;
1400 /* Now try balancing at a lower domain level of new_cpu */
1401 cpu = new_cpu;
1402 sd = NULL;
1403 weight = cpus_weight(span);
1404 for_each_domain(cpu, tmp) {
1405 if (weight <= cpus_weight(tmp->span))
1406 break;
1407 if (tmp->flags & flag)
1408 sd = tmp;
1410 /* while loop will break here if sd == NULL */
1413 return cpu;
1416 #endif /* CONFIG_SMP */
1419 * wake_idle() will wake a task on an idle cpu if task->cpu is
1420 * not idle and an idle cpu is available. The span of cpus to
1421 * search starts with cpus closest then further out as needed,
1422 * so we always favor a closer, idle cpu.
1424 * Returns the CPU we should wake onto.
1426 #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1427 static int wake_idle(int cpu, struct task_struct *p)
1429 cpumask_t tmp;
1430 struct sched_domain *sd;
1431 int i;
1434 * If it is idle, then it is the best cpu to run this task.
1436 * This cpu is also the best, if it has more than one task already.
1437 * Siblings must be also busy(in most cases) as they didn't already
1438 * pickup the extra load from this cpu and hence we need not check
1439 * sibling runqueue info. This will avoid the checks and cache miss
1440 * penalities associated with that.
1442 if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
1443 return cpu;
1445 for_each_domain(cpu, sd) {
1446 if (sd->flags & SD_WAKE_IDLE) {
1447 cpus_and(tmp, sd->span, p->cpus_allowed);
1448 for_each_cpu_mask(i, tmp) {
1449 if (idle_cpu(i)) {
1450 if (i != task_cpu(p)) {
1451 schedstat_inc(p,
1452 se.nr_wakeups_idle);
1454 return i;
1457 } else {
1458 break;
1461 return cpu;
1463 #else
1464 static inline int wake_idle(int cpu, struct task_struct *p)
1466 return cpu;
1468 #endif
1470 /***
1471 * try_to_wake_up - wake up a thread
1472 * @p: the to-be-woken-up thread
1473 * @state: the mask of task states that can be woken
1474 * @sync: do a synchronous wakeup?
1476 * Put it on the run-queue if it's not already there. The "current"
1477 * thread is always on the run-queue (except when the actual
1478 * re-schedule is in progress), and as such you're allowed to do
1479 * the simpler "current->state = TASK_RUNNING" to mark yourself
1480 * runnable without the overhead of this.
1482 * returns failure only if the task is already active.
1484 static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1486 int cpu, orig_cpu, this_cpu, success = 0;
1487 unsigned long flags;
1488 long old_state;
1489 struct rq *rq;
1490 #ifdef CONFIG_SMP
1491 struct sched_domain *sd, *this_sd = NULL;
1492 unsigned long load, this_load;
1493 int new_cpu;
1494 #endif
1496 rq = task_rq_lock(p, &flags);
1497 old_state = p->state;
1498 if (!(old_state & state))
1499 goto out;
1501 if (p->se.on_rq)
1502 goto out_running;
1504 cpu = task_cpu(p);
1505 orig_cpu = cpu;
1506 this_cpu = smp_processor_id();
1508 #ifdef CONFIG_SMP
1509 if (unlikely(task_running(rq, p)))
1510 goto out_activate;
1512 new_cpu = cpu;
1514 schedstat_inc(rq, ttwu_count);
1515 if (cpu == this_cpu) {
1516 schedstat_inc(rq, ttwu_local);
1517 goto out_set_cpu;
1520 for_each_domain(this_cpu, sd) {
1521 if (cpu_isset(cpu, sd->span)) {
1522 schedstat_inc(sd, ttwu_wake_remote);
1523 this_sd = sd;
1524 break;
1528 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1529 goto out_set_cpu;
1532 * Check for affine wakeup and passive balancing possibilities.
1534 if (this_sd) {
1535 int idx = this_sd->wake_idx;
1536 unsigned int imbalance;
1538 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1540 load = source_load(cpu, idx);
1541 this_load = target_load(this_cpu, idx);
1543 new_cpu = this_cpu; /* Wake to this CPU if we can */
1545 if (this_sd->flags & SD_WAKE_AFFINE) {
1546 unsigned long tl = this_load;
1547 unsigned long tl_per_task;
1550 * Attract cache-cold tasks on sync wakeups:
1552 if (sync && !task_hot(p, rq->clock, this_sd))
1553 goto out_set_cpu;
1555 schedstat_inc(p, se.nr_wakeups_affine_attempts);
1556 tl_per_task = cpu_avg_load_per_task(this_cpu);
1559 * If sync wakeup then subtract the (maximum possible)
1560 * effect of the currently running task from the load
1561 * of the current CPU:
1563 if (sync)
1564 tl -= current->se.load.weight;
1566 if ((tl <= load &&
1567 tl + target_load(cpu, idx) <= tl_per_task) ||
1568 100*(tl + p->se.load.weight) <= imbalance*load) {
1570 * This domain has SD_WAKE_AFFINE and
1571 * p is cache cold in this domain, and
1572 * there is no bad imbalance.
1574 schedstat_inc(this_sd, ttwu_move_affine);
1575 schedstat_inc(p, se.nr_wakeups_affine);
1576 goto out_set_cpu;
1581 * Start passive balancing when half the imbalance_pct
1582 * limit is reached.
1584 if (this_sd->flags & SD_WAKE_BALANCE) {
1585 if (imbalance*this_load <= 100*load) {
1586 schedstat_inc(this_sd, ttwu_move_balance);
1587 schedstat_inc(p, se.nr_wakeups_passive);
1588 goto out_set_cpu;
1593 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1594 out_set_cpu:
1595 new_cpu = wake_idle(new_cpu, p);
1596 if (new_cpu != cpu) {
1597 set_task_cpu(p, new_cpu);
1598 task_rq_unlock(rq, &flags);
1599 /* might preempt at this point */
1600 rq = task_rq_lock(p, &flags);
1601 old_state = p->state;
1602 if (!(old_state & state))
1603 goto out;
1604 if (p->se.on_rq)
1605 goto out_running;
1607 this_cpu = smp_processor_id();
1608 cpu = task_cpu(p);
1611 out_activate:
1612 #endif /* CONFIG_SMP */
1613 schedstat_inc(p, se.nr_wakeups);
1614 if (sync)
1615 schedstat_inc(p, se.nr_wakeups_sync);
1616 if (orig_cpu != cpu)
1617 schedstat_inc(p, se.nr_wakeups_migrate);
1618 if (cpu == this_cpu)
1619 schedstat_inc(p, se.nr_wakeups_local);
1620 else
1621 schedstat_inc(p, se.nr_wakeups_remote);
1622 update_rq_clock(rq);
1623 activate_task(rq, p, 1);
1624 check_preempt_curr(rq, p);
1625 success = 1;
1627 out_running:
1628 p->state = TASK_RUNNING;
1629 out:
1630 task_rq_unlock(rq, &flags);
1632 return success;
1635 int fastcall wake_up_process(struct task_struct *p)
1637 return try_to_wake_up(p, TASK_ALL, 0);
1639 EXPORT_SYMBOL(wake_up_process);
1641 int fastcall wake_up_state(struct task_struct *p, unsigned int state)
1643 return try_to_wake_up(p, state, 0);
1647 * Perform scheduler related setup for a newly forked process p.
1648 * p is forked by current.
1650 * __sched_fork() is basic setup used by init_idle() too:
1652 static void __sched_fork(struct task_struct *p)
1654 p->se.exec_start = 0;
1655 p->se.sum_exec_runtime = 0;
1656 p->se.prev_sum_exec_runtime = 0;
1658 #ifdef CONFIG_SCHEDSTATS
1659 p->se.wait_start = 0;
1660 p->se.sum_sleep_runtime = 0;
1661 p->se.sleep_start = 0;
1662 p->se.block_start = 0;
1663 p->se.sleep_max = 0;
1664 p->se.block_max = 0;
1665 p->se.exec_max = 0;
1666 p->se.slice_max = 0;
1667 p->se.wait_max = 0;
1668 #endif
1670 INIT_LIST_HEAD(&p->run_list);
1671 p->se.on_rq = 0;
1673 #ifdef CONFIG_PREEMPT_NOTIFIERS
1674 INIT_HLIST_HEAD(&p->preempt_notifiers);
1675 #endif
1678 * We mark the process as running here, but have not actually
1679 * inserted it onto the runqueue yet. This guarantees that
1680 * nobody will actually run it, and a signal or other external
1681 * event cannot wake it up and insert it on the runqueue either.
1683 p->state = TASK_RUNNING;
1687 * fork()/clone()-time setup:
1689 void sched_fork(struct task_struct *p, int clone_flags)
1691 int cpu = get_cpu();
1693 __sched_fork(p);
1695 #ifdef CONFIG_SMP
1696 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1697 #endif
1698 set_task_cpu(p, cpu);
1701 * Make sure we do not leak PI boosting priority to the child:
1703 p->prio = current->normal_prio;
1704 if (!rt_prio(p->prio))
1705 p->sched_class = &fair_sched_class;
1707 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1708 if (likely(sched_info_on()))
1709 memset(&p->sched_info, 0, sizeof(p->sched_info));
1710 #endif
1711 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1712 p->oncpu = 0;
1713 #endif
1714 #ifdef CONFIG_PREEMPT
1715 /* Want to start with kernel preemption disabled. */
1716 task_thread_info(p)->preempt_count = 1;
1717 #endif
1718 put_cpu();
1722 * wake_up_new_task - wake up a newly created task for the first time.
1724 * This function will do some initial scheduler statistics housekeeping
1725 * that must be done for every newly created context, then puts the task
1726 * on the runqueue and wakes it.
1728 void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1730 unsigned long flags;
1731 struct rq *rq;
1733 rq = task_rq_lock(p, &flags);
1734 BUG_ON(p->state != TASK_RUNNING);
1735 update_rq_clock(rq);
1737 p->prio = effective_prio(p);
1739 if (!p->sched_class->task_new || !current->se.on_rq) {
1740 activate_task(rq, p, 0);
1741 } else {
1743 * Let the scheduling class do new task startup
1744 * management (if any):
1746 p->sched_class->task_new(rq, p);
1747 inc_nr_running(p, rq);
1749 check_preempt_curr(rq, p);
1750 task_rq_unlock(rq, &flags);
1753 #ifdef CONFIG_PREEMPT_NOTIFIERS
1756 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
1757 * @notifier: notifier struct to register
1759 void preempt_notifier_register(struct preempt_notifier *notifier)
1761 hlist_add_head(&notifier->link, &current->preempt_notifiers);
1763 EXPORT_SYMBOL_GPL(preempt_notifier_register);
1766 * preempt_notifier_unregister - no longer interested in preemption notifications
1767 * @notifier: notifier struct to unregister
1769 * This is safe to call from within a preemption notifier.
1771 void preempt_notifier_unregister(struct preempt_notifier *notifier)
1773 hlist_del(&notifier->link);
1775 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1777 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1779 struct preempt_notifier *notifier;
1780 struct hlist_node *node;
1782 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1783 notifier->ops->sched_in(notifier, raw_smp_processor_id());
1786 static void
1787 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1788 struct task_struct *next)
1790 struct preempt_notifier *notifier;
1791 struct hlist_node *node;
1793 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1794 notifier->ops->sched_out(notifier, next);
1797 #else
1799 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1803 static void
1804 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1805 struct task_struct *next)
1809 #endif
1812 * prepare_task_switch - prepare to switch tasks
1813 * @rq: the runqueue preparing to switch
1814 * @prev: the current task that is being switched out
1815 * @next: the task we are going to switch to.
1817 * This is called with the rq lock held and interrupts off. It must
1818 * be paired with a subsequent finish_task_switch after the context
1819 * switch.
1821 * prepare_task_switch sets up locking and calls architecture specific
1822 * hooks.
1824 static inline void
1825 prepare_task_switch(struct rq *rq, struct task_struct *prev,
1826 struct task_struct *next)
1828 fire_sched_out_preempt_notifiers(prev, next);
1829 prepare_lock_switch(rq, next);
1830 prepare_arch_switch(next);
1834 * finish_task_switch - clean up after a task-switch
1835 * @rq: runqueue associated with task-switch
1836 * @prev: the thread we just switched away from.
1838 * finish_task_switch must be called after the context switch, paired
1839 * with a prepare_task_switch call before the context switch.
1840 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1841 * and do any other architecture-specific cleanup actions.
1843 * Note that we may have delayed dropping an mm in context_switch(). If
1844 * so, we finish that here outside of the runqueue lock. (Doing it
1845 * with the lock held can cause deadlocks; see schedule() for
1846 * details.)
1848 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1849 __releases(rq->lock)
1851 struct mm_struct *mm = rq->prev_mm;
1852 long prev_state;
1854 rq->prev_mm = NULL;
1857 * A task struct has one reference for the use as "current".
1858 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
1859 * schedule one last time. The schedule call will never return, and
1860 * the scheduled task must drop that reference.
1861 * The test for TASK_DEAD must occur while the runqueue locks are
1862 * still held, otherwise prev could be scheduled on another cpu, die
1863 * there before we look at prev->state, and then the reference would
1864 * be dropped twice.
1865 * Manfred Spraul <manfred@colorfullife.com>
1867 prev_state = prev->state;
1868 finish_arch_switch(prev);
1869 finish_lock_switch(rq, prev);
1870 fire_sched_in_preempt_notifiers(current);
1871 if (mm)
1872 mmdrop(mm);
1873 if (unlikely(prev_state == TASK_DEAD)) {
1875 * Remove function-return probe instances associated with this
1876 * task and put them back on the free list.
1878 kprobe_flush_task(prev);
1879 put_task_struct(prev);
1884 * schedule_tail - first thing a freshly forked thread must call.
1885 * @prev: the thread we just switched away from.
1887 asmlinkage void schedule_tail(struct task_struct *prev)
1888 __releases(rq->lock)
1890 struct rq *rq = this_rq();
1892 finish_task_switch(rq, prev);
1893 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1894 /* In this case, finish_task_switch does not reenable preemption */
1895 preempt_enable();
1896 #endif
1897 if (current->set_child_tid)
1898 put_user(task_pid_vnr(current), current->set_child_tid);
1902 * context_switch - switch to the new MM and the new
1903 * thread's register state.
1905 static inline void
1906 context_switch(struct rq *rq, struct task_struct *prev,
1907 struct task_struct *next)
1909 struct mm_struct *mm, *oldmm;
1911 prepare_task_switch(rq, prev, next);
1912 mm = next->mm;
1913 oldmm = prev->active_mm;
1915 * For paravirt, this is coupled with an exit in switch_to to
1916 * combine the page table reload and the switch backend into
1917 * one hypercall.
1919 arch_enter_lazy_cpu_mode();
1921 if (unlikely(!mm)) {
1922 next->active_mm = oldmm;
1923 atomic_inc(&oldmm->mm_count);
1924 enter_lazy_tlb(oldmm, next);
1925 } else
1926 switch_mm(oldmm, mm, next);
1928 if (unlikely(!prev->mm)) {
1929 prev->active_mm = NULL;
1930 rq->prev_mm = oldmm;
1933 * Since the runqueue lock will be released by the next
1934 * task (which is an invalid locking op but in the case
1935 * of the scheduler it's an obvious special-case), so we
1936 * do an early lockdep release here:
1938 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
1939 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1940 #endif
1942 /* Here we just switch the register state and the stack. */
1943 switch_to(prev, next, prev);
1945 barrier();
1947 * this_rq must be evaluated again because prev may have moved
1948 * CPUs since it called schedule(), thus the 'rq' on its stack
1949 * frame will be invalid.
1951 finish_task_switch(this_rq(), prev);
1955 * nr_running, nr_uninterruptible and nr_context_switches:
1957 * externally visible scheduler statistics: current number of runnable
1958 * threads, current number of uninterruptible-sleeping threads, total
1959 * number of context switches performed since bootup.
1961 unsigned long nr_running(void)
1963 unsigned long i, sum = 0;
1965 for_each_online_cpu(i)
1966 sum += cpu_rq(i)->nr_running;
1968 return sum;
1971 unsigned long nr_uninterruptible(void)
1973 unsigned long i, sum = 0;
1975 for_each_possible_cpu(i)
1976 sum += cpu_rq(i)->nr_uninterruptible;
1979 * Since we read the counters lockless, it might be slightly
1980 * inaccurate. Do not allow it to go below zero though:
1982 if (unlikely((long)sum < 0))
1983 sum = 0;
1985 return sum;
1988 unsigned long long nr_context_switches(void)
1990 int i;
1991 unsigned long long sum = 0;
1993 for_each_possible_cpu(i)
1994 sum += cpu_rq(i)->nr_switches;
1996 return sum;
1999 unsigned long nr_iowait(void)
2001 unsigned long i, sum = 0;
2003 for_each_possible_cpu(i)
2004 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2006 return sum;
2009 unsigned long nr_active(void)
2011 unsigned long i, running = 0, uninterruptible = 0;
2013 for_each_online_cpu(i) {
2014 running += cpu_rq(i)->nr_running;
2015 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2018 if (unlikely((long)uninterruptible < 0))
2019 uninterruptible = 0;
2021 return running + uninterruptible;
2025 * Update rq->cpu_load[] statistics. This function is usually called every
2026 * scheduler tick (TICK_NSEC).
2028 static void update_cpu_load(struct rq *this_rq)
2030 unsigned long this_load = this_rq->load.weight;
2031 int i, scale;
2033 this_rq->nr_load_updates++;
2035 /* Update our load: */
2036 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2037 unsigned long old_load, new_load;
2039 /* scale is effectively 1 << i now, and >> i divides by scale */
2041 old_load = this_rq->cpu_load[i];
2042 new_load = this_load;
2044 * Round up the averaging division if load is increasing. This
2045 * prevents us from getting stuck on 9 if the load is 10, for
2046 * example.
2048 if (new_load > old_load)
2049 new_load += scale-1;
2050 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2054 #ifdef CONFIG_SMP
2057 * double_rq_lock - safely lock two runqueues
2059 * Note this does not disable interrupts like task_rq_lock,
2060 * you need to do so manually before calling.
2062 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
2063 __acquires(rq1->lock)
2064 __acquires(rq2->lock)
2066 BUG_ON(!irqs_disabled());
2067 if (rq1 == rq2) {
2068 spin_lock(&rq1->lock);
2069 __acquire(rq2->lock); /* Fake it out ;) */
2070 } else {
2071 if (rq1 < rq2) {
2072 spin_lock(&rq1->lock);
2073 spin_lock(&rq2->lock);
2074 } else {
2075 spin_lock(&rq2->lock);
2076 spin_lock(&rq1->lock);
2079 update_rq_clock(rq1);
2080 update_rq_clock(rq2);
2084 * double_rq_unlock - safely unlock two runqueues
2086 * Note this does not restore interrupts like task_rq_unlock,
2087 * you need to do so manually after calling.
2089 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2090 __releases(rq1->lock)
2091 __releases(rq2->lock)
2093 spin_unlock(&rq1->lock);
2094 if (rq1 != rq2)
2095 spin_unlock(&rq2->lock);
2096 else
2097 __release(rq2->lock);
2101 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2103 static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
2104 __releases(this_rq->lock)
2105 __acquires(busiest->lock)
2106 __acquires(this_rq->lock)
2108 if (unlikely(!irqs_disabled())) {
2109 /* printk() doesn't work good under rq->lock */
2110 spin_unlock(&this_rq->lock);
2111 BUG_ON(1);
2113 if (unlikely(!spin_trylock(&busiest->lock))) {
2114 if (busiest < this_rq) {
2115 spin_unlock(&this_rq->lock);
2116 spin_lock(&busiest->lock);
2117 spin_lock(&this_rq->lock);
2118 } else
2119 spin_lock(&busiest->lock);
2124 * If dest_cpu is allowed for this process, migrate the task to it.
2125 * This is accomplished by forcing the cpu_allowed mask to only
2126 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2127 * the cpu_allowed mask is restored.
2129 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
2131 struct migration_req req;
2132 unsigned long flags;
2133 struct rq *rq;
2135 rq = task_rq_lock(p, &flags);
2136 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2137 || unlikely(cpu_is_offline(dest_cpu)))
2138 goto out;
2140 /* force the process onto the specified CPU */
2141 if (migrate_task(p, dest_cpu, &req)) {
2142 /* Need to wait for migration thread (might exit: take ref). */
2143 struct task_struct *mt = rq->migration_thread;
2145 get_task_struct(mt);
2146 task_rq_unlock(rq, &flags);
2147 wake_up_process(mt);
2148 put_task_struct(mt);
2149 wait_for_completion(&req.done);
2151 return;
2153 out:
2154 task_rq_unlock(rq, &flags);
2158 * sched_exec - execve() is a valuable balancing opportunity, because at
2159 * this point the task has the smallest effective memory and cache footprint.
2161 void sched_exec(void)
2163 int new_cpu, this_cpu = get_cpu();
2164 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
2165 put_cpu();
2166 if (new_cpu != this_cpu)
2167 sched_migrate_task(current, new_cpu);
2171 * pull_task - move a task from a remote runqueue to the local runqueue.
2172 * Both runqueues must be locked.
2174 static void pull_task(struct rq *src_rq, struct task_struct *p,
2175 struct rq *this_rq, int this_cpu)
2177 deactivate_task(src_rq, p, 0);
2178 set_task_cpu(p, this_cpu);
2179 activate_task(this_rq, p, 0);
2181 * Note that idle threads have a prio of MAX_PRIO, for this test
2182 * to be always true for them.
2184 check_preempt_curr(this_rq, p);
2188 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2190 static
2191 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
2192 struct sched_domain *sd, enum cpu_idle_type idle,
2193 int *all_pinned)
2196 * We do not migrate tasks that are:
2197 * 1) running (obviously), or
2198 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2199 * 3) are cache-hot on their current CPU.
2201 if (!cpu_isset(this_cpu, p->cpus_allowed)) {
2202 schedstat_inc(p, se.nr_failed_migrations_affine);
2203 return 0;
2205 *all_pinned = 0;
2207 if (task_running(rq, p)) {
2208 schedstat_inc(p, se.nr_failed_migrations_running);
2209 return 0;
2213 * Aggressive migration if:
2214 * 1) task is cache cold, or
2215 * 2) too many balance attempts have failed.
2218 if (!task_hot(p, rq->clock, sd) ||
2219 sd->nr_balance_failed > sd->cache_nice_tries) {
2220 #ifdef CONFIG_SCHEDSTATS
2221 if (task_hot(p, rq->clock, sd)) {
2222 schedstat_inc(sd, lb_hot_gained[idle]);
2223 schedstat_inc(p, se.nr_forced_migrations);
2225 #endif
2226 return 1;
2229 if (task_hot(p, rq->clock, sd)) {
2230 schedstat_inc(p, se.nr_failed_migrations_hot);
2231 return 0;
2233 return 1;
2236 static unsigned long
2237 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2238 unsigned long max_load_move, struct sched_domain *sd,
2239 enum cpu_idle_type idle, int *all_pinned,
2240 int *this_best_prio, struct rq_iterator *iterator)
2242 int loops = 0, pulled = 0, pinned = 0, skip_for_load;
2243 struct task_struct *p;
2244 long rem_load_move = max_load_move;
2246 if (max_load_move == 0)
2247 goto out;
2249 pinned = 1;
2252 * Start the load-balancing iterator:
2254 p = iterator->start(iterator->arg);
2255 next:
2256 if (!p || loops++ > sysctl_sched_nr_migrate)
2257 goto out;
2259 * To help distribute high priority tasks across CPUs we don't
2260 * skip a task if it will be the highest priority task (i.e. smallest
2261 * prio value) on its new queue regardless of its load weight
2263 skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
2264 SCHED_LOAD_SCALE_FUZZ;
2265 if ((skip_for_load && p->prio >= *this_best_prio) ||
2266 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2267 p = iterator->next(iterator->arg);
2268 goto next;
2271 pull_task(busiest, p, this_rq, this_cpu);
2272 pulled++;
2273 rem_load_move -= p->se.load.weight;
2276 * We only want to steal up to the prescribed amount of weighted load.
2278 if (rem_load_move > 0) {
2279 if (p->prio < *this_best_prio)
2280 *this_best_prio = p->prio;
2281 p = iterator->next(iterator->arg);
2282 goto next;
2284 out:
2286 * Right now, this is one of only two places pull_task() is called,
2287 * so we can safely collect pull_task() stats here rather than
2288 * inside pull_task().
2290 schedstat_add(sd, lb_gained[idle], pulled);
2292 if (all_pinned)
2293 *all_pinned = pinned;
2295 return max_load_move - rem_load_move;
2299 * move_tasks tries to move up to max_load_move weighted load from busiest to
2300 * this_rq, as part of a balancing operation within domain "sd".
2301 * Returns 1 if successful and 0 otherwise.
2303 * Called with both runqueues locked.
2305 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2306 unsigned long max_load_move,
2307 struct sched_domain *sd, enum cpu_idle_type idle,
2308 int *all_pinned)
2310 const struct sched_class *class = sched_class_highest;
2311 unsigned long total_load_moved = 0;
2312 int this_best_prio = this_rq->curr->prio;
2314 do {
2315 total_load_moved +=
2316 class->load_balance(this_rq, this_cpu, busiest,
2317 max_load_move - total_load_moved,
2318 sd, idle, all_pinned, &this_best_prio);
2319 class = class->next;
2320 } while (class && max_load_move > total_load_moved);
2322 return total_load_moved > 0;
2325 static int
2326 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2327 struct sched_domain *sd, enum cpu_idle_type idle,
2328 struct rq_iterator *iterator)
2330 struct task_struct *p = iterator->start(iterator->arg);
2331 int pinned = 0;
2333 while (p) {
2334 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2335 pull_task(busiest, p, this_rq, this_cpu);
2337 * Right now, this is only the second place pull_task()
2338 * is called, so we can safely collect pull_task()
2339 * stats here rather than inside pull_task().
2341 schedstat_inc(sd, lb_gained[idle]);
2343 return 1;
2345 p = iterator->next(iterator->arg);
2348 return 0;
2352 * move_one_task tries to move exactly one task from busiest to this_rq, as
2353 * part of active balancing operations within "domain".
2354 * Returns 1 if successful and 0 otherwise.
2356 * Called with both runqueues locked.
2358 static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2359 struct sched_domain *sd, enum cpu_idle_type idle)
2361 const struct sched_class *class;
2363 for (class = sched_class_highest; class; class = class->next)
2364 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
2365 return 1;
2367 return 0;
2371 * find_busiest_group finds and returns the busiest CPU group within the
2372 * domain. It calculates and returns the amount of weighted load which
2373 * should be moved to restore balance via the imbalance parameter.
2375 static struct sched_group *
2376 find_busiest_group(struct sched_domain *sd, int this_cpu,
2377 unsigned long *imbalance, enum cpu_idle_type idle,
2378 int *sd_idle, cpumask_t *cpus, int *balance)
2380 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2381 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
2382 unsigned long max_pull;
2383 unsigned long busiest_load_per_task, busiest_nr_running;
2384 unsigned long this_load_per_task, this_nr_running;
2385 int load_idx, group_imb = 0;
2386 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2387 int power_savings_balance = 1;
2388 unsigned long leader_nr_running = 0, min_load_per_task = 0;
2389 unsigned long min_nr_running = ULONG_MAX;
2390 struct sched_group *group_min = NULL, *group_leader = NULL;
2391 #endif
2393 max_load = this_load = total_load = total_pwr = 0;
2394 busiest_load_per_task = busiest_nr_running = 0;
2395 this_load_per_task = this_nr_running = 0;
2396 if (idle == CPU_NOT_IDLE)
2397 load_idx = sd->busy_idx;
2398 else if (idle == CPU_NEWLY_IDLE)
2399 load_idx = sd->newidle_idx;
2400 else
2401 load_idx = sd->idle_idx;
2403 do {
2404 unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
2405 int local_group;
2406 int i;
2407 int __group_imb = 0;
2408 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2409 unsigned long sum_nr_running, sum_weighted_load;
2411 local_group = cpu_isset(this_cpu, group->cpumask);
2413 if (local_group)
2414 balance_cpu = first_cpu(group->cpumask);
2416 /* Tally up the load of all CPUs in the group */
2417 sum_weighted_load = sum_nr_running = avg_load = 0;
2418 max_cpu_load = 0;
2419 min_cpu_load = ~0UL;
2421 for_each_cpu_mask(i, group->cpumask) {
2422 struct rq *rq;
2424 if (!cpu_isset(i, *cpus))
2425 continue;
2427 rq = cpu_rq(i);
2429 if (*sd_idle && rq->nr_running)
2430 *sd_idle = 0;
2432 /* Bias balancing toward cpus of our domain */
2433 if (local_group) {
2434 if (idle_cpu(i) && !first_idle_cpu) {
2435 first_idle_cpu = 1;
2436 balance_cpu = i;
2439 load = target_load(i, load_idx);
2440 } else {
2441 load = source_load(i, load_idx);
2442 if (load > max_cpu_load)
2443 max_cpu_load = load;
2444 if (min_cpu_load > load)
2445 min_cpu_load = load;
2448 avg_load += load;
2449 sum_nr_running += rq->nr_running;
2450 sum_weighted_load += weighted_cpuload(i);
2454 * First idle cpu or the first cpu(busiest) in this sched group
2455 * is eligible for doing load balancing at this and above
2456 * domains. In the newly idle case, we will allow all the cpu's
2457 * to do the newly idle load balance.
2459 if (idle != CPU_NEWLY_IDLE && local_group &&
2460 balance_cpu != this_cpu && balance) {
2461 *balance = 0;
2462 goto ret;
2465 total_load += avg_load;
2466 total_pwr += group->__cpu_power;
2468 /* Adjust by relative CPU power of the group */
2469 avg_load = sg_div_cpu_power(group,
2470 avg_load * SCHED_LOAD_SCALE);
2472 if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
2473 __group_imb = 1;
2475 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
2477 if (local_group) {
2478 this_load = avg_load;
2479 this = group;
2480 this_nr_running = sum_nr_running;
2481 this_load_per_task = sum_weighted_load;
2482 } else if (avg_load > max_load &&
2483 (sum_nr_running > group_capacity || __group_imb)) {
2484 max_load = avg_load;
2485 busiest = group;
2486 busiest_nr_running = sum_nr_running;
2487 busiest_load_per_task = sum_weighted_load;
2488 group_imb = __group_imb;
2491 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2493 * Busy processors will not participate in power savings
2494 * balance.
2496 if (idle == CPU_NOT_IDLE ||
2497 !(sd->flags & SD_POWERSAVINGS_BALANCE))
2498 goto group_next;
2501 * If the local group is idle or completely loaded
2502 * no need to do power savings balance at this domain
2504 if (local_group && (this_nr_running >= group_capacity ||
2505 !this_nr_running))
2506 power_savings_balance = 0;
2509 * If a group is already running at full capacity or idle,
2510 * don't include that group in power savings calculations
2512 if (!power_savings_balance || sum_nr_running >= group_capacity
2513 || !sum_nr_running)
2514 goto group_next;
2517 * Calculate the group which has the least non-idle load.
2518 * This is the group from where we need to pick up the load
2519 * for saving power
2521 if ((sum_nr_running < min_nr_running) ||
2522 (sum_nr_running == min_nr_running &&
2523 first_cpu(group->cpumask) <
2524 first_cpu(group_min->cpumask))) {
2525 group_min = group;
2526 min_nr_running = sum_nr_running;
2527 min_load_per_task = sum_weighted_load /
2528 sum_nr_running;
2532 * Calculate the group which is almost near its
2533 * capacity but still has some space to pick up some load
2534 * from other group and save more power
2536 if (sum_nr_running <= group_capacity - 1) {
2537 if (sum_nr_running > leader_nr_running ||
2538 (sum_nr_running == leader_nr_running &&
2539 first_cpu(group->cpumask) >
2540 first_cpu(group_leader->cpumask))) {
2541 group_leader = group;
2542 leader_nr_running = sum_nr_running;
2545 group_next:
2546 #endif
2547 group = group->next;
2548 } while (group != sd->groups);
2550 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
2551 goto out_balanced;
2553 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2555 if (this_load >= avg_load ||
2556 100*max_load <= sd->imbalance_pct*this_load)
2557 goto out_balanced;
2559 busiest_load_per_task /= busiest_nr_running;
2560 if (group_imb)
2561 busiest_load_per_task = min(busiest_load_per_task, avg_load);
2564 * We're trying to get all the cpus to the average_load, so we don't
2565 * want to push ourselves above the average load, nor do we wish to
2566 * reduce the max loaded cpu below the average load, as either of these
2567 * actions would just result in more rebalancing later, and ping-pong
2568 * tasks around. Thus we look for the minimum possible imbalance.
2569 * Negative imbalances (*we* are more loaded than anyone else) will
2570 * be counted as no imbalance for these purposes -- we can't fix that
2571 * by pulling tasks to us. Be careful of negative numbers as they'll
2572 * appear as very large values with unsigned longs.
2574 if (max_load <= busiest_load_per_task)
2575 goto out_balanced;
2578 * In the presence of smp nice balancing, certain scenarios can have
2579 * max load less than avg load(as we skip the groups at or below
2580 * its cpu_power, while calculating max_load..)
2582 if (max_load < avg_load) {
2583 *imbalance = 0;
2584 goto small_imbalance;
2587 /* Don't want to pull so many tasks that a group would go idle */
2588 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
2590 /* How much load to actually move to equalise the imbalance */
2591 *imbalance = min(max_pull * busiest->__cpu_power,
2592 (avg_load - this_load) * this->__cpu_power)
2593 / SCHED_LOAD_SCALE;
2596 * if *imbalance is less than the average load per runnable task
2597 * there is no gaurantee that any tasks will be moved so we'll have
2598 * a think about bumping its value to force at least one task to be
2599 * moved
2601 if (*imbalance < busiest_load_per_task) {
2602 unsigned long tmp, pwr_now, pwr_move;
2603 unsigned int imbn;
2605 small_imbalance:
2606 pwr_move = pwr_now = 0;
2607 imbn = 2;
2608 if (this_nr_running) {
2609 this_load_per_task /= this_nr_running;
2610 if (busiest_load_per_task > this_load_per_task)
2611 imbn = 1;
2612 } else
2613 this_load_per_task = SCHED_LOAD_SCALE;
2615 if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
2616 busiest_load_per_task * imbn) {
2617 *imbalance = busiest_load_per_task;
2618 return busiest;
2622 * OK, we don't have enough imbalance to justify moving tasks,
2623 * however we may be able to increase total CPU power used by
2624 * moving them.
2627 pwr_now += busiest->__cpu_power *
2628 min(busiest_load_per_task, max_load);
2629 pwr_now += this->__cpu_power *
2630 min(this_load_per_task, this_load);
2631 pwr_now /= SCHED_LOAD_SCALE;
2633 /* Amount of load we'd subtract */
2634 tmp = sg_div_cpu_power(busiest,
2635 busiest_load_per_task * SCHED_LOAD_SCALE);
2636 if (max_load > tmp)
2637 pwr_move += busiest->__cpu_power *
2638 min(busiest_load_per_task, max_load - tmp);
2640 /* Amount of load we'd add */
2641 if (max_load * busiest->__cpu_power <
2642 busiest_load_per_task * SCHED_LOAD_SCALE)
2643 tmp = sg_div_cpu_power(this,
2644 max_load * busiest->__cpu_power);
2645 else
2646 tmp = sg_div_cpu_power(this,
2647 busiest_load_per_task * SCHED_LOAD_SCALE);
2648 pwr_move += this->__cpu_power *
2649 min(this_load_per_task, this_load + tmp);
2650 pwr_move /= SCHED_LOAD_SCALE;
2652 /* Move if we gain throughput */
2653 if (pwr_move > pwr_now)
2654 *imbalance = busiest_load_per_task;
2657 return busiest;
2659 out_balanced:
2660 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2661 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2662 goto ret;
2664 if (this == group_leader && group_leader != group_min) {
2665 *imbalance = min_load_per_task;
2666 return group_min;
2668 #endif
2669 ret:
2670 *imbalance = 0;
2671 return NULL;
2675 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2677 static struct rq *
2678 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
2679 unsigned long imbalance, cpumask_t *cpus)
2681 struct rq *busiest = NULL, *rq;
2682 unsigned long max_load = 0;
2683 int i;
2685 for_each_cpu_mask(i, group->cpumask) {
2686 unsigned long wl;
2688 if (!cpu_isset(i, *cpus))
2689 continue;
2691 rq = cpu_rq(i);
2692 wl = weighted_cpuload(i);
2694 if (rq->nr_running == 1 && wl > imbalance)
2695 continue;
2697 if (wl > max_load) {
2698 max_load = wl;
2699 busiest = rq;
2703 return busiest;
2707 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2708 * so long as it is large enough.
2710 #define MAX_PINNED_INTERVAL 512
2713 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2714 * tasks if there is an imbalance.
2716 static int load_balance(int this_cpu, struct rq *this_rq,
2717 struct sched_domain *sd, enum cpu_idle_type idle,
2718 int *balance)
2720 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
2721 struct sched_group *group;
2722 unsigned long imbalance;
2723 struct rq *busiest;
2724 cpumask_t cpus = CPU_MASK_ALL;
2725 unsigned long flags;
2728 * When power savings policy is enabled for the parent domain, idle
2729 * sibling can pick up load irrespective of busy siblings. In this case,
2730 * let the state of idle sibling percolate up as CPU_IDLE, instead of
2731 * portraying it as CPU_NOT_IDLE.
2733 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
2734 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2735 sd_idle = 1;
2737 schedstat_inc(sd, lb_count[idle]);
2739 redo:
2740 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
2741 &cpus, balance);
2743 if (*balance == 0)
2744 goto out_balanced;
2746 if (!group) {
2747 schedstat_inc(sd, lb_nobusyg[idle]);
2748 goto out_balanced;
2751 busiest = find_busiest_queue(group, idle, imbalance, &cpus);
2752 if (!busiest) {
2753 schedstat_inc(sd, lb_nobusyq[idle]);
2754 goto out_balanced;
2757 BUG_ON(busiest == this_rq);
2759 schedstat_add(sd, lb_imbalance[idle], imbalance);
2761 ld_moved = 0;
2762 if (busiest->nr_running > 1) {
2764 * Attempt to move tasks. If find_busiest_group has found
2765 * an imbalance but busiest->nr_running <= 1, the group is
2766 * still unbalanced. ld_moved simply stays zero, so it is
2767 * correctly treated as an imbalance.
2769 local_irq_save(flags);
2770 double_rq_lock(this_rq, busiest);
2771 ld_moved = move_tasks(this_rq, this_cpu, busiest,
2772 imbalance, sd, idle, &all_pinned);
2773 double_rq_unlock(this_rq, busiest);
2774 local_irq_restore(flags);
2777 * some other cpu did the load balance for us.
2779 if (ld_moved && this_cpu != smp_processor_id())
2780 resched_cpu(this_cpu);
2782 /* All tasks on this runqueue were pinned by CPU affinity */
2783 if (unlikely(all_pinned)) {
2784 cpu_clear(cpu_of(busiest), cpus);
2785 if (!cpus_empty(cpus))
2786 goto redo;
2787 goto out_balanced;
2791 if (!ld_moved) {
2792 schedstat_inc(sd, lb_failed[idle]);
2793 sd->nr_balance_failed++;
2795 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
2797 spin_lock_irqsave(&busiest->lock, flags);
2799 /* don't kick the migration_thread, if the curr
2800 * task on busiest cpu can't be moved to this_cpu
2802 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
2803 spin_unlock_irqrestore(&busiest->lock, flags);
2804 all_pinned = 1;
2805 goto out_one_pinned;
2808 if (!busiest->active_balance) {
2809 busiest->active_balance = 1;
2810 busiest->push_cpu = this_cpu;
2811 active_balance = 1;
2813 spin_unlock_irqrestore(&busiest->lock, flags);
2814 if (active_balance)
2815 wake_up_process(busiest->migration_thread);
2818 * We've kicked active balancing, reset the failure
2819 * counter.
2821 sd->nr_balance_failed = sd->cache_nice_tries+1;
2823 } else
2824 sd->nr_balance_failed = 0;
2826 if (likely(!active_balance)) {
2827 /* We were unbalanced, so reset the balancing interval */
2828 sd->balance_interval = sd->min_interval;
2829 } else {
2831 * If we've begun active balancing, start to back off. This
2832 * case may not be covered by the all_pinned logic if there
2833 * is only 1 task on the busy runqueue (because we don't call
2834 * move_tasks).
2836 if (sd->balance_interval < sd->max_interval)
2837 sd->balance_interval *= 2;
2840 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2841 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2842 return -1;
2843 return ld_moved;
2845 out_balanced:
2846 schedstat_inc(sd, lb_balanced[idle]);
2848 sd->nr_balance_failed = 0;
2850 out_one_pinned:
2851 /* tune up the balancing interval */
2852 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2853 (sd->balance_interval < sd->max_interval))
2854 sd->balance_interval *= 2;
2856 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2857 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2858 return -1;
2859 return 0;
2863 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2864 * tasks if there is an imbalance.
2866 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
2867 * this_rq is locked.
2869 static int
2870 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
2872 struct sched_group *group;
2873 struct rq *busiest = NULL;
2874 unsigned long imbalance;
2875 int ld_moved = 0;
2876 int sd_idle = 0;
2877 int all_pinned = 0;
2878 cpumask_t cpus = CPU_MASK_ALL;
2881 * When power savings policy is enabled for the parent domain, idle
2882 * sibling can pick up load irrespective of busy siblings. In this case,
2883 * let the state of idle sibling percolate up as IDLE, instead of
2884 * portraying it as CPU_NOT_IDLE.
2886 if (sd->flags & SD_SHARE_CPUPOWER &&
2887 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2888 sd_idle = 1;
2890 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
2891 redo:
2892 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
2893 &sd_idle, &cpus, NULL);
2894 if (!group) {
2895 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
2896 goto out_balanced;
2899 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
2900 &cpus);
2901 if (!busiest) {
2902 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
2903 goto out_balanced;
2906 BUG_ON(busiest == this_rq);
2908 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
2910 ld_moved = 0;
2911 if (busiest->nr_running > 1) {
2912 /* Attempt to move tasks */
2913 double_lock_balance(this_rq, busiest);
2914 /* this_rq->clock is already updated */
2915 update_rq_clock(busiest);
2916 ld_moved = move_tasks(this_rq, this_cpu, busiest,
2917 imbalance, sd, CPU_NEWLY_IDLE,
2918 &all_pinned);
2919 spin_unlock(&busiest->lock);
2921 if (unlikely(all_pinned)) {
2922 cpu_clear(cpu_of(busiest), cpus);
2923 if (!cpus_empty(cpus))
2924 goto redo;
2928 if (!ld_moved) {
2929 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
2930 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2931 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2932 return -1;
2933 } else
2934 sd->nr_balance_failed = 0;
2936 return ld_moved;
2938 out_balanced:
2939 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
2940 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2941 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2942 return -1;
2943 sd->nr_balance_failed = 0;
2945 return 0;
2949 * idle_balance is called by schedule() if this_cpu is about to become
2950 * idle. Attempts to pull tasks from other CPUs.
2952 static void idle_balance(int this_cpu, struct rq *this_rq)
2954 struct sched_domain *sd;
2955 int pulled_task = -1;
2956 unsigned long next_balance = jiffies + HZ;
2958 for_each_domain(this_cpu, sd) {
2959 unsigned long interval;
2961 if (!(sd->flags & SD_LOAD_BALANCE))
2962 continue;
2964 if (sd->flags & SD_BALANCE_NEWIDLE)
2965 /* If we've pulled tasks over stop searching: */
2966 pulled_task = load_balance_newidle(this_cpu,
2967 this_rq, sd);
2969 interval = msecs_to_jiffies(sd->balance_interval);
2970 if (time_after(next_balance, sd->last_balance + interval))
2971 next_balance = sd->last_balance + interval;
2972 if (pulled_task)
2973 break;
2975 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
2977 * We are going idle. next_balance may be set based on
2978 * a busy processor. So reset next_balance.
2980 this_rq->next_balance = next_balance;
2985 * active_load_balance is run by migration threads. It pushes running tasks
2986 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2987 * running on each physical CPU where possible, and avoids physical /
2988 * logical imbalances.
2990 * Called with busiest_rq locked.
2992 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
2994 int target_cpu = busiest_rq->push_cpu;
2995 struct sched_domain *sd;
2996 struct rq *target_rq;
2998 /* Is there any task to move? */
2999 if (busiest_rq->nr_running <= 1)
3000 return;
3002 target_rq = cpu_rq(target_cpu);
3005 * This condition is "impossible", if it occurs
3006 * we need to fix it. Originally reported by
3007 * Bjorn Helgaas on a 128-cpu setup.
3009 BUG_ON(busiest_rq == target_rq);
3011 /* move a task from busiest_rq to target_rq */
3012 double_lock_balance(busiest_rq, target_rq);
3013 update_rq_clock(busiest_rq);
3014 update_rq_clock(target_rq);
3016 /* Search for an sd spanning us and the target CPU. */
3017 for_each_domain(target_cpu, sd) {
3018 if ((sd->flags & SD_LOAD_BALANCE) &&
3019 cpu_isset(busiest_cpu, sd->span))
3020 break;
3023 if (likely(sd)) {
3024 schedstat_inc(sd, alb_count);
3026 if (move_one_task(target_rq, target_cpu, busiest_rq,
3027 sd, CPU_IDLE))
3028 schedstat_inc(sd, alb_pushed);
3029 else
3030 schedstat_inc(sd, alb_failed);
3032 spin_unlock(&target_rq->lock);
3035 #ifdef CONFIG_NO_HZ
3036 static struct {
3037 atomic_t load_balancer;
3038 cpumask_t cpu_mask;
3039 } nohz ____cacheline_aligned = {
3040 .load_balancer = ATOMIC_INIT(-1),
3041 .cpu_mask = CPU_MASK_NONE,
3045 * This routine will try to nominate the ilb (idle load balancing)
3046 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3047 * load balancing on behalf of all those cpus. If all the cpus in the system
3048 * go into this tickless mode, then there will be no ilb owner (as there is
3049 * no need for one) and all the cpus will sleep till the next wakeup event
3050 * arrives...
3052 * For the ilb owner, tick is not stopped. And this tick will be used
3053 * for idle load balancing. ilb owner will still be part of
3054 * nohz.cpu_mask..
3056 * While stopping the tick, this cpu will become the ilb owner if there
3057 * is no other owner. And will be the owner till that cpu becomes busy
3058 * or if all cpus in the system stop their ticks at which point
3059 * there is no need for ilb owner.
3061 * When the ilb owner becomes busy, it nominates another owner, during the
3062 * next busy scheduler_tick()
3064 int select_nohz_load_balancer(int stop_tick)
3066 int cpu = smp_processor_id();
3068 if (stop_tick) {
3069 cpu_set(cpu, nohz.cpu_mask);
3070 cpu_rq(cpu)->in_nohz_recently = 1;
3073 * If we are going offline and still the leader, give up!
3075 if (cpu_is_offline(cpu) &&
3076 atomic_read(&nohz.load_balancer) == cpu) {
3077 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3078 BUG();
3079 return 0;
3082 /* time for ilb owner also to sleep */
3083 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3084 if (atomic_read(&nohz.load_balancer) == cpu)
3085 atomic_set(&nohz.load_balancer, -1);
3086 return 0;
3089 if (atomic_read(&nohz.load_balancer) == -1) {
3090 /* make me the ilb owner */
3091 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3092 return 1;
3093 } else if (atomic_read(&nohz.load_balancer) == cpu)
3094 return 1;
3095 } else {
3096 if (!cpu_isset(cpu, nohz.cpu_mask))
3097 return 0;
3099 cpu_clear(cpu, nohz.cpu_mask);
3101 if (atomic_read(&nohz.load_balancer) == cpu)
3102 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3103 BUG();
3105 return 0;
3107 #endif
3109 static DEFINE_SPINLOCK(balancing);
3112 * It checks each scheduling domain to see if it is due to be balanced,
3113 * and initiates a balancing operation if so.
3115 * Balancing parameters are set up in arch_init_sched_domains.
3117 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3119 int balance = 1;
3120 struct rq *rq = cpu_rq(cpu);
3121 unsigned long interval;
3122 struct sched_domain *sd;
3123 /* Earliest time when we have to do rebalance again */
3124 unsigned long next_balance = jiffies + 60*HZ;
3125 int update_next_balance = 0;
3127 for_each_domain(cpu, sd) {
3128 if (!(sd->flags & SD_LOAD_BALANCE))
3129 continue;
3131 interval = sd->balance_interval;
3132 if (idle != CPU_IDLE)
3133 interval *= sd->busy_factor;
3135 /* scale ms to jiffies */
3136 interval = msecs_to_jiffies(interval);
3137 if (unlikely(!interval))
3138 interval = 1;
3139 if (interval > HZ*NR_CPUS/10)
3140 interval = HZ*NR_CPUS/10;
3143 if (sd->flags & SD_SERIALIZE) {
3144 if (!spin_trylock(&balancing))
3145 goto out;
3148 if (time_after_eq(jiffies, sd->last_balance + interval)) {
3149 if (load_balance(cpu, rq, sd, idle, &balance)) {
3151 * We've pulled tasks over so either we're no
3152 * longer idle, or one of our SMT siblings is
3153 * not idle.
3155 idle = CPU_NOT_IDLE;
3157 sd->last_balance = jiffies;
3159 if (sd->flags & SD_SERIALIZE)
3160 spin_unlock(&balancing);
3161 out:
3162 if (time_after(next_balance, sd->last_balance + interval)) {
3163 next_balance = sd->last_balance + interval;
3164 update_next_balance = 1;
3168 * Stop the load balance at this level. There is another
3169 * CPU in our sched group which is doing load balancing more
3170 * actively.
3172 if (!balance)
3173 break;
3177 * next_balance will be updated only when there is a need.
3178 * When the cpu is attached to null domain for ex, it will not be
3179 * updated.
3181 if (likely(update_next_balance))
3182 rq->next_balance = next_balance;
3186 * run_rebalance_domains is triggered when needed from the scheduler tick.
3187 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3188 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3190 static void run_rebalance_domains(struct softirq_action *h)
3192 int this_cpu = smp_processor_id();
3193 struct rq *this_rq = cpu_rq(this_cpu);
3194 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3195 CPU_IDLE : CPU_NOT_IDLE;
3197 rebalance_domains(this_cpu, idle);
3199 #ifdef CONFIG_NO_HZ
3201 * If this cpu is the owner for idle load balancing, then do the
3202 * balancing on behalf of the other idle cpus whose ticks are
3203 * stopped.
3205 if (this_rq->idle_at_tick &&
3206 atomic_read(&nohz.load_balancer) == this_cpu) {
3207 cpumask_t cpus = nohz.cpu_mask;
3208 struct rq *rq;
3209 int balance_cpu;
3211 cpu_clear(this_cpu, cpus);
3212 for_each_cpu_mask(balance_cpu, cpus) {
3214 * If this cpu gets work to do, stop the load balancing
3215 * work being done for other cpus. Next load
3216 * balancing owner will pick it up.
3218 if (need_resched())
3219 break;
3221 rebalance_domains(balance_cpu, CPU_IDLE);
3223 rq = cpu_rq(balance_cpu);
3224 if (time_after(this_rq->next_balance, rq->next_balance))
3225 this_rq->next_balance = rq->next_balance;
3228 #endif
3232 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3234 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3235 * idle load balancing owner or decide to stop the periodic load balancing,
3236 * if the whole system is idle.
3238 static inline void trigger_load_balance(struct rq *rq, int cpu)
3240 #ifdef CONFIG_NO_HZ
3242 * If we were in the nohz mode recently and busy at the current
3243 * scheduler tick, then check if we need to nominate new idle
3244 * load balancer.
3246 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3247 rq->in_nohz_recently = 0;
3249 if (atomic_read(&nohz.load_balancer) == cpu) {
3250 cpu_clear(cpu, nohz.cpu_mask);
3251 atomic_set(&nohz.load_balancer, -1);
3254 if (atomic_read(&nohz.load_balancer) == -1) {
3256 * simple selection for now: Nominate the
3257 * first cpu in the nohz list to be the next
3258 * ilb owner.
3260 * TBD: Traverse the sched domains and nominate
3261 * the nearest cpu in the nohz.cpu_mask.
3263 int ilb = first_cpu(nohz.cpu_mask);
3265 if (ilb != NR_CPUS)
3266 resched_cpu(ilb);
3271 * If this cpu is idle and doing idle load balancing for all the
3272 * cpus with ticks stopped, is it time for that to stop?
3274 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
3275 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3276 resched_cpu(cpu);
3277 return;
3281 * If this cpu is idle and the idle load balancing is done by
3282 * someone else, then no need raise the SCHED_SOFTIRQ
3284 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
3285 cpu_isset(cpu, nohz.cpu_mask))
3286 return;
3287 #endif
3288 if (time_after_eq(jiffies, rq->next_balance))
3289 raise_softirq(SCHED_SOFTIRQ);
3292 #else /* CONFIG_SMP */
3295 * on UP we do not need to balance between CPUs:
3297 static inline void idle_balance(int cpu, struct rq *rq)
3301 #endif
3303 DEFINE_PER_CPU(struct kernel_stat, kstat);
3305 EXPORT_PER_CPU_SYMBOL(kstat);
3308 * Return p->sum_exec_runtime plus any more ns on the sched_clock
3309 * that have not yet been banked in case the task is currently running.
3311 unsigned long long task_sched_runtime(struct task_struct *p)
3313 unsigned long flags;
3314 u64 ns, delta_exec;
3315 struct rq *rq;
3317 rq = task_rq_lock(p, &flags);
3318 ns = p->se.sum_exec_runtime;
3319 if (rq->curr == p) {
3320 update_rq_clock(rq);
3321 delta_exec = rq->clock - p->se.exec_start;
3322 if ((s64)delta_exec > 0)
3323 ns += delta_exec;
3325 task_rq_unlock(rq, &flags);
3327 return ns;
3331 * Account user cpu time to a process.
3332 * @p: the process that the cpu time gets accounted to
3333 * @cputime: the cpu time spent in user space since the last update
3335 void account_user_time(struct task_struct *p, cputime_t cputime)
3337 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3338 cputime64_t tmp;
3340 p->utime = cputime_add(p->utime, cputime);
3342 /* Add user time to cpustat. */
3343 tmp = cputime_to_cputime64(cputime);
3344 if (TASK_NICE(p) > 0)
3345 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3346 else
3347 cpustat->user = cputime64_add(cpustat->user, tmp);
3351 * Account guest cpu time to a process.
3352 * @p: the process that the cpu time gets accounted to
3353 * @cputime: the cpu time spent in virtual machine since the last update
3355 static void account_guest_time(struct task_struct *p, cputime_t cputime)
3357 cputime64_t tmp;
3358 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3360 tmp = cputime_to_cputime64(cputime);
3362 p->utime = cputime_add(p->utime, cputime);
3363 p->gtime = cputime_add(p->gtime, cputime);
3365 cpustat->user = cputime64_add(cpustat->user, tmp);
3366 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3370 * Account scaled user cpu time to a process.
3371 * @p: the process that the cpu time gets accounted to
3372 * @cputime: the cpu time spent in user space since the last update
3374 void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
3376 p->utimescaled = cputime_add(p->utimescaled, cputime);
3380 * Account system cpu time to a process.
3381 * @p: the process that the cpu time gets accounted to
3382 * @hardirq_offset: the offset to subtract from hardirq_count()
3383 * @cputime: the cpu time spent in kernel space since the last update
3385 void account_system_time(struct task_struct *p, int hardirq_offset,
3386 cputime_t cputime)
3388 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3389 struct rq *rq = this_rq();
3390 cputime64_t tmp;
3392 if (p->flags & PF_VCPU) {
3393 account_guest_time(p, cputime);
3394 return;
3397 p->stime = cputime_add(p->stime, cputime);
3399 /* Add system time to cpustat. */
3400 tmp = cputime_to_cputime64(cputime);
3401 if (hardirq_count() - hardirq_offset)
3402 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3403 else if (softirq_count())
3404 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3405 else if (p != rq->idle)
3406 cpustat->system = cputime64_add(cpustat->system, tmp);
3407 else if (atomic_read(&rq->nr_iowait) > 0)
3408 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3409 else
3410 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3411 /* Account for system time used */
3412 acct_update_integrals(p);
3416 * Account scaled system cpu time to a process.
3417 * @p: the process that the cpu time gets accounted to
3418 * @hardirq_offset: the offset to subtract from hardirq_count()
3419 * @cputime: the cpu time spent in kernel space since the last update
3421 void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
3423 p->stimescaled = cputime_add(p->stimescaled, cputime);
3427 * Account for involuntary wait time.
3428 * @p: the process from which the cpu time has been stolen
3429 * @steal: the cpu time spent in involuntary wait
3431 void account_steal_time(struct task_struct *p, cputime_t steal)
3433 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3434 cputime64_t tmp = cputime_to_cputime64(steal);
3435 struct rq *rq = this_rq();
3437 if (p == rq->idle) {
3438 p->stime = cputime_add(p->stime, steal);
3439 if (atomic_read(&rq->nr_iowait) > 0)
3440 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3441 else
3442 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3443 } else
3444 cpustat->steal = cputime64_add(cpustat->steal, tmp);
3448 * This function gets called by the timer code, with HZ frequency.
3449 * We call it with interrupts disabled.
3451 * It also gets called by the fork code, when changing the parent's
3452 * timeslices.
3454 void scheduler_tick(void)
3456 int cpu = smp_processor_id();
3457 struct rq *rq = cpu_rq(cpu);
3458 struct task_struct *curr = rq->curr;
3459 u64 next_tick = rq->tick_timestamp + TICK_NSEC;
3461 spin_lock(&rq->lock);
3462 __update_rq_clock(rq);
3464 * Let rq->clock advance by at least TICK_NSEC:
3466 if (unlikely(rq->clock < next_tick))
3467 rq->clock = next_tick;
3468 rq->tick_timestamp = rq->clock;
3469 update_cpu_load(rq);
3470 if (curr != rq->idle) /* FIXME: needed? */
3471 curr->sched_class->task_tick(rq, curr);
3472 spin_unlock(&rq->lock);
3474 #ifdef CONFIG_SMP
3475 rq->idle_at_tick = idle_cpu(cpu);
3476 trigger_load_balance(rq, cpu);
3477 #endif
3480 #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3482 void fastcall add_preempt_count(int val)
3485 * Underflow?
3487 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3488 return;
3489 preempt_count() += val;
3491 * Spinlock count overflowing soon?
3493 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3494 PREEMPT_MASK - 10);
3496 EXPORT_SYMBOL(add_preempt_count);
3498 void fastcall sub_preempt_count(int val)
3501 * Underflow?
3503 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3504 return;
3506 * Is the spinlock portion underflowing?
3508 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3509 !(preempt_count() & PREEMPT_MASK)))
3510 return;
3512 preempt_count() -= val;
3514 EXPORT_SYMBOL(sub_preempt_count);
3516 #endif
3519 * Print scheduling while atomic bug:
3521 static noinline void __schedule_bug(struct task_struct *prev)
3523 struct pt_regs *regs = get_irq_regs();
3525 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3526 prev->comm, prev->pid, preempt_count());
3528 debug_show_held_locks(prev);
3529 if (irqs_disabled())
3530 print_irqtrace_events(prev);
3532 if (regs)
3533 show_regs(regs);
3534 else
3535 dump_stack();
3539 * Various schedule()-time debugging checks and statistics:
3541 static inline void schedule_debug(struct task_struct *prev)
3544 * Test if we are atomic. Since do_exit() needs to call into
3545 * schedule() atomically, we ignore that path for now.
3546 * Otherwise, whine if we are scheduling when we should not be.
3548 if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
3549 __schedule_bug(prev);
3551 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3553 schedstat_inc(this_rq(), sched_count);
3554 #ifdef CONFIG_SCHEDSTATS
3555 if (unlikely(prev->lock_depth >= 0)) {
3556 schedstat_inc(this_rq(), bkl_count);
3557 schedstat_inc(prev, sched_info.bkl_count);
3559 #endif
3563 * Pick up the highest-prio task:
3565 static inline struct task_struct *
3566 pick_next_task(struct rq *rq, struct task_struct *prev)
3568 const struct sched_class *class;
3569 struct task_struct *p;
3572 * Optimization: we know that if all tasks are in
3573 * the fair class we can call that function directly:
3575 if (likely(rq->nr_running == rq->cfs.nr_running)) {
3576 p = fair_sched_class.pick_next_task(rq);
3577 if (likely(p))
3578 return p;
3581 class = sched_class_highest;
3582 for ( ; ; ) {
3583 p = class->pick_next_task(rq);
3584 if (p)
3585 return p;
3587 * Will never be NULL as the idle class always
3588 * returns a non-NULL p:
3590 class = class->next;
3595 * schedule() is the main scheduler function.
3597 asmlinkage void __sched schedule(void)
3599 struct task_struct *prev, *next;
3600 long *switch_count;
3601 struct rq *rq;
3602 int cpu;
3604 need_resched:
3605 preempt_disable();
3606 cpu = smp_processor_id();
3607 rq = cpu_rq(cpu);
3608 rcu_qsctr_inc(cpu);
3609 prev = rq->curr;
3610 switch_count = &prev->nivcsw;
3612 release_kernel_lock(prev);
3613 need_resched_nonpreemptible:
3615 schedule_debug(prev);
3618 * Do the rq-clock update outside the rq lock:
3620 local_irq_disable();
3621 __update_rq_clock(rq);
3622 spin_lock(&rq->lock);
3623 clear_tsk_need_resched(prev);
3625 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3626 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
3627 unlikely(signal_pending(prev)))) {
3628 prev->state = TASK_RUNNING;
3629 } else {
3630 deactivate_task(rq, prev, 1);
3632 switch_count = &prev->nvcsw;
3635 if (unlikely(!rq->nr_running))
3636 idle_balance(cpu, rq);
3638 prev->sched_class->put_prev_task(rq, prev);
3639 next = pick_next_task(rq, prev);
3641 sched_info_switch(prev, next);
3643 if (likely(prev != next)) {
3644 rq->nr_switches++;
3645 rq->curr = next;
3646 ++*switch_count;
3648 context_switch(rq, prev, next); /* unlocks the rq */
3649 } else
3650 spin_unlock_irq(&rq->lock);
3652 if (unlikely(reacquire_kernel_lock(current) < 0)) {
3653 cpu = smp_processor_id();
3654 rq = cpu_rq(cpu);
3655 goto need_resched_nonpreemptible;
3657 preempt_enable_no_resched();
3658 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3659 goto need_resched;
3661 EXPORT_SYMBOL(schedule);
3663 #ifdef CONFIG_PREEMPT
3665 * this is the entry point to schedule() from in-kernel preemption
3666 * off of preempt_enable. Kernel preemptions off return from interrupt
3667 * occur there and call schedule directly.
3669 asmlinkage void __sched preempt_schedule(void)
3671 struct thread_info *ti = current_thread_info();
3672 #ifdef CONFIG_PREEMPT_BKL
3673 struct task_struct *task = current;
3674 int saved_lock_depth;
3675 #endif
3677 * If there is a non-zero preempt_count or interrupts are disabled,
3678 * we do not want to preempt the current task. Just return..
3680 if (likely(ti->preempt_count || irqs_disabled()))
3681 return;
3683 do {
3684 add_preempt_count(PREEMPT_ACTIVE);
3687 * We keep the big kernel semaphore locked, but we
3688 * clear ->lock_depth so that schedule() doesnt
3689 * auto-release the semaphore:
3691 #ifdef CONFIG_PREEMPT_BKL
3692 saved_lock_depth = task->lock_depth;
3693 task->lock_depth = -1;
3694 #endif
3695 schedule();
3696 #ifdef CONFIG_PREEMPT_BKL
3697 task->lock_depth = saved_lock_depth;
3698 #endif
3699 sub_preempt_count(PREEMPT_ACTIVE);
3702 * Check again in case we missed a preemption opportunity
3703 * between schedule and now.
3705 barrier();
3706 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
3708 EXPORT_SYMBOL(preempt_schedule);
3711 * this is the entry point to schedule() from kernel preemption
3712 * off of irq context.
3713 * Note, that this is called and return with irqs disabled. This will
3714 * protect us against recursive calling from irq.
3716 asmlinkage void __sched preempt_schedule_irq(void)
3718 struct thread_info *ti = current_thread_info();
3719 #ifdef CONFIG_PREEMPT_BKL
3720 struct task_struct *task = current;
3721 int saved_lock_depth;
3722 #endif
3723 /* Catch callers which need to be fixed */
3724 BUG_ON(ti->preempt_count || !irqs_disabled());
3726 do {
3727 add_preempt_count(PREEMPT_ACTIVE);
3730 * We keep the big kernel semaphore locked, but we
3731 * clear ->lock_depth so that schedule() doesnt
3732 * auto-release the semaphore:
3734 #ifdef CONFIG_PREEMPT_BKL
3735 saved_lock_depth = task->lock_depth;
3736 task->lock_depth = -1;
3737 #endif
3738 local_irq_enable();
3739 schedule();
3740 local_irq_disable();
3741 #ifdef CONFIG_PREEMPT_BKL
3742 task->lock_depth = saved_lock_depth;
3743 #endif
3744 sub_preempt_count(PREEMPT_ACTIVE);
3747 * Check again in case we missed a preemption opportunity
3748 * between schedule and now.
3750 barrier();
3751 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
3754 #endif /* CONFIG_PREEMPT */
3756 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3757 void *key)
3759 return try_to_wake_up(curr->private, mode, sync);
3761 EXPORT_SYMBOL(default_wake_function);
3764 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3765 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3766 * number) then we wake all the non-exclusive tasks and one exclusive task.
3768 * There are circumstances in which we can try to wake a task which has already
3769 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3770 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3772 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3773 int nr_exclusive, int sync, void *key)
3775 wait_queue_t *curr, *next;
3777 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3778 unsigned flags = curr->flags;
3780 if (curr->func(curr, mode, sync, key) &&
3781 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
3782 break;
3787 * __wake_up - wake up threads blocked on a waitqueue.
3788 * @q: the waitqueue
3789 * @mode: which threads
3790 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3791 * @key: is directly passed to the wakeup function
3793 void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
3794 int nr_exclusive, void *key)
3796 unsigned long flags;
3798 spin_lock_irqsave(&q->lock, flags);
3799 __wake_up_common(q, mode, nr_exclusive, 0, key);
3800 spin_unlock_irqrestore(&q->lock, flags);
3802 EXPORT_SYMBOL(__wake_up);
3805 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3807 void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3809 __wake_up_common(q, mode, 1, 0, NULL);
3813 * __wake_up_sync - wake up threads blocked on a waitqueue.
3814 * @q: the waitqueue
3815 * @mode: which threads
3816 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3818 * The sync wakeup differs that the waker knows that it will schedule
3819 * away soon, so while the target thread will be woken up, it will not
3820 * be migrated to another CPU - ie. the two threads are 'synchronized'
3821 * with each other. This can prevent needless bouncing between CPUs.
3823 * On UP it can prevent extra preemption.
3825 void fastcall
3826 __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3828 unsigned long flags;
3829 int sync = 1;
3831 if (unlikely(!q))
3832 return;
3834 if (unlikely(!nr_exclusive))
3835 sync = 0;
3837 spin_lock_irqsave(&q->lock, flags);
3838 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3839 spin_unlock_irqrestore(&q->lock, flags);
3841 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3843 void complete(struct completion *x)
3845 unsigned long flags;
3847 spin_lock_irqsave(&x->wait.lock, flags);
3848 x->done++;
3849 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
3850 spin_unlock_irqrestore(&x->wait.lock, flags);
3852 EXPORT_SYMBOL(complete);
3854 void complete_all(struct completion *x)
3856 unsigned long flags;
3858 spin_lock_irqsave(&x->wait.lock, flags);
3859 x->done += UINT_MAX/2;
3860 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
3861 spin_unlock_irqrestore(&x->wait.lock, flags);
3863 EXPORT_SYMBOL(complete_all);
3865 static inline long __sched
3866 do_wait_for_common(struct completion *x, long timeout, int state)
3868 if (!x->done) {
3869 DECLARE_WAITQUEUE(wait, current);
3871 wait.flags |= WQ_FLAG_EXCLUSIVE;
3872 __add_wait_queue_tail(&x->wait, &wait);
3873 do {
3874 if (state == TASK_INTERRUPTIBLE &&
3875 signal_pending(current)) {
3876 __remove_wait_queue(&x->wait, &wait);
3877 return -ERESTARTSYS;
3879 __set_current_state(state);
3880 spin_unlock_irq(&x->wait.lock);
3881 timeout = schedule_timeout(timeout);
3882 spin_lock_irq(&x->wait.lock);
3883 if (!timeout) {
3884 __remove_wait_queue(&x->wait, &wait);
3885 return timeout;
3887 } while (!x->done);
3888 __remove_wait_queue(&x->wait, &wait);
3890 x->done--;
3891 return timeout;
3894 static long __sched
3895 wait_for_common(struct completion *x, long timeout, int state)
3897 might_sleep();
3899 spin_lock_irq(&x->wait.lock);
3900 timeout = do_wait_for_common(x, timeout, state);
3901 spin_unlock_irq(&x->wait.lock);
3902 return timeout;
3905 void __sched wait_for_completion(struct completion *x)
3907 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
3909 EXPORT_SYMBOL(wait_for_completion);
3911 unsigned long __sched
3912 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3914 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
3916 EXPORT_SYMBOL(wait_for_completion_timeout);
3918 int __sched wait_for_completion_interruptible(struct completion *x)
3920 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
3921 if (t == -ERESTARTSYS)
3922 return t;
3923 return 0;
3925 EXPORT_SYMBOL(wait_for_completion_interruptible);
3927 unsigned long __sched
3928 wait_for_completion_interruptible_timeout(struct completion *x,
3929 unsigned long timeout)
3931 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
3933 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3935 static long __sched
3936 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
3938 unsigned long flags;
3939 wait_queue_t wait;
3941 init_waitqueue_entry(&wait, current);
3943 __set_current_state(state);
3945 spin_lock_irqsave(&q->lock, flags);
3946 __add_wait_queue(q, &wait);
3947 spin_unlock(&q->lock);
3948 timeout = schedule_timeout(timeout);
3949 spin_lock_irq(&q->lock);
3950 __remove_wait_queue(q, &wait);
3951 spin_unlock_irqrestore(&q->lock, flags);
3953 return timeout;
3956 void __sched interruptible_sleep_on(wait_queue_head_t *q)
3958 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3960 EXPORT_SYMBOL(interruptible_sleep_on);
3962 long __sched
3963 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3965 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
3967 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3969 void __sched sleep_on(wait_queue_head_t *q)
3971 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3973 EXPORT_SYMBOL(sleep_on);
3975 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3977 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
3979 EXPORT_SYMBOL(sleep_on_timeout);
3981 #ifdef CONFIG_RT_MUTEXES
3984 * rt_mutex_setprio - set the current priority of a task
3985 * @p: task
3986 * @prio: prio value (kernel-internal form)
3988 * This function changes the 'effective' priority of a task. It does
3989 * not touch ->normal_prio like __setscheduler().
3991 * Used by the rt_mutex code to implement priority inheritance logic.
3993 void rt_mutex_setprio(struct task_struct *p, int prio)
3995 unsigned long flags;
3996 int oldprio, on_rq, running;
3997 struct rq *rq;
3999 BUG_ON(prio < 0 || prio > MAX_PRIO);
4001 rq = task_rq_lock(p, &flags);
4002 update_rq_clock(rq);
4004 oldprio = p->prio;
4005 on_rq = p->se.on_rq;
4006 running = task_running(rq, p);
4007 if (on_rq) {
4008 dequeue_task(rq, p, 0);
4009 if (running)
4010 p->sched_class->put_prev_task(rq, p);
4013 if (rt_prio(prio))
4014 p->sched_class = &rt_sched_class;
4015 else
4016 p->sched_class = &fair_sched_class;
4018 p->prio = prio;
4020 if (on_rq) {
4021 if (running)
4022 p->sched_class->set_curr_task(rq);
4023 enqueue_task(rq, p, 0);
4025 * Reschedule if we are currently running on this runqueue and
4026 * our priority decreased, or if we are not currently running on
4027 * this runqueue and our priority is higher than the current's
4029 if (running) {
4030 if (p->prio > oldprio)
4031 resched_task(rq->curr);
4032 } else {
4033 check_preempt_curr(rq, p);
4036 task_rq_unlock(rq, &flags);
4039 #endif
4041 void set_user_nice(struct task_struct *p, long nice)
4043 int old_prio, delta, on_rq;
4044 unsigned long flags;
4045 struct rq *rq;
4047 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4048 return;
4050 * We have to be careful, if called from sys_setpriority(),
4051 * the task might be in the middle of scheduling on another CPU.
4053 rq = task_rq_lock(p, &flags);
4054 update_rq_clock(rq);
4056 * The RT priorities are set via sched_setscheduler(), but we still
4057 * allow the 'normal' nice value to be set - but as expected
4058 * it wont have any effect on scheduling until the task is
4059 * SCHED_FIFO/SCHED_RR:
4061 if (task_has_rt_policy(p)) {
4062 p->static_prio = NICE_TO_PRIO(nice);
4063 goto out_unlock;
4065 on_rq = p->se.on_rq;
4066 if (on_rq) {
4067 dequeue_task(rq, p, 0);
4068 dec_load(rq, p);
4071 p->static_prio = NICE_TO_PRIO(nice);
4072 set_load_weight(p);
4073 old_prio = p->prio;
4074 p->prio = effective_prio(p);
4075 delta = p->prio - old_prio;
4077 if (on_rq) {
4078 enqueue_task(rq, p, 0);
4079 inc_load(rq, p);
4081 * If the task increased its priority or is running and
4082 * lowered its priority, then reschedule its CPU:
4084 if (delta < 0 || (delta > 0 && task_running(rq, p)))
4085 resched_task(rq->curr);
4087 out_unlock:
4088 task_rq_unlock(rq, &flags);
4090 EXPORT_SYMBOL(set_user_nice);
4093 * can_nice - check if a task can reduce its nice value
4094 * @p: task
4095 * @nice: nice value
4097 int can_nice(const struct task_struct *p, const int nice)
4099 /* convert nice value [19,-20] to rlimit style value [1,40] */
4100 int nice_rlim = 20 - nice;
4102 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4103 capable(CAP_SYS_NICE));
4106 #ifdef __ARCH_WANT_SYS_NICE
4109 * sys_nice - change the priority of the current process.
4110 * @increment: priority increment
4112 * sys_setpriority is a more generic, but much slower function that
4113 * does similar things.
4115 asmlinkage long sys_nice(int increment)
4117 long nice, retval;
4120 * Setpriority might change our priority at the same moment.
4121 * We don't have to worry. Conceptually one call occurs first
4122 * and we have a single winner.
4124 if (increment < -40)
4125 increment = -40;
4126 if (increment > 40)
4127 increment = 40;
4129 nice = PRIO_TO_NICE(current->static_prio) + increment;
4130 if (nice < -20)
4131 nice = -20;
4132 if (nice > 19)
4133 nice = 19;
4135 if (increment < 0 && !can_nice(current, nice))
4136 return -EPERM;
4138 retval = security_task_setnice(current, nice);
4139 if (retval)
4140 return retval;
4142 set_user_nice(current, nice);
4143 return 0;
4146 #endif
4149 * task_prio - return the priority value of a given task.
4150 * @p: the task in question.
4152 * This is the priority value as seen by users in /proc.
4153 * RT tasks are offset by -200. Normal tasks are centered
4154 * around 0, value goes from -16 to +15.
4156 int task_prio(const struct task_struct *p)
4158 return p->prio - MAX_RT_PRIO;
4162 * task_nice - return the nice value of a given task.
4163 * @p: the task in question.
4165 int task_nice(const struct task_struct *p)
4167 return TASK_NICE(p);
4169 EXPORT_SYMBOL_GPL(task_nice);
4172 * idle_cpu - is a given cpu idle currently?
4173 * @cpu: the processor in question.
4175 int idle_cpu(int cpu)
4177 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4181 * idle_task - return the idle task for a given cpu.
4182 * @cpu: the processor in question.
4184 struct task_struct *idle_task(int cpu)
4186 return cpu_rq(cpu)->idle;
4190 * find_process_by_pid - find a process with a matching PID value.
4191 * @pid: the pid in question.
4193 static struct task_struct *find_process_by_pid(pid_t pid)
4195 return pid ? find_task_by_vpid(pid) : current;
4198 /* Actually do priority change: must hold rq lock. */
4199 static void
4200 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
4202 BUG_ON(p->se.on_rq);
4204 p->policy = policy;
4205 switch (p->policy) {
4206 case SCHED_NORMAL:
4207 case SCHED_BATCH:
4208 case SCHED_IDLE:
4209 p->sched_class = &fair_sched_class;
4210 break;
4211 case SCHED_FIFO:
4212 case SCHED_RR:
4213 p->sched_class = &rt_sched_class;
4214 break;
4217 p->rt_priority = prio;
4218 p->normal_prio = normal_prio(p);
4219 /* we are holding p->pi_lock already */
4220 p->prio = rt_mutex_getprio(p);
4221 set_load_weight(p);
4225 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4226 * @p: the task in question.
4227 * @policy: new policy.
4228 * @param: structure containing the new RT priority.
4230 * NOTE that the task may be already dead.
4232 int sched_setscheduler(struct task_struct *p, int policy,
4233 struct sched_param *param)
4235 int retval, oldprio, oldpolicy = -1, on_rq, running;
4236 unsigned long flags;
4237 struct rq *rq;
4239 /* may grab non-irq protected spin_locks */
4240 BUG_ON(in_interrupt());
4241 recheck:
4242 /* double check policy once rq lock held */
4243 if (policy < 0)
4244 policy = oldpolicy = p->policy;
4245 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
4246 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4247 policy != SCHED_IDLE)
4248 return -EINVAL;
4250 * Valid priorities for SCHED_FIFO and SCHED_RR are
4251 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4252 * SCHED_BATCH and SCHED_IDLE is 0.
4254 if (param->sched_priority < 0 ||
4255 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4256 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
4257 return -EINVAL;
4258 if (rt_policy(policy) != (param->sched_priority != 0))
4259 return -EINVAL;
4262 * Allow unprivileged RT tasks to decrease priority:
4264 if (!capable(CAP_SYS_NICE)) {
4265 if (rt_policy(policy)) {
4266 unsigned long rlim_rtprio;
4268 if (!lock_task_sighand(p, &flags))
4269 return -ESRCH;
4270 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4271 unlock_task_sighand(p, &flags);
4273 /* can't set/change the rt policy */
4274 if (policy != p->policy && !rlim_rtprio)
4275 return -EPERM;
4277 /* can't increase priority */
4278 if (param->sched_priority > p->rt_priority &&
4279 param->sched_priority > rlim_rtprio)
4280 return -EPERM;
4283 * Like positive nice levels, dont allow tasks to
4284 * move out of SCHED_IDLE either:
4286 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4287 return -EPERM;
4289 /* can't change other user's priorities */
4290 if ((current->euid != p->euid) &&
4291 (current->euid != p->uid))
4292 return -EPERM;
4295 retval = security_task_setscheduler(p, policy, param);
4296 if (retval)
4297 return retval;
4299 * make sure no PI-waiters arrive (or leave) while we are
4300 * changing the priority of the task:
4302 spin_lock_irqsave(&p->pi_lock, flags);
4304 * To be able to change p->policy safely, the apropriate
4305 * runqueue lock must be held.
4307 rq = __task_rq_lock(p);
4308 /* recheck policy now with rq lock held */
4309 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4310 policy = oldpolicy = -1;
4311 __task_rq_unlock(rq);
4312 spin_unlock_irqrestore(&p->pi_lock, flags);
4313 goto recheck;
4315 update_rq_clock(rq);
4316 on_rq = p->se.on_rq;
4317 running = task_running(rq, p);
4318 if (on_rq) {
4319 deactivate_task(rq, p, 0);
4320 if (running)
4321 p->sched_class->put_prev_task(rq, p);
4324 oldprio = p->prio;
4325 __setscheduler(rq, p, policy, param->sched_priority);
4327 if (on_rq) {
4328 if (running)
4329 p->sched_class->set_curr_task(rq);
4330 activate_task(rq, p, 0);
4332 * Reschedule if we are currently running on this runqueue and
4333 * our priority decreased, or if we are not currently running on
4334 * this runqueue and our priority is higher than the current's
4336 if (running) {
4337 if (p->prio > oldprio)
4338 resched_task(rq->curr);
4339 } else {
4340 check_preempt_curr(rq, p);
4343 __task_rq_unlock(rq);
4344 spin_unlock_irqrestore(&p->pi_lock, flags);
4346 rt_mutex_adjust_pi(p);
4348 return 0;
4350 EXPORT_SYMBOL_GPL(sched_setscheduler);
4352 static int
4353 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4355 struct sched_param lparam;
4356 struct task_struct *p;
4357 int retval;
4359 if (!param || pid < 0)
4360 return -EINVAL;
4361 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4362 return -EFAULT;
4364 rcu_read_lock();
4365 retval = -ESRCH;
4366 p = find_process_by_pid(pid);
4367 if (p != NULL)
4368 retval = sched_setscheduler(p, policy, &lparam);
4369 rcu_read_unlock();
4371 return retval;
4375 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4376 * @pid: the pid in question.
4377 * @policy: new policy.
4378 * @param: structure containing the new RT priority.
4380 asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
4381 struct sched_param __user *param)
4383 /* negative values for policy are not valid */
4384 if (policy < 0)
4385 return -EINVAL;
4387 return do_sched_setscheduler(pid, policy, param);
4391 * sys_sched_setparam - set/change the RT priority of a thread
4392 * @pid: the pid in question.
4393 * @param: structure containing the new RT priority.
4395 asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
4397 return do_sched_setscheduler(pid, -1, param);
4401 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4402 * @pid: the pid in question.
4404 asmlinkage long sys_sched_getscheduler(pid_t pid)
4406 struct task_struct *p;
4407 int retval;
4409 if (pid < 0)
4410 return -EINVAL;
4412 retval = -ESRCH;
4413 read_lock(&tasklist_lock);
4414 p = find_process_by_pid(pid);
4415 if (p) {
4416 retval = security_task_getscheduler(p);
4417 if (!retval)
4418 retval = p->policy;
4420 read_unlock(&tasklist_lock);
4421 return retval;
4425 * sys_sched_getscheduler - get the RT priority of a thread
4426 * @pid: the pid in question.
4427 * @param: structure containing the RT priority.
4429 asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
4431 struct sched_param lp;
4432 struct task_struct *p;
4433 int retval;
4435 if (!param || pid < 0)
4436 return -EINVAL;
4438 read_lock(&tasklist_lock);
4439 p = find_process_by_pid(pid);
4440 retval = -ESRCH;
4441 if (!p)
4442 goto out_unlock;
4444 retval = security_task_getscheduler(p);
4445 if (retval)
4446 goto out_unlock;
4448 lp.sched_priority = p->rt_priority;
4449 read_unlock(&tasklist_lock);
4452 * This one might sleep, we cannot do it with a spinlock held ...
4454 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4456 return retval;
4458 out_unlock:
4459 read_unlock(&tasklist_lock);
4460 return retval;
4463 long sched_setaffinity(pid_t pid, cpumask_t new_mask)
4465 cpumask_t cpus_allowed;
4466 struct task_struct *p;
4467 int retval;
4469 mutex_lock(&sched_hotcpu_mutex);
4470 read_lock(&tasklist_lock);
4472 p = find_process_by_pid(pid);
4473 if (!p) {
4474 read_unlock(&tasklist_lock);
4475 mutex_unlock(&sched_hotcpu_mutex);
4476 return -ESRCH;
4480 * It is not safe to call set_cpus_allowed with the
4481 * tasklist_lock held. We will bump the task_struct's
4482 * usage count and then drop tasklist_lock.
4484 get_task_struct(p);
4485 read_unlock(&tasklist_lock);
4487 retval = -EPERM;
4488 if ((current->euid != p->euid) && (current->euid != p->uid) &&
4489 !capable(CAP_SYS_NICE))
4490 goto out_unlock;
4492 retval = security_task_setscheduler(p, 0, NULL);
4493 if (retval)
4494 goto out_unlock;
4496 cpus_allowed = cpuset_cpus_allowed(p);
4497 cpus_and(new_mask, new_mask, cpus_allowed);
4498 again:
4499 retval = set_cpus_allowed(p, new_mask);
4501 if (!retval) {
4502 cpus_allowed = cpuset_cpus_allowed(p);
4503 if (!cpus_subset(new_mask, cpus_allowed)) {
4505 * We must have raced with a concurrent cpuset
4506 * update. Just reset the cpus_allowed to the
4507 * cpuset's cpus_allowed
4509 new_mask = cpus_allowed;
4510 goto again;
4513 out_unlock:
4514 put_task_struct(p);
4515 mutex_unlock(&sched_hotcpu_mutex);
4516 return retval;
4519 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4520 cpumask_t *new_mask)
4522 if (len < sizeof(cpumask_t)) {
4523 memset(new_mask, 0, sizeof(cpumask_t));
4524 } else if (len > sizeof(cpumask_t)) {
4525 len = sizeof(cpumask_t);
4527 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4531 * sys_sched_setaffinity - set the cpu affinity of a process
4532 * @pid: pid of the process
4533 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4534 * @user_mask_ptr: user-space pointer to the new cpu mask
4536 asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
4537 unsigned long __user *user_mask_ptr)
4539 cpumask_t new_mask;
4540 int retval;
4542 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
4543 if (retval)
4544 return retval;
4546 return sched_setaffinity(pid, new_mask);
4550 * Represents all cpu's present in the system
4551 * In systems capable of hotplug, this map could dynamically grow
4552 * as new cpu's are detected in the system via any platform specific
4553 * method, such as ACPI for e.g.
4556 cpumask_t cpu_present_map __read_mostly;
4557 EXPORT_SYMBOL(cpu_present_map);
4559 #ifndef CONFIG_SMP
4560 cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
4561 EXPORT_SYMBOL(cpu_online_map);
4563 cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
4564 EXPORT_SYMBOL(cpu_possible_map);
4565 #endif
4567 long sched_getaffinity(pid_t pid, cpumask_t *mask)
4569 struct task_struct *p;
4570 int retval;
4572 mutex_lock(&sched_hotcpu_mutex);
4573 read_lock(&tasklist_lock);
4575 retval = -ESRCH;
4576 p = find_process_by_pid(pid);
4577 if (!p)
4578 goto out_unlock;
4580 retval = security_task_getscheduler(p);
4581 if (retval)
4582 goto out_unlock;
4584 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
4586 out_unlock:
4587 read_unlock(&tasklist_lock);
4588 mutex_unlock(&sched_hotcpu_mutex);
4590 return retval;
4594 * sys_sched_getaffinity - get the cpu affinity of a process
4595 * @pid: pid of the process
4596 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4597 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4599 asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
4600 unsigned long __user *user_mask_ptr)
4602 int ret;
4603 cpumask_t mask;
4605 if (len < sizeof(cpumask_t))
4606 return -EINVAL;
4608 ret = sched_getaffinity(pid, &mask);
4609 if (ret < 0)
4610 return ret;
4612 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
4613 return -EFAULT;
4615 return sizeof(cpumask_t);
4619 * sys_sched_yield - yield the current processor to other threads.
4621 * This function yields the current CPU to other tasks. If there are no
4622 * other threads running on this CPU then this function will return.
4624 asmlinkage long sys_sched_yield(void)
4626 struct rq *rq = this_rq_lock();
4628 schedstat_inc(rq, yld_count);
4629 current->sched_class->yield_task(rq);
4632 * Since we are going to call schedule() anyway, there's
4633 * no need to preempt or enable interrupts:
4635 __release(rq->lock);
4636 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4637 _raw_spin_unlock(&rq->lock);
4638 preempt_enable_no_resched();
4640 schedule();
4642 return 0;
4645 static void __cond_resched(void)
4647 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4648 __might_sleep(__FILE__, __LINE__);
4649 #endif
4651 * The BKS might be reacquired before we have dropped
4652 * PREEMPT_ACTIVE, which could trigger a second
4653 * cond_resched() call.
4655 do {
4656 add_preempt_count(PREEMPT_ACTIVE);
4657 schedule();
4658 sub_preempt_count(PREEMPT_ACTIVE);
4659 } while (need_resched());
4662 int __sched cond_resched(void)
4664 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
4665 system_state == SYSTEM_RUNNING) {
4666 __cond_resched();
4667 return 1;
4669 return 0;
4671 EXPORT_SYMBOL(cond_resched);
4674 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4675 * call schedule, and on return reacquire the lock.
4677 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4678 * operations here to prevent schedule() from being called twice (once via
4679 * spin_unlock(), once by hand).
4681 int cond_resched_lock(spinlock_t *lock)
4683 int ret = 0;
4685 if (need_lockbreak(lock)) {
4686 spin_unlock(lock);
4687 cpu_relax();
4688 ret = 1;
4689 spin_lock(lock);
4691 if (need_resched() && system_state == SYSTEM_RUNNING) {
4692 spin_release(&lock->dep_map, 1, _THIS_IP_);
4693 _raw_spin_unlock(lock);
4694 preempt_enable_no_resched();
4695 __cond_resched();
4696 ret = 1;
4697 spin_lock(lock);
4699 return ret;
4701 EXPORT_SYMBOL(cond_resched_lock);
4703 int __sched cond_resched_softirq(void)
4705 BUG_ON(!in_softirq());
4707 if (need_resched() && system_state == SYSTEM_RUNNING) {
4708 local_bh_enable();
4709 __cond_resched();
4710 local_bh_disable();
4711 return 1;
4713 return 0;
4715 EXPORT_SYMBOL(cond_resched_softirq);
4718 * yield - yield the current processor to other threads.
4720 * This is a shortcut for kernel-space yielding - it marks the
4721 * thread runnable and calls sys_sched_yield().
4723 void __sched yield(void)
4725 set_current_state(TASK_RUNNING);
4726 sys_sched_yield();
4728 EXPORT_SYMBOL(yield);
4731 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4732 * that process accounting knows that this is a task in IO wait state.
4734 * But don't do that if it is a deliberate, throttling IO wait (this task
4735 * has set its backing_dev_info: the queue against which it should throttle)
4737 void __sched io_schedule(void)
4739 struct rq *rq = &__raw_get_cpu_var(runqueues);
4741 delayacct_blkio_start();
4742 atomic_inc(&rq->nr_iowait);
4743 schedule();
4744 atomic_dec(&rq->nr_iowait);
4745 delayacct_blkio_end();
4747 EXPORT_SYMBOL(io_schedule);
4749 long __sched io_schedule_timeout(long timeout)
4751 struct rq *rq = &__raw_get_cpu_var(runqueues);
4752 long ret;
4754 delayacct_blkio_start();
4755 atomic_inc(&rq->nr_iowait);
4756 ret = schedule_timeout(timeout);
4757 atomic_dec(&rq->nr_iowait);
4758 delayacct_blkio_end();
4759 return ret;
4763 * sys_sched_get_priority_max - return maximum RT priority.
4764 * @policy: scheduling class.
4766 * this syscall returns the maximum rt_priority that can be used
4767 * by a given scheduling class.
4769 asmlinkage long sys_sched_get_priority_max(int policy)
4771 int ret = -EINVAL;
4773 switch (policy) {
4774 case SCHED_FIFO:
4775 case SCHED_RR:
4776 ret = MAX_USER_RT_PRIO-1;
4777 break;
4778 case SCHED_NORMAL:
4779 case SCHED_BATCH:
4780 case SCHED_IDLE:
4781 ret = 0;
4782 break;
4784 return ret;
4788 * sys_sched_get_priority_min - return minimum RT priority.
4789 * @policy: scheduling class.
4791 * this syscall returns the minimum rt_priority that can be used
4792 * by a given scheduling class.
4794 asmlinkage long sys_sched_get_priority_min(int policy)
4796 int ret = -EINVAL;
4798 switch (policy) {
4799 case SCHED_FIFO:
4800 case SCHED_RR:
4801 ret = 1;
4802 break;
4803 case SCHED_NORMAL:
4804 case SCHED_BATCH:
4805 case SCHED_IDLE:
4806 ret = 0;
4808 return ret;
4812 * sys_sched_rr_get_interval - return the default timeslice of a process.
4813 * @pid: pid of the process.
4814 * @interval: userspace pointer to the timeslice value.
4816 * this syscall writes the default timeslice value of a given process
4817 * into the user-space timespec buffer. A value of '0' means infinity.
4819 asmlinkage
4820 long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4822 struct task_struct *p;
4823 unsigned int time_slice;
4824 int retval;
4825 struct timespec t;
4827 if (pid < 0)
4828 return -EINVAL;
4830 retval = -ESRCH;
4831 read_lock(&tasklist_lock);
4832 p = find_process_by_pid(pid);
4833 if (!p)
4834 goto out_unlock;
4836 retval = security_task_getscheduler(p);
4837 if (retval)
4838 goto out_unlock;
4840 if (p->policy == SCHED_FIFO)
4841 time_slice = 0;
4842 else if (p->policy == SCHED_RR)
4843 time_slice = DEF_TIMESLICE;
4844 else {
4845 struct sched_entity *se = &p->se;
4846 unsigned long flags;
4847 struct rq *rq;
4849 rq = task_rq_lock(p, &flags);
4850 time_slice = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
4851 task_rq_unlock(rq, &flags);
4853 read_unlock(&tasklist_lock);
4854 jiffies_to_timespec(time_slice, &t);
4855 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4856 return retval;
4858 out_unlock:
4859 read_unlock(&tasklist_lock);
4860 return retval;
4863 static const char stat_nam[] = "RSDTtZX";
4865 static void show_task(struct task_struct *p)
4867 unsigned long free = 0;
4868 unsigned state;
4870 state = p->state ? __ffs(p->state) + 1 : 0;
4871 printk(KERN_INFO "%-13.13s %c", p->comm,
4872 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4873 #if BITS_PER_LONG == 32
4874 if (state == TASK_RUNNING)
4875 printk(KERN_CONT " running ");
4876 else
4877 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4878 #else
4879 if (state == TASK_RUNNING)
4880 printk(KERN_CONT " running task ");
4881 else
4882 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4883 #endif
4884 #ifdef CONFIG_DEBUG_STACK_USAGE
4886 unsigned long *n = end_of_stack(p);
4887 while (!*n)
4888 n++;
4889 free = (unsigned long)n - (unsigned long)end_of_stack(p);
4891 #endif
4892 printk(KERN_CONT "%5lu %5d %6d\n", free,
4893 task_pid_nr(p), task_pid_nr(p->parent));
4895 if (state != TASK_RUNNING)
4896 show_stack(p, NULL);
4899 void show_state_filter(unsigned long state_filter)
4901 struct task_struct *g, *p;
4903 #if BITS_PER_LONG == 32
4904 printk(KERN_INFO
4905 " task PC stack pid father\n");
4906 #else
4907 printk(KERN_INFO
4908 " task PC stack pid father\n");
4909 #endif
4910 read_lock(&tasklist_lock);
4911 do_each_thread(g, p) {
4913 * reset the NMI-timeout, listing all files on a slow
4914 * console might take alot of time:
4916 touch_nmi_watchdog();
4917 if (!state_filter || (p->state & state_filter))
4918 show_task(p);
4919 } while_each_thread(g, p);
4921 touch_all_softlockup_watchdogs();
4923 #ifdef CONFIG_SCHED_DEBUG
4924 sysrq_sched_debug_show();
4925 #endif
4926 read_unlock(&tasklist_lock);
4928 * Only show locks if all tasks are dumped:
4930 if (state_filter == -1)
4931 debug_show_all_locks();
4934 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4936 idle->sched_class = &idle_sched_class;
4940 * init_idle - set up an idle thread for a given CPU
4941 * @idle: task in question
4942 * @cpu: cpu the idle task belongs to
4944 * NOTE: this function does not set the idle thread's NEED_RESCHED
4945 * flag, to make booting more robust.
4947 void __cpuinit init_idle(struct task_struct *idle, int cpu)
4949 struct rq *rq = cpu_rq(cpu);
4950 unsigned long flags;
4952 __sched_fork(idle);
4953 idle->se.exec_start = sched_clock();
4955 idle->prio = idle->normal_prio = MAX_PRIO;
4956 idle->cpus_allowed = cpumask_of_cpu(cpu);
4957 __set_task_cpu(idle, cpu);
4959 spin_lock_irqsave(&rq->lock, flags);
4960 rq->curr = rq->idle = idle;
4961 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4962 idle->oncpu = 1;
4963 #endif
4964 spin_unlock_irqrestore(&rq->lock, flags);
4966 /* Set the preempt count _outside_ the spinlocks! */
4967 #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
4968 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
4969 #else
4970 task_thread_info(idle)->preempt_count = 0;
4971 #endif
4973 * The idle tasks have their own, simple scheduling class:
4975 idle->sched_class = &idle_sched_class;
4979 * In a system that switches off the HZ timer nohz_cpu_mask
4980 * indicates which cpus entered this state. This is used
4981 * in the rcu update to wait only for active cpus. For system
4982 * which do not switch off the HZ timer nohz_cpu_mask should
4983 * always be CPU_MASK_NONE.
4985 cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
4988 * Increase the granularity value when there are more CPUs,
4989 * because with more CPUs the 'effective latency' as visible
4990 * to users decreases. But the relationship is not linear,
4991 * so pick a second-best guess by going with the log2 of the
4992 * number of CPUs.
4994 * This idea comes from the SD scheduler of Con Kolivas:
4996 static inline void sched_init_granularity(void)
4998 unsigned int factor = 1 + ilog2(num_online_cpus());
4999 const unsigned long limit = 200000000;
5001 sysctl_sched_min_granularity *= factor;
5002 if (sysctl_sched_min_granularity > limit)
5003 sysctl_sched_min_granularity = limit;
5005 sysctl_sched_latency *= factor;
5006 if (sysctl_sched_latency > limit)
5007 sysctl_sched_latency = limit;
5009 sysctl_sched_wakeup_granularity *= factor;
5010 sysctl_sched_batch_wakeup_granularity *= factor;
5013 #ifdef CONFIG_SMP
5015 * This is how migration works:
5017 * 1) we queue a struct migration_req structure in the source CPU's
5018 * runqueue and wake up that CPU's migration thread.
5019 * 2) we down() the locked semaphore => thread blocks.
5020 * 3) migration thread wakes up (implicitly it forces the migrated
5021 * thread off the CPU)
5022 * 4) it gets the migration request and checks whether the migrated
5023 * task is still in the wrong runqueue.
5024 * 5) if it's in the wrong runqueue then the migration thread removes
5025 * it and puts it into the right queue.
5026 * 6) migration thread up()s the semaphore.
5027 * 7) we wake up and the migration is done.
5031 * Change a given task's CPU affinity. Migrate the thread to a
5032 * proper CPU and schedule it away if the CPU it's executing on
5033 * is removed from the allowed bitmask.
5035 * NOTE: the caller must have a valid reference to the task, the
5036 * task must not exit() & deallocate itself prematurely. The
5037 * call is not atomic; no spinlocks may be held.
5039 int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
5041 struct migration_req req;
5042 unsigned long flags;
5043 struct rq *rq;
5044 int ret = 0;
5046 rq = task_rq_lock(p, &flags);
5047 if (!cpus_intersects(new_mask, cpu_online_map)) {
5048 ret = -EINVAL;
5049 goto out;
5052 p->cpus_allowed = new_mask;
5053 /* Can the task run on the task's current CPU? If so, we're done */
5054 if (cpu_isset(task_cpu(p), new_mask))
5055 goto out;
5057 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
5058 /* Need help from migration thread: drop lock and wait. */
5059 task_rq_unlock(rq, &flags);
5060 wake_up_process(rq->migration_thread);
5061 wait_for_completion(&req.done);
5062 tlb_migrate_finish(p->mm);
5063 return 0;
5065 out:
5066 task_rq_unlock(rq, &flags);
5068 return ret;
5070 EXPORT_SYMBOL_GPL(set_cpus_allowed);
5073 * Move (not current) task off this cpu, onto dest cpu. We're doing
5074 * this because either it can't run here any more (set_cpus_allowed()
5075 * away from this CPU, or CPU going down), or because we're
5076 * attempting to rebalance this task on exec (sched_exec).
5078 * So we race with normal scheduler movements, but that's OK, as long
5079 * as the task is no longer on this CPU.
5081 * Returns non-zero if task was successfully migrated.
5083 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
5085 struct rq *rq_dest, *rq_src;
5086 int ret = 0, on_rq;
5088 if (unlikely(cpu_is_offline(dest_cpu)))
5089 return ret;
5091 rq_src = cpu_rq(src_cpu);
5092 rq_dest = cpu_rq(dest_cpu);
5094 double_rq_lock(rq_src, rq_dest);
5095 /* Already moved. */
5096 if (task_cpu(p) != src_cpu)
5097 goto out;
5098 /* Affinity changed (again). */
5099 if (!cpu_isset(dest_cpu, p->cpus_allowed))
5100 goto out;
5102 on_rq = p->se.on_rq;
5103 if (on_rq)
5104 deactivate_task(rq_src, p, 0);
5106 set_task_cpu(p, dest_cpu);
5107 if (on_rq) {
5108 activate_task(rq_dest, p, 0);
5109 check_preempt_curr(rq_dest, p);
5111 ret = 1;
5112 out:
5113 double_rq_unlock(rq_src, rq_dest);
5114 return ret;
5118 * migration_thread - this is a highprio system thread that performs
5119 * thread migration by bumping thread off CPU then 'pushing' onto
5120 * another runqueue.
5122 static int migration_thread(void *data)
5124 int cpu = (long)data;
5125 struct rq *rq;
5127 rq = cpu_rq(cpu);
5128 BUG_ON(rq->migration_thread != current);
5130 set_current_state(TASK_INTERRUPTIBLE);
5131 while (!kthread_should_stop()) {
5132 struct migration_req *req;
5133 struct list_head *head;
5135 spin_lock_irq(&rq->lock);
5137 if (cpu_is_offline(cpu)) {
5138 spin_unlock_irq(&rq->lock);
5139 goto wait_to_die;
5142 if (rq->active_balance) {
5143 active_load_balance(rq, cpu);
5144 rq->active_balance = 0;
5147 head = &rq->migration_queue;
5149 if (list_empty(head)) {
5150 spin_unlock_irq(&rq->lock);
5151 schedule();
5152 set_current_state(TASK_INTERRUPTIBLE);
5153 continue;
5155 req = list_entry(head->next, struct migration_req, list);
5156 list_del_init(head->next);
5158 spin_unlock(&rq->lock);
5159 __migrate_task(req->task, cpu, req->dest_cpu);
5160 local_irq_enable();
5162 complete(&req->done);
5164 __set_current_state(TASK_RUNNING);
5165 return 0;
5167 wait_to_die:
5168 /* Wait for kthread_stop */
5169 set_current_state(TASK_INTERRUPTIBLE);
5170 while (!kthread_should_stop()) {
5171 schedule();
5172 set_current_state(TASK_INTERRUPTIBLE);
5174 __set_current_state(TASK_RUNNING);
5175 return 0;
5178 #ifdef CONFIG_HOTPLUG_CPU
5180 static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
5182 int ret;
5184 local_irq_disable();
5185 ret = __migrate_task(p, src_cpu, dest_cpu);
5186 local_irq_enable();
5187 return ret;
5191 * Figure out where task on dead CPU should go, use force if necessary.
5192 * NOTE: interrupts should be disabled by the caller
5194 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
5196 unsigned long flags;
5197 cpumask_t mask;
5198 struct rq *rq;
5199 int dest_cpu;
5201 do {
5202 /* On same node? */
5203 mask = node_to_cpumask(cpu_to_node(dead_cpu));
5204 cpus_and(mask, mask, p->cpus_allowed);
5205 dest_cpu = any_online_cpu(mask);
5207 /* On any allowed CPU? */
5208 if (dest_cpu == NR_CPUS)
5209 dest_cpu = any_online_cpu(p->cpus_allowed);
5211 /* No more Mr. Nice Guy. */
5212 if (dest_cpu == NR_CPUS) {
5213 cpumask_t cpus_allowed = cpuset_cpus_allowed_locked(p);
5215 * Try to stay on the same cpuset, where the
5216 * current cpuset may be a subset of all cpus.
5217 * The cpuset_cpus_allowed_locked() variant of
5218 * cpuset_cpus_allowed() will not block. It must be
5219 * called within calls to cpuset_lock/cpuset_unlock.
5221 rq = task_rq_lock(p, &flags);
5222 p->cpus_allowed = cpus_allowed;
5223 dest_cpu = any_online_cpu(p->cpus_allowed);
5224 task_rq_unlock(rq, &flags);
5227 * Don't tell them about moving exiting tasks or
5228 * kernel threads (both mm NULL), since they never
5229 * leave kernel.
5231 if (p->mm && printk_ratelimit())
5232 printk(KERN_INFO "process %d (%s) no "
5233 "longer affine to cpu%d\n",
5234 task_pid_nr(p), p->comm, dead_cpu);
5236 } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
5240 * While a dead CPU has no uninterruptible tasks queued at this point,
5241 * it might still have a nonzero ->nr_uninterruptible counter, because
5242 * for performance reasons the counter is not stricly tracking tasks to
5243 * their home CPUs. So we just add the counter to another CPU's counter,
5244 * to keep the global sum constant after CPU-down:
5246 static void migrate_nr_uninterruptible(struct rq *rq_src)
5248 struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
5249 unsigned long flags;
5251 local_irq_save(flags);
5252 double_rq_lock(rq_src, rq_dest);
5253 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5254 rq_src->nr_uninterruptible = 0;
5255 double_rq_unlock(rq_src, rq_dest);
5256 local_irq_restore(flags);
5259 /* Run through task list and migrate tasks from the dead cpu. */
5260 static void migrate_live_tasks(int src_cpu)
5262 struct task_struct *p, *t;
5264 read_lock(&tasklist_lock);
5266 do_each_thread(t, p) {
5267 if (p == current)
5268 continue;
5270 if (task_cpu(p) == src_cpu)
5271 move_task_off_dead_cpu(src_cpu, p);
5272 } while_each_thread(t, p);
5274 read_unlock(&tasklist_lock);
5278 * activate_idle_task - move idle task to the _front_ of runqueue.
5280 static void activate_idle_task(struct task_struct *p, struct rq *rq)
5282 update_rq_clock(rq);
5284 if (is_task_loadavg(p))
5285 rq->nr_uninterruptible--;
5287 enqueue_task(rq, p, 0);
5288 inc_nr_running(p, rq);
5292 * Schedules idle task to be the next runnable task on current CPU.
5293 * It does so by boosting its priority to highest possible and adding it to
5294 * the _front_ of the runqueue. Used by CPU offline code.
5296 void sched_idle_next(void)
5298 int this_cpu = smp_processor_id();
5299 struct rq *rq = cpu_rq(this_cpu);
5300 struct task_struct *p = rq->idle;
5301 unsigned long flags;
5303 /* cpu has to be offline */
5304 BUG_ON(cpu_online(this_cpu));
5307 * Strictly not necessary since rest of the CPUs are stopped by now
5308 * and interrupts disabled on the current cpu.
5310 spin_lock_irqsave(&rq->lock, flags);
5312 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5314 /* Add idle task to the _front_ of its priority queue: */
5315 activate_idle_task(p, rq);
5317 spin_unlock_irqrestore(&rq->lock, flags);
5321 * Ensures that the idle task is using init_mm right before its cpu goes
5322 * offline.
5324 void idle_task_exit(void)
5326 struct mm_struct *mm = current->active_mm;
5328 BUG_ON(cpu_online(smp_processor_id()));
5330 if (mm != &init_mm)
5331 switch_mm(mm, &init_mm, current);
5332 mmdrop(mm);
5335 /* called under rq->lock with disabled interrupts */
5336 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
5338 struct rq *rq = cpu_rq(dead_cpu);
5340 /* Must be exiting, otherwise would be on tasklist. */
5341 BUG_ON(!p->exit_state);
5343 /* Cannot have done final schedule yet: would have vanished. */
5344 BUG_ON(p->state == TASK_DEAD);
5346 get_task_struct(p);
5349 * Drop lock around migration; if someone else moves it,
5350 * that's OK. No task can be added to this CPU, so iteration is
5351 * fine.
5353 spin_unlock_irq(&rq->lock);
5354 move_task_off_dead_cpu(dead_cpu, p);
5355 spin_lock_irq(&rq->lock);
5357 put_task_struct(p);
5360 /* release_task() removes task from tasklist, so we won't find dead tasks. */
5361 static void migrate_dead_tasks(unsigned int dead_cpu)
5363 struct rq *rq = cpu_rq(dead_cpu);
5364 struct task_struct *next;
5366 for ( ; ; ) {
5367 if (!rq->nr_running)
5368 break;
5369 update_rq_clock(rq);
5370 next = pick_next_task(rq, rq->curr);
5371 if (!next)
5372 break;
5373 migrate_dead(dead_cpu, next);
5377 #endif /* CONFIG_HOTPLUG_CPU */
5379 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5381 static struct ctl_table sd_ctl_dir[] = {
5383 .procname = "sched_domain",
5384 .mode = 0555,
5386 {0, },
5389 static struct ctl_table sd_ctl_root[] = {
5391 .ctl_name = CTL_KERN,
5392 .procname = "kernel",
5393 .mode = 0555,
5394 .child = sd_ctl_dir,
5396 {0, },
5399 static struct ctl_table *sd_alloc_ctl_entry(int n)
5401 struct ctl_table *entry =
5402 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5404 return entry;
5407 static void sd_free_ctl_entry(struct ctl_table **tablep)
5409 struct ctl_table *entry;
5412 * In the intermediate directories, both the child directory and
5413 * procname are dynamically allocated and could fail but the mode
5414 * will always be set. In the lowest directory the names are
5415 * static strings and all have proc handlers.
5417 for (entry = *tablep; entry->mode; entry++) {
5418 if (entry->child)
5419 sd_free_ctl_entry(&entry->child);
5420 if (entry->proc_handler == NULL)
5421 kfree(entry->procname);
5424 kfree(*tablep);
5425 *tablep = NULL;
5428 static void
5429 set_table_entry(struct ctl_table *entry,
5430 const char *procname, void *data, int maxlen,
5431 mode_t mode, proc_handler *proc_handler)
5433 entry->procname = procname;
5434 entry->data = data;
5435 entry->maxlen = maxlen;
5436 entry->mode = mode;
5437 entry->proc_handler = proc_handler;
5440 static struct ctl_table *
5441 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5443 struct ctl_table *table = sd_alloc_ctl_entry(12);
5445 if (table == NULL)
5446 return NULL;
5448 set_table_entry(&table[0], "min_interval", &sd->min_interval,
5449 sizeof(long), 0644, proc_doulongvec_minmax);
5450 set_table_entry(&table[1], "max_interval", &sd->max_interval,
5451 sizeof(long), 0644, proc_doulongvec_minmax);
5452 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5453 sizeof(int), 0644, proc_dointvec_minmax);
5454 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5455 sizeof(int), 0644, proc_dointvec_minmax);
5456 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5457 sizeof(int), 0644, proc_dointvec_minmax);
5458 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5459 sizeof(int), 0644, proc_dointvec_minmax);
5460 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5461 sizeof(int), 0644, proc_dointvec_minmax);
5462 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5463 sizeof(int), 0644, proc_dointvec_minmax);
5464 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5465 sizeof(int), 0644, proc_dointvec_minmax);
5466 set_table_entry(&table[9], "cache_nice_tries",
5467 &sd->cache_nice_tries,
5468 sizeof(int), 0644, proc_dointvec_minmax);
5469 set_table_entry(&table[10], "flags", &sd->flags,
5470 sizeof(int), 0644, proc_dointvec_minmax);
5471 /* &table[11] is terminator */
5473 return table;
5476 static ctl_table * sd_alloc_ctl_cpu_table(int cpu)
5478 struct ctl_table *entry, *table;
5479 struct sched_domain *sd;
5480 int domain_num = 0, i;
5481 char buf[32];
5483 for_each_domain(cpu, sd)
5484 domain_num++;
5485 entry = table = sd_alloc_ctl_entry(domain_num + 1);
5486 if (table == NULL)
5487 return NULL;
5489 i = 0;
5490 for_each_domain(cpu, sd) {
5491 snprintf(buf, 32, "domain%d", i);
5492 entry->procname = kstrdup(buf, GFP_KERNEL);
5493 entry->mode = 0555;
5494 entry->child = sd_alloc_ctl_domain_table(sd);
5495 entry++;
5496 i++;
5498 return table;
5501 static struct ctl_table_header *sd_sysctl_header;
5502 static void register_sched_domain_sysctl(void)
5504 int i, cpu_num = num_online_cpus();
5505 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5506 char buf[32];
5508 WARN_ON(sd_ctl_dir[0].child);
5509 sd_ctl_dir[0].child = entry;
5511 if (entry == NULL)
5512 return;
5514 for_each_online_cpu(i) {
5515 snprintf(buf, 32, "cpu%d", i);
5516 entry->procname = kstrdup(buf, GFP_KERNEL);
5517 entry->mode = 0555;
5518 entry->child = sd_alloc_ctl_cpu_table(i);
5519 entry++;
5522 WARN_ON(sd_sysctl_header);
5523 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5526 /* may be called multiple times per register */
5527 static void unregister_sched_domain_sysctl(void)
5529 if (sd_sysctl_header)
5530 unregister_sysctl_table(sd_sysctl_header);
5531 sd_sysctl_header = NULL;
5532 if (sd_ctl_dir[0].child)
5533 sd_free_ctl_entry(&sd_ctl_dir[0].child);
5535 #else
5536 static void register_sched_domain_sysctl(void)
5539 static void unregister_sched_domain_sysctl(void)
5542 #endif
5545 * migration_call - callback that gets triggered when a CPU is added.
5546 * Here we can start up the necessary migration thread for the new CPU.
5548 static int __cpuinit
5549 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5551 struct task_struct *p;
5552 int cpu = (long)hcpu;
5553 unsigned long flags;
5554 struct rq *rq;
5556 switch (action) {
5557 case CPU_LOCK_ACQUIRE:
5558 mutex_lock(&sched_hotcpu_mutex);
5559 break;
5561 case CPU_UP_PREPARE:
5562 case CPU_UP_PREPARE_FROZEN:
5563 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
5564 if (IS_ERR(p))
5565 return NOTIFY_BAD;
5566 kthread_bind(p, cpu);
5567 /* Must be high prio: stop_machine expects to yield to it. */
5568 rq = task_rq_lock(p, &flags);
5569 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5570 task_rq_unlock(rq, &flags);
5571 cpu_rq(cpu)->migration_thread = p;
5572 break;
5574 case CPU_ONLINE:
5575 case CPU_ONLINE_FROZEN:
5576 /* Strictly unnecessary, as first user will wake it. */
5577 wake_up_process(cpu_rq(cpu)->migration_thread);
5578 break;
5580 #ifdef CONFIG_HOTPLUG_CPU
5581 case CPU_UP_CANCELED:
5582 case CPU_UP_CANCELED_FROZEN:
5583 if (!cpu_rq(cpu)->migration_thread)
5584 break;
5585 /* Unbind it from offline cpu so it can run. Fall thru. */
5586 kthread_bind(cpu_rq(cpu)->migration_thread,
5587 any_online_cpu(cpu_online_map));
5588 kthread_stop(cpu_rq(cpu)->migration_thread);
5589 cpu_rq(cpu)->migration_thread = NULL;
5590 break;
5592 case CPU_DEAD:
5593 case CPU_DEAD_FROZEN:
5594 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
5595 migrate_live_tasks(cpu);
5596 rq = cpu_rq(cpu);
5597 kthread_stop(rq->migration_thread);
5598 rq->migration_thread = NULL;
5599 /* Idle task back to normal (off runqueue, low prio) */
5600 spin_lock_irq(&rq->lock);
5601 update_rq_clock(rq);
5602 deactivate_task(rq, rq->idle, 0);
5603 rq->idle->static_prio = MAX_PRIO;
5604 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
5605 rq->idle->sched_class = &idle_sched_class;
5606 migrate_dead_tasks(cpu);
5607 spin_unlock_irq(&rq->lock);
5608 cpuset_unlock();
5609 migrate_nr_uninterruptible(rq);
5610 BUG_ON(rq->nr_running != 0);
5612 /* No need to migrate the tasks: it was best-effort if
5613 * they didn't take sched_hotcpu_mutex. Just wake up
5614 * the requestors. */
5615 spin_lock_irq(&rq->lock);
5616 while (!list_empty(&rq->migration_queue)) {
5617 struct migration_req *req;
5619 req = list_entry(rq->migration_queue.next,
5620 struct migration_req, list);
5621 list_del_init(&req->list);
5622 complete(&req->done);
5624 spin_unlock_irq(&rq->lock);
5625 break;
5626 #endif
5627 case CPU_LOCK_RELEASE:
5628 mutex_unlock(&sched_hotcpu_mutex);
5629 break;
5631 return NOTIFY_OK;
5634 /* Register at highest priority so that task migration (migrate_all_tasks)
5635 * happens before everything else.
5637 static struct notifier_block __cpuinitdata migration_notifier = {
5638 .notifier_call = migration_call,
5639 .priority = 10
5642 void __init migration_init(void)
5644 void *cpu = (void *)(long)smp_processor_id();
5645 int err;
5647 /* Start one for the boot CPU: */
5648 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5649 BUG_ON(err == NOTIFY_BAD);
5650 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5651 register_cpu_notifier(&migration_notifier);
5653 #endif
5655 #ifdef CONFIG_SMP
5657 /* Number of possible processor ids */
5658 int nr_cpu_ids __read_mostly = NR_CPUS;
5659 EXPORT_SYMBOL(nr_cpu_ids);
5661 #ifdef CONFIG_SCHED_DEBUG
5663 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level)
5665 struct sched_group *group = sd->groups;
5666 cpumask_t groupmask;
5667 char str[NR_CPUS];
5669 cpumask_scnprintf(str, NR_CPUS, sd->span);
5670 cpus_clear(groupmask);
5672 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5674 if (!(sd->flags & SD_LOAD_BALANCE)) {
5675 printk("does not load-balance\n");
5676 if (sd->parent)
5677 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5678 " has parent");
5679 return -1;
5682 printk(KERN_CONT "span %s\n", str);
5684 if (!cpu_isset(cpu, sd->span)) {
5685 printk(KERN_ERR "ERROR: domain->span does not contain "
5686 "CPU%d\n", cpu);
5688 if (!cpu_isset(cpu, group->cpumask)) {
5689 printk(KERN_ERR "ERROR: domain->groups does not contain"
5690 " CPU%d\n", cpu);
5693 printk(KERN_DEBUG "%*s groups:", level + 1, "");
5694 do {
5695 if (!group) {
5696 printk("\n");
5697 printk(KERN_ERR "ERROR: group is NULL\n");
5698 break;
5701 if (!group->__cpu_power) {
5702 printk(KERN_CONT "\n");
5703 printk(KERN_ERR "ERROR: domain->cpu_power not "
5704 "set\n");
5705 break;
5708 if (!cpus_weight(group->cpumask)) {
5709 printk(KERN_CONT "\n");
5710 printk(KERN_ERR "ERROR: empty group\n");
5711 break;
5714 if (cpus_intersects(groupmask, group->cpumask)) {
5715 printk(KERN_CONT "\n");
5716 printk(KERN_ERR "ERROR: repeated CPUs\n");
5717 break;
5720 cpus_or(groupmask, groupmask, group->cpumask);
5722 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
5723 printk(KERN_CONT " %s", str);
5725 group = group->next;
5726 } while (group != sd->groups);
5727 printk(KERN_CONT "\n");
5729 if (!cpus_equal(sd->span, groupmask))
5730 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5732 if (sd->parent && !cpus_subset(groupmask, sd->parent->span))
5733 printk(KERN_ERR "ERROR: parent span is not a superset "
5734 "of domain->span\n");
5735 return 0;
5738 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5740 int level = 0;
5742 if (!sd) {
5743 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5744 return;
5747 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5749 for (;;) {
5750 if (sched_domain_debug_one(sd, cpu, level))
5751 break;
5752 level++;
5753 sd = sd->parent;
5754 if (!sd)
5755 break;
5758 #else
5759 # define sched_domain_debug(sd, cpu) do { } while (0)
5760 #endif
5762 static int sd_degenerate(struct sched_domain *sd)
5764 if (cpus_weight(sd->span) == 1)
5765 return 1;
5767 /* Following flags need at least 2 groups */
5768 if (sd->flags & (SD_LOAD_BALANCE |
5769 SD_BALANCE_NEWIDLE |
5770 SD_BALANCE_FORK |
5771 SD_BALANCE_EXEC |
5772 SD_SHARE_CPUPOWER |
5773 SD_SHARE_PKG_RESOURCES)) {
5774 if (sd->groups != sd->groups->next)
5775 return 0;
5778 /* Following flags don't use groups */
5779 if (sd->flags & (SD_WAKE_IDLE |
5780 SD_WAKE_AFFINE |
5781 SD_WAKE_BALANCE))
5782 return 0;
5784 return 1;
5787 static int
5788 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5790 unsigned long cflags = sd->flags, pflags = parent->flags;
5792 if (sd_degenerate(parent))
5793 return 1;
5795 if (!cpus_equal(sd->span, parent->span))
5796 return 0;
5798 /* Does parent contain flags not in child? */
5799 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
5800 if (cflags & SD_WAKE_AFFINE)
5801 pflags &= ~SD_WAKE_BALANCE;
5802 /* Flags needing groups don't count if only 1 group in parent */
5803 if (parent->groups == parent->groups->next) {
5804 pflags &= ~(SD_LOAD_BALANCE |
5805 SD_BALANCE_NEWIDLE |
5806 SD_BALANCE_FORK |
5807 SD_BALANCE_EXEC |
5808 SD_SHARE_CPUPOWER |
5809 SD_SHARE_PKG_RESOURCES);
5811 if (~cflags & pflags)
5812 return 0;
5814 return 1;
5818 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5819 * hold the hotplug lock.
5821 static void cpu_attach_domain(struct sched_domain *sd, int cpu)
5823 struct rq *rq = cpu_rq(cpu);
5824 struct sched_domain *tmp;
5826 /* Remove the sched domains which do not contribute to scheduling. */
5827 for (tmp = sd; tmp; tmp = tmp->parent) {
5828 struct sched_domain *parent = tmp->parent;
5829 if (!parent)
5830 break;
5831 if (sd_parent_degenerate(tmp, parent)) {
5832 tmp->parent = parent->parent;
5833 if (parent->parent)
5834 parent->parent->child = tmp;
5838 if (sd && sd_degenerate(sd)) {
5839 sd = sd->parent;
5840 if (sd)
5841 sd->child = NULL;
5844 sched_domain_debug(sd, cpu);
5846 rcu_assign_pointer(rq->sd, sd);
5849 /* cpus with isolated domains */
5850 static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
5852 /* Setup the mask of cpus configured for isolated domains */
5853 static int __init isolated_cpu_setup(char *str)
5855 int ints[NR_CPUS], i;
5857 str = get_options(str, ARRAY_SIZE(ints), ints);
5858 cpus_clear(cpu_isolated_map);
5859 for (i = 1; i <= ints[0]; i++)
5860 if (ints[i] < NR_CPUS)
5861 cpu_set(ints[i], cpu_isolated_map);
5862 return 1;
5865 __setup("isolcpus=", isolated_cpu_setup);
5868 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
5869 * to a function which identifies what group(along with sched group) a CPU
5870 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
5871 * (due to the fact that we keep track of groups covered with a cpumask_t).
5873 * init_sched_build_groups will build a circular linked list of the groups
5874 * covered by the given span, and will set each group's ->cpumask correctly,
5875 * and ->cpu_power to 0.
5877 static void
5878 init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
5879 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
5880 struct sched_group **sg))
5882 struct sched_group *first = NULL, *last = NULL;
5883 cpumask_t covered = CPU_MASK_NONE;
5884 int i;
5886 for_each_cpu_mask(i, span) {
5887 struct sched_group *sg;
5888 int group = group_fn(i, cpu_map, &sg);
5889 int j;
5891 if (cpu_isset(i, covered))
5892 continue;
5894 sg->cpumask = CPU_MASK_NONE;
5895 sg->__cpu_power = 0;
5897 for_each_cpu_mask(j, span) {
5898 if (group_fn(j, cpu_map, NULL) != group)
5899 continue;
5901 cpu_set(j, covered);
5902 cpu_set(j, sg->cpumask);
5904 if (!first)
5905 first = sg;
5906 if (last)
5907 last->next = sg;
5908 last = sg;
5910 last->next = first;
5913 #define SD_NODES_PER_DOMAIN 16
5915 #ifdef CONFIG_NUMA
5918 * find_next_best_node - find the next node to include in a sched_domain
5919 * @node: node whose sched_domain we're building
5920 * @used_nodes: nodes already in the sched_domain
5922 * Find the next node to include in a given scheduling domain. Simply
5923 * finds the closest node not already in the @used_nodes map.
5925 * Should use nodemask_t.
5927 static int find_next_best_node(int node, unsigned long *used_nodes)
5929 int i, n, val, min_val, best_node = 0;
5931 min_val = INT_MAX;
5933 for (i = 0; i < MAX_NUMNODES; i++) {
5934 /* Start at @node */
5935 n = (node + i) % MAX_NUMNODES;
5937 if (!nr_cpus_node(n))
5938 continue;
5940 /* Skip already used nodes */
5941 if (test_bit(n, used_nodes))
5942 continue;
5944 /* Simple min distance search */
5945 val = node_distance(node, n);
5947 if (val < min_val) {
5948 min_val = val;
5949 best_node = n;
5953 set_bit(best_node, used_nodes);
5954 return best_node;
5958 * sched_domain_node_span - get a cpumask for a node's sched_domain
5959 * @node: node whose cpumask we're constructing
5960 * @size: number of nodes to include in this span
5962 * Given a node, construct a good cpumask for its sched_domain to span. It
5963 * should be one that prevents unnecessary balancing, but also spreads tasks
5964 * out optimally.
5966 static cpumask_t sched_domain_node_span(int node)
5968 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
5969 cpumask_t span, nodemask;
5970 int i;
5972 cpus_clear(span);
5973 bitmap_zero(used_nodes, MAX_NUMNODES);
5975 nodemask = node_to_cpumask(node);
5976 cpus_or(span, span, nodemask);
5977 set_bit(node, used_nodes);
5979 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
5980 int next_node = find_next_best_node(node, used_nodes);
5982 nodemask = node_to_cpumask(next_node);
5983 cpus_or(span, span, nodemask);
5986 return span;
5988 #endif
5990 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
5993 * SMT sched-domains:
5995 #ifdef CONFIG_SCHED_SMT
5996 static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
5997 static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
5999 static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map,
6000 struct sched_group **sg)
6002 if (sg)
6003 *sg = &per_cpu(sched_group_cpus, cpu);
6004 return cpu;
6006 #endif
6009 * multi-core sched-domains:
6011 #ifdef CONFIG_SCHED_MC
6012 static DEFINE_PER_CPU(struct sched_domain, core_domains);
6013 static DEFINE_PER_CPU(struct sched_group, sched_group_core);
6014 #endif
6016 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
6017 static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
6018 struct sched_group **sg)
6020 int group;
6021 cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
6022 cpus_and(mask, mask, *cpu_map);
6023 group = first_cpu(mask);
6024 if (sg)
6025 *sg = &per_cpu(sched_group_core, group);
6026 return group;
6028 #elif defined(CONFIG_SCHED_MC)
6029 static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
6030 struct sched_group **sg)
6032 if (sg)
6033 *sg = &per_cpu(sched_group_core, cpu);
6034 return cpu;
6036 #endif
6038 static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6039 static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
6041 static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map,
6042 struct sched_group **sg)
6044 int group;
6045 #ifdef CONFIG_SCHED_MC
6046 cpumask_t mask = cpu_coregroup_map(cpu);
6047 cpus_and(mask, mask, *cpu_map);
6048 group = first_cpu(mask);
6049 #elif defined(CONFIG_SCHED_SMT)
6050 cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
6051 cpus_and(mask, mask, *cpu_map);
6052 group = first_cpu(mask);
6053 #else
6054 group = cpu;
6055 #endif
6056 if (sg)
6057 *sg = &per_cpu(sched_group_phys, group);
6058 return group;
6061 #ifdef CONFIG_NUMA
6063 * The init_sched_build_groups can't handle what we want to do with node
6064 * groups, so roll our own. Now each node has its own list of groups which
6065 * gets dynamically allocated.
6067 static DEFINE_PER_CPU(struct sched_domain, node_domains);
6068 static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
6070 static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6071 static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
6073 static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
6074 struct sched_group **sg)
6076 cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
6077 int group;
6079 cpus_and(nodemask, nodemask, *cpu_map);
6080 group = first_cpu(nodemask);
6082 if (sg)
6083 *sg = &per_cpu(sched_group_allnodes, group);
6084 return group;
6087 static void init_numa_sched_groups_power(struct sched_group *group_head)
6089 struct sched_group *sg = group_head;
6090 int j;
6092 if (!sg)
6093 return;
6094 do {
6095 for_each_cpu_mask(j, sg->cpumask) {
6096 struct sched_domain *sd;
6098 sd = &per_cpu(phys_domains, j);
6099 if (j != first_cpu(sd->groups->cpumask)) {
6101 * Only add "power" once for each
6102 * physical package.
6104 continue;
6107 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
6109 sg = sg->next;
6110 } while (sg != group_head);
6112 #endif
6114 #ifdef CONFIG_NUMA
6115 /* Free memory allocated for various sched_group structures */
6116 static void free_sched_groups(const cpumask_t *cpu_map)
6118 int cpu, i;
6120 for_each_cpu_mask(cpu, *cpu_map) {
6121 struct sched_group **sched_group_nodes
6122 = sched_group_nodes_bycpu[cpu];
6124 if (!sched_group_nodes)
6125 continue;
6127 for (i = 0; i < MAX_NUMNODES; i++) {
6128 cpumask_t nodemask = node_to_cpumask(i);
6129 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6131 cpus_and(nodemask, nodemask, *cpu_map);
6132 if (cpus_empty(nodemask))
6133 continue;
6135 if (sg == NULL)
6136 continue;
6137 sg = sg->next;
6138 next_sg:
6139 oldsg = sg;
6140 sg = sg->next;
6141 kfree(oldsg);
6142 if (oldsg != sched_group_nodes[i])
6143 goto next_sg;
6145 kfree(sched_group_nodes);
6146 sched_group_nodes_bycpu[cpu] = NULL;
6149 #else
6150 static void free_sched_groups(const cpumask_t *cpu_map)
6153 #endif
6156 * Initialize sched groups cpu_power.
6158 * cpu_power indicates the capacity of sched group, which is used while
6159 * distributing the load between different sched groups in a sched domain.
6160 * Typically cpu_power for all the groups in a sched domain will be same unless
6161 * there are asymmetries in the topology. If there are asymmetries, group
6162 * having more cpu_power will pickup more load compared to the group having
6163 * less cpu_power.
6165 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
6166 * the maximum number of tasks a group can handle in the presence of other idle
6167 * or lightly loaded groups in the same sched domain.
6169 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6171 struct sched_domain *child;
6172 struct sched_group *group;
6174 WARN_ON(!sd || !sd->groups);
6176 if (cpu != first_cpu(sd->groups->cpumask))
6177 return;
6179 child = sd->child;
6181 sd->groups->__cpu_power = 0;
6184 * For perf policy, if the groups in child domain share resources
6185 * (for example cores sharing some portions of the cache hierarchy
6186 * or SMT), then set this domain groups cpu_power such that each group
6187 * can handle only one task, when there are other idle groups in the
6188 * same sched domain.
6190 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
6191 (child->flags &
6192 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
6193 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
6194 return;
6198 * add cpu_power of each child group to this groups cpu_power
6200 group = child->groups;
6201 do {
6202 sg_inc_cpu_power(sd->groups, group->__cpu_power);
6203 group = group->next;
6204 } while (group != child->groups);
6208 * Build sched domains for a given set of cpus and attach the sched domains
6209 * to the individual cpus
6211 static int build_sched_domains(const cpumask_t *cpu_map)
6213 int i;
6214 #ifdef CONFIG_NUMA
6215 struct sched_group **sched_group_nodes = NULL;
6216 int sd_allnodes = 0;
6219 * Allocate the per-node list of sched groups
6221 sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
6222 GFP_KERNEL);
6223 if (!sched_group_nodes) {
6224 printk(KERN_WARNING "Can not alloc sched group node list\n");
6225 return -ENOMEM;
6227 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
6228 #endif
6231 * Set up domains for cpus specified by the cpu_map.
6233 for_each_cpu_mask(i, *cpu_map) {
6234 struct sched_domain *sd = NULL, *p;
6235 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
6237 cpus_and(nodemask, nodemask, *cpu_map);
6239 #ifdef CONFIG_NUMA
6240 if (cpus_weight(*cpu_map) >
6241 SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
6242 sd = &per_cpu(allnodes_domains, i);
6243 *sd = SD_ALLNODES_INIT;
6244 sd->span = *cpu_map;
6245 cpu_to_allnodes_group(i, cpu_map, &sd->groups);
6246 p = sd;
6247 sd_allnodes = 1;
6248 } else
6249 p = NULL;
6251 sd = &per_cpu(node_domains, i);
6252 *sd = SD_NODE_INIT;
6253 sd->span = sched_domain_node_span(cpu_to_node(i));
6254 sd->parent = p;
6255 if (p)
6256 p->child = sd;
6257 cpus_and(sd->span, sd->span, *cpu_map);
6258 #endif
6260 p = sd;
6261 sd = &per_cpu(phys_domains, i);
6262 *sd = SD_CPU_INIT;
6263 sd->span = nodemask;
6264 sd->parent = p;
6265 if (p)
6266 p->child = sd;
6267 cpu_to_phys_group(i, cpu_map, &sd->groups);
6269 #ifdef CONFIG_SCHED_MC
6270 p = sd;
6271 sd = &per_cpu(core_domains, i);
6272 *sd = SD_MC_INIT;
6273 sd->span = cpu_coregroup_map(i);
6274 cpus_and(sd->span, sd->span, *cpu_map);
6275 sd->parent = p;
6276 p->child = sd;
6277 cpu_to_core_group(i, cpu_map, &sd->groups);
6278 #endif
6280 #ifdef CONFIG_SCHED_SMT
6281 p = sd;
6282 sd = &per_cpu(cpu_domains, i);
6283 *sd = SD_SIBLING_INIT;
6284 sd->span = per_cpu(cpu_sibling_map, i);
6285 cpus_and(sd->span, sd->span, *cpu_map);
6286 sd->parent = p;
6287 p->child = sd;
6288 cpu_to_cpu_group(i, cpu_map, &sd->groups);
6289 #endif
6292 #ifdef CONFIG_SCHED_SMT
6293 /* Set up CPU (sibling) groups */
6294 for_each_cpu_mask(i, *cpu_map) {
6295 cpumask_t this_sibling_map = per_cpu(cpu_sibling_map, i);
6296 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
6297 if (i != first_cpu(this_sibling_map))
6298 continue;
6300 init_sched_build_groups(this_sibling_map, cpu_map,
6301 &cpu_to_cpu_group);
6303 #endif
6305 #ifdef CONFIG_SCHED_MC
6306 /* Set up multi-core groups */
6307 for_each_cpu_mask(i, *cpu_map) {
6308 cpumask_t this_core_map = cpu_coregroup_map(i);
6309 cpus_and(this_core_map, this_core_map, *cpu_map);
6310 if (i != first_cpu(this_core_map))
6311 continue;
6312 init_sched_build_groups(this_core_map, cpu_map,
6313 &cpu_to_core_group);
6315 #endif
6317 /* Set up physical groups */
6318 for (i = 0; i < MAX_NUMNODES; i++) {
6319 cpumask_t nodemask = node_to_cpumask(i);
6321 cpus_and(nodemask, nodemask, *cpu_map);
6322 if (cpus_empty(nodemask))
6323 continue;
6325 init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
6328 #ifdef CONFIG_NUMA
6329 /* Set up node groups */
6330 if (sd_allnodes)
6331 init_sched_build_groups(*cpu_map, cpu_map,
6332 &cpu_to_allnodes_group);
6334 for (i = 0; i < MAX_NUMNODES; i++) {
6335 /* Set up node groups */
6336 struct sched_group *sg, *prev;
6337 cpumask_t nodemask = node_to_cpumask(i);
6338 cpumask_t domainspan;
6339 cpumask_t covered = CPU_MASK_NONE;
6340 int j;
6342 cpus_and(nodemask, nodemask, *cpu_map);
6343 if (cpus_empty(nodemask)) {
6344 sched_group_nodes[i] = NULL;
6345 continue;
6348 domainspan = sched_domain_node_span(i);
6349 cpus_and(domainspan, domainspan, *cpu_map);
6351 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
6352 if (!sg) {
6353 printk(KERN_WARNING "Can not alloc domain group for "
6354 "node %d\n", i);
6355 goto error;
6357 sched_group_nodes[i] = sg;
6358 for_each_cpu_mask(j, nodemask) {
6359 struct sched_domain *sd;
6361 sd = &per_cpu(node_domains, j);
6362 sd->groups = sg;
6364 sg->__cpu_power = 0;
6365 sg->cpumask = nodemask;
6366 sg->next = sg;
6367 cpus_or(covered, covered, nodemask);
6368 prev = sg;
6370 for (j = 0; j < MAX_NUMNODES; j++) {
6371 cpumask_t tmp, notcovered;
6372 int n = (i + j) % MAX_NUMNODES;
6374 cpus_complement(notcovered, covered);
6375 cpus_and(tmp, notcovered, *cpu_map);
6376 cpus_and(tmp, tmp, domainspan);
6377 if (cpus_empty(tmp))
6378 break;
6380 nodemask = node_to_cpumask(n);
6381 cpus_and(tmp, tmp, nodemask);
6382 if (cpus_empty(tmp))
6383 continue;
6385 sg = kmalloc_node(sizeof(struct sched_group),
6386 GFP_KERNEL, i);
6387 if (!sg) {
6388 printk(KERN_WARNING
6389 "Can not alloc domain group for node %d\n", j);
6390 goto error;
6392 sg->__cpu_power = 0;
6393 sg->cpumask = tmp;
6394 sg->next = prev->next;
6395 cpus_or(covered, covered, tmp);
6396 prev->next = sg;
6397 prev = sg;
6400 #endif
6402 /* Calculate CPU power for physical packages and nodes */
6403 #ifdef CONFIG_SCHED_SMT
6404 for_each_cpu_mask(i, *cpu_map) {
6405 struct sched_domain *sd = &per_cpu(cpu_domains, i);
6407 init_sched_groups_power(i, sd);
6409 #endif
6410 #ifdef CONFIG_SCHED_MC
6411 for_each_cpu_mask(i, *cpu_map) {
6412 struct sched_domain *sd = &per_cpu(core_domains, i);
6414 init_sched_groups_power(i, sd);
6416 #endif
6418 for_each_cpu_mask(i, *cpu_map) {
6419 struct sched_domain *sd = &per_cpu(phys_domains, i);
6421 init_sched_groups_power(i, sd);
6424 #ifdef CONFIG_NUMA
6425 for (i = 0; i < MAX_NUMNODES; i++)
6426 init_numa_sched_groups_power(sched_group_nodes[i]);
6428 if (sd_allnodes) {
6429 struct sched_group *sg;
6431 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
6432 init_numa_sched_groups_power(sg);
6434 #endif
6436 /* Attach the domains */
6437 for_each_cpu_mask(i, *cpu_map) {
6438 struct sched_domain *sd;
6439 #ifdef CONFIG_SCHED_SMT
6440 sd = &per_cpu(cpu_domains, i);
6441 #elif defined(CONFIG_SCHED_MC)
6442 sd = &per_cpu(core_domains, i);
6443 #else
6444 sd = &per_cpu(phys_domains, i);
6445 #endif
6446 cpu_attach_domain(sd, i);
6449 return 0;
6451 #ifdef CONFIG_NUMA
6452 error:
6453 free_sched_groups(cpu_map);
6454 return -ENOMEM;
6455 #endif
6458 static cpumask_t *doms_cur; /* current sched domains */
6459 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
6462 * Special case: If a kmalloc of a doms_cur partition (array of
6463 * cpumask_t) fails, then fallback to a single sched domain,
6464 * as determined by the single cpumask_t fallback_doms.
6466 static cpumask_t fallback_doms;
6469 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6470 * For now this just excludes isolated cpus, but could be used to
6471 * exclude other special cases in the future.
6473 static int arch_init_sched_domains(const cpumask_t *cpu_map)
6475 int err;
6477 ndoms_cur = 1;
6478 doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
6479 if (!doms_cur)
6480 doms_cur = &fallback_doms;
6481 cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
6482 err = build_sched_domains(doms_cur);
6483 register_sched_domain_sysctl();
6485 return err;
6488 static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
6490 free_sched_groups(cpu_map);
6494 * Detach sched domains from a group of cpus specified in cpu_map
6495 * These cpus will now be attached to the NULL domain
6497 static void detach_destroy_domains(const cpumask_t *cpu_map)
6499 int i;
6501 unregister_sched_domain_sysctl();
6503 for_each_cpu_mask(i, *cpu_map)
6504 cpu_attach_domain(NULL, i);
6505 synchronize_sched();
6506 arch_destroy_sched_domains(cpu_map);
6510 * Partition sched domains as specified by the 'ndoms_new'
6511 * cpumasks in the array doms_new[] of cpumasks. This compares
6512 * doms_new[] to the current sched domain partitioning, doms_cur[].
6513 * It destroys each deleted domain and builds each new domain.
6515 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
6516 * The masks don't intersect (don't overlap.) We should setup one
6517 * sched domain for each mask. CPUs not in any of the cpumasks will
6518 * not be load balanced. If the same cpumask appears both in the
6519 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6520 * it as it is.
6522 * The passed in 'doms_new' should be kmalloc'd. This routine takes
6523 * ownership of it and will kfree it when done with it. If the caller
6524 * failed the kmalloc call, then it can pass in doms_new == NULL,
6525 * and partition_sched_domains() will fallback to the single partition
6526 * 'fallback_doms'.
6528 * Call with hotplug lock held
6530 void partition_sched_domains(int ndoms_new, cpumask_t *doms_new)
6532 int i, j;
6534 /* always unregister in case we don't destroy any domains */
6535 unregister_sched_domain_sysctl();
6537 if (doms_new == NULL) {
6538 ndoms_new = 1;
6539 doms_new = &fallback_doms;
6540 cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
6543 /* Destroy deleted domains */
6544 for (i = 0; i < ndoms_cur; i++) {
6545 for (j = 0; j < ndoms_new; j++) {
6546 if (cpus_equal(doms_cur[i], doms_new[j]))
6547 goto match1;
6549 /* no match - a current sched domain not in new doms_new[] */
6550 detach_destroy_domains(doms_cur + i);
6551 match1:
6555 /* Build new domains */
6556 for (i = 0; i < ndoms_new; i++) {
6557 for (j = 0; j < ndoms_cur; j++) {
6558 if (cpus_equal(doms_new[i], doms_cur[j]))
6559 goto match2;
6561 /* no match - add a new doms_new */
6562 build_sched_domains(doms_new + i);
6563 match2:
6567 /* Remember the new sched domains */
6568 if (doms_cur != &fallback_doms)
6569 kfree(doms_cur);
6570 doms_cur = doms_new;
6571 ndoms_cur = ndoms_new;
6573 register_sched_domain_sysctl();
6576 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6577 static int arch_reinit_sched_domains(void)
6579 int err;
6581 mutex_lock(&sched_hotcpu_mutex);
6582 detach_destroy_domains(&cpu_online_map);
6583 err = arch_init_sched_domains(&cpu_online_map);
6584 mutex_unlock(&sched_hotcpu_mutex);
6586 return err;
6589 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
6591 int ret;
6593 if (buf[0] != '0' && buf[0] != '1')
6594 return -EINVAL;
6596 if (smt)
6597 sched_smt_power_savings = (buf[0] == '1');
6598 else
6599 sched_mc_power_savings = (buf[0] == '1');
6601 ret = arch_reinit_sched_domains();
6603 return ret ? ret : count;
6606 #ifdef CONFIG_SCHED_MC
6607 static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
6609 return sprintf(page, "%u\n", sched_mc_power_savings);
6611 static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
6612 const char *buf, size_t count)
6614 return sched_power_savings_store(buf, count, 0);
6616 static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
6617 sched_mc_power_savings_store);
6618 #endif
6620 #ifdef CONFIG_SCHED_SMT
6621 static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
6623 return sprintf(page, "%u\n", sched_smt_power_savings);
6625 static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
6626 const char *buf, size_t count)
6628 return sched_power_savings_store(buf, count, 1);
6630 static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
6631 sched_smt_power_savings_store);
6632 #endif
6634 int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6636 int err = 0;
6638 #ifdef CONFIG_SCHED_SMT
6639 if (smt_capable())
6640 err = sysfs_create_file(&cls->kset.kobj,
6641 &attr_sched_smt_power_savings.attr);
6642 #endif
6643 #ifdef CONFIG_SCHED_MC
6644 if (!err && mc_capable())
6645 err = sysfs_create_file(&cls->kset.kobj,
6646 &attr_sched_mc_power_savings.attr);
6647 #endif
6648 return err;
6650 #endif
6653 * Force a reinitialization of the sched domains hierarchy. The domains
6654 * and groups cannot be updated in place without racing with the balancing
6655 * code, so we temporarily attach all running cpus to the NULL domain
6656 * which will prevent rebalancing while the sched domains are recalculated.
6658 static int update_sched_domains(struct notifier_block *nfb,
6659 unsigned long action, void *hcpu)
6661 switch (action) {
6662 case CPU_UP_PREPARE:
6663 case CPU_UP_PREPARE_FROZEN:
6664 case CPU_DOWN_PREPARE:
6665 case CPU_DOWN_PREPARE_FROZEN:
6666 detach_destroy_domains(&cpu_online_map);
6667 return NOTIFY_OK;
6669 case CPU_UP_CANCELED:
6670 case CPU_UP_CANCELED_FROZEN:
6671 case CPU_DOWN_FAILED:
6672 case CPU_DOWN_FAILED_FROZEN:
6673 case CPU_ONLINE:
6674 case CPU_ONLINE_FROZEN:
6675 case CPU_DEAD:
6676 case CPU_DEAD_FROZEN:
6678 * Fall through and re-initialise the domains.
6680 break;
6681 default:
6682 return NOTIFY_DONE;
6685 /* The hotplug lock is already held by cpu_up/cpu_down */
6686 arch_init_sched_domains(&cpu_online_map);
6688 return NOTIFY_OK;
6691 void __init sched_init_smp(void)
6693 cpumask_t non_isolated_cpus;
6695 mutex_lock(&sched_hotcpu_mutex);
6696 arch_init_sched_domains(&cpu_online_map);
6697 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
6698 if (cpus_empty(non_isolated_cpus))
6699 cpu_set(smp_processor_id(), non_isolated_cpus);
6700 mutex_unlock(&sched_hotcpu_mutex);
6701 /* XXX: Theoretical race here - CPU may be hotplugged now */
6702 hotcpu_notifier(update_sched_domains, 0);
6704 /* Move init over to a non-isolated CPU */
6705 if (set_cpus_allowed(current, non_isolated_cpus) < 0)
6706 BUG();
6707 sched_init_granularity();
6709 #else
6710 void __init sched_init_smp(void)
6712 sched_init_granularity();
6714 #endif /* CONFIG_SMP */
6716 int in_sched_functions(unsigned long addr)
6718 /* Linker adds these: start and end of __sched functions */
6719 extern char __sched_text_start[], __sched_text_end[];
6721 return in_lock_functions(addr) ||
6722 (addr >= (unsigned long)__sched_text_start
6723 && addr < (unsigned long)__sched_text_end);
6726 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
6728 cfs_rq->tasks_timeline = RB_ROOT;
6729 #ifdef CONFIG_FAIR_GROUP_SCHED
6730 cfs_rq->rq = rq;
6731 #endif
6732 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
6735 void __init sched_init(void)
6737 int highest_cpu = 0;
6738 int i, j;
6740 for_each_possible_cpu(i) {
6741 struct rt_prio_array *array;
6742 struct rq *rq;
6744 rq = cpu_rq(i);
6745 spin_lock_init(&rq->lock);
6746 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
6747 rq->nr_running = 0;
6748 rq->clock = 1;
6749 init_cfs_rq(&rq->cfs, rq);
6750 #ifdef CONFIG_FAIR_GROUP_SCHED
6751 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6753 struct cfs_rq *cfs_rq = &per_cpu(init_cfs_rq, i);
6754 struct sched_entity *se =
6755 &per_cpu(init_sched_entity, i);
6757 init_cfs_rq_p[i] = cfs_rq;
6758 init_cfs_rq(cfs_rq, rq);
6759 cfs_rq->tg = &init_task_group;
6760 list_add(&cfs_rq->leaf_cfs_rq_list,
6761 &rq->leaf_cfs_rq_list);
6763 init_sched_entity_p[i] = se;
6764 se->cfs_rq = &rq->cfs;
6765 se->my_q = cfs_rq;
6766 se->load.weight = init_task_group_load;
6767 se->load.inv_weight =
6768 div64_64(1ULL<<32, init_task_group_load);
6769 se->parent = NULL;
6771 init_task_group.shares = init_task_group_load;
6772 spin_lock_init(&init_task_group.lock);
6773 #endif
6775 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6776 rq->cpu_load[j] = 0;
6777 #ifdef CONFIG_SMP
6778 rq->sd = NULL;
6779 rq->active_balance = 0;
6780 rq->next_balance = jiffies;
6781 rq->push_cpu = 0;
6782 rq->cpu = i;
6783 rq->migration_thread = NULL;
6784 INIT_LIST_HEAD(&rq->migration_queue);
6785 #endif
6786 atomic_set(&rq->nr_iowait, 0);
6788 array = &rq->rt.active;
6789 for (j = 0; j < MAX_RT_PRIO; j++) {
6790 INIT_LIST_HEAD(array->queue + j);
6791 __clear_bit(j, array->bitmap);
6793 highest_cpu = i;
6794 /* delimiter for bitsearch: */
6795 __set_bit(MAX_RT_PRIO, array->bitmap);
6798 set_load_weight(&init_task);
6800 #ifdef CONFIG_PREEMPT_NOTIFIERS
6801 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6802 #endif
6804 #ifdef CONFIG_SMP
6805 nr_cpu_ids = highest_cpu + 1;
6806 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
6807 #endif
6809 #ifdef CONFIG_RT_MUTEXES
6810 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
6811 #endif
6814 * The boot idle thread does lazy MMU switching as well:
6816 atomic_inc(&init_mm.mm_count);
6817 enter_lazy_tlb(&init_mm, current);
6820 * Make us the idle thread. Technically, schedule() should not be
6821 * called from this thread, however somewhere below it might be,
6822 * but because we are the idle thread, we just pick up running again
6823 * when this runqueue becomes "idle".
6825 init_idle(current, smp_processor_id());
6827 * During early bootup we pretend to be a normal task:
6829 current->sched_class = &fair_sched_class;
6832 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6833 void __might_sleep(char *file, int line)
6835 #ifdef in_atomic
6836 static unsigned long prev_jiffy; /* ratelimiting */
6838 if ((in_atomic() || irqs_disabled()) &&
6839 system_state == SYSTEM_RUNNING && !oops_in_progress) {
6840 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6841 return;
6842 prev_jiffy = jiffies;
6843 printk(KERN_ERR "BUG: sleeping function called from invalid"
6844 " context at %s:%d\n", file, line);
6845 printk("in_atomic():%d, irqs_disabled():%d\n",
6846 in_atomic(), irqs_disabled());
6847 debug_show_held_locks(current);
6848 if (irqs_disabled())
6849 print_irqtrace_events(current);
6850 dump_stack();
6852 #endif
6854 EXPORT_SYMBOL(__might_sleep);
6855 #endif
6857 #ifdef CONFIG_MAGIC_SYSRQ
6858 static void normalize_task(struct rq *rq, struct task_struct *p)
6860 int on_rq;
6861 update_rq_clock(rq);
6862 on_rq = p->se.on_rq;
6863 if (on_rq)
6864 deactivate_task(rq, p, 0);
6865 __setscheduler(rq, p, SCHED_NORMAL, 0);
6866 if (on_rq) {
6867 activate_task(rq, p, 0);
6868 resched_task(rq->curr);
6872 void normalize_rt_tasks(void)
6874 struct task_struct *g, *p;
6875 unsigned long flags;
6876 struct rq *rq;
6878 read_lock_irq(&tasklist_lock);
6879 do_each_thread(g, p) {
6881 * Only normalize user tasks:
6883 if (!p->mm)
6884 continue;
6886 p->se.exec_start = 0;
6887 #ifdef CONFIG_SCHEDSTATS
6888 p->se.wait_start = 0;
6889 p->se.sleep_start = 0;
6890 p->se.block_start = 0;
6891 #endif
6892 task_rq(p)->clock = 0;
6894 if (!rt_task(p)) {
6896 * Renice negative nice level userspace
6897 * tasks back to 0:
6899 if (TASK_NICE(p) < 0 && p->mm)
6900 set_user_nice(p, 0);
6901 continue;
6904 spin_lock_irqsave(&p->pi_lock, flags);
6905 rq = __task_rq_lock(p);
6907 normalize_task(rq, p);
6909 __task_rq_unlock(rq);
6910 spin_unlock_irqrestore(&p->pi_lock, flags);
6911 } while_each_thread(g, p);
6913 read_unlock_irq(&tasklist_lock);
6916 #endif /* CONFIG_MAGIC_SYSRQ */
6918 #ifdef CONFIG_IA64
6920 * These functions are only useful for the IA64 MCA handling.
6922 * They can only be called when the whole system has been
6923 * stopped - every CPU needs to be quiescent, and no scheduling
6924 * activity can take place. Using them for anything else would
6925 * be a serious bug, and as a result, they aren't even visible
6926 * under any other configuration.
6930 * curr_task - return the current task for a given cpu.
6931 * @cpu: the processor in question.
6933 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6935 struct task_struct *curr_task(int cpu)
6937 return cpu_curr(cpu);
6941 * set_curr_task - set the current task for a given cpu.
6942 * @cpu: the processor in question.
6943 * @p: the task pointer to set.
6945 * Description: This function must only be used when non-maskable interrupts
6946 * are serviced on a separate stack. It allows the architecture to switch the
6947 * notion of the current task on a cpu in a non-blocking manner. This function
6948 * must be called with all CPU's synchronized, and interrupts disabled, the
6949 * and caller must save the original value of the current task (see
6950 * curr_task() above) and restore that value before reenabling interrupts and
6951 * re-starting the system.
6953 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6955 void set_curr_task(int cpu, struct task_struct *p)
6957 cpu_curr(cpu) = p;
6960 #endif
6962 #ifdef CONFIG_FAIR_GROUP_SCHED
6964 /* allocate runqueue etc for a new task group */
6965 struct task_group *sched_create_group(void)
6967 struct task_group *tg;
6968 struct cfs_rq *cfs_rq;
6969 struct sched_entity *se;
6970 struct rq *rq;
6971 int i;
6973 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
6974 if (!tg)
6975 return ERR_PTR(-ENOMEM);
6977 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * NR_CPUS, GFP_KERNEL);
6978 if (!tg->cfs_rq)
6979 goto err;
6980 tg->se = kzalloc(sizeof(se) * NR_CPUS, GFP_KERNEL);
6981 if (!tg->se)
6982 goto err;
6984 for_each_possible_cpu(i) {
6985 rq = cpu_rq(i);
6987 cfs_rq = kmalloc_node(sizeof(struct cfs_rq), GFP_KERNEL,
6988 cpu_to_node(i));
6989 if (!cfs_rq)
6990 goto err;
6992 se = kmalloc_node(sizeof(struct sched_entity), GFP_KERNEL,
6993 cpu_to_node(i));
6994 if (!se)
6995 goto err;
6997 memset(cfs_rq, 0, sizeof(struct cfs_rq));
6998 memset(se, 0, sizeof(struct sched_entity));
7000 tg->cfs_rq[i] = cfs_rq;
7001 init_cfs_rq(cfs_rq, rq);
7002 cfs_rq->tg = tg;
7004 tg->se[i] = se;
7005 se->cfs_rq = &rq->cfs;
7006 se->my_q = cfs_rq;
7007 se->load.weight = NICE_0_LOAD;
7008 se->load.inv_weight = div64_64(1ULL<<32, NICE_0_LOAD);
7009 se->parent = NULL;
7012 for_each_possible_cpu(i) {
7013 rq = cpu_rq(i);
7014 cfs_rq = tg->cfs_rq[i];
7015 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7018 tg->shares = NICE_0_LOAD;
7019 spin_lock_init(&tg->lock);
7021 return tg;
7023 err:
7024 for_each_possible_cpu(i) {
7025 if (tg->cfs_rq)
7026 kfree(tg->cfs_rq[i]);
7027 if (tg->se)
7028 kfree(tg->se[i]);
7030 kfree(tg->cfs_rq);
7031 kfree(tg->se);
7032 kfree(tg);
7034 return ERR_PTR(-ENOMEM);
7037 /* rcu callback to free various structures associated with a task group */
7038 static void free_sched_group(struct rcu_head *rhp)
7040 struct task_group *tg = container_of(rhp, struct task_group, rcu);
7041 struct cfs_rq *cfs_rq;
7042 struct sched_entity *se;
7043 int i;
7045 /* now it should be safe to free those cfs_rqs */
7046 for_each_possible_cpu(i) {
7047 cfs_rq = tg->cfs_rq[i];
7048 kfree(cfs_rq);
7050 se = tg->se[i];
7051 kfree(se);
7054 kfree(tg->cfs_rq);
7055 kfree(tg->se);
7056 kfree(tg);
7059 /* Destroy runqueue etc associated with a task group */
7060 void sched_destroy_group(struct task_group *tg)
7062 struct cfs_rq *cfs_rq = NULL;
7063 int i;
7065 for_each_possible_cpu(i) {
7066 cfs_rq = tg->cfs_rq[i];
7067 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
7070 BUG_ON(!cfs_rq);
7072 /* wait for possible concurrent references to cfs_rqs complete */
7073 call_rcu(&tg->rcu, free_sched_group);
7076 /* change task's runqueue when it moves between groups.
7077 * The caller of this function should have put the task in its new group
7078 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7079 * reflect its new group.
7081 void sched_move_task(struct task_struct *tsk)
7083 int on_rq, running;
7084 unsigned long flags;
7085 struct rq *rq;
7087 rq = task_rq_lock(tsk, &flags);
7089 if (tsk->sched_class != &fair_sched_class)
7090 goto done;
7092 update_rq_clock(rq);
7094 running = task_running(rq, tsk);
7095 on_rq = tsk->se.on_rq;
7097 if (on_rq) {
7098 dequeue_task(rq, tsk, 0);
7099 if (unlikely(running))
7100 tsk->sched_class->put_prev_task(rq, tsk);
7103 set_task_cfs_rq(tsk);
7105 if (on_rq) {
7106 if (unlikely(running))
7107 tsk->sched_class->set_curr_task(rq);
7108 enqueue_task(rq, tsk, 0);
7111 done:
7112 task_rq_unlock(rq, &flags);
7115 static void set_se_shares(struct sched_entity *se, unsigned long shares)
7117 struct cfs_rq *cfs_rq = se->cfs_rq;
7118 struct rq *rq = cfs_rq->rq;
7119 int on_rq;
7121 spin_lock_irq(&rq->lock);
7123 on_rq = se->on_rq;
7124 if (on_rq)
7125 dequeue_entity(cfs_rq, se, 0);
7127 se->load.weight = shares;
7128 se->load.inv_weight = div64_64((1ULL<<32), shares);
7130 if (on_rq)
7131 enqueue_entity(cfs_rq, se, 0);
7133 spin_unlock_irq(&rq->lock);
7136 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
7138 int i;
7140 spin_lock(&tg->lock);
7141 if (tg->shares == shares)
7142 goto done;
7144 tg->shares = shares;
7145 for_each_possible_cpu(i)
7146 set_se_shares(tg->se[i], shares);
7148 done:
7149 spin_unlock(&tg->lock);
7150 return 0;
7153 unsigned long sched_group_shares(struct task_group *tg)
7155 return tg->shares;
7158 #endif /* CONFIG_FAIR_GROUP_SCHED */
7160 #ifdef CONFIG_FAIR_CGROUP_SCHED
7162 /* return corresponding task_group object of a cgroup */
7163 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
7165 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
7166 struct task_group, css);
7169 static struct cgroup_subsys_state *
7170 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
7172 struct task_group *tg;
7174 if (!cgrp->parent) {
7175 /* This is early initialization for the top cgroup */
7176 init_task_group.css.cgroup = cgrp;
7177 return &init_task_group.css;
7180 /* we support only 1-level deep hierarchical scheduler atm */
7181 if (cgrp->parent->parent)
7182 return ERR_PTR(-EINVAL);
7184 tg = sched_create_group();
7185 if (IS_ERR(tg))
7186 return ERR_PTR(-ENOMEM);
7188 /* Bind the cgroup to task_group object we just created */
7189 tg->css.cgroup = cgrp;
7191 return &tg->css;
7194 static void cpu_cgroup_destroy(struct cgroup_subsys *ss,
7195 struct cgroup *cgrp)
7197 struct task_group *tg = cgroup_tg(cgrp);
7199 sched_destroy_group(tg);
7202 static int cpu_cgroup_can_attach(struct cgroup_subsys *ss,
7203 struct cgroup *cgrp, struct task_struct *tsk)
7205 /* We don't support RT-tasks being in separate groups */
7206 if (tsk->sched_class != &fair_sched_class)
7207 return -EINVAL;
7209 return 0;
7212 static void
7213 cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
7214 struct cgroup *old_cont, struct task_struct *tsk)
7216 sched_move_task(tsk);
7219 static int cpu_shares_write_uint(struct cgroup *cgrp, struct cftype *cftype,
7220 u64 shareval)
7222 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
7225 static u64 cpu_shares_read_uint(struct cgroup *cgrp, struct cftype *cft)
7227 struct task_group *tg = cgroup_tg(cgrp);
7229 return (u64) tg->shares;
7232 static u64 cpu_usage_read(struct cgroup *cgrp, struct cftype *cft)
7234 struct task_group *tg = cgroup_tg(cgrp);
7235 unsigned long flags;
7236 u64 res = 0;
7237 int i;
7239 for_each_possible_cpu(i) {
7241 * Lock to prevent races with updating 64-bit counters
7242 * on 32-bit arches.
7244 spin_lock_irqsave(&cpu_rq(i)->lock, flags);
7245 res += tg->se[i]->sum_exec_runtime;
7246 spin_unlock_irqrestore(&cpu_rq(i)->lock, flags);
7248 /* Convert from ns to ms */
7249 do_div(res, NSEC_PER_MSEC);
7251 return res;
7254 static struct cftype cpu_files[] = {
7256 .name = "shares",
7257 .read_uint = cpu_shares_read_uint,
7258 .write_uint = cpu_shares_write_uint,
7261 .name = "usage",
7262 .read_uint = cpu_usage_read,
7266 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
7268 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
7271 struct cgroup_subsys cpu_cgroup_subsys = {
7272 .name = "cpu",
7273 .create = cpu_cgroup_create,
7274 .destroy = cpu_cgroup_destroy,
7275 .can_attach = cpu_cgroup_can_attach,
7276 .attach = cpu_cgroup_attach,
7277 .populate = cpu_cgroup_populate,
7278 .subsys_id = cpu_cgroup_subsys_id,
7279 .early_init = 1,
7282 #endif /* CONFIG_FAIR_CGROUP_SCHED */