agk-dm-dm-crypt-tidy-crypt_endio
[linux-2.6/linux-trees-mm.git] / drivers / i2c / busses / i2c-au1550.c
blob2f684166c43de49b19a9369651a63f36b901c005
1 /*
2 * i2c-au1550.c: SMBus (i2c) adapter for Alchemy PSC interface
3 * Copyright (C) 2004 Embedded Edge, LLC <dan@embeddededge.com>
5 * 2.6 port by Matt Porter <mporter@kernel.crashing.org>
7 * The documentation describes this as an SMBus controller, but it doesn't
8 * understand any of the SMBus protocol in hardware. It's really an I2C
9 * controller that could emulate most of the SMBus in software.
11 * This is just a skeleton adapter to use with the Au1550 PSC
12 * algorithm. It was developed for the Pb1550, but will work with
13 * any Au1550 board that has a similar PSC configuration.
15 * This program is free software; you can redistribute it and/or
16 * modify it under the terms of the GNU General Public License
17 * as published by the Free Software Foundation; either version 2
18 * of the License, or (at your option) any later version.
20 * This program is distributed in the hope that it will be useful,
21 * but WITHOUT ANY WARRANTY; without even the implied warranty of
22 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
23 * GNU General Public License for more details.
25 * You should have received a copy of the GNU General Public License
26 * along with this program; if not, write to the Free Software
27 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
30 #include <linux/delay.h>
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/init.h>
34 #include <linux/errno.h>
35 #include <linux/i2c.h>
37 #include <asm/mach-au1x00/au1xxx.h>
38 #include <asm/mach-au1x00/au1xxx_psc.h>
40 #include "i2c-au1550.h"
42 static int
43 wait_xfer_done(struct i2c_au1550_data *adap)
45 u32 stat;
46 int i;
47 volatile psc_smb_t *sp;
49 sp = (volatile psc_smb_t *)(adap->psc_base);
51 /* Wait for Tx Buffer Empty
53 for (i = 0; i < adap->xfer_timeout; i++) {
54 stat = sp->psc_smbstat;
55 au_sync();
56 if ((stat & PSC_SMBSTAT_TE) != 0)
57 return 0;
59 udelay(1);
62 return -ETIMEDOUT;
65 static int
66 wait_ack(struct i2c_au1550_data *adap)
68 u32 stat;
69 volatile psc_smb_t *sp;
71 if (wait_xfer_done(adap))
72 return -ETIMEDOUT;
74 sp = (volatile psc_smb_t *)(adap->psc_base);
76 stat = sp->psc_smbevnt;
77 au_sync();
79 if ((stat & (PSC_SMBEVNT_DN | PSC_SMBEVNT_AN | PSC_SMBEVNT_AL)) != 0)
80 return -ETIMEDOUT;
82 return 0;
85 static int
86 wait_master_done(struct i2c_au1550_data *adap)
88 u32 stat;
89 int i;
90 volatile psc_smb_t *sp;
92 sp = (volatile psc_smb_t *)(adap->psc_base);
94 /* Wait for Master Done.
96 for (i = 0; i < adap->xfer_timeout; i++) {
97 stat = sp->psc_smbevnt;
98 au_sync();
99 if ((stat & PSC_SMBEVNT_MD) != 0)
100 return 0;
101 udelay(1);
104 return -ETIMEDOUT;
107 static int
108 do_address(struct i2c_au1550_data *adap, unsigned int addr, int rd)
110 volatile psc_smb_t *sp;
111 u32 stat;
113 sp = (volatile psc_smb_t *)(adap->psc_base);
115 /* Reset the FIFOs, clear events.
117 stat = sp->psc_smbstat;
118 sp->psc_smbevnt = PSC_SMBEVNT_ALLCLR;
119 au_sync();
121 if (!(stat & PSC_SMBSTAT_TE) || !(stat & PSC_SMBSTAT_RE)) {
122 sp->psc_smbpcr = PSC_SMBPCR_DC;
123 au_sync();
124 do {
125 stat = sp->psc_smbpcr;
126 au_sync();
127 } while ((stat & PSC_SMBPCR_DC) != 0);
128 udelay(50);
131 /* Write out the i2c chip address and specify operation
133 addr <<= 1;
134 if (rd)
135 addr |= 1;
137 /* Put byte into fifo, start up master.
139 sp->psc_smbtxrx = addr;
140 au_sync();
141 sp->psc_smbpcr = PSC_SMBPCR_MS;
142 au_sync();
143 if (wait_ack(adap))
144 return -EIO;
145 return 0;
148 static u32
149 wait_for_rx_byte(struct i2c_au1550_data *adap, u32 *ret_data)
151 int j;
152 u32 data, stat;
153 volatile psc_smb_t *sp;
155 if (wait_xfer_done(adap))
156 return -EIO;
158 sp = (volatile psc_smb_t *)(adap->psc_base);
160 j = adap->xfer_timeout * 100;
161 do {
162 j--;
163 if (j <= 0)
164 return -EIO;
166 stat = sp->psc_smbstat;
167 au_sync();
168 if ((stat & PSC_SMBSTAT_RE) == 0)
169 j = 0;
170 else
171 udelay(1);
172 } while (j > 0);
173 data = sp->psc_smbtxrx;
174 au_sync();
175 *ret_data = data;
177 return 0;
180 static int
181 i2c_read(struct i2c_au1550_data *adap, unsigned char *buf,
182 unsigned int len)
184 int i;
185 u32 data;
186 volatile psc_smb_t *sp;
188 if (len == 0)
189 return 0;
191 /* A read is performed by stuffing the transmit fifo with
192 * zero bytes for timing, waiting for bytes to appear in the
193 * receive fifo, then reading the bytes.
196 sp = (volatile psc_smb_t *)(adap->psc_base);
198 i = 0;
199 while (i < (len-1)) {
200 sp->psc_smbtxrx = 0;
201 au_sync();
202 if (wait_for_rx_byte(adap, &data))
203 return -EIO;
205 buf[i] = data;
206 i++;
209 /* The last byte has to indicate transfer done.
211 sp->psc_smbtxrx = PSC_SMBTXRX_STP;
212 au_sync();
213 if (wait_master_done(adap))
214 return -EIO;
216 data = sp->psc_smbtxrx;
217 au_sync();
218 buf[i] = data;
219 return 0;
222 static int
223 i2c_write(struct i2c_au1550_data *adap, unsigned char *buf,
224 unsigned int len)
226 int i;
227 u32 data;
228 volatile psc_smb_t *sp;
230 if (len == 0)
231 return 0;
233 sp = (volatile psc_smb_t *)(adap->psc_base);
235 i = 0;
236 while (i < (len-1)) {
237 data = buf[i];
238 sp->psc_smbtxrx = data;
239 au_sync();
240 if (wait_ack(adap))
241 return -EIO;
242 i++;
245 /* The last byte has to indicate transfer done.
247 data = buf[i];
248 data |= PSC_SMBTXRX_STP;
249 sp->psc_smbtxrx = data;
250 au_sync();
251 if (wait_master_done(adap))
252 return -EIO;
253 return 0;
256 static int
257 au1550_xfer(struct i2c_adapter *i2c_adap, struct i2c_msg *msgs, int num)
259 struct i2c_au1550_data *adap = i2c_adap->algo_data;
260 struct i2c_msg *p;
261 int i, err = 0;
263 for (i = 0; !err && i < num; i++) {
264 p = &msgs[i];
265 err = do_address(adap, p->addr, p->flags & I2C_M_RD);
266 if (err || !p->len)
267 continue;
268 if (p->flags & I2C_M_RD)
269 err = i2c_read(adap, p->buf, p->len);
270 else
271 err = i2c_write(adap, p->buf, p->len);
274 /* Return the number of messages processed, or the error code.
276 if (err == 0)
277 err = num;
278 return err;
281 static u32
282 au1550_func(struct i2c_adapter *adap)
284 return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL;
287 static const struct i2c_algorithm au1550_algo = {
288 .master_xfer = au1550_xfer,
289 .functionality = au1550_func,
293 * registering functions to load algorithms at runtime
294 * Prior to calling us, the 50MHz clock frequency and routing
295 * must have been set up for the PSC indicated by the adapter.
298 i2c_au1550_add_bus(struct i2c_adapter *i2c_adap)
300 struct i2c_au1550_data *adap = i2c_adap->algo_data;
301 volatile psc_smb_t *sp;
302 u32 stat;
304 i2c_adap->algo = &au1550_algo;
306 /* Now, set up the PSC for SMBus PIO mode.
308 sp = (volatile psc_smb_t *)(adap->psc_base);
309 sp->psc_ctrl = PSC_CTRL_DISABLE;
310 au_sync();
311 sp->psc_sel = PSC_SEL_PS_SMBUSMODE;
312 sp->psc_smbcfg = 0;
313 au_sync();
314 sp->psc_ctrl = PSC_CTRL_ENABLE;
315 au_sync();
316 do {
317 stat = sp->psc_smbstat;
318 au_sync();
319 } while ((stat & PSC_SMBSTAT_SR) == 0);
321 sp->psc_smbcfg = (PSC_SMBCFG_RT_FIFO8 | PSC_SMBCFG_TT_FIFO8 |
322 PSC_SMBCFG_DD_DISABLE);
324 /* Divide by 8 to get a 6.25 MHz clock. The later protocol
325 * timings are based on this clock.
327 sp->psc_smbcfg |= PSC_SMBCFG_SET_DIV(PSC_SMBCFG_DIV8);
328 sp->psc_smbmsk = PSC_SMBMSK_ALLMASK;
329 au_sync();
331 /* Set the protocol timer values. See Table 71 in the
332 * Au1550 Data Book for standard timing values.
334 sp->psc_smbtmr = PSC_SMBTMR_SET_TH(0) | PSC_SMBTMR_SET_PS(15) | \
335 PSC_SMBTMR_SET_PU(15) | PSC_SMBTMR_SET_SH(15) | \
336 PSC_SMBTMR_SET_SU(15) | PSC_SMBTMR_SET_CL(15) | \
337 PSC_SMBTMR_SET_CH(15);
338 au_sync();
340 sp->psc_smbcfg |= PSC_SMBCFG_DE_ENABLE;
341 do {
342 stat = sp->psc_smbstat;
343 au_sync();
344 } while ((stat & PSC_SMBSTAT_DR) == 0);
346 return i2c_add_adapter(i2c_adap);
351 i2c_au1550_del_bus(struct i2c_adapter *adap)
353 return i2c_del_adapter(adap);
356 static int
357 pb1550_reg(struct i2c_client *client)
359 return 0;
362 static int
363 pb1550_unreg(struct i2c_client *client)
365 return 0;
368 static struct i2c_au1550_data pb1550_i2c_info = {
369 SMBUS_PSC_BASE, 200, 200
372 static struct i2c_adapter pb1550_board_adapter = {
373 name: "pb1550 adapter",
374 id: I2C_HW_AU1550_PSC,
375 algo: NULL,
376 algo_data: &pb1550_i2c_info,
377 client_register: pb1550_reg,
378 client_unregister: pb1550_unreg,
381 /* BIG hack to support the control interface on the Wolfson WM8731
382 * audio codec on the Pb1550 board. We get an address and two data
383 * bytes to write, create an i2c message, and send it across the
384 * i2c transfer function. We do this here because we have access to
385 * the i2c adapter structure.
387 static struct i2c_msg wm_i2c_msg; /* We don't want this stuff on the stack */
388 static u8 i2cbuf[2];
391 pb1550_wm_codec_write(u8 addr, u8 reg, u8 val)
393 wm_i2c_msg.addr = addr;
394 wm_i2c_msg.flags = 0;
395 wm_i2c_msg.buf = i2cbuf;
396 wm_i2c_msg.len = 2;
397 i2cbuf[0] = reg;
398 i2cbuf[1] = val;
400 return pb1550_board_adapter.algo->master_xfer(&pb1550_board_adapter, &wm_i2c_msg, 1);
403 static int __init
404 i2c_au1550_init(void)
406 printk(KERN_INFO "Au1550 I2C: ");
408 /* This is where we would set up a 50MHz clock source
409 * and routing. On the Pb1550, the SMBus is PSC2, which
410 * uses a shared clock with USB. This has been already
411 * configured by Yamon as a 48MHz clock, close enough
412 * for our work.
414 if (i2c_au1550_add_bus(&pb1550_board_adapter) < 0) {
415 printk("failed to initialize.\n");
416 return -ENODEV;
419 printk("initialized.\n");
420 return 0;
423 static void __exit
424 i2c_au1550_exit(void)
426 i2c_au1550_del_bus(&pb1550_board_adapter);
429 MODULE_AUTHOR("Dan Malek, Embedded Edge, LLC.");
430 MODULE_DESCRIPTION("SMBus adapter Alchemy pb1550");
431 MODULE_LICENSE("GPL");
433 module_init (i2c_au1550_init);
434 module_exit (i2c_au1550_exit);