1 /* -*- mode: c; c-basic-offset: 8 -*- */
3 /* NCR (or Symbios) 53c700 and 53c700-66 Driver
5 * Copyright (C) 2001 by James.Bottomley@HansenPartnership.com
6 **-----------------------------------------------------------------------------
8 ** This program is free software; you can redistribute it and/or modify
9 ** it under the terms of the GNU General Public License as published by
10 ** the Free Software Foundation; either version 2 of the License, or
11 ** (at your option) any later version.
13 ** This program is distributed in the hope that it will be useful,
14 ** but WITHOUT ANY WARRANTY; without even the implied warranty of
15 ** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 ** GNU General Public License for more details.
18 ** You should have received a copy of the GNU General Public License
19 ** along with this program; if not, write to the Free Software
20 ** Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
22 **-----------------------------------------------------------------------------
27 * This driver is designed exclusively for these chips (virtually the
28 * earliest of the scripts engine chips). They need their own drivers
29 * because they are missing so many of the scripts and snazzy register
30 * features of their elder brothers (the 710, 720 and 770).
32 * The 700 is the lowliest of the line, it can only do async SCSI.
33 * The 700-66 can at least do synchronous SCSI up to 10MHz.
35 * The 700 chip has no host bus interface logic of its own. However,
36 * it is usually mapped to a location with well defined register
37 * offsets. Therefore, if you can determine the base address and the
38 * irq your board incorporating this chip uses, you can probably use
39 * this driver to run it (although you'll probably have to write a
40 * minimal wrapper for the purpose---see the NCR_D700 driver for
41 * details about how to do this).
46 * 1. Better statistics in the proc fs
48 * 2. Implement message queue (queues SCSI messages like commands) and make
49 * the abort and device reset functions use them.
56 * Fixed bad bug affecting tag starvation processing (previously the
57 * driver would hang the system if too many tags starved. Also fixed
58 * bad bug having to do with 10 byte command processing and REQUEST
59 * SENSE (the command would loop forever getting a transfer length
60 * mismatch in the CMD phase).
64 * Fixed scripts problem which caused certain devices (notably CDRWs)
65 * to hang on initial INQUIRY. Updated NCR_700_readl/writel to use
66 * __raw_readl/writel for parisc compatibility (Thomas
67 * Bogendoerfer). Added missing SCp->request_bufflen initialisation
68 * for sense requests (Ryan Bradetich).
72 * Following test of the 64 bit parisc kernel by Richard Hirst,
73 * several problems have now been corrected. Also adds support for
74 * consistent memory allocation.
78 * More Compatibility changes for 710 (now actually works). Enhanced
79 * support for odd clock speeds which constrain SDTR negotiations.
80 * correct cacheline separation for scsi messages and status for
81 * incoherent architectures. Use of the pci mapping functions on
82 * buffers to begin support for 64 bit drivers.
86 * Added support for the 53c710 chip (in 53c700 emulation mode only---no
87 * special 53c710 instructions or registers are used).
91 * More endianness/cache coherency changes.
93 * Better bad device handling (handles devices lying about tag
94 * queueing support and devices which fail to provide sense data on
95 * contingent allegiance conditions)
97 * Many thanks to Richard Hirst <rhirst@linuxcare.com> for patiently
98 * debugging this driver on the parisc architecture and suggesting
99 * many improvements and bug fixes.
101 * Thanks also go to Linuxcare Inc. for providing several PARISC
102 * machines for me to debug the driver on.
106 * Made the driver mem or io mapped; added endian invariance; added
107 * dma cache flushing operations for architectures which need it;
108 * added support for more varied clocking speeds.
112 * Initial modularisation from the D700. See NCR_D700.c for the rest of
115 #define NCR_700_VERSION "2.8"
117 #include <linux/kernel.h>
118 #include <linux/types.h>
119 #include <linux/string.h>
120 #include <linux/ioport.h>
121 #include <linux/delay.h>
122 #include <linux/spinlock.h>
123 #include <linux/completion.h>
124 #include <linux/init.h>
125 #include <linux/proc_fs.h>
126 #include <linux/blkdev.h>
127 #include <linux/module.h>
128 #include <linux/interrupt.h>
129 #include <linux/device.h>
131 #include <asm/system.h>
133 #include <asm/pgtable.h>
134 #include <asm/byteorder.h>
136 #include <scsi/scsi.h>
137 #include <scsi/scsi_cmnd.h>
138 #include <scsi/scsi_dbg.h>
139 #include <scsi/scsi_eh.h>
140 #include <scsi/scsi_host.h>
141 #include <scsi/scsi_tcq.h>
142 #include <scsi/scsi_transport.h>
143 #include <scsi/scsi_transport_spi.h>
147 /* NOTE: For 64 bit drivers there are points in the code where we use
148 * a non dereferenceable pointer to point to a structure in dma-able
149 * memory (which is 32 bits) so that we can use all of the structure
150 * operations but take the address at the end. This macro allows us
151 * to truncate the 64 bit pointer down to 32 bits without the compiler
153 #define to32bit(x) ((__u32)((unsigned long)(x)))
158 #define STATIC static
161 MODULE_AUTHOR("James Bottomley");
162 MODULE_DESCRIPTION("53c700 and 53c700-66 Driver");
163 MODULE_LICENSE("GPL");
165 /* This is the script */
166 #include "53c700_d.h"
169 STATIC
int NCR_700_queuecommand(struct scsi_cmnd
*, void (*done
)(struct scsi_cmnd
*));
170 STATIC
int NCR_700_abort(struct scsi_cmnd
* SCpnt
);
171 STATIC
int NCR_700_bus_reset(struct scsi_cmnd
* SCpnt
);
172 STATIC
int NCR_700_host_reset(struct scsi_cmnd
* SCpnt
);
173 STATIC
void NCR_700_chip_setup(struct Scsi_Host
*host
);
174 STATIC
void NCR_700_chip_reset(struct Scsi_Host
*host
);
175 STATIC
int NCR_700_slave_alloc(struct scsi_device
*SDpnt
);
176 STATIC
int NCR_700_slave_configure(struct scsi_device
*SDpnt
);
177 STATIC
void NCR_700_slave_destroy(struct scsi_device
*SDpnt
);
178 static int NCR_700_change_queue_depth(struct scsi_device
*SDpnt
, int depth
);
179 static int NCR_700_change_queue_type(struct scsi_device
*SDpnt
, int depth
);
181 STATIC
struct device_attribute
*NCR_700_dev_attrs
[];
183 STATIC
struct scsi_transport_template
*NCR_700_transport_template
= NULL
;
185 static char *NCR_700_phase
[] = {
188 "before command phase",
189 "after command phase",
190 "after status phase",
191 "after data in phase",
192 "after data out phase",
196 static char *NCR_700_condition
[] = {
204 "REJECT_MSG RECEIVED",
205 "DISCONNECT_MSG RECEIVED",
211 static char *NCR_700_fatal_messages
[] = {
212 "unexpected message after reselection",
213 "still MSG_OUT after message injection",
214 "not MSG_IN after selection",
215 "Illegal message length received",
218 static char *NCR_700_SBCL_bits
[] = {
229 static char *NCR_700_SBCL_to_phase
[] = {
240 /* This translates the SDTR message offset and period to a value
241 * which can be loaded into the SXFER_REG.
243 * NOTE: According to SCSI-2, the true transfer period (in ns) is
244 * actually four times this period value */
246 NCR_700_offset_period_to_sxfer(struct NCR_700_Host_Parameters
*hostdata
,
247 __u8 offset
, __u8 period
)
251 __u8 min_xferp
= (hostdata
->chip710
252 ? NCR_710_MIN_XFERP
: NCR_700_MIN_XFERP
);
253 __u8 max_offset
= (hostdata
->chip710
254 ? NCR_710_MAX_OFFSET
: NCR_700_MAX_OFFSET
);
259 if(period
< hostdata
->min_period
) {
260 printk(KERN_WARNING
"53c700: Period %dns is less than this chip's minimum, setting to %d\n", period
*4, NCR_700_MIN_PERIOD
*4);
261 period
= hostdata
->min_period
;
263 XFERP
= (period
*4 * hostdata
->sync_clock
)/1000 - 4;
264 if(offset
> max_offset
) {
265 printk(KERN_WARNING
"53c700: Offset %d exceeds chip maximum, setting to %d\n",
269 if(XFERP
< min_xferp
) {
272 return (offset
& 0x0f) | (XFERP
& 0x07)<<4;
276 NCR_700_get_SXFER(struct scsi_device
*SDp
)
278 struct NCR_700_Host_Parameters
*hostdata
=
279 (struct NCR_700_Host_Parameters
*)SDp
->host
->hostdata
[0];
281 return NCR_700_offset_period_to_sxfer(hostdata
,
282 spi_offset(SDp
->sdev_target
),
283 spi_period(SDp
->sdev_target
));
287 NCR_700_detect(struct scsi_host_template
*tpnt
,
288 struct NCR_700_Host_Parameters
*hostdata
, struct device
*dev
)
290 dma_addr_t pScript
, pSlots
;
293 struct Scsi_Host
*host
;
294 static int banner
= 0;
297 if(tpnt
->sdev_attrs
== NULL
)
298 tpnt
->sdev_attrs
= NCR_700_dev_attrs
;
300 memory
= dma_alloc_noncoherent(hostdata
->dev
, TOTAL_MEM_SIZE
,
301 &pScript
, GFP_KERNEL
);
303 printk(KERN_ERR
"53c700: Failed to allocate memory for driver, detatching\n");
307 script
= (__u32
*)memory
;
308 hostdata
->msgin
= memory
+ MSGIN_OFFSET
;
309 hostdata
->msgout
= memory
+ MSGOUT_OFFSET
;
310 hostdata
->status
= memory
+ STATUS_OFFSET
;
311 /* all of these offsets are L1_CACHE_BYTES separated. It is fatal
312 * if this isn't sufficient separation to avoid dma flushing issues */
313 BUG_ON(!dma_is_consistent(hostdata
->dev
, pScript
) && L1_CACHE_BYTES
< dma_get_cache_alignment());
314 hostdata
->slots
= (struct NCR_700_command_slot
*)(memory
+ SLOTS_OFFSET
);
317 pSlots
= pScript
+ SLOTS_OFFSET
;
319 /* Fill in the missing routines from the host template */
320 tpnt
->queuecommand
= NCR_700_queuecommand
;
321 tpnt
->eh_abort_handler
= NCR_700_abort
;
322 tpnt
->eh_bus_reset_handler
= NCR_700_bus_reset
;
323 tpnt
->eh_host_reset_handler
= NCR_700_host_reset
;
324 tpnt
->can_queue
= NCR_700_COMMAND_SLOTS_PER_HOST
;
325 tpnt
->sg_tablesize
= NCR_700_SG_SEGMENTS
;
326 tpnt
->cmd_per_lun
= NCR_700_CMD_PER_LUN
;
327 tpnt
->use_clustering
= ENABLE_CLUSTERING
;
328 tpnt
->slave_configure
= NCR_700_slave_configure
;
329 tpnt
->slave_destroy
= NCR_700_slave_destroy
;
330 tpnt
->slave_alloc
= NCR_700_slave_alloc
;
331 tpnt
->change_queue_depth
= NCR_700_change_queue_depth
;
332 tpnt
->change_queue_type
= NCR_700_change_queue_type
;
334 if(tpnt
->name
== NULL
)
335 tpnt
->name
= "53c700";
336 if(tpnt
->proc_name
== NULL
)
337 tpnt
->proc_name
= "53c700";
339 host
= scsi_host_alloc(tpnt
, 4);
342 memset(hostdata
->slots
, 0, sizeof(struct NCR_700_command_slot
)
343 * NCR_700_COMMAND_SLOTS_PER_HOST
);
344 for (j
= 0; j
< NCR_700_COMMAND_SLOTS_PER_HOST
; j
++) {
345 dma_addr_t offset
= (dma_addr_t
)((unsigned long)&hostdata
->slots
[j
].SG
[0]
346 - (unsigned long)&hostdata
->slots
[0].SG
[0]);
347 hostdata
->slots
[j
].pSG
= (struct NCR_700_SG_List
*)((unsigned long)(pSlots
+ offset
));
349 hostdata
->free_list
= &hostdata
->slots
[j
];
351 hostdata
->slots
[j
-1].ITL_forw
= &hostdata
->slots
[j
];
352 hostdata
->slots
[j
].state
= NCR_700_SLOT_FREE
;
355 for (j
= 0; j
< ARRAY_SIZE(SCRIPT
); j
++)
356 script
[j
] = bS_to_host(SCRIPT
[j
]);
358 /* adjust all labels to be bus physical */
359 for (j
= 0; j
< PATCHES
; j
++)
360 script
[LABELPATCHES
[j
]] = bS_to_host(pScript
+ SCRIPT
[LABELPATCHES
[j
]]);
361 /* now patch up fixed addresses. */
362 script_patch_32(hostdata
->dev
, script
, MessageLocation
,
363 pScript
+ MSGOUT_OFFSET
);
364 script_patch_32(hostdata
->dev
, script
, StatusAddress
,
365 pScript
+ STATUS_OFFSET
);
366 script_patch_32(hostdata
->dev
, script
, ReceiveMsgAddress
,
367 pScript
+ MSGIN_OFFSET
);
369 hostdata
->script
= script
;
370 hostdata
->pScript
= pScript
;
371 dma_sync_single_for_device(hostdata
->dev
, pScript
, sizeof(SCRIPT
), DMA_TO_DEVICE
);
372 hostdata
->state
= NCR_700_HOST_FREE
;
373 hostdata
->cmd
= NULL
;
375 host
->max_lun
= NCR_700_MAX_LUNS
;
376 BUG_ON(NCR_700_transport_template
== NULL
);
377 host
->transportt
= NCR_700_transport_template
;
378 host
->unique_id
= (unsigned long)hostdata
->base
;
379 hostdata
->eh_complete
= NULL
;
380 host
->hostdata
[0] = (unsigned long)hostdata
;
382 NCR_700_writeb(0xff, host
, CTEST9_REG
);
383 if (hostdata
->chip710
)
384 hostdata
->rev
= (NCR_700_readb(host
, CTEST8_REG
)>>4) & 0x0f;
386 hostdata
->rev
= (NCR_700_readb(host
, CTEST7_REG
)>>4) & 0x0f;
387 hostdata
->fast
= (NCR_700_readb(host
, CTEST9_REG
) == 0);
389 printk(KERN_NOTICE
"53c700: Version " NCR_700_VERSION
" By James.Bottomley@HansenPartnership.com\n");
392 printk(KERN_NOTICE
"scsi%d: %s rev %d %s\n", host
->host_no
,
393 hostdata
->chip710
? "53c710" :
394 (hostdata
->fast
? "53c700-66" : "53c700"),
395 hostdata
->rev
, hostdata
->differential
?
396 "(Differential)" : "");
398 NCR_700_chip_reset(host
);
400 if (scsi_add_host(host
, dev
)) {
401 dev_printk(KERN_ERR
, dev
, "53c700: scsi_add_host failed\n");
406 spi_signalling(host
) = hostdata
->differential
? SPI_SIGNAL_HVD
:
413 NCR_700_release(struct Scsi_Host
*host
)
415 struct NCR_700_Host_Parameters
*hostdata
=
416 (struct NCR_700_Host_Parameters
*)host
->hostdata
[0];
418 dma_free_noncoherent(hostdata
->dev
, TOTAL_MEM_SIZE
,
419 hostdata
->script
, hostdata
->pScript
);
424 NCR_700_identify(int can_disconnect
, __u8 lun
)
426 return IDENTIFY_BASE
|
427 ((can_disconnect
) ? 0x40 : 0) |
428 (lun
& NCR_700_LUN_MASK
);
432 * Function : static int data_residual (Scsi_Host *host)
434 * Purpose : return residual data count of what's in the chip. If you
435 * really want to know what this function is doing, it's almost a
436 * direct transcription of the algorithm described in the 53c710
437 * guide, except that the DBC and DFIFO registers are only 6 bits
440 * Inputs : host - SCSI host */
442 NCR_700_data_residual (struct Scsi_Host
*host
) {
443 struct NCR_700_Host_Parameters
*hostdata
=
444 (struct NCR_700_Host_Parameters
*)host
->hostdata
[0];
445 int count
, synchronous
= 0;
448 if(hostdata
->chip710
) {
449 count
= ((NCR_700_readb(host
, DFIFO_REG
) & 0x7f) -
450 (NCR_700_readl(host
, DBC_REG
) & 0x7f)) & 0x7f;
452 count
= ((NCR_700_readb(host
, DFIFO_REG
) & 0x3f) -
453 (NCR_700_readl(host
, DBC_REG
) & 0x3f)) & 0x3f;
457 synchronous
= NCR_700_readb(host
, SXFER_REG
) & 0x0f;
459 /* get the data direction */
460 ddir
= NCR_700_readb(host
, CTEST0_REG
) & 0x01;
465 count
+= (NCR_700_readb(host
, SSTAT2_REG
) & 0xf0) >> 4;
467 if (NCR_700_readb(host
, SSTAT1_REG
) & SIDL_REG_FULL
)
471 __u8 sstat
= NCR_700_readb(host
, SSTAT1_REG
);
472 if (sstat
& SODL_REG_FULL
)
474 if (synchronous
&& (sstat
& SODR_REG_FULL
))
479 printk("RESIDUAL IS %d (ddir %d)\n", count
, ddir
);
484 /* print out the SCSI wires and corresponding phase from the SBCL register
487 sbcl_to_string(__u8 sbcl
)
490 static char ret
[256];
495 strcat(ret
, NCR_700_SBCL_bits
[i
]);
497 strcat(ret
, NCR_700_SBCL_to_phase
[sbcl
& 0x07]);
502 bitmap_to_number(__u8 bitmap
)
506 for(i
=0; i
<8 && !(bitmap
&(1<<i
)); i
++)
511 /* Pull a slot off the free list */
512 STATIC
struct NCR_700_command_slot
*
513 find_empty_slot(struct NCR_700_Host_Parameters
*hostdata
)
515 struct NCR_700_command_slot
*slot
= hostdata
->free_list
;
519 if(hostdata
->command_slot_count
!= NCR_700_COMMAND_SLOTS_PER_HOST
)
520 printk(KERN_ERR
"SLOTS FULL, but count is %d, should be %d\n", hostdata
->command_slot_count
, NCR_700_COMMAND_SLOTS_PER_HOST
);
524 if(slot
->state
!= NCR_700_SLOT_FREE
)
526 printk(KERN_ERR
"BUSY SLOT ON FREE LIST!!!\n");
529 hostdata
->free_list
= slot
->ITL_forw
;
530 slot
->ITL_forw
= NULL
;
533 /* NOTE: set the state to busy here, not queued, since this
534 * indicates the slot is in use and cannot be run by the IRQ
535 * finish routine. If we cannot queue the command when it
536 * is properly build, we then change to NCR_700_SLOT_QUEUED */
537 slot
->state
= NCR_700_SLOT_BUSY
;
539 hostdata
->command_slot_count
++;
545 free_slot(struct NCR_700_command_slot
*slot
,
546 struct NCR_700_Host_Parameters
*hostdata
)
548 if((slot
->state
& NCR_700_SLOT_MASK
) != NCR_700_SLOT_MAGIC
) {
549 printk(KERN_ERR
"53c700: SLOT %p is not MAGIC!!!\n", slot
);
551 if(slot
->state
== NCR_700_SLOT_FREE
) {
552 printk(KERN_ERR
"53c700: SLOT %p is FREE!!!\n", slot
);
555 slot
->resume_offset
= 0;
557 slot
->state
= NCR_700_SLOT_FREE
;
558 slot
->ITL_forw
= hostdata
->free_list
;
559 hostdata
->free_list
= slot
;
560 hostdata
->command_slot_count
--;
564 /* This routine really does very little. The command is indexed on
565 the ITL and (if tagged) the ITLQ lists in _queuecommand */
567 save_for_reselection(struct NCR_700_Host_Parameters
*hostdata
,
568 struct scsi_cmnd
*SCp
, __u32 dsp
)
570 /* Its just possible that this gets executed twice */
572 struct NCR_700_command_slot
*slot
=
573 (struct NCR_700_command_slot
*)SCp
->host_scribble
;
575 slot
->resume_offset
= dsp
;
577 hostdata
->state
= NCR_700_HOST_FREE
;
578 hostdata
->cmd
= NULL
;
582 NCR_700_unmap(struct NCR_700_Host_Parameters
*hostdata
, struct scsi_cmnd
*SCp
,
583 struct NCR_700_command_slot
*slot
)
585 if(SCp
->sc_data_direction
!= DMA_NONE
&&
586 SCp
->sc_data_direction
!= DMA_BIDIRECTIONAL
)
591 NCR_700_scsi_done(struct NCR_700_Host_Parameters
*hostdata
,
592 struct scsi_cmnd
*SCp
, int result
)
594 hostdata
->state
= NCR_700_HOST_FREE
;
595 hostdata
->cmd
= NULL
;
598 struct NCR_700_command_slot
*slot
=
599 (struct NCR_700_command_slot
*)SCp
->host_scribble
;
601 dma_unmap_single(hostdata
->dev
, slot
->pCmd
,
602 sizeof(SCp
->cmnd
), DMA_TO_DEVICE
);
603 if (slot
->flags
== NCR_700_FLAG_AUTOSENSE
) {
604 char *cmnd
= NCR_700_get_sense_cmnd(SCp
->device
);
606 printk(" ORIGINAL CMD %p RETURNED %d, new return is %d sense is\n",
607 SCp
, SCp
->cmnd
[7], result
);
608 scsi_print_sense("53c700", SCp
);
611 dma_unmap_single(hostdata
->dev
, slot
->dma_handle
, sizeof(SCp
->sense_buffer
), DMA_FROM_DEVICE
);
612 /* restore the old result if the request sense was
616 /* restore the original length */
617 SCp
->cmd_len
= cmnd
[8];
619 NCR_700_unmap(hostdata
, SCp
, slot
);
621 free_slot(slot
, hostdata
);
623 if(NCR_700_get_depth(SCp
->device
) == 0 ||
624 NCR_700_get_depth(SCp
->device
) > SCp
->device
->queue_depth
)
625 printk(KERN_ERR
"Invalid depth in NCR_700_scsi_done(): %d\n",
626 NCR_700_get_depth(SCp
->device
));
627 #endif /* NCR_700_DEBUG */
628 NCR_700_set_depth(SCp
->device
, NCR_700_get_depth(SCp
->device
) - 1);
630 SCp
->host_scribble
= NULL
;
631 SCp
->result
= result
;
634 printk(KERN_ERR
"53c700: SCSI DONE HAS NULL SCp\n");
640 NCR_700_internal_bus_reset(struct Scsi_Host
*host
)
643 NCR_700_writeb(ASSERT_RST
, host
, SCNTL1_REG
);
645 NCR_700_writeb(0, host
, SCNTL1_REG
);
650 NCR_700_chip_setup(struct Scsi_Host
*host
)
652 struct NCR_700_Host_Parameters
*hostdata
=
653 (struct NCR_700_Host_Parameters
*)host
->hostdata
[0];
655 __u8 min_xferp
= (hostdata
->chip710
? NCR_710_MIN_XFERP
: NCR_700_MIN_XFERP
);
657 if(hostdata
->chip710
) {
658 __u8 burst_disable
= 0;
659 __u8 burst_length
= 0;
661 switch (hostdata
->burst_length
) {
663 burst_length
= BURST_LENGTH_1
;
666 burst_length
= BURST_LENGTH_2
;
669 burst_length
= BURST_LENGTH_4
;
672 burst_length
= BURST_LENGTH_8
;
675 burst_disable
= BURST_DISABLE
;
678 hostdata
->dcntl_extra
|= COMPAT_700_MODE
;
680 NCR_700_writeb(hostdata
->dcntl_extra
, host
, DCNTL_REG
);
681 NCR_700_writeb(burst_length
| hostdata
->dmode_extra
,
682 host
, DMODE_710_REG
);
683 NCR_700_writeb(burst_disable
| hostdata
->ctest7_extra
|
684 (hostdata
->differential
? DIFF
: 0),
686 NCR_700_writeb(BTB_TIMER_DISABLE
, host
, CTEST0_REG
);
687 NCR_700_writeb(FULL_ARBITRATION
| ENABLE_PARITY
| PARITY
688 | AUTO_ATN
, host
, SCNTL0_REG
);
690 NCR_700_writeb(BURST_LENGTH_8
| hostdata
->dmode_extra
,
691 host
, DMODE_700_REG
);
692 NCR_700_writeb(hostdata
->differential
?
693 DIFF
: 0, host
, CTEST7_REG
);
695 /* this is for 700-66, does nothing on 700 */
696 NCR_700_writeb(LAST_DIS_ENBL
| ENABLE_ACTIVE_NEGATION
697 | GENERATE_RECEIVE_PARITY
, host
,
700 NCR_700_writeb(FULL_ARBITRATION
| ENABLE_PARITY
701 | PARITY
| AUTO_ATN
, host
, SCNTL0_REG
);
705 NCR_700_writeb(1 << host
->this_id
, host
, SCID_REG
);
706 NCR_700_writeb(0, host
, SBCL_REG
);
707 NCR_700_writeb(ASYNC_OPERATION
, host
, SXFER_REG
);
709 NCR_700_writeb(PHASE_MM_INT
| SEL_TIMEOUT_INT
| GROSS_ERR_INT
| UX_DISC_INT
710 | RST_INT
| PAR_ERR_INT
| SELECT_INT
, host
, SIEN_REG
);
712 NCR_700_writeb(ABORT_INT
| INT_INST_INT
| ILGL_INST_INT
, host
, DIEN_REG
);
713 NCR_700_writeb(ENABLE_SELECT
, host
, SCNTL1_REG
);
714 if(hostdata
->clock
> 75) {
715 printk(KERN_ERR
"53c700: Clock speed %dMHz is too high: 75Mhz is the maximum this chip can be driven at\n", hostdata
->clock
);
716 /* do the best we can, but the async clock will be out
717 * of spec: sync divider 2, async divider 3 */
718 DEBUG(("53c700: sync 2 async 3\n"));
719 NCR_700_writeb(SYNC_DIV_2_0
, host
, SBCL_REG
);
720 NCR_700_writeb(ASYNC_DIV_3_0
| hostdata
->dcntl_extra
, host
, DCNTL_REG
);
721 hostdata
->sync_clock
= hostdata
->clock
/2;
722 } else if(hostdata
->clock
> 50 && hostdata
->clock
<= 75) {
723 /* sync divider 1.5, async divider 3 */
724 DEBUG(("53c700: sync 1.5 async 3\n"));
725 NCR_700_writeb(SYNC_DIV_1_5
, host
, SBCL_REG
);
726 NCR_700_writeb(ASYNC_DIV_3_0
| hostdata
->dcntl_extra
, host
, DCNTL_REG
);
727 hostdata
->sync_clock
= hostdata
->clock
*2;
728 hostdata
->sync_clock
/= 3;
730 } else if(hostdata
->clock
> 37 && hostdata
->clock
<= 50) {
731 /* sync divider 1, async divider 2 */
732 DEBUG(("53c700: sync 1 async 2\n"));
733 NCR_700_writeb(SYNC_DIV_1_0
, host
, SBCL_REG
);
734 NCR_700_writeb(ASYNC_DIV_2_0
| hostdata
->dcntl_extra
, host
, DCNTL_REG
);
735 hostdata
->sync_clock
= hostdata
->clock
;
736 } else if(hostdata
->clock
> 25 && hostdata
->clock
<=37) {
737 /* sync divider 1, async divider 1.5 */
738 DEBUG(("53c700: sync 1 async 1.5\n"));
739 NCR_700_writeb(SYNC_DIV_1_0
, host
, SBCL_REG
);
740 NCR_700_writeb(ASYNC_DIV_1_5
| hostdata
->dcntl_extra
, host
, DCNTL_REG
);
741 hostdata
->sync_clock
= hostdata
->clock
;
743 DEBUG(("53c700: sync 1 async 1\n"));
744 NCR_700_writeb(SYNC_DIV_1_0
, host
, SBCL_REG
);
745 NCR_700_writeb(ASYNC_DIV_1_0
| hostdata
->dcntl_extra
, host
, DCNTL_REG
);
746 /* sync divider 1, async divider 1 */
747 hostdata
->sync_clock
= hostdata
->clock
;
749 /* Calculate the actual minimum period that can be supported
750 * by our synchronous clock speed. See the 710 manual for
751 * exact details of this calculation which is based on a
752 * setting of the SXFER register */
753 min_period
= 1000*(4+min_xferp
)/(4*hostdata
->sync_clock
);
754 hostdata
->min_period
= NCR_700_MIN_PERIOD
;
755 if(min_period
> NCR_700_MIN_PERIOD
)
756 hostdata
->min_period
= min_period
;
760 NCR_700_chip_reset(struct Scsi_Host
*host
)
762 struct NCR_700_Host_Parameters
*hostdata
=
763 (struct NCR_700_Host_Parameters
*)host
->hostdata
[0];
764 if(hostdata
->chip710
) {
765 NCR_700_writeb(SOFTWARE_RESET_710
, host
, ISTAT_REG
);
768 NCR_700_writeb(0, host
, ISTAT_REG
);
770 NCR_700_writeb(SOFTWARE_RESET
, host
, DCNTL_REG
);
773 NCR_700_writeb(0, host
, DCNTL_REG
);
778 NCR_700_chip_setup(host
);
781 /* The heart of the message processing engine is that the instruction
782 * immediately after the INT is the normal case (and so must be CLEAR
783 * ACK). If we want to do something else, we call that routine in
784 * scripts and set temp to be the normal case + 8 (skipping the CLEAR
785 * ACK) so that the routine returns correctly to resume its activity
788 process_extended_message(struct Scsi_Host
*host
,
789 struct NCR_700_Host_Parameters
*hostdata
,
790 struct scsi_cmnd
*SCp
, __u32 dsp
, __u32 dsps
)
792 __u32 resume_offset
= dsp
, temp
= dsp
+ 8;
793 __u8 pun
= 0xff, lun
= 0xff;
796 pun
= SCp
->device
->id
;
797 lun
= SCp
->device
->lun
;
800 switch(hostdata
->msgin
[2]) {
802 if(SCp
!= NULL
&& NCR_700_is_flag_set(SCp
->device
, NCR_700_DEV_BEGIN_SYNC_NEGOTIATION
)) {
803 struct scsi_target
*starget
= SCp
->device
->sdev_target
;
804 __u8 period
= hostdata
->msgin
[3];
805 __u8 offset
= hostdata
->msgin
[4];
807 if(offset
== 0 || period
== 0) {
812 spi_offset(starget
) = offset
;
813 spi_period(starget
) = period
;
815 if(NCR_700_is_flag_set(SCp
->device
, NCR_700_DEV_PRINT_SYNC_NEGOTIATION
)) {
816 spi_display_xfer_agreement(starget
);
817 NCR_700_clear_flag(SCp
->device
, NCR_700_DEV_PRINT_SYNC_NEGOTIATION
);
820 NCR_700_set_flag(SCp
->device
, NCR_700_DEV_NEGOTIATED_SYNC
);
821 NCR_700_clear_flag(SCp
->device
, NCR_700_DEV_BEGIN_SYNC_NEGOTIATION
);
823 NCR_700_writeb(NCR_700_get_SXFER(SCp
->device
),
827 /* SDTR message out of the blue, reject it */
828 shost_printk(KERN_WARNING
, host
,
829 "Unexpected SDTR msg\n");
830 hostdata
->msgout
[0] = A_REJECT_MSG
;
831 dma_cache_sync(hostdata
->dev
, hostdata
->msgout
, 1, DMA_TO_DEVICE
);
832 script_patch_16(hostdata
->dev
, hostdata
->script
,
834 /* SendMsgOut returns, so set up the return
836 resume_offset
= hostdata
->pScript
+ Ent_SendMessageWithATN
;
841 printk(KERN_INFO
"scsi%d: (%d:%d), Unsolicited WDTR after CMD, Rejecting\n",
842 host
->host_no
, pun
, lun
);
843 hostdata
->msgout
[0] = A_REJECT_MSG
;
844 dma_cache_sync(hostdata
->dev
, hostdata
->msgout
, 1, DMA_TO_DEVICE
);
845 script_patch_16(hostdata
->dev
, hostdata
->script
, MessageCount
,
847 resume_offset
= hostdata
->pScript
+ Ent_SendMessageWithATN
;
852 printk(KERN_INFO
"scsi%d (%d:%d): Unexpected message %s: ",
853 host
->host_no
, pun
, lun
,
854 NCR_700_phase
[(dsps
& 0xf00) >> 8]);
855 spi_print_msg(hostdata
->msgin
);
858 hostdata
->msgout
[0] = A_REJECT_MSG
;
859 dma_cache_sync(hostdata
->dev
, hostdata
->msgout
, 1, DMA_TO_DEVICE
);
860 script_patch_16(hostdata
->dev
, hostdata
->script
, MessageCount
,
862 /* SendMsgOut returns, so set up the return
864 resume_offset
= hostdata
->pScript
+ Ent_SendMessageWithATN
;
866 NCR_700_writel(temp
, host
, TEMP_REG
);
867 return resume_offset
;
871 process_message(struct Scsi_Host
*host
, struct NCR_700_Host_Parameters
*hostdata
,
872 struct scsi_cmnd
*SCp
, __u32 dsp
, __u32 dsps
)
874 /* work out where to return to */
875 __u32 temp
= dsp
+ 8, resume_offset
= dsp
;
876 __u8 pun
= 0xff, lun
= 0xff;
879 pun
= SCp
->device
->id
;
880 lun
= SCp
->device
->lun
;
884 printk("scsi%d (%d:%d): message %s: ", host
->host_no
, pun
, lun
,
885 NCR_700_phase
[(dsps
& 0xf00) >> 8]);
886 spi_print_msg(hostdata
->msgin
);
890 switch(hostdata
->msgin
[0]) {
893 resume_offset
= process_extended_message(host
, hostdata
, SCp
,
898 if(SCp
!= NULL
&& NCR_700_is_flag_set(SCp
->device
, NCR_700_DEV_BEGIN_SYNC_NEGOTIATION
)) {
899 /* Rejected our sync negotiation attempt */
900 spi_period(SCp
->device
->sdev_target
) =
901 spi_offset(SCp
->device
->sdev_target
) = 0;
902 NCR_700_set_flag(SCp
->device
, NCR_700_DEV_NEGOTIATED_SYNC
);
903 NCR_700_clear_flag(SCp
->device
, NCR_700_DEV_BEGIN_SYNC_NEGOTIATION
);
904 } else if(SCp
!= NULL
&& NCR_700_get_tag_neg_state(SCp
->device
) == NCR_700_DURING_TAG_NEGOTIATION
) {
905 /* rejected our first simple tag message */
906 scmd_printk(KERN_WARNING
, SCp
,
907 "Rejected first tag queue attempt, turning off tag queueing\n");
908 /* we're done negotiating */
909 NCR_700_set_tag_neg_state(SCp
->device
, NCR_700_FINISHED_TAG_NEGOTIATION
);
910 hostdata
->tag_negotiated
&= ~(1<<scmd_id(SCp
));
911 SCp
->device
->tagged_supported
= 0;
912 scsi_deactivate_tcq(SCp
->device
, host
->cmd_per_lun
);
914 shost_printk(KERN_WARNING
, host
,
915 "(%d:%d) Unexpected REJECT Message %s\n",
917 NCR_700_phase
[(dsps
& 0xf00) >> 8]);
918 /* however, just ignore it */
922 case A_PARITY_ERROR_MSG
:
923 printk(KERN_ERR
"scsi%d (%d:%d) Parity Error!\n", host
->host_no
,
925 NCR_700_internal_bus_reset(host
);
927 case A_SIMPLE_TAG_MSG
:
928 printk(KERN_INFO
"scsi%d (%d:%d) SIMPLE TAG %d %s\n", host
->host_no
,
929 pun
, lun
, hostdata
->msgin
[1],
930 NCR_700_phase
[(dsps
& 0xf00) >> 8]);
934 printk(KERN_INFO
"scsi%d (%d:%d): Unexpected message %s: ",
935 host
->host_no
, pun
, lun
,
936 NCR_700_phase
[(dsps
& 0xf00) >> 8]);
938 spi_print_msg(hostdata
->msgin
);
941 hostdata
->msgout
[0] = A_REJECT_MSG
;
942 dma_cache_sync(hostdata
->dev
, hostdata
->msgout
, 1, DMA_TO_DEVICE
);
943 script_patch_16(hostdata
->dev
, hostdata
->script
, MessageCount
,
945 /* SendMsgOut returns, so set up the return
947 resume_offset
= hostdata
->pScript
+ Ent_SendMessageWithATN
;
951 NCR_700_writel(temp
, host
, TEMP_REG
);
952 /* set us up to receive another message */
953 dma_cache_sync(hostdata
->dev
, hostdata
->msgin
, MSG_ARRAY_SIZE
, DMA_FROM_DEVICE
);
954 return resume_offset
;
958 process_script_interrupt(__u32 dsps
, __u32 dsp
, struct scsi_cmnd
*SCp
,
959 struct Scsi_Host
*host
,
960 struct NCR_700_Host_Parameters
*hostdata
)
962 __u32 resume_offset
= 0;
963 __u8 pun
= 0xff, lun
=0xff;
966 pun
= SCp
->device
->id
;
967 lun
= SCp
->device
->lun
;
970 if(dsps
== A_GOOD_STATUS_AFTER_STATUS
) {
971 DEBUG((" COMMAND COMPLETE, status=%02x\n",
972 hostdata
->status
[0]));
973 /* OK, if TCQ still under negotiation, we now know it works */
974 if (NCR_700_get_tag_neg_state(SCp
->device
) == NCR_700_DURING_TAG_NEGOTIATION
)
975 NCR_700_set_tag_neg_state(SCp
->device
,
976 NCR_700_FINISHED_TAG_NEGOTIATION
);
978 /* check for contingent allegiance contitions */
979 if(status_byte(hostdata
->status
[0]) == CHECK_CONDITION
||
980 status_byte(hostdata
->status
[0]) == COMMAND_TERMINATED
) {
981 struct NCR_700_command_slot
*slot
=
982 (struct NCR_700_command_slot
*)SCp
->host_scribble
;
983 if(slot
->flags
== NCR_700_FLAG_AUTOSENSE
) {
984 /* OOPS: bad device, returning another
985 * contingent allegiance condition */
986 scmd_printk(KERN_ERR
, SCp
,
987 "broken device is looping in contingent allegiance: ignoring\n");
988 NCR_700_scsi_done(hostdata
, SCp
, hostdata
->status
[0]);
991 NCR_700_get_sense_cmnd(SCp
->device
);
993 scsi_print_command(SCp
);
994 printk(" cmd %p has status %d, requesting sense\n",
995 SCp
, hostdata
->status
[0]);
997 /* we can destroy the command here
998 * because the contingent allegiance
999 * condition will cause a retry which
1000 * will re-copy the command from the
1001 * saved data_cmnd. We also unmap any
1002 * data associated with the command
1004 NCR_700_unmap(hostdata
, SCp
, slot
);
1005 dma_unmap_single(hostdata
->dev
, slot
->pCmd
,
1009 cmnd
[0] = REQUEST_SENSE
;
1010 cmnd
[1] = (SCp
->device
->lun
& 0x7) << 5;
1013 cmnd
[4] = sizeof(SCp
->sense_buffer
);
1015 /* Here's a quiet hack: the
1016 * REQUEST_SENSE command is six bytes,
1017 * so store a flag indicating that
1018 * this was an internal sense request
1019 * and the original status at the end
1021 cmnd
[6] = NCR_700_INTERNAL_SENSE_MAGIC
;
1022 cmnd
[7] = hostdata
->status
[0];
1023 cmnd
[8] = SCp
->cmd_len
;
1024 SCp
->cmd_len
= 6; /* command length for
1026 slot
->pCmd
= dma_map_single(hostdata
->dev
, cmnd
, MAX_COMMAND_SIZE
, DMA_TO_DEVICE
);
1027 slot
->dma_handle
= dma_map_single(hostdata
->dev
, SCp
->sense_buffer
, sizeof(SCp
->sense_buffer
), DMA_FROM_DEVICE
);
1028 slot
->SG
[0].ins
= bS_to_host(SCRIPT_MOVE_DATA_IN
| sizeof(SCp
->sense_buffer
));
1029 slot
->SG
[0].pAddr
= bS_to_host(slot
->dma_handle
);
1030 slot
->SG
[1].ins
= bS_to_host(SCRIPT_RETURN
);
1031 slot
->SG
[1].pAddr
= 0;
1032 slot
->resume_offset
= hostdata
->pScript
;
1033 dma_cache_sync(hostdata
->dev
, slot
->SG
, sizeof(slot
->SG
[0])*2, DMA_TO_DEVICE
);
1034 dma_cache_sync(hostdata
->dev
, SCp
->sense_buffer
, sizeof(SCp
->sense_buffer
), DMA_FROM_DEVICE
);
1036 /* queue the command for reissue */
1037 slot
->state
= NCR_700_SLOT_QUEUED
;
1038 slot
->flags
= NCR_700_FLAG_AUTOSENSE
;
1039 hostdata
->state
= NCR_700_HOST_FREE
;
1040 hostdata
->cmd
= NULL
;
1043 // Currently rely on the mid layer evaluation
1044 // of the tag queuing capability
1046 //if(status_byte(hostdata->status[0]) == GOOD &&
1047 // SCp->cmnd[0] == INQUIRY && SCp->use_sg == 0) {
1048 // /* Piggy back the tag queueing support
1049 // * on this command */
1050 // dma_sync_single_for_cpu(hostdata->dev,
1051 // slot->dma_handle,
1052 // SCp->request_bufflen,
1053 // DMA_FROM_DEVICE);
1054 // if(((char *)SCp->request_buffer)[7] & 0x02) {
1055 // scmd_printk(KERN_INFO, SCp,
1056 // "Enabling Tag Command Queuing\n");
1057 // hostdata->tag_negotiated |= (1<<scmd_id(SCp));
1058 // NCR_700_set_flag(SCp->device, NCR_700_DEV_BEGIN_TAG_QUEUEING);
1060 // NCR_700_clear_flag(SCp->device, NCR_700_DEV_BEGIN_TAG_QUEUEING);
1061 // hostdata->tag_negotiated &= ~(1<<scmd_id(SCp));
1064 NCR_700_scsi_done(hostdata
, SCp
, hostdata
->status
[0]);
1066 } else if((dsps
& 0xfffff0f0) == A_UNEXPECTED_PHASE
) {
1067 __u8 i
= (dsps
& 0xf00) >> 8;
1069 scmd_printk(KERN_ERR
, SCp
, "UNEXPECTED PHASE %s (%s)\n",
1071 sbcl_to_string(NCR_700_readb(host
, SBCL_REG
)));
1072 scmd_printk(KERN_ERR
, SCp
, " len = %d, cmd =",
1074 scsi_print_command(SCp
);
1076 NCR_700_internal_bus_reset(host
);
1077 } else if((dsps
& 0xfffff000) == A_FATAL
) {
1078 int i
= (dsps
& 0xfff);
1080 printk(KERN_ERR
"scsi%d: (%d:%d) FATAL ERROR: %s\n",
1081 host
->host_no
, pun
, lun
, NCR_700_fatal_messages
[i
]);
1082 if(dsps
== A_FATAL_ILLEGAL_MSG_LENGTH
) {
1083 printk(KERN_ERR
" msg begins %02x %02x\n",
1084 hostdata
->msgin
[0], hostdata
->msgin
[1]);
1086 NCR_700_internal_bus_reset(host
);
1087 } else if((dsps
& 0xfffff0f0) == A_DISCONNECT
) {
1088 #ifdef NCR_700_DEBUG
1089 __u8 i
= (dsps
& 0xf00) >> 8;
1091 printk("scsi%d: (%d:%d), DISCONNECTED (%d) %s\n",
1092 host
->host_no
, pun
, lun
,
1093 i
, NCR_700_phase
[i
]);
1095 save_for_reselection(hostdata
, SCp
, dsp
);
1097 } else if(dsps
== A_RESELECTION_IDENTIFIED
) {
1099 struct NCR_700_command_slot
*slot
;
1100 __u8 reselection_id
= hostdata
->reselection_id
;
1101 struct scsi_device
*SDp
;
1103 lun
= hostdata
->msgin
[0] & 0x1f;
1105 hostdata
->reselection_id
= 0xff;
1106 DEBUG(("scsi%d: (%d:%d) RESELECTED!\n",
1107 host
->host_no
, reselection_id
, lun
));
1108 /* clear the reselection indicator */
1109 SDp
= __scsi_device_lookup(host
, 0, reselection_id
, lun
);
1110 if(unlikely(SDp
== NULL
)) {
1111 printk(KERN_ERR
"scsi%d: (%d:%d) HAS NO device\n",
1112 host
->host_no
, reselection_id
, lun
);
1115 if(hostdata
->msgin
[1] == A_SIMPLE_TAG_MSG
) {
1116 struct scsi_cmnd
*SCp
= scsi_find_tag(SDp
, hostdata
->msgin
[2]);
1117 if(unlikely(SCp
== NULL
)) {
1118 printk(KERN_ERR
"scsi%d: (%d:%d) no saved request for tag %d\n",
1119 host
->host_no
, reselection_id
, lun
, hostdata
->msgin
[2]);
1123 slot
= (struct NCR_700_command_slot
*)SCp
->host_scribble
;
1124 DDEBUG(KERN_DEBUG
, SDp
,
1125 "reselection is tag %d, slot %p(%d)\n",
1126 hostdata
->msgin
[2], slot
, slot
->tag
);
1128 struct scsi_cmnd
*SCp
= scsi_find_tag(SDp
, SCSI_NO_TAG
);
1129 if(unlikely(SCp
== NULL
)) {
1130 sdev_printk(KERN_ERR
, SDp
,
1131 "no saved request for untagged cmd\n");
1134 slot
= (struct NCR_700_command_slot
*)SCp
->host_scribble
;
1138 printk(KERN_ERR
"scsi%d: (%d:%d) RESELECTED but no saved command (MSG = %02x %02x %02x)!!\n",
1139 host
->host_no
, reselection_id
, lun
,
1140 hostdata
->msgin
[0], hostdata
->msgin
[1],
1141 hostdata
->msgin
[2]);
1143 if(hostdata
->state
!= NCR_700_HOST_BUSY
)
1144 printk(KERN_ERR
"scsi%d: FATAL, host not busy during valid reselection!\n",
1146 resume_offset
= slot
->resume_offset
;
1147 hostdata
->cmd
= slot
->cmnd
;
1149 /* re-patch for this command */
1150 script_patch_32_abs(hostdata
->dev
, hostdata
->script
,
1151 CommandAddress
, slot
->pCmd
);
1152 script_patch_16(hostdata
->dev
, hostdata
->script
,
1153 CommandCount
, slot
->cmnd
->cmd_len
);
1154 script_patch_32_abs(hostdata
->dev
, hostdata
->script
,
1155 SGScriptStartAddress
,
1156 to32bit(&slot
->pSG
[0].ins
));
1158 /* Note: setting SXFER only works if we're
1159 * still in the MESSAGE phase, so it is vital
1160 * that ACK is still asserted when we process
1161 * the reselection message. The resume offset
1162 * should therefore always clear ACK */
1163 NCR_700_writeb(NCR_700_get_SXFER(hostdata
->cmd
->device
),
1165 dma_cache_sync(hostdata
->dev
, hostdata
->msgin
,
1166 MSG_ARRAY_SIZE
, DMA_FROM_DEVICE
);
1167 dma_cache_sync(hostdata
->dev
, hostdata
->msgout
,
1168 MSG_ARRAY_SIZE
, DMA_TO_DEVICE
);
1169 /* I'm just being paranoid here, the command should
1170 * already have been flushed from the cache */
1171 dma_cache_sync(hostdata
->dev
, slot
->cmnd
->cmnd
,
1172 slot
->cmnd
->cmd_len
, DMA_TO_DEVICE
);
1177 } else if(dsps
== A_RESELECTED_DURING_SELECTION
) {
1179 /* This section is full of debugging code because I've
1180 * never managed to reach it. I think what happens is
1181 * that, because the 700 runs with selection
1182 * interrupts enabled the whole time that we take a
1183 * selection interrupt before we manage to get to the
1184 * reselected script interrupt */
1186 __u8 reselection_id
= NCR_700_readb(host
, SFBR_REG
);
1187 struct NCR_700_command_slot
*slot
;
1189 /* Take out our own ID */
1190 reselection_id
&= ~(1<<host
->this_id
);
1192 /* I've never seen this happen, so keep this as a printk rather
1194 printk(KERN_INFO
"scsi%d: (%d:%d) RESELECTION DURING SELECTION, dsp=%08x[%04x] state=%d, count=%d\n",
1195 host
->host_no
, reselection_id
, lun
, dsp
, dsp
- hostdata
->pScript
, hostdata
->state
, hostdata
->command_slot_count
);
1198 /* FIXME: DEBUGGING CODE */
1199 __u32 SG
= (__u32
)bS_to_cpu(hostdata
->script
[A_SGScriptStartAddress_used
[0]]);
1202 for(i
=0; i
< NCR_700_COMMAND_SLOTS_PER_HOST
; i
++) {
1203 if(SG
>= to32bit(&hostdata
->slots
[i
].pSG
[0])
1204 && SG
<= to32bit(&hostdata
->slots
[i
].pSG
[NCR_700_SG_SEGMENTS
]))
1207 printk(KERN_INFO
"IDENTIFIED SG segment as being %08x in slot %p, cmd %p, slot->resume_offset=%08x\n", SG
, &hostdata
->slots
[i
], hostdata
->slots
[i
].cmnd
, hostdata
->slots
[i
].resume_offset
);
1208 SCp
= hostdata
->slots
[i
].cmnd
;
1212 slot
= (struct NCR_700_command_slot
*)SCp
->host_scribble
;
1213 /* change slot from busy to queued to redo command */
1214 slot
->state
= NCR_700_SLOT_QUEUED
;
1216 hostdata
->cmd
= NULL
;
1218 if(reselection_id
== 0) {
1219 if(hostdata
->reselection_id
== 0xff) {
1220 printk(KERN_ERR
"scsi%d: Invalid reselection during selection!!\n", host
->host_no
);
1223 printk(KERN_ERR
"scsi%d: script reselected and we took a selection interrupt\n",
1225 reselection_id
= hostdata
->reselection_id
;
1229 /* convert to real ID */
1230 reselection_id
= bitmap_to_number(reselection_id
);
1232 hostdata
->reselection_id
= reselection_id
;
1233 /* just in case we have a stale simple tag message, clear it */
1234 hostdata
->msgin
[1] = 0;
1235 dma_cache_sync(hostdata
->dev
, hostdata
->msgin
,
1236 MSG_ARRAY_SIZE
, DMA_BIDIRECTIONAL
);
1237 if(hostdata
->tag_negotiated
& (1<<reselection_id
)) {
1238 resume_offset
= hostdata
->pScript
+ Ent_GetReselectionWithTag
;
1240 resume_offset
= hostdata
->pScript
+ Ent_GetReselectionData
;
1242 } else if(dsps
== A_COMPLETED_SELECTION_AS_TARGET
) {
1243 /* we've just disconnected from the bus, do nothing since
1244 * a return here will re-run the queued command slot
1245 * that may have been interrupted by the initial selection */
1246 DEBUG((" SELECTION COMPLETED\n"));
1247 } else if((dsps
& 0xfffff0f0) == A_MSG_IN
) {
1248 resume_offset
= process_message(host
, hostdata
, SCp
,
1250 } else if((dsps
& 0xfffff000) == 0) {
1251 __u8 i
= (dsps
& 0xf0) >> 4, j
= (dsps
& 0xf00) >> 8;
1252 printk(KERN_ERR
"scsi%d: (%d:%d), unhandled script condition %s %s at %04x\n",
1253 host
->host_no
, pun
, lun
, NCR_700_condition
[i
],
1254 NCR_700_phase
[j
], dsp
- hostdata
->pScript
);
1256 struct scatterlist
*sg
;
1258 scsi_print_command(SCp
);
1259 scsi_for_each_sg(SCp
, sg
, scsi_sg_count(SCp
) + 1, i
) {
1260 printk(KERN_INFO
" SG[%d].length = %d, move_insn=%08x, addr %08x\n", i
, sg
->length
, ((struct NCR_700_command_slot
*)SCp
->host_scribble
)->SG
[i
].ins
, ((struct NCR_700_command_slot
*)SCp
->host_scribble
)->SG
[i
].pAddr
);
1263 NCR_700_internal_bus_reset(host
);
1264 } else if((dsps
& 0xfffff000) == A_DEBUG_INTERRUPT
) {
1265 printk(KERN_NOTICE
"scsi%d (%d:%d) DEBUG INTERRUPT %d AT %08x[%04x], continuing\n",
1266 host
->host_no
, pun
, lun
, dsps
& 0xfff, dsp
, dsp
- hostdata
->pScript
);
1267 resume_offset
= dsp
;
1269 printk(KERN_ERR
"scsi%d: (%d:%d), unidentified script interrupt 0x%x at %04x\n",
1270 host
->host_no
, pun
, lun
, dsps
, dsp
- hostdata
->pScript
);
1271 NCR_700_internal_bus_reset(host
);
1273 return resume_offset
;
1276 /* We run the 53c700 with selection interrupts always enabled. This
1277 * means that the chip may be selected as soon as the bus frees. On a
1278 * busy bus, this can be before the scripts engine finishes its
1279 * processing. Therefore, part of the selection processing has to be
1280 * to find out what the scripts engine is doing and complete the
1281 * function if necessary (i.e. process the pending disconnect or save
1282 * the interrupted initial selection */
1284 process_selection(struct Scsi_Host
*host
, __u32 dsp
)
1286 __u8 id
= 0; /* Squash compiler warning */
1288 __u32 resume_offset
= 0;
1289 struct NCR_700_Host_Parameters
*hostdata
=
1290 (struct NCR_700_Host_Parameters
*)host
->hostdata
[0];
1291 struct scsi_cmnd
*SCp
= hostdata
->cmd
;
1294 for(count
= 0; count
< 5; count
++) {
1295 id
= NCR_700_readb(host
, hostdata
->chip710
?
1296 CTEST9_REG
: SFBR_REG
);
1298 /* Take out our own ID */
1299 id
&= ~(1<<host
->this_id
);
1304 sbcl
= NCR_700_readb(host
, SBCL_REG
);
1305 if((sbcl
& SBCL_IO
) == 0) {
1306 /* mark as having been selected rather than reselected */
1309 /* convert to real ID */
1310 hostdata
->reselection_id
= id
= bitmap_to_number(id
);
1311 DEBUG(("scsi%d: Reselected by %d\n",
1312 host
->host_no
, id
));
1314 if(hostdata
->state
== NCR_700_HOST_BUSY
&& SCp
!= NULL
) {
1315 struct NCR_700_command_slot
*slot
=
1316 (struct NCR_700_command_slot
*)SCp
->host_scribble
;
1317 DEBUG((" ID %d WARNING: RESELECTION OF BUSY HOST, saving cmd %p, slot %p, addr %x [%04x], resume %x!\n", id
, hostdata
->cmd
, slot
, dsp
, dsp
- hostdata
->pScript
, resume_offset
));
1319 switch(dsp
- hostdata
->pScript
) {
1320 case Ent_Disconnect1
:
1321 case Ent_Disconnect2
:
1322 save_for_reselection(hostdata
, SCp
, Ent_Disconnect2
+ hostdata
->pScript
);
1324 case Ent_Disconnect3
:
1325 case Ent_Disconnect4
:
1326 save_for_reselection(hostdata
, SCp
, Ent_Disconnect4
+ hostdata
->pScript
);
1328 case Ent_Disconnect5
:
1329 case Ent_Disconnect6
:
1330 save_for_reselection(hostdata
, SCp
, Ent_Disconnect6
+ hostdata
->pScript
);
1332 case Ent_Disconnect7
:
1333 case Ent_Disconnect8
:
1334 save_for_reselection(hostdata
, SCp
, Ent_Disconnect8
+ hostdata
->pScript
);
1338 process_script_interrupt(A_GOOD_STATUS_AFTER_STATUS
, dsp
, SCp
, host
, hostdata
);
1342 slot
->state
= NCR_700_SLOT_QUEUED
;
1346 hostdata
->state
= NCR_700_HOST_BUSY
;
1347 hostdata
->cmd
= NULL
;
1348 /* clear any stale simple tag message */
1349 hostdata
->msgin
[1] = 0;
1350 dma_cache_sync(hostdata
->dev
, hostdata
->msgin
, MSG_ARRAY_SIZE
,
1354 /* Selected as target, Ignore */
1355 resume_offset
= hostdata
->pScript
+ Ent_SelectedAsTarget
;
1356 } else if(hostdata
->tag_negotiated
& (1<<id
)) {
1357 resume_offset
= hostdata
->pScript
+ Ent_GetReselectionWithTag
;
1359 resume_offset
= hostdata
->pScript
+ Ent_GetReselectionData
;
1361 return resume_offset
;
1365 NCR_700_clear_fifo(struct Scsi_Host
*host
) {
1366 const struct NCR_700_Host_Parameters
*hostdata
1367 = (struct NCR_700_Host_Parameters
*)host
->hostdata
[0];
1368 if(hostdata
->chip710
) {
1369 NCR_700_writeb(CLR_FIFO_710
, host
, CTEST8_REG
);
1371 NCR_700_writeb(CLR_FIFO
, host
, DFIFO_REG
);
1376 NCR_700_flush_fifo(struct Scsi_Host
*host
) {
1377 const struct NCR_700_Host_Parameters
*hostdata
1378 = (struct NCR_700_Host_Parameters
*)host
->hostdata
[0];
1379 if(hostdata
->chip710
) {
1380 NCR_700_writeb(FLUSH_DMA_FIFO_710
, host
, CTEST8_REG
);
1382 NCR_700_writeb(0, host
, CTEST8_REG
);
1384 NCR_700_writeb(FLUSH_DMA_FIFO
, host
, DFIFO_REG
);
1386 NCR_700_writeb(0, host
, DFIFO_REG
);
1391 /* The queue lock with interrupts disabled must be held on entry to
1394 NCR_700_start_command(struct scsi_cmnd
*SCp
)
1396 struct NCR_700_command_slot
*slot
=
1397 (struct NCR_700_command_slot
*)SCp
->host_scribble
;
1398 struct NCR_700_Host_Parameters
*hostdata
=
1399 (struct NCR_700_Host_Parameters
*)SCp
->device
->host
->hostdata
[0];
1400 __u16 count
= 1; /* for IDENTIFY message */
1402 if(hostdata
->state
!= NCR_700_HOST_FREE
) {
1403 /* keep this inside the lock to close the race window where
1404 * the running command finishes on another CPU while we don't
1405 * change the state to queued on this one */
1406 slot
->state
= NCR_700_SLOT_QUEUED
;
1408 DEBUG(("scsi%d: host busy, queueing command %p, slot %p\n",
1409 SCp
->device
->host
->host_no
, slot
->cmnd
, slot
));
1412 hostdata
->state
= NCR_700_HOST_BUSY
;
1413 hostdata
->cmd
= SCp
;
1414 slot
->state
= NCR_700_SLOT_BUSY
;
1415 /* keep interrupts disabled until we have the command correctly
1416 * set up so we cannot take a selection interrupt */
1418 hostdata
->msgout
[0] = NCR_700_identify((SCp
->cmnd
[0] != REQUEST_SENSE
&&
1419 slot
->flags
!= NCR_700_FLAG_AUTOSENSE
),
1421 /* for INQUIRY or REQUEST_SENSE commands, we cannot be sure
1422 * if the negotiated transfer parameters still hold, so
1423 * always renegotiate them */
1424 if(SCp
->cmnd
[0] == INQUIRY
|| SCp
->cmnd
[0] == REQUEST_SENSE
||
1425 slot
->flags
== NCR_700_FLAG_AUTOSENSE
) {
1426 NCR_700_clear_flag(SCp
->device
, NCR_700_DEV_NEGOTIATED_SYNC
);
1429 /* REQUEST_SENSE is asking for contingent I_T_L(_Q) status.
1430 * If a contingent allegiance condition exists, the device
1431 * will refuse all tags, so send the request sense as untagged
1433 if((hostdata
->tag_negotiated
& (1<<scmd_id(SCp
)))
1434 && (slot
->tag
!= SCSI_NO_TAG
&& SCp
->cmnd
[0] != REQUEST_SENSE
&&
1435 slot
->flags
!= NCR_700_FLAG_AUTOSENSE
)) {
1436 count
+= scsi_populate_tag_msg(SCp
, &hostdata
->msgout
[count
]);
1439 if(hostdata
->fast
&&
1440 NCR_700_is_flag_clear(SCp
->device
, NCR_700_DEV_NEGOTIATED_SYNC
)) {
1441 count
+= spi_populate_sync_msg(&hostdata
->msgout
[count
],
1442 spi_period(SCp
->device
->sdev_target
),
1443 spi_offset(SCp
->device
->sdev_target
));
1444 NCR_700_set_flag(SCp
->device
, NCR_700_DEV_BEGIN_SYNC_NEGOTIATION
);
1447 script_patch_16(hostdata
->dev
, hostdata
->script
, MessageCount
, count
);
1450 script_patch_ID(hostdata
->dev
, hostdata
->script
,
1451 Device_ID
, 1<<scmd_id(SCp
));
1453 script_patch_32_abs(hostdata
->dev
, hostdata
->script
, CommandAddress
,
1455 script_patch_16(hostdata
->dev
, hostdata
->script
, CommandCount
,
1457 /* finally plumb the beginning of the SG list into the script
1459 script_patch_32_abs(hostdata
->dev
, hostdata
->script
,
1460 SGScriptStartAddress
, to32bit(&slot
->pSG
[0].ins
));
1461 NCR_700_clear_fifo(SCp
->device
->host
);
1463 if(slot
->resume_offset
== 0)
1464 slot
->resume_offset
= hostdata
->pScript
;
1465 /* now perform all the writebacks and invalidates */
1466 dma_cache_sync(hostdata
->dev
, hostdata
->msgout
, count
, DMA_TO_DEVICE
);
1467 dma_cache_sync(hostdata
->dev
, hostdata
->msgin
, MSG_ARRAY_SIZE
,
1469 dma_cache_sync(hostdata
->dev
, SCp
->cmnd
, SCp
->cmd_len
, DMA_TO_DEVICE
);
1470 dma_cache_sync(hostdata
->dev
, hostdata
->status
, 1, DMA_FROM_DEVICE
);
1472 /* set the synchronous period/offset */
1473 NCR_700_writeb(NCR_700_get_SXFER(SCp
->device
),
1474 SCp
->device
->host
, SXFER_REG
);
1475 NCR_700_writel(slot
->temp
, SCp
->device
->host
, TEMP_REG
);
1476 NCR_700_writel(slot
->resume_offset
, SCp
->device
->host
, DSP_REG
);
1482 NCR_700_intr(int irq
, void *dev_id
)
1484 struct Scsi_Host
*host
= (struct Scsi_Host
*)dev_id
;
1485 struct NCR_700_Host_Parameters
*hostdata
=
1486 (struct NCR_700_Host_Parameters
*)host
->hostdata
[0];
1488 __u32 resume_offset
= 0;
1489 __u8 pun
= 0xff, lun
= 0xff;
1490 unsigned long flags
;
1493 /* Use the host lock to serialise acess to the 53c700
1494 * hardware. Note: In future, we may need to take the queue
1495 * lock to enter the done routines. When that happens, we
1496 * need to ensure that for this driver, the host lock and the
1497 * queue lock point to the same thing. */
1498 spin_lock_irqsave(host
->host_lock
, flags
);
1499 if((istat
= NCR_700_readb(host
, ISTAT_REG
))
1500 & (SCSI_INT_PENDING
| DMA_INT_PENDING
)) {
1502 __u8 sstat0
= 0, dstat
= 0;
1504 struct scsi_cmnd
*SCp
= hostdata
->cmd
;
1505 enum NCR_700_Host_State state
;
1508 state
= hostdata
->state
;
1509 SCp
= hostdata
->cmd
;
1511 if(istat
& SCSI_INT_PENDING
) {
1514 sstat0
= NCR_700_readb(host
, SSTAT0_REG
);
1517 if(istat
& DMA_INT_PENDING
) {
1520 dstat
= NCR_700_readb(host
, DSTAT_REG
);
1523 dsps
= NCR_700_readl(host
, DSPS_REG
);
1524 dsp
= NCR_700_readl(host
, DSP_REG
);
1526 DEBUG(("scsi%d: istat %02x sstat0 %02x dstat %02x dsp %04x[%08x] dsps 0x%x\n",
1527 host
->host_no
, istat
, sstat0
, dstat
,
1528 (dsp
- (__u32
)(hostdata
->pScript
))/4,
1532 pun
= SCp
->device
->id
;
1533 lun
= SCp
->device
->lun
;
1536 if(sstat0
& SCSI_RESET_DETECTED
) {
1537 struct scsi_device
*SDp
;
1540 hostdata
->state
= NCR_700_HOST_BUSY
;
1542 printk(KERN_ERR
"scsi%d: Bus Reset detected, executing command %p, slot %p, dsp %08x[%04x]\n",
1543 host
->host_no
, SCp
, SCp
== NULL
? NULL
: SCp
->host_scribble
, dsp
, dsp
- hostdata
->pScript
);
1545 scsi_report_bus_reset(host
, 0);
1547 /* clear all the negotiated parameters */
1548 __shost_for_each_device(SDp
, host
)
1549 NCR_700_clear_flag(SDp
, ~0);
1551 /* clear all the slots and their pending commands */
1552 for(i
= 0; i
< NCR_700_COMMAND_SLOTS_PER_HOST
; i
++) {
1553 struct scsi_cmnd
*SCp
;
1554 struct NCR_700_command_slot
*slot
=
1555 &hostdata
->slots
[i
];
1557 if(slot
->state
== NCR_700_SLOT_FREE
)
1561 printk(KERN_ERR
" failing command because of reset, slot %p, cmnd %p\n",
1563 free_slot(slot
, hostdata
);
1564 SCp
->host_scribble
= NULL
;
1565 NCR_700_set_depth(SCp
->device
, 0);
1566 /* NOTE: deadlock potential here: we
1567 * rely on mid-layer guarantees that
1568 * scsi_done won't try to issue the
1569 * command again otherwise we'll
1571 * hostdata->state_lock */
1572 SCp
->result
= DID_RESET
<< 16;
1573 SCp
->scsi_done(SCp
);
1576 NCR_700_chip_setup(host
);
1578 hostdata
->state
= NCR_700_HOST_FREE
;
1579 hostdata
->cmd
= NULL
;
1580 /* signal back if this was an eh induced reset */
1581 if(hostdata
->eh_complete
!= NULL
)
1582 complete(hostdata
->eh_complete
);
1584 } else if(sstat0
& SELECTION_TIMEOUT
) {
1585 DEBUG(("scsi%d: (%d:%d) selection timeout\n",
1586 host
->host_no
, pun
, lun
));
1587 NCR_700_scsi_done(hostdata
, SCp
, DID_NO_CONNECT
<<16);
1588 } else if(sstat0
& PHASE_MISMATCH
) {
1589 struct NCR_700_command_slot
*slot
= (SCp
== NULL
) ? NULL
:
1590 (struct NCR_700_command_slot
*)SCp
->host_scribble
;
1592 if(dsp
== Ent_SendMessage
+ 8 + hostdata
->pScript
) {
1593 /* It wants to reply to some part of
1595 #ifdef NCR_700_DEBUG
1596 __u32 temp
= NCR_700_readl(host
, TEMP_REG
);
1597 int count
= (hostdata
->script
[Ent_SendMessage
/4] & 0xffffff) - ((NCR_700_readl(host
, DBC_REG
) & 0xffffff) + NCR_700_data_residual(host
));
1598 printk("scsi%d (%d:%d) PHASE MISMATCH IN SEND MESSAGE %d remain, return %p[%04x], phase %s\n", host
->host_no
, pun
, lun
, count
, (void *)temp
, temp
- hostdata
->pScript
, sbcl_to_string(NCR_700_readb(host
, SBCL_REG
)));
1600 resume_offset
= hostdata
->pScript
+ Ent_SendMessagePhaseMismatch
;
1601 } else if(dsp
>= to32bit(&slot
->pSG
[0].ins
) &&
1602 dsp
<= to32bit(&slot
->pSG
[NCR_700_SG_SEGMENTS
].ins
)) {
1603 int data_transfer
= NCR_700_readl(host
, DBC_REG
) & 0xffffff;
1604 int SGcount
= (dsp
- to32bit(&slot
->pSG
[0].ins
))/sizeof(struct NCR_700_SG_List
);
1605 int residual
= NCR_700_data_residual(host
);
1607 #ifdef NCR_700_DEBUG
1608 __u32 naddr
= NCR_700_readl(host
, DNAD_REG
);
1610 printk("scsi%d: (%d:%d) Expected phase mismatch in slot->SG[%d], transferred 0x%x\n",
1611 host
->host_no
, pun
, lun
,
1612 SGcount
, data_transfer
);
1613 scsi_print_command(SCp
);
1615 printk("scsi%d: (%d:%d) Expected phase mismatch in slot->SG[%d], transferred 0x%x, residual %d\n",
1616 host
->host_no
, pun
, lun
,
1617 SGcount
, data_transfer
, residual
);
1620 data_transfer
+= residual
;
1622 if(data_transfer
!= 0) {
1628 count
= (bS_to_cpu(slot
->SG
[SGcount
].ins
) & 0x00ffffff);
1629 DEBUG(("DATA TRANSFER MISMATCH, count = %d, transferred %d\n", count
, count
-data_transfer
));
1630 slot
->SG
[SGcount
].ins
&= bS_to_host(0xff000000);
1631 slot
->SG
[SGcount
].ins
|= bS_to_host(data_transfer
);
1632 pAddr
= bS_to_cpu(slot
->SG
[SGcount
].pAddr
);
1633 pAddr
+= (count
- data_transfer
);
1634 #ifdef NCR_700_DEBUG
1635 if(pAddr
!= naddr
) {
1636 printk("scsi%d (%d:%d) transfer mismatch pAddr=%lx, naddr=%lx, data_transfer=%d, residual=%d\n", host
->host_no
, pun
, lun
, (unsigned long)pAddr
, (unsigned long)naddr
, data_transfer
, residual
);
1639 slot
->SG
[SGcount
].pAddr
= bS_to_host(pAddr
);
1641 /* set the executed moves to nops */
1642 for(i
=0; i
<SGcount
; i
++) {
1643 slot
->SG
[i
].ins
= bS_to_host(SCRIPT_NOP
);
1644 slot
->SG
[i
].pAddr
= 0;
1646 dma_cache_sync(hostdata
->dev
, slot
->SG
, sizeof(slot
->SG
), DMA_TO_DEVICE
);
1647 /* and pretend we disconnected after
1648 * the command phase */
1649 resume_offset
= hostdata
->pScript
+ Ent_MsgInDuringData
;
1650 /* make sure all the data is flushed */
1651 NCR_700_flush_fifo(host
);
1653 __u8 sbcl
= NCR_700_readb(host
, SBCL_REG
);
1654 printk(KERN_ERR
"scsi%d: (%d:%d) phase mismatch at %04x, phase %s\n",
1655 host
->host_no
, pun
, lun
, dsp
- hostdata
->pScript
, sbcl_to_string(sbcl
));
1656 NCR_700_internal_bus_reset(host
);
1659 } else if(sstat0
& SCSI_GROSS_ERROR
) {
1660 printk(KERN_ERR
"scsi%d: (%d:%d) GROSS ERROR\n",
1661 host
->host_no
, pun
, lun
);
1662 NCR_700_scsi_done(hostdata
, SCp
, DID_ERROR
<<16);
1663 } else if(sstat0
& PARITY_ERROR
) {
1664 printk(KERN_ERR
"scsi%d: (%d:%d) PARITY ERROR\n",
1665 host
->host_no
, pun
, lun
);
1666 NCR_700_scsi_done(hostdata
, SCp
, DID_ERROR
<<16);
1667 } else if(dstat
& SCRIPT_INT_RECEIVED
) {
1668 DEBUG(("scsi%d: (%d:%d) ====>SCRIPT INTERRUPT<====\n",
1669 host
->host_no
, pun
, lun
));
1670 resume_offset
= process_script_interrupt(dsps
, dsp
, SCp
, host
, hostdata
);
1671 } else if(dstat
& (ILGL_INST_DETECTED
)) {
1672 printk(KERN_ERR
"scsi%d: (%d:%d) Illegal Instruction detected at 0x%08x[0x%x]!!!\n"
1673 " Please email James.Bottomley@HansenPartnership.com with the details\n",
1674 host
->host_no
, pun
, lun
,
1675 dsp
, dsp
- hostdata
->pScript
);
1676 NCR_700_scsi_done(hostdata
, SCp
, DID_ERROR
<<16);
1677 } else if(dstat
& (WATCH_DOG_INTERRUPT
|ABORTED
)) {
1678 printk(KERN_ERR
"scsi%d: (%d:%d) serious DMA problem, dstat=%02x\n",
1679 host
->host_no
, pun
, lun
, dstat
);
1680 NCR_700_scsi_done(hostdata
, SCp
, DID_ERROR
<<16);
1684 /* NOTE: selection interrupt processing MUST occur
1685 * after script interrupt processing to correctly cope
1686 * with the case where we process a disconnect and
1687 * then get reselected before we process the
1689 if(sstat0
& SELECTED
) {
1690 /* FIXME: It currently takes at least FOUR
1691 * interrupts to complete a command that
1692 * disconnects: one for the disconnect, one
1693 * for the reselection, one to get the
1694 * reselection data and one to complete the
1695 * command. If we guess the reselected
1696 * command here and prepare it, we only need
1697 * to get a reselection data interrupt if we
1698 * guessed wrongly. Since the interrupt
1699 * overhead is much greater than the command
1700 * setup, this would be an efficient
1701 * optimisation particularly as we probably
1702 * only have one outstanding command on a
1703 * target most of the time */
1705 resume_offset
= process_selection(host
, dsp
);
1712 if(hostdata
->state
!= NCR_700_HOST_BUSY
) {
1713 printk(KERN_ERR
"scsi%d: Driver error: resume at 0x%08x [0x%04x] with non busy host!\n",
1714 host
->host_no
, resume_offset
, resume_offset
- hostdata
->pScript
);
1715 hostdata
->state
= NCR_700_HOST_BUSY
;
1718 DEBUG(("Attempting to resume at %x\n", resume_offset
));
1719 NCR_700_clear_fifo(host
);
1720 NCR_700_writel(resume_offset
, host
, DSP_REG
);
1722 /* There is probably a technical no-no about this: If we're a
1723 * shared interrupt and we got this interrupt because the
1724 * other device needs servicing not us, we're still going to
1725 * check our queued commands here---of course, there shouldn't
1726 * be any outstanding.... */
1727 if(hostdata
->state
== NCR_700_HOST_FREE
) {
1730 for(i
= 0; i
< NCR_700_COMMAND_SLOTS_PER_HOST
; i
++) {
1731 /* fairness: always run the queue from the last
1732 * position we left off */
1733 int j
= (i
+ hostdata
->saved_slot_position
)
1734 % NCR_700_COMMAND_SLOTS_PER_HOST
;
1736 if(hostdata
->slots
[j
].state
!= NCR_700_SLOT_QUEUED
)
1738 if(NCR_700_start_command(hostdata
->slots
[j
].cmnd
)) {
1739 DEBUG(("scsi%d: Issuing saved command slot %p, cmd %p\t\n",
1740 host
->host_no
, &hostdata
->slots
[j
],
1741 hostdata
->slots
[j
].cmnd
));
1742 hostdata
->saved_slot_position
= j
+ 1;
1749 spin_unlock_irqrestore(host
->host_lock
, flags
);
1750 return IRQ_RETVAL(handled
);
1754 NCR_700_queuecommand(struct scsi_cmnd
*SCp
, void (*done
)(struct scsi_cmnd
*))
1756 struct NCR_700_Host_Parameters
*hostdata
=
1757 (struct NCR_700_Host_Parameters
*)SCp
->device
->host
->hostdata
[0];
1759 enum dma_data_direction direction
;
1760 struct NCR_700_command_slot
*slot
;
1762 if(hostdata
->command_slot_count
>= NCR_700_COMMAND_SLOTS_PER_HOST
) {
1763 /* We're over our allocation, this should never happen
1764 * since we report the max allocation to the mid layer */
1765 printk(KERN_WARNING
"scsi%d: Command depth has gone over queue depth\n", SCp
->device
->host
->host_no
);
1768 /* check for untagged commands. We cannot have any outstanding
1769 * commands if we accept them. Commands could be untagged because:
1771 * - The tag negotiated bitmap is clear
1772 * - The blk layer sent and untagged command
1774 if(NCR_700_get_depth(SCp
->device
) != 0
1775 && (!(hostdata
->tag_negotiated
& (1<<scmd_id(SCp
)))
1776 || !blk_rq_tagged(SCp
->request
))) {
1777 CDEBUG(KERN_ERR
, SCp
, "has non zero depth %d\n",
1778 NCR_700_get_depth(SCp
->device
));
1779 return SCSI_MLQUEUE_DEVICE_BUSY
;
1781 if(NCR_700_get_depth(SCp
->device
) >= SCp
->device
->queue_depth
) {
1782 CDEBUG(KERN_ERR
, SCp
, "has max tag depth %d\n",
1783 NCR_700_get_depth(SCp
->device
));
1784 return SCSI_MLQUEUE_DEVICE_BUSY
;
1786 NCR_700_set_depth(SCp
->device
, NCR_700_get_depth(SCp
->device
) + 1);
1788 /* begin the command here */
1789 /* no need to check for NULL, test for command_slot_count above
1790 * ensures a slot is free */
1791 slot
= find_empty_slot(hostdata
);
1795 SCp
->scsi_done
= done
;
1796 SCp
->host_scribble
= (unsigned char *)slot
;
1797 SCp
->SCp
.ptr
= NULL
;
1798 SCp
->SCp
.buffer
= NULL
;
1800 #ifdef NCR_700_DEBUG
1801 printk("53c700: scsi%d, command ", SCp
->device
->host
->host_no
);
1802 scsi_print_command(SCp
);
1804 if(blk_rq_tagged(SCp
->request
)
1805 && (hostdata
->tag_negotiated
&(1<<scmd_id(SCp
))) == 0
1806 && NCR_700_get_tag_neg_state(SCp
->device
) == NCR_700_START_TAG_NEGOTIATION
) {
1807 scmd_printk(KERN_ERR
, SCp
, "Enabling Tag Command Queuing\n");
1808 hostdata
->tag_negotiated
|= (1<<scmd_id(SCp
));
1809 NCR_700_set_tag_neg_state(SCp
->device
, NCR_700_DURING_TAG_NEGOTIATION
);
1812 /* here we may have to process an untagged command. The gate
1813 * above ensures that this will be the only one outstanding,
1814 * so clear the tag negotiated bit.
1816 * FIXME: This will royally screw up on multiple LUN devices
1818 if(!blk_rq_tagged(SCp
->request
)
1819 && (hostdata
->tag_negotiated
&(1<<scmd_id(SCp
)))) {
1820 scmd_printk(KERN_INFO
, SCp
, "Disabling Tag Command Queuing\n");
1821 hostdata
->tag_negotiated
&= ~(1<<scmd_id(SCp
));
1824 if((hostdata
->tag_negotiated
&(1<<scmd_id(SCp
)))
1825 && scsi_get_tag_type(SCp
->device
)) {
1826 slot
->tag
= SCp
->request
->tag
;
1827 CDEBUG(KERN_DEBUG
, SCp
, "sending out tag %d, slot %p\n",
1830 slot
->tag
= SCSI_NO_TAG
;
1831 /* must populate current_cmnd for scsi_find_tag to work */
1832 SCp
->device
->current_cmnd
= SCp
;
1834 /* sanity check: some of the commands generated by the mid-layer
1835 * have an eccentric idea of their sc_data_direction */
1836 if(!scsi_sg_count(SCp
) && !scsi_bufflen(SCp
) &&
1837 SCp
->sc_data_direction
!= DMA_NONE
) {
1838 #ifdef NCR_700_DEBUG
1839 printk("53c700: Command");
1840 scsi_print_command(SCp
);
1841 printk("Has wrong data direction %d\n", SCp
->sc_data_direction
);
1843 SCp
->sc_data_direction
= DMA_NONE
;
1846 switch (SCp
->cmnd
[0]) {
1848 /* clear the internal sense magic */
1852 /* OK, get it from the command */
1853 switch(SCp
->sc_data_direction
) {
1854 case DMA_BIDIRECTIONAL
:
1856 printk(KERN_ERR
"53c700: Unknown command for data direction ");
1857 scsi_print_command(SCp
);
1864 case DMA_FROM_DEVICE
:
1865 move_ins
= SCRIPT_MOVE_DATA_IN
;
1868 move_ins
= SCRIPT_MOVE_DATA_OUT
;
1873 /* now build the scatter gather list */
1874 direction
= SCp
->sc_data_direction
;
1878 dma_addr_t vPtr
= 0;
1879 struct scatterlist
*sg
;
1882 sg_count
= scsi_dma_map(SCp
);
1883 BUG_ON(sg_count
< 0);
1885 scsi_for_each_sg(SCp
, sg
, sg_count
, i
) {
1886 vPtr
= sg_dma_address(sg
);
1887 count
= sg_dma_len(sg
);
1889 slot
->SG
[i
].ins
= bS_to_host(move_ins
| count
);
1890 DEBUG((" scatter block %d: move %d[%08x] from 0x%lx\n",
1891 i
, count
, slot
->SG
[i
].ins
, (unsigned long)vPtr
));
1892 slot
->SG
[i
].pAddr
= bS_to_host(vPtr
);
1894 slot
->SG
[i
].ins
= bS_to_host(SCRIPT_RETURN
);
1895 slot
->SG
[i
].pAddr
= 0;
1896 dma_cache_sync(hostdata
->dev
, slot
->SG
, sizeof(slot
->SG
), DMA_TO_DEVICE
);
1897 DEBUG((" SETTING %08lx to %x\n",
1898 (&slot
->pSG
[i
].ins
),
1901 slot
->resume_offset
= 0;
1902 slot
->pCmd
= dma_map_single(hostdata
->dev
, SCp
->cmnd
,
1903 sizeof(SCp
->cmnd
), DMA_TO_DEVICE
);
1904 NCR_700_start_command(SCp
);
1909 NCR_700_abort(struct scsi_cmnd
* SCp
)
1911 struct NCR_700_command_slot
*slot
;
1913 scmd_printk(KERN_INFO
, SCp
,
1914 "New error handler wants to abort command\n\t");
1915 scsi_print_command(SCp
);
1917 slot
= (struct NCR_700_command_slot
*)SCp
->host_scribble
;
1920 /* no outstanding command to abort */
1922 if(SCp
->cmnd
[0] == TEST_UNIT_READY
) {
1923 /* FIXME: This is because of a problem in the new
1924 * error handler. When it is in error recovery, it
1925 * will send a TUR to a device it thinks may still be
1926 * showing a problem. If the TUR isn't responded to,
1927 * it will abort it and mark the device off line.
1928 * Unfortunately, it does no other error recovery, so
1929 * this would leave us with an outstanding command
1930 * occupying a slot. Rather than allow this to
1931 * happen, we issue a bus reset to force all
1932 * outstanding commands to terminate here. */
1933 NCR_700_internal_bus_reset(SCp
->device
->host
);
1934 /* still drop through and return failed */
1941 NCR_700_bus_reset(struct scsi_cmnd
* SCp
)
1943 DECLARE_COMPLETION_ONSTACK(complete
);
1944 struct NCR_700_Host_Parameters
*hostdata
=
1945 (struct NCR_700_Host_Parameters
*)SCp
->device
->host
->hostdata
[0];
1947 scmd_printk(KERN_INFO
, SCp
,
1948 "New error handler wants BUS reset, cmd %p\n\t", SCp
);
1949 scsi_print_command(SCp
);
1951 /* In theory, eh_complete should always be null because the
1952 * eh is single threaded, but just in case we're handling a
1953 * reset via sg or something */
1954 spin_lock_irq(SCp
->device
->host
->host_lock
);
1955 while (hostdata
->eh_complete
!= NULL
) {
1956 spin_unlock_irq(SCp
->device
->host
->host_lock
);
1957 msleep_interruptible(100);
1958 spin_lock_irq(SCp
->device
->host
->host_lock
);
1961 hostdata
->eh_complete
= &complete
;
1962 NCR_700_internal_bus_reset(SCp
->device
->host
);
1964 spin_unlock_irq(SCp
->device
->host
->host_lock
);
1965 wait_for_completion(&complete
);
1966 spin_lock_irq(SCp
->device
->host
->host_lock
);
1968 hostdata
->eh_complete
= NULL
;
1969 /* Revalidate the transport parameters of the failing device */
1971 spi_schedule_dv_device(SCp
->device
);
1973 spin_unlock_irq(SCp
->device
->host
->host_lock
);
1978 NCR_700_host_reset(struct scsi_cmnd
* SCp
)
1980 scmd_printk(KERN_INFO
, SCp
, "New error handler wants HOST reset\n\t");
1981 scsi_print_command(SCp
);
1983 spin_lock_irq(SCp
->device
->host
->host_lock
);
1985 NCR_700_internal_bus_reset(SCp
->device
->host
);
1986 NCR_700_chip_reset(SCp
->device
->host
);
1988 spin_unlock_irq(SCp
->device
->host
->host_lock
);
1994 NCR_700_set_period(struct scsi_target
*STp
, int period
)
1996 struct Scsi_Host
*SHp
= dev_to_shost(STp
->dev
.parent
);
1997 struct NCR_700_Host_Parameters
*hostdata
=
1998 (struct NCR_700_Host_Parameters
*)SHp
->hostdata
[0];
2003 if(period
< hostdata
->min_period
)
2004 period
= hostdata
->min_period
;
2006 spi_period(STp
) = period
;
2007 spi_flags(STp
) &= ~(NCR_700_DEV_NEGOTIATED_SYNC
|
2008 NCR_700_DEV_BEGIN_SYNC_NEGOTIATION
);
2009 spi_flags(STp
) |= NCR_700_DEV_PRINT_SYNC_NEGOTIATION
;
2013 NCR_700_set_offset(struct scsi_target
*STp
, int offset
)
2015 struct Scsi_Host
*SHp
= dev_to_shost(STp
->dev
.parent
);
2016 struct NCR_700_Host_Parameters
*hostdata
=
2017 (struct NCR_700_Host_Parameters
*)SHp
->hostdata
[0];
2018 int max_offset
= hostdata
->chip710
2019 ? NCR_710_MAX_OFFSET
: NCR_700_MAX_OFFSET
;
2024 if(offset
> max_offset
)
2025 offset
= max_offset
;
2027 /* if we're currently async, make sure the period is reasonable */
2028 if(spi_offset(STp
) == 0 && (spi_period(STp
) < hostdata
->min_period
||
2029 spi_period(STp
) > 0xff))
2030 spi_period(STp
) = hostdata
->min_period
;
2032 spi_offset(STp
) = offset
;
2033 spi_flags(STp
) &= ~(NCR_700_DEV_NEGOTIATED_SYNC
|
2034 NCR_700_DEV_BEGIN_SYNC_NEGOTIATION
);
2035 spi_flags(STp
) |= NCR_700_DEV_PRINT_SYNC_NEGOTIATION
;
2039 NCR_700_slave_alloc(struct scsi_device
*SDp
)
2041 SDp
->hostdata
= kzalloc(sizeof(struct NCR_700_Device_Parameters
),
2051 NCR_700_slave_configure(struct scsi_device
*SDp
)
2053 struct NCR_700_Host_Parameters
*hostdata
=
2054 (struct NCR_700_Host_Parameters
*)SDp
->host
->hostdata
[0];
2056 /* to do here: allocate memory; build a queue_full list */
2057 if(SDp
->tagged_supported
) {
2058 scsi_set_tag_type(SDp
, MSG_ORDERED_TAG
);
2059 scsi_activate_tcq(SDp
, NCR_700_DEFAULT_TAGS
);
2060 NCR_700_set_tag_neg_state(SDp
, NCR_700_START_TAG_NEGOTIATION
);
2062 /* initialise to default depth */
2063 scsi_adjust_queue_depth(SDp
, 0, SDp
->host
->cmd_per_lun
);
2065 if(hostdata
->fast
) {
2066 /* Find the correct offset and period via domain validation */
2067 if (!spi_initial_dv(SDp
->sdev_target
))
2070 spi_offset(SDp
->sdev_target
) = 0;
2071 spi_period(SDp
->sdev_target
) = 0;
2077 NCR_700_slave_destroy(struct scsi_device
*SDp
)
2079 kfree(SDp
->hostdata
);
2080 SDp
->hostdata
= NULL
;
2084 NCR_700_change_queue_depth(struct scsi_device
*SDp
, int depth
)
2086 if (depth
> NCR_700_MAX_TAGS
)
2087 depth
= NCR_700_MAX_TAGS
;
2089 scsi_adjust_queue_depth(SDp
, scsi_get_tag_type(SDp
), depth
);
2093 static int NCR_700_change_queue_type(struct scsi_device
*SDp
, int tag_type
)
2095 int change_tag
= ((tag_type
==0 && scsi_get_tag_type(SDp
) != 0)
2096 || (tag_type
!= 0 && scsi_get_tag_type(SDp
) == 0));
2097 struct NCR_700_Host_Parameters
*hostdata
=
2098 (struct NCR_700_Host_Parameters
*)SDp
->host
->hostdata
[0];
2100 scsi_set_tag_type(SDp
, tag_type
);
2102 /* We have a global (per target) flag to track whether TCQ is
2103 * enabled, so we'll be turning it off for the entire target here.
2104 * our tag algorithm will fail if we mix tagged and untagged commands,
2105 * so quiesce the device before doing this */
2107 scsi_target_quiesce(SDp
->sdev_target
);
2110 /* shift back to the default unqueued number of commands
2111 * (the user can still raise this) */
2112 scsi_deactivate_tcq(SDp
, SDp
->host
->cmd_per_lun
);
2113 hostdata
->tag_negotiated
&= ~(1 << sdev_id(SDp
));
2115 /* Here, we cleared the negotiation flag above, so this
2116 * will force the driver to renegotiate */
2117 scsi_activate_tcq(SDp
, SDp
->queue_depth
);
2119 NCR_700_set_tag_neg_state(SDp
, NCR_700_START_TAG_NEGOTIATION
);
2122 scsi_target_resume(SDp
->sdev_target
);
2128 NCR_700_show_active_tags(struct device
*dev
, struct device_attribute
*attr
, char *buf
)
2130 struct scsi_device
*SDp
= to_scsi_device(dev
);
2132 return snprintf(buf
, 20, "%d\n", NCR_700_get_depth(SDp
));
2135 static struct device_attribute NCR_700_active_tags_attr
= {
2137 .name
= "active_tags",
2140 .show
= NCR_700_show_active_tags
,
2143 STATIC
struct device_attribute
*NCR_700_dev_attrs
[] = {
2144 &NCR_700_active_tags_attr
,
2148 EXPORT_SYMBOL(NCR_700_detect
);
2149 EXPORT_SYMBOL(NCR_700_release
);
2150 EXPORT_SYMBOL(NCR_700_intr
);
2152 static struct spi_function_template NCR_700_transport_functions
= {
2153 .set_period
= NCR_700_set_period
,
2155 .set_offset
= NCR_700_set_offset
,
2159 static int __init
NCR_700_init(void)
2161 NCR_700_transport_template
= spi_attach_transport(&NCR_700_transport_functions
);
2162 if(!NCR_700_transport_template
)
2167 static void __exit
NCR_700_exit(void)
2169 spi_release_transport(NCR_700_transport_template
);
2172 module_init(NCR_700_init
);
2173 module_exit(NCR_700_exit
);