revoke-core-code
[linux-2.6/linux-trees-mm.git] / include / linux / mm.h
blob5d96ee0a3cfdd833296bc27879c70e4ab4930784
1 #ifndef _LINUX_MM_H
2 #define _LINUX_MM_H
4 #include <linux/errno.h>
6 #ifdef __KERNEL__
8 #include <linux/gfp.h>
9 #include <linux/list.h>
10 #include <linux/mmzone.h>
11 #include <linux/rbtree.h>
12 #include <linux/prio_tree.h>
13 #include <linux/debug_locks.h>
14 #include <linux/mm_types.h>
16 struct mempolicy;
17 struct anon_vma;
18 struct file_ra_state;
19 struct user_struct;
20 struct writeback_control;
21 struct super_block;
23 #ifndef CONFIG_DISCONTIGMEM /* Don't use mapnrs, do it properly */
24 extern unsigned long max_mapnr;
25 #endif
27 extern unsigned long num_physpages;
28 extern void * high_memory;
29 extern int page_cluster;
31 #ifdef CONFIG_SYSCTL
32 extern int sysctl_legacy_va_layout;
33 #else
34 #define sysctl_legacy_va_layout 0
35 #endif
37 #include <asm/page.h>
38 #include <asm/pgtable.h>
39 #include <asm/processor.h>
41 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
44 * Linux kernel virtual memory manager primitives.
45 * The idea being to have a "virtual" mm in the same way
46 * we have a virtual fs - giving a cleaner interface to the
47 * mm details, and allowing different kinds of memory mappings
48 * (from shared memory to executable loading to arbitrary
49 * mmap() functions).
52 extern struct kmem_cache *vm_area_cachep;
55 * This struct defines the per-mm list of VMAs for uClinux. If CONFIG_MMU is
56 * disabled, then there's a single shared list of VMAs maintained by the
57 * system, and mm's subscribe to these individually
59 struct vm_list_struct {
60 struct vm_list_struct *next;
61 struct vm_area_struct *vma;
64 #ifndef CONFIG_MMU
65 extern struct rb_root nommu_vma_tree;
66 extern struct rw_semaphore nommu_vma_sem;
68 extern unsigned int kobjsize(const void *objp);
69 #endif
72 * vm_flags..
74 #define VM_READ 0x00000001 /* currently active flags */
75 #define VM_WRITE 0x00000002
76 #define VM_EXEC 0x00000004
77 #define VM_SHARED 0x00000008
79 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
80 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
81 #define VM_MAYWRITE 0x00000020
82 #define VM_MAYEXEC 0x00000040
83 #define VM_MAYSHARE 0x00000080
85 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */
86 #define VM_GROWSUP 0x00000200
87 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
88 #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
90 #define VM_EXECUTABLE 0x00001000
91 #define VM_LOCKED 0x00002000
92 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */
94 /* Used by sys_madvise() */
95 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
96 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
98 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
99 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
100 #define VM_RESERVED 0x00080000 /* Count as reserved_vm like IO */
101 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
102 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
103 #define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */
104 #define VM_MAPPED_COPY 0x01000000 /* T if mapped copy of data (nommu mmap) */
105 #define VM_INSERTPAGE 0x02000000 /* The vma has had "vm_insert_page()" done on it */
106 #define VM_ALWAYSDUMP 0x04000000 /* Always include in core dumps */
108 #define VM_CAN_NONLINEAR 0x08000000 /* Has ->fault & does nonlinear pages */
109 #define VM_REVOKED 0x10000000 /* Mapping has been revoked */
111 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
112 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
113 #endif
115 #ifdef CONFIG_STACK_GROWSUP
116 #define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
117 #else
118 #define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
119 #endif
121 #define VM_READHINTMASK (VM_SEQ_READ | VM_RAND_READ)
122 #define VM_ClearReadHint(v) (v)->vm_flags &= ~VM_READHINTMASK
123 #define VM_NormalReadHint(v) (!((v)->vm_flags & VM_READHINTMASK))
124 #define VM_SequentialReadHint(v) ((v)->vm_flags & VM_SEQ_READ)
125 #define VM_RandomReadHint(v) ((v)->vm_flags & VM_RAND_READ)
128 * mapping from the currently active vm_flags protection bits (the
129 * low four bits) to a page protection mask..
131 extern pgprot_t protection_map[16];
133 #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
134 #define FAULT_FLAG_NONLINEAR 0x02 /* Fault was via a nonlinear mapping */
138 * vm_fault is filled by the the pagefault handler and passed to the vma's
139 * ->fault function. The vma's ->fault is responsible for returning a bitmask
140 * of VM_FAULT_xxx flags that give details about how the fault was handled.
142 * pgoff should be used in favour of virtual_address, if possible. If pgoff
143 * is used, one may set VM_CAN_NONLINEAR in the vma->vm_flags to get nonlinear
144 * mapping support.
146 struct vm_fault {
147 unsigned int flags; /* FAULT_FLAG_xxx flags */
148 pgoff_t pgoff; /* Logical page offset based on vma */
149 void __user *virtual_address; /* Faulting virtual address */
151 struct page *page; /* ->fault handlers should return a
152 * page here, unless VM_FAULT_NOPAGE
153 * is set (which is also implied by
154 * VM_FAULT_ERROR).
159 * These are the virtual MM functions - opening of an area, closing and
160 * unmapping it (needed to keep files on disk up-to-date etc), pointer
161 * to the functions called when a no-page or a wp-page exception occurs.
163 struct vm_operations_struct {
164 void (*open)(struct vm_area_struct * area);
165 void (*close)(struct vm_area_struct * area);
166 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
167 struct page *(*nopage)(struct vm_area_struct *area,
168 unsigned long address, int *type);
169 unsigned long (*nopfn)(struct vm_area_struct *area,
170 unsigned long address);
172 /* notification that a previously read-only page is about to become
173 * writable, if an error is returned it will cause a SIGBUS */
174 int (*page_mkwrite)(struct vm_area_struct *vma, struct page *page);
175 #ifdef CONFIG_NUMA
176 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
177 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
178 unsigned long addr);
179 int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from,
180 const nodemask_t *to, unsigned long flags);
181 #endif
184 struct mmu_gather;
185 struct inode;
187 #define page_private(page) ((page)->private)
188 #define set_page_private(page, v) ((page)->private = (v))
191 * FIXME: take this include out, include page-flags.h in
192 * files which need it (119 of them)
194 #include <linux/page-flags.h>
196 #ifdef CONFIG_DEBUG_VM
197 #define VM_BUG_ON(cond) BUG_ON(cond)
198 #else
199 #define VM_BUG_ON(condition) do { } while(0)
200 #endif
203 * Methods to modify the page usage count.
205 * What counts for a page usage:
206 * - cache mapping (page->mapping)
207 * - private data (page->private)
208 * - page mapped in a task's page tables, each mapping
209 * is counted separately
211 * Also, many kernel routines increase the page count before a critical
212 * routine so they can be sure the page doesn't go away from under them.
216 * Drop a ref, return true if the refcount fell to zero (the page has no users)
218 static inline int put_page_testzero(struct page *page)
220 VM_BUG_ON(atomic_read(&page->_count) == 0);
221 return atomic_dec_and_test(&page->_count);
225 * Try to grab a ref unless the page has a refcount of zero, return false if
226 * that is the case.
228 static inline int get_page_unless_zero(struct page *page)
230 VM_BUG_ON(PageTail(page));
231 return atomic_inc_not_zero(&page->_count);
234 /* Support for virtually mapped pages */
235 struct page *vmalloc_to_page(const void *addr);
236 unsigned long vmalloc_to_pfn(const void *addr);
238 /* Determine if an address is within the vmalloc range */
239 static inline int is_vmalloc_addr(const void *x)
241 unsigned long addr = (unsigned long)x;
243 return addr >= VMALLOC_START && addr < VMALLOC_END;
246 static inline struct page *compound_head(struct page *page)
248 if (unlikely(PageTail(page)))
249 return page->first_page;
250 return page;
253 static inline int page_count(struct page *page)
255 return atomic_read(&compound_head(page)->_count);
258 static inline void get_page(struct page *page)
260 page = compound_head(page);
261 VM_BUG_ON(atomic_read(&page->_count) == 0);
262 atomic_inc(&page->_count);
265 static inline struct page *virt_to_head_page(const void *x)
267 struct page *page = virt_to_page(x);
268 return compound_head(page);
272 * Setup the page count before being freed into the page allocator for
273 * the first time (boot or memory hotplug)
275 static inline void init_page_count(struct page *page)
277 atomic_set(&page->_count, 1);
280 void put_page(struct page *page);
281 void put_pages_list(struct list_head *pages);
283 void split_page(struct page *page, unsigned int order);
286 * Compound pages have a destructor function. Provide a
287 * prototype for that function and accessor functions.
288 * These are _only_ valid on the head of a PG_compound page.
290 typedef void compound_page_dtor(struct page *);
292 static inline void set_compound_page_dtor(struct page *page,
293 compound_page_dtor *dtor)
295 page[1].lru.next = (void *)dtor;
298 static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
300 return (compound_page_dtor *)page[1].lru.next;
303 static inline int compound_order(struct page *page)
305 if (!PageHead(page))
306 return 0;
307 return (unsigned long)page[1].lru.prev;
310 static inline void set_compound_order(struct page *page, unsigned long order)
312 page[1].lru.prev = (void *)order;
316 * Multiple processes may "see" the same page. E.g. for untouched
317 * mappings of /dev/null, all processes see the same page full of
318 * zeroes, and text pages of executables and shared libraries have
319 * only one copy in memory, at most, normally.
321 * For the non-reserved pages, page_count(page) denotes a reference count.
322 * page_count() == 0 means the page is free. page->lru is then used for
323 * freelist management in the buddy allocator.
324 * page_count() > 0 means the page has been allocated.
326 * Pages are allocated by the slab allocator in order to provide memory
327 * to kmalloc and kmem_cache_alloc. In this case, the management of the
328 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
329 * unless a particular usage is carefully commented. (the responsibility of
330 * freeing the kmalloc memory is the caller's, of course).
332 * A page may be used by anyone else who does a __get_free_page().
333 * In this case, page_count still tracks the references, and should only
334 * be used through the normal accessor functions. The top bits of page->flags
335 * and page->virtual store page management information, but all other fields
336 * are unused and could be used privately, carefully. The management of this
337 * page is the responsibility of the one who allocated it, and those who have
338 * subsequently been given references to it.
340 * The other pages (we may call them "pagecache pages") are completely
341 * managed by the Linux memory manager: I/O, buffers, swapping etc.
342 * The following discussion applies only to them.
344 * A pagecache page contains an opaque `private' member, which belongs to the
345 * page's address_space. Usually, this is the address of a circular list of
346 * the page's disk buffers. PG_private must be set to tell the VM to call
347 * into the filesystem to release these pages.
349 * A page may belong to an inode's memory mapping. In this case, page->mapping
350 * is the pointer to the inode, and page->index is the file offset of the page,
351 * in units of PAGE_CACHE_SIZE.
353 * If pagecache pages are not associated with an inode, they are said to be
354 * anonymous pages. These may become associated with the swapcache, and in that
355 * case PG_swapcache is set, and page->private is an offset into the swapcache.
357 * In either case (swapcache or inode backed), the pagecache itself holds one
358 * reference to the page. Setting PG_private should also increment the
359 * refcount. The each user mapping also has a reference to the page.
361 * The pagecache pages are stored in a per-mapping radix tree, which is
362 * rooted at mapping->page_tree, and indexed by offset.
363 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
364 * lists, we instead now tag pages as dirty/writeback in the radix tree.
366 * All pagecache pages may be subject to I/O:
367 * - inode pages may need to be read from disk,
368 * - inode pages which have been modified and are MAP_SHARED may need
369 * to be written back to the inode on disk,
370 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
371 * modified may need to be swapped out to swap space and (later) to be read
372 * back into memory.
376 * The zone field is never updated after free_area_init_core()
377 * sets it, so none of the operations on it need to be atomic.
382 * page->flags layout:
384 * There are three possibilities for how page->flags get
385 * laid out. The first is for the normal case, without
386 * sparsemem. The second is for sparsemem when there is
387 * plenty of space for node and section. The last is when
388 * we have run out of space and have to fall back to an
389 * alternate (slower) way of determining the node.
391 * No sparsemem: | NODE | ZONE | ... | FLAGS |
392 * with space for node: | SECTION | NODE | ZONE | ... | FLAGS |
393 * no space for node: | SECTION | ZONE | ... | FLAGS |
395 #ifdef CONFIG_SPARSEMEM
396 #define SECTIONS_WIDTH SECTIONS_SHIFT
397 #else
398 #define SECTIONS_WIDTH 0
399 #endif
401 #define ZONES_WIDTH ZONES_SHIFT
403 #if SECTIONS_WIDTH+ZONES_WIDTH+NODES_SHIFT <= FLAGS_RESERVED
404 #define NODES_WIDTH NODES_SHIFT
405 #else
406 #define NODES_WIDTH 0
407 #endif
409 /* Page flags: | [SECTION] | [NODE] | ZONE | ... | FLAGS | */
410 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
411 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
412 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
415 * We are going to use the flags for the page to node mapping if its in
416 * there. This includes the case where there is no node, so it is implicit.
418 #if !(NODES_WIDTH > 0 || NODES_SHIFT == 0)
419 #define NODE_NOT_IN_PAGE_FLAGS
420 #endif
422 #ifndef PFN_SECTION_SHIFT
423 #define PFN_SECTION_SHIFT 0
424 #endif
427 * Define the bit shifts to access each section. For non-existant
428 * sections we define the shift as 0; that plus a 0 mask ensures
429 * the compiler will optimise away reference to them.
431 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
432 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
433 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
435 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allcator */
436 #ifdef NODE_NOT_IN_PAGEFLAGS
437 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
438 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
439 SECTIONS_PGOFF : ZONES_PGOFF)
440 #else
441 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
442 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
443 NODES_PGOFF : ZONES_PGOFF)
444 #endif
446 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
448 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > FLAGS_RESERVED
449 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > FLAGS_RESERVED
450 #endif
452 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
453 #define NODES_MASK ((1UL << NODES_WIDTH) - 1)
454 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
455 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
457 static inline enum zone_type page_zonenum(struct page *page)
459 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
463 * The identification function is only used by the buddy allocator for
464 * determining if two pages could be buddies. We are not really
465 * identifying a zone since we could be using a the section number
466 * id if we have not node id available in page flags.
467 * We guarantee only that it will return the same value for two
468 * combinable pages in a zone.
470 static inline int page_zone_id(struct page *page)
472 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
475 static inline int zone_to_nid(struct zone *zone)
477 #ifdef CONFIG_NUMA
478 return zone->node;
479 #else
480 return 0;
481 #endif
484 #ifdef NODE_NOT_IN_PAGE_FLAGS
485 extern int page_to_nid(struct page *page);
486 #else
487 static inline int page_to_nid(struct page *page)
489 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
491 #endif
493 static inline struct zone *page_zone(struct page *page)
495 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
498 static inline unsigned long page_to_section(struct page *page)
500 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
503 static inline void set_page_zone(struct page *page, enum zone_type zone)
505 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
506 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
509 static inline void set_page_node(struct page *page, unsigned long node)
511 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
512 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
515 static inline void set_page_section(struct page *page, unsigned long section)
517 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
518 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
521 static inline void set_page_links(struct page *page, enum zone_type zone,
522 unsigned long node, unsigned long pfn)
524 set_page_zone(page, zone);
525 set_page_node(page, node);
526 set_page_section(page, pfn_to_section_nr(pfn));
530 * Some inline functions in vmstat.h depend on page_zone()
532 #include <linux/vmstat.h>
534 static __always_inline void *lowmem_page_address(struct page *page)
536 return __va(page_to_pfn(page) << PAGE_SHIFT);
539 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
540 #define HASHED_PAGE_VIRTUAL
541 #endif
543 #if defined(WANT_PAGE_VIRTUAL)
544 #define page_address(page) ((page)->virtual)
545 #define set_page_address(page, address) \
546 do { \
547 (page)->virtual = (address); \
548 } while(0)
549 #define page_address_init() do { } while(0)
550 #endif
552 #if defined(HASHED_PAGE_VIRTUAL)
553 void *page_address(struct page *page);
554 void set_page_address(struct page *page, void *virtual);
555 void page_address_init(void);
556 #endif
558 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
559 #define page_address(page) lowmem_page_address(page)
560 #define set_page_address(page, address) do { } while(0)
561 #define page_address_init() do { } while(0)
562 #endif
565 * On an anonymous page mapped into a user virtual memory area,
566 * page->mapping points to its anon_vma, not to a struct address_space;
567 * with the PAGE_MAPPING_ANON bit set to distinguish it.
569 * Please note that, confusingly, "page_mapping" refers to the inode
570 * address_space which maps the page from disk; whereas "page_mapped"
571 * refers to user virtual address space into which the page is mapped.
573 #define PAGE_MAPPING_ANON 1
575 extern struct address_space swapper_space;
576 static inline struct address_space *page_mapping(struct page *page)
578 struct address_space *mapping = page->mapping;
580 VM_BUG_ON(PageSlab(page));
581 if (unlikely(PageSwapCache(page)))
582 mapping = &swapper_space;
583 else if (unlikely((unsigned long)mapping & PAGE_MAPPING_ANON))
584 mapping = NULL;
585 return mapping;
588 static inline int PageAnon(struct page *page)
590 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
594 * Return the pagecache index of the passed page. Regular pagecache pages
595 * use ->index whereas swapcache pages use ->private
597 static inline pgoff_t page_index(struct page *page)
599 if (unlikely(PageSwapCache(page)))
600 return page_private(page);
601 return page->index;
605 * The atomic page->_mapcount, like _count, starts from -1:
606 * so that transitions both from it and to it can be tracked,
607 * using atomic_inc_and_test and atomic_add_negative(-1).
609 static inline void reset_page_mapcount(struct page *page)
611 atomic_set(&(page)->_mapcount, -1);
614 static inline int page_mapcount(struct page *page)
616 return atomic_read(&(page)->_mapcount) + 1;
620 * Return true if this page is mapped into pagetables.
622 static inline int page_mapped(struct page *page)
624 return atomic_read(&(page)->_mapcount) >= 0;
628 * Error return values for the *_nopage functions
630 #define NOPAGE_SIGBUS (NULL)
631 #define NOPAGE_OOM ((struct page *) (-1))
634 * Error return values for the *_nopfn functions
636 #define NOPFN_SIGBUS ((unsigned long) -1)
637 #define NOPFN_OOM ((unsigned long) -2)
638 #define NOPFN_REFAULT ((unsigned long) -3)
641 * Different kinds of faults, as returned by handle_mm_fault().
642 * Used to decide whether a process gets delivered SIGBUS or
643 * just gets major/minor fault counters bumped up.
646 #define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */
648 #define VM_FAULT_OOM 0x0001
649 #define VM_FAULT_SIGBUS 0x0002
650 #define VM_FAULT_MAJOR 0x0004
651 #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
653 #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
654 #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
656 #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS)
658 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
660 extern void show_free_areas(void);
662 #ifdef CONFIG_SHMEM
663 int shmem_lock(struct file *file, int lock, struct user_struct *user);
664 #else
665 static inline int shmem_lock(struct file *file, int lock,
666 struct user_struct *user)
668 return 0;
670 #endif
671 struct file *shmem_file_setup(char *name, loff_t size, unsigned long flags);
673 int shmem_zero_setup(struct vm_area_struct *);
675 #ifndef CONFIG_MMU
676 extern unsigned long shmem_get_unmapped_area(struct file *file,
677 unsigned long addr,
678 unsigned long len,
679 unsigned long pgoff,
680 unsigned long flags);
681 #endif
683 extern int can_do_mlock(void);
684 extern int user_shm_lock(size_t, struct user_struct *);
685 extern void user_shm_unlock(size_t, struct user_struct *);
688 * Parameter block passed down to zap_pte_range in exceptional cases.
690 struct zap_details {
691 struct vm_area_struct *nonlinear_vma; /* Check page->index if set */
692 struct address_space *check_mapping; /* Check page->mapping if set */
693 pgoff_t first_index; /* Lowest page->index to unmap */
694 pgoff_t last_index; /* Highest page->index to unmap */
695 spinlock_t *i_mmap_lock; /* For unmap_mapping_range: */
696 unsigned long truncate_count; /* Compare vm_truncate_count */
699 struct page *vm_normal_page(struct vm_area_struct *, unsigned long, pte_t);
700 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
701 unsigned long size, struct zap_details *);
702 unsigned long unmap_vmas(struct mmu_gather **tlb,
703 struct vm_area_struct *start_vma, unsigned long start_addr,
704 unsigned long end_addr, unsigned long *nr_accounted,
705 struct zap_details *);
708 * mm_walk - callbacks for walk_page_range
709 * @pgd_entry: if set, called for each non-empty PGD (top-level) entry
710 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
711 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
712 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
713 * @pte_hole: if set, called for each hole at all levels
715 * (see walk_page_range for more details)
717 struct mm_walk {
718 int (*pgd_entry)(pgd_t *, unsigned long, unsigned long, void *);
719 int (*pud_entry)(pud_t *, unsigned long, unsigned long, void *);
720 int (*pmd_entry)(pmd_t *, unsigned long, unsigned long, void *);
721 int (*pte_entry)(pte_t *, unsigned long, unsigned long, void *);
722 int (*pte_hole)(unsigned long, unsigned long, void *);
725 int walk_page_range(const struct mm_struct *, unsigned long addr,
726 unsigned long end, const struct mm_walk *walk,
727 void *private);
728 void free_pgd_range(struct mmu_gather **tlb, unsigned long addr,
729 unsigned long end, unsigned long floor, unsigned long ceiling);
730 void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *start_vma,
731 unsigned long floor, unsigned long ceiling);
732 int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
733 struct vm_area_struct *vma);
734 void unmap_mapping_range(struct address_space *mapping,
735 loff_t const holebegin, loff_t const holelen, int even_cows);
737 static inline void unmap_shared_mapping_range(struct address_space *mapping,
738 loff_t const holebegin, loff_t const holelen)
740 unmap_mapping_range(mapping, holebegin, holelen, 0);
743 extern int vmtruncate(struct inode * inode, loff_t offset);
744 extern int vmtruncate_range(struct inode * inode, loff_t offset, loff_t end);
746 #ifdef CONFIG_MMU
747 extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
748 unsigned long address, int write_access);
749 #else
750 static inline int handle_mm_fault(struct mm_struct *mm,
751 struct vm_area_struct *vma, unsigned long address,
752 int write_access)
754 /* should never happen if there's no MMU */
755 BUG();
756 return VM_FAULT_SIGBUS;
758 #endif
760 extern int make_pages_present(unsigned long addr, unsigned long end);
761 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
763 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, unsigned long start,
764 int len, int write, int force, struct page **pages, struct vm_area_struct **vmas);
765 void print_bad_pte(struct vm_area_struct *, pte_t, unsigned long);
767 extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
768 extern void do_invalidatepage(struct page *page, unsigned long offset);
770 int __set_page_dirty_nobuffers(struct page *page);
771 int __set_page_dirty_no_writeback(struct page *page);
772 int redirty_page_for_writepage(struct writeback_control *wbc,
773 struct page *page);
774 int FASTCALL(set_page_dirty(struct page *page));
775 int set_page_dirty_lock(struct page *page);
776 int clear_page_dirty_for_io(struct page *page);
778 extern unsigned long move_page_tables(struct vm_area_struct *vma,
779 unsigned long old_addr, struct vm_area_struct *new_vma,
780 unsigned long new_addr, unsigned long len);
781 extern unsigned long do_mremap(unsigned long addr,
782 unsigned long old_len, unsigned long new_len,
783 unsigned long flags, unsigned long new_addr);
784 extern int mprotect_fixup(struct vm_area_struct *vma,
785 struct vm_area_struct **pprev, unsigned long start,
786 unsigned long end, unsigned long newflags);
789 * A callback you can register to apply pressure to ageable caches.
791 * 'shrink' is passed a count 'nr_to_scan' and a 'gfpmask'. It should
792 * look through the least-recently-used 'nr_to_scan' entries and
793 * attempt to free them up. It should return the number of objects
794 * which remain in the cache. If it returns -1, it means it cannot do
795 * any scanning at this time (eg. there is a risk of deadlock).
797 * The 'gfpmask' refers to the allocation we are currently trying to
798 * fulfil.
800 * Note that 'shrink' will be passed nr_to_scan == 0 when the VM is
801 * querying the cache size, so a fastpath for that case is appropriate.
803 struct shrinker {
804 int (*shrink)(int nr_to_scan, gfp_t gfp_mask);
805 int seeks; /* seeks to recreate an obj */
807 /* These are for internal use */
808 struct list_head list;
809 long nr; /* objs pending delete */
811 #define DEFAULT_SEEKS 2 /* A good number if you don't know better. */
812 extern void register_shrinker(struct shrinker *);
813 extern void unregister_shrinker(struct shrinker *);
815 int vma_wants_writenotify(struct vm_area_struct *vma);
817 extern pte_t *FASTCALL(get_locked_pte(struct mm_struct *mm, unsigned long addr, spinlock_t **ptl));
819 #ifdef __PAGETABLE_PUD_FOLDED
820 static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
821 unsigned long address)
823 return 0;
825 #else
826 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
827 #endif
829 #ifdef __PAGETABLE_PMD_FOLDED
830 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
831 unsigned long address)
833 return 0;
835 #else
836 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
837 #endif
839 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address);
840 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
843 * The following ifdef needed to get the 4level-fixup.h header to work.
844 * Remove it when 4level-fixup.h has been removed.
846 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
847 static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
849 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
850 NULL: pud_offset(pgd, address);
853 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
855 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
856 NULL: pmd_offset(pud, address);
858 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
860 #if NR_CPUS >= CONFIG_SPLIT_PTLOCK_CPUS
862 * We tuck a spinlock to guard each pagetable page into its struct page,
863 * at page->private, with BUILD_BUG_ON to make sure that this will not
864 * overflow into the next struct page (as it might with DEBUG_SPINLOCK).
865 * When freeing, reset page->mapping so free_pages_check won't complain.
867 #define __pte_lockptr(page) &((page)->ptl)
868 #define pte_lock_init(_page) do { \
869 spin_lock_init(__pte_lockptr(_page)); \
870 } while (0)
871 #define pte_lock_deinit(page) ((page)->mapping = NULL)
872 #define pte_lockptr(mm, pmd) ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));})
873 #else
875 * We use mm->page_table_lock to guard all pagetable pages of the mm.
877 #define pte_lock_init(page) do {} while (0)
878 #define pte_lock_deinit(page) do {} while (0)
879 #define pte_lockptr(mm, pmd) ({(void)(pmd); &(mm)->page_table_lock;})
880 #endif /* NR_CPUS < CONFIG_SPLIT_PTLOCK_CPUS */
882 static inline void pgtable_page_ctor(struct page *page)
884 pte_lock_init(page);
885 inc_zone_page_state(page, NR_PAGETABLE);
888 static inline void pgtable_page_dtor(struct page *page)
890 pte_lock_deinit(page);
891 dec_zone_page_state(page, NR_PAGETABLE);
894 #define pte_offset_map_lock(mm, pmd, address, ptlp) \
895 ({ \
896 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
897 pte_t *__pte = pte_offset_map(pmd, address); \
898 *(ptlp) = __ptl; \
899 spin_lock(__ptl); \
900 __pte; \
903 #define pte_unmap_unlock(pte, ptl) do { \
904 spin_unlock(ptl); \
905 pte_unmap(pte); \
906 } while (0)
908 #define pte_alloc_map(mm, pmd, address) \
909 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \
910 NULL: pte_offset_map(pmd, address))
912 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \
913 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \
914 NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
916 #define pte_alloc_kernel(pmd, address) \
917 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
918 NULL: pte_offset_kernel(pmd, address))
920 extern void free_area_init(unsigned long * zones_size);
921 extern void free_area_init_node(int nid, pg_data_t *pgdat,
922 unsigned long * zones_size, unsigned long zone_start_pfn,
923 unsigned long *zholes_size);
924 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
926 * With CONFIG_ARCH_POPULATES_NODE_MAP set, an architecture may initialise its
927 * zones, allocate the backing mem_map and account for memory holes in a more
928 * architecture independent manner. This is a substitute for creating the
929 * zone_sizes[] and zholes_size[] arrays and passing them to
930 * free_area_init_node()
932 * An architecture is expected to register range of page frames backed by
933 * physical memory with add_active_range() before calling
934 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
935 * usage, an architecture is expected to do something like
937 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
938 * max_highmem_pfn};
939 * for_each_valid_physical_page_range()
940 * add_active_range(node_id, start_pfn, end_pfn)
941 * free_area_init_nodes(max_zone_pfns);
943 * If the architecture guarantees that there are no holes in the ranges
944 * registered with add_active_range(), free_bootmem_active_regions()
945 * will call free_bootmem_node() for each registered physical page range.
946 * Similarly sparse_memory_present_with_active_regions() calls
947 * memory_present() for each range when SPARSEMEM is enabled.
949 * See mm/page_alloc.c for more information on each function exposed by
950 * CONFIG_ARCH_POPULATES_NODE_MAP
952 extern void free_area_init_nodes(unsigned long *max_zone_pfn);
953 extern void add_active_range(unsigned int nid, unsigned long start_pfn,
954 unsigned long end_pfn);
955 extern void shrink_active_range(unsigned int nid, unsigned long old_end_pfn,
956 unsigned long new_end_pfn);
957 extern void push_node_boundaries(unsigned int nid, unsigned long start_pfn,
958 unsigned long end_pfn);
959 extern void remove_all_active_ranges(void);
960 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
961 unsigned long end_pfn);
962 extern void get_pfn_range_for_nid(unsigned int nid,
963 unsigned long *start_pfn, unsigned long *end_pfn);
964 extern unsigned long find_min_pfn_with_active_regions(void);
965 extern unsigned long find_max_pfn_with_active_regions(void);
966 extern void free_bootmem_with_active_regions(int nid,
967 unsigned long max_low_pfn);
968 extern void sparse_memory_present_with_active_regions(int nid);
969 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
970 extern int early_pfn_to_nid(unsigned long pfn);
971 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
972 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
973 extern void set_dma_reserve(unsigned long new_dma_reserve);
974 extern void memmap_init_zone(unsigned long, int, unsigned long,
975 unsigned long, enum memmap_context);
976 extern void setup_per_zone_pages_min(void);
977 extern void mem_init(void);
978 extern void show_mem(void);
979 extern void si_meminfo(struct sysinfo * val);
980 extern void si_meminfo_node(struct sysinfo *val, int nid);
982 #ifdef CONFIG_NUMA
983 extern void setup_per_cpu_pageset(void);
984 #else
985 static inline void setup_per_cpu_pageset(void) {}
986 #endif
988 /* prio_tree.c */
989 void vma_prio_tree_add(struct vm_area_struct *, struct vm_area_struct *old);
990 void vma_prio_tree_insert(struct vm_area_struct *, struct prio_tree_root *);
991 void vma_prio_tree_remove(struct vm_area_struct *, struct prio_tree_root *);
992 struct vm_area_struct *vma_prio_tree_next(struct vm_area_struct *vma,
993 struct prio_tree_iter *iter);
995 #define vma_prio_tree_foreach(vma, iter, root, begin, end) \
996 for (prio_tree_iter_init(iter, root, begin, end), vma = NULL; \
997 (vma = vma_prio_tree_next(vma, iter)); )
999 static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
1000 struct list_head *list)
1002 vma->shared.vm_set.parent = NULL;
1003 list_add_tail(&vma->shared.vm_set.list, list);
1006 /* mmap.c */
1007 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
1008 extern void vma_adjust(struct vm_area_struct *vma, unsigned long start,
1009 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1010 extern struct vm_area_struct *vma_merge(struct mm_struct *,
1011 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1012 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
1013 struct mempolicy *);
1014 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1015 extern int split_vma(struct mm_struct *,
1016 struct vm_area_struct *, unsigned long addr, int new_below);
1017 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1018 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1019 struct rb_node **, struct rb_node *);
1020 extern void __unlink_file_vma(struct vm_area_struct *);
1021 extern void unlink_file_vma(struct vm_area_struct *);
1022 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
1023 unsigned long addr, unsigned long len, pgoff_t pgoff);
1024 extern void exit_mmap(struct mm_struct *);
1025 extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
1026 extern int install_special_mapping(struct mm_struct *mm,
1027 unsigned long addr, unsigned long len,
1028 unsigned long flags, struct page **pages);
1030 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1032 extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1033 unsigned long len, unsigned long prot,
1034 unsigned long flag, unsigned long pgoff);
1035 extern unsigned long mmap_region(struct file *file, unsigned long addr,
1036 unsigned long len, unsigned long flags,
1037 unsigned int vm_flags, unsigned long pgoff,
1038 int accountable);
1040 static inline unsigned long do_mmap(struct file *file, unsigned long addr,
1041 unsigned long len, unsigned long prot,
1042 unsigned long flag, unsigned long offset)
1044 unsigned long ret = -EINVAL;
1045 if ((offset + PAGE_ALIGN(len)) < offset)
1046 goto out;
1047 if (!(offset & ~PAGE_MASK))
1048 ret = do_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
1049 out:
1050 return ret;
1053 extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1055 extern unsigned long do_brk(unsigned long, unsigned long);
1057 /* filemap.c */
1058 extern unsigned long page_unuse(struct page *);
1059 extern void truncate_inode_pages(struct address_space *, loff_t);
1060 extern void truncate_inode_pages_range(struct address_space *,
1061 loff_t lstart, loff_t lend);
1063 /* generic vm_area_ops exported for stackable file systems */
1064 extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
1066 /* mm/page-writeback.c */
1067 int write_one_page(struct page *page, int wait);
1069 /* readahead.c */
1070 #define VM_MAX_READAHEAD 128 /* kbytes */
1071 #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
1073 int do_page_cache_readahead(struct address_space *mapping, struct file *filp,
1074 pgoff_t offset, unsigned long nr_to_read);
1075 int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
1076 pgoff_t offset, unsigned long nr_to_read);
1078 void page_cache_sync_readahead(struct address_space *mapping,
1079 struct file_ra_state *ra,
1080 struct file *filp,
1081 pgoff_t offset,
1082 unsigned long size);
1084 void page_cache_async_readahead(struct address_space *mapping,
1085 struct file_ra_state *ra,
1086 struct file *filp,
1087 struct page *pg,
1088 pgoff_t offset,
1089 unsigned long size);
1091 unsigned long max_sane_readahead(unsigned long nr);
1093 /* Do stack extension */
1094 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
1095 #ifdef CONFIG_IA64
1096 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
1097 #endif
1098 extern int expand_stack_downwards(struct vm_area_struct *vma,
1099 unsigned long address);
1101 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1102 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
1103 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
1104 struct vm_area_struct **pprev);
1106 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
1107 NULL if none. Assume start_addr < end_addr. */
1108 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
1110 struct vm_area_struct * vma = find_vma(mm,start_addr);
1112 if (vma && end_addr <= vma->vm_start)
1113 vma = NULL;
1114 return vma;
1117 static inline unsigned long vma_pages(struct vm_area_struct *vma)
1119 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
1122 pgprot_t vm_get_page_prot(unsigned long vm_flags);
1123 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
1124 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
1125 unsigned long pfn, unsigned long size, pgprot_t);
1126 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
1127 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1128 unsigned long pfn);
1130 struct page *follow_page(struct vm_area_struct *, unsigned long address,
1131 unsigned int foll_flags);
1132 #define FOLL_WRITE 0x01 /* check pte is writable */
1133 #define FOLL_TOUCH 0x02 /* mark page accessed */
1134 #define FOLL_GET 0x04 /* do get_page on page */
1135 #define FOLL_ANON 0x08 /* give ZERO_PAGE if no pgtable */
1137 typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
1138 void *data);
1139 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
1140 unsigned long size, pte_fn_t fn, void *data);
1142 #ifdef CONFIG_PROC_FS
1143 void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
1144 #else
1145 static inline void vm_stat_account(struct mm_struct *mm,
1146 unsigned long flags, struct file *file, long pages)
1149 #endif /* CONFIG_PROC_FS */
1151 #ifndef CONFIG_DEBUG_PAGEALLOC
1152 static inline void
1153 kernel_map_pages(struct page *page, int numpages, int enable) {}
1154 #endif
1156 extern struct vm_area_struct *get_gate_vma(struct task_struct *tsk);
1157 #ifdef __HAVE_ARCH_GATE_AREA
1158 int in_gate_area_no_task(unsigned long addr);
1159 int in_gate_area(struct task_struct *task, unsigned long addr);
1160 #else
1161 int in_gate_area_no_task(unsigned long addr);
1162 #define in_gate_area(task, addr) ({(void)task; in_gate_area_no_task(addr);})
1163 #endif /* __HAVE_ARCH_GATE_AREA */
1165 int drop_caches_sysctl_handler(struct ctl_table *, int, struct file *,
1166 void __user *, size_t *, loff_t *);
1167 unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
1168 unsigned long lru_pages);
1169 extern void drop_pagecache_sb(struct super_block *);
1170 void drop_pagecache(void);
1171 void drop_slab(void);
1173 #ifndef CONFIG_MMU
1174 #define randomize_va_space 0
1175 #else
1176 extern int randomize_va_space;
1177 #endif
1179 const char * arch_vma_name(struct vm_area_struct *vma);
1181 struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
1182 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
1183 pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
1184 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
1185 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
1186 void *vmemmap_alloc_block(unsigned long size, int node);
1187 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
1188 int vmemmap_populate_basepages(struct page *start_page,
1189 unsigned long pages, int node);
1190 int vmemmap_populate(struct page *start_page, unsigned long pages, int node);
1192 #endif /* __KERNEL__ */
1193 #endif /* _LINUX_MM_H */