2 * Memory Migration functionality - linux/mm/migration.c
4 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6 * Page migration was first developed in the context of the memory hotplug
7 * project. The main authors of the migration code are:
9 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
10 * Hirokazu Takahashi <taka@valinux.co.jp>
11 * Dave Hansen <haveblue@us.ibm.com>
12 * Christoph Lameter <clameter@sgi.com>
15 #include <linux/migrate.h>
16 #include <linux/module.h>
17 #include <linux/swap.h>
18 #include <linux/swapops.h>
19 #include <linux/pagemap.h>
20 #include <linux/buffer_head.h>
21 #include <linux/mm_inline.h>
22 #include <linux/nsproxy.h>
23 #include <linux/pagevec.h>
24 #include <linux/rmap.h>
25 #include <linux/topology.h>
26 #include <linux/cpu.h>
27 #include <linux/cpuset.h>
28 #include <linux/writeback.h>
29 #include <linux/mempolicy.h>
30 #include <linux/vmalloc.h>
31 #include <linux/security.h>
35 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
38 * Isolate one page from the LRU lists. If successful put it onto
39 * the indicated list with elevated page count.
42 * -EBUSY: page not on LRU list
43 * 0: page removed from LRU list and added to the specified list.
45 int isolate_lru_page(struct page
*page
, struct list_head
*pagelist
)
50 struct zone
*zone
= page_zone(page
);
52 spin_lock_irq(&zone
->lru_lock
);
53 if (PageLRU(page
) && get_page_unless_zero(page
)) {
57 del_page_from_active_list(zone
, page
);
59 del_page_from_inactive_list(zone
, page
);
60 list_add_tail(&page
->lru
, pagelist
);
62 spin_unlock_irq(&zone
->lru_lock
);
68 * migrate_prep() needs to be called before we start compiling a list of pages
69 * to be migrated using isolate_lru_page().
71 int migrate_prep(void)
74 * Clear the LRU lists so pages can be isolated.
75 * Note that pages may be moved off the LRU after we have
76 * drained them. Those pages will fail to migrate like other
77 * pages that may be busy.
84 static inline void move_to_lru(struct page
*page
)
86 if (PageActive(page
)) {
88 * lru_cache_add_active checks that
89 * the PG_active bit is off.
91 ClearPageActive(page
);
92 lru_cache_add_active(page
);
100 * Add isolated pages on the list back to the LRU.
102 * returns the number of pages put back.
104 int putback_lru_pages(struct list_head
*l
)
110 list_for_each_entry_safe(page
, page2
, l
, lru
) {
111 list_del(&page
->lru
);
119 * Restore a potential migration pte to a working pte entry
121 static void remove_migration_pte(struct vm_area_struct
*vma
,
122 struct page
*old
, struct page
*new)
124 struct mm_struct
*mm
= vma
->vm_mm
;
131 unsigned long addr
= page_address_in_vma(new, vma
);
136 pgd
= pgd_offset(mm
, addr
);
137 if (!pgd_present(*pgd
))
140 pud
= pud_offset(pgd
, addr
);
141 if (!pud_present(*pud
))
144 pmd
= pmd_offset(pud
, addr
);
145 if (!pmd_present(*pmd
))
148 ptep
= pte_offset_map(pmd
, addr
);
150 if (!is_swap_pte(*ptep
)) {
155 ptl
= pte_lockptr(mm
, pmd
);
158 if (!is_swap_pte(pte
))
161 entry
= pte_to_swp_entry(pte
);
163 if (!is_migration_entry(entry
) || migration_entry_to_page(entry
) != old
)
167 pte
= pte_mkold(mk_pte(new, vma
->vm_page_prot
));
168 if (is_write_migration_entry(entry
))
169 pte
= pte_mkwrite(pte
);
170 flush_cache_page(vma
, addr
, pte_pfn(pte
));
171 set_pte_at(mm
, addr
, ptep
, pte
);
174 page_add_anon_rmap(new, vma
, addr
);
176 page_add_file_rmap(new);
178 /* No need to invalidate - it was non-present before */
179 update_mmu_cache(vma
, addr
, pte
);
182 pte_unmap_unlock(ptep
, ptl
);
186 * Note that remove_file_migration_ptes will only work on regular mappings,
187 * Nonlinear mappings do not use migration entries.
189 static void remove_file_migration_ptes(struct page
*old
, struct page
*new)
191 struct vm_area_struct
*vma
;
192 struct address_space
*mapping
= page_mapping(new);
193 struct prio_tree_iter iter
;
194 pgoff_t pgoff
= new->index
<< (PAGE_CACHE_SHIFT
- PAGE_SHIFT
);
199 spin_lock(&mapping
->i_mmap_lock
);
201 vma_prio_tree_foreach(vma
, &iter
, &mapping
->i_mmap
, pgoff
, pgoff
)
202 remove_migration_pte(vma
, old
, new);
204 spin_unlock(&mapping
->i_mmap_lock
);
208 * Must hold mmap_sem lock on at least one of the vmas containing
209 * the page so that the anon_vma cannot vanish.
211 static void remove_anon_migration_ptes(struct page
*old
, struct page
*new)
213 struct anon_vma
*anon_vma
;
214 struct vm_area_struct
*vma
;
215 unsigned long mapping
;
217 mapping
= (unsigned long)new->mapping
;
219 if (!mapping
|| (mapping
& PAGE_MAPPING_ANON
) == 0)
223 * We hold the mmap_sem lock. So no need to call page_lock_anon_vma.
225 anon_vma
= (struct anon_vma
*) (mapping
- PAGE_MAPPING_ANON
);
226 spin_lock(&anon_vma
->lock
);
228 list_for_each_entry(vma
, &anon_vma
->head
, anon_vma_node
)
229 remove_migration_pte(vma
, old
, new);
231 spin_unlock(&anon_vma
->lock
);
235 * Get rid of all migration entries and replace them by
236 * references to the indicated page.
238 static void remove_migration_ptes(struct page
*old
, struct page
*new)
241 remove_anon_migration_ptes(old
, new);
243 remove_file_migration_ptes(old
, new);
247 * Something used the pte of a page under migration. We need to
248 * get to the page and wait until migration is finished.
249 * When we return from this function the fault will be retried.
251 * This function is called from do_swap_page().
253 void migration_entry_wait(struct mm_struct
*mm
, pmd_t
*pmd
,
254 unsigned long address
)
261 ptep
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
263 if (!is_swap_pte(pte
))
266 entry
= pte_to_swp_entry(pte
);
267 if (!is_migration_entry(entry
))
270 page
= migration_entry_to_page(entry
);
273 pte_unmap_unlock(ptep
, ptl
);
274 wait_on_page_locked(page
);
278 pte_unmap_unlock(ptep
, ptl
);
282 * Replace the page in the mapping.
284 * The number of remaining references must be:
285 * 1 for anonymous pages without a mapping
286 * 2 for pages with a mapping
287 * 3 for pages with a mapping and PagePrivate set.
289 static int migrate_page_move_mapping(struct address_space
*mapping
,
290 struct page
*newpage
, struct page
*page
)
295 /* Anonymous page without mapping */
296 if (page_count(page
) != 1)
301 write_lock_irq(&mapping
->tree_lock
);
303 pslot
= radix_tree_lookup_slot(&mapping
->page_tree
,
306 if (page_count(page
) != 2 + !!PagePrivate(page
) ||
307 (struct page
*)radix_tree_deref_slot(pslot
) != page
) {
308 write_unlock_irq(&mapping
->tree_lock
);
313 * Now we know that no one else is looking at the page.
315 get_page(newpage
); /* add cache reference */
317 if (PageSwapCache(page
)) {
318 SetPageSwapCache(newpage
);
319 set_page_private(newpage
, page_private(page
));
323 radix_tree_replace_slot(pslot
, newpage
);
326 * Drop cache reference from old page.
327 * We know this isn't the last reference.
332 * If moved to a different zone then also account
333 * the page for that zone. Other VM counters will be
334 * taken care of when we establish references to the
335 * new page and drop references to the old page.
337 * Note that anonymous pages are accounted for
338 * via NR_FILE_PAGES and NR_ANON_PAGES if they
339 * are mapped to swap space.
341 __dec_zone_page_state(page
, NR_FILE_PAGES
);
342 __inc_zone_page_state(newpage
, NR_FILE_PAGES
);
344 write_unlock_irq(&mapping
->tree_lock
);
350 * Copy the page to its new location
352 static void migrate_page_copy(struct page
*newpage
, struct page
*page
)
354 copy_highpage(newpage
, page
);
357 SetPageError(newpage
);
358 if (PageReferenced(page
))
359 SetPageReferenced(newpage
);
360 if (PageUptodate(page
))
361 SetPageUptodate(newpage
);
362 if (PageActive(page
))
363 SetPageActive(newpage
);
364 if (PageChecked(page
))
365 SetPageChecked(newpage
);
366 if (PageMappedToDisk(page
))
367 SetPageMappedToDisk(newpage
);
369 if (PageDirty(page
)) {
370 clear_page_dirty_for_io(page
);
371 set_page_dirty(newpage
);
375 ClearPageSwapCache(page
);
377 ClearPageActive(page
);
378 ClearPagePrivate(page
);
379 set_page_private(page
, 0);
380 page
->mapping
= NULL
;
383 * If any waiters have accumulated on the new page then
386 if (PageWriteback(newpage
))
387 end_page_writeback(newpage
);
390 /************************************************************
391 * Migration functions
392 ***********************************************************/
394 /* Always fail migration. Used for mappings that are not movable */
395 int fail_migrate_page(struct address_space
*mapping
,
396 struct page
*newpage
, struct page
*page
)
400 EXPORT_SYMBOL(fail_migrate_page
);
403 * Common logic to directly migrate a single page suitable for
404 * pages that do not use PagePrivate.
406 * Pages are locked upon entry and exit.
408 int migrate_page(struct address_space
*mapping
,
409 struct page
*newpage
, struct page
*page
)
413 BUG_ON(PageWriteback(page
)); /* Writeback must be complete */
415 rc
= migrate_page_move_mapping(mapping
, newpage
, page
);
420 migrate_page_copy(newpage
, page
);
423 EXPORT_SYMBOL(migrate_page
);
427 * Migration function for pages with buffers. This function can only be used
428 * if the underlying filesystem guarantees that no other references to "page"
431 int buffer_migrate_page(struct address_space
*mapping
,
432 struct page
*newpage
, struct page
*page
)
434 struct buffer_head
*bh
, *head
;
437 if (!page_has_buffers(page
))
438 return migrate_page(mapping
, newpage
, page
);
440 head
= page_buffers(page
);
442 rc
= migrate_page_move_mapping(mapping
, newpage
, page
);
451 bh
= bh
->b_this_page
;
453 } while (bh
!= head
);
455 ClearPagePrivate(page
);
456 set_page_private(newpage
, page_private(page
));
457 set_page_private(page
, 0);
463 set_bh_page(bh
, newpage
, bh_offset(bh
));
464 bh
= bh
->b_this_page
;
466 } while (bh
!= head
);
468 SetPagePrivate(newpage
);
470 migrate_page_copy(newpage
, page
);
476 bh
= bh
->b_this_page
;
478 } while (bh
!= head
);
482 EXPORT_SYMBOL(buffer_migrate_page
);
486 * Writeback a page to clean the dirty state
488 static int writeout(struct address_space
*mapping
, struct page
*page
)
490 struct writeback_control wbc
= {
491 .sync_mode
= WB_SYNC_NONE
,
494 .range_end
= LLONG_MAX
,
500 if (!mapping
->a_ops
->writepage
)
501 /* No write method for the address space */
504 if (!clear_page_dirty_for_io(page
))
505 /* Someone else already triggered a write */
509 * A dirty page may imply that the underlying filesystem has
510 * the page on some queue. So the page must be clean for
511 * migration. Writeout may mean we loose the lock and the
512 * page state is no longer what we checked for earlier.
513 * At this point we know that the migration attempt cannot
516 remove_migration_ptes(page
, page
);
518 rc
= mapping
->a_ops
->writepage(page
, &wbc
);
520 /* I/O Error writing */
523 if (rc
!= AOP_WRITEPAGE_ACTIVATE
)
524 /* unlocked. Relock */
531 * Default handling if a filesystem does not provide a migration function.
533 static int fallback_migrate_page(struct address_space
*mapping
,
534 struct page
*newpage
, struct page
*page
)
537 return writeout(mapping
, page
);
540 * Buffers may be managed in a filesystem specific way.
541 * We must have no buffers or drop them.
543 if (PagePrivate(page
) &&
544 !try_to_release_page(page
, GFP_KERNEL
))
547 return migrate_page(mapping
, newpage
, page
);
551 * Move a page to a newly allocated page
552 * The page is locked and all ptes have been successfully removed.
554 * The new page will have replaced the old page if this function
557 static int move_to_new_page(struct page
*newpage
, struct page
*page
)
559 struct address_space
*mapping
;
563 * Block others from accessing the page when we get around to
564 * establishing additional references. We are the only one
565 * holding a reference to the new page at this point.
567 if (TestSetPageLocked(newpage
))
570 /* Prepare mapping for the new page.*/
571 newpage
->index
= page
->index
;
572 newpage
->mapping
= page
->mapping
;
574 mapping
= page_mapping(page
);
576 rc
= migrate_page(mapping
, newpage
, page
);
577 else if (mapping
->a_ops
->migratepage
)
579 * Most pages have a mapping and most filesystems
580 * should provide a migration function. Anonymous
581 * pages are part of swap space which also has its
582 * own migration function. This is the most common
583 * path for page migration.
585 rc
= mapping
->a_ops
->migratepage(mapping
,
588 rc
= fallback_migrate_page(mapping
, newpage
, page
);
591 remove_migration_ptes(page
, newpage
);
593 newpage
->mapping
= NULL
;
595 unlock_page(newpage
);
601 * Obtain the lock on page, remove all ptes and migrate the page
602 * to the newly allocated page in newpage.
604 static int unmap_and_move(new_page_t get_new_page
, unsigned long private,
605 struct page
*page
, int force
)
609 struct page
*newpage
= get_new_page(page
, private, &result
);
615 if (page_count(page
) == 1)
616 /* page was freed from under us. So we are done. */
620 if (TestSetPageLocked(page
)) {
626 if (PageWriteback(page
)) {
629 wait_on_page_writeback(page
);
632 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
633 * we cannot notice that anon_vma is freed while we migrates a page.
634 * This rcu_read_lock() delays freeing anon_vma pointer until the end
635 * of migration. File cache pages are no problem because of page_lock()
636 * File Caches may use write_page() or lock_page() in migration, then,
637 * just care Anon page here.
639 if (PageAnon(page
)) {
644 * This is a corner case handling.
645 * When a new swap-cache is read into, it is linked to LRU
646 * and treated as swapcache but has no rmap yet.
647 * Calling try_to_unmap() against a page->mapping==NULL page is
648 * BUG. So handle it here.
652 /* Establish migration ptes or remove ptes */
653 try_to_unmap(page
, 1);
655 if (!page_mapped(page
))
656 rc
= move_to_new_page(newpage
, page
);
659 remove_migration_ptes(page
, page
);
670 * A page that has been migrated has all references
671 * removed and will be freed. A page that has not been
672 * migrated will have kepts its references and be
675 list_del(&page
->lru
);
681 * Move the new page to the LRU. If migration was not successful
682 * then this will free the page.
684 move_to_lru(newpage
);
689 *result
= page_to_nid(newpage
);
697 * The function takes one list of pages to migrate and a function
698 * that determines from the page to be migrated and the private data
699 * the target of the move and allocates the page.
701 * The function returns after 10 attempts or if no pages
702 * are movable anymore because to has become empty
703 * or no retryable pages exist anymore. All pages will be
704 * returned to the LRU or freed.
706 * Return: Number of pages not migrated or error code.
708 int migrate_pages(struct list_head
*from
,
709 new_page_t get_new_page
, unsigned long private)
716 int swapwrite
= current
->flags
& PF_SWAPWRITE
;
720 current
->flags
|= PF_SWAPWRITE
;
722 for(pass
= 0; pass
< 10 && retry
; pass
++) {
725 list_for_each_entry_safe(page
, page2
, from
, lru
) {
728 rc
= unmap_and_move(get_new_page
, private,
740 /* Permanent failure */
749 current
->flags
&= ~PF_SWAPWRITE
;
751 putback_lru_pages(from
);
756 return nr_failed
+ retry
;
761 * Move a list of individual pages
763 struct page_to_node
{
770 static struct page
*new_page_node(struct page
*p
, unsigned long private,
773 struct page_to_node
*pm
= (struct page_to_node
*)private;
775 while (pm
->node
!= MAX_NUMNODES
&& pm
->page
!= p
)
778 if (pm
->node
== MAX_NUMNODES
)
781 *result
= &pm
->status
;
783 return alloc_pages_node(pm
->node
,
784 GFP_HIGHUSER_MOVABLE
| GFP_THISNODE
, 0);
788 * Move a set of pages as indicated in the pm array. The addr
789 * field must be set to the virtual address of the page to be moved
790 * and the node number must contain a valid target node.
792 static int do_move_pages(struct mm_struct
*mm
, struct page_to_node
*pm
,
796 struct page_to_node
*pp
;
799 down_read(&mm
->mmap_sem
);
802 * Build a list of pages to migrate
805 for (pp
= pm
; pp
->node
!= MAX_NUMNODES
; pp
++) {
806 struct vm_area_struct
*vma
;
810 * A valid page pointer that will not match any of the
811 * pages that will be moved.
813 pp
->page
= ZERO_PAGE(0);
816 vma
= find_vma(mm
, pp
->addr
);
817 if (!vma
|| !vma_migratable(vma
))
820 page
= follow_page(vma
, pp
->addr
, FOLL_GET
);
825 if (PageReserved(page
)) /* Check for zero page */
829 err
= page_to_nid(page
);
833 * Node already in the right place
838 if (page_mapcount(page
) > 1 &&
842 err
= isolate_lru_page(page
, &pagelist
);
845 * Either remove the duplicate refcount from
846 * isolate_lru_page() or drop the page ref if it was
854 if (!list_empty(&pagelist
))
855 err
= migrate_pages(&pagelist
, new_page_node
,
860 up_read(&mm
->mmap_sem
);
865 * Determine the nodes of a list of pages. The addr in the pm array
866 * must have been set to the virtual address of which we want to determine
869 static int do_pages_stat(struct mm_struct
*mm
, struct page_to_node
*pm
)
871 down_read(&mm
->mmap_sem
);
873 for ( ; pm
->node
!= MAX_NUMNODES
; pm
++) {
874 struct vm_area_struct
*vma
;
879 vma
= find_vma(mm
, pm
->addr
);
883 page
= follow_page(vma
, pm
->addr
, 0);
885 /* Use PageReserved to check for zero page */
886 if (!page
|| PageReserved(page
))
889 err
= page_to_nid(page
);
894 up_read(&mm
->mmap_sem
);
899 * Move a list of pages in the address space of the currently executing
902 asmlinkage
long sys_move_pages(pid_t pid
, unsigned long nr_pages
,
903 const void __user
* __user
*pages
,
904 const int __user
*nodes
,
905 int __user
*status
, int flags
)
909 struct task_struct
*task
;
910 nodemask_t task_nodes
;
911 struct mm_struct
*mm
;
912 struct page_to_node
*pm
= NULL
;
915 if (flags
& ~(MPOL_MF_MOVE
|MPOL_MF_MOVE_ALL
))
918 if ((flags
& MPOL_MF_MOVE_ALL
) && !capable(CAP_SYS_NICE
))
921 /* Find the mm_struct */
922 read_lock(&tasklist_lock
);
923 task
= pid
? find_task_by_vpid(pid
) : current
;
925 read_unlock(&tasklist_lock
);
928 mm
= get_task_mm(task
);
929 read_unlock(&tasklist_lock
);
935 * Check if this process has the right to modify the specified
936 * process. The right exists if the process has administrative
937 * capabilities, superuser privileges or the same
938 * userid as the target process.
940 if ((current
->euid
!= task
->suid
) && (current
->euid
!= task
->uid
) &&
941 (current
->uid
!= task
->suid
) && (current
->uid
!= task
->uid
) &&
942 !capable(CAP_SYS_NICE
)) {
947 err
= security_task_movememory(task
);
952 task_nodes
= cpuset_mems_allowed(task
);
954 /* Limit nr_pages so that the multiplication may not overflow */
955 if (nr_pages
>= ULONG_MAX
/ sizeof(struct page_to_node
) - 1) {
960 pm
= vmalloc((nr_pages
+ 1) * sizeof(struct page_to_node
));
967 * Get parameters from user space and initialize the pm
968 * array. Return various errors if the user did something wrong.
970 for (i
= 0; i
< nr_pages
; i
++) {
971 const void __user
*p
;
974 if (get_user(p
, pages
+ i
))
977 pm
[i
].addr
= (unsigned long)p
;
981 if (get_user(node
, nodes
+ i
))
985 if (!node_state(node
, N_HIGH_MEMORY
))
989 if (!node_isset(node
, task_nodes
))
994 pm
[i
].node
= 0; /* anything to not match MAX_NUMNODES */
997 pm
[nr_pages
].node
= MAX_NUMNODES
;
1000 err
= do_move_pages(mm
, pm
, flags
& MPOL_MF_MOVE_ALL
);
1002 err
= do_pages_stat(mm
, pm
);
1005 /* Return status information */
1006 for (i
= 0; i
< nr_pages
; i
++)
1007 if (put_user(pm
[i
].status
, status
+ i
))
1019 * Call migration functions in the vma_ops that may prepare
1020 * memory in a vm for migration. migration functions may perform
1021 * the migration for vmas that do not have an underlying page struct.
1023 int migrate_vmas(struct mm_struct
*mm
, const nodemask_t
*to
,
1024 const nodemask_t
*from
, unsigned long flags
)
1026 struct vm_area_struct
*vma
;
1029 for(vma
= mm
->mmap
; vma
->vm_next
&& !err
; vma
= vma
->vm_next
) {
1030 if (vma
->vm_ops
&& vma
->vm_ops
->migrate
) {
1031 err
= vma
->vm_ops
->migrate(vma
, to
, from
, flags
);