revoke-core-code
[linux-2.6/linux-trees-mm.git] / mm / migrate.c
blob4ee4ccacf986e4640d402cc02b1590827379e568
1 /*
2 * Memory Migration functionality - linux/mm/migration.c
4 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6 * Page migration was first developed in the context of the memory hotplug
7 * project. The main authors of the migration code are:
9 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
10 * Hirokazu Takahashi <taka@valinux.co.jp>
11 * Dave Hansen <haveblue@us.ibm.com>
12 * Christoph Lameter <clameter@sgi.com>
15 #include <linux/migrate.h>
16 #include <linux/module.h>
17 #include <linux/swap.h>
18 #include <linux/swapops.h>
19 #include <linux/pagemap.h>
20 #include <linux/buffer_head.h>
21 #include <linux/mm_inline.h>
22 #include <linux/nsproxy.h>
23 #include <linux/pagevec.h>
24 #include <linux/rmap.h>
25 #include <linux/topology.h>
26 #include <linux/cpu.h>
27 #include <linux/cpuset.h>
28 #include <linux/writeback.h>
29 #include <linux/mempolicy.h>
30 #include <linux/vmalloc.h>
31 #include <linux/security.h>
33 #include "internal.h"
35 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
38 * Isolate one page from the LRU lists. If successful put it onto
39 * the indicated list with elevated page count.
41 * Result:
42 * -EBUSY: page not on LRU list
43 * 0: page removed from LRU list and added to the specified list.
45 int isolate_lru_page(struct page *page, struct list_head *pagelist)
47 int ret = -EBUSY;
49 if (PageLRU(page)) {
50 struct zone *zone = page_zone(page);
52 spin_lock_irq(&zone->lru_lock);
53 if (PageLRU(page) && get_page_unless_zero(page)) {
54 ret = 0;
55 ClearPageLRU(page);
56 if (PageActive(page))
57 del_page_from_active_list(zone, page);
58 else
59 del_page_from_inactive_list(zone, page);
60 list_add_tail(&page->lru, pagelist);
62 spin_unlock_irq(&zone->lru_lock);
64 return ret;
68 * migrate_prep() needs to be called before we start compiling a list of pages
69 * to be migrated using isolate_lru_page().
71 int migrate_prep(void)
74 * Clear the LRU lists so pages can be isolated.
75 * Note that pages may be moved off the LRU after we have
76 * drained them. Those pages will fail to migrate like other
77 * pages that may be busy.
79 lru_add_drain_all();
81 return 0;
84 static inline void move_to_lru(struct page *page)
86 if (PageActive(page)) {
88 * lru_cache_add_active checks that
89 * the PG_active bit is off.
91 ClearPageActive(page);
92 lru_cache_add_active(page);
93 } else {
94 lru_cache_add(page);
96 put_page(page);
100 * Add isolated pages on the list back to the LRU.
102 * returns the number of pages put back.
104 int putback_lru_pages(struct list_head *l)
106 struct page *page;
107 struct page *page2;
108 int count = 0;
110 list_for_each_entry_safe(page, page2, l, lru) {
111 list_del(&page->lru);
112 move_to_lru(page);
113 count++;
115 return count;
119 * Restore a potential migration pte to a working pte entry
121 static void remove_migration_pte(struct vm_area_struct *vma,
122 struct page *old, struct page *new)
124 struct mm_struct *mm = vma->vm_mm;
125 swp_entry_t entry;
126 pgd_t *pgd;
127 pud_t *pud;
128 pmd_t *pmd;
129 pte_t *ptep, pte;
130 spinlock_t *ptl;
131 unsigned long addr = page_address_in_vma(new, vma);
133 if (addr == -EFAULT)
134 return;
136 pgd = pgd_offset(mm, addr);
137 if (!pgd_present(*pgd))
138 return;
140 pud = pud_offset(pgd, addr);
141 if (!pud_present(*pud))
142 return;
144 pmd = pmd_offset(pud, addr);
145 if (!pmd_present(*pmd))
146 return;
148 ptep = pte_offset_map(pmd, addr);
150 if (!is_swap_pte(*ptep)) {
151 pte_unmap(ptep);
152 return;
155 ptl = pte_lockptr(mm, pmd);
156 spin_lock(ptl);
157 pte = *ptep;
158 if (!is_swap_pte(pte))
159 goto out;
161 entry = pte_to_swp_entry(pte);
163 if (!is_migration_entry(entry) || migration_entry_to_page(entry) != old)
164 goto out;
166 get_page(new);
167 pte = pte_mkold(mk_pte(new, vma->vm_page_prot));
168 if (is_write_migration_entry(entry))
169 pte = pte_mkwrite(pte);
170 flush_cache_page(vma, addr, pte_pfn(pte));
171 set_pte_at(mm, addr, ptep, pte);
173 if (PageAnon(new))
174 page_add_anon_rmap(new, vma, addr);
175 else
176 page_add_file_rmap(new);
178 /* No need to invalidate - it was non-present before */
179 update_mmu_cache(vma, addr, pte);
181 out:
182 pte_unmap_unlock(ptep, ptl);
186 * Note that remove_file_migration_ptes will only work on regular mappings,
187 * Nonlinear mappings do not use migration entries.
189 static void remove_file_migration_ptes(struct page *old, struct page *new)
191 struct vm_area_struct *vma;
192 struct address_space *mapping = page_mapping(new);
193 struct prio_tree_iter iter;
194 pgoff_t pgoff = new->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
196 if (!mapping)
197 return;
199 spin_lock(&mapping->i_mmap_lock);
201 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff)
202 remove_migration_pte(vma, old, new);
204 spin_unlock(&mapping->i_mmap_lock);
208 * Must hold mmap_sem lock on at least one of the vmas containing
209 * the page so that the anon_vma cannot vanish.
211 static void remove_anon_migration_ptes(struct page *old, struct page *new)
213 struct anon_vma *anon_vma;
214 struct vm_area_struct *vma;
215 unsigned long mapping;
217 mapping = (unsigned long)new->mapping;
219 if (!mapping || (mapping & PAGE_MAPPING_ANON) == 0)
220 return;
223 * We hold the mmap_sem lock. So no need to call page_lock_anon_vma.
225 anon_vma = (struct anon_vma *) (mapping - PAGE_MAPPING_ANON);
226 spin_lock(&anon_vma->lock);
228 list_for_each_entry(vma, &anon_vma->head, anon_vma_node)
229 remove_migration_pte(vma, old, new);
231 spin_unlock(&anon_vma->lock);
235 * Get rid of all migration entries and replace them by
236 * references to the indicated page.
238 static void remove_migration_ptes(struct page *old, struct page *new)
240 if (PageAnon(new))
241 remove_anon_migration_ptes(old, new);
242 else
243 remove_file_migration_ptes(old, new);
247 * Something used the pte of a page under migration. We need to
248 * get to the page and wait until migration is finished.
249 * When we return from this function the fault will be retried.
251 * This function is called from do_swap_page().
253 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
254 unsigned long address)
256 pte_t *ptep, pte;
257 spinlock_t *ptl;
258 swp_entry_t entry;
259 struct page *page;
261 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
262 pte = *ptep;
263 if (!is_swap_pte(pte))
264 goto out;
266 entry = pte_to_swp_entry(pte);
267 if (!is_migration_entry(entry))
268 goto out;
270 page = migration_entry_to_page(entry);
272 get_page(page);
273 pte_unmap_unlock(ptep, ptl);
274 wait_on_page_locked(page);
275 put_page(page);
276 return;
277 out:
278 pte_unmap_unlock(ptep, ptl);
282 * Replace the page in the mapping.
284 * The number of remaining references must be:
285 * 1 for anonymous pages without a mapping
286 * 2 for pages with a mapping
287 * 3 for pages with a mapping and PagePrivate set.
289 static int migrate_page_move_mapping(struct address_space *mapping,
290 struct page *newpage, struct page *page)
292 void **pslot;
294 if (!mapping) {
295 /* Anonymous page without mapping */
296 if (page_count(page) != 1)
297 return -EAGAIN;
298 return 0;
301 write_lock_irq(&mapping->tree_lock);
303 pslot = radix_tree_lookup_slot(&mapping->page_tree,
304 page_index(page));
306 if (page_count(page) != 2 + !!PagePrivate(page) ||
307 (struct page *)radix_tree_deref_slot(pslot) != page) {
308 write_unlock_irq(&mapping->tree_lock);
309 return -EAGAIN;
313 * Now we know that no one else is looking at the page.
315 get_page(newpage); /* add cache reference */
316 #ifdef CONFIG_SWAP
317 if (PageSwapCache(page)) {
318 SetPageSwapCache(newpage);
319 set_page_private(newpage, page_private(page));
321 #endif
323 radix_tree_replace_slot(pslot, newpage);
326 * Drop cache reference from old page.
327 * We know this isn't the last reference.
329 __put_page(page);
332 * If moved to a different zone then also account
333 * the page for that zone. Other VM counters will be
334 * taken care of when we establish references to the
335 * new page and drop references to the old page.
337 * Note that anonymous pages are accounted for
338 * via NR_FILE_PAGES and NR_ANON_PAGES if they
339 * are mapped to swap space.
341 __dec_zone_page_state(page, NR_FILE_PAGES);
342 __inc_zone_page_state(newpage, NR_FILE_PAGES);
344 write_unlock_irq(&mapping->tree_lock);
346 return 0;
350 * Copy the page to its new location
352 static void migrate_page_copy(struct page *newpage, struct page *page)
354 copy_highpage(newpage, page);
356 if (PageError(page))
357 SetPageError(newpage);
358 if (PageReferenced(page))
359 SetPageReferenced(newpage);
360 if (PageUptodate(page))
361 SetPageUptodate(newpage);
362 if (PageActive(page))
363 SetPageActive(newpage);
364 if (PageChecked(page))
365 SetPageChecked(newpage);
366 if (PageMappedToDisk(page))
367 SetPageMappedToDisk(newpage);
369 if (PageDirty(page)) {
370 clear_page_dirty_for_io(page);
371 set_page_dirty(newpage);
374 #ifdef CONFIG_SWAP
375 ClearPageSwapCache(page);
376 #endif
377 ClearPageActive(page);
378 ClearPagePrivate(page);
379 set_page_private(page, 0);
380 page->mapping = NULL;
383 * If any waiters have accumulated on the new page then
384 * wake them up.
386 if (PageWriteback(newpage))
387 end_page_writeback(newpage);
390 /************************************************************
391 * Migration functions
392 ***********************************************************/
394 /* Always fail migration. Used for mappings that are not movable */
395 int fail_migrate_page(struct address_space *mapping,
396 struct page *newpage, struct page *page)
398 return -EIO;
400 EXPORT_SYMBOL(fail_migrate_page);
403 * Common logic to directly migrate a single page suitable for
404 * pages that do not use PagePrivate.
406 * Pages are locked upon entry and exit.
408 int migrate_page(struct address_space *mapping,
409 struct page *newpage, struct page *page)
411 int rc;
413 BUG_ON(PageWriteback(page)); /* Writeback must be complete */
415 rc = migrate_page_move_mapping(mapping, newpage, page);
417 if (rc)
418 return rc;
420 migrate_page_copy(newpage, page);
421 return 0;
423 EXPORT_SYMBOL(migrate_page);
425 #ifdef CONFIG_BLOCK
427 * Migration function for pages with buffers. This function can only be used
428 * if the underlying filesystem guarantees that no other references to "page"
429 * exist.
431 int buffer_migrate_page(struct address_space *mapping,
432 struct page *newpage, struct page *page)
434 struct buffer_head *bh, *head;
435 int rc;
437 if (!page_has_buffers(page))
438 return migrate_page(mapping, newpage, page);
440 head = page_buffers(page);
442 rc = migrate_page_move_mapping(mapping, newpage, page);
444 if (rc)
445 return rc;
447 bh = head;
448 do {
449 get_bh(bh);
450 lock_buffer(bh);
451 bh = bh->b_this_page;
453 } while (bh != head);
455 ClearPagePrivate(page);
456 set_page_private(newpage, page_private(page));
457 set_page_private(page, 0);
458 put_page(page);
459 get_page(newpage);
461 bh = head;
462 do {
463 set_bh_page(bh, newpage, bh_offset(bh));
464 bh = bh->b_this_page;
466 } while (bh != head);
468 SetPagePrivate(newpage);
470 migrate_page_copy(newpage, page);
472 bh = head;
473 do {
474 unlock_buffer(bh);
475 put_bh(bh);
476 bh = bh->b_this_page;
478 } while (bh != head);
480 return 0;
482 EXPORT_SYMBOL(buffer_migrate_page);
483 #endif
486 * Writeback a page to clean the dirty state
488 static int writeout(struct address_space *mapping, struct page *page)
490 struct writeback_control wbc = {
491 .sync_mode = WB_SYNC_NONE,
492 .nr_to_write = 1,
493 .range_start = 0,
494 .range_end = LLONG_MAX,
495 .nonblocking = 1,
496 .for_reclaim = 1
498 int rc;
500 if (!mapping->a_ops->writepage)
501 /* No write method for the address space */
502 return -EINVAL;
504 if (!clear_page_dirty_for_io(page))
505 /* Someone else already triggered a write */
506 return -EAGAIN;
509 * A dirty page may imply that the underlying filesystem has
510 * the page on some queue. So the page must be clean for
511 * migration. Writeout may mean we loose the lock and the
512 * page state is no longer what we checked for earlier.
513 * At this point we know that the migration attempt cannot
514 * be successful.
516 remove_migration_ptes(page, page);
518 rc = mapping->a_ops->writepage(page, &wbc);
519 if (rc < 0)
520 /* I/O Error writing */
521 return -EIO;
523 if (rc != AOP_WRITEPAGE_ACTIVATE)
524 /* unlocked. Relock */
525 lock_page(page);
527 return -EAGAIN;
531 * Default handling if a filesystem does not provide a migration function.
533 static int fallback_migrate_page(struct address_space *mapping,
534 struct page *newpage, struct page *page)
536 if (PageDirty(page))
537 return writeout(mapping, page);
540 * Buffers may be managed in a filesystem specific way.
541 * We must have no buffers or drop them.
543 if (PagePrivate(page) &&
544 !try_to_release_page(page, GFP_KERNEL))
545 return -EAGAIN;
547 return migrate_page(mapping, newpage, page);
551 * Move a page to a newly allocated page
552 * The page is locked and all ptes have been successfully removed.
554 * The new page will have replaced the old page if this function
555 * is successful.
557 static int move_to_new_page(struct page *newpage, struct page *page)
559 struct address_space *mapping;
560 int rc;
563 * Block others from accessing the page when we get around to
564 * establishing additional references. We are the only one
565 * holding a reference to the new page at this point.
567 if (TestSetPageLocked(newpage))
568 BUG();
570 /* Prepare mapping for the new page.*/
571 newpage->index = page->index;
572 newpage->mapping = page->mapping;
574 mapping = page_mapping(page);
575 if (!mapping)
576 rc = migrate_page(mapping, newpage, page);
577 else if (mapping->a_ops->migratepage)
579 * Most pages have a mapping and most filesystems
580 * should provide a migration function. Anonymous
581 * pages are part of swap space which also has its
582 * own migration function. This is the most common
583 * path for page migration.
585 rc = mapping->a_ops->migratepage(mapping,
586 newpage, page);
587 else
588 rc = fallback_migrate_page(mapping, newpage, page);
590 if (!rc)
591 remove_migration_ptes(page, newpage);
592 else
593 newpage->mapping = NULL;
595 unlock_page(newpage);
597 return rc;
601 * Obtain the lock on page, remove all ptes and migrate the page
602 * to the newly allocated page in newpage.
604 static int unmap_and_move(new_page_t get_new_page, unsigned long private,
605 struct page *page, int force)
607 int rc = 0;
608 int *result = NULL;
609 struct page *newpage = get_new_page(page, private, &result);
610 int rcu_locked = 0;
612 if (!newpage)
613 return -ENOMEM;
615 if (page_count(page) == 1)
616 /* page was freed from under us. So we are done. */
617 goto move_newpage;
619 rc = -EAGAIN;
620 if (TestSetPageLocked(page)) {
621 if (!force)
622 goto move_newpage;
623 lock_page(page);
626 if (PageWriteback(page)) {
627 if (!force)
628 goto unlock;
629 wait_on_page_writeback(page);
632 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
633 * we cannot notice that anon_vma is freed while we migrates a page.
634 * This rcu_read_lock() delays freeing anon_vma pointer until the end
635 * of migration. File cache pages are no problem because of page_lock()
636 * File Caches may use write_page() or lock_page() in migration, then,
637 * just care Anon page here.
639 if (PageAnon(page)) {
640 rcu_read_lock();
641 rcu_locked = 1;
644 * This is a corner case handling.
645 * When a new swap-cache is read into, it is linked to LRU
646 * and treated as swapcache but has no rmap yet.
647 * Calling try_to_unmap() against a page->mapping==NULL page is
648 * BUG. So handle it here.
650 if (!page->mapping)
651 goto rcu_unlock;
652 /* Establish migration ptes or remove ptes */
653 try_to_unmap(page, 1);
655 if (!page_mapped(page))
656 rc = move_to_new_page(newpage, page);
658 if (rc)
659 remove_migration_ptes(page, page);
660 rcu_unlock:
661 if (rcu_locked)
662 rcu_read_unlock();
664 unlock:
666 unlock_page(page);
668 if (rc != -EAGAIN) {
670 * A page that has been migrated has all references
671 * removed and will be freed. A page that has not been
672 * migrated will have kepts its references and be
673 * restored.
675 list_del(&page->lru);
676 move_to_lru(page);
679 move_newpage:
681 * Move the new page to the LRU. If migration was not successful
682 * then this will free the page.
684 move_to_lru(newpage);
685 if (result) {
686 if (rc)
687 *result = rc;
688 else
689 *result = page_to_nid(newpage);
691 return rc;
695 * migrate_pages
697 * The function takes one list of pages to migrate and a function
698 * that determines from the page to be migrated and the private data
699 * the target of the move and allocates the page.
701 * The function returns after 10 attempts or if no pages
702 * are movable anymore because to has become empty
703 * or no retryable pages exist anymore. All pages will be
704 * returned to the LRU or freed.
706 * Return: Number of pages not migrated or error code.
708 int migrate_pages(struct list_head *from,
709 new_page_t get_new_page, unsigned long private)
711 int retry = 1;
712 int nr_failed = 0;
713 int pass = 0;
714 struct page *page;
715 struct page *page2;
716 int swapwrite = current->flags & PF_SWAPWRITE;
717 int rc;
719 if (!swapwrite)
720 current->flags |= PF_SWAPWRITE;
722 for(pass = 0; pass < 10 && retry; pass++) {
723 retry = 0;
725 list_for_each_entry_safe(page, page2, from, lru) {
726 cond_resched();
728 rc = unmap_and_move(get_new_page, private,
729 page, pass > 2);
731 switch(rc) {
732 case -ENOMEM:
733 goto out;
734 case -EAGAIN:
735 retry++;
736 break;
737 case 0:
738 break;
739 default:
740 /* Permanent failure */
741 nr_failed++;
742 break;
746 rc = 0;
747 out:
748 if (!swapwrite)
749 current->flags &= ~PF_SWAPWRITE;
751 putback_lru_pages(from);
753 if (rc)
754 return rc;
756 return nr_failed + retry;
759 #ifdef CONFIG_NUMA
761 * Move a list of individual pages
763 struct page_to_node {
764 unsigned long addr;
765 struct page *page;
766 int node;
767 int status;
770 static struct page *new_page_node(struct page *p, unsigned long private,
771 int **result)
773 struct page_to_node *pm = (struct page_to_node *)private;
775 while (pm->node != MAX_NUMNODES && pm->page != p)
776 pm++;
778 if (pm->node == MAX_NUMNODES)
779 return NULL;
781 *result = &pm->status;
783 return alloc_pages_node(pm->node,
784 GFP_HIGHUSER_MOVABLE | GFP_THISNODE, 0);
788 * Move a set of pages as indicated in the pm array. The addr
789 * field must be set to the virtual address of the page to be moved
790 * and the node number must contain a valid target node.
792 static int do_move_pages(struct mm_struct *mm, struct page_to_node *pm,
793 int migrate_all)
795 int err;
796 struct page_to_node *pp;
797 LIST_HEAD(pagelist);
799 down_read(&mm->mmap_sem);
802 * Build a list of pages to migrate
804 migrate_prep();
805 for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
806 struct vm_area_struct *vma;
807 struct page *page;
810 * A valid page pointer that will not match any of the
811 * pages that will be moved.
813 pp->page = ZERO_PAGE(0);
815 err = -EFAULT;
816 vma = find_vma(mm, pp->addr);
817 if (!vma || !vma_migratable(vma))
818 goto set_status;
820 page = follow_page(vma, pp->addr, FOLL_GET);
821 err = -ENOENT;
822 if (!page)
823 goto set_status;
825 if (PageReserved(page)) /* Check for zero page */
826 goto put_and_set;
828 pp->page = page;
829 err = page_to_nid(page);
831 if (err == pp->node)
833 * Node already in the right place
835 goto put_and_set;
837 err = -EACCES;
838 if (page_mapcount(page) > 1 &&
839 !migrate_all)
840 goto put_and_set;
842 err = isolate_lru_page(page, &pagelist);
843 put_and_set:
845 * Either remove the duplicate refcount from
846 * isolate_lru_page() or drop the page ref if it was
847 * not isolated.
849 put_page(page);
850 set_status:
851 pp->status = err;
854 if (!list_empty(&pagelist))
855 err = migrate_pages(&pagelist, new_page_node,
856 (unsigned long)pm);
857 else
858 err = -ENOENT;
860 up_read(&mm->mmap_sem);
861 return err;
865 * Determine the nodes of a list of pages. The addr in the pm array
866 * must have been set to the virtual address of which we want to determine
867 * the node number.
869 static int do_pages_stat(struct mm_struct *mm, struct page_to_node *pm)
871 down_read(&mm->mmap_sem);
873 for ( ; pm->node != MAX_NUMNODES; pm++) {
874 struct vm_area_struct *vma;
875 struct page *page;
876 int err;
878 err = -EFAULT;
879 vma = find_vma(mm, pm->addr);
880 if (!vma)
881 goto set_status;
883 page = follow_page(vma, pm->addr, 0);
884 err = -ENOENT;
885 /* Use PageReserved to check for zero page */
886 if (!page || PageReserved(page))
887 goto set_status;
889 err = page_to_nid(page);
890 set_status:
891 pm->status = err;
894 up_read(&mm->mmap_sem);
895 return 0;
899 * Move a list of pages in the address space of the currently executing
900 * process.
902 asmlinkage long sys_move_pages(pid_t pid, unsigned long nr_pages,
903 const void __user * __user *pages,
904 const int __user *nodes,
905 int __user *status, int flags)
907 int err = 0;
908 int i;
909 struct task_struct *task;
910 nodemask_t task_nodes;
911 struct mm_struct *mm;
912 struct page_to_node *pm = NULL;
914 /* Check flags */
915 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
916 return -EINVAL;
918 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
919 return -EPERM;
921 /* Find the mm_struct */
922 read_lock(&tasklist_lock);
923 task = pid ? find_task_by_vpid(pid) : current;
924 if (!task) {
925 read_unlock(&tasklist_lock);
926 return -ESRCH;
928 mm = get_task_mm(task);
929 read_unlock(&tasklist_lock);
931 if (!mm)
932 return -EINVAL;
935 * Check if this process has the right to modify the specified
936 * process. The right exists if the process has administrative
937 * capabilities, superuser privileges or the same
938 * userid as the target process.
940 if ((current->euid != task->suid) && (current->euid != task->uid) &&
941 (current->uid != task->suid) && (current->uid != task->uid) &&
942 !capable(CAP_SYS_NICE)) {
943 err = -EPERM;
944 goto out2;
947 err = security_task_movememory(task);
948 if (err)
949 goto out2;
952 task_nodes = cpuset_mems_allowed(task);
954 /* Limit nr_pages so that the multiplication may not overflow */
955 if (nr_pages >= ULONG_MAX / sizeof(struct page_to_node) - 1) {
956 err = -E2BIG;
957 goto out2;
960 pm = vmalloc((nr_pages + 1) * sizeof(struct page_to_node));
961 if (!pm) {
962 err = -ENOMEM;
963 goto out2;
967 * Get parameters from user space and initialize the pm
968 * array. Return various errors if the user did something wrong.
970 for (i = 0; i < nr_pages; i++) {
971 const void __user *p;
973 err = -EFAULT;
974 if (get_user(p, pages + i))
975 goto out;
977 pm[i].addr = (unsigned long)p;
978 if (nodes) {
979 int node;
981 if (get_user(node, nodes + i))
982 goto out;
984 err = -ENODEV;
985 if (!node_state(node, N_HIGH_MEMORY))
986 goto out;
988 err = -EACCES;
989 if (!node_isset(node, task_nodes))
990 goto out;
992 pm[i].node = node;
993 } else
994 pm[i].node = 0; /* anything to not match MAX_NUMNODES */
996 /* End marker */
997 pm[nr_pages].node = MAX_NUMNODES;
999 if (nodes)
1000 err = do_move_pages(mm, pm, flags & MPOL_MF_MOVE_ALL);
1001 else
1002 err = do_pages_stat(mm, pm);
1004 if (err >= 0)
1005 /* Return status information */
1006 for (i = 0; i < nr_pages; i++)
1007 if (put_user(pm[i].status, status + i))
1008 err = -EFAULT;
1010 out:
1011 vfree(pm);
1012 out2:
1013 mmput(mm);
1014 return err;
1016 #endif
1019 * Call migration functions in the vma_ops that may prepare
1020 * memory in a vm for migration. migration functions may perform
1021 * the migration for vmas that do not have an underlying page struct.
1023 int migrate_vmas(struct mm_struct *mm, const nodemask_t *to,
1024 const nodemask_t *from, unsigned long flags)
1026 struct vm_area_struct *vma;
1027 int err = 0;
1029 for(vma = mm->mmap; vma->vm_next && !err; vma = vma->vm_next) {
1030 if (vma->vm_ops && vma->vm_ops->migrate) {
1031 err = vma->vm_ops->migrate(vma, to, from, flags);
1032 if (err)
1033 break;
1036 return err;