2 * Copyright (C) 2003 Christophe Saout <christophe@saout.de>
3 * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org>
4 * Copyright (C) 2006-2007 Red Hat, Inc. All rights reserved.
6 * This file is released under the GPL.
10 #include <linux/module.h>
11 #include <linux/init.h>
12 #include <linux/kernel.h>
13 #include <linux/bio.h>
14 #include <linux/blkdev.h>
15 #include <linux/mempool.h>
16 #include <linux/slab.h>
17 #include <linux/crypto.h>
18 #include <linux/workqueue.h>
19 #include <linux/backing-dev.h>
20 #include <asm/atomic.h>
21 #include <linux/scatterlist.h>
23 #include <asm/unaligned.h>
27 #define DM_MSG_PREFIX "crypt"
28 #define MESG_STR(x) x, sizeof(x)
31 * context holding the current state of a multi-part conversion
33 struct convert_context
{
36 unsigned int offset_in
;
37 unsigned int offset_out
;
44 * per bio private data
47 struct dm_target
*target
;
49 struct work_struct work
;
51 struct convert_context ctx
;
60 struct crypt_iv_operations
{
61 int (*ctr
)(struct crypt_config
*cc
, struct dm_target
*ti
,
63 void (*dtr
)(struct crypt_config
*cc
);
64 const char *(*status
)(struct crypt_config
*cc
);
65 int (*generator
)(struct crypt_config
*cc
, u8
*iv
, sector_t sector
);
69 * Crypt: maps a linear range of a block device
70 * and encrypts / decrypts at the same time.
72 enum flags
{ DM_CRYPT_SUSPENDED
, DM_CRYPT_KEY_VALID
};
78 * pool for per bio private data and
79 * for encryption buffer pages
85 struct workqueue_struct
*io_queue
;
86 struct workqueue_struct
*crypt_queue
;
90 struct crypt_iv_operations
*iv_gen_ops
;
93 struct crypto_cipher
*essiv_tfm
;
99 char cipher
[CRYPTO_MAX_ALG_NAME
];
100 char chainmode
[CRYPTO_MAX_ALG_NAME
];
101 struct crypto_blkcipher
*tfm
;
103 unsigned int key_size
;
108 #define MIN_POOL_PAGES 32
109 #define MIN_BIO_PAGES 8
111 static struct kmem_cache
*_crypt_io_pool
;
113 static void clone_init(struct dm_crypt_io
*, struct bio
*);
116 * Different IV generation algorithms:
118 * plain: the initial vector is the 32-bit little-endian version of the sector
119 * number, padded with zeros if necessary.
121 * essiv: "encrypted sector|salt initial vector", the sector number is
122 * encrypted with the bulk cipher using a salt as key. The salt
123 * should be derived from the bulk cipher's key via hashing.
125 * benbi: the 64-bit "big-endian 'narrow block'-count", starting at 1
126 * (needed for LRW-32-AES and possible other narrow block modes)
128 * null: the initial vector is always zero. Provides compatibility with
129 * obsolete loop_fish2 devices. Do not use for new devices.
131 * plumb: unimplemented, see:
132 * http://article.gmane.org/gmane.linux.kernel.device-mapper.dm-crypt/454
135 static int crypt_iv_plain_gen(struct crypt_config
*cc
, u8
*iv
, sector_t sector
)
137 memset(iv
, 0, cc
->iv_size
);
138 *(u32
*)iv
= cpu_to_le32(sector
& 0xffffffff);
143 static int crypt_iv_essiv_ctr(struct crypt_config
*cc
, struct dm_target
*ti
,
146 struct crypto_cipher
*essiv_tfm
;
147 struct crypto_hash
*hash_tfm
;
148 struct hash_desc desc
;
149 struct scatterlist sg
;
150 unsigned int saltsize
;
155 ti
->error
= "Digest algorithm missing for ESSIV mode";
159 /* Hash the cipher key with the given hash algorithm */
160 hash_tfm
= crypto_alloc_hash(opts
, 0, CRYPTO_ALG_ASYNC
);
161 if (IS_ERR(hash_tfm
)) {
162 ti
->error
= "Error initializing ESSIV hash";
163 return PTR_ERR(hash_tfm
);
166 saltsize
= crypto_hash_digestsize(hash_tfm
);
167 salt
= kmalloc(saltsize
, GFP_KERNEL
);
169 ti
->error
= "Error kmallocing salt storage in ESSIV";
170 crypto_free_hash(hash_tfm
);
174 sg_init_one(&sg
, cc
->key
, cc
->key_size
);
176 desc
.flags
= CRYPTO_TFM_REQ_MAY_SLEEP
;
177 err
= crypto_hash_digest(&desc
, &sg
, cc
->key_size
, salt
);
178 crypto_free_hash(hash_tfm
);
181 ti
->error
= "Error calculating hash in ESSIV";
186 /* Setup the essiv_tfm with the given salt */
187 essiv_tfm
= crypto_alloc_cipher(cc
->cipher
, 0, CRYPTO_ALG_ASYNC
);
188 if (IS_ERR(essiv_tfm
)) {
189 ti
->error
= "Error allocating crypto tfm for ESSIV";
191 return PTR_ERR(essiv_tfm
);
193 if (crypto_cipher_blocksize(essiv_tfm
) !=
194 crypto_blkcipher_ivsize(cc
->tfm
)) {
195 ti
->error
= "Block size of ESSIV cipher does "
196 "not match IV size of block cipher";
197 crypto_free_cipher(essiv_tfm
);
201 err
= crypto_cipher_setkey(essiv_tfm
, salt
, saltsize
);
203 ti
->error
= "Failed to set key for ESSIV cipher";
204 crypto_free_cipher(essiv_tfm
);
210 cc
->iv_gen_private
.essiv_tfm
= essiv_tfm
;
214 static void crypt_iv_essiv_dtr(struct crypt_config
*cc
)
216 crypto_free_cipher(cc
->iv_gen_private
.essiv_tfm
);
217 cc
->iv_gen_private
.essiv_tfm
= NULL
;
220 static int crypt_iv_essiv_gen(struct crypt_config
*cc
, u8
*iv
, sector_t sector
)
222 memset(iv
, 0, cc
->iv_size
);
223 *(u64
*)iv
= cpu_to_le64(sector
);
224 crypto_cipher_encrypt_one(cc
->iv_gen_private
.essiv_tfm
, iv
, iv
);
228 static int crypt_iv_benbi_ctr(struct crypt_config
*cc
, struct dm_target
*ti
,
231 unsigned int bs
= crypto_blkcipher_blocksize(cc
->tfm
);
234 /* we need to calculate how far we must shift the sector count
235 * to get the cipher block count, we use this shift in _gen */
237 if (1 << log
!= bs
) {
238 ti
->error
= "cypher blocksize is not a power of 2";
243 ti
->error
= "cypher blocksize is > 512";
247 cc
->iv_gen_private
.benbi_shift
= 9 - log
;
252 static void crypt_iv_benbi_dtr(struct crypt_config
*cc
)
256 static int crypt_iv_benbi_gen(struct crypt_config
*cc
, u8
*iv
, sector_t sector
)
260 memset(iv
, 0, cc
->iv_size
- sizeof(u64
)); /* rest is cleared below */
262 val
= cpu_to_be64(((u64
)sector
<< cc
->iv_gen_private
.benbi_shift
) + 1);
263 put_unaligned(val
, (__be64
*)(iv
+ cc
->iv_size
- sizeof(u64
)));
268 static int crypt_iv_null_gen(struct crypt_config
*cc
, u8
*iv
, sector_t sector
)
270 memset(iv
, 0, cc
->iv_size
);
275 static struct crypt_iv_operations crypt_iv_plain_ops
= {
276 .generator
= crypt_iv_plain_gen
279 static struct crypt_iv_operations crypt_iv_essiv_ops
= {
280 .ctr
= crypt_iv_essiv_ctr
,
281 .dtr
= crypt_iv_essiv_dtr
,
282 .generator
= crypt_iv_essiv_gen
285 static struct crypt_iv_operations crypt_iv_benbi_ops
= {
286 .ctr
= crypt_iv_benbi_ctr
,
287 .dtr
= crypt_iv_benbi_dtr
,
288 .generator
= crypt_iv_benbi_gen
291 static struct crypt_iv_operations crypt_iv_null_ops
= {
292 .generator
= crypt_iv_null_gen
295 static void crypt_read_io_done(struct dm_crypt_io
*io
, int error
);
296 static void crypt_write_io_done(struct dm_crypt_io
*io
, int error
);
299 crypt_convert_scatterlist(struct crypt_config
*cc
, struct scatterlist
*out
,
300 struct scatterlist
*in
, unsigned int length
,
301 int write
, sector_t sector
)
303 u8 iv
[cc
->iv_size
] __attribute__ ((aligned(__alignof__(u64
))));
304 struct blkcipher_desc desc
= {
307 .flags
= CRYPTO_TFM_REQ_MAY_SLEEP
,
311 if (cc
->iv_gen_ops
) {
312 r
= cc
->iv_gen_ops
->generator(cc
, iv
, sector
);
317 r
= crypto_blkcipher_encrypt_iv(&desc
, out
, in
, length
);
319 r
= crypto_blkcipher_decrypt_iv(&desc
, out
, in
, length
);
322 r
= crypto_blkcipher_encrypt(&desc
, out
, in
, length
);
324 r
= crypto_blkcipher_decrypt(&desc
, out
, in
, length
);
330 static void crypt_convert_init(struct crypt_config
*cc
,
331 struct convert_context
*ctx
,
332 struct bio
*bio_out
, struct bio
*bio_in
,
335 ctx
->bio_in
= bio_in
;
336 ctx
->bio_out
= bio_out
;
339 ctx
->idx_in
= bio_in
? bio_in
->bi_idx
: 0;
340 ctx
->idx_out
= bio_out
? bio_out
->bi_idx
: 0;
341 ctx
->sector
= sector
+ cc
->iv_offset
;
345 * Encrypt / decrypt data from one bio to another one (can be the same one)
347 static int crypt_convert(struct crypt_config
*cc
,
348 struct convert_context
*ctx
)
352 while(ctx
->idx_in
< ctx
->bio_in
->bi_vcnt
&&
353 ctx
->idx_out
< ctx
->bio_out
->bi_vcnt
) {
354 struct bio_vec
*bv_in
= bio_iovec_idx(ctx
->bio_in
, ctx
->idx_in
);
355 struct bio_vec
*bv_out
= bio_iovec_idx(ctx
->bio_out
, ctx
->idx_out
);
356 struct scatterlist sg_in
, sg_out
;
358 sg_init_table(&sg_in
, 1);
359 sg_set_page(&sg_in
, bv_in
->bv_page
, 1 << SECTOR_SHIFT
, bv_in
->bv_offset
+ ctx
->offset_in
);
361 sg_init_table(&sg_out
, 1);
362 sg_set_page(&sg_out
, bv_out
->bv_page
, 1 << SECTOR_SHIFT
, bv_out
->bv_offset
+ ctx
->offset_out
);
364 ctx
->offset_in
+= sg_in
.length
;
365 if (ctx
->offset_in
>= bv_in
->bv_len
) {
370 ctx
->offset_out
+= sg_out
.length
;
371 if (ctx
->offset_out
>= bv_out
->bv_len
) {
376 r
= crypt_convert_scatterlist(cc
, &sg_out
, &sg_in
, sg_in
.length
,
377 bio_data_dir(ctx
->bio_in
) == WRITE
, ctx
->sector
);
387 static void dm_crypt_bio_destructor(struct bio
*bio
)
389 struct dm_crypt_io
*io
= bio
->bi_private
;
390 struct crypt_config
*cc
= io
->target
->private;
392 bio_free(bio
, cc
->bs
);
396 * Generate a new unfragmented bio with the given size
397 * This should never violate the device limitations
398 * May return a smaller bio when running out of pages
400 static struct bio
*crypt_alloc_buffer(struct dm_crypt_io
*io
, unsigned size
)
402 struct crypt_config
*cc
= io
->target
->private;
404 unsigned int nr_iovecs
= (size
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
405 gfp_t gfp_mask
= GFP_NOIO
| __GFP_HIGHMEM
;
408 clone
= bio_alloc_bioset(GFP_NOIO
, nr_iovecs
, cc
->bs
);
412 clone_init(io
, clone
);
414 for (i
= 0; i
< nr_iovecs
; i
++) {
415 struct bio_vec
*bv
= bio_iovec_idx(clone
, i
);
417 bv
->bv_page
= mempool_alloc(cc
->page_pool
, gfp_mask
);
422 * if additional pages cannot be allocated without waiting,
423 * return a partially allocated bio, the caller will then try
424 * to allocate additional bios while submitting this partial bio
426 if (i
== (MIN_BIO_PAGES
- 1))
427 gfp_mask
= (gfp_mask
| __GFP_NOWARN
) & ~__GFP_WAIT
;
430 if (size
> PAGE_SIZE
)
431 bv
->bv_len
= PAGE_SIZE
;
435 clone
->bi_size
+= bv
->bv_len
;
440 if (!clone
->bi_size
) {
448 static void crypt_free_buffer_pages(struct crypt_config
*cc
, struct bio
*clone
)
453 for (i
= 0; i
< clone
->bi_vcnt
; i
++) {
454 bv
= bio_iovec_idx(clone
, i
);
455 BUG_ON(!bv
->bv_page
);
456 mempool_free(bv
->bv_page
, cc
->page_pool
);
462 * One of the bios was finished. Check for completion of
463 * the whole request and correctly clean up the buffer.
465 static void crypt_dec_pending(struct dm_crypt_io
*io
)
467 struct crypt_config
*cc
= io
->target
->private;
469 if (!atomic_dec_and_test(&io
->pending
))
472 bio_endio(io
->base_bio
, io
->error
);
473 mempool_free(io
, cc
->io_pool
);
477 * kcryptd/kcryptd_io:
479 * Needed because it would be very unwise to do decryption in an
482 * kcryptd performs the actual encryption or decryption.
484 * kcryptd_io performs the IO submission.
486 * They must be separated as otherwise the final stages could be
487 * starved by new requests which can block in the first stages due
488 * to memory allocation.
490 static void kcryptd_do_io(struct work_struct
*work
);
491 static void kcryptd_do_crypt(struct work_struct
*work
);
493 static void kcryptd_queue_io(struct dm_crypt_io
*io
)
495 struct crypt_config
*cc
= io
->target
->private;
497 INIT_WORK(&io
->work
, kcryptd_do_io
);
498 queue_work(cc
->io_queue
, &io
->work
);
501 static void kcryptd_queue_crypt(struct dm_crypt_io
*io
)
503 struct crypt_config
*cc
= io
->target
->private;
505 INIT_WORK(&io
->work
, kcryptd_do_crypt
);
506 queue_work(cc
->crypt_queue
, &io
->work
);
509 static void crypt_endio(struct bio
*clone
, int error
)
511 struct dm_crypt_io
*io
= clone
->bi_private
;
512 struct crypt_config
*cc
= io
->target
->private;
513 unsigned rw
= bio_data_dir(clone
);
515 if (unlikely(!bio_flagged(clone
, BIO_UPTODATE
) && !error
))
519 * free the processed pages
522 crypt_free_buffer_pages(cc
, clone
);
526 if (rw
== READ
&& !error
) {
527 kcryptd_queue_crypt(io
);
534 crypt_dec_pending(io
);
537 static void clone_init(struct dm_crypt_io
*io
, struct bio
*clone
)
539 struct crypt_config
*cc
= io
->target
->private;
541 clone
->bi_private
= io
;
542 clone
->bi_end_io
= crypt_endio
;
543 clone
->bi_bdev
= cc
->dev
->bdev
;
544 clone
->bi_rw
= io
->base_bio
->bi_rw
;
545 clone
->bi_destructor
= dm_crypt_bio_destructor
;
548 static void crypt_read_io(struct dm_crypt_io
*io
)
550 struct crypt_config
*cc
= io
->target
->private;
551 struct bio
*base_bio
= io
->base_bio
;
554 atomic_inc(&io
->pending
);
557 * The block layer might modify the bvec array, so always
558 * copy the required bvecs because we need the original
559 * one in order to decrypt the whole bio data *afterwards*.
561 clone
= bio_alloc_bioset(GFP_NOIO
, bio_segments(base_bio
), cc
->bs
);
562 if (unlikely(!clone
)) {
564 crypt_dec_pending(io
);
568 clone_init(io
, clone
);
570 clone
->bi_vcnt
= bio_segments(base_bio
);
571 clone
->bi_size
= base_bio
->bi_size
;
572 clone
->bi_sector
= cc
->start
+ io
->sector
;
573 memcpy(clone
->bi_io_vec
, bio_iovec(base_bio
),
574 sizeof(struct bio_vec
) * clone
->bi_vcnt
);
576 generic_make_request(clone
);
579 static void crypt_write_io(struct dm_crypt_io
*io
)
583 static void crypt_write_io_done(struct dm_crypt_io
*io
, int error
)
585 struct bio
*clone
= io
->ctx
.bio_out
;
586 struct crypt_config
*cc
= io
->target
->private;
588 if (unlikely(error
< 0)) {
589 crypt_free_buffer_pages(cc
, clone
);
592 crypt_dec_pending(io
);
596 /* crypt_convert should have filled the clone bio */
597 BUG_ON(io
->ctx
.idx_out
< clone
->bi_vcnt
);
599 clone
->bi_sector
= cc
->start
+ io
->sector
;
600 io
->sector
+= bio_sectors(clone
);
603 static void crypt_write_io_loop(struct dm_crypt_io
*io
)
605 struct crypt_config
*cc
= io
->target
->private;
607 unsigned remaining
= io
->base_bio
->bi_size
;
611 * The allocated buffers can be smaller than the whole bio,
612 * so repeat the whole process until all the data can be handled.
615 clone
= crypt_alloc_buffer(io
, remaining
);
616 if (unlikely(!clone
)) {
618 crypt_dec_pending(io
);
622 io
->ctx
.bio_out
= clone
;
625 remaining
-= clone
->bi_size
;
627 r
= crypt_convert(cc
, &io
->ctx
);
629 crypt_write_io_done(io
, r
);
633 /* Grab another reference to the io struct
634 * before we kick off the request */
636 atomic_inc(&io
->pending
);
638 generic_make_request(clone
);
640 /* Do not reference clone after this - it
641 * may be gone already. */
643 /* out of memory -> run queues */
644 if (unlikely(remaining
))
645 congestion_wait(WRITE
, HZ
/100);
649 static void crypt_write_io_process(struct dm_crypt_io
*io
)
651 struct crypt_config
*cc
= io
->target
->private;
653 atomic_inc(&io
->pending
);
655 crypt_convert_init(cc
, &io
->ctx
, NULL
, io
->base_bio
, io
->sector
);
656 crypt_write_io_loop(io
);
659 static void crypt_read_io_done(struct dm_crypt_io
*io
, int error
)
661 if (unlikely(error
< 0))
664 crypt_dec_pending(io
);
667 static void crypt_read_io_process(struct dm_crypt_io
*io
)
669 struct crypt_config
*cc
= io
->target
->private;
672 crypt_convert_init(cc
, &io
->ctx
, io
->base_bio
, io
->base_bio
, io
->sector
);
674 r
= crypt_convert(cc
, &io
->ctx
);
676 crypt_read_io_done(io
, r
);
679 static void kcryptd_do_io(struct work_struct
*work
)
681 struct dm_crypt_io
*io
= container_of(work
, struct dm_crypt_io
, work
);
683 if (bio_data_dir(io
->base_bio
) == READ
)
689 static void kcryptd_do_crypt(struct work_struct
*work
)
691 struct dm_crypt_io
*io
= container_of(work
, struct dm_crypt_io
, work
);
693 if (bio_data_dir(io
->base_bio
) == READ
)
694 crypt_read_io_process(io
);
696 crypt_write_io_process(io
);
700 * Decode key from its hex representation
702 static int crypt_decode_key(u8
*key
, char *hex
, unsigned int size
)
710 for (i
= 0; i
< size
; i
++) {
714 key
[i
] = (u8
)simple_strtoul(buffer
, &endp
, 16);
716 if (endp
!= &buffer
[2])
727 * Encode key into its hex representation
729 static void crypt_encode_key(char *hex
, u8
*key
, unsigned int size
)
733 for (i
= 0; i
< size
; i
++) {
734 sprintf(hex
, "%02x", *key
);
740 static int crypt_set_key(struct crypt_config
*cc
, char *key
)
742 unsigned key_size
= strlen(key
) >> 1;
744 if (cc
->key_size
&& cc
->key_size
!= key_size
)
747 cc
->key_size
= key_size
; /* initial settings */
749 if ((!key_size
&& strcmp(key
, "-")) ||
750 (key_size
&& crypt_decode_key(cc
->key
, key
, key_size
) < 0))
753 set_bit(DM_CRYPT_KEY_VALID
, &cc
->flags
);
758 static int crypt_wipe_key(struct crypt_config
*cc
)
760 clear_bit(DM_CRYPT_KEY_VALID
, &cc
->flags
);
761 memset(&cc
->key
, 0, cc
->key_size
* sizeof(u8
));
766 * Construct an encryption mapping:
767 * <cipher> <key> <iv_offset> <dev_path> <start>
769 static int crypt_ctr(struct dm_target
*ti
, unsigned int argc
, char **argv
)
771 struct crypt_config
*cc
;
772 struct crypto_blkcipher
*tfm
;
778 unsigned int key_size
;
779 unsigned long long tmpll
;
782 ti
->error
= "Not enough arguments";
787 cipher
= strsep(&tmp
, "-");
788 chainmode
= strsep(&tmp
, "-");
789 ivopts
= strsep(&tmp
, "-");
790 ivmode
= strsep(&ivopts
, ":");
793 DMWARN("Unexpected additional cipher options");
795 key_size
= strlen(argv
[1]) >> 1;
797 cc
= kzalloc(sizeof(*cc
) + key_size
* sizeof(u8
), GFP_KERNEL
);
800 "Cannot allocate transparent encryption context";
804 if (crypt_set_key(cc
, argv
[1])) {
805 ti
->error
= "Error decoding key";
809 /* Compatiblity mode for old dm-crypt cipher strings */
810 if (!chainmode
|| (strcmp(chainmode
, "plain") == 0 && !ivmode
)) {
815 if (strcmp(chainmode
, "ecb") && !ivmode
) {
816 ti
->error
= "This chaining mode requires an IV mechanism";
820 if (snprintf(cc
->cipher
, CRYPTO_MAX_ALG_NAME
, "%s(%s)",
821 chainmode
, cipher
) >= CRYPTO_MAX_ALG_NAME
) {
822 ti
->error
= "Chain mode + cipher name is too long";
826 tfm
= crypto_alloc_blkcipher(cc
->cipher
, 0, CRYPTO_ALG_ASYNC
);
828 ti
->error
= "Error allocating crypto tfm";
832 strcpy(cc
->cipher
, cipher
);
833 strcpy(cc
->chainmode
, chainmode
);
837 * Choose ivmode. Valid modes: "plain", "essiv:<esshash>", "benbi".
838 * See comments at iv code
842 cc
->iv_gen_ops
= NULL
;
843 else if (strcmp(ivmode
, "plain") == 0)
844 cc
->iv_gen_ops
= &crypt_iv_plain_ops
;
845 else if (strcmp(ivmode
, "essiv") == 0)
846 cc
->iv_gen_ops
= &crypt_iv_essiv_ops
;
847 else if (strcmp(ivmode
, "benbi") == 0)
848 cc
->iv_gen_ops
= &crypt_iv_benbi_ops
;
849 else if (strcmp(ivmode
, "null") == 0)
850 cc
->iv_gen_ops
= &crypt_iv_null_ops
;
852 ti
->error
= "Invalid IV mode";
856 if (cc
->iv_gen_ops
&& cc
->iv_gen_ops
->ctr
&&
857 cc
->iv_gen_ops
->ctr(cc
, ti
, ivopts
) < 0)
860 cc
->iv_size
= crypto_blkcipher_ivsize(tfm
);
862 /* at least a 64 bit sector number should fit in our buffer */
863 cc
->iv_size
= max(cc
->iv_size
,
864 (unsigned int)(sizeof(u64
) / sizeof(u8
)));
866 if (cc
->iv_gen_ops
) {
867 DMWARN("Selected cipher does not support IVs");
868 if (cc
->iv_gen_ops
->dtr
)
869 cc
->iv_gen_ops
->dtr(cc
);
870 cc
->iv_gen_ops
= NULL
;
874 cc
->io_pool
= mempool_create_slab_pool(MIN_IOS
, _crypt_io_pool
);
876 ti
->error
= "Cannot allocate crypt io mempool";
880 cc
->page_pool
= mempool_create_page_pool(MIN_POOL_PAGES
, 0);
881 if (!cc
->page_pool
) {
882 ti
->error
= "Cannot allocate page mempool";
886 cc
->bs
= bioset_create(MIN_IOS
, MIN_IOS
);
888 ti
->error
= "Cannot allocate crypt bioset";
892 if (crypto_blkcipher_setkey(tfm
, cc
->key
, key_size
) < 0) {
893 ti
->error
= "Error setting key";
897 if (sscanf(argv
[2], "%llu", &tmpll
) != 1) {
898 ti
->error
= "Invalid iv_offset sector";
901 cc
->iv_offset
= tmpll
;
903 if (sscanf(argv
[4], "%llu", &tmpll
) != 1) {
904 ti
->error
= "Invalid device sector";
909 if (dm_get_device(ti
, argv
[3], cc
->start
, ti
->len
,
910 dm_table_get_mode(ti
->table
), &cc
->dev
)) {
911 ti
->error
= "Device lookup failed";
915 if (ivmode
&& cc
->iv_gen_ops
) {
918 cc
->iv_mode
= kmalloc(strlen(ivmode
) + 1, GFP_KERNEL
);
920 ti
->error
= "Error kmallocing iv_mode string";
921 goto bad_ivmode_string
;
923 strcpy(cc
->iv_mode
, ivmode
);
927 cc
->io_queue
= create_singlethread_workqueue("kcryptd_io");
929 ti
->error
= "Couldn't create kcryptd io queue";
933 cc
->crypt_queue
= create_singlethread_workqueue("kcryptd");
934 if (!cc
->crypt_queue
) {
935 ti
->error
= "Couldn't create kcryptd queue";
936 goto bad_crypt_queue
;
943 destroy_workqueue(cc
->io_queue
);
947 dm_put_device(ti
, cc
->dev
);
951 mempool_destroy(cc
->page_pool
);
953 mempool_destroy(cc
->io_pool
);
955 if (cc
->iv_gen_ops
&& cc
->iv_gen_ops
->dtr
)
956 cc
->iv_gen_ops
->dtr(cc
);
958 crypto_free_blkcipher(tfm
);
960 /* Must zero key material before freeing */
961 memset(cc
, 0, sizeof(*cc
) + cc
->key_size
* sizeof(u8
));
966 static void crypt_dtr(struct dm_target
*ti
)
968 struct crypt_config
*cc
= (struct crypt_config
*) ti
->private;
970 destroy_workqueue(cc
->io_queue
);
971 destroy_workqueue(cc
->crypt_queue
);
974 mempool_destroy(cc
->page_pool
);
975 mempool_destroy(cc
->io_pool
);
978 if (cc
->iv_gen_ops
&& cc
->iv_gen_ops
->dtr
)
979 cc
->iv_gen_ops
->dtr(cc
);
980 crypto_free_blkcipher(cc
->tfm
);
981 dm_put_device(ti
, cc
->dev
);
983 /* Must zero key material before freeing */
984 memset(cc
, 0, sizeof(*cc
) + cc
->key_size
* sizeof(u8
));
988 static int crypt_map(struct dm_target
*ti
, struct bio
*bio
,
989 union map_info
*map_context
)
991 struct crypt_config
*cc
= ti
->private;
992 struct dm_crypt_io
*io
;
994 io
= mempool_alloc(cc
->io_pool
, GFP_NOIO
);
997 io
->sector
= bio
->bi_sector
- ti
->begin
;
999 atomic_set(&io
->pending
, 0);
1001 if (bio_data_dir(io
->base_bio
) == READ
)
1002 kcryptd_queue_io(io
);
1004 kcryptd_queue_crypt(io
);
1006 return DM_MAPIO_SUBMITTED
;
1009 static int crypt_status(struct dm_target
*ti
, status_type_t type
,
1010 char *result
, unsigned int maxlen
)
1012 struct crypt_config
*cc
= (struct crypt_config
*) ti
->private;
1013 unsigned int sz
= 0;
1016 case STATUSTYPE_INFO
:
1020 case STATUSTYPE_TABLE
:
1022 DMEMIT("%s-%s-%s ", cc
->cipher
, cc
->chainmode
,
1025 DMEMIT("%s-%s ", cc
->cipher
, cc
->chainmode
);
1027 if (cc
->key_size
> 0) {
1028 if ((maxlen
- sz
) < ((cc
->key_size
<< 1) + 1))
1031 crypt_encode_key(result
+ sz
, cc
->key
, cc
->key_size
);
1032 sz
+= cc
->key_size
<< 1;
1039 DMEMIT(" %llu %s %llu", (unsigned long long)cc
->iv_offset
,
1040 cc
->dev
->name
, (unsigned long long)cc
->start
);
1046 static void crypt_postsuspend(struct dm_target
*ti
)
1048 struct crypt_config
*cc
= ti
->private;
1050 set_bit(DM_CRYPT_SUSPENDED
, &cc
->flags
);
1053 static int crypt_preresume(struct dm_target
*ti
)
1055 struct crypt_config
*cc
= ti
->private;
1057 if (!test_bit(DM_CRYPT_KEY_VALID
, &cc
->flags
)) {
1058 DMERR("aborting resume - crypt key is not set.");
1065 static void crypt_resume(struct dm_target
*ti
)
1067 struct crypt_config
*cc
= ti
->private;
1069 clear_bit(DM_CRYPT_SUSPENDED
, &cc
->flags
);
1072 /* Message interface
1076 static int crypt_message(struct dm_target
*ti
, unsigned argc
, char **argv
)
1078 struct crypt_config
*cc
= ti
->private;
1083 if (!strnicmp(argv
[0], MESG_STR("key"))) {
1084 if (!test_bit(DM_CRYPT_SUSPENDED
, &cc
->flags
)) {
1085 DMWARN("not suspended during key manipulation.");
1088 if (argc
== 3 && !strnicmp(argv
[1], MESG_STR("set")))
1089 return crypt_set_key(cc
, argv
[2]);
1090 if (argc
== 2 && !strnicmp(argv
[1], MESG_STR("wipe")))
1091 return crypt_wipe_key(cc
);
1095 DMWARN("unrecognised message received.");
1099 static struct target_type crypt_target
= {
1101 .version
= {1, 5, 0},
1102 .module
= THIS_MODULE
,
1106 .status
= crypt_status
,
1107 .postsuspend
= crypt_postsuspend
,
1108 .preresume
= crypt_preresume
,
1109 .resume
= crypt_resume
,
1110 .message
= crypt_message
,
1113 static int __init
dm_crypt_init(void)
1117 _crypt_io_pool
= KMEM_CACHE(dm_crypt_io
, 0);
1118 if (!_crypt_io_pool
)
1121 r
= dm_register_target(&crypt_target
);
1123 DMERR("register failed %d", r
);
1124 kmem_cache_destroy(_crypt_io_pool
);
1130 static void __exit
dm_crypt_exit(void)
1132 int r
= dm_unregister_target(&crypt_target
);
1135 DMERR("unregister failed %d", r
);
1137 kmem_cache_destroy(_crypt_io_pool
);
1140 module_init(dm_crypt_init
);
1141 module_exit(dm_crypt_exit
);
1143 MODULE_AUTHOR("Christophe Saout <christophe@saout.de>");
1144 MODULE_DESCRIPTION(DM_NAME
" target for transparent encryption / decryption");
1145 MODULE_LICENSE("GPL");