agk-dm-dm-crypt-introduce-crypt_write_io_loop
[linux-2.6/linux-trees-mm.git] / drivers / md / dm-crypt.c
bloba20f794a005a34183eaa2c4f981dedcc5dc61b3e
1 /*
2 * Copyright (C) 2003 Christophe Saout <christophe@saout.de>
3 * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org>
4 * Copyright (C) 2006-2007 Red Hat, Inc. All rights reserved.
6 * This file is released under the GPL.
7 */
9 #include <linux/err.h>
10 #include <linux/module.h>
11 #include <linux/init.h>
12 #include <linux/kernel.h>
13 #include <linux/bio.h>
14 #include <linux/blkdev.h>
15 #include <linux/mempool.h>
16 #include <linux/slab.h>
17 #include <linux/crypto.h>
18 #include <linux/workqueue.h>
19 #include <linux/backing-dev.h>
20 #include <asm/atomic.h>
21 #include <linux/scatterlist.h>
22 #include <asm/page.h>
23 #include <asm/unaligned.h>
25 #include "dm.h"
27 #define DM_MSG_PREFIX "crypt"
28 #define MESG_STR(x) x, sizeof(x)
31 * context holding the current state of a multi-part conversion
33 struct convert_context {
34 struct bio *bio_in;
35 struct bio *bio_out;
36 unsigned int offset_in;
37 unsigned int offset_out;
38 unsigned int idx_in;
39 unsigned int idx_out;
40 sector_t sector;
44 * per bio private data
46 struct dm_crypt_io {
47 struct dm_target *target;
48 struct bio *base_bio;
49 struct work_struct work;
51 struct convert_context ctx;
53 atomic_t pending;
54 int error;
55 sector_t sector;
58 struct crypt_config;
60 struct crypt_iv_operations {
61 int (*ctr)(struct crypt_config *cc, struct dm_target *ti,
62 const char *opts);
63 void (*dtr)(struct crypt_config *cc);
64 const char *(*status)(struct crypt_config *cc);
65 int (*generator)(struct crypt_config *cc, u8 *iv, sector_t sector);
69 * Crypt: maps a linear range of a block device
70 * and encrypts / decrypts at the same time.
72 enum flags { DM_CRYPT_SUSPENDED, DM_CRYPT_KEY_VALID };
73 struct crypt_config {
74 struct dm_dev *dev;
75 sector_t start;
78 * pool for per bio private data and
79 * for encryption buffer pages
81 mempool_t *io_pool;
82 mempool_t *page_pool;
83 struct bio_set *bs;
85 struct workqueue_struct *io_queue;
86 struct workqueue_struct *crypt_queue;
88 * crypto related data
90 struct crypt_iv_operations *iv_gen_ops;
91 char *iv_mode;
92 union {
93 struct crypto_cipher *essiv_tfm;
94 int benbi_shift;
95 } iv_gen_private;
96 sector_t iv_offset;
97 unsigned int iv_size;
99 char cipher[CRYPTO_MAX_ALG_NAME];
100 char chainmode[CRYPTO_MAX_ALG_NAME];
101 struct crypto_blkcipher *tfm;
102 unsigned long flags;
103 unsigned int key_size;
104 u8 key[0];
107 #define MIN_IOS 16
108 #define MIN_POOL_PAGES 32
109 #define MIN_BIO_PAGES 8
111 static struct kmem_cache *_crypt_io_pool;
113 static void clone_init(struct dm_crypt_io *, struct bio *);
116 * Different IV generation algorithms:
118 * plain: the initial vector is the 32-bit little-endian version of the sector
119 * number, padded with zeros if necessary.
121 * essiv: "encrypted sector|salt initial vector", the sector number is
122 * encrypted with the bulk cipher using a salt as key. The salt
123 * should be derived from the bulk cipher's key via hashing.
125 * benbi: the 64-bit "big-endian 'narrow block'-count", starting at 1
126 * (needed for LRW-32-AES and possible other narrow block modes)
128 * null: the initial vector is always zero. Provides compatibility with
129 * obsolete loop_fish2 devices. Do not use for new devices.
131 * plumb: unimplemented, see:
132 * http://article.gmane.org/gmane.linux.kernel.device-mapper.dm-crypt/454
135 static int crypt_iv_plain_gen(struct crypt_config *cc, u8 *iv, sector_t sector)
137 memset(iv, 0, cc->iv_size);
138 *(u32 *)iv = cpu_to_le32(sector & 0xffffffff);
140 return 0;
143 static int crypt_iv_essiv_ctr(struct crypt_config *cc, struct dm_target *ti,
144 const char *opts)
146 struct crypto_cipher *essiv_tfm;
147 struct crypto_hash *hash_tfm;
148 struct hash_desc desc;
149 struct scatterlist sg;
150 unsigned int saltsize;
151 u8 *salt;
152 int err;
154 if (opts == NULL) {
155 ti->error = "Digest algorithm missing for ESSIV mode";
156 return -EINVAL;
159 /* Hash the cipher key with the given hash algorithm */
160 hash_tfm = crypto_alloc_hash(opts, 0, CRYPTO_ALG_ASYNC);
161 if (IS_ERR(hash_tfm)) {
162 ti->error = "Error initializing ESSIV hash";
163 return PTR_ERR(hash_tfm);
166 saltsize = crypto_hash_digestsize(hash_tfm);
167 salt = kmalloc(saltsize, GFP_KERNEL);
168 if (salt == NULL) {
169 ti->error = "Error kmallocing salt storage in ESSIV";
170 crypto_free_hash(hash_tfm);
171 return -ENOMEM;
174 sg_init_one(&sg, cc->key, cc->key_size);
175 desc.tfm = hash_tfm;
176 desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
177 err = crypto_hash_digest(&desc, &sg, cc->key_size, salt);
178 crypto_free_hash(hash_tfm);
180 if (err) {
181 ti->error = "Error calculating hash in ESSIV";
182 kfree(salt);
183 return err;
186 /* Setup the essiv_tfm with the given salt */
187 essiv_tfm = crypto_alloc_cipher(cc->cipher, 0, CRYPTO_ALG_ASYNC);
188 if (IS_ERR(essiv_tfm)) {
189 ti->error = "Error allocating crypto tfm for ESSIV";
190 kfree(salt);
191 return PTR_ERR(essiv_tfm);
193 if (crypto_cipher_blocksize(essiv_tfm) !=
194 crypto_blkcipher_ivsize(cc->tfm)) {
195 ti->error = "Block size of ESSIV cipher does "
196 "not match IV size of block cipher";
197 crypto_free_cipher(essiv_tfm);
198 kfree(salt);
199 return -EINVAL;
201 err = crypto_cipher_setkey(essiv_tfm, salt, saltsize);
202 if (err) {
203 ti->error = "Failed to set key for ESSIV cipher";
204 crypto_free_cipher(essiv_tfm);
205 kfree(salt);
206 return err;
208 kfree(salt);
210 cc->iv_gen_private.essiv_tfm = essiv_tfm;
211 return 0;
214 static void crypt_iv_essiv_dtr(struct crypt_config *cc)
216 crypto_free_cipher(cc->iv_gen_private.essiv_tfm);
217 cc->iv_gen_private.essiv_tfm = NULL;
220 static int crypt_iv_essiv_gen(struct crypt_config *cc, u8 *iv, sector_t sector)
222 memset(iv, 0, cc->iv_size);
223 *(u64 *)iv = cpu_to_le64(sector);
224 crypto_cipher_encrypt_one(cc->iv_gen_private.essiv_tfm, iv, iv);
225 return 0;
228 static int crypt_iv_benbi_ctr(struct crypt_config *cc, struct dm_target *ti,
229 const char *opts)
231 unsigned int bs = crypto_blkcipher_blocksize(cc->tfm);
232 int log = ilog2(bs);
234 /* we need to calculate how far we must shift the sector count
235 * to get the cipher block count, we use this shift in _gen */
237 if (1 << log != bs) {
238 ti->error = "cypher blocksize is not a power of 2";
239 return -EINVAL;
242 if (log > 9) {
243 ti->error = "cypher blocksize is > 512";
244 return -EINVAL;
247 cc->iv_gen_private.benbi_shift = 9 - log;
249 return 0;
252 static void crypt_iv_benbi_dtr(struct crypt_config *cc)
256 static int crypt_iv_benbi_gen(struct crypt_config *cc, u8 *iv, sector_t sector)
258 __be64 val;
260 memset(iv, 0, cc->iv_size - sizeof(u64)); /* rest is cleared below */
262 val = cpu_to_be64(((u64)sector << cc->iv_gen_private.benbi_shift) + 1);
263 put_unaligned(val, (__be64 *)(iv + cc->iv_size - sizeof(u64)));
265 return 0;
268 static int crypt_iv_null_gen(struct crypt_config *cc, u8 *iv, sector_t sector)
270 memset(iv, 0, cc->iv_size);
272 return 0;
275 static struct crypt_iv_operations crypt_iv_plain_ops = {
276 .generator = crypt_iv_plain_gen
279 static struct crypt_iv_operations crypt_iv_essiv_ops = {
280 .ctr = crypt_iv_essiv_ctr,
281 .dtr = crypt_iv_essiv_dtr,
282 .generator = crypt_iv_essiv_gen
285 static struct crypt_iv_operations crypt_iv_benbi_ops = {
286 .ctr = crypt_iv_benbi_ctr,
287 .dtr = crypt_iv_benbi_dtr,
288 .generator = crypt_iv_benbi_gen
291 static struct crypt_iv_operations crypt_iv_null_ops = {
292 .generator = crypt_iv_null_gen
295 static void crypt_read_io_done(struct dm_crypt_io *io, int error);
296 static void crypt_write_io_done(struct dm_crypt_io *io, int error);
298 static int
299 crypt_convert_scatterlist(struct crypt_config *cc, struct scatterlist *out,
300 struct scatterlist *in, unsigned int length,
301 int write, sector_t sector)
303 u8 iv[cc->iv_size] __attribute__ ((aligned(__alignof__(u64))));
304 struct blkcipher_desc desc = {
305 .tfm = cc->tfm,
306 .info = iv,
307 .flags = CRYPTO_TFM_REQ_MAY_SLEEP,
309 int r;
311 if (cc->iv_gen_ops) {
312 r = cc->iv_gen_ops->generator(cc, iv, sector);
313 if (r < 0)
314 return r;
316 if (write)
317 r = crypto_blkcipher_encrypt_iv(&desc, out, in, length);
318 else
319 r = crypto_blkcipher_decrypt_iv(&desc, out, in, length);
320 } else {
321 if (write)
322 r = crypto_blkcipher_encrypt(&desc, out, in, length);
323 else
324 r = crypto_blkcipher_decrypt(&desc, out, in, length);
327 return r;
330 static void crypt_convert_init(struct crypt_config *cc,
331 struct convert_context *ctx,
332 struct bio *bio_out, struct bio *bio_in,
333 sector_t sector)
335 ctx->bio_in = bio_in;
336 ctx->bio_out = bio_out;
337 ctx->offset_in = 0;
338 ctx->offset_out = 0;
339 ctx->idx_in = bio_in ? bio_in->bi_idx : 0;
340 ctx->idx_out = bio_out ? bio_out->bi_idx : 0;
341 ctx->sector = sector + cc->iv_offset;
345 * Encrypt / decrypt data from one bio to another one (can be the same one)
347 static int crypt_convert(struct crypt_config *cc,
348 struct convert_context *ctx)
350 int r = 0;
352 while(ctx->idx_in < ctx->bio_in->bi_vcnt &&
353 ctx->idx_out < ctx->bio_out->bi_vcnt) {
354 struct bio_vec *bv_in = bio_iovec_idx(ctx->bio_in, ctx->idx_in);
355 struct bio_vec *bv_out = bio_iovec_idx(ctx->bio_out, ctx->idx_out);
356 struct scatterlist sg_in, sg_out;
358 sg_init_table(&sg_in, 1);
359 sg_set_page(&sg_in, bv_in->bv_page, 1 << SECTOR_SHIFT, bv_in->bv_offset + ctx->offset_in);
361 sg_init_table(&sg_out, 1);
362 sg_set_page(&sg_out, bv_out->bv_page, 1 << SECTOR_SHIFT, bv_out->bv_offset + ctx->offset_out);
364 ctx->offset_in += sg_in.length;
365 if (ctx->offset_in >= bv_in->bv_len) {
366 ctx->offset_in = 0;
367 ctx->idx_in++;
370 ctx->offset_out += sg_out.length;
371 if (ctx->offset_out >= bv_out->bv_len) {
372 ctx->offset_out = 0;
373 ctx->idx_out++;
376 r = crypt_convert_scatterlist(cc, &sg_out, &sg_in, sg_in.length,
377 bio_data_dir(ctx->bio_in) == WRITE, ctx->sector);
378 if (r < 0)
379 break;
381 ctx->sector++;
384 return r;
387 static void dm_crypt_bio_destructor(struct bio *bio)
389 struct dm_crypt_io *io = bio->bi_private;
390 struct crypt_config *cc = io->target->private;
392 bio_free(bio, cc->bs);
396 * Generate a new unfragmented bio with the given size
397 * This should never violate the device limitations
398 * May return a smaller bio when running out of pages
400 static struct bio *crypt_alloc_buffer(struct dm_crypt_io *io, unsigned size)
402 struct crypt_config *cc = io->target->private;
403 struct bio *clone;
404 unsigned int nr_iovecs = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
405 gfp_t gfp_mask = GFP_NOIO | __GFP_HIGHMEM;
406 unsigned int i;
408 clone = bio_alloc_bioset(GFP_NOIO, nr_iovecs, cc->bs);
409 if (!clone)
410 return NULL;
412 clone_init(io, clone);
414 for (i = 0; i < nr_iovecs; i++) {
415 struct bio_vec *bv = bio_iovec_idx(clone, i);
417 bv->bv_page = mempool_alloc(cc->page_pool, gfp_mask);
418 if (!bv->bv_page)
419 break;
422 * if additional pages cannot be allocated without waiting,
423 * return a partially allocated bio, the caller will then try
424 * to allocate additional bios while submitting this partial bio
426 if (i == (MIN_BIO_PAGES - 1))
427 gfp_mask = (gfp_mask | __GFP_NOWARN) & ~__GFP_WAIT;
429 bv->bv_offset = 0;
430 if (size > PAGE_SIZE)
431 bv->bv_len = PAGE_SIZE;
432 else
433 bv->bv_len = size;
435 clone->bi_size += bv->bv_len;
436 clone->bi_vcnt++;
437 size -= bv->bv_len;
440 if (!clone->bi_size) {
441 bio_put(clone);
442 return NULL;
445 return clone;
448 static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone)
450 unsigned int i;
451 struct bio_vec *bv;
453 for (i = 0; i < clone->bi_vcnt; i++) {
454 bv = bio_iovec_idx(clone, i);
455 BUG_ON(!bv->bv_page);
456 mempool_free(bv->bv_page, cc->page_pool);
457 bv->bv_page = NULL;
462 * One of the bios was finished. Check for completion of
463 * the whole request and correctly clean up the buffer.
465 static void crypt_dec_pending(struct dm_crypt_io *io)
467 struct crypt_config *cc = io->target->private;
469 if (!atomic_dec_and_test(&io->pending))
470 return;
472 bio_endio(io->base_bio, io->error);
473 mempool_free(io, cc->io_pool);
477 * kcryptd/kcryptd_io:
479 * Needed because it would be very unwise to do decryption in an
480 * interrupt context.
482 * kcryptd performs the actual encryption or decryption.
484 * kcryptd_io performs the IO submission.
486 * They must be separated as otherwise the final stages could be
487 * starved by new requests which can block in the first stages due
488 * to memory allocation.
490 static void kcryptd_do_io(struct work_struct *work);
491 static void kcryptd_do_crypt(struct work_struct *work);
493 static void kcryptd_queue_io(struct dm_crypt_io *io)
495 struct crypt_config *cc = io->target->private;
497 INIT_WORK(&io->work, kcryptd_do_io);
498 queue_work(cc->io_queue, &io->work);
501 static void kcryptd_queue_crypt(struct dm_crypt_io *io)
503 struct crypt_config *cc = io->target->private;
505 INIT_WORK(&io->work, kcryptd_do_crypt);
506 queue_work(cc->crypt_queue, &io->work);
509 static void crypt_endio(struct bio *clone, int error)
511 struct dm_crypt_io *io = clone->bi_private;
512 struct crypt_config *cc = io->target->private;
513 unsigned rw = bio_data_dir(clone);
515 if (unlikely(!bio_flagged(clone, BIO_UPTODATE) && !error))
516 error = -EIO;
519 * free the processed pages
521 if (rw == WRITE)
522 crypt_free_buffer_pages(cc, clone);
524 bio_put(clone);
526 if (rw == READ && !error) {
527 kcryptd_queue_crypt(io);
528 return;
531 if (unlikely(error))
532 io->error = error;
534 crypt_dec_pending(io);
537 static void clone_init(struct dm_crypt_io *io, struct bio *clone)
539 struct crypt_config *cc = io->target->private;
541 clone->bi_private = io;
542 clone->bi_end_io = crypt_endio;
543 clone->bi_bdev = cc->dev->bdev;
544 clone->bi_rw = io->base_bio->bi_rw;
545 clone->bi_destructor = dm_crypt_bio_destructor;
548 static void crypt_read_io(struct dm_crypt_io *io)
550 struct crypt_config *cc = io->target->private;
551 struct bio *base_bio = io->base_bio;
552 struct bio *clone;
554 atomic_inc(&io->pending);
557 * The block layer might modify the bvec array, so always
558 * copy the required bvecs because we need the original
559 * one in order to decrypt the whole bio data *afterwards*.
561 clone = bio_alloc_bioset(GFP_NOIO, bio_segments(base_bio), cc->bs);
562 if (unlikely(!clone)) {
563 io->error = -ENOMEM;
564 crypt_dec_pending(io);
565 return;
568 clone_init(io, clone);
569 clone->bi_idx = 0;
570 clone->bi_vcnt = bio_segments(base_bio);
571 clone->bi_size = base_bio->bi_size;
572 clone->bi_sector = cc->start + io->sector;
573 memcpy(clone->bi_io_vec, bio_iovec(base_bio),
574 sizeof(struct bio_vec) * clone->bi_vcnt);
576 generic_make_request(clone);
579 static void crypt_write_io(struct dm_crypt_io *io)
583 static void crypt_write_io_done(struct dm_crypt_io *io, int error)
585 struct bio *clone = io->ctx.bio_out;
586 struct crypt_config *cc = io->target->private;
588 if (unlikely(error < 0)) {
589 crypt_free_buffer_pages(cc, clone);
590 bio_put(clone);
591 io->error = -EIO;
592 crypt_dec_pending(io);
593 return;
596 /* crypt_convert should have filled the clone bio */
597 BUG_ON(io->ctx.idx_out < clone->bi_vcnt);
599 clone->bi_sector = cc->start + io->sector;
600 io->sector += bio_sectors(clone);
603 static void crypt_write_io_loop(struct dm_crypt_io *io)
605 struct crypt_config *cc = io->target->private;
606 struct bio *clone;
607 unsigned remaining = io->base_bio->bi_size;
608 int r;
611 * The allocated buffers can be smaller than the whole bio,
612 * so repeat the whole process until all the data can be handled.
614 while (remaining) {
615 clone = crypt_alloc_buffer(io, remaining);
616 if (unlikely(!clone)) {
617 io->error = -ENOMEM;
618 crypt_dec_pending(io);
619 return;
622 io->ctx.bio_out = clone;
623 io->ctx.idx_out = 0;
625 remaining -= clone->bi_size;
627 r = crypt_convert(cc, &io->ctx);
629 crypt_write_io_done(io, r);
630 if (unlikely(r < 0))
631 return;
633 /* Grab another reference to the io struct
634 * before we kick off the request */
635 if (remaining)
636 atomic_inc(&io->pending);
638 generic_make_request(clone);
640 /* Do not reference clone after this - it
641 * may be gone already. */
643 /* out of memory -> run queues */
644 if (unlikely(remaining))
645 congestion_wait(WRITE, HZ/100);
649 static void crypt_write_io_process(struct dm_crypt_io *io)
651 struct crypt_config *cc = io->target->private;
653 atomic_inc(&io->pending);
655 crypt_convert_init(cc, &io->ctx, NULL, io->base_bio, io->sector);
656 crypt_write_io_loop(io);
659 static void crypt_read_io_done(struct dm_crypt_io *io, int error)
661 if (unlikely(error < 0))
662 io->error = -EIO;
664 crypt_dec_pending(io);
667 static void crypt_read_io_process(struct dm_crypt_io *io)
669 struct crypt_config *cc = io->target->private;
670 int r = 0;
672 crypt_convert_init(cc, &io->ctx, io->base_bio, io->base_bio, io->sector);
674 r = crypt_convert(cc, &io->ctx);
676 crypt_read_io_done(io, r);
679 static void kcryptd_do_io(struct work_struct *work)
681 struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
683 if (bio_data_dir(io->base_bio) == READ)
684 crypt_read_io(io);
685 else
686 crypt_write_io(io);
689 static void kcryptd_do_crypt(struct work_struct *work)
691 struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
693 if (bio_data_dir(io->base_bio) == READ)
694 crypt_read_io_process(io);
695 else
696 crypt_write_io_process(io);
700 * Decode key from its hex representation
702 static int crypt_decode_key(u8 *key, char *hex, unsigned int size)
704 char buffer[3];
705 char *endp;
706 unsigned int i;
708 buffer[2] = '\0';
710 for (i = 0; i < size; i++) {
711 buffer[0] = *hex++;
712 buffer[1] = *hex++;
714 key[i] = (u8)simple_strtoul(buffer, &endp, 16);
716 if (endp != &buffer[2])
717 return -EINVAL;
720 if (*hex != '\0')
721 return -EINVAL;
723 return 0;
727 * Encode key into its hex representation
729 static void crypt_encode_key(char *hex, u8 *key, unsigned int size)
731 unsigned int i;
733 for (i = 0; i < size; i++) {
734 sprintf(hex, "%02x", *key);
735 hex += 2;
736 key++;
740 static int crypt_set_key(struct crypt_config *cc, char *key)
742 unsigned key_size = strlen(key) >> 1;
744 if (cc->key_size && cc->key_size != key_size)
745 return -EINVAL;
747 cc->key_size = key_size; /* initial settings */
749 if ((!key_size && strcmp(key, "-")) ||
750 (key_size && crypt_decode_key(cc->key, key, key_size) < 0))
751 return -EINVAL;
753 set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
755 return 0;
758 static int crypt_wipe_key(struct crypt_config *cc)
760 clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
761 memset(&cc->key, 0, cc->key_size * sizeof(u8));
762 return 0;
766 * Construct an encryption mapping:
767 * <cipher> <key> <iv_offset> <dev_path> <start>
769 static int crypt_ctr(struct dm_target *ti, unsigned int argc, char **argv)
771 struct crypt_config *cc;
772 struct crypto_blkcipher *tfm;
773 char *tmp;
774 char *cipher;
775 char *chainmode;
776 char *ivmode;
777 char *ivopts;
778 unsigned int key_size;
779 unsigned long long tmpll;
781 if (argc != 5) {
782 ti->error = "Not enough arguments";
783 return -EINVAL;
786 tmp = argv[0];
787 cipher = strsep(&tmp, "-");
788 chainmode = strsep(&tmp, "-");
789 ivopts = strsep(&tmp, "-");
790 ivmode = strsep(&ivopts, ":");
792 if (tmp)
793 DMWARN("Unexpected additional cipher options");
795 key_size = strlen(argv[1]) >> 1;
797 cc = kzalloc(sizeof(*cc) + key_size * sizeof(u8), GFP_KERNEL);
798 if (cc == NULL) {
799 ti->error =
800 "Cannot allocate transparent encryption context";
801 return -ENOMEM;
804 if (crypt_set_key(cc, argv[1])) {
805 ti->error = "Error decoding key";
806 goto bad_cipher;
809 /* Compatiblity mode for old dm-crypt cipher strings */
810 if (!chainmode || (strcmp(chainmode, "plain") == 0 && !ivmode)) {
811 chainmode = "cbc";
812 ivmode = "plain";
815 if (strcmp(chainmode, "ecb") && !ivmode) {
816 ti->error = "This chaining mode requires an IV mechanism";
817 goto bad_cipher;
820 if (snprintf(cc->cipher, CRYPTO_MAX_ALG_NAME, "%s(%s)",
821 chainmode, cipher) >= CRYPTO_MAX_ALG_NAME) {
822 ti->error = "Chain mode + cipher name is too long";
823 goto bad_cipher;
826 tfm = crypto_alloc_blkcipher(cc->cipher, 0, CRYPTO_ALG_ASYNC);
827 if (IS_ERR(tfm)) {
828 ti->error = "Error allocating crypto tfm";
829 goto bad_cipher;
832 strcpy(cc->cipher, cipher);
833 strcpy(cc->chainmode, chainmode);
834 cc->tfm = tfm;
837 * Choose ivmode. Valid modes: "plain", "essiv:<esshash>", "benbi".
838 * See comments at iv code
841 if (ivmode == NULL)
842 cc->iv_gen_ops = NULL;
843 else if (strcmp(ivmode, "plain") == 0)
844 cc->iv_gen_ops = &crypt_iv_plain_ops;
845 else if (strcmp(ivmode, "essiv") == 0)
846 cc->iv_gen_ops = &crypt_iv_essiv_ops;
847 else if (strcmp(ivmode, "benbi") == 0)
848 cc->iv_gen_ops = &crypt_iv_benbi_ops;
849 else if (strcmp(ivmode, "null") == 0)
850 cc->iv_gen_ops = &crypt_iv_null_ops;
851 else {
852 ti->error = "Invalid IV mode";
853 goto bad_ivmode;
856 if (cc->iv_gen_ops && cc->iv_gen_ops->ctr &&
857 cc->iv_gen_ops->ctr(cc, ti, ivopts) < 0)
858 goto bad_ivmode;
860 cc->iv_size = crypto_blkcipher_ivsize(tfm);
861 if (cc->iv_size)
862 /* at least a 64 bit sector number should fit in our buffer */
863 cc->iv_size = max(cc->iv_size,
864 (unsigned int)(sizeof(u64) / sizeof(u8)));
865 else {
866 if (cc->iv_gen_ops) {
867 DMWARN("Selected cipher does not support IVs");
868 if (cc->iv_gen_ops->dtr)
869 cc->iv_gen_ops->dtr(cc);
870 cc->iv_gen_ops = NULL;
874 cc->io_pool = mempool_create_slab_pool(MIN_IOS, _crypt_io_pool);
875 if (!cc->io_pool) {
876 ti->error = "Cannot allocate crypt io mempool";
877 goto bad_slab_pool;
880 cc->page_pool = mempool_create_page_pool(MIN_POOL_PAGES, 0);
881 if (!cc->page_pool) {
882 ti->error = "Cannot allocate page mempool";
883 goto bad_page_pool;
886 cc->bs = bioset_create(MIN_IOS, MIN_IOS);
887 if (!cc->bs) {
888 ti->error = "Cannot allocate crypt bioset";
889 goto bad_bs;
892 if (crypto_blkcipher_setkey(tfm, cc->key, key_size) < 0) {
893 ti->error = "Error setting key";
894 goto bad_device;
897 if (sscanf(argv[2], "%llu", &tmpll) != 1) {
898 ti->error = "Invalid iv_offset sector";
899 goto bad_device;
901 cc->iv_offset = tmpll;
903 if (sscanf(argv[4], "%llu", &tmpll) != 1) {
904 ti->error = "Invalid device sector";
905 goto bad_device;
907 cc->start = tmpll;
909 if (dm_get_device(ti, argv[3], cc->start, ti->len,
910 dm_table_get_mode(ti->table), &cc->dev)) {
911 ti->error = "Device lookup failed";
912 goto bad_device;
915 if (ivmode && cc->iv_gen_ops) {
916 if (ivopts)
917 *(ivopts - 1) = ':';
918 cc->iv_mode = kmalloc(strlen(ivmode) + 1, GFP_KERNEL);
919 if (!cc->iv_mode) {
920 ti->error = "Error kmallocing iv_mode string";
921 goto bad_ivmode_string;
923 strcpy(cc->iv_mode, ivmode);
924 } else
925 cc->iv_mode = NULL;
927 cc->io_queue = create_singlethread_workqueue("kcryptd_io");
928 if (!cc->io_queue) {
929 ti->error = "Couldn't create kcryptd io queue";
930 goto bad_io_queue;
933 cc->crypt_queue = create_singlethread_workqueue("kcryptd");
934 if (!cc->crypt_queue) {
935 ti->error = "Couldn't create kcryptd queue";
936 goto bad_crypt_queue;
939 ti->private = cc;
940 return 0;
942 bad_crypt_queue:
943 destroy_workqueue(cc->io_queue);
944 bad_io_queue:
945 kfree(cc->iv_mode);
946 bad_ivmode_string:
947 dm_put_device(ti, cc->dev);
948 bad_device:
949 bioset_free(cc->bs);
950 bad_bs:
951 mempool_destroy(cc->page_pool);
952 bad_page_pool:
953 mempool_destroy(cc->io_pool);
954 bad_slab_pool:
955 if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
956 cc->iv_gen_ops->dtr(cc);
957 bad_ivmode:
958 crypto_free_blkcipher(tfm);
959 bad_cipher:
960 /* Must zero key material before freeing */
961 memset(cc, 0, sizeof(*cc) + cc->key_size * sizeof(u8));
962 kfree(cc);
963 return -EINVAL;
966 static void crypt_dtr(struct dm_target *ti)
968 struct crypt_config *cc = (struct crypt_config *) ti->private;
970 destroy_workqueue(cc->io_queue);
971 destroy_workqueue(cc->crypt_queue);
973 bioset_free(cc->bs);
974 mempool_destroy(cc->page_pool);
975 mempool_destroy(cc->io_pool);
977 kfree(cc->iv_mode);
978 if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
979 cc->iv_gen_ops->dtr(cc);
980 crypto_free_blkcipher(cc->tfm);
981 dm_put_device(ti, cc->dev);
983 /* Must zero key material before freeing */
984 memset(cc, 0, sizeof(*cc) + cc->key_size * sizeof(u8));
985 kfree(cc);
988 static int crypt_map(struct dm_target *ti, struct bio *bio,
989 union map_info *map_context)
991 struct crypt_config *cc = ti->private;
992 struct dm_crypt_io *io;
994 io = mempool_alloc(cc->io_pool, GFP_NOIO);
995 io->target = ti;
996 io->base_bio = bio;
997 io->sector = bio->bi_sector - ti->begin;
998 io->error = 0;
999 atomic_set(&io->pending, 0);
1001 if (bio_data_dir(io->base_bio) == READ)
1002 kcryptd_queue_io(io);
1003 else
1004 kcryptd_queue_crypt(io);
1006 return DM_MAPIO_SUBMITTED;
1009 static int crypt_status(struct dm_target *ti, status_type_t type,
1010 char *result, unsigned int maxlen)
1012 struct crypt_config *cc = (struct crypt_config *) ti->private;
1013 unsigned int sz = 0;
1015 switch (type) {
1016 case STATUSTYPE_INFO:
1017 result[0] = '\0';
1018 break;
1020 case STATUSTYPE_TABLE:
1021 if (cc->iv_mode)
1022 DMEMIT("%s-%s-%s ", cc->cipher, cc->chainmode,
1023 cc->iv_mode);
1024 else
1025 DMEMIT("%s-%s ", cc->cipher, cc->chainmode);
1027 if (cc->key_size > 0) {
1028 if ((maxlen - sz) < ((cc->key_size << 1) + 1))
1029 return -ENOMEM;
1031 crypt_encode_key(result + sz, cc->key, cc->key_size);
1032 sz += cc->key_size << 1;
1033 } else {
1034 if (sz >= maxlen)
1035 return -ENOMEM;
1036 result[sz++] = '-';
1039 DMEMIT(" %llu %s %llu", (unsigned long long)cc->iv_offset,
1040 cc->dev->name, (unsigned long long)cc->start);
1041 break;
1043 return 0;
1046 static void crypt_postsuspend(struct dm_target *ti)
1048 struct crypt_config *cc = ti->private;
1050 set_bit(DM_CRYPT_SUSPENDED, &cc->flags);
1053 static int crypt_preresume(struct dm_target *ti)
1055 struct crypt_config *cc = ti->private;
1057 if (!test_bit(DM_CRYPT_KEY_VALID, &cc->flags)) {
1058 DMERR("aborting resume - crypt key is not set.");
1059 return -EAGAIN;
1062 return 0;
1065 static void crypt_resume(struct dm_target *ti)
1067 struct crypt_config *cc = ti->private;
1069 clear_bit(DM_CRYPT_SUSPENDED, &cc->flags);
1072 /* Message interface
1073 * key set <key>
1074 * key wipe
1076 static int crypt_message(struct dm_target *ti, unsigned argc, char **argv)
1078 struct crypt_config *cc = ti->private;
1080 if (argc < 2)
1081 goto error;
1083 if (!strnicmp(argv[0], MESG_STR("key"))) {
1084 if (!test_bit(DM_CRYPT_SUSPENDED, &cc->flags)) {
1085 DMWARN("not suspended during key manipulation.");
1086 return -EINVAL;
1088 if (argc == 3 && !strnicmp(argv[1], MESG_STR("set")))
1089 return crypt_set_key(cc, argv[2]);
1090 if (argc == 2 && !strnicmp(argv[1], MESG_STR("wipe")))
1091 return crypt_wipe_key(cc);
1094 error:
1095 DMWARN("unrecognised message received.");
1096 return -EINVAL;
1099 static struct target_type crypt_target = {
1100 .name = "crypt",
1101 .version= {1, 5, 0},
1102 .module = THIS_MODULE,
1103 .ctr = crypt_ctr,
1104 .dtr = crypt_dtr,
1105 .map = crypt_map,
1106 .status = crypt_status,
1107 .postsuspend = crypt_postsuspend,
1108 .preresume = crypt_preresume,
1109 .resume = crypt_resume,
1110 .message = crypt_message,
1113 static int __init dm_crypt_init(void)
1115 int r;
1117 _crypt_io_pool = KMEM_CACHE(dm_crypt_io, 0);
1118 if (!_crypt_io_pool)
1119 return -ENOMEM;
1121 r = dm_register_target(&crypt_target);
1122 if (r < 0) {
1123 DMERR("register failed %d", r);
1124 kmem_cache_destroy(_crypt_io_pool);
1127 return r;
1130 static void __exit dm_crypt_exit(void)
1132 int r = dm_unregister_target(&crypt_target);
1134 if (r < 0)
1135 DMERR("unregister failed %d", r);
1137 kmem_cache_destroy(_crypt_io_pool);
1140 module_init(dm_crypt_init);
1141 module_exit(dm_crypt_exit);
1143 MODULE_AUTHOR("Christophe Saout <christophe@saout.de>");
1144 MODULE_DESCRIPTION(DM_NAME " target for transparent encryption / decryption");
1145 MODULE_LICENSE("GPL");