pagecache-zeroing-zero_user_segment-zero_user_segments-and-zero_user
[linux-2.6/linux-trees-mm.git] / mm / page_alloc.c
blob12376ae3f7334e124d488b1d7bc3d291d64e9be1
1 /*
2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/bootmem.h>
23 #include <linux/compiler.h>
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <linux/suspend.h>
27 #include <linux/pagevec.h>
28 #include <linux/blkdev.h>
29 #include <linux/slab.h>
30 #include <linux/oom.h>
31 #include <linux/notifier.h>
32 #include <linux/topology.h>
33 #include <linux/sysctl.h>
34 #include <linux/cpu.h>
35 #include <linux/cpuset.h>
36 #include <linux/memory_hotplug.h>
37 #include <linux/nodemask.h>
38 #include <linux/vmalloc.h>
39 #include <linux/mempolicy.h>
40 #include <linux/stop_machine.h>
41 #include <linux/sort.h>
42 #include <linux/pfn.h>
43 #include <linux/backing-dev.h>
44 #include <linux/fault-inject.h>
45 #include <linux/page-isolation.h>
47 #include <asm/tlbflush.h>
48 #include <asm/div64.h>
49 #include "internal.h"
52 * Array of node states.
54 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
55 [N_POSSIBLE] = NODE_MASK_ALL,
56 [N_ONLINE] = { { [0] = 1UL } },
57 #ifndef CONFIG_NUMA
58 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
59 #ifdef CONFIG_HIGHMEM
60 [N_HIGH_MEMORY] = { { [0] = 1UL } },
61 #endif
62 [N_CPU] = { { [0] = 1UL } },
63 #endif /* NUMA */
65 EXPORT_SYMBOL(node_states);
67 unsigned long totalram_pages __read_mostly;
68 unsigned long totalreserve_pages __read_mostly;
69 long nr_swap_pages;
70 int percpu_pagelist_fraction;
72 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
73 int pageblock_order __read_mostly;
74 #endif
76 static void __free_pages_ok(struct page *page, unsigned int order);
79 * results with 256, 32 in the lowmem_reserve sysctl:
80 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
81 * 1G machine -> (16M dma, 784M normal, 224M high)
82 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
83 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
84 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
86 * TBD: should special case ZONE_DMA32 machines here - in those we normally
87 * don't need any ZONE_NORMAL reservation
89 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
90 #ifdef CONFIG_ZONE_DMA
91 256,
92 #endif
93 #ifdef CONFIG_ZONE_DMA32
94 256,
95 #endif
96 #ifdef CONFIG_HIGHMEM
97 32,
98 #endif
99 32,
102 EXPORT_SYMBOL(totalram_pages);
104 static char * const zone_names[MAX_NR_ZONES] = {
105 #ifdef CONFIG_ZONE_DMA
106 "DMA",
107 #endif
108 #ifdef CONFIG_ZONE_DMA32
109 "DMA32",
110 #endif
111 "Normal",
112 #ifdef CONFIG_HIGHMEM
113 "HighMem",
114 #endif
115 "Movable",
118 int min_free_kbytes = 1024;
120 unsigned long __meminitdata nr_kernel_pages;
121 unsigned long __meminitdata nr_all_pages;
122 static unsigned long __meminitdata dma_reserve;
124 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
126 * MAX_ACTIVE_REGIONS determines the maximum number of distinct
127 * ranges of memory (RAM) that may be registered with add_active_range().
128 * Ranges passed to add_active_range() will be merged if possible
129 * so the number of times add_active_range() can be called is
130 * related to the number of nodes and the number of holes
132 #ifdef CONFIG_MAX_ACTIVE_REGIONS
133 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
134 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
135 #else
136 #if MAX_NUMNODES >= 32
137 /* If there can be many nodes, allow up to 50 holes per node */
138 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
139 #else
140 /* By default, allow up to 256 distinct regions */
141 #define MAX_ACTIVE_REGIONS 256
142 #endif
143 #endif
145 static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
146 static int __meminitdata nr_nodemap_entries;
147 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
148 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
149 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
150 static unsigned long __meminitdata node_boundary_start_pfn[MAX_NUMNODES];
151 static unsigned long __meminitdata node_boundary_end_pfn[MAX_NUMNODES];
152 #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
153 unsigned long __initdata required_kernelcore;
154 static unsigned long __initdata required_movablecore;
155 unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
157 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
158 int movable_zone;
159 EXPORT_SYMBOL(movable_zone);
160 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
162 #if MAX_NUMNODES > 1
163 int nr_node_ids __read_mostly = MAX_NUMNODES;
164 EXPORT_SYMBOL(nr_node_ids);
165 #endif
167 int page_group_by_mobility_disabled __read_mostly;
169 static void set_pageblock_migratetype(struct page *page, int migratetype)
171 set_pageblock_flags_group(page, (unsigned long)migratetype,
172 PB_migrate, PB_migrate_end);
175 #ifdef CONFIG_DEBUG_VM
176 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
178 int ret = 0;
179 unsigned seq;
180 unsigned long pfn = page_to_pfn(page);
182 do {
183 seq = zone_span_seqbegin(zone);
184 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
185 ret = 1;
186 else if (pfn < zone->zone_start_pfn)
187 ret = 1;
188 } while (zone_span_seqretry(zone, seq));
190 return ret;
193 static int page_is_consistent(struct zone *zone, struct page *page)
195 if (!pfn_valid_within(page_to_pfn(page)))
196 return 0;
197 if (zone != page_zone(page))
198 return 0;
200 return 1;
203 * Temporary debugging check for pages not lying within a given zone.
205 static int bad_range(struct zone *zone, struct page *page)
207 if (page_outside_zone_boundaries(zone, page))
208 return 1;
209 if (!page_is_consistent(zone, page))
210 return 1;
212 return 0;
214 #else
215 static inline int bad_range(struct zone *zone, struct page *page)
217 return 0;
219 #endif
221 static void bad_page(struct page *page)
223 printk(KERN_EMERG "Bad page state in process '%s'\n"
224 KERN_EMERG "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n"
225 KERN_EMERG "Trying to fix it up, but a reboot is needed\n"
226 KERN_EMERG "Backtrace:\n",
227 current->comm, page, (int)(2*sizeof(unsigned long)),
228 (unsigned long)page->flags, page->mapping,
229 page_mapcount(page), page_count(page));
230 dump_stack();
231 page->flags &= ~(1 << PG_lru |
232 1 << PG_private |
233 1 << PG_locked |
234 1 << PG_active |
235 1 << PG_dirty |
236 1 << PG_reclaim |
237 1 << PG_slab |
238 1 << PG_swapcache |
239 1 << PG_writeback |
240 1 << PG_buddy );
241 set_page_count(page, 0);
242 reset_page_mapcount(page);
243 page->mapping = NULL;
244 add_taint(TAINT_BAD_PAGE);
248 * Higher-order pages are called "compound pages". They are structured thusly:
250 * The first PAGE_SIZE page is called the "head page".
252 * The remaining PAGE_SIZE pages are called "tail pages".
254 * All pages have PG_compound set. All pages have their ->private pointing at
255 * the head page (even the head page has this).
257 * The first tail page's ->lru.next holds the address of the compound page's
258 * put_page() function. Its ->lru.prev holds the order of allocation.
259 * This usage means that zero-order pages may not be compound.
262 static void free_compound_page(struct page *page)
264 __free_pages_ok(page, compound_order(page));
267 static void prep_compound_page(struct page *page, unsigned long order)
269 int i;
270 int nr_pages = 1 << order;
272 set_compound_page_dtor(page, free_compound_page);
273 set_compound_order(page, order);
274 __SetPageHead(page);
275 for (i = 1; i < nr_pages; i++) {
276 struct page *p = page + i;
278 __SetPageTail(p);
279 p->first_page = page;
283 static void destroy_compound_page(struct page *page, unsigned long order)
285 int i;
286 int nr_pages = 1 << order;
288 if (unlikely(compound_order(page) != order))
289 bad_page(page);
291 if (unlikely(!PageHead(page)))
292 bad_page(page);
293 __ClearPageHead(page);
294 for (i = 1; i < nr_pages; i++) {
295 struct page *p = page + i;
297 if (unlikely(!PageTail(p) |
298 (p->first_page != page)))
299 bad_page(page);
300 __ClearPageTail(p);
304 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
306 int i;
308 VM_BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM);
310 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
311 * and __GFP_HIGHMEM from hard or soft interrupt context.
313 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
314 for (i = 0; i < (1 << order); i++)
315 clear_highpage(page + i);
318 static inline void set_page_order(struct page *page, int order)
320 set_page_private(page, order);
321 __SetPageBuddy(page);
324 static inline void rmv_page_order(struct page *page)
326 __ClearPageBuddy(page);
327 set_page_private(page, 0);
331 * Locate the struct page for both the matching buddy in our
332 * pair (buddy1) and the combined O(n+1) page they form (page).
334 * 1) Any buddy B1 will have an order O twin B2 which satisfies
335 * the following equation:
336 * B2 = B1 ^ (1 << O)
337 * For example, if the starting buddy (buddy2) is #8 its order
338 * 1 buddy is #10:
339 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
341 * 2) Any buddy B will have an order O+1 parent P which
342 * satisfies the following equation:
343 * P = B & ~(1 << O)
345 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
347 static inline struct page *
348 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
350 unsigned long buddy_idx = page_idx ^ (1 << order);
352 return page + (buddy_idx - page_idx);
355 static inline unsigned long
356 __find_combined_index(unsigned long page_idx, unsigned int order)
358 return (page_idx & ~(1 << order));
362 * This function checks whether a page is free && is the buddy
363 * we can do coalesce a page and its buddy if
364 * (a) the buddy is not in a hole &&
365 * (b) the buddy is in the buddy system &&
366 * (c) a page and its buddy have the same order &&
367 * (d) a page and its buddy are in the same zone.
369 * For recording whether a page is in the buddy system, we use PG_buddy.
370 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
372 * For recording page's order, we use page_private(page).
374 static inline int page_is_buddy(struct page *page, struct page *buddy,
375 int order)
377 if (!pfn_valid_within(page_to_pfn(buddy)))
378 return 0;
380 if (page_zone_id(page) != page_zone_id(buddy))
381 return 0;
383 if (PageBuddy(buddy) && page_order(buddy) == order) {
384 BUG_ON(page_count(buddy) != 0);
385 return 1;
387 return 0;
391 * Freeing function for a buddy system allocator.
393 * The concept of a buddy system is to maintain direct-mapped table
394 * (containing bit values) for memory blocks of various "orders".
395 * The bottom level table contains the map for the smallest allocatable
396 * units of memory (here, pages), and each level above it describes
397 * pairs of units from the levels below, hence, "buddies".
398 * At a high level, all that happens here is marking the table entry
399 * at the bottom level available, and propagating the changes upward
400 * as necessary, plus some accounting needed to play nicely with other
401 * parts of the VM system.
402 * At each level, we keep a list of pages, which are heads of continuous
403 * free pages of length of (1 << order) and marked with PG_buddy. Page's
404 * order is recorded in page_private(page) field.
405 * So when we are allocating or freeing one, we can derive the state of the
406 * other. That is, if we allocate a small block, and both were
407 * free, the remainder of the region must be split into blocks.
408 * If a block is freed, and its buddy is also free, then this
409 * triggers coalescing into a block of larger size.
411 * -- wli
414 static inline void __free_one_page(struct page *page,
415 struct zone *zone, unsigned int order)
417 unsigned long page_idx;
418 int order_size = 1 << order;
419 int migratetype = get_pageblock_migratetype(page);
421 if (unlikely(PageCompound(page)))
422 destroy_compound_page(page, order);
424 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
426 VM_BUG_ON(page_idx & (order_size - 1));
427 VM_BUG_ON(bad_range(zone, page));
429 __mod_zone_page_state(zone, NR_FREE_PAGES, order_size);
430 while (order < MAX_ORDER-1) {
431 unsigned long combined_idx;
432 struct page *buddy;
434 buddy = __page_find_buddy(page, page_idx, order);
435 if (!page_is_buddy(page, buddy, order))
436 break; /* Move the buddy up one level. */
438 list_del(&buddy->lru);
439 zone->free_area[order].nr_free--;
440 rmv_page_order(buddy);
441 combined_idx = __find_combined_index(page_idx, order);
442 page = page + (combined_idx - page_idx);
443 page_idx = combined_idx;
444 order++;
446 set_page_order(page, order);
447 list_add(&page->lru,
448 &zone->free_area[order].free_list[migratetype]);
449 zone->free_area[order].nr_free++;
452 static inline int free_pages_check(struct page *page)
454 if (unlikely(page_mapcount(page) |
455 (page->mapping != NULL) |
456 (page_count(page) != 0) |
457 (page->flags & (
458 1 << PG_lru |
459 1 << PG_private |
460 1 << PG_locked |
461 1 << PG_active |
462 1 << PG_slab |
463 1 << PG_swapcache |
464 1 << PG_writeback |
465 1 << PG_reserved |
466 1 << PG_buddy ))))
467 bad_page(page);
468 if (PageDirty(page))
469 __ClearPageDirty(page);
471 * For now, we report if PG_reserved was found set, but do not
472 * clear it, and do not free the page. But we shall soon need
473 * to do more, for when the ZERO_PAGE count wraps negative.
475 return PageReserved(page);
479 * Frees a list of pages.
480 * Assumes all pages on list are in same zone, and of same order.
481 * count is the number of pages to free.
483 * If the zone was previously in an "all pages pinned" state then look to
484 * see if this freeing clears that state.
486 * And clear the zone's pages_scanned counter, to hold off the "all pages are
487 * pinned" detection logic.
489 static void free_pages_bulk(struct zone *zone, int count,
490 struct list_head *list, int order)
492 spin_lock(&zone->lock);
493 zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
494 zone->pages_scanned = 0;
495 while (count--) {
496 struct page *page;
498 VM_BUG_ON(list_empty(list));
499 page = list_entry(list->prev, struct page, lru);
500 /* have to delete it as __free_one_page list manipulates */
501 list_del(&page->lru);
502 __free_one_page(page, zone, order);
504 spin_unlock(&zone->lock);
507 static void free_one_page(struct zone *zone, struct page *page, int order)
509 spin_lock(&zone->lock);
510 zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
511 zone->pages_scanned = 0;
512 __free_one_page(page, zone, order);
513 spin_unlock(&zone->lock);
516 static void __free_pages_ok(struct page *page, unsigned int order)
518 unsigned long flags;
519 int i;
520 int reserved = 0;
522 for (i = 0 ; i < (1 << order) ; ++i)
523 reserved += free_pages_check(page + i);
524 if (reserved)
525 return;
527 if (!PageHighMem(page))
528 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
529 arch_free_page(page, order);
530 kernel_map_pages(page, 1 << order, 0);
532 local_irq_save(flags);
533 __count_vm_events(PGFREE, 1 << order);
534 free_one_page(page_zone(page), page, order);
535 local_irq_restore(flags);
539 * permit the bootmem allocator to evade page validation on high-order frees
541 void fastcall __init __free_pages_bootmem(struct page *page, unsigned int order)
543 if (order == 0) {
544 __ClearPageReserved(page);
545 set_page_count(page, 0);
546 set_page_refcounted(page);
547 __free_page(page);
548 } else {
549 int loop;
551 prefetchw(page);
552 for (loop = 0; loop < BITS_PER_LONG; loop++) {
553 struct page *p = &page[loop];
555 if (loop + 1 < BITS_PER_LONG)
556 prefetchw(p + 1);
557 __ClearPageReserved(p);
558 set_page_count(p, 0);
561 set_page_refcounted(page);
562 __free_pages(page, order);
568 * The order of subdivision here is critical for the IO subsystem.
569 * Please do not alter this order without good reasons and regression
570 * testing. Specifically, as large blocks of memory are subdivided,
571 * the order in which smaller blocks are delivered depends on the order
572 * they're subdivided in this function. This is the primary factor
573 * influencing the order in which pages are delivered to the IO
574 * subsystem according to empirical testing, and this is also justified
575 * by considering the behavior of a buddy system containing a single
576 * large block of memory acted on by a series of small allocations.
577 * This behavior is a critical factor in sglist merging's success.
579 * -- wli
581 static inline void expand(struct zone *zone, struct page *page,
582 int low, int high, struct free_area *area,
583 int migratetype)
585 unsigned long size = 1 << high;
587 while (high > low) {
588 area--;
589 high--;
590 size >>= 1;
591 VM_BUG_ON(bad_range(zone, &page[size]));
592 list_add(&page[size].lru, &area->free_list[migratetype]);
593 area->nr_free++;
594 set_page_order(&page[size], high);
599 * This page is about to be returned from the page allocator
601 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
603 if (unlikely(page_mapcount(page) |
604 (page->mapping != NULL) |
605 (page_count(page) != 0) |
606 (page->flags & (
607 1 << PG_lru |
608 1 << PG_private |
609 1 << PG_locked |
610 1 << PG_active |
611 1 << PG_dirty |
612 1 << PG_slab |
613 1 << PG_swapcache |
614 1 << PG_writeback |
615 1 << PG_reserved |
616 1 << PG_buddy ))))
617 bad_page(page);
620 * For now, we report if PG_reserved was found set, but do not
621 * clear it, and do not allocate the page: as a safety net.
623 if (PageReserved(page))
624 return 1;
626 page->flags &= ~(1 << PG_uptodate | 1 << PG_error | 1 << PG_readahead |
627 1 << PG_referenced | 1 << PG_arch_1 |
628 1 << PG_owner_priv_1 | 1 << PG_mappedtodisk);
629 set_page_private(page, 0);
630 set_page_refcounted(page);
632 arch_alloc_page(page, order);
633 kernel_map_pages(page, 1 << order, 1);
635 if (gfp_flags & __GFP_ZERO)
636 prep_zero_page(page, order, gfp_flags);
638 if (order && (gfp_flags & __GFP_COMP))
639 prep_compound_page(page, order);
641 return 0;
645 * Go through the free lists for the given migratetype and remove
646 * the smallest available page from the freelists
648 static struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
649 int migratetype)
651 unsigned int current_order;
652 struct free_area * area;
653 struct page *page;
655 /* Find a page of the appropriate size in the preferred list */
656 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
657 area = &(zone->free_area[current_order]);
658 if (list_empty(&area->free_list[migratetype]))
659 continue;
661 page = list_entry(area->free_list[migratetype].next,
662 struct page, lru);
663 list_del(&page->lru);
664 rmv_page_order(page);
665 area->nr_free--;
666 __mod_zone_page_state(zone, NR_FREE_PAGES, - (1UL << order));
667 expand(zone, page, order, current_order, area, migratetype);
668 return page;
671 return NULL;
676 * This array describes the order lists are fallen back to when
677 * the free lists for the desirable migrate type are depleted
679 static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
680 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
681 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
682 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
683 [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */
687 * Move the free pages in a range to the free lists of the requested type.
688 * Note that start_page and end_pages are not aligned on a pageblock
689 * boundary. If alignment is required, use move_freepages_block()
691 int move_freepages(struct zone *zone,
692 struct page *start_page, struct page *end_page,
693 int migratetype)
695 struct page *page;
696 unsigned long order;
697 int pages_moved = 0;
699 #ifndef CONFIG_HOLES_IN_ZONE
701 * page_zone is not safe to call in this context when
702 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
703 * anyway as we check zone boundaries in move_freepages_block().
704 * Remove at a later date when no bug reports exist related to
705 * grouping pages by mobility
707 BUG_ON(page_zone(start_page) != page_zone(end_page));
708 #endif
710 for (page = start_page; page <= end_page;) {
711 if (!pfn_valid_within(page_to_pfn(page))) {
712 page++;
713 continue;
716 if (!PageBuddy(page)) {
717 page++;
718 continue;
721 order = page_order(page);
722 list_del(&page->lru);
723 list_add(&page->lru,
724 &zone->free_area[order].free_list[migratetype]);
725 page += 1 << order;
726 pages_moved += 1 << order;
729 return pages_moved;
732 int move_freepages_block(struct zone *zone, struct page *page, int migratetype)
734 unsigned long start_pfn, end_pfn;
735 struct page *start_page, *end_page;
737 start_pfn = page_to_pfn(page);
738 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
739 start_page = pfn_to_page(start_pfn);
740 end_page = start_page + pageblock_nr_pages - 1;
741 end_pfn = start_pfn + pageblock_nr_pages - 1;
743 /* Do not cross zone boundaries */
744 if (start_pfn < zone->zone_start_pfn)
745 start_page = page;
746 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
747 return 0;
749 return move_freepages(zone, start_page, end_page, migratetype);
752 /* Remove an element from the buddy allocator from the fallback list */
753 static struct page *__rmqueue_fallback(struct zone *zone, int order,
754 int start_migratetype)
756 struct free_area * area;
757 int current_order;
758 struct page *page;
759 int migratetype, i;
761 /* Find the largest possible block of pages in the other list */
762 for (current_order = MAX_ORDER-1; current_order >= order;
763 --current_order) {
764 for (i = 0; i < MIGRATE_TYPES - 1; i++) {
765 migratetype = fallbacks[start_migratetype][i];
767 /* MIGRATE_RESERVE handled later if necessary */
768 if (migratetype == MIGRATE_RESERVE)
769 continue;
771 area = &(zone->free_area[current_order]);
772 if (list_empty(&area->free_list[migratetype]))
773 continue;
775 page = list_entry(area->free_list[migratetype].next,
776 struct page, lru);
777 area->nr_free--;
780 * If breaking a large block of pages, move all free
781 * pages to the preferred allocation list. If falling
782 * back for a reclaimable kernel allocation, be more
783 * agressive about taking ownership of free pages
785 if (unlikely(current_order >= (pageblock_order >> 1)) ||
786 start_migratetype == MIGRATE_RECLAIMABLE) {
787 unsigned long pages;
788 pages = move_freepages_block(zone, page,
789 start_migratetype);
791 /* Claim the whole block if over half of it is free */
792 if (pages >= (1 << (pageblock_order-1)))
793 set_pageblock_migratetype(page,
794 start_migratetype);
796 migratetype = start_migratetype;
799 /* Remove the page from the freelists */
800 list_del(&page->lru);
801 rmv_page_order(page);
802 __mod_zone_page_state(zone, NR_FREE_PAGES,
803 -(1UL << order));
805 if (current_order == pageblock_order)
806 set_pageblock_migratetype(page,
807 start_migratetype);
809 expand(zone, page, order, current_order, area, migratetype);
810 return page;
814 /* Use MIGRATE_RESERVE rather than fail an allocation */
815 return __rmqueue_smallest(zone, order, MIGRATE_RESERVE);
819 * Do the hard work of removing an element from the buddy allocator.
820 * Call me with the zone->lock already held.
822 static struct page *__rmqueue(struct zone *zone, unsigned int order,
823 int migratetype)
825 struct page *page;
827 page = __rmqueue_smallest(zone, order, migratetype);
829 if (unlikely(!page))
830 page = __rmqueue_fallback(zone, order, migratetype);
832 return page;
836 * Obtain a specified number of elements from the buddy allocator, all under
837 * a single hold of the lock, for efficiency. Add them to the supplied list.
838 * Returns the number of new pages which were placed at *list.
840 static int rmqueue_bulk(struct zone *zone, unsigned int order,
841 unsigned long count, struct list_head *list,
842 int migratetype)
844 int i;
846 spin_lock(&zone->lock);
847 for (i = 0; i < count; ++i) {
848 struct page *page = __rmqueue(zone, order, migratetype);
849 if (unlikely(page == NULL))
850 break;
851 list_add(&page->lru, list);
852 set_page_private(page, migratetype);
854 spin_unlock(&zone->lock);
855 return i;
858 #ifdef CONFIG_NUMA
860 * Called from the vmstat counter updater to drain pagesets of this
861 * currently executing processor on remote nodes after they have
862 * expired.
864 * Note that this function must be called with the thread pinned to
865 * a single processor.
867 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
869 unsigned long flags;
870 int to_drain;
872 local_irq_save(flags);
873 if (pcp->count >= pcp->batch)
874 to_drain = pcp->batch;
875 else
876 to_drain = pcp->count;
877 free_pages_bulk(zone, to_drain, &pcp->list, 0);
878 pcp->count -= to_drain;
879 local_irq_restore(flags);
881 #endif
883 static void __drain_pages(unsigned int cpu)
885 unsigned long flags;
886 struct zone *zone;
887 int i;
889 for_each_zone(zone) {
890 struct per_cpu_pageset *pset;
892 if (!populated_zone(zone))
893 continue;
895 pset = zone_pcp(zone, cpu);
896 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
897 struct per_cpu_pages *pcp;
899 pcp = &pset->pcp[i];
900 local_irq_save(flags);
901 free_pages_bulk(zone, pcp->count, &pcp->list, 0);
902 pcp->count = 0;
903 local_irq_restore(flags);
908 #ifdef CONFIG_HIBERNATION
910 void mark_free_pages(struct zone *zone)
912 unsigned long pfn, max_zone_pfn;
913 unsigned long flags;
914 int order, t;
915 struct list_head *curr;
917 if (!zone->spanned_pages)
918 return;
920 spin_lock_irqsave(&zone->lock, flags);
922 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
923 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
924 if (pfn_valid(pfn)) {
925 struct page *page = pfn_to_page(pfn);
927 if (!swsusp_page_is_forbidden(page))
928 swsusp_unset_page_free(page);
931 for_each_migratetype_order(order, t) {
932 list_for_each(curr, &zone->free_area[order].free_list[t]) {
933 unsigned long i;
935 pfn = page_to_pfn(list_entry(curr, struct page, lru));
936 for (i = 0; i < (1UL << order); i++)
937 swsusp_set_page_free(pfn_to_page(pfn + i));
940 spin_unlock_irqrestore(&zone->lock, flags);
942 #endif /* CONFIG_PM */
945 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
947 void drain_local_pages(void)
949 unsigned long flags;
951 local_irq_save(flags);
952 __drain_pages(smp_processor_id());
953 local_irq_restore(flags);
956 void smp_drain_local_pages(void *arg)
958 drain_local_pages();
962 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
964 void drain_all_local_pages(void)
966 unsigned long flags;
968 local_irq_save(flags);
969 __drain_pages(smp_processor_id());
970 local_irq_restore(flags);
972 smp_call_function(smp_drain_local_pages, NULL, 0, 1);
976 * Free a 0-order page
978 static void fastcall free_hot_cold_page(struct page *page, int cold)
980 struct zone *zone = page_zone(page);
981 struct per_cpu_pages *pcp;
982 unsigned long flags;
984 if (PageAnon(page))
985 page->mapping = NULL;
986 if (free_pages_check(page))
987 return;
989 if (!PageHighMem(page))
990 debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
991 arch_free_page(page, 0);
992 kernel_map_pages(page, 1, 0);
994 pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
995 local_irq_save(flags);
996 __count_vm_event(PGFREE);
997 list_add(&page->lru, &pcp->list);
998 set_page_private(page, get_pageblock_migratetype(page));
999 pcp->count++;
1000 if (pcp->count >= pcp->high) {
1001 free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
1002 pcp->count -= pcp->batch;
1004 local_irq_restore(flags);
1005 put_cpu();
1008 void fastcall free_hot_page(struct page *page)
1010 free_hot_cold_page(page, 0);
1013 void fastcall free_cold_page(struct page *page)
1015 free_hot_cold_page(page, 1);
1019 * split_page takes a non-compound higher-order page, and splits it into
1020 * n (1<<order) sub-pages: page[0..n]
1021 * Each sub-page must be freed individually.
1023 * Note: this is probably too low level an operation for use in drivers.
1024 * Please consult with lkml before using this in your driver.
1026 void split_page(struct page *page, unsigned int order)
1028 int i;
1030 VM_BUG_ON(PageCompound(page));
1031 VM_BUG_ON(!page_count(page));
1032 for (i = 1; i < (1 << order); i++)
1033 set_page_refcounted(page + i);
1037 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1038 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1039 * or two.
1041 static struct page *buffered_rmqueue(struct zonelist *zonelist,
1042 struct zone *zone, int order, gfp_t gfp_flags)
1044 unsigned long flags;
1045 struct page *page;
1046 int cold = !!(gfp_flags & __GFP_COLD);
1047 int cpu;
1048 int migratetype = allocflags_to_migratetype(gfp_flags);
1050 again:
1051 cpu = get_cpu();
1052 if (likely(order == 0)) {
1053 struct per_cpu_pages *pcp;
1055 pcp = &zone_pcp(zone, cpu)->pcp[cold];
1056 local_irq_save(flags);
1057 if (!pcp->count) {
1058 pcp->count = rmqueue_bulk(zone, 0,
1059 pcp->batch, &pcp->list, migratetype);
1060 if (unlikely(!pcp->count))
1061 goto failed;
1064 /* Find a page of the appropriate migrate type */
1065 list_for_each_entry(page, &pcp->list, lru)
1066 if (page_private(page) == migratetype)
1067 break;
1069 /* Allocate more to the pcp list if necessary */
1070 if (unlikely(&page->lru == &pcp->list)) {
1071 pcp->count += rmqueue_bulk(zone, 0,
1072 pcp->batch, &pcp->list, migratetype);
1073 page = list_entry(pcp->list.next, struct page, lru);
1076 list_del(&page->lru);
1077 pcp->count--;
1078 } else {
1079 spin_lock_irqsave(&zone->lock, flags);
1080 page = __rmqueue(zone, order, migratetype);
1081 spin_unlock(&zone->lock);
1082 if (!page)
1083 goto failed;
1086 __count_zone_vm_events(PGALLOC, zone, 1 << order);
1087 zone_statistics(zonelist, zone);
1088 local_irq_restore(flags);
1089 put_cpu();
1091 VM_BUG_ON(bad_range(zone, page));
1092 if (prep_new_page(page, order, gfp_flags))
1093 goto again;
1094 return page;
1096 failed:
1097 local_irq_restore(flags);
1098 put_cpu();
1099 return NULL;
1102 #define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */
1103 #define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */
1104 #define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */
1105 #define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */
1106 #define ALLOC_HARDER 0x10 /* try to alloc harder */
1107 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1108 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
1110 #ifdef CONFIG_FAIL_PAGE_ALLOC
1112 static struct fail_page_alloc_attr {
1113 struct fault_attr attr;
1115 u32 ignore_gfp_highmem;
1116 u32 ignore_gfp_wait;
1117 u32 min_order;
1119 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1121 struct dentry *ignore_gfp_highmem_file;
1122 struct dentry *ignore_gfp_wait_file;
1123 struct dentry *min_order_file;
1125 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1127 } fail_page_alloc = {
1128 .attr = FAULT_ATTR_INITIALIZER,
1129 .ignore_gfp_wait = 1,
1130 .ignore_gfp_highmem = 1,
1131 .min_order = 1,
1134 static int __init setup_fail_page_alloc(char *str)
1136 return setup_fault_attr(&fail_page_alloc.attr, str);
1138 __setup("fail_page_alloc=", setup_fail_page_alloc);
1140 static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1142 if (order < fail_page_alloc.min_order)
1143 return 0;
1144 if (gfp_mask & __GFP_NOFAIL)
1145 return 0;
1146 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1147 return 0;
1148 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1149 return 0;
1151 return should_fail(&fail_page_alloc.attr, 1 << order);
1154 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1156 static int __init fail_page_alloc_debugfs(void)
1158 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1159 struct dentry *dir;
1160 int err;
1162 err = init_fault_attr_dentries(&fail_page_alloc.attr,
1163 "fail_page_alloc");
1164 if (err)
1165 return err;
1166 dir = fail_page_alloc.attr.dentries.dir;
1168 fail_page_alloc.ignore_gfp_wait_file =
1169 debugfs_create_bool("ignore-gfp-wait", mode, dir,
1170 &fail_page_alloc.ignore_gfp_wait);
1172 fail_page_alloc.ignore_gfp_highmem_file =
1173 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1174 &fail_page_alloc.ignore_gfp_highmem);
1175 fail_page_alloc.min_order_file =
1176 debugfs_create_u32("min-order", mode, dir,
1177 &fail_page_alloc.min_order);
1179 if (!fail_page_alloc.ignore_gfp_wait_file ||
1180 !fail_page_alloc.ignore_gfp_highmem_file ||
1181 !fail_page_alloc.min_order_file) {
1182 err = -ENOMEM;
1183 debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
1184 debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
1185 debugfs_remove(fail_page_alloc.min_order_file);
1186 cleanup_fault_attr_dentries(&fail_page_alloc.attr);
1189 return err;
1192 late_initcall(fail_page_alloc_debugfs);
1194 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1196 #else /* CONFIG_FAIL_PAGE_ALLOC */
1198 static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1200 return 0;
1203 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1206 * Return 1 if free pages are above 'mark'. This takes into account the order
1207 * of the allocation.
1209 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1210 int classzone_idx, int alloc_flags)
1212 /* free_pages my go negative - that's OK */
1213 long min = mark;
1214 long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
1215 int o;
1217 if (alloc_flags & ALLOC_HIGH)
1218 min -= min / 2;
1219 if (alloc_flags & ALLOC_HARDER)
1220 min -= min / 4;
1222 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1223 return 0;
1224 for (o = 0; o < order; o++) {
1225 /* At the next order, this order's pages become unavailable */
1226 free_pages -= z->free_area[o].nr_free << o;
1228 /* Require fewer higher order pages to be free */
1229 min >>= 1;
1231 if (free_pages <= min)
1232 return 0;
1234 return 1;
1237 #ifdef CONFIG_NUMA
1239 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1240 * skip over zones that are not allowed by the cpuset, or that have
1241 * been recently (in last second) found to be nearly full. See further
1242 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1243 * that have to skip over a lot of full or unallowed zones.
1245 * If the zonelist cache is present in the passed in zonelist, then
1246 * returns a pointer to the allowed node mask (either the current
1247 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1249 * If the zonelist cache is not available for this zonelist, does
1250 * nothing and returns NULL.
1252 * If the fullzones BITMAP in the zonelist cache is stale (more than
1253 * a second since last zap'd) then we zap it out (clear its bits.)
1255 * We hold off even calling zlc_setup, until after we've checked the
1256 * first zone in the zonelist, on the theory that most allocations will
1257 * be satisfied from that first zone, so best to examine that zone as
1258 * quickly as we can.
1260 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1262 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1263 nodemask_t *allowednodes; /* zonelist_cache approximation */
1265 zlc = zonelist->zlcache_ptr;
1266 if (!zlc)
1267 return NULL;
1269 if (jiffies - zlc->last_full_zap > 1 * HZ) {
1270 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1271 zlc->last_full_zap = jiffies;
1274 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1275 &cpuset_current_mems_allowed :
1276 &node_states[N_HIGH_MEMORY];
1277 return allowednodes;
1281 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1282 * if it is worth looking at further for free memory:
1283 * 1) Check that the zone isn't thought to be full (doesn't have its
1284 * bit set in the zonelist_cache fullzones BITMAP).
1285 * 2) Check that the zones node (obtained from the zonelist_cache
1286 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1287 * Return true (non-zero) if zone is worth looking at further, or
1288 * else return false (zero) if it is not.
1290 * This check -ignores- the distinction between various watermarks,
1291 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1292 * found to be full for any variation of these watermarks, it will
1293 * be considered full for up to one second by all requests, unless
1294 * we are so low on memory on all allowed nodes that we are forced
1295 * into the second scan of the zonelist.
1297 * In the second scan we ignore this zonelist cache and exactly
1298 * apply the watermarks to all zones, even it is slower to do so.
1299 * We are low on memory in the second scan, and should leave no stone
1300 * unturned looking for a free page.
1302 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zone **z,
1303 nodemask_t *allowednodes)
1305 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1306 int i; /* index of *z in zonelist zones */
1307 int n; /* node that zone *z is on */
1309 zlc = zonelist->zlcache_ptr;
1310 if (!zlc)
1311 return 1;
1313 i = z - zonelist->zones;
1314 n = zlc->z_to_n[i];
1316 /* This zone is worth trying if it is allowed but not full */
1317 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1321 * Given 'z' scanning a zonelist, set the corresponding bit in
1322 * zlc->fullzones, so that subsequent attempts to allocate a page
1323 * from that zone don't waste time re-examining it.
1325 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zone **z)
1327 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1328 int i; /* index of *z in zonelist zones */
1330 zlc = zonelist->zlcache_ptr;
1331 if (!zlc)
1332 return;
1334 i = z - zonelist->zones;
1336 set_bit(i, zlc->fullzones);
1339 #else /* CONFIG_NUMA */
1341 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1343 return NULL;
1346 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zone **z,
1347 nodemask_t *allowednodes)
1349 return 1;
1352 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zone **z)
1355 #endif /* CONFIG_NUMA */
1358 * get_page_from_freelist goes through the zonelist trying to allocate
1359 * a page.
1361 static struct page *
1362 get_page_from_freelist(gfp_t gfp_mask, unsigned int order,
1363 struct zonelist *zonelist, int alloc_flags)
1365 struct zone **z;
1366 struct page *page = NULL;
1367 int classzone_idx = zone_idx(zonelist->zones[0]);
1368 struct zone *zone;
1369 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1370 int zlc_active = 0; /* set if using zonelist_cache */
1371 int did_zlc_setup = 0; /* just call zlc_setup() one time */
1372 enum zone_type highest_zoneidx = -1; /* Gets set for policy zonelists */
1374 zonelist_scan:
1376 * Scan zonelist, looking for a zone with enough free.
1377 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1379 z = zonelist->zones;
1381 do {
1383 * In NUMA, this could be a policy zonelist which contains
1384 * zones that may not be allowed by the current gfp_mask.
1385 * Check the zone is allowed by the current flags
1387 if (unlikely(alloc_should_filter_zonelist(zonelist))) {
1388 if (highest_zoneidx == -1)
1389 highest_zoneidx = gfp_zone(gfp_mask);
1390 if (zone_idx(*z) > highest_zoneidx)
1391 continue;
1394 if (NUMA_BUILD && zlc_active &&
1395 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1396 continue;
1397 zone = *z;
1398 if ((alloc_flags & ALLOC_CPUSET) &&
1399 !cpuset_zone_allowed_softwall(zone, gfp_mask))
1400 goto try_next_zone;
1402 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1403 unsigned long mark;
1404 if (alloc_flags & ALLOC_WMARK_MIN)
1405 mark = zone->pages_min;
1406 else if (alloc_flags & ALLOC_WMARK_LOW)
1407 mark = zone->pages_low;
1408 else
1409 mark = zone->pages_high;
1410 if (!zone_watermark_ok(zone, order, mark,
1411 classzone_idx, alloc_flags)) {
1412 if (!zone_reclaim_mode ||
1413 !zone_reclaim(zone, gfp_mask, order))
1414 goto this_zone_full;
1418 page = buffered_rmqueue(zonelist, zone, order, gfp_mask);
1419 if (page)
1420 break;
1421 this_zone_full:
1422 if (NUMA_BUILD)
1423 zlc_mark_zone_full(zonelist, z);
1424 try_next_zone:
1425 if (NUMA_BUILD && !did_zlc_setup) {
1426 /* we do zlc_setup after the first zone is tried */
1427 allowednodes = zlc_setup(zonelist, alloc_flags);
1428 zlc_active = 1;
1429 did_zlc_setup = 1;
1431 } while (*(++z) != NULL);
1433 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1434 /* Disable zlc cache for second zonelist scan */
1435 zlc_active = 0;
1436 goto zonelist_scan;
1438 return page;
1442 * This is the 'heart' of the zoned buddy allocator.
1444 struct page * fastcall
1445 __alloc_pages(gfp_t gfp_mask, unsigned int order,
1446 struct zonelist *zonelist)
1448 const gfp_t wait = gfp_mask & __GFP_WAIT;
1449 struct zone **z;
1450 struct page *page;
1451 struct reclaim_state reclaim_state;
1452 struct task_struct *p = current;
1453 int do_retry;
1454 int alloc_flags;
1455 int did_some_progress;
1457 might_sleep_if(wait);
1459 if (should_fail_alloc_page(gfp_mask, order))
1460 return NULL;
1462 restart:
1463 z = zonelist->zones; /* the list of zones suitable for gfp_mask */
1465 if (unlikely(*z == NULL)) {
1467 * Happens if we have an empty zonelist as a result of
1468 * GFP_THISNODE being used on a memoryless node
1470 return NULL;
1473 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
1474 zonelist, ALLOC_WMARK_LOW|ALLOC_CPUSET);
1475 if (page)
1476 goto got_pg;
1479 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1480 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1481 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1482 * using a larger set of nodes after it has established that the
1483 * allowed per node queues are empty and that nodes are
1484 * over allocated.
1486 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
1487 goto nopage;
1489 for (z = zonelist->zones; *z; z++)
1490 wakeup_kswapd(*z, order);
1493 * OK, we're below the kswapd watermark and have kicked background
1494 * reclaim. Now things get more complex, so set up alloc_flags according
1495 * to how we want to proceed.
1497 * The caller may dip into page reserves a bit more if the caller
1498 * cannot run direct reclaim, or if the caller has realtime scheduling
1499 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
1500 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1502 alloc_flags = ALLOC_WMARK_MIN;
1503 if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
1504 alloc_flags |= ALLOC_HARDER;
1505 if (gfp_mask & __GFP_HIGH)
1506 alloc_flags |= ALLOC_HIGH;
1507 if (wait)
1508 alloc_flags |= ALLOC_CPUSET;
1511 * Go through the zonelist again. Let __GFP_HIGH and allocations
1512 * coming from realtime tasks go deeper into reserves.
1514 * This is the last chance, in general, before the goto nopage.
1515 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1516 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1518 page = get_page_from_freelist(gfp_mask, order, zonelist, alloc_flags);
1519 if (page)
1520 goto got_pg;
1522 /* This allocation should allow future memory freeing. */
1524 rebalance:
1525 if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
1526 && !in_interrupt()) {
1527 if (!(gfp_mask & __GFP_NOMEMALLOC)) {
1528 nofail_alloc:
1529 /* go through the zonelist yet again, ignoring mins */
1530 page = get_page_from_freelist(gfp_mask, order,
1531 zonelist, ALLOC_NO_WATERMARKS);
1532 if (page)
1533 goto got_pg;
1534 if (gfp_mask & __GFP_NOFAIL) {
1535 congestion_wait(WRITE, HZ/50);
1536 goto nofail_alloc;
1539 goto nopage;
1542 /* Atomic allocations - we can't balance anything */
1543 if (!wait)
1544 goto nopage;
1546 cond_resched();
1548 /* We now go into synchronous reclaim */
1549 cpuset_memory_pressure_bump();
1550 p->flags |= PF_MEMALLOC;
1551 reclaim_state.reclaimed_slab = 0;
1552 p->reclaim_state = &reclaim_state;
1554 did_some_progress = try_to_free_pages(zonelist->zones, order, gfp_mask);
1556 p->reclaim_state = NULL;
1557 p->flags &= ~PF_MEMALLOC;
1559 cond_resched();
1561 if (order != 0)
1562 drain_all_local_pages();
1564 if (likely(did_some_progress)) {
1565 page = get_page_from_freelist(gfp_mask, order,
1566 zonelist, alloc_flags);
1567 if (page)
1568 goto got_pg;
1569 } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1570 if (!try_set_zone_oom(zonelist)) {
1571 schedule_timeout_uninterruptible(1);
1572 goto restart;
1576 * Go through the zonelist yet one more time, keep
1577 * very high watermark here, this is only to catch
1578 * a parallel oom killing, we must fail if we're still
1579 * under heavy pressure.
1581 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
1582 zonelist, ALLOC_WMARK_HIGH|ALLOC_CPUSET);
1583 if (page) {
1584 clear_zonelist_oom(zonelist);
1585 goto got_pg;
1588 /* The OOM killer will not help higher order allocs so fail */
1589 if (order > PAGE_ALLOC_COSTLY_ORDER) {
1590 clear_zonelist_oom(zonelist);
1591 goto nopage;
1594 out_of_memory(zonelist, gfp_mask, order);
1595 clear_zonelist_oom(zonelist);
1596 goto restart;
1600 * Don't let big-order allocations loop unless the caller explicitly
1601 * requests that. Wait for some write requests to complete then retry.
1603 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
1604 * <= 3, but that may not be true in other implementations.
1606 do_retry = 0;
1607 if (!(gfp_mask & __GFP_NORETRY)) {
1608 if ((order <= PAGE_ALLOC_COSTLY_ORDER) ||
1609 (gfp_mask & __GFP_REPEAT))
1610 do_retry = 1;
1611 if (gfp_mask & __GFP_NOFAIL)
1612 do_retry = 1;
1614 if (do_retry) {
1615 congestion_wait(WRITE, HZ/50);
1616 goto rebalance;
1619 nopage:
1620 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1621 printk(KERN_WARNING "%s: page allocation failure."
1622 " order:%d, mode:0x%x\n",
1623 p->comm, order, gfp_mask);
1624 dump_stack();
1625 show_mem();
1627 got_pg:
1628 return page;
1631 EXPORT_SYMBOL(__alloc_pages);
1634 * Common helper functions.
1636 fastcall unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1638 struct page * page;
1639 page = alloc_pages(gfp_mask, order);
1640 if (!page)
1641 return 0;
1642 return (unsigned long) page_address(page);
1645 EXPORT_SYMBOL(__get_free_pages);
1647 fastcall unsigned long get_zeroed_page(gfp_t gfp_mask)
1649 struct page * page;
1652 * get_zeroed_page() returns a 32-bit address, which cannot represent
1653 * a highmem page
1655 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1657 page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1658 if (page)
1659 return (unsigned long) page_address(page);
1660 return 0;
1663 EXPORT_SYMBOL(get_zeroed_page);
1665 void __pagevec_free(struct pagevec *pvec)
1667 int i = pagevec_count(pvec);
1669 while (--i >= 0)
1670 free_hot_cold_page(pvec->pages[i], pvec->cold);
1673 fastcall void __free_pages(struct page *page, unsigned int order)
1675 if (put_page_testzero(page)) {
1676 if (order == 0)
1677 free_hot_page(page);
1678 else
1679 __free_pages_ok(page, order);
1683 EXPORT_SYMBOL(__free_pages);
1685 fastcall void free_pages(unsigned long addr, unsigned int order)
1687 if (addr != 0) {
1688 VM_BUG_ON(!virt_addr_valid((void *)addr));
1689 __free_pages(virt_to_page((void *)addr), order);
1693 EXPORT_SYMBOL(free_pages);
1695 static unsigned int nr_free_zone_pages(int offset)
1697 /* Just pick one node, since fallback list is circular */
1698 pg_data_t *pgdat = NODE_DATA(numa_node_id());
1699 unsigned int sum = 0;
1701 struct zonelist *zonelist = pgdat->node_zonelists + offset;
1702 struct zone **zonep = zonelist->zones;
1703 struct zone *zone;
1705 for (zone = *zonep++; zone; zone = *zonep++) {
1706 unsigned long size = zone->present_pages;
1707 unsigned long high = zone->pages_high;
1708 if (size > high)
1709 sum += size - high;
1712 return sum;
1716 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1718 unsigned int nr_free_buffer_pages(void)
1720 return nr_free_zone_pages(gfp_zone(GFP_USER));
1722 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1725 * Amount of free RAM allocatable within all zones
1727 unsigned int nr_free_pagecache_pages(void)
1729 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1732 static inline void show_node(struct zone *zone)
1734 if (NUMA_BUILD)
1735 printk("Node %d ", zone_to_nid(zone));
1738 void si_meminfo(struct sysinfo *val)
1740 val->totalram = totalram_pages;
1741 val->sharedram = 0;
1742 val->freeram = global_page_state(NR_FREE_PAGES);
1743 val->bufferram = nr_blockdev_pages();
1744 val->totalhigh = totalhigh_pages;
1745 val->freehigh = nr_free_highpages();
1746 val->mem_unit = PAGE_SIZE;
1749 EXPORT_SYMBOL(si_meminfo);
1751 #ifdef CONFIG_NUMA
1752 void si_meminfo_node(struct sysinfo *val, int nid)
1754 pg_data_t *pgdat = NODE_DATA(nid);
1756 val->totalram = pgdat->node_present_pages;
1757 val->freeram = node_page_state(nid, NR_FREE_PAGES);
1758 #ifdef CONFIG_HIGHMEM
1759 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1760 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
1761 NR_FREE_PAGES);
1762 #else
1763 val->totalhigh = 0;
1764 val->freehigh = 0;
1765 #endif
1766 val->mem_unit = PAGE_SIZE;
1768 #endif
1770 #define K(x) ((x) << (PAGE_SHIFT-10))
1773 * Show free area list (used inside shift_scroll-lock stuff)
1774 * We also calculate the percentage fragmentation. We do this by counting the
1775 * memory on each free list with the exception of the first item on the list.
1777 void show_free_areas(void)
1779 int cpu;
1780 struct zone *zone;
1782 for_each_zone(zone) {
1783 if (!populated_zone(zone))
1784 continue;
1786 show_node(zone);
1787 printk("%s per-cpu:\n", zone->name);
1789 for_each_online_cpu(cpu) {
1790 struct per_cpu_pageset *pageset;
1792 pageset = zone_pcp(zone, cpu);
1794 printk("CPU %4d: Hot: hi:%5d, btch:%4d usd:%4d "
1795 "Cold: hi:%5d, btch:%4d usd:%4d\n",
1796 cpu, pageset->pcp[0].high,
1797 pageset->pcp[0].batch, pageset->pcp[0].count,
1798 pageset->pcp[1].high, pageset->pcp[1].batch,
1799 pageset->pcp[1].count);
1803 printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu unstable:%lu\n"
1804 " free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n",
1805 global_page_state(NR_ACTIVE),
1806 global_page_state(NR_INACTIVE),
1807 global_page_state(NR_FILE_DIRTY),
1808 global_page_state(NR_WRITEBACK),
1809 global_page_state(NR_UNSTABLE_NFS),
1810 global_page_state(NR_FREE_PAGES),
1811 global_page_state(NR_SLAB_RECLAIMABLE) +
1812 global_page_state(NR_SLAB_UNRECLAIMABLE),
1813 global_page_state(NR_FILE_MAPPED),
1814 global_page_state(NR_PAGETABLE),
1815 global_page_state(NR_BOUNCE));
1817 for_each_zone(zone) {
1818 int i;
1820 if (!populated_zone(zone))
1821 continue;
1823 show_node(zone);
1824 printk("%s"
1825 " free:%lukB"
1826 " min:%lukB"
1827 " low:%lukB"
1828 " high:%lukB"
1829 " active:%lukB"
1830 " inactive:%lukB"
1831 " present:%lukB"
1832 " pages_scanned:%lu"
1833 " all_unreclaimable? %s"
1834 "\n",
1835 zone->name,
1836 K(zone_page_state(zone, NR_FREE_PAGES)),
1837 K(zone->pages_min),
1838 K(zone->pages_low),
1839 K(zone->pages_high),
1840 K(zone_page_state(zone, NR_ACTIVE)),
1841 K(zone_page_state(zone, NR_INACTIVE)),
1842 K(zone->present_pages),
1843 zone->pages_scanned,
1844 (zone_is_all_unreclaimable(zone) ? "yes" : "no")
1846 printk("lowmem_reserve[]:");
1847 for (i = 0; i < MAX_NR_ZONES; i++)
1848 printk(" %lu", zone->lowmem_reserve[i]);
1849 printk("\n");
1852 for_each_zone(zone) {
1853 unsigned long nr[MAX_ORDER], flags, order, total = 0;
1855 if (!populated_zone(zone))
1856 continue;
1858 show_node(zone);
1859 printk("%s: ", zone->name);
1861 spin_lock_irqsave(&zone->lock, flags);
1862 for (order = 0; order < MAX_ORDER; order++) {
1863 nr[order] = zone->free_area[order].nr_free;
1864 total += nr[order] << order;
1866 spin_unlock_irqrestore(&zone->lock, flags);
1867 for (order = 0; order < MAX_ORDER; order++)
1868 printk("%lu*%lukB ", nr[order], K(1UL) << order);
1869 printk("= %lukB\n", K(total));
1872 show_swap_cache_info();
1876 * Builds allocation fallback zone lists.
1878 * Add all populated zones of a node to the zonelist.
1880 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
1881 int nr_zones, enum zone_type zone_type)
1883 struct zone *zone;
1885 BUG_ON(zone_type >= MAX_NR_ZONES);
1886 zone_type++;
1888 do {
1889 zone_type--;
1890 zone = pgdat->node_zones + zone_type;
1891 if (populated_zone(zone)) {
1892 zonelist->zones[nr_zones++] = zone;
1893 check_highest_zone(zone_type);
1896 } while (zone_type);
1897 return nr_zones;
1902 * zonelist_order:
1903 * 0 = automatic detection of better ordering.
1904 * 1 = order by ([node] distance, -zonetype)
1905 * 2 = order by (-zonetype, [node] distance)
1907 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
1908 * the same zonelist. So only NUMA can configure this param.
1910 #define ZONELIST_ORDER_DEFAULT 0
1911 #define ZONELIST_ORDER_NODE 1
1912 #define ZONELIST_ORDER_ZONE 2
1914 /* zonelist order in the kernel.
1915 * set_zonelist_order() will set this to NODE or ZONE.
1917 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
1918 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
1921 #ifdef CONFIG_NUMA
1922 /* The value user specified ....changed by config */
1923 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
1924 /* string for sysctl */
1925 #define NUMA_ZONELIST_ORDER_LEN 16
1926 char numa_zonelist_order[16] = "default";
1929 * interface for configure zonelist ordering.
1930 * command line option "numa_zonelist_order"
1931 * = "[dD]efault - default, automatic configuration.
1932 * = "[nN]ode - order by node locality, then by zone within node
1933 * = "[zZ]one - order by zone, then by locality within zone
1936 static int __parse_numa_zonelist_order(char *s)
1938 if (*s == 'd' || *s == 'D') {
1939 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
1940 } else if (*s == 'n' || *s == 'N') {
1941 user_zonelist_order = ZONELIST_ORDER_NODE;
1942 } else if (*s == 'z' || *s == 'Z') {
1943 user_zonelist_order = ZONELIST_ORDER_ZONE;
1944 } else {
1945 printk(KERN_WARNING
1946 "Ignoring invalid numa_zonelist_order value: "
1947 "%s\n", s);
1948 return -EINVAL;
1950 return 0;
1953 static __init int setup_numa_zonelist_order(char *s)
1955 if (s)
1956 return __parse_numa_zonelist_order(s);
1957 return 0;
1959 early_param("numa_zonelist_order", setup_numa_zonelist_order);
1962 * sysctl handler for numa_zonelist_order
1964 int numa_zonelist_order_handler(ctl_table *table, int write,
1965 struct file *file, void __user *buffer, size_t *length,
1966 loff_t *ppos)
1968 char saved_string[NUMA_ZONELIST_ORDER_LEN];
1969 int ret;
1971 if (write)
1972 strncpy(saved_string, (char*)table->data,
1973 NUMA_ZONELIST_ORDER_LEN);
1974 ret = proc_dostring(table, write, file, buffer, length, ppos);
1975 if (ret)
1976 return ret;
1977 if (write) {
1978 int oldval = user_zonelist_order;
1979 if (__parse_numa_zonelist_order((char*)table->data)) {
1981 * bogus value. restore saved string
1983 strncpy((char*)table->data, saved_string,
1984 NUMA_ZONELIST_ORDER_LEN);
1985 user_zonelist_order = oldval;
1986 } else if (oldval != user_zonelist_order)
1987 build_all_zonelists();
1989 return 0;
1993 #define MAX_NODE_LOAD (num_online_nodes())
1994 static int node_load[MAX_NUMNODES];
1997 * find_next_best_node - find the next node that should appear in a given node's fallback list
1998 * @node: node whose fallback list we're appending
1999 * @used_node_mask: nodemask_t of already used nodes
2001 * We use a number of factors to determine which is the next node that should
2002 * appear on a given node's fallback list. The node should not have appeared
2003 * already in @node's fallback list, and it should be the next closest node
2004 * according to the distance array (which contains arbitrary distance values
2005 * from each node to each node in the system), and should also prefer nodes
2006 * with no CPUs, since presumably they'll have very little allocation pressure
2007 * on them otherwise.
2008 * It returns -1 if no node is found.
2010 static int find_next_best_node(int node, nodemask_t *used_node_mask)
2012 int n, val;
2013 int min_val = INT_MAX;
2014 int best_node = -1;
2016 /* Use the local node if we haven't already */
2017 if (!node_isset(node, *used_node_mask)) {
2018 node_set(node, *used_node_mask);
2019 return node;
2022 for_each_node_state(n, N_HIGH_MEMORY) {
2023 cpumask_t tmp;
2025 /* Don't want a node to appear more than once */
2026 if (node_isset(n, *used_node_mask))
2027 continue;
2029 /* Use the distance array to find the distance */
2030 val = node_distance(node, n);
2032 /* Penalize nodes under us ("prefer the next node") */
2033 val += (n < node);
2035 /* Give preference to headless and unused nodes */
2036 tmp = node_to_cpumask(n);
2037 if (!cpus_empty(tmp))
2038 val += PENALTY_FOR_NODE_WITH_CPUS;
2040 /* Slight preference for less loaded node */
2041 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2042 val += node_load[n];
2044 if (val < min_val) {
2045 min_val = val;
2046 best_node = n;
2050 if (best_node >= 0)
2051 node_set(best_node, *used_node_mask);
2053 return best_node;
2058 * Build zonelists ordered by node and zones within node.
2059 * This results in maximum locality--normal zone overflows into local
2060 * DMA zone, if any--but risks exhausting DMA zone.
2062 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
2064 enum zone_type i;
2065 int j;
2066 struct zonelist *zonelist;
2068 for (i = 0; i < MAX_NR_ZONES; i++) {
2069 zonelist = pgdat->node_zonelists + i;
2070 for (j = 0; zonelist->zones[j] != NULL; j++)
2072 j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
2073 zonelist->zones[j] = NULL;
2078 * Build gfp_thisnode zonelists
2080 static void build_thisnode_zonelists(pg_data_t *pgdat)
2082 enum zone_type i;
2083 int j;
2084 struct zonelist *zonelist;
2086 for (i = 0; i < MAX_NR_ZONES; i++) {
2087 zonelist = pgdat->node_zonelists + MAX_NR_ZONES + i;
2088 j = build_zonelists_node(pgdat, zonelist, 0, i);
2089 zonelist->zones[j] = NULL;
2094 * Build zonelists ordered by zone and nodes within zones.
2095 * This results in conserving DMA zone[s] until all Normal memory is
2096 * exhausted, but results in overflowing to remote node while memory
2097 * may still exist in local DMA zone.
2099 static int node_order[MAX_NUMNODES];
2101 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2103 enum zone_type i;
2104 int pos, j, node;
2105 int zone_type; /* needs to be signed */
2106 struct zone *z;
2107 struct zonelist *zonelist;
2109 for (i = 0; i < MAX_NR_ZONES; i++) {
2110 zonelist = pgdat->node_zonelists + i;
2111 pos = 0;
2112 for (zone_type = i; zone_type >= 0; zone_type--) {
2113 for (j = 0; j < nr_nodes; j++) {
2114 node = node_order[j];
2115 z = &NODE_DATA(node)->node_zones[zone_type];
2116 if (populated_zone(z)) {
2117 zonelist->zones[pos++] = z;
2118 check_highest_zone(zone_type);
2122 zonelist->zones[pos] = NULL;
2126 static int default_zonelist_order(void)
2128 int nid, zone_type;
2129 unsigned long low_kmem_size,total_size;
2130 struct zone *z;
2131 int average_size;
2133 * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
2134 * If they are really small and used heavily, the system can fall
2135 * into OOM very easily.
2136 * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
2138 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2139 low_kmem_size = 0;
2140 total_size = 0;
2141 for_each_online_node(nid) {
2142 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2143 z = &NODE_DATA(nid)->node_zones[zone_type];
2144 if (populated_zone(z)) {
2145 if (zone_type < ZONE_NORMAL)
2146 low_kmem_size += z->present_pages;
2147 total_size += z->present_pages;
2151 if (!low_kmem_size || /* there are no DMA area. */
2152 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2153 return ZONELIST_ORDER_NODE;
2155 * look into each node's config.
2156 * If there is a node whose DMA/DMA32 memory is very big area on
2157 * local memory, NODE_ORDER may be suitable.
2159 average_size = total_size /
2160 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
2161 for_each_online_node(nid) {
2162 low_kmem_size = 0;
2163 total_size = 0;
2164 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2165 z = &NODE_DATA(nid)->node_zones[zone_type];
2166 if (populated_zone(z)) {
2167 if (zone_type < ZONE_NORMAL)
2168 low_kmem_size += z->present_pages;
2169 total_size += z->present_pages;
2172 if (low_kmem_size &&
2173 total_size > average_size && /* ignore small node */
2174 low_kmem_size > total_size * 70/100)
2175 return ZONELIST_ORDER_NODE;
2177 return ZONELIST_ORDER_ZONE;
2180 static void set_zonelist_order(void)
2182 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
2183 current_zonelist_order = default_zonelist_order();
2184 else
2185 current_zonelist_order = user_zonelist_order;
2188 static void build_zonelists(pg_data_t *pgdat)
2190 int j, node, load;
2191 enum zone_type i;
2192 nodemask_t used_mask;
2193 int local_node, prev_node;
2194 struct zonelist *zonelist;
2195 int order = current_zonelist_order;
2197 /* initialize zonelists */
2198 for (i = 0; i < MAX_ZONELISTS; i++) {
2199 zonelist = pgdat->node_zonelists + i;
2200 zonelist->zones[0] = NULL;
2203 /* NUMA-aware ordering of nodes */
2204 local_node = pgdat->node_id;
2205 load = num_online_nodes();
2206 prev_node = local_node;
2207 nodes_clear(used_mask);
2209 memset(node_load, 0, sizeof(node_load));
2210 memset(node_order, 0, sizeof(node_order));
2211 j = 0;
2213 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
2214 int distance = node_distance(local_node, node);
2217 * If another node is sufficiently far away then it is better
2218 * to reclaim pages in a zone before going off node.
2220 if (distance > RECLAIM_DISTANCE)
2221 zone_reclaim_mode = 1;
2224 * We don't want to pressure a particular node.
2225 * So adding penalty to the first node in same
2226 * distance group to make it round-robin.
2228 if (distance != node_distance(local_node, prev_node))
2229 node_load[node] = load;
2231 prev_node = node;
2232 load--;
2233 if (order == ZONELIST_ORDER_NODE)
2234 build_zonelists_in_node_order(pgdat, node);
2235 else
2236 node_order[j++] = node; /* remember order */
2239 if (order == ZONELIST_ORDER_ZONE) {
2240 /* calculate node order -- i.e., DMA last! */
2241 build_zonelists_in_zone_order(pgdat, j);
2244 build_thisnode_zonelists(pgdat);
2247 /* Construct the zonelist performance cache - see further mmzone.h */
2248 static void build_zonelist_cache(pg_data_t *pgdat)
2250 int i;
2252 for (i = 0; i < MAX_NR_ZONES; i++) {
2253 struct zonelist *zonelist;
2254 struct zonelist_cache *zlc;
2255 struct zone **z;
2257 zonelist = pgdat->node_zonelists + i;
2258 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
2259 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
2260 for (z = zonelist->zones; *z; z++)
2261 zlc->z_to_n[z - zonelist->zones] = zone_to_nid(*z);
2266 #else /* CONFIG_NUMA */
2268 static void set_zonelist_order(void)
2270 current_zonelist_order = ZONELIST_ORDER_ZONE;
2273 static void build_zonelists(pg_data_t *pgdat)
2275 int node, local_node;
2276 enum zone_type i,j;
2278 local_node = pgdat->node_id;
2279 for (i = 0; i < MAX_NR_ZONES; i++) {
2280 struct zonelist *zonelist;
2282 zonelist = pgdat->node_zonelists + i;
2284 j = build_zonelists_node(pgdat, zonelist, 0, i);
2286 * Now we build the zonelist so that it contains the zones
2287 * of all the other nodes.
2288 * We don't want to pressure a particular node, so when
2289 * building the zones for node N, we make sure that the
2290 * zones coming right after the local ones are those from
2291 * node N+1 (modulo N)
2293 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
2294 if (!node_online(node))
2295 continue;
2296 j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
2298 for (node = 0; node < local_node; node++) {
2299 if (!node_online(node))
2300 continue;
2301 j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
2304 zonelist->zones[j] = NULL;
2308 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
2309 static void build_zonelist_cache(pg_data_t *pgdat)
2311 int i;
2313 for (i = 0; i < MAX_NR_ZONES; i++)
2314 pgdat->node_zonelists[i].zlcache_ptr = NULL;
2317 #endif /* CONFIG_NUMA */
2319 /* return values int ....just for stop_machine_run() */
2320 static int __build_all_zonelists(void *dummy)
2322 int nid;
2324 for_each_online_node(nid) {
2325 pg_data_t *pgdat = NODE_DATA(nid);
2327 build_zonelists(pgdat);
2328 build_zonelist_cache(pgdat);
2330 return 0;
2333 void build_all_zonelists(void)
2335 set_zonelist_order();
2337 if (system_state == SYSTEM_BOOTING) {
2338 __build_all_zonelists(NULL);
2339 cpuset_init_current_mems_allowed();
2340 } else {
2341 /* we have to stop all cpus to guarantee there is no user
2342 of zonelist */
2343 stop_machine_run(__build_all_zonelists, NULL, NR_CPUS);
2344 /* cpuset refresh routine should be here */
2346 vm_total_pages = nr_free_pagecache_pages();
2348 * Disable grouping by mobility if the number of pages in the
2349 * system is too low to allow the mechanism to work. It would be
2350 * more accurate, but expensive to check per-zone. This check is
2351 * made on memory-hotadd so a system can start with mobility
2352 * disabled and enable it later
2354 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
2355 page_group_by_mobility_disabled = 1;
2356 else
2357 page_group_by_mobility_disabled = 0;
2359 printk("Built %i zonelists in %s order, mobility grouping %s. "
2360 "Total pages: %ld\n",
2361 num_online_nodes(),
2362 zonelist_order_name[current_zonelist_order],
2363 page_group_by_mobility_disabled ? "off" : "on",
2364 vm_total_pages);
2365 #ifdef CONFIG_NUMA
2366 printk("Policy zone: %s\n", zone_names[policy_zone]);
2367 #endif
2371 * Helper functions to size the waitqueue hash table.
2372 * Essentially these want to choose hash table sizes sufficiently
2373 * large so that collisions trying to wait on pages are rare.
2374 * But in fact, the number of active page waitqueues on typical
2375 * systems is ridiculously low, less than 200. So this is even
2376 * conservative, even though it seems large.
2378 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
2379 * waitqueues, i.e. the size of the waitq table given the number of pages.
2381 #define PAGES_PER_WAITQUEUE 256
2383 #ifndef CONFIG_MEMORY_HOTPLUG
2384 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2386 unsigned long size = 1;
2388 pages /= PAGES_PER_WAITQUEUE;
2390 while (size < pages)
2391 size <<= 1;
2394 * Once we have dozens or even hundreds of threads sleeping
2395 * on IO we've got bigger problems than wait queue collision.
2396 * Limit the size of the wait table to a reasonable size.
2398 size = min(size, 4096UL);
2400 return max(size, 4UL);
2402 #else
2404 * A zone's size might be changed by hot-add, so it is not possible to determine
2405 * a suitable size for its wait_table. So we use the maximum size now.
2407 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
2409 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
2410 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
2411 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
2413 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
2414 * or more by the traditional way. (See above). It equals:
2416 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
2417 * ia64(16K page size) : = ( 8G + 4M)byte.
2418 * powerpc (64K page size) : = (32G +16M)byte.
2420 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2422 return 4096UL;
2424 #endif
2427 * This is an integer logarithm so that shifts can be used later
2428 * to extract the more random high bits from the multiplicative
2429 * hash function before the remainder is taken.
2431 static inline unsigned long wait_table_bits(unsigned long size)
2433 return ffz(~size);
2436 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
2439 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
2440 * of blocks reserved is based on zone->pages_min. The memory within the
2441 * reserve will tend to store contiguous free pages. Setting min_free_kbytes
2442 * higher will lead to a bigger reserve which will get freed as contiguous
2443 * blocks as reclaim kicks in
2445 static void setup_zone_migrate_reserve(struct zone *zone)
2447 unsigned long start_pfn, pfn, end_pfn;
2448 struct page *page;
2449 unsigned long reserve, block_migratetype;
2451 /* Get the start pfn, end pfn and the number of blocks to reserve */
2452 start_pfn = zone->zone_start_pfn;
2453 end_pfn = start_pfn + zone->spanned_pages;
2454 reserve = roundup(zone->pages_min, pageblock_nr_pages) >>
2455 pageblock_order;
2457 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
2458 if (!pfn_valid(pfn))
2459 continue;
2460 page = pfn_to_page(pfn);
2462 /* Blocks with reserved pages will never free, skip them. */
2463 if (PageReserved(page))
2464 continue;
2466 block_migratetype = get_pageblock_migratetype(page);
2468 /* If this block is reserved, account for it */
2469 if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
2470 reserve--;
2471 continue;
2474 /* Suitable for reserving if this block is movable */
2475 if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
2476 set_pageblock_migratetype(page, MIGRATE_RESERVE);
2477 move_freepages_block(zone, page, MIGRATE_RESERVE);
2478 reserve--;
2479 continue;
2483 * If the reserve is met and this is a previous reserved block,
2484 * take it back
2486 if (block_migratetype == MIGRATE_RESERVE) {
2487 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2488 move_freepages_block(zone, page, MIGRATE_MOVABLE);
2494 * Initially all pages are reserved - free ones are freed
2495 * up by free_all_bootmem() once the early boot process is
2496 * done. Non-atomic initialization, single-pass.
2498 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
2499 unsigned long start_pfn, enum memmap_context context)
2501 struct page *page;
2502 unsigned long end_pfn = start_pfn + size;
2503 unsigned long pfn;
2505 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
2507 * There can be holes in boot-time mem_map[]s
2508 * handed to this function. They do not
2509 * exist on hotplugged memory.
2511 if (context == MEMMAP_EARLY) {
2512 if (!early_pfn_valid(pfn))
2513 continue;
2514 if (!early_pfn_in_nid(pfn, nid))
2515 continue;
2517 page = pfn_to_page(pfn);
2518 set_page_links(page, zone, nid, pfn);
2519 init_page_count(page);
2520 reset_page_mapcount(page);
2521 SetPageReserved(page);
2524 * Mark the block movable so that blocks are reserved for
2525 * movable at startup. This will force kernel allocations
2526 * to reserve their blocks rather than leaking throughout
2527 * the address space during boot when many long-lived
2528 * kernel allocations are made. Later some blocks near
2529 * the start are marked MIGRATE_RESERVE by
2530 * setup_zone_migrate_reserve()
2532 if ((pfn & (pageblock_nr_pages-1)))
2533 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2535 INIT_LIST_HEAD(&page->lru);
2536 #ifdef WANT_PAGE_VIRTUAL
2537 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
2538 if (!is_highmem_idx(zone))
2539 set_page_address(page, __va(pfn << PAGE_SHIFT));
2540 #endif
2544 static void __meminit zone_init_free_lists(struct pglist_data *pgdat,
2545 struct zone *zone, unsigned long size)
2547 int order, t;
2548 for_each_migratetype_order(order, t) {
2549 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
2550 zone->free_area[order].nr_free = 0;
2554 #ifndef __HAVE_ARCH_MEMMAP_INIT
2555 #define memmap_init(size, nid, zone, start_pfn) \
2556 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
2557 #endif
2559 static int __devinit zone_batchsize(struct zone *zone)
2561 int batch;
2564 * The per-cpu-pages pools are set to around 1000th of the
2565 * size of the zone. But no more than 1/2 of a meg.
2567 * OK, so we don't know how big the cache is. So guess.
2569 batch = zone->present_pages / 1024;
2570 if (batch * PAGE_SIZE > 512 * 1024)
2571 batch = (512 * 1024) / PAGE_SIZE;
2572 batch /= 4; /* We effectively *= 4 below */
2573 if (batch < 1)
2574 batch = 1;
2577 * Clamp the batch to a 2^n - 1 value. Having a power
2578 * of 2 value was found to be more likely to have
2579 * suboptimal cache aliasing properties in some cases.
2581 * For example if 2 tasks are alternately allocating
2582 * batches of pages, one task can end up with a lot
2583 * of pages of one half of the possible page colors
2584 * and the other with pages of the other colors.
2586 batch = (1 << (fls(batch + batch/2)-1)) - 1;
2588 return batch;
2591 inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
2593 struct per_cpu_pages *pcp;
2595 memset(p, 0, sizeof(*p));
2597 pcp = &p->pcp[0]; /* hot */
2598 pcp->count = 0;
2599 pcp->high = 6 * batch;
2600 pcp->batch = max(1UL, 1 * batch);
2601 INIT_LIST_HEAD(&pcp->list);
2603 pcp = &p->pcp[1]; /* cold*/
2604 pcp->count = 0;
2605 pcp->high = 2 * batch;
2606 pcp->batch = max(1UL, batch/2);
2607 INIT_LIST_HEAD(&pcp->list);
2611 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
2612 * to the value high for the pageset p.
2615 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
2616 unsigned long high)
2618 struct per_cpu_pages *pcp;
2620 pcp = &p->pcp[0]; /* hot list */
2621 pcp->high = high;
2622 pcp->batch = max(1UL, high/4);
2623 if ((high/4) > (PAGE_SHIFT * 8))
2624 pcp->batch = PAGE_SHIFT * 8;
2628 #ifdef CONFIG_NUMA
2630 * Boot pageset table. One per cpu which is going to be used for all
2631 * zones and all nodes. The parameters will be set in such a way
2632 * that an item put on a list will immediately be handed over to
2633 * the buddy list. This is safe since pageset manipulation is done
2634 * with interrupts disabled.
2636 * Some NUMA counter updates may also be caught by the boot pagesets.
2638 * The boot_pagesets must be kept even after bootup is complete for
2639 * unused processors and/or zones. They do play a role for bootstrapping
2640 * hotplugged processors.
2642 * zoneinfo_show() and maybe other functions do
2643 * not check if the processor is online before following the pageset pointer.
2644 * Other parts of the kernel may not check if the zone is available.
2646 static struct per_cpu_pageset boot_pageset[NR_CPUS];
2649 * Dynamically allocate memory for the
2650 * per cpu pageset array in struct zone.
2652 static int __cpuinit process_zones(int cpu)
2654 struct zone *zone, *dzone;
2655 int node = cpu_to_node(cpu);
2657 node_set_state(node, N_CPU); /* this node has a cpu */
2659 for_each_zone(zone) {
2661 if (!populated_zone(zone))
2662 continue;
2664 zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
2665 GFP_KERNEL, node);
2666 if (!zone_pcp(zone, cpu))
2667 goto bad;
2669 setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
2671 if (percpu_pagelist_fraction)
2672 setup_pagelist_highmark(zone_pcp(zone, cpu),
2673 (zone->present_pages / percpu_pagelist_fraction));
2676 return 0;
2677 bad:
2678 for_each_zone(dzone) {
2679 if (!populated_zone(dzone))
2680 continue;
2681 if (dzone == zone)
2682 break;
2683 kfree(zone_pcp(dzone, cpu));
2684 zone_pcp(dzone, cpu) = NULL;
2686 return -ENOMEM;
2689 static inline void free_zone_pagesets(int cpu)
2691 struct zone *zone;
2693 for_each_zone(zone) {
2694 struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
2696 /* Free per_cpu_pageset if it is slab allocated */
2697 if (pset != &boot_pageset[cpu])
2698 kfree(pset);
2699 zone_pcp(zone, cpu) = NULL;
2703 static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
2704 unsigned long action,
2705 void *hcpu)
2707 int cpu = (long)hcpu;
2708 int ret = NOTIFY_OK;
2710 switch (action) {
2711 case CPU_UP_PREPARE:
2712 case CPU_UP_PREPARE_FROZEN:
2713 if (process_zones(cpu))
2714 ret = NOTIFY_BAD;
2715 break;
2716 case CPU_UP_CANCELED:
2717 case CPU_UP_CANCELED_FROZEN:
2718 case CPU_DEAD:
2719 case CPU_DEAD_FROZEN:
2720 free_zone_pagesets(cpu);
2721 break;
2722 default:
2723 break;
2725 return ret;
2728 static struct notifier_block __cpuinitdata pageset_notifier =
2729 { &pageset_cpuup_callback, NULL, 0 };
2731 void __init setup_per_cpu_pageset(void)
2733 int err;
2735 /* Initialize per_cpu_pageset for cpu 0.
2736 * A cpuup callback will do this for every cpu
2737 * as it comes online
2739 err = process_zones(smp_processor_id());
2740 BUG_ON(err);
2741 register_cpu_notifier(&pageset_notifier);
2744 #endif
2746 static noinline __init_refok
2747 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
2749 int i;
2750 struct pglist_data *pgdat = zone->zone_pgdat;
2751 size_t alloc_size;
2754 * The per-page waitqueue mechanism uses hashed waitqueues
2755 * per zone.
2757 zone->wait_table_hash_nr_entries =
2758 wait_table_hash_nr_entries(zone_size_pages);
2759 zone->wait_table_bits =
2760 wait_table_bits(zone->wait_table_hash_nr_entries);
2761 alloc_size = zone->wait_table_hash_nr_entries
2762 * sizeof(wait_queue_head_t);
2764 if (system_state == SYSTEM_BOOTING) {
2765 zone->wait_table = (wait_queue_head_t *)
2766 alloc_bootmem_node(pgdat, alloc_size);
2767 } else {
2769 * This case means that a zone whose size was 0 gets new memory
2770 * via memory hot-add.
2771 * But it may be the case that a new node was hot-added. In
2772 * this case vmalloc() will not be able to use this new node's
2773 * memory - this wait_table must be initialized to use this new
2774 * node itself as well.
2775 * To use this new node's memory, further consideration will be
2776 * necessary.
2778 zone->wait_table = vmalloc(alloc_size);
2780 if (!zone->wait_table)
2781 return -ENOMEM;
2783 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
2784 init_waitqueue_head(zone->wait_table + i);
2786 return 0;
2789 static __meminit void zone_pcp_init(struct zone *zone)
2791 int cpu;
2792 unsigned long batch = zone_batchsize(zone);
2794 for (cpu = 0; cpu < NR_CPUS; cpu++) {
2795 #ifdef CONFIG_NUMA
2796 /* Early boot. Slab allocator not functional yet */
2797 zone_pcp(zone, cpu) = &boot_pageset[cpu];
2798 setup_pageset(&boot_pageset[cpu],0);
2799 #else
2800 setup_pageset(zone_pcp(zone,cpu), batch);
2801 #endif
2803 if (zone->present_pages)
2804 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
2805 zone->name, zone->present_pages, batch);
2808 __meminit int init_currently_empty_zone(struct zone *zone,
2809 unsigned long zone_start_pfn,
2810 unsigned long size,
2811 enum memmap_context context)
2813 struct pglist_data *pgdat = zone->zone_pgdat;
2814 int ret;
2815 ret = zone_wait_table_init(zone, size);
2816 if (ret)
2817 return ret;
2818 pgdat->nr_zones = zone_idx(zone) + 1;
2820 zone->zone_start_pfn = zone_start_pfn;
2822 memmap_init(size, pgdat->node_id, zone_idx(zone), zone_start_pfn);
2824 zone_init_free_lists(pgdat, zone, zone->spanned_pages);
2826 return 0;
2829 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
2831 * Basic iterator support. Return the first range of PFNs for a node
2832 * Note: nid == MAX_NUMNODES returns first region regardless of node
2834 static int __meminit first_active_region_index_in_nid(int nid)
2836 int i;
2838 for (i = 0; i < nr_nodemap_entries; i++)
2839 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
2840 return i;
2842 return -1;
2846 * Basic iterator support. Return the next active range of PFNs for a node
2847 * Note: nid == MAX_NUMNODES returns next region regardless of node
2849 static int __meminit next_active_region_index_in_nid(int index, int nid)
2851 for (index = index + 1; index < nr_nodemap_entries; index++)
2852 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
2853 return index;
2855 return -1;
2858 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
2860 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
2861 * Architectures may implement their own version but if add_active_range()
2862 * was used and there are no special requirements, this is a convenient
2863 * alternative
2865 int __meminit early_pfn_to_nid(unsigned long pfn)
2867 int i;
2869 for (i = 0; i < nr_nodemap_entries; i++) {
2870 unsigned long start_pfn = early_node_map[i].start_pfn;
2871 unsigned long end_pfn = early_node_map[i].end_pfn;
2873 if (start_pfn <= pfn && pfn < end_pfn)
2874 return early_node_map[i].nid;
2877 return 0;
2879 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
2881 /* Basic iterator support to walk early_node_map[] */
2882 #define for_each_active_range_index_in_nid(i, nid) \
2883 for (i = first_active_region_index_in_nid(nid); i != -1; \
2884 i = next_active_region_index_in_nid(i, nid))
2887 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
2888 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
2889 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
2891 * If an architecture guarantees that all ranges registered with
2892 * add_active_ranges() contain no holes and may be freed, this
2893 * this function may be used instead of calling free_bootmem() manually.
2895 void __init free_bootmem_with_active_regions(int nid,
2896 unsigned long max_low_pfn)
2898 int i;
2900 for_each_active_range_index_in_nid(i, nid) {
2901 unsigned long size_pages = 0;
2902 unsigned long end_pfn = early_node_map[i].end_pfn;
2904 if (early_node_map[i].start_pfn >= max_low_pfn)
2905 continue;
2907 if (end_pfn > max_low_pfn)
2908 end_pfn = max_low_pfn;
2910 size_pages = end_pfn - early_node_map[i].start_pfn;
2911 free_bootmem_node(NODE_DATA(early_node_map[i].nid),
2912 PFN_PHYS(early_node_map[i].start_pfn),
2913 size_pages << PAGE_SHIFT);
2918 * sparse_memory_present_with_active_regions - Call memory_present for each active range
2919 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
2921 * If an architecture guarantees that all ranges registered with
2922 * add_active_ranges() contain no holes and may be freed, this
2923 * function may be used instead of calling memory_present() manually.
2925 void __init sparse_memory_present_with_active_regions(int nid)
2927 int i;
2929 for_each_active_range_index_in_nid(i, nid)
2930 memory_present(early_node_map[i].nid,
2931 early_node_map[i].start_pfn,
2932 early_node_map[i].end_pfn);
2936 * push_node_boundaries - Push node boundaries to at least the requested boundary
2937 * @nid: The nid of the node to push the boundary for
2938 * @start_pfn: The start pfn of the node
2939 * @end_pfn: The end pfn of the node
2941 * In reserve-based hot-add, mem_map is allocated that is unused until hotadd
2942 * time. Specifically, on x86_64, SRAT will report ranges that can potentially
2943 * be hotplugged even though no physical memory exists. This function allows
2944 * an arch to push out the node boundaries so mem_map is allocated that can
2945 * be used later.
2947 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
2948 void __init push_node_boundaries(unsigned int nid,
2949 unsigned long start_pfn, unsigned long end_pfn)
2951 printk(KERN_DEBUG "Entering push_node_boundaries(%u, %lu, %lu)\n",
2952 nid, start_pfn, end_pfn);
2954 /* Initialise the boundary for this node if necessary */
2955 if (node_boundary_end_pfn[nid] == 0)
2956 node_boundary_start_pfn[nid] = -1UL;
2958 /* Update the boundaries */
2959 if (node_boundary_start_pfn[nid] > start_pfn)
2960 node_boundary_start_pfn[nid] = start_pfn;
2961 if (node_boundary_end_pfn[nid] < end_pfn)
2962 node_boundary_end_pfn[nid] = end_pfn;
2965 /* If necessary, push the node boundary out for reserve hotadd */
2966 static void __meminit account_node_boundary(unsigned int nid,
2967 unsigned long *start_pfn, unsigned long *end_pfn)
2969 printk(KERN_DEBUG "Entering account_node_boundary(%u, %lu, %lu)\n",
2970 nid, *start_pfn, *end_pfn);
2972 /* Return if boundary information has not been provided */
2973 if (node_boundary_end_pfn[nid] == 0)
2974 return;
2976 /* Check the boundaries and update if necessary */
2977 if (node_boundary_start_pfn[nid] < *start_pfn)
2978 *start_pfn = node_boundary_start_pfn[nid];
2979 if (node_boundary_end_pfn[nid] > *end_pfn)
2980 *end_pfn = node_boundary_end_pfn[nid];
2982 #else
2983 void __init push_node_boundaries(unsigned int nid,
2984 unsigned long start_pfn, unsigned long end_pfn) {}
2986 static void __meminit account_node_boundary(unsigned int nid,
2987 unsigned long *start_pfn, unsigned long *end_pfn) {}
2988 #endif
2992 * get_pfn_range_for_nid - Return the start and end page frames for a node
2993 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
2994 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
2995 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
2997 * It returns the start and end page frame of a node based on information
2998 * provided by an arch calling add_active_range(). If called for a node
2999 * with no available memory, a warning is printed and the start and end
3000 * PFNs will be 0.
3002 void __meminit get_pfn_range_for_nid(unsigned int nid,
3003 unsigned long *start_pfn, unsigned long *end_pfn)
3005 int i;
3006 *start_pfn = -1UL;
3007 *end_pfn = 0;
3009 for_each_active_range_index_in_nid(i, nid) {
3010 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
3011 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
3014 if (*start_pfn == -1UL)
3015 *start_pfn = 0;
3017 /* Push the node boundaries out if requested */
3018 account_node_boundary(nid, start_pfn, end_pfn);
3022 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3023 * assumption is made that zones within a node are ordered in monotonic
3024 * increasing memory addresses so that the "highest" populated zone is used
3026 void __init find_usable_zone_for_movable(void)
3028 int zone_index;
3029 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3030 if (zone_index == ZONE_MOVABLE)
3031 continue;
3033 if (arch_zone_highest_possible_pfn[zone_index] >
3034 arch_zone_lowest_possible_pfn[zone_index])
3035 break;
3038 VM_BUG_ON(zone_index == -1);
3039 movable_zone = zone_index;
3043 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3044 * because it is sized independant of architecture. Unlike the other zones,
3045 * the starting point for ZONE_MOVABLE is not fixed. It may be different
3046 * in each node depending on the size of each node and how evenly kernelcore
3047 * is distributed. This helper function adjusts the zone ranges
3048 * provided by the architecture for a given node by using the end of the
3049 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3050 * zones within a node are in order of monotonic increases memory addresses
3052 void __meminit adjust_zone_range_for_zone_movable(int nid,
3053 unsigned long zone_type,
3054 unsigned long node_start_pfn,
3055 unsigned long node_end_pfn,
3056 unsigned long *zone_start_pfn,
3057 unsigned long *zone_end_pfn)
3059 /* Only adjust if ZONE_MOVABLE is on this node */
3060 if (zone_movable_pfn[nid]) {
3061 /* Size ZONE_MOVABLE */
3062 if (zone_type == ZONE_MOVABLE) {
3063 *zone_start_pfn = zone_movable_pfn[nid];
3064 *zone_end_pfn = min(node_end_pfn,
3065 arch_zone_highest_possible_pfn[movable_zone]);
3067 /* Adjust for ZONE_MOVABLE starting within this range */
3068 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
3069 *zone_end_pfn > zone_movable_pfn[nid]) {
3070 *zone_end_pfn = zone_movable_pfn[nid];
3072 /* Check if this whole range is within ZONE_MOVABLE */
3073 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
3074 *zone_start_pfn = *zone_end_pfn;
3079 * Return the number of pages a zone spans in a node, including holes
3080 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3082 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
3083 unsigned long zone_type,
3084 unsigned long *ignored)
3086 unsigned long node_start_pfn, node_end_pfn;
3087 unsigned long zone_start_pfn, zone_end_pfn;
3089 /* Get the start and end of the node and zone */
3090 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3091 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
3092 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
3093 adjust_zone_range_for_zone_movable(nid, zone_type,
3094 node_start_pfn, node_end_pfn,
3095 &zone_start_pfn, &zone_end_pfn);
3097 /* Check that this node has pages within the zone's required range */
3098 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
3099 return 0;
3101 /* Move the zone boundaries inside the node if necessary */
3102 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
3103 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
3105 /* Return the spanned pages */
3106 return zone_end_pfn - zone_start_pfn;
3110 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
3111 * then all holes in the requested range will be accounted for.
3113 unsigned long __meminit __absent_pages_in_range(int nid,
3114 unsigned long range_start_pfn,
3115 unsigned long range_end_pfn)
3117 int i = 0;
3118 unsigned long prev_end_pfn = 0, hole_pages = 0;
3119 unsigned long start_pfn;
3121 /* Find the end_pfn of the first active range of pfns in the node */
3122 i = first_active_region_index_in_nid(nid);
3123 if (i == -1)
3124 return 0;
3126 prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3128 /* Account for ranges before physical memory on this node */
3129 if (early_node_map[i].start_pfn > range_start_pfn)
3130 hole_pages = prev_end_pfn - range_start_pfn;
3132 /* Find all holes for the zone within the node */
3133 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
3135 /* No need to continue if prev_end_pfn is outside the zone */
3136 if (prev_end_pfn >= range_end_pfn)
3137 break;
3139 /* Make sure the end of the zone is not within the hole */
3140 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3141 prev_end_pfn = max(prev_end_pfn, range_start_pfn);
3143 /* Update the hole size cound and move on */
3144 if (start_pfn > range_start_pfn) {
3145 BUG_ON(prev_end_pfn > start_pfn);
3146 hole_pages += start_pfn - prev_end_pfn;
3148 prev_end_pfn = early_node_map[i].end_pfn;
3151 /* Account for ranges past physical memory on this node */
3152 if (range_end_pfn > prev_end_pfn)
3153 hole_pages += range_end_pfn -
3154 max(range_start_pfn, prev_end_pfn);
3156 return hole_pages;
3160 * absent_pages_in_range - Return number of page frames in holes within a range
3161 * @start_pfn: The start PFN to start searching for holes
3162 * @end_pfn: The end PFN to stop searching for holes
3164 * It returns the number of pages frames in memory holes within a range.
3166 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
3167 unsigned long end_pfn)
3169 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
3172 /* Return the number of page frames in holes in a zone on a node */
3173 static unsigned long __meminit zone_absent_pages_in_node(int nid,
3174 unsigned long zone_type,
3175 unsigned long *ignored)
3177 unsigned long node_start_pfn, node_end_pfn;
3178 unsigned long zone_start_pfn, zone_end_pfn;
3180 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3181 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
3182 node_start_pfn);
3183 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
3184 node_end_pfn);
3186 adjust_zone_range_for_zone_movable(nid, zone_type,
3187 node_start_pfn, node_end_pfn,
3188 &zone_start_pfn, &zone_end_pfn);
3189 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
3192 #else
3193 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
3194 unsigned long zone_type,
3195 unsigned long *zones_size)
3197 return zones_size[zone_type];
3200 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
3201 unsigned long zone_type,
3202 unsigned long *zholes_size)
3204 if (!zholes_size)
3205 return 0;
3207 return zholes_size[zone_type];
3210 #endif
3212 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
3213 unsigned long *zones_size, unsigned long *zholes_size)
3215 unsigned long realtotalpages, totalpages = 0;
3216 enum zone_type i;
3218 for (i = 0; i < MAX_NR_ZONES; i++)
3219 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
3220 zones_size);
3221 pgdat->node_spanned_pages = totalpages;
3223 realtotalpages = totalpages;
3224 for (i = 0; i < MAX_NR_ZONES; i++)
3225 realtotalpages -=
3226 zone_absent_pages_in_node(pgdat->node_id, i,
3227 zholes_size);
3228 pgdat->node_present_pages = realtotalpages;
3229 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
3230 realtotalpages);
3233 #ifndef CONFIG_SPARSEMEM
3235 * Calculate the size of the zone->blockflags rounded to an unsigned long
3236 * Start by making sure zonesize is a multiple of pageblock_order by rounding
3237 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
3238 * round what is now in bits to nearest long in bits, then return it in
3239 * bytes.
3241 static unsigned long __init usemap_size(unsigned long zonesize)
3243 unsigned long usemapsize;
3245 usemapsize = roundup(zonesize, pageblock_nr_pages);
3246 usemapsize = usemapsize >> pageblock_order;
3247 usemapsize *= NR_PAGEBLOCK_BITS;
3248 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
3250 return usemapsize / 8;
3253 static void __init setup_usemap(struct pglist_data *pgdat,
3254 struct zone *zone, unsigned long zonesize)
3256 unsigned long usemapsize = usemap_size(zonesize);
3257 zone->pageblock_flags = NULL;
3258 if (usemapsize) {
3259 zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
3260 memset(zone->pageblock_flags, 0, usemapsize);
3263 #else
3264 static void inline setup_usemap(struct pglist_data *pgdat,
3265 struct zone *zone, unsigned long zonesize) {}
3266 #endif /* CONFIG_SPARSEMEM */
3268 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
3269 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
3270 static inline void __init set_pageblock_order(unsigned int order)
3272 /* Check that pageblock_nr_pages has not already been setup */
3273 if (pageblock_order)
3274 return;
3277 * Assume the largest contiguous order of interest is a huge page.
3278 * This value may be variable depending on boot parameters on IA64
3280 pageblock_order = order;
3282 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3284 /* Defined this way to avoid accidently referencing HUGETLB_PAGE_ORDER */
3285 #define set_pageblock_order(x) do {} while (0)
3287 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3290 * Set up the zone data structures:
3291 * - mark all pages reserved
3292 * - mark all memory queues empty
3293 * - clear the memory bitmaps
3295 static void __meminit free_area_init_core(struct pglist_data *pgdat,
3296 unsigned long *zones_size, unsigned long *zholes_size)
3298 enum zone_type j;
3299 int nid = pgdat->node_id;
3300 unsigned long zone_start_pfn = pgdat->node_start_pfn;
3301 int ret;
3303 pgdat_resize_init(pgdat);
3304 pgdat->nr_zones = 0;
3305 init_waitqueue_head(&pgdat->kswapd_wait);
3306 pgdat->kswapd_max_order = 0;
3308 for (j = 0; j < MAX_NR_ZONES; j++) {
3309 struct zone *zone = pgdat->node_zones + j;
3310 unsigned long size, realsize, memmap_pages;
3312 size = zone_spanned_pages_in_node(nid, j, zones_size);
3313 realsize = size - zone_absent_pages_in_node(nid, j,
3314 zholes_size);
3317 * Adjust realsize so that it accounts for how much memory
3318 * is used by this zone for memmap. This affects the watermark
3319 * and per-cpu initialisations
3321 memmap_pages = (size * sizeof(struct page)) >> PAGE_SHIFT;
3322 if (realsize >= memmap_pages) {
3323 realsize -= memmap_pages;
3324 printk(KERN_DEBUG
3325 " %s zone: %lu pages used for memmap\n",
3326 zone_names[j], memmap_pages);
3327 } else
3328 printk(KERN_WARNING
3329 " %s zone: %lu pages exceeds realsize %lu\n",
3330 zone_names[j], memmap_pages, realsize);
3332 /* Account for reserved pages */
3333 if (j == 0 && realsize > dma_reserve) {
3334 realsize -= dma_reserve;
3335 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
3336 zone_names[0], dma_reserve);
3339 if (!is_highmem_idx(j))
3340 nr_kernel_pages += realsize;
3341 nr_all_pages += realsize;
3343 zone->spanned_pages = size;
3344 zone->present_pages = realsize;
3345 #ifdef CONFIG_NUMA
3346 zone->node = nid;
3347 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
3348 / 100;
3349 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
3350 #endif
3351 zone->name = zone_names[j];
3352 spin_lock_init(&zone->lock);
3353 spin_lock_init(&zone->lru_lock);
3354 zone_seqlock_init(zone);
3355 zone->zone_pgdat = pgdat;
3357 zone->prev_priority = DEF_PRIORITY;
3359 zone_pcp_init(zone);
3360 INIT_LIST_HEAD(&zone->active_list);
3361 INIT_LIST_HEAD(&zone->inactive_list);
3362 zone->nr_scan_active = 0;
3363 zone->nr_scan_inactive = 0;
3364 zap_zone_vm_stats(zone);
3365 zone->flags = 0;
3366 if (!size)
3367 continue;
3369 set_pageblock_order(HUGETLB_PAGE_ORDER);
3370 setup_usemap(pgdat, zone, size);
3371 ret = init_currently_empty_zone(zone, zone_start_pfn,
3372 size, MEMMAP_EARLY);
3373 BUG_ON(ret);
3374 zone_start_pfn += size;
3378 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
3380 /* Skip empty nodes */
3381 if (!pgdat->node_spanned_pages)
3382 return;
3384 #ifdef CONFIG_FLAT_NODE_MEM_MAP
3385 /* ia64 gets its own node_mem_map, before this, without bootmem */
3386 if (!pgdat->node_mem_map) {
3387 unsigned long size, start, end;
3388 struct page *map;
3391 * The zone's endpoints aren't required to be MAX_ORDER
3392 * aligned but the node_mem_map endpoints must be in order
3393 * for the buddy allocator to function correctly.
3395 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
3396 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
3397 end = ALIGN(end, MAX_ORDER_NR_PAGES);
3398 size = (end - start) * sizeof(struct page);
3399 map = alloc_remap(pgdat->node_id, size);
3400 if (!map)
3401 map = alloc_bootmem_node(pgdat, size);
3402 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
3404 #ifndef CONFIG_NEED_MULTIPLE_NODES
3406 * With no DISCONTIG, the global mem_map is just set as node 0's
3408 if (pgdat == NODE_DATA(0)) {
3409 mem_map = NODE_DATA(0)->node_mem_map;
3410 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3411 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
3412 mem_map -= pgdat->node_start_pfn;
3413 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3415 #endif
3416 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
3419 void __meminit free_area_init_node(int nid, struct pglist_data *pgdat,
3420 unsigned long *zones_size, unsigned long node_start_pfn,
3421 unsigned long *zholes_size)
3423 pgdat->node_id = nid;
3424 pgdat->node_start_pfn = node_start_pfn;
3425 calculate_node_totalpages(pgdat, zones_size, zholes_size);
3427 alloc_node_mem_map(pgdat);
3429 free_area_init_core(pgdat, zones_size, zholes_size);
3432 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3434 #if MAX_NUMNODES > 1
3436 * Figure out the number of possible node ids.
3438 static void __init setup_nr_node_ids(void)
3440 unsigned int node;
3441 unsigned int highest = 0;
3443 for_each_node_mask(node, node_possible_map)
3444 highest = node;
3445 nr_node_ids = highest + 1;
3447 #else
3448 static inline void setup_nr_node_ids(void)
3451 #endif
3454 * add_active_range - Register a range of PFNs backed by physical memory
3455 * @nid: The node ID the range resides on
3456 * @start_pfn: The start PFN of the available physical memory
3457 * @end_pfn: The end PFN of the available physical memory
3459 * These ranges are stored in an early_node_map[] and later used by
3460 * free_area_init_nodes() to calculate zone sizes and holes. If the
3461 * range spans a memory hole, it is up to the architecture to ensure
3462 * the memory is not freed by the bootmem allocator. If possible
3463 * the range being registered will be merged with existing ranges.
3465 void __init add_active_range(unsigned int nid, unsigned long start_pfn,
3466 unsigned long end_pfn)
3468 int i;
3470 printk(KERN_DEBUG "Entering add_active_range(%d, %lu, %lu) "
3471 "%d entries of %d used\n",
3472 nid, start_pfn, end_pfn,
3473 nr_nodemap_entries, MAX_ACTIVE_REGIONS);
3475 /* Merge with existing active regions if possible */
3476 for (i = 0; i < nr_nodemap_entries; i++) {
3477 if (early_node_map[i].nid != nid)
3478 continue;
3480 /* Skip if an existing region covers this new one */
3481 if (start_pfn >= early_node_map[i].start_pfn &&
3482 end_pfn <= early_node_map[i].end_pfn)
3483 return;
3485 /* Merge forward if suitable */
3486 if (start_pfn <= early_node_map[i].end_pfn &&
3487 end_pfn > early_node_map[i].end_pfn) {
3488 early_node_map[i].end_pfn = end_pfn;
3489 return;
3492 /* Merge backward if suitable */
3493 if (start_pfn < early_node_map[i].end_pfn &&
3494 end_pfn >= early_node_map[i].start_pfn) {
3495 early_node_map[i].start_pfn = start_pfn;
3496 return;
3500 /* Check that early_node_map is large enough */
3501 if (i >= MAX_ACTIVE_REGIONS) {
3502 printk(KERN_CRIT "More than %d memory regions, truncating\n",
3503 MAX_ACTIVE_REGIONS);
3504 return;
3507 early_node_map[i].nid = nid;
3508 early_node_map[i].start_pfn = start_pfn;
3509 early_node_map[i].end_pfn = end_pfn;
3510 nr_nodemap_entries = i + 1;
3514 * shrink_active_range - Shrink an existing registered range of PFNs
3515 * @nid: The node id the range is on that should be shrunk
3516 * @old_end_pfn: The old end PFN of the range
3517 * @new_end_pfn: The new PFN of the range
3519 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
3520 * The map is kept at the end physical page range that has already been
3521 * registered with add_active_range(). This function allows an arch to shrink
3522 * an existing registered range.
3524 void __init shrink_active_range(unsigned int nid, unsigned long old_end_pfn,
3525 unsigned long new_end_pfn)
3527 int i;
3529 /* Find the old active region end and shrink */
3530 for_each_active_range_index_in_nid(i, nid)
3531 if (early_node_map[i].end_pfn == old_end_pfn) {
3532 early_node_map[i].end_pfn = new_end_pfn;
3533 break;
3538 * remove_all_active_ranges - Remove all currently registered regions
3540 * During discovery, it may be found that a table like SRAT is invalid
3541 * and an alternative discovery method must be used. This function removes
3542 * all currently registered regions.
3544 void __init remove_all_active_ranges(void)
3546 memset(early_node_map, 0, sizeof(early_node_map));
3547 nr_nodemap_entries = 0;
3548 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
3549 memset(node_boundary_start_pfn, 0, sizeof(node_boundary_start_pfn));
3550 memset(node_boundary_end_pfn, 0, sizeof(node_boundary_end_pfn));
3551 #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
3554 /* Compare two active node_active_regions */
3555 static int __init cmp_node_active_region(const void *a, const void *b)
3557 struct node_active_region *arange = (struct node_active_region *)a;
3558 struct node_active_region *brange = (struct node_active_region *)b;
3560 /* Done this way to avoid overflows */
3561 if (arange->start_pfn > brange->start_pfn)
3562 return 1;
3563 if (arange->start_pfn < brange->start_pfn)
3564 return -1;
3566 return 0;
3569 /* sort the node_map by start_pfn */
3570 static void __init sort_node_map(void)
3572 sort(early_node_map, (size_t)nr_nodemap_entries,
3573 sizeof(struct node_active_region),
3574 cmp_node_active_region, NULL);
3577 /* Find the lowest pfn for a node */
3578 unsigned long __init find_min_pfn_for_node(unsigned long nid)
3580 int i;
3581 unsigned long min_pfn = ULONG_MAX;
3583 /* Assuming a sorted map, the first range found has the starting pfn */
3584 for_each_active_range_index_in_nid(i, nid)
3585 min_pfn = min(min_pfn, early_node_map[i].start_pfn);
3587 if (min_pfn == ULONG_MAX) {
3588 printk(KERN_WARNING
3589 "Could not find start_pfn for node %lu\n", nid);
3590 return 0;
3593 return min_pfn;
3597 * find_min_pfn_with_active_regions - Find the minimum PFN registered
3599 * It returns the minimum PFN based on information provided via
3600 * add_active_range().
3602 unsigned long __init find_min_pfn_with_active_regions(void)
3604 return find_min_pfn_for_node(MAX_NUMNODES);
3608 * find_max_pfn_with_active_regions - Find the maximum PFN registered
3610 * It returns the maximum PFN based on information provided via
3611 * add_active_range().
3613 unsigned long __init find_max_pfn_with_active_regions(void)
3615 int i;
3616 unsigned long max_pfn = 0;
3618 for (i = 0; i < nr_nodemap_entries; i++)
3619 max_pfn = max(max_pfn, early_node_map[i].end_pfn);
3621 return max_pfn;
3625 * early_calculate_totalpages()
3626 * Sum pages in active regions for movable zone.
3627 * Populate N_HIGH_MEMORY for calculating usable_nodes.
3629 static unsigned long __init early_calculate_totalpages(void)
3631 int i;
3632 unsigned long totalpages = 0;
3634 for (i = 0; i < nr_nodemap_entries; i++) {
3635 unsigned long pages = early_node_map[i].end_pfn -
3636 early_node_map[i].start_pfn;
3637 totalpages += pages;
3638 if (pages)
3639 node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
3641 return totalpages;
3645 * Find the PFN the Movable zone begins in each node. Kernel memory
3646 * is spread evenly between nodes as long as the nodes have enough
3647 * memory. When they don't, some nodes will have more kernelcore than
3648 * others
3650 void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
3652 int i, nid;
3653 unsigned long usable_startpfn;
3654 unsigned long kernelcore_node, kernelcore_remaining;
3655 unsigned long totalpages = early_calculate_totalpages();
3656 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
3659 * If movablecore was specified, calculate what size of
3660 * kernelcore that corresponds so that memory usable for
3661 * any allocation type is evenly spread. If both kernelcore
3662 * and movablecore are specified, then the value of kernelcore
3663 * will be used for required_kernelcore if it's greater than
3664 * what movablecore would have allowed.
3666 if (required_movablecore) {
3667 unsigned long corepages;
3670 * Round-up so that ZONE_MOVABLE is at least as large as what
3671 * was requested by the user
3673 required_movablecore =
3674 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
3675 corepages = totalpages - required_movablecore;
3677 required_kernelcore = max(required_kernelcore, corepages);
3680 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
3681 if (!required_kernelcore)
3682 return;
3684 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
3685 find_usable_zone_for_movable();
3686 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
3688 restart:
3689 /* Spread kernelcore memory as evenly as possible throughout nodes */
3690 kernelcore_node = required_kernelcore / usable_nodes;
3691 for_each_node_state(nid, N_HIGH_MEMORY) {
3693 * Recalculate kernelcore_node if the division per node
3694 * now exceeds what is necessary to satisfy the requested
3695 * amount of memory for the kernel
3697 if (required_kernelcore < kernelcore_node)
3698 kernelcore_node = required_kernelcore / usable_nodes;
3701 * As the map is walked, we track how much memory is usable
3702 * by the kernel using kernelcore_remaining. When it is
3703 * 0, the rest of the node is usable by ZONE_MOVABLE
3705 kernelcore_remaining = kernelcore_node;
3707 /* Go through each range of PFNs within this node */
3708 for_each_active_range_index_in_nid(i, nid) {
3709 unsigned long start_pfn, end_pfn;
3710 unsigned long size_pages;
3712 start_pfn = max(early_node_map[i].start_pfn,
3713 zone_movable_pfn[nid]);
3714 end_pfn = early_node_map[i].end_pfn;
3715 if (start_pfn >= end_pfn)
3716 continue;
3718 /* Account for what is only usable for kernelcore */
3719 if (start_pfn < usable_startpfn) {
3720 unsigned long kernel_pages;
3721 kernel_pages = min(end_pfn, usable_startpfn)
3722 - start_pfn;
3724 kernelcore_remaining -= min(kernel_pages,
3725 kernelcore_remaining);
3726 required_kernelcore -= min(kernel_pages,
3727 required_kernelcore);
3729 /* Continue if range is now fully accounted */
3730 if (end_pfn <= usable_startpfn) {
3733 * Push zone_movable_pfn to the end so
3734 * that if we have to rebalance
3735 * kernelcore across nodes, we will
3736 * not double account here
3738 zone_movable_pfn[nid] = end_pfn;
3739 continue;
3741 start_pfn = usable_startpfn;
3745 * The usable PFN range for ZONE_MOVABLE is from
3746 * start_pfn->end_pfn. Calculate size_pages as the
3747 * number of pages used as kernelcore
3749 size_pages = end_pfn - start_pfn;
3750 if (size_pages > kernelcore_remaining)
3751 size_pages = kernelcore_remaining;
3752 zone_movable_pfn[nid] = start_pfn + size_pages;
3755 * Some kernelcore has been met, update counts and
3756 * break if the kernelcore for this node has been
3757 * satisified
3759 required_kernelcore -= min(required_kernelcore,
3760 size_pages);
3761 kernelcore_remaining -= size_pages;
3762 if (!kernelcore_remaining)
3763 break;
3768 * If there is still required_kernelcore, we do another pass with one
3769 * less node in the count. This will push zone_movable_pfn[nid] further
3770 * along on the nodes that still have memory until kernelcore is
3771 * satisified
3773 usable_nodes--;
3774 if (usable_nodes && required_kernelcore > usable_nodes)
3775 goto restart;
3777 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
3778 for (nid = 0; nid < MAX_NUMNODES; nid++)
3779 zone_movable_pfn[nid] =
3780 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
3783 /* Any regular memory on that node ? */
3784 static void check_for_regular_memory(pg_data_t *pgdat)
3786 #ifdef CONFIG_HIGHMEM
3787 enum zone_type zone_type;
3789 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
3790 struct zone *zone = &pgdat->node_zones[zone_type];
3791 if (zone->present_pages)
3792 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
3794 #endif
3798 * free_area_init_nodes - Initialise all pg_data_t and zone data
3799 * @max_zone_pfn: an array of max PFNs for each zone
3801 * This will call free_area_init_node() for each active node in the system.
3802 * Using the page ranges provided by add_active_range(), the size of each
3803 * zone in each node and their holes is calculated. If the maximum PFN
3804 * between two adjacent zones match, it is assumed that the zone is empty.
3805 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
3806 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
3807 * starts where the previous one ended. For example, ZONE_DMA32 starts
3808 * at arch_max_dma_pfn.
3810 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
3812 unsigned long nid;
3813 enum zone_type i;
3815 /* Sort early_node_map as initialisation assumes it is sorted */
3816 sort_node_map();
3818 /* Record where the zone boundaries are */
3819 memset(arch_zone_lowest_possible_pfn, 0,
3820 sizeof(arch_zone_lowest_possible_pfn));
3821 memset(arch_zone_highest_possible_pfn, 0,
3822 sizeof(arch_zone_highest_possible_pfn));
3823 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
3824 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
3825 for (i = 1; i < MAX_NR_ZONES; i++) {
3826 if (i == ZONE_MOVABLE)
3827 continue;
3828 arch_zone_lowest_possible_pfn[i] =
3829 arch_zone_highest_possible_pfn[i-1];
3830 arch_zone_highest_possible_pfn[i] =
3831 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
3833 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
3834 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
3836 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
3837 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
3838 find_zone_movable_pfns_for_nodes(zone_movable_pfn);
3840 /* Print out the zone ranges */
3841 printk("Zone PFN ranges:\n");
3842 for (i = 0; i < MAX_NR_ZONES; i++) {
3843 if (i == ZONE_MOVABLE)
3844 continue;
3845 printk(" %-8s %8lu -> %8lu\n",
3846 zone_names[i],
3847 arch_zone_lowest_possible_pfn[i],
3848 arch_zone_highest_possible_pfn[i]);
3851 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
3852 printk("Movable zone start PFN for each node\n");
3853 for (i = 0; i < MAX_NUMNODES; i++) {
3854 if (zone_movable_pfn[i])
3855 printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
3858 /* Print out the early_node_map[] */
3859 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
3860 for (i = 0; i < nr_nodemap_entries; i++)
3861 printk(" %3d: %8lu -> %8lu\n", early_node_map[i].nid,
3862 early_node_map[i].start_pfn,
3863 early_node_map[i].end_pfn);
3865 /* Initialise every node */
3866 setup_nr_node_ids();
3867 for_each_online_node(nid) {
3868 pg_data_t *pgdat = NODE_DATA(nid);
3869 free_area_init_node(nid, pgdat, NULL,
3870 find_min_pfn_for_node(nid), NULL);
3872 /* Any memory on that node */
3873 if (pgdat->node_present_pages)
3874 node_set_state(nid, N_HIGH_MEMORY);
3875 check_for_regular_memory(pgdat);
3879 static int __init cmdline_parse_core(char *p, unsigned long *core)
3881 unsigned long long coremem;
3882 if (!p)
3883 return -EINVAL;
3885 coremem = memparse(p, &p);
3886 *core = coremem >> PAGE_SHIFT;
3888 /* Paranoid check that UL is enough for the coremem value */
3889 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
3891 return 0;
3895 * kernelcore=size sets the amount of memory for use for allocations that
3896 * cannot be reclaimed or migrated.
3898 static int __init cmdline_parse_kernelcore(char *p)
3900 return cmdline_parse_core(p, &required_kernelcore);
3904 * movablecore=size sets the amount of memory for use for allocations that
3905 * can be reclaimed or migrated.
3907 static int __init cmdline_parse_movablecore(char *p)
3909 return cmdline_parse_core(p, &required_movablecore);
3912 early_param("kernelcore", cmdline_parse_kernelcore);
3913 early_param("movablecore", cmdline_parse_movablecore);
3915 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3918 * set_dma_reserve - set the specified number of pages reserved in the first zone
3919 * @new_dma_reserve: The number of pages to mark reserved
3921 * The per-cpu batchsize and zone watermarks are determined by present_pages.
3922 * In the DMA zone, a significant percentage may be consumed by kernel image
3923 * and other unfreeable allocations which can skew the watermarks badly. This
3924 * function may optionally be used to account for unfreeable pages in the
3925 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
3926 * smaller per-cpu batchsize.
3928 void __init set_dma_reserve(unsigned long new_dma_reserve)
3930 dma_reserve = new_dma_reserve;
3933 #ifndef CONFIG_NEED_MULTIPLE_NODES
3934 static bootmem_data_t contig_bootmem_data;
3935 struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };
3937 EXPORT_SYMBOL(contig_page_data);
3938 #endif
3940 void __init free_area_init(unsigned long *zones_size)
3942 free_area_init_node(0, NODE_DATA(0), zones_size,
3943 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
3946 static int page_alloc_cpu_notify(struct notifier_block *self,
3947 unsigned long action, void *hcpu)
3949 int cpu = (unsigned long)hcpu;
3951 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
3952 local_irq_disable();
3953 __drain_pages(cpu);
3954 vm_events_fold_cpu(cpu);
3955 local_irq_enable();
3956 refresh_cpu_vm_stats(cpu);
3958 return NOTIFY_OK;
3961 void __init page_alloc_init(void)
3963 hotcpu_notifier(page_alloc_cpu_notify, 0);
3967 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
3968 * or min_free_kbytes changes.
3970 static void calculate_totalreserve_pages(void)
3972 struct pglist_data *pgdat;
3973 unsigned long reserve_pages = 0;
3974 enum zone_type i, j;
3976 for_each_online_pgdat(pgdat) {
3977 for (i = 0; i < MAX_NR_ZONES; i++) {
3978 struct zone *zone = pgdat->node_zones + i;
3979 unsigned long max = 0;
3981 /* Find valid and maximum lowmem_reserve in the zone */
3982 for (j = i; j < MAX_NR_ZONES; j++) {
3983 if (zone->lowmem_reserve[j] > max)
3984 max = zone->lowmem_reserve[j];
3987 /* we treat pages_high as reserved pages. */
3988 max += zone->pages_high;
3990 if (max > zone->present_pages)
3991 max = zone->present_pages;
3992 reserve_pages += max;
3995 totalreserve_pages = reserve_pages;
3999 * setup_per_zone_lowmem_reserve - called whenever
4000 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
4001 * has a correct pages reserved value, so an adequate number of
4002 * pages are left in the zone after a successful __alloc_pages().
4004 static void setup_per_zone_lowmem_reserve(void)
4006 struct pglist_data *pgdat;
4007 enum zone_type j, idx;
4009 for_each_online_pgdat(pgdat) {
4010 for (j = 0; j < MAX_NR_ZONES; j++) {
4011 struct zone *zone = pgdat->node_zones + j;
4012 unsigned long present_pages = zone->present_pages;
4014 zone->lowmem_reserve[j] = 0;
4016 idx = j;
4017 while (idx) {
4018 struct zone *lower_zone;
4020 idx--;
4022 if (sysctl_lowmem_reserve_ratio[idx] < 1)
4023 sysctl_lowmem_reserve_ratio[idx] = 1;
4025 lower_zone = pgdat->node_zones + idx;
4026 lower_zone->lowmem_reserve[j] = present_pages /
4027 sysctl_lowmem_reserve_ratio[idx];
4028 present_pages += lower_zone->present_pages;
4033 /* update totalreserve_pages */
4034 calculate_totalreserve_pages();
4038 * setup_per_zone_pages_min - called when min_free_kbytes changes.
4040 * Ensures that the pages_{min,low,high} values for each zone are set correctly
4041 * with respect to min_free_kbytes.
4043 void setup_per_zone_pages_min(void)
4045 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
4046 unsigned long lowmem_pages = 0;
4047 struct zone *zone;
4048 unsigned long flags;
4050 /* Calculate total number of !ZONE_HIGHMEM pages */
4051 for_each_zone(zone) {
4052 if (!is_highmem(zone))
4053 lowmem_pages += zone->present_pages;
4056 for_each_zone(zone) {
4057 u64 tmp;
4059 spin_lock_irqsave(&zone->lru_lock, flags);
4060 tmp = (u64)pages_min * zone->present_pages;
4061 do_div(tmp, lowmem_pages);
4062 if (is_highmem(zone)) {
4064 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4065 * need highmem pages, so cap pages_min to a small
4066 * value here.
4068 * The (pages_high-pages_low) and (pages_low-pages_min)
4069 * deltas controls asynch page reclaim, and so should
4070 * not be capped for highmem.
4072 int min_pages;
4074 min_pages = zone->present_pages / 1024;
4075 if (min_pages < SWAP_CLUSTER_MAX)
4076 min_pages = SWAP_CLUSTER_MAX;
4077 if (min_pages > 128)
4078 min_pages = 128;
4079 zone->pages_min = min_pages;
4080 } else {
4082 * If it's a lowmem zone, reserve a number of pages
4083 * proportionate to the zone's size.
4085 zone->pages_min = tmp;
4088 zone->pages_low = zone->pages_min + (tmp >> 2);
4089 zone->pages_high = zone->pages_min + (tmp >> 1);
4090 setup_zone_migrate_reserve(zone);
4091 spin_unlock_irqrestore(&zone->lru_lock, flags);
4094 /* update totalreserve_pages */
4095 calculate_totalreserve_pages();
4099 * Initialise min_free_kbytes.
4101 * For small machines we want it small (128k min). For large machines
4102 * we want it large (64MB max). But it is not linear, because network
4103 * bandwidth does not increase linearly with machine size. We use
4105 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
4106 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
4108 * which yields
4110 * 16MB: 512k
4111 * 32MB: 724k
4112 * 64MB: 1024k
4113 * 128MB: 1448k
4114 * 256MB: 2048k
4115 * 512MB: 2896k
4116 * 1024MB: 4096k
4117 * 2048MB: 5792k
4118 * 4096MB: 8192k
4119 * 8192MB: 11584k
4120 * 16384MB: 16384k
4122 static int __init init_per_zone_pages_min(void)
4124 unsigned long lowmem_kbytes;
4126 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
4128 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
4129 if (min_free_kbytes < 128)
4130 min_free_kbytes = 128;
4131 if (min_free_kbytes > 65536)
4132 min_free_kbytes = 65536;
4133 setup_per_zone_pages_min();
4134 setup_per_zone_lowmem_reserve();
4135 return 0;
4137 module_init(init_per_zone_pages_min)
4140 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
4141 * that we can call two helper functions whenever min_free_kbytes
4142 * changes.
4144 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
4145 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4147 proc_dointvec(table, write, file, buffer, length, ppos);
4148 if (write)
4149 setup_per_zone_pages_min();
4150 return 0;
4153 #ifdef CONFIG_NUMA
4154 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
4155 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4157 struct zone *zone;
4158 int rc;
4160 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4161 if (rc)
4162 return rc;
4164 for_each_zone(zone)
4165 zone->min_unmapped_pages = (zone->present_pages *
4166 sysctl_min_unmapped_ratio) / 100;
4167 return 0;
4170 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
4171 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4173 struct zone *zone;
4174 int rc;
4176 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4177 if (rc)
4178 return rc;
4180 for_each_zone(zone)
4181 zone->min_slab_pages = (zone->present_pages *
4182 sysctl_min_slab_ratio) / 100;
4183 return 0;
4185 #endif
4188 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
4189 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
4190 * whenever sysctl_lowmem_reserve_ratio changes.
4192 * The reserve ratio obviously has absolutely no relation with the
4193 * pages_min watermarks. The lowmem reserve ratio can only make sense
4194 * if in function of the boot time zone sizes.
4196 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
4197 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4199 proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4200 setup_per_zone_lowmem_reserve();
4201 return 0;
4205 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
4206 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
4207 * can have before it gets flushed back to buddy allocator.
4210 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
4211 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4213 struct zone *zone;
4214 unsigned int cpu;
4215 int ret;
4217 ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4218 if (!write || (ret == -EINVAL))
4219 return ret;
4220 for_each_zone(zone) {
4221 for_each_online_cpu(cpu) {
4222 unsigned long high;
4223 high = zone->present_pages / percpu_pagelist_fraction;
4224 setup_pagelist_highmark(zone_pcp(zone, cpu), high);
4227 return 0;
4230 int hashdist = HASHDIST_DEFAULT;
4232 #ifdef CONFIG_NUMA
4233 static int __init set_hashdist(char *str)
4235 if (!str)
4236 return 0;
4237 hashdist = simple_strtoul(str, &str, 0);
4238 return 1;
4240 __setup("hashdist=", set_hashdist);
4241 #endif
4244 * allocate a large system hash table from bootmem
4245 * - it is assumed that the hash table must contain an exact power-of-2
4246 * quantity of entries
4247 * - limit is the number of hash buckets, not the total allocation size
4249 void *__init alloc_large_system_hash(const char *tablename,
4250 unsigned long bucketsize,
4251 unsigned long numentries,
4252 int scale,
4253 int flags,
4254 unsigned int *_hash_shift,
4255 unsigned int *_hash_mask,
4256 unsigned long limit)
4258 unsigned long long max = limit;
4259 unsigned long log2qty, size;
4260 void *table = NULL;
4262 /* allow the kernel cmdline to have a say */
4263 if (!numentries) {
4264 /* round applicable memory size up to nearest megabyte */
4265 numentries = nr_kernel_pages;
4266 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
4267 numentries >>= 20 - PAGE_SHIFT;
4268 numentries <<= 20 - PAGE_SHIFT;
4270 /* limit to 1 bucket per 2^scale bytes of low memory */
4271 if (scale > PAGE_SHIFT)
4272 numentries >>= (scale - PAGE_SHIFT);
4273 else
4274 numentries <<= (PAGE_SHIFT - scale);
4276 /* Make sure we've got at least a 0-order allocation.. */
4277 if (unlikely((numentries * bucketsize) < PAGE_SIZE))
4278 numentries = PAGE_SIZE / bucketsize;
4280 numentries = roundup_pow_of_two(numentries);
4282 /* limit allocation size to 1/16 total memory by default */
4283 if (max == 0) {
4284 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
4285 do_div(max, bucketsize);
4288 if (numentries > max)
4289 numentries = max;
4291 log2qty = ilog2(numentries);
4293 do {
4294 size = bucketsize << log2qty;
4295 if (flags & HASH_EARLY)
4296 table = alloc_bootmem(size);
4297 else if (hashdist)
4298 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
4299 else {
4300 unsigned long order;
4301 for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++)
4303 table = (void*) __get_free_pages(GFP_ATOMIC, order);
4305 * If bucketsize is not a power-of-two, we may free
4306 * some pages at the end of hash table.
4308 if (table) {
4309 unsigned long alloc_end = (unsigned long)table +
4310 (PAGE_SIZE << order);
4311 unsigned long used = (unsigned long)table +
4312 PAGE_ALIGN(size);
4313 split_page(virt_to_page(table), order);
4314 while (used < alloc_end) {
4315 free_page(used);
4316 used += PAGE_SIZE;
4320 } while (!table && size > PAGE_SIZE && --log2qty);
4322 if (!table)
4323 panic("Failed to allocate %s hash table\n", tablename);
4325 printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
4326 tablename,
4327 (1U << log2qty),
4328 ilog2(size) - PAGE_SHIFT,
4329 size);
4331 if (_hash_shift)
4332 *_hash_shift = log2qty;
4333 if (_hash_mask)
4334 *_hash_mask = (1 << log2qty) - 1;
4336 return table;
4339 #ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE
4340 struct page *pfn_to_page(unsigned long pfn)
4342 return __pfn_to_page(pfn);
4344 unsigned long page_to_pfn(struct page *page)
4346 return __page_to_pfn(page);
4348 EXPORT_SYMBOL(pfn_to_page);
4349 EXPORT_SYMBOL(page_to_pfn);
4350 #endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */
4352 /* Return a pointer to the bitmap storing bits affecting a block of pages */
4353 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
4354 unsigned long pfn)
4356 #ifdef CONFIG_SPARSEMEM
4357 return __pfn_to_section(pfn)->pageblock_flags;
4358 #else
4359 return zone->pageblock_flags;
4360 #endif /* CONFIG_SPARSEMEM */
4363 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
4365 #ifdef CONFIG_SPARSEMEM
4366 pfn &= (PAGES_PER_SECTION-1);
4367 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4368 #else
4369 pfn = pfn - zone->zone_start_pfn;
4370 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4371 #endif /* CONFIG_SPARSEMEM */
4375 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
4376 * @page: The page within the block of interest
4377 * @start_bitidx: The first bit of interest to retrieve
4378 * @end_bitidx: The last bit of interest
4379 * returns pageblock_bits flags
4381 unsigned long get_pageblock_flags_group(struct page *page,
4382 int start_bitidx, int end_bitidx)
4384 struct zone *zone;
4385 unsigned long *bitmap;
4386 unsigned long pfn, bitidx;
4387 unsigned long flags = 0;
4388 unsigned long value = 1;
4390 zone = page_zone(page);
4391 pfn = page_to_pfn(page);
4392 bitmap = get_pageblock_bitmap(zone, pfn);
4393 bitidx = pfn_to_bitidx(zone, pfn);
4395 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4396 if (test_bit(bitidx + start_bitidx, bitmap))
4397 flags |= value;
4399 return flags;
4403 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
4404 * @page: The page within the block of interest
4405 * @start_bitidx: The first bit of interest
4406 * @end_bitidx: The last bit of interest
4407 * @flags: The flags to set
4409 void set_pageblock_flags_group(struct page *page, unsigned long flags,
4410 int start_bitidx, int end_bitidx)
4412 struct zone *zone;
4413 unsigned long *bitmap;
4414 unsigned long pfn, bitidx;
4415 unsigned long value = 1;
4417 zone = page_zone(page);
4418 pfn = page_to_pfn(page);
4419 bitmap = get_pageblock_bitmap(zone, pfn);
4420 bitidx = pfn_to_bitidx(zone, pfn);
4422 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4423 if (flags & value)
4424 __set_bit(bitidx + start_bitidx, bitmap);
4425 else
4426 __clear_bit(bitidx + start_bitidx, bitmap);
4430 * This is designed as sub function...plz see page_isolation.c also.
4431 * set/clear page block's type to be ISOLATE.
4432 * page allocater never alloc memory from ISOLATE block.
4435 int set_migratetype_isolate(struct page *page)
4437 struct zone *zone;
4438 unsigned long flags;
4439 int ret = -EBUSY;
4441 zone = page_zone(page);
4442 spin_lock_irqsave(&zone->lock, flags);
4444 * In future, more migrate types will be able to be isolation target.
4446 if (get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
4447 goto out;
4448 set_pageblock_migratetype(page, MIGRATE_ISOLATE);
4449 move_freepages_block(zone, page, MIGRATE_ISOLATE);
4450 ret = 0;
4451 out:
4452 spin_unlock_irqrestore(&zone->lock, flags);
4453 if (!ret)
4454 drain_all_local_pages();
4455 return ret;
4458 void unset_migratetype_isolate(struct page *page)
4460 struct zone *zone;
4461 unsigned long flags;
4462 zone = page_zone(page);
4463 spin_lock_irqsave(&zone->lock, flags);
4464 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
4465 goto out;
4466 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4467 move_freepages_block(zone, page, MIGRATE_MOVABLE);
4468 out:
4469 spin_unlock_irqrestore(&zone->lock, flags);
4472 #ifdef CONFIG_MEMORY_HOTREMOVE
4474 * All pages in the range must be isolated before calling this.
4476 void
4477 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
4479 struct page *page;
4480 struct zone *zone;
4481 int order, i;
4482 unsigned long pfn;
4483 unsigned long flags;
4484 /* find the first valid pfn */
4485 for (pfn = start_pfn; pfn < end_pfn; pfn++)
4486 if (pfn_valid(pfn))
4487 break;
4488 if (pfn == end_pfn)
4489 return;
4490 zone = page_zone(pfn_to_page(pfn));
4491 spin_lock_irqsave(&zone->lock, flags);
4492 pfn = start_pfn;
4493 while (pfn < end_pfn) {
4494 if (!pfn_valid(pfn)) {
4495 pfn++;
4496 continue;
4498 page = pfn_to_page(pfn);
4499 BUG_ON(page_count(page));
4500 BUG_ON(!PageBuddy(page));
4501 order = page_order(page);
4502 #ifdef CONFIG_DEBUG_VM
4503 printk(KERN_INFO "remove from free list %lx %d %lx\n",
4504 pfn, 1 << order, end_pfn);
4505 #endif
4506 list_del(&page->lru);
4507 rmv_page_order(page);
4508 zone->free_area[order].nr_free--;
4509 __mod_zone_page_state(zone, NR_FREE_PAGES,
4510 - (1UL << order));
4511 for (i = 0; i < (1 << order); i++)
4512 SetPageReserved((page+i));
4513 pfn += (1 << order);
4515 spin_unlock_irqrestore(&zone->lock, flags);
4517 #endif